src/share/vm/memory/referenceProcessor.cpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5237
f2110083203d
child 6395
a258f8cb530f
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    38 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    39 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    40 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    41 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    43 void referenceProcessor_init() {
    44   ReferenceProcessor::init_statics();
    45 }
    47 void ReferenceProcessor::init_statics() {
    48   // We need a monotonically non-deccreasing time in ms but
    49   // os::javaTimeMillis() does not guarantee monotonicity.
    50   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    52   // Initialize the soft ref timestamp clock.
    53   _soft_ref_timestamp_clock = now;
    54   // Also update the soft ref clock in j.l.r.SoftReference
    55   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    57   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    58   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    59                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    60   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    61     vm_exit_during_initialization("Could not allocate reference policy object");
    62   }
    63   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    64             RefDiscoveryPolicy == ReferentBasedDiscovery,
    65             "Unrecongnized RefDiscoveryPolicy");
    66   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    67 }
    69 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    70 #ifdef ASSERT
    71   // Verify that we're not currently discovering refs
    72   assert(!verify_disabled || !_discovering_refs, "nested call?");
    74   if (check_no_refs) {
    75     // Verify that the discovered lists are empty
    76     verify_no_references_recorded();
    77   }
    78 #endif // ASSERT
    80   // Someone could have modified the value of the static
    81   // field in the j.l.r.SoftReference class that holds the
    82   // soft reference timestamp clock using reflection or
    83   // Unsafe between GCs. Unconditionally update the static
    84   // field in ReferenceProcessor here so that we use the new
    85   // value during reference discovery.
    87   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    88   _discovering_refs = true;
    89 }
    91 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    92                                        bool      mt_processing,
    93                                        uint      mt_processing_degree,
    94                                        bool      mt_discovery,
    95                                        uint      mt_discovery_degree,
    96                                        bool      atomic_discovery,
    97                                        BoolObjectClosure* is_alive_non_header,
    98                                        bool      discovered_list_needs_barrier)  :
    99   _discovering_refs(false),
   100   _enqueuing_is_done(false),
   101   _is_alive_non_header(is_alive_non_header),
   102   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   103   _bs(NULL),
   104   _processing_is_mt(mt_processing),
   105   _next_id(0)
   106 {
   107   _span = span;
   108   _discovery_is_atomic = atomic_discovery;
   109   _discovery_is_mt     = mt_discovery;
   110   _num_q               = MAX2(1U, mt_processing_degree);
   111   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   112   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   113             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   115   if (_discovered_refs == NULL) {
   116     vm_exit_during_initialization("Could not allocated RefProc Array");
   117   }
   118   _discoveredSoftRefs    = &_discovered_refs[0];
   119   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   120   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   121   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   123   // Initialize all entries to NULL
   124   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   125     _discovered_refs[i].set_head(NULL);
   126     _discovered_refs[i].set_length(0);
   127   }
   129   // If we do barriers, cache a copy of the barrier set.
   130   if (discovered_list_needs_barrier) {
   131     _bs = Universe::heap()->barrier_set();
   132   }
   133   setup_policy(false /* default soft ref policy */);
   134 }
   136 #ifndef PRODUCT
   137 void ReferenceProcessor::verify_no_references_recorded() {
   138   guarantee(!_discovering_refs, "Discovering refs?");
   139   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   140     guarantee(_discovered_refs[i].is_empty(),
   141               "Found non-empty discovered list");
   142   }
   143 }
   144 #endif
   146 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   147   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   148     if (UseCompressedOops) {
   149       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   150     } else {
   151       f->do_oop((oop*)_discovered_refs[i].adr_head());
   152     }
   153   }
   154 }
   156 void ReferenceProcessor::update_soft_ref_master_clock() {
   157   // Update (advance) the soft ref master clock field. This must be done
   158   // after processing the soft ref list.
   160   // We need a monotonically non-deccreasing time in ms but
   161   // os::javaTimeMillis() does not guarantee monotonicity.
   162   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   163   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   164   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   166   NOT_PRODUCT(
   167   if (now < _soft_ref_timestamp_clock) {
   168     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   169             _soft_ref_timestamp_clock, now);
   170   }
   171   )
   172   // The values of now and _soft_ref_timestamp_clock are set using
   173   // javaTimeNanos(), which is guaranteed to be monotonically
   174   // non-decreasing provided the underlying platform provides such
   175   // a time source (and it is bug free).
   176   // In product mode, however, protect ourselves from non-monotonicty.
   177   if (now > _soft_ref_timestamp_clock) {
   178     _soft_ref_timestamp_clock = now;
   179     java_lang_ref_SoftReference::set_clock(now);
   180   }
   181   // Else leave clock stalled at its old value until time progresses
   182   // past clock value.
   183 }
   185 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   186   size_t total = 0;
   187   for (uint i = 0; i < _max_num_q; ++i) {
   188     total += lists[i].length();
   189   }
   190   return total;
   191 }
   193 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   194   BoolObjectClosure*           is_alive,
   195   OopClosure*                  keep_alive,
   196   VoidClosure*                 complete_gc,
   197   AbstractRefProcTaskExecutor* task_executor,
   198   GCTimer*                     gc_timer) {
   199   NOT_PRODUCT(verify_ok_to_handle_reflists());
   201   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   202   // Stop treating discovered references specially.
   203   disable_discovery();
   205   // If discovery was concurrent, someone could have modified
   206   // the value of the static field in the j.l.r.SoftReference
   207   // class that holds the soft reference timestamp clock using
   208   // reflection or Unsafe between when discovery was enabled and
   209   // now. Unconditionally update the static field in ReferenceProcessor
   210   // here so that we use the new value during processing of the
   211   // discovered soft refs.
   213   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   215   bool trace_time = PrintGCDetails && PrintReferenceGC;
   217   // Soft references
   218   size_t soft_count = 0;
   219   {
   220     GCTraceTime tt("SoftReference", trace_time, false, gc_timer);
   221     soft_count =
   222       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   223                                  is_alive, keep_alive, complete_gc, task_executor);
   224   }
   226   update_soft_ref_master_clock();
   228   // Weak references
   229   size_t weak_count = 0;
   230   {
   231     GCTraceTime tt("WeakReference", trace_time, false, gc_timer);
   232     weak_count =
   233       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   234                                  is_alive, keep_alive, complete_gc, task_executor);
   235   }
   237   // Final references
   238   size_t final_count = 0;
   239   {
   240     GCTraceTime tt("FinalReference", trace_time, false, gc_timer);
   241     final_count =
   242       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   243                                  is_alive, keep_alive, complete_gc, task_executor);
   244   }
   246   // Phantom references
   247   size_t phantom_count = 0;
   248   {
   249     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer);
   250     phantom_count =
   251       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   252                                  is_alive, keep_alive, complete_gc, task_executor);
   253   }
   255   // Weak global JNI references. It would make more sense (semantically) to
   256   // traverse these simultaneously with the regular weak references above, but
   257   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   258   // thus use JNI weak references to circumvent the phantom references and
   259   // resurrect a "post-mortem" object.
   260   {
   261     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
   262     if (task_executor != NULL) {
   263       task_executor->set_single_threaded_mode();
   264     }
   265     process_phaseJNI(is_alive, keep_alive, complete_gc);
   266   }
   268   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   269 }
   271 #ifndef PRODUCT
   272 // Calculate the number of jni handles.
   273 uint ReferenceProcessor::count_jni_refs() {
   274   class AlwaysAliveClosure: public BoolObjectClosure {
   275   public:
   276     virtual bool do_object_b(oop obj) { return true; }
   277   };
   279   class CountHandleClosure: public OopClosure {
   280   private:
   281     int _count;
   282   public:
   283     CountHandleClosure(): _count(0) {}
   284     void do_oop(oop* unused)       { _count++; }
   285     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   286     int count() { return _count; }
   287   };
   288   CountHandleClosure global_handle_count;
   289   AlwaysAliveClosure always_alive;
   290   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   291   return global_handle_count.count();
   292 }
   293 #endif
   295 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   296                                           OopClosure*        keep_alive,
   297                                           VoidClosure*       complete_gc) {
   298 #ifndef PRODUCT
   299   if (PrintGCDetails && PrintReferenceGC) {
   300     unsigned int count = count_jni_refs();
   301     gclog_or_tty->print(", %u refs", count);
   302   }
   303 #endif
   304   JNIHandles::weak_oops_do(is_alive, keep_alive);
   305   complete_gc->do_void();
   306 }
   309 template <class T>
   310 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   311                                    AbstractRefProcTaskExecutor* task_executor) {
   313   // Remember old value of pending references list
   314   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   315   T old_pending_list_value = *pending_list_addr;
   317   // Enqueue references that are not made active again, and
   318   // clear the decks for the next collection (cycle).
   319   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   320   // Do the oop-check on pending_list_addr missed in
   321   // enqueue_discovered_reflist. We should probably
   322   // do a raw oop_check so that future such idempotent
   323   // oop_stores relying on the oop-check side-effect
   324   // may be elided automatically and safely without
   325   // affecting correctness.
   326   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   328   // Stop treating discovered references specially.
   329   ref->disable_discovery();
   331   // Return true if new pending references were added
   332   return old_pending_list_value != *pending_list_addr;
   333 }
   335 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   336   NOT_PRODUCT(verify_ok_to_handle_reflists());
   337   if (UseCompressedOops) {
   338     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   339   } else {
   340     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   341   }
   342 }
   344 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   345                                                     HeapWord* pending_list_addr) {
   346   // Given a list of refs linked through the "discovered" field
   347   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   348   // thus distinguishing them from active References, then
   349   // prepend them to the pending list.
   350   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   351   // the "next" field is used to chain the pending list, not the discovered
   352   // field.
   354   if (TraceReferenceGC && PrintGCDetails) {
   355     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   356                            INTPTR_FORMAT, (address)refs_list.head());
   357   }
   359   oop obj = NULL;
   360   oop next_d = refs_list.head();
   361   if (pending_list_uses_discovered_field()) { // New behaviour
   362     // Walk down the list, self-looping the next field
   363     // so that the References are not considered active.
   364     while (obj != next_d) {
   365       obj = next_d;
   366       assert(obj->is_instanceRef(), "should be reference object");
   367       next_d = java_lang_ref_Reference::discovered(obj);
   368       if (TraceReferenceGC && PrintGCDetails) {
   369         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   370                                (void *)obj, (void *)next_d);
   371       }
   372       assert(java_lang_ref_Reference::next(obj) == NULL,
   373              "Reference not active; should not be discovered");
   374       // Self-loop next, so as to make Ref not active.
   375       java_lang_ref_Reference::set_next(obj, obj);
   376       if (next_d == obj) {  // obj is last
   377         // Swap refs_list into pendling_list_addr and
   378         // set obj's discovered to what we read from pending_list_addr.
   379         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   380         // Need oop_check on pending_list_addr above;
   381         // see special oop-check code at the end of
   382         // enqueue_discovered_reflists() further below.
   383         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
   384       }
   385     }
   386   } else { // Old behaviour
   387     // Walk down the list, copying the discovered field into
   388     // the next field and clearing the discovered field.
   389     while (obj != next_d) {
   390       obj = next_d;
   391       assert(obj->is_instanceRef(), "should be reference object");
   392       next_d = java_lang_ref_Reference::discovered(obj);
   393       if (TraceReferenceGC && PrintGCDetails) {
   394         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   395                                (void *)obj, (void *)next_d);
   396       }
   397       assert(java_lang_ref_Reference::next(obj) == NULL,
   398              "The reference should not be enqueued");
   399       if (next_d == obj) {  // obj is last
   400         // Swap refs_list into pendling_list_addr and
   401         // set obj's next to what we read from pending_list_addr.
   402         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   403         // Need oop_check on pending_list_addr above;
   404         // see special oop-check code at the end of
   405         // enqueue_discovered_reflists() further below.
   406         if (old == NULL) {
   407           // obj should be made to point to itself, since
   408           // pending list was empty.
   409           java_lang_ref_Reference::set_next(obj, obj);
   410         } else {
   411           java_lang_ref_Reference::set_next(obj, old);
   412         }
   413       } else {
   414         java_lang_ref_Reference::set_next(obj, next_d);
   415       }
   416       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   417     }
   418   }
   419 }
   421 // Parallel enqueue task
   422 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   423 public:
   424   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   425                      DiscoveredList      discovered_refs[],
   426                      HeapWord*           pending_list_addr,
   427                      int                 n_queues)
   428     : EnqueueTask(ref_processor, discovered_refs,
   429                   pending_list_addr, n_queues)
   430   { }
   432   virtual void work(unsigned int work_id) {
   433     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   434     // Simplest first cut: static partitioning.
   435     int index = work_id;
   436     // The increment on "index" must correspond to the maximum number of queues
   437     // (n_queues) with which that ReferenceProcessor was created.  That
   438     // is because of the "clever" way the discovered references lists were
   439     // allocated and are indexed into.
   440     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   441     for (int j = 0;
   442          j < ReferenceProcessor::number_of_subclasses_of_ref();
   443          j++, index += _n_queues) {
   444       _ref_processor.enqueue_discovered_reflist(
   445         _refs_lists[index], _pending_list_addr);
   446       _refs_lists[index].set_head(NULL);
   447       _refs_lists[index].set_length(0);
   448     }
   449   }
   450 };
   452 // Enqueue references that are not made active again
   453 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   454   AbstractRefProcTaskExecutor* task_executor) {
   455   if (_processing_is_mt && task_executor != NULL) {
   456     // Parallel code
   457     RefProcEnqueueTask tsk(*this, _discovered_refs,
   458                            pending_list_addr, _max_num_q);
   459     task_executor->execute(tsk);
   460   } else {
   461     // Serial code: call the parent class's implementation
   462     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   463       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   464       _discovered_refs[i].set_head(NULL);
   465       _discovered_refs[i].set_length(0);
   466     }
   467   }
   468 }
   470 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   471   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   472   oop discovered = java_lang_ref_Reference::discovered(_ref);
   473   assert(_discovered_addr && discovered->is_oop_or_null(),
   474          "discovered field is bad");
   475   _next = discovered;
   476   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   477   _referent = java_lang_ref_Reference::referent(_ref);
   478   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   479          "Wrong oop found in java.lang.Reference object");
   480   assert(allow_null_referent ?
   481              _referent->is_oop_or_null()
   482            : _referent->is_oop(),
   483          "bad referent");
   484 }
   486 void DiscoveredListIterator::remove() {
   487   assert(_ref->is_oop(), "Dropping a bad reference");
   488   oop_store_raw(_discovered_addr, NULL);
   490   // First _prev_next ref actually points into DiscoveredList (gross).
   491   oop new_next;
   492   if (_next == _ref) {
   493     // At the end of the list, we should make _prev point to itself.
   494     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   495     // and _prev will be NULL.
   496     new_next = _prev;
   497   } else {
   498     new_next = _next;
   499   }
   501   if (UseCompressedOops) {
   502     // Remove Reference object from list.
   503     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
   504   } else {
   505     // Remove Reference object from list.
   506     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
   507   }
   508   NOT_PRODUCT(_removed++);
   509   _refs_list.dec_length(1);
   510 }
   512 // Make the Reference object active again.
   513 void DiscoveredListIterator::make_active() {
   514   // For G1 we don't want to use set_next - it
   515   // will dirty the card for the next field of
   516   // the reference object and will fail
   517   // CT verification.
   518   if (UseG1GC) {
   519     BarrierSet* bs = oopDesc::bs();
   520     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   522     if (UseCompressedOops) {
   523       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
   524     } else {
   525       bs->write_ref_field_pre((oop*)next_addr, NULL);
   526     }
   527     java_lang_ref_Reference::set_next_raw(_ref, NULL);
   528   } else {
   529     java_lang_ref_Reference::set_next(_ref, NULL);
   530   }
   531 }
   533 void DiscoveredListIterator::clear_referent() {
   534   oop_store_raw(_referent_addr, NULL);
   535 }
   537 // NOTE: process_phase*() are largely similar, and at a high level
   538 // merely iterate over the extant list applying a predicate to
   539 // each of its elements and possibly removing that element from the
   540 // list and applying some further closures to that element.
   541 // We should consider the possibility of replacing these
   542 // process_phase*() methods by abstracting them into
   543 // a single general iterator invocation that receives appropriate
   544 // closures that accomplish this work.
   546 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   547 // referents are not alive, but that should be kept alive for policy reasons.
   548 // Keep alive the transitive closure of all such referents.
   549 void
   550 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   551                                    ReferencePolicy*   policy,
   552                                    BoolObjectClosure* is_alive,
   553                                    OopClosure*        keep_alive,
   554                                    VoidClosure*       complete_gc) {
   555   assert(policy != NULL, "Must have a non-NULL policy");
   556   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   557   // Decide which softly reachable refs should be kept alive.
   558   while (iter.has_next()) {
   559     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   560     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   561     if (referent_is_dead &&
   562         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   563       if (TraceReferenceGC) {
   564         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   565                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   566       }
   567       // Remove Reference object from list
   568       iter.remove();
   569       // Make the Reference object active again
   570       iter.make_active();
   571       // keep the referent around
   572       iter.make_referent_alive();
   573       iter.move_to_next();
   574     } else {
   575       iter.next();
   576     }
   577   }
   578   // Close the reachable set
   579   complete_gc->do_void();
   580   NOT_PRODUCT(
   581     if (PrintGCDetails && TraceReferenceGC) {
   582       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   583         "discovered Refs by policy, from list " INTPTR_FORMAT,
   584         iter.removed(), iter.processed(), (address)refs_list.head());
   585     }
   586   )
   587 }
   589 // Traverse the list and remove any Refs that are not active, or
   590 // whose referents are either alive or NULL.
   591 void
   592 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   593                              BoolObjectClosure* is_alive,
   594                              OopClosure*        keep_alive) {
   595   assert(discovery_is_atomic(), "Error");
   596   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   597   while (iter.has_next()) {
   598     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   599     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   600     assert(next == NULL, "Should not discover inactive Reference");
   601     if (iter.is_referent_alive()) {
   602       if (TraceReferenceGC) {
   603         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   604                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   605       }
   606       // The referent is reachable after all.
   607       // Remove Reference object from list.
   608       iter.remove();
   609       // Update the referent pointer as necessary: Note that this
   610       // should not entail any recursive marking because the
   611       // referent must already have been traversed.
   612       iter.make_referent_alive();
   613       iter.move_to_next();
   614     } else {
   615       iter.next();
   616     }
   617   }
   618   NOT_PRODUCT(
   619     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   620       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   621         "Refs in discovered list " INTPTR_FORMAT,
   622         iter.removed(), iter.processed(), (address)refs_list.head());
   623     }
   624   )
   625 }
   627 void
   628 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   629                                                   BoolObjectClosure* is_alive,
   630                                                   OopClosure*        keep_alive,
   631                                                   VoidClosure*       complete_gc) {
   632   assert(!discovery_is_atomic(), "Error");
   633   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   634   while (iter.has_next()) {
   635     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   636     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   637     oop next = java_lang_ref_Reference::next(iter.obj());
   638     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   639          next != NULL)) {
   640       assert(next->is_oop_or_null(), "bad next field");
   641       // Remove Reference object from list
   642       iter.remove();
   643       // Trace the cohorts
   644       iter.make_referent_alive();
   645       if (UseCompressedOops) {
   646         keep_alive->do_oop((narrowOop*)next_addr);
   647       } else {
   648         keep_alive->do_oop((oop*)next_addr);
   649       }
   650       iter.move_to_next();
   651     } else {
   652       iter.next();
   653     }
   654   }
   655   // Now close the newly reachable set
   656   complete_gc->do_void();
   657   NOT_PRODUCT(
   658     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   659       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   660         "Refs in discovered list " INTPTR_FORMAT,
   661         iter.removed(), iter.processed(), (address)refs_list.head());
   662     }
   663   )
   664 }
   666 // Traverse the list and process the referents, by either
   667 // clearing them or keeping them (and their reachable
   668 // closure) alive.
   669 void
   670 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   671                                    bool               clear_referent,
   672                                    BoolObjectClosure* is_alive,
   673                                    OopClosure*        keep_alive,
   674                                    VoidClosure*       complete_gc) {
   675   ResourceMark rm;
   676   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   677   while (iter.has_next()) {
   678     iter.update_discovered();
   679     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   680     if (clear_referent) {
   681       // NULL out referent pointer
   682       iter.clear_referent();
   683     } else {
   684       // keep the referent around
   685       iter.make_referent_alive();
   686     }
   687     if (TraceReferenceGC) {
   688       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   689                              clear_referent ? "cleared " : "",
   690                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   691     }
   692     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   693     iter.next();
   694   }
   695   // Remember to update the next pointer of the last ref.
   696   iter.update_discovered();
   697   // Close the reachable set
   698   complete_gc->do_void();
   699 }
   701 void
   702 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   703   oop obj = NULL;
   704   oop next = refs_list.head();
   705   while (next != obj) {
   706     obj = next;
   707     next = java_lang_ref_Reference::discovered(obj);
   708     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   709   }
   710   refs_list.set_head(NULL);
   711   refs_list.set_length(0);
   712 }
   714 void
   715 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   716   clear_discovered_references(refs_list);
   717 }
   719 void ReferenceProcessor::abandon_partial_discovery() {
   720   // loop over the lists
   721   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   722     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   723       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   724     }
   725     abandon_partial_discovered_list(_discovered_refs[i]);
   726   }
   727 }
   729 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   730 public:
   731   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   732                     DiscoveredList      refs_lists[],
   733                     ReferencePolicy*    policy,
   734                     bool                marks_oops_alive)
   735     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   736       _policy(policy)
   737   { }
   738   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   739                     OopClosure& keep_alive,
   740                     VoidClosure& complete_gc)
   741   {
   742     Thread* thr = Thread::current();
   743     int refs_list_index = ((WorkerThread*)thr)->id();
   744     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   745                                   &is_alive, &keep_alive, &complete_gc);
   746   }
   747 private:
   748   ReferencePolicy* _policy;
   749 };
   751 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   752 public:
   753   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   754                     DiscoveredList      refs_lists[],
   755                     bool                marks_oops_alive)
   756     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   757   { }
   758   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   759                     OopClosure& keep_alive,
   760                     VoidClosure& complete_gc)
   761   {
   762     _ref_processor.process_phase2(_refs_lists[i],
   763                                   &is_alive, &keep_alive, &complete_gc);
   764   }
   765 };
   767 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   768 public:
   769   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   770                     DiscoveredList      refs_lists[],
   771                     bool                clear_referent,
   772                     bool                marks_oops_alive)
   773     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   774       _clear_referent(clear_referent)
   775   { }
   776   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   777                     OopClosure& keep_alive,
   778                     VoidClosure& complete_gc)
   779   {
   780     // Don't use "refs_list_index" calculated in this way because
   781     // balance_queues() has moved the Ref's into the first n queues.
   782     // Thread* thr = Thread::current();
   783     // int refs_list_index = ((WorkerThread*)thr)->id();
   784     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   785     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   786                                   &is_alive, &keep_alive, &complete_gc);
   787   }
   788 private:
   789   bool _clear_referent;
   790 };
   792 void ReferenceProcessor::set_discovered(oop ref, oop value) {
   793   if (_discovered_list_needs_barrier) {
   794     java_lang_ref_Reference::set_discovered(ref, value);
   795   } else {
   796     java_lang_ref_Reference::set_discovered_raw(ref, value);
   797   }
   798 }
   800 // Balances reference queues.
   801 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   802 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   803 // corresponding to the active workers will be processed.
   804 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   805 {
   806   // calculate total length
   807   size_t total_refs = 0;
   808   if (TraceReferenceGC && PrintGCDetails) {
   809     gclog_or_tty->print_cr("\nBalance ref_lists ");
   810   }
   812   for (uint i = 0; i < _max_num_q; ++i) {
   813     total_refs += ref_lists[i].length();
   814     if (TraceReferenceGC && PrintGCDetails) {
   815       gclog_or_tty->print("%d ", ref_lists[i].length());
   816     }
   817   }
   818   if (TraceReferenceGC && PrintGCDetails) {
   819     gclog_or_tty->print_cr(" = %d", total_refs);
   820   }
   821   size_t avg_refs = total_refs / _num_q + 1;
   822   uint to_idx = 0;
   823   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   824     bool move_all = false;
   825     if (from_idx >= _num_q) {
   826       move_all = ref_lists[from_idx].length() > 0;
   827     }
   828     while ((ref_lists[from_idx].length() > avg_refs) ||
   829            move_all) {
   830       assert(to_idx < _num_q, "Sanity Check!");
   831       if (ref_lists[to_idx].length() < avg_refs) {
   832         // move superfluous refs
   833         size_t refs_to_move;
   834         // Move all the Ref's if the from queue will not be processed.
   835         if (move_all) {
   836           refs_to_move = MIN2(ref_lists[from_idx].length(),
   837                               avg_refs - ref_lists[to_idx].length());
   838         } else {
   839           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   840                               avg_refs - ref_lists[to_idx].length());
   841         }
   843         assert(refs_to_move > 0, "otherwise the code below will fail");
   845         oop move_head = ref_lists[from_idx].head();
   846         oop move_tail = move_head;
   847         oop new_head  = move_head;
   848         // find an element to split the list on
   849         for (size_t j = 0; j < refs_to_move; ++j) {
   850           move_tail = new_head;
   851           new_head = java_lang_ref_Reference::discovered(new_head);
   852         }
   854         // Add the chain to the to list.
   855         if (ref_lists[to_idx].head() == NULL) {
   856           // to list is empty. Make a loop at the end.
   857           set_discovered(move_tail, move_tail);
   858         } else {
   859           set_discovered(move_tail, ref_lists[to_idx].head());
   860         }
   861         ref_lists[to_idx].set_head(move_head);
   862         ref_lists[to_idx].inc_length(refs_to_move);
   864         // Remove the chain from the from list.
   865         if (move_tail == new_head) {
   866           // We found the end of the from list.
   867           ref_lists[from_idx].set_head(NULL);
   868         } else {
   869           ref_lists[from_idx].set_head(new_head);
   870         }
   871         ref_lists[from_idx].dec_length(refs_to_move);
   872         if (ref_lists[from_idx].length() == 0) {
   873           break;
   874         }
   875       } else {
   876         to_idx = (to_idx + 1) % _num_q;
   877       }
   878     }
   879   }
   880 #ifdef ASSERT
   881   size_t balanced_total_refs = 0;
   882   for (uint i = 0; i < _max_num_q; ++i) {
   883     balanced_total_refs += ref_lists[i].length();
   884     if (TraceReferenceGC && PrintGCDetails) {
   885       gclog_or_tty->print("%d ", ref_lists[i].length());
   886     }
   887   }
   888   if (TraceReferenceGC && PrintGCDetails) {
   889     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   890     gclog_or_tty->flush();
   891   }
   892   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   893 #endif
   894 }
   896 void ReferenceProcessor::balance_all_queues() {
   897   balance_queues(_discoveredSoftRefs);
   898   balance_queues(_discoveredWeakRefs);
   899   balance_queues(_discoveredFinalRefs);
   900   balance_queues(_discoveredPhantomRefs);
   901 }
   903 size_t
   904 ReferenceProcessor::process_discovered_reflist(
   905   DiscoveredList               refs_lists[],
   906   ReferencePolicy*             policy,
   907   bool                         clear_referent,
   908   BoolObjectClosure*           is_alive,
   909   OopClosure*                  keep_alive,
   910   VoidClosure*                 complete_gc,
   911   AbstractRefProcTaskExecutor* task_executor)
   912 {
   913   bool mt_processing = task_executor != NULL && _processing_is_mt;
   914   // If discovery used MT and a dynamic number of GC threads, then
   915   // the queues must be balanced for correctness if fewer than the
   916   // maximum number of queues were used.  The number of queue used
   917   // during discovery may be different than the number to be used
   918   // for processing so don't depend of _num_q < _max_num_q as part
   919   // of the test.
   920   bool must_balance = _discovery_is_mt;
   922   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   923       must_balance) {
   924     balance_queues(refs_lists);
   925   }
   927   size_t total_list_count = total_count(refs_lists);
   929   if (PrintReferenceGC && PrintGCDetails) {
   930     gclog_or_tty->print(", %u refs", total_list_count);
   931   }
   933   // Phase 1 (soft refs only):
   934   // . Traverse the list and remove any SoftReferences whose
   935   //   referents are not alive, but that should be kept alive for
   936   //   policy reasons. Keep alive the transitive closure of all
   937   //   such referents.
   938   if (policy != NULL) {
   939     if (mt_processing) {
   940       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   941       task_executor->execute(phase1);
   942     } else {
   943       for (uint i = 0; i < _max_num_q; i++) {
   944         process_phase1(refs_lists[i], policy,
   945                        is_alive, keep_alive, complete_gc);
   946       }
   947     }
   948   } else { // policy == NULL
   949     assert(refs_lists != _discoveredSoftRefs,
   950            "Policy must be specified for soft references.");
   951   }
   953   // Phase 2:
   954   // . Traverse the list and remove any refs whose referents are alive.
   955   if (mt_processing) {
   956     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   957     task_executor->execute(phase2);
   958   } else {
   959     for (uint i = 0; i < _max_num_q; i++) {
   960       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   961     }
   962   }
   964   // Phase 3:
   965   // . Traverse the list and process referents as appropriate.
   966   if (mt_processing) {
   967     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   968     task_executor->execute(phase3);
   969   } else {
   970     for (uint i = 0; i < _max_num_q; i++) {
   971       process_phase3(refs_lists[i], clear_referent,
   972                      is_alive, keep_alive, complete_gc);
   973     }
   974   }
   976   return total_list_count;
   977 }
   979 void ReferenceProcessor::clean_up_discovered_references() {
   980   // loop over the lists
   981   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   982     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   983       gclog_or_tty->print_cr(
   984         "\nScrubbing %s discovered list of Null referents",
   985         list_name(i));
   986     }
   987     clean_up_discovered_reflist(_discovered_refs[i]);
   988   }
   989 }
   991 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   992   assert(!discovery_is_atomic(), "Else why call this method?");
   993   DiscoveredListIterator iter(refs_list, NULL, NULL);
   994   while (iter.has_next()) {
   995     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   996     oop next = java_lang_ref_Reference::next(iter.obj());
   997     assert(next->is_oop_or_null(), "bad next field");
   998     // If referent has been cleared or Reference is not active,
   999     // drop it.
  1000     if (iter.referent() == NULL || next != NULL) {
  1001       debug_only(
  1002         if (PrintGCDetails && TraceReferenceGC) {
  1003           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
  1004             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
  1005             " and referent: " INTPTR_FORMAT,
  1006             (void *)iter.obj(), (void *)next, (void *)iter.referent());
  1009       // Remove Reference object from list
  1010       iter.remove();
  1011       iter.move_to_next();
  1012     } else {
  1013       iter.next();
  1016   NOT_PRODUCT(
  1017     if (PrintGCDetails && TraceReferenceGC) {
  1018       gclog_or_tty->print(
  1019         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1020         iter.removed(), iter.processed());
  1025 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1026   uint id = 0;
  1027   // Determine the queue index to use for this object.
  1028   if (_discovery_is_mt) {
  1029     // During a multi-threaded discovery phase,
  1030     // each thread saves to its "own" list.
  1031     Thread* thr = Thread::current();
  1032     id = thr->as_Worker_thread()->id();
  1033   } else {
  1034     // single-threaded discovery, we save in round-robin
  1035     // fashion to each of the lists.
  1036     if (_processing_is_mt) {
  1037       id = next_id();
  1040   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1042   // Get the discovered queue to which we will add
  1043   DiscoveredList* list = NULL;
  1044   switch (rt) {
  1045     case REF_OTHER:
  1046       // Unknown reference type, no special treatment
  1047       break;
  1048     case REF_SOFT:
  1049       list = &_discoveredSoftRefs[id];
  1050       break;
  1051     case REF_WEAK:
  1052       list = &_discoveredWeakRefs[id];
  1053       break;
  1054     case REF_FINAL:
  1055       list = &_discoveredFinalRefs[id];
  1056       break;
  1057     case REF_PHANTOM:
  1058       list = &_discoveredPhantomRefs[id];
  1059       break;
  1060     case REF_NONE:
  1061       // we should not reach here if we are an InstanceRefKlass
  1062     default:
  1063       ShouldNotReachHere();
  1065   if (TraceReferenceGC && PrintGCDetails) {
  1066     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1068   return list;
  1071 inline void
  1072 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1073                                               oop             obj,
  1074                                               HeapWord*       discovered_addr) {
  1075   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1076   // First we must make sure this object is only enqueued once. CAS in a non null
  1077   // discovered_addr.
  1078   oop current_head = refs_list.head();
  1079   // The last ref must have its discovered field pointing to itself.
  1080   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1082   // Note: In the case of G1, this specific pre-barrier is strictly
  1083   // not necessary because the only case we are interested in
  1084   // here is when *discovered_addr is NULL (see the CAS further below),
  1085   // so this will expand to nothing. As a result, we have manually
  1086   // elided this out for G1, but left in the test for some future
  1087   // collector that might have need for a pre-barrier here, e.g.:-
  1088   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1089   assert(!_discovered_list_needs_barrier || UseG1GC,
  1090          "Need to check non-G1 collector: "
  1091          "may need a pre-write-barrier for CAS from NULL below");
  1092   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1093                                                     NULL);
  1094   if (retest == NULL) {
  1095     // This thread just won the right to enqueue the object.
  1096     // We have separate lists for enqueueing, so no synchronization
  1097     // is necessary.
  1098     refs_list.set_head(obj);
  1099     refs_list.inc_length(1);
  1100     if (_discovered_list_needs_barrier) {
  1101       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1104     if (TraceReferenceGC) {
  1105       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1106                              (void *)obj, obj->klass()->internal_name());
  1108   } else {
  1109     // If retest was non NULL, another thread beat us to it:
  1110     // The reference has already been discovered...
  1111     if (TraceReferenceGC) {
  1112       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1113                              (void *)obj, obj->klass()->internal_name());
  1118 #ifndef PRODUCT
  1119 // Non-atomic (i.e. concurrent) discovery might allow us
  1120 // to observe j.l.References with NULL referents, being those
  1121 // cleared concurrently by mutators during (or after) discovery.
  1122 void ReferenceProcessor::verify_referent(oop obj) {
  1123   bool da = discovery_is_atomic();
  1124   oop referent = java_lang_ref_Reference::referent(obj);
  1125   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1126          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1127                  INTPTR_FORMAT " during %satomic discovery ",
  1128                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1130 #endif
  1132 // We mention two of several possible choices here:
  1133 // #0: if the reference object is not in the "originating generation"
  1134 //     (or part of the heap being collected, indicated by our "span"
  1135 //     we don't treat it specially (i.e. we scan it as we would
  1136 //     a normal oop, treating its references as strong references).
  1137 //     This means that references can't be discovered unless their
  1138 //     referent is also in the same span. This is the simplest,
  1139 //     most "local" and most conservative approach, albeit one
  1140 //     that may cause weak references to be enqueued least promptly.
  1141 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1142 // #1: the reference object may be in any generation (span), but if
  1143 //     the referent is in the generation (span) being currently collected
  1144 //     then we can discover the reference object, provided
  1145 //     the object has not already been discovered by
  1146 //     a different concurrently running collector (as may be the
  1147 //     case, for instance, if the reference object is in CMS and
  1148 //     the referent in DefNewGeneration), and provided the processing
  1149 //     of this reference object by the current collector will
  1150 //     appear atomic to every other collector in the system.
  1151 //     (Thus, for instance, a concurrent collector may not
  1152 //     discover references in other generations even if the
  1153 //     referent is in its own generation). This policy may,
  1154 //     in certain cases, enqueue references somewhat sooner than
  1155 //     might Policy #0 above, but at marginally increased cost
  1156 //     and complexity in processing these references.
  1157 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1158 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1159   // Make sure we are discovering refs (rather than processing discovered refs).
  1160   if (!_discovering_refs || !RegisterReferences) {
  1161     return false;
  1163   // We only discover active references.
  1164   oop next = java_lang_ref_Reference::next(obj);
  1165   if (next != NULL) {   // Ref is no longer active
  1166     return false;
  1169   HeapWord* obj_addr = (HeapWord*)obj;
  1170   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1171       !_span.contains(obj_addr)) {
  1172     // Reference is not in the originating generation;
  1173     // don't treat it specially (i.e. we want to scan it as a normal
  1174     // object with strong references).
  1175     return false;
  1178   // We only discover references whose referents are not (yet)
  1179   // known to be strongly reachable.
  1180   if (is_alive_non_header() != NULL) {
  1181     verify_referent(obj);
  1182     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1183       return false;  // referent is reachable
  1186   if (rt == REF_SOFT) {
  1187     // For soft refs we can decide now if these are not
  1188     // current candidates for clearing, in which case we
  1189     // can mark through them now, rather than delaying that
  1190     // to the reference-processing phase. Since all current
  1191     // time-stamp policies advance the soft-ref clock only
  1192     // at a major collection cycle, this is always currently
  1193     // accurate.
  1194     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1195       return false;
  1199   ResourceMark rm;      // Needed for tracing.
  1201   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1202   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1203   assert(discovered->is_oop_or_null(), "bad discovered field");
  1204   if (discovered != NULL) {
  1205     // The reference has already been discovered...
  1206     if (TraceReferenceGC) {
  1207       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1208                              (void *)obj, obj->klass()->internal_name());
  1210     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1211       // assumes that an object is not processed twice;
  1212       // if it's been already discovered it must be on another
  1213       // generation's discovered list; so we won't discover it.
  1214       return false;
  1215     } else {
  1216       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1217              "Unrecognized policy");
  1218       // Check assumption that an object is not potentially
  1219       // discovered twice except by concurrent collectors that potentially
  1220       // trace the same Reference object twice.
  1221       assert(UseConcMarkSweepGC || UseG1GC,
  1222              "Only possible with a concurrent marking collector");
  1223       return true;
  1227   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1228     verify_referent(obj);
  1229     // Discover if and only if EITHER:
  1230     // .. reference is in our span, OR
  1231     // .. we are an atomic collector and referent is in our span
  1232     if (_span.contains(obj_addr) ||
  1233         (discovery_is_atomic() &&
  1234          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1235       // should_enqueue = true;
  1236     } else {
  1237       return false;
  1239   } else {
  1240     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1241            _span.contains(obj_addr), "code inconsistency");
  1244   // Get the right type of discovered queue head.
  1245   DiscoveredList* list = get_discovered_list(rt);
  1246   if (list == NULL) {
  1247     return false;   // nothing special needs to be done
  1250   if (_discovery_is_mt) {
  1251     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1252   } else {
  1253     // If "_discovered_list_needs_barrier", we do write barriers when
  1254     // updating the discovered reference list.  Otherwise, we do a raw store
  1255     // here: the field will be visited later when processing the discovered
  1256     // references.
  1257     oop current_head = list->head();
  1258     // The last ref must have its discovered field pointing to itself.
  1259     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1261     // As in the case further above, since we are over-writing a NULL
  1262     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1263     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1264     assert(discovered == NULL, "control point invariant");
  1265     assert(!_discovered_list_needs_barrier || UseG1GC,
  1266            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
  1267     oop_store_raw(discovered_addr, next_discovered);
  1268     if (_discovered_list_needs_barrier) {
  1269       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1271     list->set_head(obj);
  1272     list->inc_length(1);
  1274     if (TraceReferenceGC) {
  1275       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1276                                 (void *)obj, obj->klass()->internal_name());
  1279   assert(obj->is_oop(), "Discovered a bad reference");
  1280   verify_referent(obj);
  1281   return true;
  1284 // Preclean the discovered references by removing those
  1285 // whose referents are alive, and by marking from those that
  1286 // are not active. These lists can be handled here
  1287 // in any order and, indeed, concurrently.
  1288 void ReferenceProcessor::preclean_discovered_references(
  1289   BoolObjectClosure* is_alive,
  1290   OopClosure* keep_alive,
  1291   VoidClosure* complete_gc,
  1292   YieldClosure* yield,
  1293   GCTimer* gc_timer) {
  1295   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1297   // Soft references
  1299     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1300               false, gc_timer);
  1301     for (uint i = 0; i < _max_num_q; i++) {
  1302       if (yield->should_return()) {
  1303         return;
  1305       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1306                                   keep_alive, complete_gc, yield);
  1310   // Weak references
  1312     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1313               false, gc_timer);
  1314     for (uint i = 0; i < _max_num_q; i++) {
  1315       if (yield->should_return()) {
  1316         return;
  1318       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1319                                   keep_alive, complete_gc, yield);
  1323   // Final references
  1325     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1326               false, gc_timer);
  1327     for (uint i = 0; i < _max_num_q; i++) {
  1328       if (yield->should_return()) {
  1329         return;
  1331       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1332                                   keep_alive, complete_gc, yield);
  1336   // Phantom references
  1338     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1339               false, gc_timer);
  1340     for (uint i = 0; i < _max_num_q; i++) {
  1341       if (yield->should_return()) {
  1342         return;
  1344       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1345                                   keep_alive, complete_gc, yield);
  1350 // Walk the given discovered ref list, and remove all reference objects
  1351 // whose referents are still alive, whose referents are NULL or which
  1352 // are not active (have a non-NULL next field). NOTE: When we are
  1353 // thus precleaning the ref lists (which happens single-threaded today),
  1354 // we do not disable refs discovery to honour the correct semantics of
  1355 // java.lang.Reference. As a result, we need to be careful below
  1356 // that ref removal steps interleave safely with ref discovery steps
  1357 // (in this thread).
  1358 void
  1359 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1360                                                 BoolObjectClosure* is_alive,
  1361                                                 OopClosure*        keep_alive,
  1362                                                 VoidClosure*       complete_gc,
  1363                                                 YieldClosure*      yield) {
  1364   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1365   while (iter.has_next()) {
  1366     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1367     oop obj = iter.obj();
  1368     oop next = java_lang_ref_Reference::next(obj);
  1369     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1370         next != NULL) {
  1371       // The referent has been cleared, or is alive, or the Reference is not
  1372       // active; we need to trace and mark its cohort.
  1373       if (TraceReferenceGC) {
  1374         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1375                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1377       // Remove Reference object from list
  1378       iter.remove();
  1379       // Keep alive its cohort.
  1380       iter.make_referent_alive();
  1381       if (UseCompressedOops) {
  1382         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1383         keep_alive->do_oop(next_addr);
  1384       } else {
  1385         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1386         keep_alive->do_oop(next_addr);
  1388       iter.move_to_next();
  1389     } else {
  1390       iter.next();
  1393   // Close the reachable set
  1394   complete_gc->do_void();
  1396   NOT_PRODUCT(
  1397     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1398       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1399         "Refs in discovered list " INTPTR_FORMAT,
  1400         iter.removed(), iter.processed(), (address)refs_list.head());
  1405 const char* ReferenceProcessor::list_name(uint i) {
  1406    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1407           "Out of bounds index");
  1409    int j = i / _max_num_q;
  1410    switch (j) {
  1411      case 0: return "SoftRef";
  1412      case 1: return "WeakRef";
  1413      case 2: return "FinalRef";
  1414      case 3: return "PhantomRef";
  1416    ShouldNotReachHere();
  1417    return NULL;
  1420 #ifndef PRODUCT
  1421 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1422   // empty for now
  1424 #endif
  1426 #ifndef PRODUCT
  1427 void ReferenceProcessor::clear_discovered_references() {
  1428   guarantee(!_discovering_refs, "Discovering refs?");
  1429   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1430     clear_discovered_references(_discovered_refs[i]);
  1434 #endif // PRODUCT

mercurial