src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 631
d1605aabd0a1
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateInterpreter_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    35 // Generation of Interpreter
    36 //
    37 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    40 #define __ _masm->
    43 //----------------------------------------------------------------------------------------------------
    46 void InterpreterGenerator::save_native_result(void) {
    47   // result potentially in O0/O1: save it across calls
    48   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    50   // result potentially in F0/F1: save it across calls
    51   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    53   // save and restore any potential method result value around the unlocking operation
    54   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    55 #ifdef _LP64
    56   __ stx(O0, l_tmp);
    57 #else
    58   __ std(O0, l_tmp);
    59 #endif
    60 }
    62 void InterpreterGenerator::restore_native_result(void) {
    63   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    64   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    66   // Restore any method result value
    67   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    68 #ifdef _LP64
    69   __ ldx(l_tmp, O0);
    70 #else
    71   __ ldd(l_tmp, O0);
    72 #endif
    73 }
    75 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    76   assert(!pass_oop || message == NULL, "either oop or message but not both");
    77   address entry = __ pc();
    78   // expression stack must be empty before entering the VM if an exception happened
    79   __ empty_expression_stack();
    80   // load exception object
    81   __ set((intptr_t)name, G3_scratch);
    82   if (pass_oop) {
    83     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
    84   } else {
    85     __ set((intptr_t)message, G4_scratch);
    86     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
    87   }
    88   // throw exception
    89   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
    90   Address thrower(G3_scratch, Interpreter::throw_exception_entry());
    91   __ jump_to (thrower);
    92   __ delayed()->nop();
    93   return entry;
    94 }
    96 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
    97   address entry = __ pc();
    98   // expression stack must be empty before entering the VM if an exception
    99   // happened
   100   __ empty_expression_stack();
   101   // load exception object
   102   __ call_VM(Oexception,
   103              CAST_FROM_FN_PTR(address,
   104                               InterpreterRuntime::throw_ClassCastException),
   105              Otos_i);
   106   __ should_not_reach_here();
   107   return entry;
   108 }
   111 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   112   address entry = __ pc();
   113   // expression stack must be empty before entering the VM if an exception happened
   114   __ empty_expression_stack();
   115   // convention: expect aberrant index in register G3_scratch, then shuffle the
   116   // index to G4_scratch for the VM call
   117   __ mov(G3_scratch, G4_scratch);
   118   __ set((intptr_t)name, G3_scratch);
   119   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   120   __ should_not_reach_here();
   121   return entry;
   122 }
   125 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   126   address entry = __ pc();
   127   // expression stack must be empty before entering the VM if an exception happened
   128   __ empty_expression_stack();
   129   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   130   __ should_not_reach_here();
   131   return entry;
   132 }
   135 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   136   address compiled_entry = __ pc();
   137   Label cont;
   139   address entry = __ pc();
   140 #if !defined(_LP64) && defined(COMPILER2)
   141   // All return values are where we want them, except for Longs.  C2 returns
   142   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   143   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   144   // build even if we are returning from interpreted we just do a little
   145   // stupid shuffing.
   146   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   147   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   148   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   150   if( state == ltos ) {
   151     __ srl (G1, 0,O1);
   152     __ srlx(G1,32,O0);
   153   }
   154 #endif /* !_LP64 && COMPILER2 */
   157   __ bind(cont);
   159   // The callee returns with the stack possibly adjusted by adapter transition
   160   // We remove that possible adjustment here.
   161   // All interpreter local registers are untouched. Any result is passed back
   162   // in the O0/O1 or float registers. Before continuing, the arguments must be
   163   // popped from the java expression stack; i.e., Lesp must be adjusted.
   165   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   168   const Register cache = G3_scratch;
   169   const Register size  = G1_scratch;
   170   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
   171   __ ld_ptr(Address(cache, 0, in_bytes(constantPoolCacheOopDesc::base_offset()) +
   172                     in_bytes(ConstantPoolCacheEntry::flags_offset())), size);
   173   __ and3(size, 0xFF, size);                   // argument size in words
   174   __ sll(size, Interpreter::logStackElementSize(), size); // each argument size in bytes
   175   __ add(Lesp, size, Lesp);                    // pop arguments
   176   __ dispatch_next(state, step);
   178   return entry;
   179 }
   182 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   183   address entry = __ pc();
   184   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   185   { Label L;
   186     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   188     __ ld_ptr(exception_addr, Gtemp);
   189     __ tst(Gtemp);
   190     __ brx(Assembler::equal, false, Assembler::pt, L);
   191     __ delayed()->nop();
   192     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   193     __ should_not_reach_here();
   194     __ bind(L);
   195   }
   196   __ dispatch_next(state, step);
   197   return entry;
   198 }
   200 // A result handler converts/unboxes a native call result into
   201 // a java interpreter/compiler result. The current frame is an
   202 // interpreter frame. The activation frame unwind code must be
   203 // consistent with that of TemplateTable::_return(...). In the
   204 // case of native methods, the caller's SP was not modified.
   205 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   206   address entry = __ pc();
   207   Register Itos_i  = Otos_i ->after_save();
   208   Register Itos_l  = Otos_l ->after_save();
   209   Register Itos_l1 = Otos_l1->after_save();
   210   Register Itos_l2 = Otos_l2->after_save();
   211   switch (type) {
   212     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   213     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   214     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   215     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   216     case T_LONG   :
   217 #ifndef _LP64
   218                     __ mov(O1, Itos_l2);  // move other half of long
   219 #endif              // ifdef or no ifdef, fall through to the T_INT case
   220     case T_INT    : __ mov(O0, Itos_i);                         break;
   221     case T_VOID   : /* nothing to do */                         break;
   222     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   223     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   224     case T_OBJECT :
   225       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   226       __ verify_oop(Itos_i);
   227       break;
   228     default       : ShouldNotReachHere();
   229   }
   230   __ ret();                           // return from interpreter activation
   231   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   232   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   233   return entry;
   234 }
   236 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   237   address entry = __ pc();
   238   __ push(state);
   239   __ call_VM(noreg, runtime_entry);
   240   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   241   return entry;
   242 }
   245 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   246   address entry = __ pc();
   247   __ dispatch_next(state);
   248   return entry;
   249 }
   251 //
   252 // Helpers for commoning out cases in the various type of method entries.
   253 //
   255 // increment invocation count & check for overflow
   256 //
   257 // Note: checking for negative value instead of overflow
   258 //       so we have a 'sticky' overflow test
   259 //
   260 // Lmethod: method
   261 // ??: invocation counter
   262 //
   263 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   264   // Update standard invocation counters
   265   __ increment_invocation_counter(O0, G3_scratch);
   266   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   267     Address interpreter_invocation_counter(Lmethod, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   268     __ ld(interpreter_invocation_counter, G3_scratch);
   269     __ inc(G3_scratch);
   270     __ st(G3_scratch, interpreter_invocation_counter);
   271   }
   273   if (ProfileInterpreter && profile_method != NULL) {
   274     // Test to see if we should create a method data oop
   275     Address profile_limit(G3_scratch, (address)&InvocationCounter::InterpreterProfileLimit);
   276     __ sethi(profile_limit);
   277     __ ld(profile_limit, G3_scratch);
   278     __ cmp(O0, G3_scratch);
   279     __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
   280     __ delayed()->nop();
   282     // if no method data exists, go to profile_method
   283     __ test_method_data_pointer(*profile_method);
   284   }
   286   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
   287   __ sethi(invocation_limit);
   288   __ ld(invocation_limit, G3_scratch);
   289   __ cmp(O0, G3_scratch);
   290   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   291   __ delayed()->nop();
   293 }
   295 // Allocate monitor and lock method (asm interpreter)
   296 // ebx - methodOop
   297 //
   298 void InterpreterGenerator::lock_method(void) {
   299   const Address access_flags      (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
   300   __ ld(access_flags, O0);
   302 #ifdef ASSERT
   303  { Label ok;
   304    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   305    __ br( Assembler::notZero, false, Assembler::pt, ok);
   306    __ delayed()->nop();
   307    __ stop("method doesn't need synchronization");
   308    __ bind(ok);
   309   }
   310 #endif // ASSERT
   312   // get synchronization object to O0
   313   { Label done;
   314     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   315     __ btst(JVM_ACC_STATIC, O0);
   316     __ br( Assembler::zero, true, Assembler::pt, done);
   317     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   319     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
   320     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
   322     // lock the mirror, not the klassOop
   323     __ ld_ptr( O0, mirror_offset, O0);
   325 #ifdef ASSERT
   326     __ tst(O0);
   327     __ breakpoint_trap(Assembler::zero);
   328 #endif // ASSERT
   330     __ bind(done);
   331   }
   333   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   334   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   335   // __ untested("lock_object from method entry");
   336   __ lock_object(Lmonitors, O0);
   337 }
   340 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   341                                                          Register Rscratch,
   342                                                          Register Rscratch2) {
   343   const int page_size = os::vm_page_size();
   344   Address saved_exception_pc(G2_thread, 0,
   345                              in_bytes(JavaThread::saved_exception_pc_offset()));
   346   Label after_frame_check;
   348   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   350   __ set( page_size,   Rscratch );
   351   __ cmp( Rframe_size, Rscratch );
   353   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
   354   __ delayed()->nop();
   356   // get the stack base, and in debug, verify it is non-zero
   357   __ ld_ptr( G2_thread, in_bytes(Thread::stack_base_offset()), Rscratch );
   358 #ifdef ASSERT
   359   Label base_not_zero;
   360   __ cmp( Rscratch, G0 );
   361   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
   362   __ delayed()->nop();
   363   __ stop("stack base is zero in generate_stack_overflow_check");
   364   __ bind(base_not_zero);
   365 #endif
   367   // get the stack size, and in debug, verify it is non-zero
   368   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   369   __ ld_ptr( G2_thread, in_bytes(Thread::stack_size_offset()), Rscratch2 );
   370 #ifdef ASSERT
   371   Label size_not_zero;
   372   __ cmp( Rscratch2, G0 );
   373   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
   374   __ delayed()->nop();
   375   __ stop("stack size is zero in generate_stack_overflow_check");
   376   __ bind(size_not_zero);
   377 #endif
   379   // compute the beginning of the protected zone minus the requested frame size
   380   __ sub( Rscratch, Rscratch2,   Rscratch );
   381   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   382   __ add( Rscratch, Rscratch2,   Rscratch );
   384   // Add in the size of the frame (which is the same as subtracting it from the
   385   // SP, which would take another register
   386   __ add( Rscratch, Rframe_size, Rscratch );
   388   // the frame is greater than one page in size, so check against
   389   // the bottom of the stack
   390   __ cmp( SP, Rscratch );
   391   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
   392   __ delayed()->nop();
   394   // Save the return address as the exception pc
   395   __ st_ptr(O7, saved_exception_pc);
   397   // the stack will overflow, throw an exception
   398   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   400   // if you get to here, then there is enough stack space
   401   __ bind( after_frame_check );
   402 }
   405 //
   406 // Generate a fixed interpreter frame. This is identical setup for interpreted
   407 // methods and for native methods hence the shared code.
   409 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   410   //
   411   //
   412   // The entry code sets up a new interpreter frame in 4 steps:
   413   //
   414   // 1) Increase caller's SP by for the extra local space needed:
   415   //    (check for overflow)
   416   //    Efficient implementation of xload/xstore bytecodes requires
   417   //    that arguments and non-argument locals are in a contigously
   418   //    addressable memory block => non-argument locals must be
   419   //    allocated in the caller's frame.
   420   //
   421   // 2) Create a new stack frame and register window:
   422   //    The new stack frame must provide space for the standard
   423   //    register save area, the maximum java expression stack size,
   424   //    the monitor slots (0 slots initially), and some frame local
   425   //    scratch locations.
   426   //
   427   // 3) The following interpreter activation registers must be setup:
   428   //    Lesp       : expression stack pointer
   429   //    Lbcp       : bytecode pointer
   430   //    Lmethod    : method
   431   //    Llocals    : locals pointer
   432   //    Lmonitors  : monitor pointer
   433   //    LcpoolCache: constant pool cache
   434   //
   435   // 4) Initialize the non-argument locals if necessary:
   436   //    Non-argument locals may need to be initialized to NULL
   437   //    for GC to work. If the oop-map information is accurate
   438   //    (in the absence of the JSR problem), no initialization
   439   //    is necessary.
   440   //
   441   // (gri - 2/25/2000)
   444   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
   445   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
   446   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
   447   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   449   const int extra_space =
   450     rounded_vm_local_words +                   // frame local scratch space
   451     frame::memory_parameter_word_sp_offset +   // register save area
   452     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   454   const Register Glocals_size = G3;
   455   const Register Otmp1 = O3;
   456   const Register Otmp2 = O4;
   457   // Lscratch can't be used as a temporary because the call_stub uses
   458   // it to assert that the stack frame was setup correctly.
   460   __ lduh( size_of_parameters, Glocals_size);
   462   // Gargs points to first local + BytesPerWord
   463   // Set the saved SP after the register window save
   464   //
   465   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   466   __ sll(Glocals_size, Interpreter::logStackElementSize(), Otmp1);
   467   __ add(Gargs, Otmp1, Gargs);
   469   if (native_call) {
   470     __ calc_mem_param_words( Glocals_size, Gframe_size );
   471     __ add( Gframe_size,  extra_space, Gframe_size);
   472     __ round_to( Gframe_size, WordsPerLong );
   473     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   474   } else {
   476     //
   477     // Compute number of locals in method apart from incoming parameters
   478     //
   479     __ lduh( size_of_locals, Otmp1 );
   480     __ sub( Otmp1, Glocals_size, Glocals_size );
   481     __ round_to( Glocals_size, WordsPerLong );
   482     __ sll( Glocals_size, Interpreter::logStackElementSize(), Glocals_size );
   484     // see if the frame is greater than one page in size. If so,
   485     // then we need to verify there is enough stack space remaining
   486     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   487     __ lduh( max_stack, Gframe_size );
   488     __ add( Gframe_size, extra_space, Gframe_size );
   489     __ round_to( Gframe_size, WordsPerLong );
   490     __ sll( Gframe_size, Interpreter::logStackElementSize(), Gframe_size);
   492     // Add in java locals size for stack overflow check only
   493     __ add( Gframe_size, Glocals_size, Gframe_size );
   495     const Register Otmp2 = O4;
   496     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   497     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   499     __ sub( Gframe_size, Glocals_size, Gframe_size);
   501     //
   502     // bump SP to accomodate the extra locals
   503     //
   504     __ sub( SP, Glocals_size, SP );
   505   }
   507   //
   508   // now set up a stack frame with the size computed above
   509   //
   510   __ neg( Gframe_size );
   511   __ save( SP, Gframe_size, SP );
   513   //
   514   // now set up all the local cache registers
   515   //
   516   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   517   // that all present references to Lbyte_code initialize the register
   518   // immediately before use
   519   if (native_call) {
   520     __ mov(G0, Lbcp);
   521   } else {
   522     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), Lbcp );
   523     __ add(Address(Lbcp, 0, in_bytes(constMethodOopDesc::codes_offset())), Lbcp );
   524   }
   525   __ mov( G5_method, Lmethod);                 // set Lmethod
   526   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   527   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   528 #ifdef _LP64
   529   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   530 #endif
   531   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   533   // setup interpreter activation registers
   534   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   536   if (ProfileInterpreter) {
   537 #ifdef FAST_DISPATCH
   538     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   539     // they both use I2.
   540     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   541 #endif // FAST_DISPATCH
   542     __ set_method_data_pointer();
   543   }
   545 }
   547 // Empty method, generate a very fast return.
   549 address InterpreterGenerator::generate_empty_entry(void) {
   551   // A method that does nother but return...
   553   address entry = __ pc();
   554   Label slow_path;
   556   __ verify_oop(G5_method);
   558   // do nothing for empty methods (do not even increment invocation counter)
   559   if ( UseFastEmptyMethods) {
   560     // If we need a safepoint check, generate full interpreter entry.
   561     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   562     __ load_contents(sync_state, G3_scratch);
   563     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   564     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   565     __ delayed()->nop();
   567     // Code: _return
   568     __ retl();
   569     __ delayed()->mov(O5_savedSP, SP);
   571     __ bind(slow_path);
   572     (void) generate_normal_entry(false);
   574     return entry;
   575   }
   576   return NULL;
   577 }
   579 // Call an accessor method (assuming it is resolved, otherwise drop into
   580 // vanilla (slow path) entry
   582 // Generates code to elide accessor methods
   583 // Uses G3_scratch and G1_scratch as scratch
   584 address InterpreterGenerator::generate_accessor_entry(void) {
   586   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   587   // parameter size = 1
   588   // Note: We can only use this code if the getfield has been resolved
   589   //       and if we don't have a null-pointer exception => check for
   590   //       these conditions first and use slow path if necessary.
   591   address entry = __ pc();
   592   Label slow_path;
   595   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   596   // delay slot and damages G1
   597   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   598     // Check if we need to reach a safepoint and generate full interpreter
   599     // frame if so.
   600     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   601     __ load_contents(sync_state, G3_scratch);
   602     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   603     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   604     __ delayed()->nop();
   606     // Check if local 0 != NULL
   607     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   608     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   609     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   610     __ delayed()->nop();
   613     // read first instruction word and extract bytecode @ 1 and index @ 2
   614     // get first 4 bytes of the bytecodes (big endian!)
   615     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
   616     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
   618     // move index @ 2 far left then to the right most two bytes.
   619     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   620     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   621                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   623     // get constant pool cache
   624     __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
   625     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   627     // get specific constant pool cache entry
   628     __ add(G3_scratch, G1_scratch, G3_scratch);
   630     // Check the constant Pool cache entry to see if it has been resolved.
   631     // If not, need the slow path.
   632     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   633     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
   634     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   635     __ and3(G1_scratch, 0xFF, G1_scratch);
   636     __ cmp(G1_scratch, Bytecodes::_getfield);
   637     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   638     __ delayed()->nop();
   640     // Get the type and return field offset from the constant pool cache
   641     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
   642     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
   644     Label xreturn_path;
   645     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   646     // because they are different sizes.
   647     // Get the type from the constant pool cache
   648     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   649     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   650     ConstantPoolCacheEntry::verify_tosBits();
   651     __ cmp(G1_scratch, atos );
   652     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   653     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   654     __ cmp(G1_scratch, itos);
   655     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   656     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   657     __ cmp(G1_scratch, stos);
   658     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   659     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   660     __ cmp(G1_scratch, ctos);
   661     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   662     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   663 #ifdef ASSERT
   664     __ cmp(G1_scratch, btos);
   665     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   666     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   667     __ should_not_reach_here();
   668 #endif
   669     __ ldsb(Otos_i, G3_scratch, Otos_i);
   670     __ bind(xreturn_path);
   672     // _ireturn/_areturn
   673     __ retl();                      // return from leaf routine
   674     __ delayed()->mov(O5_savedSP, SP);
   676     // Generate regular method entry
   677     __ bind(slow_path);
   678     (void) generate_normal_entry(false);
   679     return entry;
   680   }
   681   return NULL;
   682 }
   684 //
   685 // Interpreter stub for calling a native method. (asm interpreter)
   686 // This sets up a somewhat different looking stack for calling the native method
   687 // than the typical interpreter frame setup.
   688 //
   690 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   691   address entry = __ pc();
   693   // the following temporary registers are used during frame creation
   694   const Register Gtmp1 = G3_scratch ;
   695   const Register Gtmp2 = G1_scratch;
   696   bool inc_counter  = UseCompiler || CountCompiledCalls;
   698   // make sure registers are different!
   699   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   701   const Address Laccess_flags     (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
   703   __ verify_oop(G5_method);
   705   const Register Glocals_size = G3;
   706   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   708   // make sure method is native & not abstract
   709   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   710 #ifdef ASSERT
   711   __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
   712   {
   713     Label L;
   714     __ btst(JVM_ACC_NATIVE, Gtmp1);
   715     __ br(Assembler::notZero, false, Assembler::pt, L);
   716     __ delayed()->nop();
   717     __ stop("tried to execute non-native method as native");
   718     __ bind(L);
   719   }
   720   { Label L;
   721     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   722     __ br(Assembler::zero, false, Assembler::pt, L);
   723     __ delayed()->nop();
   724     __ stop("tried to execute abstract method as non-abstract");
   725     __ bind(L);
   726   }
   727 #endif // ASSERT
   729  // generate the code to allocate the interpreter stack frame
   730   generate_fixed_frame(true);
   732   //
   733   // No locals to initialize for native method
   734   //
   736   // this slot will be set later, we initialize it to null here just in
   737   // case we get a GC before the actual value is stored later
   738   __ st_ptr(G0, Address(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS));
   740   const Address do_not_unlock_if_synchronized(G2_thread, 0,
   741       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   742   // Since at this point in the method invocation the exception handler
   743   // would try to exit the monitor of synchronized methods which hasn't
   744   // been entered yet, we set the thread local variable
   745   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   746   // runtime, exception handling i.e. unlock_if_synchronized_method will
   747   // check this thread local flag.
   748   // This flag has two effects, one is to force an unwind in the topmost
   749   // interpreter frame and not perform an unlock while doing so.
   751   __ movbool(true, G3_scratch);
   752   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   754   // increment invocation counter and check for overflow
   755   //
   756   // Note: checking for negative value instead of overflow
   757   //       so we have a 'sticky' overflow test (may be of
   758   //       importance as soon as we have true MT/MP)
   759   Label invocation_counter_overflow;
   760   Label Lcontinue;
   761   if (inc_counter) {
   762     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   764   }
   765   __ bind(Lcontinue);
   767   bang_stack_shadow_pages(true);
   769   // reset the _do_not_unlock_if_synchronized flag
   770   __ stbool(G0, do_not_unlock_if_synchronized);
   772   // check for synchronized methods
   773   // Must happen AFTER invocation_counter check and stack overflow check,
   774   // so method is not locked if overflows.
   776   if (synchronized) {
   777     lock_method();
   778   } else {
   779 #ifdef ASSERT
   780     { Label ok;
   781       __ ld(Laccess_flags, O0);
   782       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   783       __ br( Assembler::zero, false, Assembler::pt, ok);
   784       __ delayed()->nop();
   785       __ stop("method needs synchronization");
   786       __ bind(ok);
   787     }
   788 #endif // ASSERT
   789   }
   792   // start execution
   793   __ verify_thread();
   795   // JVMTI support
   796   __ notify_method_entry();
   798   // native call
   800   // (note that O0 is never an oop--at most it is a handle)
   801   // It is important not to smash any handles created by this call,
   802   // until any oop handle in O0 is dereferenced.
   804   // (note that the space for outgoing params is preallocated)
   806   // get signature handler
   807   { Label L;
   808     __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   809     __ tst(G3_scratch);
   810     __ brx(Assembler::notZero, false, Assembler::pt, L);
   811     __ delayed()->nop();
   812     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   813     __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   814     __ bind(L);
   815   }
   817   // Push a new frame so that the args will really be stored in
   818   // Copy a few locals across so the new frame has the variables
   819   // we need but these values will be dead at the jni call and
   820   // therefore not gc volatile like the values in the current
   821   // frame (Lmethod in particular)
   823   // Flush the method pointer to the register save area
   824   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   825   __ mov(Llocals, O1);
   826   // calculate where the mirror handle body is allocated in the interpreter frame:
   828   Address mirror(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
   829   __ add(mirror, O2);
   831   // Calculate current frame size
   832   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   833   __ save(SP, O3, SP);        // Allocate an identical sized frame
   835   // Note I7 has leftover trash. Slow signature handler will fill it in
   836   // should we get there. Normal jni call will set reasonable last_Java_pc
   837   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   838   // in it).
   840   // Load interpreter frame's Lmethod into same register here
   842   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   844   __ mov(I1, Llocals);
   845   __ mov(I2, Lscratch2);     // save the address of the mirror
   848   // ONLY Lmethod and Llocals are valid here!
   850   // call signature handler, It will move the arg properly since Llocals in current frame
   851   // matches that in outer frame
   853   __ callr(G3_scratch, 0);
   854   __ delayed()->nop();
   856   // Result handler is in Lscratch
   858   // Reload interpreter frame's Lmethod since slow signature handler may block
   859   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   861   { Label not_static;
   863     __ ld(Laccess_flags, O0);
   864     __ btst(JVM_ACC_STATIC, O0);
   865     __ br( Assembler::zero, false, Assembler::pt, not_static);
   866     __ delayed()->
   867       // get native function entry point(O0 is a good temp until the very end)
   868        ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
   869     // for static methods insert the mirror argument
   870     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   872     __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
   873     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
   874     __ ld_ptr(O1, mirror_offset, O1);
   875 #ifdef ASSERT
   876     if (!PrintSignatureHandlers)  // do not dirty the output with this
   877     { Label L;
   878       __ tst(O1);
   879       __ brx(Assembler::notZero, false, Assembler::pt, L);
   880       __ delayed()->nop();
   881       __ stop("mirror is missing");
   882       __ bind(L);
   883     }
   884 #endif // ASSERT
   885     __ st_ptr(O1, Lscratch2, 0);
   886     __ mov(Lscratch2, O1);
   887     __ bind(not_static);
   888   }
   890   // At this point, arguments have been copied off of stack into
   891   // their JNI positions, which are O1..O5 and SP[68..].
   892   // Oops are boxed in-place on the stack, with handles copied to arguments.
   893   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   895 #ifdef ASSERT
   896   { Label L;
   897     __ tst(O0);
   898     __ brx(Assembler::notZero, false, Assembler::pt, L);
   899     __ delayed()->nop();
   900     __ stop("native entry point is missing");
   901     __ bind(L);
   902   }
   903 #endif // ASSERT
   905   //
   906   // setup the frame anchor
   907   //
   908   // The scavenge function only needs to know that the PC of this frame is
   909   // in the interpreter method entry code, it doesn't need to know the exact
   910   // PC and hence we can use O7 which points to the return address from the
   911   // previous call in the code stream (signature handler function)
   912   //
   913   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   914   // we have pushed the extra frame in order to protect the volatile register(s)
   915   // in that frame when we return from the jni call
   916   //
   918   __ set_last_Java_frame(FP, O7);
   919   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   920                    // not meaningless information that'll confuse me.
   922   // flush the windows now. We don't care about the current (protection) frame
   923   // only the outer frames
   925   __ flush_windows();
   927   // mark windows as flushed
   928   Address flags(G2_thread,
   929                 0,
   930                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   931   __ set(JavaFrameAnchor::flushed, G3_scratch);
   932   __ st(G3_scratch, flags);
   934   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   936   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
   937 #ifdef ASSERT
   938   { Label L;
   939     __ ld(thread_state, G3_scratch);
   940     __ cmp(G3_scratch, _thread_in_Java);
   941     __ br(Assembler::equal, false, Assembler::pt, L);
   942     __ delayed()->nop();
   943     __ stop("Wrong thread state in native stub");
   944     __ bind(L);
   945   }
   946 #endif // ASSERT
   947   __ set(_thread_in_native, G3_scratch);
   948   __ st(G3_scratch, thread_state);
   950   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   951   __ save_thread(L7_thread_cache); // save Gthread
   952   __ callr(O0, 0);
   953   __ delayed()->
   954      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
   956   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
   958   __ restore_thread(L7_thread_cache); // restore G2_thread
   959   __ reinit_heapbase();
   961   // must we block?
   963   // Block, if necessary, before resuming in _thread_in_Java state.
   964   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   965   { Label no_block;
   966     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   968     // Switch thread to "native transition" state before reading the synchronization state.
   969     // This additional state is necessary because reading and testing the synchronization
   970     // state is not atomic w.r.t. GC, as this scenario demonstrates:
   971     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
   972     //     VM thread changes sync state to synchronizing and suspends threads for GC.
   973     //     Thread A is resumed to finish this native method, but doesn't block here since it
   974     //     didn't see any synchronization is progress, and escapes.
   975     __ set(_thread_in_native_trans, G3_scratch);
   976     __ st(G3_scratch, thread_state);
   977     if(os::is_MP()) {
   978       if (UseMembar) {
   979         // Force this write out before the read below
   980         __ membar(Assembler::StoreLoad);
   981       } else {
   982         // Write serialization page so VM thread can do a pseudo remote membar.
   983         // We use the current thread pointer to calculate a thread specific
   984         // offset to write to within the page. This minimizes bus traffic
   985         // due to cache line collision.
   986         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
   987       }
   988     }
   989     __ load_contents(sync_state, G3_scratch);
   990     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   992     Label L;
   993     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
   994     __ br(Assembler::notEqual, false, Assembler::pn, L);
   995     __ delayed()->
   996       ld(suspend_state, G3_scratch);
   997     __ cmp(G3_scratch, 0);
   998     __ br(Assembler::equal, false, Assembler::pt, no_block);
   999     __ delayed()->nop();
  1000     __ bind(L);
  1002     // Block.  Save any potential method result value before the operation and
  1003     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1004     save_native_result();
  1005     __ call_VM_leaf(L7_thread_cache,
  1006                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1007                     G2_thread);
  1009     // Restore any method result value
  1010     restore_native_result();
  1011     __ bind(no_block);
  1014   // Clear the frame anchor now
  1016   __ reset_last_Java_frame();
  1018   // Move the result handler address
  1019   __ mov(Lscratch, G3_scratch);
  1020   // return possible result to the outer frame
  1021 #ifndef __LP64
  1022   __ mov(O0, I0);
  1023   __ restore(O1, G0, O1);
  1024 #else
  1025   __ restore(O0, G0, O0);
  1026 #endif /* __LP64 */
  1028   // Move result handler to expected register
  1029   __ mov(G3_scratch, Lscratch);
  1031   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1032   // switch to thread_in_Java.
  1034   __ set(_thread_in_Java, G3_scratch);
  1035   __ st(G3_scratch, thread_state);
  1037   // reset handle block
  1038   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
  1039   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1041   // If we have an oop result store it where it will be safe for any further gc
  1042   // until we return now that we've released the handle it might be protected by
  1045     Label no_oop, store_result;
  1047     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1048     __ cmp(G3_scratch, Lscratch);
  1049     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
  1050     __ delayed()->nop();
  1051     __ addcc(G0, O0, O0);
  1052     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1053     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1054     __ mov(G0, O0);
  1056     __ bind(store_result);
  1057     // Store it where gc will look for it and result handler expects it.
  1058     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1060     __ bind(no_oop);
  1065   // handle exceptions (exception handling will handle unlocking!)
  1066   { Label L;
  1067     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1069     __ ld_ptr(exception_addr, Gtemp);
  1070     __ tst(Gtemp);
  1071     __ brx(Assembler::equal, false, Assembler::pt, L);
  1072     __ delayed()->nop();
  1073     // Note: This could be handled more efficiently since we know that the native
  1074     //       method doesn't have an exception handler. We could directly return
  1075     //       to the exception handler for the caller.
  1076     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1077     __ should_not_reach_here();
  1078     __ bind(L);
  1081   // JVMTI support (preserves thread register)
  1082   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1084   if (synchronized) {
  1085     // save and restore any potential method result value around the unlocking operation
  1086     save_native_result();
  1088     __ add( __ top_most_monitor(), O1);
  1089     __ unlock_object(O1);
  1091     restore_native_result();
  1094 #if defined(COMPILER2) && !defined(_LP64)
  1096   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1097   // or compiled so just be safe.
  1099   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1100   __ srl (O1, 0, O1);           // Zero extend O1
  1101   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1103 #endif /* COMPILER2 && !_LP64 */
  1105   // dispose of return address and remove activation
  1106 #ifdef ASSERT
  1108     Label ok;
  1109     __ cmp(I5_savedSP, FP);
  1110     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1111     __ delayed()->nop();
  1112     __ stop("bad I5_savedSP value");
  1113     __ should_not_reach_here();
  1114     __ bind(ok);
  1116 #endif
  1117   if (TraceJumps) {
  1118     // Move target to register that is recordable
  1119     __ mov(Lscratch, G3_scratch);
  1120     __ JMP(G3_scratch, 0);
  1121   } else {
  1122     __ jmp(Lscratch, 0);
  1124   __ delayed()->nop();
  1127   if (inc_counter) {
  1128     // handle invocation counter overflow
  1129     __ bind(invocation_counter_overflow);
  1130     generate_counter_overflow(Lcontinue);
  1135   return entry;
  1139 // Generic method entry to (asm) interpreter
  1140 //------------------------------------------------------------------------------------------------------------------------
  1141 //
  1142 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1143   address entry = __ pc();
  1145   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1147   // the following temporary registers are used during frame creation
  1148   const Register Gtmp1 = G3_scratch ;
  1149   const Register Gtmp2 = G1_scratch;
  1151   // make sure registers are different!
  1152   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1154   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1155   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1156   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1157   // and use in the asserts.
  1158   const Address access_flags      (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1160   __ verify_oop(G5_method);
  1162   const Register Glocals_size = G3;
  1163   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1165   // make sure method is not native & not abstract
  1166   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1167 #ifdef ASSERT
  1168   __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
  1170     Label L;
  1171     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1172     __ br(Assembler::zero, false, Assembler::pt, L);
  1173     __ delayed()->nop();
  1174     __ stop("tried to execute native method as non-native");
  1175     __ bind(L);
  1177   { Label L;
  1178     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1179     __ br(Assembler::zero, false, Assembler::pt, L);
  1180     __ delayed()->nop();
  1181     __ stop("tried to execute abstract method as non-abstract");
  1182     __ bind(L);
  1184 #endif // ASSERT
  1186   // generate the code to allocate the interpreter stack frame
  1188   generate_fixed_frame(false);
  1190 #ifdef FAST_DISPATCH
  1191   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1192                                           // set bytecode dispatch table base
  1193 #endif
  1195   //
  1196   // Code to initialize the extra (i.e. non-parm) locals
  1197   //
  1198   Register init_value = noreg;    // will be G0 if we must clear locals
  1199   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1200   // It could only be false for the specialized entries like accessor or empty which have
  1201   // no extra locals so the testing was a waste of time and the extra locals were always
  1202   // initialized. We removed this extra complication to already over complicated code.
  1204   init_value = G0;
  1205   Label clear_loop;
  1207   // NOTE: If you change the frame layout, this code will need to
  1208   // be updated!
  1209   __ lduh( size_of_locals, O2 );
  1210   __ lduh( size_of_parameters, O1 );
  1211   __ sll( O2, Interpreter::logStackElementSize(), O2);
  1212   __ sll( O1, Interpreter::logStackElementSize(), O1 );
  1213   __ sub( Llocals, O2, O2 );
  1214   __ sub( Llocals, O1, O1 );
  1216   __ bind( clear_loop );
  1217   __ inc( O2, wordSize );
  1219   __ cmp( O2, O1 );
  1220   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1221   __ delayed()->st_ptr( init_value, O2, 0 );
  1223   const Address do_not_unlock_if_synchronized(G2_thread, 0,
  1224         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1225   // Since at this point in the method invocation the exception handler
  1226   // would try to exit the monitor of synchronized methods which hasn't
  1227   // been entered yet, we set the thread local variable
  1228   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1229   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1230   // check this thread local flag.
  1231   __ movbool(true, G3_scratch);
  1232   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1234   // increment invocation counter and check for overflow
  1235   //
  1236   // Note: checking for negative value instead of overflow
  1237   //       so we have a 'sticky' overflow test (may be of
  1238   //       importance as soon as we have true MT/MP)
  1239   Label invocation_counter_overflow;
  1240   Label profile_method;
  1241   Label profile_method_continue;
  1242   Label Lcontinue;
  1243   if (inc_counter) {
  1244     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1245     if (ProfileInterpreter) {
  1246       __ bind(profile_method_continue);
  1249   __ bind(Lcontinue);
  1251   bang_stack_shadow_pages(false);
  1253   // reset the _do_not_unlock_if_synchronized flag
  1254   __ stbool(G0, do_not_unlock_if_synchronized);
  1256   // check for synchronized methods
  1257   // Must happen AFTER invocation_counter check and stack overflow check,
  1258   // so method is not locked if overflows.
  1260   if (synchronized) {
  1261     lock_method();
  1262   } else {
  1263 #ifdef ASSERT
  1264     { Label ok;
  1265       __ ld(access_flags, O0);
  1266       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1267       __ br( Assembler::zero, false, Assembler::pt, ok);
  1268       __ delayed()->nop();
  1269       __ stop("method needs synchronization");
  1270       __ bind(ok);
  1272 #endif // ASSERT
  1275   // start execution
  1277   __ verify_thread();
  1279   // jvmti support
  1280   __ notify_method_entry();
  1282   // start executing instructions
  1283   __ dispatch_next(vtos);
  1286   if (inc_counter) {
  1287     if (ProfileInterpreter) {
  1288       // We have decided to profile this method in the interpreter
  1289       __ bind(profile_method);
  1291       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), Lbcp, true);
  1293 #ifdef ASSERT
  1294       __ tst(O0);
  1295       __ breakpoint_trap(Assembler::notEqual);
  1296 #endif
  1298       __ set_method_data_pointer();
  1300       __ ba(false, profile_method_continue);
  1301       __ delayed()->nop();
  1304     // handle invocation counter overflow
  1305     __ bind(invocation_counter_overflow);
  1306     generate_counter_overflow(Lcontinue);
  1310   return entry;
  1314 //----------------------------------------------------------------------------------------------------
  1315 // Entry points & stack frame layout
  1316 //
  1317 // Here we generate the various kind of entries into the interpreter.
  1318 // The two main entry type are generic bytecode methods and native call method.
  1319 // These both come in synchronized and non-synchronized versions but the
  1320 // frame layout they create is very similar. The other method entry
  1321 // types are really just special purpose entries that are really entry
  1322 // and interpretation all in one. These are for trivial methods like
  1323 // accessor, empty, or special math methods.
  1324 //
  1325 // When control flow reaches any of the entry types for the interpreter
  1326 // the following holds ->
  1327 //
  1328 // C2 Calling Conventions:
  1329 //
  1330 // The entry code below assumes that the following registers are set
  1331 // when coming in:
  1332 //    G5_method: holds the methodOop of the method to call
  1333 //    Lesp:    points to the TOS of the callers expression stack
  1334 //             after having pushed all the parameters
  1335 //
  1336 // The entry code does the following to setup an interpreter frame
  1337 //   pop parameters from the callers stack by adjusting Lesp
  1338 //   set O0 to Lesp
  1339 //   compute X = (max_locals - num_parameters)
  1340 //   bump SP up by X to accomadate the extra locals
  1341 //   compute X = max_expression_stack
  1342 //               + vm_local_words
  1343 //               + 16 words of register save area
  1344 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1345 //   set Lbcp, Lmethod, LcpoolCache
  1346 //   set Llocals to i0
  1347 //   set Lmonitors to FP - rounded_vm_local_words
  1348 //   set Lesp to Lmonitors - 4
  1349 //
  1350 //  The frame has now been setup to do the rest of the entry code
  1352 // Try this optimization:  Most method entries could live in a
  1353 // "one size fits all" stack frame without all the dynamic size
  1354 // calculations.  It might be profitable to do all this calculation
  1355 // statically and approximately for "small enough" methods.
  1357 //-----------------------------------------------------------------------------------------------
  1359 // C1 Calling conventions
  1360 //
  1361 // Upon method entry, the following registers are setup:
  1362 //
  1363 // g2 G2_thread: current thread
  1364 // g5 G5_method: method to activate
  1365 // g4 Gargs  : pointer to last argument
  1366 //
  1367 //
  1368 // Stack:
  1369 //
  1370 // +---------------+ <--- sp
  1371 // |               |
  1372 // : reg save area :
  1373 // |               |
  1374 // +---------------+ <--- sp + 0x40
  1375 // |               |
  1376 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1377 // |               |
  1378 // +---------------+ <--- sp + 0x5c
  1379 // |               |
  1380 // :     free      :
  1381 // |               |
  1382 // +---------------+ <--- Gargs
  1383 // |               |
  1384 // :   arguments   :
  1385 // |               |
  1386 // +---------------+
  1387 // |               |
  1388 //
  1389 //
  1390 //
  1391 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1392 //
  1393 // +---------------+ <--- sp
  1394 // |               |
  1395 // : reg save area :
  1396 // |               |
  1397 // +---------------+ <--- sp + 0x40
  1398 // |               |
  1399 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1400 // |               |
  1401 // +---------------+ <--- sp + 0x5c
  1402 // |               |
  1403 // :               :
  1404 // |               | <--- Lesp
  1405 // +---------------+ <--- Lmonitors (fp - 0x18)
  1406 // |   VM locals   |
  1407 // +---------------+ <--- fp
  1408 // |               |
  1409 // : reg save area :
  1410 // |               |
  1411 // +---------------+ <--- fp + 0x40
  1412 // |               |
  1413 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1414 // |               |
  1415 // +---------------+ <--- fp + 0x5c
  1416 // |               |
  1417 // :     free      :
  1418 // |               |
  1419 // +---------------+
  1420 // |               |
  1421 // : nonarg locals :
  1422 // |               |
  1423 // +---------------+
  1424 // |               |
  1425 // :   arguments   :
  1426 // |               | <--- Llocals
  1427 // +---------------+ <--- Gargs
  1428 // |               |
  1430 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1432   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1433   // expression stack, the callee will have callee_extra_locals (so we can account for
  1434   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1435   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1436   //
  1437   //
  1438   // The big complicating thing here is that we must ensure that the stack stays properly
  1439   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1440   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1441   // the caller so we must ensure that it is properly aligned for our callee.
  1442   //
  1443   const int rounded_vm_local_words =
  1444        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1445   // callee_locals and max_stack are counts, not the size in frame.
  1446   const int locals_size =
  1447        round_to(callee_extra_locals * Interpreter::stackElementWords(), WordsPerLong);
  1448   const int max_stack_words = max_stack * Interpreter::stackElementWords();
  1449   return (round_to((max_stack_words
  1450                    + rounded_vm_local_words
  1451                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1452                    // already rounded
  1453                    + locals_size + monitor_size);
  1456 // How much stack a method top interpreter activation needs in words.
  1457 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1459   // See call_stub code
  1460   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1461                                  WordsPerLong);    // 7 + register save area
  1463   // Save space for one monitor to get into the interpreted method in case
  1464   // the method is synchronized
  1465   int monitor_size    = method->is_synchronized() ?
  1466                                 1*frame::interpreter_frame_monitor_size() : 0;
  1467   return size_activation_helper(method->max_locals(), method->max_stack(),
  1468                                  monitor_size) + call_stub_size;
  1471 int AbstractInterpreter::layout_activation(methodOop method,
  1472                                            int tempcount,
  1473                                            int popframe_extra_args,
  1474                                            int moncount,
  1475                                            int callee_param_count,
  1476                                            int callee_local_count,
  1477                                            frame* caller,
  1478                                            frame* interpreter_frame,
  1479                                            bool is_top_frame) {
  1480   // Note: This calculation must exactly parallel the frame setup
  1481   // in InterpreterGenerator::generate_fixed_frame.
  1482   // If f!=NULL, set up the following variables:
  1483   //   - Lmethod
  1484   //   - Llocals
  1485   //   - Lmonitors (to the indicated number of monitors)
  1486   //   - Lesp (to the indicated number of temps)
  1487   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1488   // we are about to layout. We are guaranteed that we will be able to fill in a
  1489   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1490   // the amount was determined by an earlier call to this method with f == NULL).
  1491   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1493   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1494   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1496   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1497   //
  1498   // Note: if you look closely this appears to be doing something much different
  1499   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1500   // this dance with interpreter_sp_adjustment because the window save area would
  1501   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1502   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1503   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1504   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1505   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1506   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1507   // because the oldest frame would have adjust its callers frame and yet that frame
  1508   // already exists and isn't part of this array of frames we are unpacking. So at first
  1509   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1510   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1511   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1512   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1513   // callee... parameters here). However this would mean that this routine would have to take
  1514   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1515   // and run the calling loop in the reverse order. This would also would appear to mean making
  1516   // this code aware of what the interactions are when that initial caller fram was an osr or
  1517   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1518   // there is no sense in messing working code.
  1519   //
  1521   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1522   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1524   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1525                                               monitor_size);
  1527   if (interpreter_frame != NULL) {
  1528     // The skeleton frame must already look like an interpreter frame
  1529     // even if not fully filled out.
  1530     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1532     intptr_t* fp = interpreter_frame->fp();
  1534     JavaThread* thread = JavaThread::current();
  1535     RegisterMap map(thread, false);
  1536     // More verification that skeleton frame is properly walkable
  1537     assert(fp == caller->sp(), "fp must match");
  1539     intptr_t* montop     = fp - rounded_vm_local_words;
  1541     // preallocate monitors (cf. __ add_monitor_to_stack)
  1542     intptr_t* monitors = montop - monitor_size;
  1544     // preallocate stack space
  1545     intptr_t*  esp = monitors - 1 -
  1546                      (tempcount * Interpreter::stackElementWords()) -
  1547                      popframe_extra_args;
  1549     int local_words = method->max_locals() * Interpreter::stackElementWords();
  1550     int parm_words  = method->size_of_parameters() * Interpreter::stackElementWords();
  1551     NEEDS_CLEANUP;
  1552     intptr_t* locals;
  1553     if (caller->is_interpreted_frame()) {
  1554       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1555       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1556       // Note that this computation means we replace size_of_parameters() values from the caller
  1557       // interpreter frame's expression stack with our argument locals
  1558       locals = Lesp_ptr + parm_words;
  1559       int delta = local_words - parm_words;
  1560       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1561       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1562     } else {
  1563       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1564       // Don't have Lesp available; lay out locals block in the caller
  1565       // adjacent to the register window save area.
  1566       //
  1567       // Compiled frames do not allocate a varargs area which is why this if
  1568       // statement is needed.
  1569       //
  1570       if (caller->is_compiled_frame()) {
  1571         locals = fp + frame::register_save_words + local_words - 1;
  1572       } else {
  1573         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1575       if (!caller->is_entry_frame()) {
  1576         // Caller wants his own SP back
  1577         int caller_frame_size = caller->cb()->frame_size();
  1578         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1581     if (TraceDeoptimization) {
  1582       if (caller->is_entry_frame()) {
  1583         // make sure I5_savedSP and the entry frames notion of saved SP
  1584         // agree.  This assertion duplicate a check in entry frame code
  1585         // but catches the failure earlier.
  1586         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1587                "would change callers SP");
  1589       if (caller->is_entry_frame()) {
  1590         tty->print("entry ");
  1592       if (caller->is_compiled_frame()) {
  1593         tty->print("compiled ");
  1594         if (caller->is_deoptimized_frame()) {
  1595           tty->print("(deopt) ");
  1598       if (caller->is_interpreted_frame()) {
  1599         tty->print("interpreted ");
  1601       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1602       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1603       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1604       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1605       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1606       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1607       tty->print_cr("Llocals = 0x%x", locals);
  1608       tty->print_cr("Lesp = 0x%x", esp);
  1609       tty->print_cr("Lmonitors = 0x%x", monitors);
  1612     if (method->max_locals() > 0) {
  1613       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1614       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1615       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1616       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1618 #ifdef _LP64
  1619     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1620 #endif
  1622     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1623     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1624     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1625     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1626     // Llast_SP will be same as SP as there is no adapter space
  1627     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1628     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1629 #ifdef FAST_DISPATCH
  1630     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1631 #endif
  1634 #ifdef ASSERT
  1635     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1637     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1638     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize())+Interpreter::value_offset_in_bytes()), "locals match");
  1639     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1640     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1641     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1643     // check bounds
  1644     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1645     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1646     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1647     assert(lo <= esp && esp < monitors, "esp in bounds");
  1648 #endif // ASSERT
  1651   return raw_frame_size;
  1654 //----------------------------------------------------------------------------------------------------
  1655 // Exceptions
  1656 void TemplateInterpreterGenerator::generate_throw_exception() {
  1658   // Entry point in previous activation (i.e., if the caller was interpreted)
  1659   Interpreter::_rethrow_exception_entry = __ pc();
  1660   // O0: exception
  1662   // entry point for exceptions thrown within interpreter code
  1663   Interpreter::_throw_exception_entry = __ pc();
  1664   __ verify_thread();
  1665   // expression stack is undefined here
  1666   // O0: exception, i.e. Oexception
  1667   // Lbcp: exception bcx
  1668   __ verify_oop(Oexception);
  1671   // expression stack must be empty before entering the VM in case of an exception
  1672   __ empty_expression_stack();
  1673   // find exception handler address and preserve exception oop
  1674   // call C routine to find handler and jump to it
  1675   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1676   __ push_ptr(O1); // push exception for exception handler bytecodes
  1678   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1679   __ delayed()->nop();
  1682   // if the exception is not handled in the current frame
  1683   // the frame is removed and the exception is rethrown
  1684   // (i.e. exception continuation is _rethrow_exception)
  1685   //
  1686   // Note: At this point the bci is still the bxi for the instruction which caused
  1687   //       the exception and the expression stack is empty. Thus, for any VM calls
  1688   //       at this point, GC will find a legal oop map (with empty expression stack).
  1690   // in current activation
  1691   // tos: exception
  1692   // Lbcp: exception bcp
  1694   //
  1695   // JVMTI PopFrame support
  1696   //
  1698   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1699   Address popframe_condition_addr (G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
  1700   // Set the popframe_processing bit in popframe_condition indicating that we are
  1701   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1702   // popframe handling cycles.
  1704   __ ld(popframe_condition_addr, G3_scratch);
  1705   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1706   __ stw(G3_scratch, popframe_condition_addr);
  1708   // Empty the expression stack, as in normal exception handling
  1709   __ empty_expression_stack();
  1710   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1713     // Check to see whether we are returning to a deoptimized frame.
  1714     // (The PopFrame call ensures that the caller of the popped frame is
  1715     // either interpreted or compiled and deoptimizes it if compiled.)
  1716     // In this case, we can't call dispatch_next() after the frame is
  1717     // popped, but instead must save the incoming arguments and restore
  1718     // them after deoptimization has occurred.
  1719     //
  1720     // Note that we don't compare the return PC against the
  1721     // deoptimization blob's unpack entry because of the presence of
  1722     // adapter frames in C2.
  1723     Label caller_not_deoptimized;
  1724     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1725     __ tst(O0);
  1726     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
  1727     __ delayed()->nop();
  1729     const Register Gtmp1 = G3_scratch;
  1730     const Register Gtmp2 = G1_scratch;
  1732     // Compute size of arguments for saving when returning to deoptimized caller
  1733     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
  1734     __ sll(Gtmp1, Interpreter::logStackElementSize(), Gtmp1);
  1735     __ sub(Llocals, Gtmp1, Gtmp2);
  1736     __ add(Gtmp2, wordSize, Gtmp2);
  1737     // Save these arguments
  1738     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1739     // Inform deoptimization that it is responsible for restoring these arguments
  1740     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1741     Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
  1742     __ st(Gtmp1, popframe_condition_addr);
  1744     // Return from the current method
  1745     // The caller's SP was adjusted upon method entry to accomodate
  1746     // the callee's non-argument locals. Undo that adjustment.
  1747     __ ret();
  1748     __ delayed()->restore(I5_savedSP, G0, SP);
  1750     __ bind(caller_not_deoptimized);
  1753   // Clear the popframe condition flag
  1754   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1756   // Get out of the current method (how this is done depends on the particular compiler calling
  1757   // convention that the interpreter currently follows)
  1758   // The caller's SP was adjusted upon method entry to accomodate
  1759   // the callee's non-argument locals. Undo that adjustment.
  1760   __ restore(I5_savedSP, G0, SP);
  1761   // The method data pointer was incremented already during
  1762   // call profiling. We have to restore the mdp for the current bcp.
  1763   if (ProfileInterpreter) {
  1764     __ set_method_data_pointer_for_bcp();
  1766   // Resume bytecode interpretation at the current bcp
  1767   __ dispatch_next(vtos);
  1768   // end of JVMTI PopFrame support
  1770   Interpreter::_remove_activation_entry = __ pc();
  1772   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1773   __ pop_ptr(Oexception);                                  // get exception
  1775   // Intel has the following comment:
  1776   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1777   // They remove the activation without checking for bad monitor state.
  1778   // %%% We should make sure this is the right semantics before implementing.
  1780   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
  1781   __ set_vm_result(Oexception);
  1782   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1784   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1786   __ get_vm_result(Oexception);
  1787   __ verify_oop(Oexception);
  1789     const int return_reg_adjustment = frame::pc_return_offset;
  1790   Address issuing_pc_addr(I7, 0, return_reg_adjustment);
  1792   // We are done with this activation frame; find out where to go next.
  1793   // The continuation point will be an exception handler, which expects
  1794   // the following registers set up:
  1795   //
  1796   // Oexception: exception
  1797   // Oissuing_pc: the local call that threw exception
  1798   // Other On: garbage
  1799   // In/Ln:  the contents of the caller's register window
  1800   //
  1801   // We do the required restore at the last possible moment, because we
  1802   // need to preserve some state across a runtime call.
  1803   // (Remember that the caller activation is unknown--it might not be
  1804   // interpreted, so things like Lscratch are useless in the caller.)
  1806   // Although the Intel version uses call_C, we can use the more
  1807   // compact call_VM.  (The only real difference on SPARC is a
  1808   // harmlessly ignored [re]set_last_Java_frame, compared with
  1809   // the Intel code which lacks this.)
  1810   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1811   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1812   __ super_call_VM_leaf(L7_thread_cache,
  1813                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1814                         Oissuing_pc->after_save());
  1816   // The caller's SP was adjusted upon method entry to accomodate
  1817   // the callee's non-argument locals. Undo that adjustment.
  1818   __ JMP(O0, 0);                         // return exception handler in caller
  1819   __ delayed()->restore(I5_savedSP, G0, SP);
  1821   // (same old exception object is already in Oexception; see above)
  1822   // Note that an "issuing PC" is actually the next PC after the call
  1826 //
  1827 // JVMTI ForceEarlyReturn support
  1828 //
  1830 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1831   address entry = __ pc();
  1833   __ empty_expression_stack();
  1834   __ load_earlyret_value(state);
  1836   __ ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())), G3_scratch);
  1837   Address cond_addr(G3_scratch, 0, in_bytes(JvmtiThreadState::earlyret_state_offset()));
  1839   // Clear the earlyret state
  1840   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1842   __ remove_activation(state,
  1843                        /* throw_monitor_exception */ false,
  1844                        /* install_monitor_exception */ false);
  1846   // The caller's SP was adjusted upon method entry to accomodate
  1847   // the callee's non-argument locals. Undo that adjustment.
  1848   __ ret();                             // return to caller
  1849   __ delayed()->restore(I5_savedSP, G0, SP);
  1851   return entry;
  1852 } // end of JVMTI ForceEarlyReturn support
  1855 //------------------------------------------------------------------------------------------------------------------------
  1856 // Helper for vtos entry point generation
  1858 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1859   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1860   Label L;
  1861   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
  1862   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
  1863   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
  1864   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
  1865   iep = __ pc(); __ push_i();
  1866   bep = cep = sep = iep;                        // there aren't any
  1867   vep = __ pc(); __ bind(L);                    // fall through
  1868   generate_and_dispatch(t);
  1871 // --------------------------------------------------------------------------------
  1874 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1875  : TemplateInterpreterGenerator(code) {
  1876    generate_all(); // down here so it can be "virtual"
  1879 // --------------------------------------------------------------------------------
  1881 // Non-product code
  1882 #ifndef PRODUCT
  1883 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1884   address entry = __ pc();
  1886   __ push(state);
  1887   __ mov(O7, Lscratch); // protect return address within interpreter
  1889   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  1890   __ mov( Otos_l2, G3_scratch );
  1891   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  1892   __ mov(Lscratch, O7); // restore return address
  1893   __ pop(state);
  1894   __ retl();
  1895   __ delayed()->nop();
  1897   return entry;
  1901 // helpers for generate_and_dispatch
  1903 void TemplateInterpreterGenerator::count_bytecode() {
  1904   Address c(G3_scratch, (address)&BytecodeCounter::_counter_value);
  1905   __ load_contents(c, G4_scratch);
  1906   __ inc(G4_scratch);
  1907   __ st(G4_scratch, c);
  1911 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1912   Address bucket( G3_scratch, (address) &BytecodeHistogram::_counters[t->bytecode()] );
  1913   __ load_contents(bucket, G4_scratch);
  1914   __ inc(G4_scratch);
  1915   __ st(G4_scratch, bucket);
  1919 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1920   address index_addr      = (address)&BytecodePairHistogram::_index;
  1921   Address index(G3_scratch, index_addr);
  1923   address counters_addr   = (address)&BytecodePairHistogram::_counters;
  1924   Address counters(G3_scratch, counters_addr);
  1926   // get index, shift out old bytecode, bring in new bytecode, and store it
  1927   // _index = (_index >> log2_number_of_codes) |
  1928   //          (bytecode << log2_number_of_codes);
  1931   __ load_contents( index,      G4_scratch );
  1932   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  1933   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  1934   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  1935   __ store_contents( G4_scratch, index );
  1937   // bump bucket contents
  1938   // _counters[_index] ++;
  1940   __ load_address( counters );  // loads into G3_scratch
  1941   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  1942   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  1943   __ ld (G3_scratch, 0, G4_scratch);
  1944   __ inc (G4_scratch);
  1945   __ st (G4_scratch, 0, G3_scratch);
  1949 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1950   // Call a little run-time stub to avoid blow-up for each bytecode.
  1951   // The run-time runtime saves the right registers, depending on
  1952   // the tosca in-state for the given template.
  1953   address entry = Interpreter::trace_code(t->tos_in());
  1954   guarantee(entry != NULL, "entry must have been generated");
  1955   __ call(entry, relocInfo::none);
  1956   __ delayed()->nop();
  1960 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1961   Address counter(G3_scratch , (address)&BytecodeCounter::_counter_value);
  1962   __ load_contents    (counter, G3_scratch );
  1963   Address stop_at(G4_scratch, (address)&StopInterpreterAt);
  1964   __ load_ptr_contents(stop_at, G4_scratch);
  1965   __ cmp(G3_scratch, G4_scratch);
  1966   __ breakpoint_trap(Assembler::equal);
  1968 #endif // not PRODUCT
  1969 #endif // !CC_INTERP

mercurial