src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Wed, 08 Apr 2009 10:56:49 -0700

author
jrose
date
Wed, 08 Apr 2009 10:56:49 -0700
changeset 1145
e5b0439ef4ae
parent 631
d1605aabd0a1
child 1161
be93aad57795
child 1162
6b2273dd6fa9
permissions
-rw-r--r--

6655638: dynamic languages need method handles
Summary: initial implementation, with known omissions (x86/64, sparc, compiler optim., c-oops, C++ interp.)
Reviewed-by: kvn, twisti, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateInterpreter_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    35 // Generation of Interpreter
    36 //
    37 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    40 #define __ _masm->
    43 //----------------------------------------------------------------------------------------------------
    46 void InterpreterGenerator::save_native_result(void) {
    47   // result potentially in O0/O1: save it across calls
    48   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    50   // result potentially in F0/F1: save it across calls
    51   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    53   // save and restore any potential method result value around the unlocking operation
    54   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    55 #ifdef _LP64
    56   __ stx(O0, l_tmp);
    57 #else
    58   __ std(O0, l_tmp);
    59 #endif
    60 }
    62 void InterpreterGenerator::restore_native_result(void) {
    63   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    64   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    66   // Restore any method result value
    67   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    68 #ifdef _LP64
    69   __ ldx(l_tmp, O0);
    70 #else
    71   __ ldd(l_tmp, O0);
    72 #endif
    73 }
    75 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    76   assert(!pass_oop || message == NULL, "either oop or message but not both");
    77   address entry = __ pc();
    78   // expression stack must be empty before entering the VM if an exception happened
    79   __ empty_expression_stack();
    80   // load exception object
    81   __ set((intptr_t)name, G3_scratch);
    82   if (pass_oop) {
    83     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
    84   } else {
    85     __ set((intptr_t)message, G4_scratch);
    86     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
    87   }
    88   // throw exception
    89   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
    90   Address thrower(G3_scratch, Interpreter::throw_exception_entry());
    91   __ jump_to (thrower);
    92   __ delayed()->nop();
    93   return entry;
    94 }
    96 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
    97   address entry = __ pc();
    98   // expression stack must be empty before entering the VM if an exception
    99   // happened
   100   __ empty_expression_stack();
   101   // load exception object
   102   __ call_VM(Oexception,
   103              CAST_FROM_FN_PTR(address,
   104                               InterpreterRuntime::throw_ClassCastException),
   105              Otos_i);
   106   __ should_not_reach_here();
   107   return entry;
   108 }
   111 // Arguments are: required type in G5_method_type, and
   112 // failing object (or NULL) in G3_method_handle.
   113 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
   114   address entry = __ pc();
   115   // expression stack must be empty before entering the VM if an exception
   116   // happened
   117   __ empty_expression_stack();
   118   // load exception object
   119   __ call_VM(Oexception,
   120              CAST_FROM_FN_PTR(address,
   121                               InterpreterRuntime::throw_WrongMethodTypeException),
   122              G5_method_type,    // required
   123              G3_method_handle); // actual
   124   __ should_not_reach_here();
   125   return entry;
   126 }
   129 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   130   address entry = __ pc();
   131   // expression stack must be empty before entering the VM if an exception happened
   132   __ empty_expression_stack();
   133   // convention: expect aberrant index in register G3_scratch, then shuffle the
   134   // index to G4_scratch for the VM call
   135   __ mov(G3_scratch, G4_scratch);
   136   __ set((intptr_t)name, G3_scratch);
   137   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   138   __ should_not_reach_here();
   139   return entry;
   140 }
   143 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   144   address entry = __ pc();
   145   // expression stack must be empty before entering the VM if an exception happened
   146   __ empty_expression_stack();
   147   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   148   __ should_not_reach_here();
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   154   address compiled_entry = __ pc();
   155   Label cont;
   157   address entry = __ pc();
   158 #if !defined(_LP64) && defined(COMPILER2)
   159   // All return values are where we want them, except for Longs.  C2 returns
   160   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   161   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   162   // build even if we are returning from interpreted we just do a little
   163   // stupid shuffing.
   164   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   165   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   166   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   168   if( state == ltos ) {
   169     __ srl (G1, 0,O1);
   170     __ srlx(G1,32,O0);
   171   }
   172 #endif /* !_LP64 && COMPILER2 */
   175   __ bind(cont);
   177   // The callee returns with the stack possibly adjusted by adapter transition
   178   // We remove that possible adjustment here.
   179   // All interpreter local registers are untouched. Any result is passed back
   180   // in the O0/O1 or float registers. Before continuing, the arguments must be
   181   // popped from the java expression stack; i.e., Lesp must be adjusted.
   183   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   186   const Register cache = G3_scratch;
   187   const Register size  = G1_scratch;
   188   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
   189   __ ld_ptr(Address(cache, 0, in_bytes(constantPoolCacheOopDesc::base_offset()) +
   190                     in_bytes(ConstantPoolCacheEntry::flags_offset())), size);
   191   __ and3(size, 0xFF, size);                   // argument size in words
   192   __ sll(size, Interpreter::logStackElementSize(), size); // each argument size in bytes
   193   __ add(Lesp, size, Lesp);                    // pop arguments
   194   __ dispatch_next(state, step);
   196   return entry;
   197 }
   200 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   201   address entry = __ pc();
   202   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   203   { Label L;
   204     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   206     __ ld_ptr(exception_addr, Gtemp);
   207     __ tst(Gtemp);
   208     __ brx(Assembler::equal, false, Assembler::pt, L);
   209     __ delayed()->nop();
   210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   211     __ should_not_reach_here();
   212     __ bind(L);
   213   }
   214   __ dispatch_next(state, step);
   215   return entry;
   216 }
   218 // A result handler converts/unboxes a native call result into
   219 // a java interpreter/compiler result. The current frame is an
   220 // interpreter frame. The activation frame unwind code must be
   221 // consistent with that of TemplateTable::_return(...). In the
   222 // case of native methods, the caller's SP was not modified.
   223 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   224   address entry = __ pc();
   225   Register Itos_i  = Otos_i ->after_save();
   226   Register Itos_l  = Otos_l ->after_save();
   227   Register Itos_l1 = Otos_l1->after_save();
   228   Register Itos_l2 = Otos_l2->after_save();
   229   switch (type) {
   230     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   231     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   232     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   233     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   234     case T_LONG   :
   235 #ifndef _LP64
   236                     __ mov(O1, Itos_l2);  // move other half of long
   237 #endif              // ifdef or no ifdef, fall through to the T_INT case
   238     case T_INT    : __ mov(O0, Itos_i);                         break;
   239     case T_VOID   : /* nothing to do */                         break;
   240     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   241     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   242     case T_OBJECT :
   243       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   244       __ verify_oop(Itos_i);
   245       break;
   246     default       : ShouldNotReachHere();
   247   }
   248   __ ret();                           // return from interpreter activation
   249   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   250   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   251   return entry;
   252 }
   254 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   255   address entry = __ pc();
   256   __ push(state);
   257   __ call_VM(noreg, runtime_entry);
   258   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   259   return entry;
   260 }
   263 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   264   address entry = __ pc();
   265   __ dispatch_next(state);
   266   return entry;
   267 }
   269 //
   270 // Helpers for commoning out cases in the various type of method entries.
   271 //
   273 // increment invocation count & check for overflow
   274 //
   275 // Note: checking for negative value instead of overflow
   276 //       so we have a 'sticky' overflow test
   277 //
   278 // Lmethod: method
   279 // ??: invocation counter
   280 //
   281 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   282   // Update standard invocation counters
   283   __ increment_invocation_counter(O0, G3_scratch);
   284   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   285     Address interpreter_invocation_counter(Lmethod, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   286     __ ld(interpreter_invocation_counter, G3_scratch);
   287     __ inc(G3_scratch);
   288     __ st(G3_scratch, interpreter_invocation_counter);
   289   }
   291   if (ProfileInterpreter && profile_method != NULL) {
   292     // Test to see if we should create a method data oop
   293     Address profile_limit(G3_scratch, (address)&InvocationCounter::InterpreterProfileLimit);
   294     __ sethi(profile_limit);
   295     __ ld(profile_limit, G3_scratch);
   296     __ cmp(O0, G3_scratch);
   297     __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
   298     __ delayed()->nop();
   300     // if no method data exists, go to profile_method
   301     __ test_method_data_pointer(*profile_method);
   302   }
   304   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
   305   __ sethi(invocation_limit);
   306   __ ld(invocation_limit, G3_scratch);
   307   __ cmp(O0, G3_scratch);
   308   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   309   __ delayed()->nop();
   311 }
   313 // Allocate monitor and lock method (asm interpreter)
   314 // ebx - methodOop
   315 //
   316 void InterpreterGenerator::lock_method(void) {
   317   const Address access_flags      (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
   318   __ ld(access_flags, O0);
   320 #ifdef ASSERT
   321  { Label ok;
   322    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   323    __ br( Assembler::notZero, false, Assembler::pt, ok);
   324    __ delayed()->nop();
   325    __ stop("method doesn't need synchronization");
   326    __ bind(ok);
   327   }
   328 #endif // ASSERT
   330   // get synchronization object to O0
   331   { Label done;
   332     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   333     __ btst(JVM_ACC_STATIC, O0);
   334     __ br( Assembler::zero, true, Assembler::pt, done);
   335     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   337     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
   338     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
   340     // lock the mirror, not the klassOop
   341     __ ld_ptr( O0, mirror_offset, O0);
   343 #ifdef ASSERT
   344     __ tst(O0);
   345     __ breakpoint_trap(Assembler::zero);
   346 #endif // ASSERT
   348     __ bind(done);
   349   }
   351   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   352   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   353   // __ untested("lock_object from method entry");
   354   __ lock_object(Lmonitors, O0);
   355 }
   358 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   359                                                          Register Rscratch,
   360                                                          Register Rscratch2) {
   361   const int page_size = os::vm_page_size();
   362   Address saved_exception_pc(G2_thread, 0,
   363                              in_bytes(JavaThread::saved_exception_pc_offset()));
   364   Label after_frame_check;
   366   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   368   __ set( page_size,   Rscratch );
   369   __ cmp( Rframe_size, Rscratch );
   371   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
   372   __ delayed()->nop();
   374   // get the stack base, and in debug, verify it is non-zero
   375   __ ld_ptr( G2_thread, in_bytes(Thread::stack_base_offset()), Rscratch );
   376 #ifdef ASSERT
   377   Label base_not_zero;
   378   __ cmp( Rscratch, G0 );
   379   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
   380   __ delayed()->nop();
   381   __ stop("stack base is zero in generate_stack_overflow_check");
   382   __ bind(base_not_zero);
   383 #endif
   385   // get the stack size, and in debug, verify it is non-zero
   386   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   387   __ ld_ptr( G2_thread, in_bytes(Thread::stack_size_offset()), Rscratch2 );
   388 #ifdef ASSERT
   389   Label size_not_zero;
   390   __ cmp( Rscratch2, G0 );
   391   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
   392   __ delayed()->nop();
   393   __ stop("stack size is zero in generate_stack_overflow_check");
   394   __ bind(size_not_zero);
   395 #endif
   397   // compute the beginning of the protected zone minus the requested frame size
   398   __ sub( Rscratch, Rscratch2,   Rscratch );
   399   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   400   __ add( Rscratch, Rscratch2,   Rscratch );
   402   // Add in the size of the frame (which is the same as subtracting it from the
   403   // SP, which would take another register
   404   __ add( Rscratch, Rframe_size, Rscratch );
   406   // the frame is greater than one page in size, so check against
   407   // the bottom of the stack
   408   __ cmp( SP, Rscratch );
   409   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
   410   __ delayed()->nop();
   412   // Save the return address as the exception pc
   413   __ st_ptr(O7, saved_exception_pc);
   415   // the stack will overflow, throw an exception
   416   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   418   // if you get to here, then there is enough stack space
   419   __ bind( after_frame_check );
   420 }
   423 //
   424 // Generate a fixed interpreter frame. This is identical setup for interpreted
   425 // methods and for native methods hence the shared code.
   427 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   428   //
   429   //
   430   // The entry code sets up a new interpreter frame in 4 steps:
   431   //
   432   // 1) Increase caller's SP by for the extra local space needed:
   433   //    (check for overflow)
   434   //    Efficient implementation of xload/xstore bytecodes requires
   435   //    that arguments and non-argument locals are in a contigously
   436   //    addressable memory block => non-argument locals must be
   437   //    allocated in the caller's frame.
   438   //
   439   // 2) Create a new stack frame and register window:
   440   //    The new stack frame must provide space for the standard
   441   //    register save area, the maximum java expression stack size,
   442   //    the monitor slots (0 slots initially), and some frame local
   443   //    scratch locations.
   444   //
   445   // 3) The following interpreter activation registers must be setup:
   446   //    Lesp       : expression stack pointer
   447   //    Lbcp       : bytecode pointer
   448   //    Lmethod    : method
   449   //    Llocals    : locals pointer
   450   //    Lmonitors  : monitor pointer
   451   //    LcpoolCache: constant pool cache
   452   //
   453   // 4) Initialize the non-argument locals if necessary:
   454   //    Non-argument locals may need to be initialized to NULL
   455   //    for GC to work. If the oop-map information is accurate
   456   //    (in the absence of the JSR problem), no initialization
   457   //    is necessary.
   458   //
   459   // (gri - 2/25/2000)
   462   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
   463   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
   464   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
   465   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   467   const int extra_space =
   468     rounded_vm_local_words +                   // frame local scratch space
   469     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
   470     frame::memory_parameter_word_sp_offset +   // register save area
   471     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   473   const Register Glocals_size = G3;
   474   const Register Otmp1 = O3;
   475   const Register Otmp2 = O4;
   476   // Lscratch can't be used as a temporary because the call_stub uses
   477   // it to assert that the stack frame was setup correctly.
   479   __ lduh( size_of_parameters, Glocals_size);
   481   // Gargs points to first local + BytesPerWord
   482   // Set the saved SP after the register window save
   483   //
   484   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   485   __ sll(Glocals_size, Interpreter::logStackElementSize(), Otmp1);
   486   __ add(Gargs, Otmp1, Gargs);
   488   if (native_call) {
   489     __ calc_mem_param_words( Glocals_size, Gframe_size );
   490     __ add( Gframe_size,  extra_space, Gframe_size);
   491     __ round_to( Gframe_size, WordsPerLong );
   492     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   493   } else {
   495     //
   496     // Compute number of locals in method apart from incoming parameters
   497     //
   498     __ lduh( size_of_locals, Otmp1 );
   499     __ sub( Otmp1, Glocals_size, Glocals_size );
   500     __ round_to( Glocals_size, WordsPerLong );
   501     __ sll( Glocals_size, Interpreter::logStackElementSize(), Glocals_size );
   503     // see if the frame is greater than one page in size. If so,
   504     // then we need to verify there is enough stack space remaining
   505     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   506     __ lduh( max_stack, Gframe_size );
   507     __ add( Gframe_size, extra_space, Gframe_size );
   508     __ round_to( Gframe_size, WordsPerLong );
   509     __ sll( Gframe_size, Interpreter::logStackElementSize(), Gframe_size);
   511     // Add in java locals size for stack overflow check only
   512     __ add( Gframe_size, Glocals_size, Gframe_size );
   514     const Register Otmp2 = O4;
   515     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   516     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   518     __ sub( Gframe_size, Glocals_size, Gframe_size);
   520     //
   521     // bump SP to accomodate the extra locals
   522     //
   523     __ sub( SP, Glocals_size, SP );
   524   }
   526   //
   527   // now set up a stack frame with the size computed above
   528   //
   529   __ neg( Gframe_size );
   530   __ save( SP, Gframe_size, SP );
   532   //
   533   // now set up all the local cache registers
   534   //
   535   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   536   // that all present references to Lbyte_code initialize the register
   537   // immediately before use
   538   if (native_call) {
   539     __ mov(G0, Lbcp);
   540   } else {
   541     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), Lbcp );
   542     __ add(Address(Lbcp, 0, in_bytes(constMethodOopDesc::codes_offset())), Lbcp );
   543   }
   544   __ mov( G5_method, Lmethod);                 // set Lmethod
   545   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   546   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   547 #ifdef _LP64
   548   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   549 #endif
   550   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   552   // setup interpreter activation registers
   553   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   555   if (ProfileInterpreter) {
   556 #ifdef FAST_DISPATCH
   557     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   558     // they both use I2.
   559     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   560 #endif // FAST_DISPATCH
   561     __ set_method_data_pointer();
   562   }
   564 }
   566 // Empty method, generate a very fast return.
   568 address InterpreterGenerator::generate_empty_entry(void) {
   570   // A method that does nother but return...
   572   address entry = __ pc();
   573   Label slow_path;
   575   __ verify_oop(G5_method);
   577   // do nothing for empty methods (do not even increment invocation counter)
   578   if ( UseFastEmptyMethods) {
   579     // If we need a safepoint check, generate full interpreter entry.
   580     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   581     __ load_contents(sync_state, G3_scratch);
   582     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   583     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   584     __ delayed()->nop();
   586     // Code: _return
   587     __ retl();
   588     __ delayed()->mov(O5_savedSP, SP);
   590     __ bind(slow_path);
   591     (void) generate_normal_entry(false);
   593     return entry;
   594   }
   595   return NULL;
   596 }
   598 // Call an accessor method (assuming it is resolved, otherwise drop into
   599 // vanilla (slow path) entry
   601 // Generates code to elide accessor methods
   602 // Uses G3_scratch and G1_scratch as scratch
   603 address InterpreterGenerator::generate_accessor_entry(void) {
   605   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   606   // parameter size = 1
   607   // Note: We can only use this code if the getfield has been resolved
   608   //       and if we don't have a null-pointer exception => check for
   609   //       these conditions first and use slow path if necessary.
   610   address entry = __ pc();
   611   Label slow_path;
   614   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   615   // delay slot and damages G1
   616   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   617     // Check if we need to reach a safepoint and generate full interpreter
   618     // frame if so.
   619     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   620     __ load_contents(sync_state, G3_scratch);
   621     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   622     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   623     __ delayed()->nop();
   625     // Check if local 0 != NULL
   626     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   627     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   628     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   629     __ delayed()->nop();
   632     // read first instruction word and extract bytecode @ 1 and index @ 2
   633     // get first 4 bytes of the bytecodes (big endian!)
   634     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
   635     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
   637     // move index @ 2 far left then to the right most two bytes.
   638     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   639     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   640                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   642     // get constant pool cache
   643     __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
   644     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   646     // get specific constant pool cache entry
   647     __ add(G3_scratch, G1_scratch, G3_scratch);
   649     // Check the constant Pool cache entry to see if it has been resolved.
   650     // If not, need the slow path.
   651     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   652     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
   653     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   654     __ and3(G1_scratch, 0xFF, G1_scratch);
   655     __ cmp(G1_scratch, Bytecodes::_getfield);
   656     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   657     __ delayed()->nop();
   659     // Get the type and return field offset from the constant pool cache
   660     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
   661     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
   663     Label xreturn_path;
   664     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   665     // because they are different sizes.
   666     // Get the type from the constant pool cache
   667     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   668     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   669     ConstantPoolCacheEntry::verify_tosBits();
   670     __ cmp(G1_scratch, atos );
   671     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   672     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   673     __ cmp(G1_scratch, itos);
   674     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   675     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   676     __ cmp(G1_scratch, stos);
   677     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   678     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   679     __ cmp(G1_scratch, ctos);
   680     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   681     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   682 #ifdef ASSERT
   683     __ cmp(G1_scratch, btos);
   684     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   685     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   686     __ should_not_reach_here();
   687 #endif
   688     __ ldsb(Otos_i, G3_scratch, Otos_i);
   689     __ bind(xreturn_path);
   691     // _ireturn/_areturn
   692     __ retl();                      // return from leaf routine
   693     __ delayed()->mov(O5_savedSP, SP);
   695     // Generate regular method entry
   696     __ bind(slow_path);
   697     (void) generate_normal_entry(false);
   698     return entry;
   699   }
   700   return NULL;
   701 }
   703 //
   704 // Interpreter stub for calling a native method. (asm interpreter)
   705 // This sets up a somewhat different looking stack for calling the native method
   706 // than the typical interpreter frame setup.
   707 //
   709 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   710   address entry = __ pc();
   712   // the following temporary registers are used during frame creation
   713   const Register Gtmp1 = G3_scratch ;
   714   const Register Gtmp2 = G1_scratch;
   715   bool inc_counter  = UseCompiler || CountCompiledCalls;
   717   // make sure registers are different!
   718   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   720   const Address Laccess_flags     (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
   722   __ verify_oop(G5_method);
   724   const Register Glocals_size = G3;
   725   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   727   // make sure method is native & not abstract
   728   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   729 #ifdef ASSERT
   730   __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
   731   {
   732     Label L;
   733     __ btst(JVM_ACC_NATIVE, Gtmp1);
   734     __ br(Assembler::notZero, false, Assembler::pt, L);
   735     __ delayed()->nop();
   736     __ stop("tried to execute non-native method as native");
   737     __ bind(L);
   738   }
   739   { Label L;
   740     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   741     __ br(Assembler::zero, false, Assembler::pt, L);
   742     __ delayed()->nop();
   743     __ stop("tried to execute abstract method as non-abstract");
   744     __ bind(L);
   745   }
   746 #endif // ASSERT
   748  // generate the code to allocate the interpreter stack frame
   749   generate_fixed_frame(true);
   751   //
   752   // No locals to initialize for native method
   753   //
   755   // this slot will be set later, we initialize it to null here just in
   756   // case we get a GC before the actual value is stored later
   757   __ st_ptr(G0, Address(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS));
   759   const Address do_not_unlock_if_synchronized(G2_thread, 0,
   760       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   761   // Since at this point in the method invocation the exception handler
   762   // would try to exit the monitor of synchronized methods which hasn't
   763   // been entered yet, we set the thread local variable
   764   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   765   // runtime, exception handling i.e. unlock_if_synchronized_method will
   766   // check this thread local flag.
   767   // This flag has two effects, one is to force an unwind in the topmost
   768   // interpreter frame and not perform an unlock while doing so.
   770   __ movbool(true, G3_scratch);
   771   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   773   // increment invocation counter and check for overflow
   774   //
   775   // Note: checking for negative value instead of overflow
   776   //       so we have a 'sticky' overflow test (may be of
   777   //       importance as soon as we have true MT/MP)
   778   Label invocation_counter_overflow;
   779   Label Lcontinue;
   780   if (inc_counter) {
   781     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   783   }
   784   __ bind(Lcontinue);
   786   bang_stack_shadow_pages(true);
   788   // reset the _do_not_unlock_if_synchronized flag
   789   __ stbool(G0, do_not_unlock_if_synchronized);
   791   // check for synchronized methods
   792   // Must happen AFTER invocation_counter check and stack overflow check,
   793   // so method is not locked if overflows.
   795   if (synchronized) {
   796     lock_method();
   797   } else {
   798 #ifdef ASSERT
   799     { Label ok;
   800       __ ld(Laccess_flags, O0);
   801       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   802       __ br( Assembler::zero, false, Assembler::pt, ok);
   803       __ delayed()->nop();
   804       __ stop("method needs synchronization");
   805       __ bind(ok);
   806     }
   807 #endif // ASSERT
   808   }
   811   // start execution
   812   __ verify_thread();
   814   // JVMTI support
   815   __ notify_method_entry();
   817   // native call
   819   // (note that O0 is never an oop--at most it is a handle)
   820   // It is important not to smash any handles created by this call,
   821   // until any oop handle in O0 is dereferenced.
   823   // (note that the space for outgoing params is preallocated)
   825   // get signature handler
   826   { Label L;
   827     __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   828     __ tst(G3_scratch);
   829     __ brx(Assembler::notZero, false, Assembler::pt, L);
   830     __ delayed()->nop();
   831     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   832     __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   833     __ bind(L);
   834   }
   836   // Push a new frame so that the args will really be stored in
   837   // Copy a few locals across so the new frame has the variables
   838   // we need but these values will be dead at the jni call and
   839   // therefore not gc volatile like the values in the current
   840   // frame (Lmethod in particular)
   842   // Flush the method pointer to the register save area
   843   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   844   __ mov(Llocals, O1);
   845   // calculate where the mirror handle body is allocated in the interpreter frame:
   847   Address mirror(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
   848   __ add(mirror, O2);
   850   // Calculate current frame size
   851   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   852   __ save(SP, O3, SP);        // Allocate an identical sized frame
   854   // Note I7 has leftover trash. Slow signature handler will fill it in
   855   // should we get there. Normal jni call will set reasonable last_Java_pc
   856   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   857   // in it).
   859   // Load interpreter frame's Lmethod into same register here
   861   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   863   __ mov(I1, Llocals);
   864   __ mov(I2, Lscratch2);     // save the address of the mirror
   867   // ONLY Lmethod and Llocals are valid here!
   869   // call signature handler, It will move the arg properly since Llocals in current frame
   870   // matches that in outer frame
   872   __ callr(G3_scratch, 0);
   873   __ delayed()->nop();
   875   // Result handler is in Lscratch
   877   // Reload interpreter frame's Lmethod since slow signature handler may block
   878   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   880   { Label not_static;
   882     __ ld(Laccess_flags, O0);
   883     __ btst(JVM_ACC_STATIC, O0);
   884     __ br( Assembler::zero, false, Assembler::pt, not_static);
   885     __ delayed()->
   886       // get native function entry point(O0 is a good temp until the very end)
   887        ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
   888     // for static methods insert the mirror argument
   889     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   891     __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
   892     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
   893     __ ld_ptr(O1, mirror_offset, O1);
   894 #ifdef ASSERT
   895     if (!PrintSignatureHandlers)  // do not dirty the output with this
   896     { Label L;
   897       __ tst(O1);
   898       __ brx(Assembler::notZero, false, Assembler::pt, L);
   899       __ delayed()->nop();
   900       __ stop("mirror is missing");
   901       __ bind(L);
   902     }
   903 #endif // ASSERT
   904     __ st_ptr(O1, Lscratch2, 0);
   905     __ mov(Lscratch2, O1);
   906     __ bind(not_static);
   907   }
   909   // At this point, arguments have been copied off of stack into
   910   // their JNI positions, which are O1..O5 and SP[68..].
   911   // Oops are boxed in-place on the stack, with handles copied to arguments.
   912   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   914 #ifdef ASSERT
   915   { Label L;
   916     __ tst(O0);
   917     __ brx(Assembler::notZero, false, Assembler::pt, L);
   918     __ delayed()->nop();
   919     __ stop("native entry point is missing");
   920     __ bind(L);
   921   }
   922 #endif // ASSERT
   924   //
   925   // setup the frame anchor
   926   //
   927   // The scavenge function only needs to know that the PC of this frame is
   928   // in the interpreter method entry code, it doesn't need to know the exact
   929   // PC and hence we can use O7 which points to the return address from the
   930   // previous call in the code stream (signature handler function)
   931   //
   932   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   933   // we have pushed the extra frame in order to protect the volatile register(s)
   934   // in that frame when we return from the jni call
   935   //
   937   __ set_last_Java_frame(FP, O7);
   938   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   939                    // not meaningless information that'll confuse me.
   941   // flush the windows now. We don't care about the current (protection) frame
   942   // only the outer frames
   944   __ flush_windows();
   946   // mark windows as flushed
   947   Address flags(G2_thread,
   948                 0,
   949                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   950   __ set(JavaFrameAnchor::flushed, G3_scratch);
   951   __ st(G3_scratch, flags);
   953   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   955   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
   956 #ifdef ASSERT
   957   { Label L;
   958     __ ld(thread_state, G3_scratch);
   959     __ cmp(G3_scratch, _thread_in_Java);
   960     __ br(Assembler::equal, false, Assembler::pt, L);
   961     __ delayed()->nop();
   962     __ stop("Wrong thread state in native stub");
   963     __ bind(L);
   964   }
   965 #endif // ASSERT
   966   __ set(_thread_in_native, G3_scratch);
   967   __ st(G3_scratch, thread_state);
   969   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   970   __ save_thread(L7_thread_cache); // save Gthread
   971   __ callr(O0, 0);
   972   __ delayed()->
   973      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
   975   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
   977   __ restore_thread(L7_thread_cache); // restore G2_thread
   978   __ reinit_heapbase();
   980   // must we block?
   982   // Block, if necessary, before resuming in _thread_in_Java state.
   983   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   984   { Label no_block;
   985     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   987     // Switch thread to "native transition" state before reading the synchronization state.
   988     // This additional state is necessary because reading and testing the synchronization
   989     // state is not atomic w.r.t. GC, as this scenario demonstrates:
   990     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
   991     //     VM thread changes sync state to synchronizing and suspends threads for GC.
   992     //     Thread A is resumed to finish this native method, but doesn't block here since it
   993     //     didn't see any synchronization is progress, and escapes.
   994     __ set(_thread_in_native_trans, G3_scratch);
   995     __ st(G3_scratch, thread_state);
   996     if(os::is_MP()) {
   997       if (UseMembar) {
   998         // Force this write out before the read below
   999         __ membar(Assembler::StoreLoad);
  1000       } else {
  1001         // Write serialization page so VM thread can do a pseudo remote membar.
  1002         // We use the current thread pointer to calculate a thread specific
  1003         // offset to write to within the page. This minimizes bus traffic
  1004         // due to cache line collision.
  1005         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1008     __ load_contents(sync_state, G3_scratch);
  1009     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1011     Label L;
  1012     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
  1013     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1014     __ delayed()->
  1015       ld(suspend_state, G3_scratch);
  1016     __ cmp(G3_scratch, 0);
  1017     __ br(Assembler::equal, false, Assembler::pt, no_block);
  1018     __ delayed()->nop();
  1019     __ bind(L);
  1021     // Block.  Save any potential method result value before the operation and
  1022     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1023     save_native_result();
  1024     __ call_VM_leaf(L7_thread_cache,
  1025                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1026                     G2_thread);
  1028     // Restore any method result value
  1029     restore_native_result();
  1030     __ bind(no_block);
  1033   // Clear the frame anchor now
  1035   __ reset_last_Java_frame();
  1037   // Move the result handler address
  1038   __ mov(Lscratch, G3_scratch);
  1039   // return possible result to the outer frame
  1040 #ifndef __LP64
  1041   __ mov(O0, I0);
  1042   __ restore(O1, G0, O1);
  1043 #else
  1044   __ restore(O0, G0, O0);
  1045 #endif /* __LP64 */
  1047   // Move result handler to expected register
  1048   __ mov(G3_scratch, Lscratch);
  1050   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1051   // switch to thread_in_Java.
  1053   __ set(_thread_in_Java, G3_scratch);
  1054   __ st(G3_scratch, thread_state);
  1056   // reset handle block
  1057   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
  1058   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1060   // If we have an oop result store it where it will be safe for any further gc
  1061   // until we return now that we've released the handle it might be protected by
  1064     Label no_oop, store_result;
  1066     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1067     __ cmp(G3_scratch, Lscratch);
  1068     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
  1069     __ delayed()->nop();
  1070     __ addcc(G0, O0, O0);
  1071     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1072     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1073     __ mov(G0, O0);
  1075     __ bind(store_result);
  1076     // Store it where gc will look for it and result handler expects it.
  1077     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1079     __ bind(no_oop);
  1084   // handle exceptions (exception handling will handle unlocking!)
  1085   { Label L;
  1086     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1088     __ ld_ptr(exception_addr, Gtemp);
  1089     __ tst(Gtemp);
  1090     __ brx(Assembler::equal, false, Assembler::pt, L);
  1091     __ delayed()->nop();
  1092     // Note: This could be handled more efficiently since we know that the native
  1093     //       method doesn't have an exception handler. We could directly return
  1094     //       to the exception handler for the caller.
  1095     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1096     __ should_not_reach_here();
  1097     __ bind(L);
  1100   // JVMTI support (preserves thread register)
  1101   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1103   if (synchronized) {
  1104     // save and restore any potential method result value around the unlocking operation
  1105     save_native_result();
  1107     __ add( __ top_most_monitor(), O1);
  1108     __ unlock_object(O1);
  1110     restore_native_result();
  1113 #if defined(COMPILER2) && !defined(_LP64)
  1115   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1116   // or compiled so just be safe.
  1118   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1119   __ srl (O1, 0, O1);           // Zero extend O1
  1120   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1122 #endif /* COMPILER2 && !_LP64 */
  1124   // dispose of return address and remove activation
  1125 #ifdef ASSERT
  1127     Label ok;
  1128     __ cmp(I5_savedSP, FP);
  1129     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1130     __ delayed()->nop();
  1131     __ stop("bad I5_savedSP value");
  1132     __ should_not_reach_here();
  1133     __ bind(ok);
  1135 #endif
  1136   if (TraceJumps) {
  1137     // Move target to register that is recordable
  1138     __ mov(Lscratch, G3_scratch);
  1139     __ JMP(G3_scratch, 0);
  1140   } else {
  1141     __ jmp(Lscratch, 0);
  1143   __ delayed()->nop();
  1146   if (inc_counter) {
  1147     // handle invocation counter overflow
  1148     __ bind(invocation_counter_overflow);
  1149     generate_counter_overflow(Lcontinue);
  1154   return entry;
  1158 // Generic method entry to (asm) interpreter
  1159 //------------------------------------------------------------------------------------------------------------------------
  1160 //
  1161 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1162   address entry = __ pc();
  1164   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1166   // the following temporary registers are used during frame creation
  1167   const Register Gtmp1 = G3_scratch ;
  1168   const Register Gtmp2 = G1_scratch;
  1170   // make sure registers are different!
  1171   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1173   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1174   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1175   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1176   // and use in the asserts.
  1177   const Address access_flags      (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1179   __ verify_oop(G5_method);
  1181   const Register Glocals_size = G3;
  1182   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1184   // make sure method is not native & not abstract
  1185   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1186 #ifdef ASSERT
  1187   __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
  1189     Label L;
  1190     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1191     __ br(Assembler::zero, false, Assembler::pt, L);
  1192     __ delayed()->nop();
  1193     __ stop("tried to execute native method as non-native");
  1194     __ bind(L);
  1196   { Label L;
  1197     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1198     __ br(Assembler::zero, false, Assembler::pt, L);
  1199     __ delayed()->nop();
  1200     __ stop("tried to execute abstract method as non-abstract");
  1201     __ bind(L);
  1203 #endif // ASSERT
  1205   // generate the code to allocate the interpreter stack frame
  1207   generate_fixed_frame(false);
  1209 #ifdef FAST_DISPATCH
  1210   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1211                                           // set bytecode dispatch table base
  1212 #endif
  1214   //
  1215   // Code to initialize the extra (i.e. non-parm) locals
  1216   //
  1217   Register init_value = noreg;    // will be G0 if we must clear locals
  1218   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1219   // It could only be false for the specialized entries like accessor or empty which have
  1220   // no extra locals so the testing was a waste of time and the extra locals were always
  1221   // initialized. We removed this extra complication to already over complicated code.
  1223   init_value = G0;
  1224   Label clear_loop;
  1226   // NOTE: If you change the frame layout, this code will need to
  1227   // be updated!
  1228   __ lduh( size_of_locals, O2 );
  1229   __ lduh( size_of_parameters, O1 );
  1230   __ sll( O2, Interpreter::logStackElementSize(), O2);
  1231   __ sll( O1, Interpreter::logStackElementSize(), O1 );
  1232   __ sub( Llocals, O2, O2 );
  1233   __ sub( Llocals, O1, O1 );
  1235   __ bind( clear_loop );
  1236   __ inc( O2, wordSize );
  1238   __ cmp( O2, O1 );
  1239   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1240   __ delayed()->st_ptr( init_value, O2, 0 );
  1242   const Address do_not_unlock_if_synchronized(G2_thread, 0,
  1243         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1244   // Since at this point in the method invocation the exception handler
  1245   // would try to exit the monitor of synchronized methods which hasn't
  1246   // been entered yet, we set the thread local variable
  1247   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1248   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1249   // check this thread local flag.
  1250   __ movbool(true, G3_scratch);
  1251   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1253   // increment invocation counter and check for overflow
  1254   //
  1255   // Note: checking for negative value instead of overflow
  1256   //       so we have a 'sticky' overflow test (may be of
  1257   //       importance as soon as we have true MT/MP)
  1258   Label invocation_counter_overflow;
  1259   Label profile_method;
  1260   Label profile_method_continue;
  1261   Label Lcontinue;
  1262   if (inc_counter) {
  1263     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1264     if (ProfileInterpreter) {
  1265       __ bind(profile_method_continue);
  1268   __ bind(Lcontinue);
  1270   bang_stack_shadow_pages(false);
  1272   // reset the _do_not_unlock_if_synchronized flag
  1273   __ stbool(G0, do_not_unlock_if_synchronized);
  1275   // check for synchronized methods
  1276   // Must happen AFTER invocation_counter check and stack overflow check,
  1277   // so method is not locked if overflows.
  1279   if (synchronized) {
  1280     lock_method();
  1281   } else {
  1282 #ifdef ASSERT
  1283     { Label ok;
  1284       __ ld(access_flags, O0);
  1285       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1286       __ br( Assembler::zero, false, Assembler::pt, ok);
  1287       __ delayed()->nop();
  1288       __ stop("method needs synchronization");
  1289       __ bind(ok);
  1291 #endif // ASSERT
  1294   // start execution
  1296   __ verify_thread();
  1298   // jvmti support
  1299   __ notify_method_entry();
  1301   // start executing instructions
  1302   __ dispatch_next(vtos);
  1305   if (inc_counter) {
  1306     if (ProfileInterpreter) {
  1307       // We have decided to profile this method in the interpreter
  1308       __ bind(profile_method);
  1310       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), Lbcp, true);
  1312 #ifdef ASSERT
  1313       __ tst(O0);
  1314       __ breakpoint_trap(Assembler::notEqual);
  1315 #endif
  1317       __ set_method_data_pointer();
  1319       __ ba(false, profile_method_continue);
  1320       __ delayed()->nop();
  1323     // handle invocation counter overflow
  1324     __ bind(invocation_counter_overflow);
  1325     generate_counter_overflow(Lcontinue);
  1329   return entry;
  1333 //----------------------------------------------------------------------------------------------------
  1334 // Entry points & stack frame layout
  1335 //
  1336 // Here we generate the various kind of entries into the interpreter.
  1337 // The two main entry type are generic bytecode methods and native call method.
  1338 // These both come in synchronized and non-synchronized versions but the
  1339 // frame layout they create is very similar. The other method entry
  1340 // types are really just special purpose entries that are really entry
  1341 // and interpretation all in one. These are for trivial methods like
  1342 // accessor, empty, or special math methods.
  1343 //
  1344 // When control flow reaches any of the entry types for the interpreter
  1345 // the following holds ->
  1346 //
  1347 // C2 Calling Conventions:
  1348 //
  1349 // The entry code below assumes that the following registers are set
  1350 // when coming in:
  1351 //    G5_method: holds the methodOop of the method to call
  1352 //    Lesp:    points to the TOS of the callers expression stack
  1353 //             after having pushed all the parameters
  1354 //
  1355 // The entry code does the following to setup an interpreter frame
  1356 //   pop parameters from the callers stack by adjusting Lesp
  1357 //   set O0 to Lesp
  1358 //   compute X = (max_locals - num_parameters)
  1359 //   bump SP up by X to accomadate the extra locals
  1360 //   compute X = max_expression_stack
  1361 //               + vm_local_words
  1362 //               + 16 words of register save area
  1363 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1364 //   set Lbcp, Lmethod, LcpoolCache
  1365 //   set Llocals to i0
  1366 //   set Lmonitors to FP - rounded_vm_local_words
  1367 //   set Lesp to Lmonitors - 4
  1368 //
  1369 //  The frame has now been setup to do the rest of the entry code
  1371 // Try this optimization:  Most method entries could live in a
  1372 // "one size fits all" stack frame without all the dynamic size
  1373 // calculations.  It might be profitable to do all this calculation
  1374 // statically and approximately for "small enough" methods.
  1376 //-----------------------------------------------------------------------------------------------
  1378 // C1 Calling conventions
  1379 //
  1380 // Upon method entry, the following registers are setup:
  1381 //
  1382 // g2 G2_thread: current thread
  1383 // g5 G5_method: method to activate
  1384 // g4 Gargs  : pointer to last argument
  1385 //
  1386 //
  1387 // Stack:
  1388 //
  1389 // +---------------+ <--- sp
  1390 // |               |
  1391 // : reg save area :
  1392 // |               |
  1393 // +---------------+ <--- sp + 0x40
  1394 // |               |
  1395 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1396 // |               |
  1397 // +---------------+ <--- sp + 0x5c
  1398 // |               |
  1399 // :     free      :
  1400 // |               |
  1401 // +---------------+ <--- Gargs
  1402 // |               |
  1403 // :   arguments   :
  1404 // |               |
  1405 // +---------------+
  1406 // |               |
  1407 //
  1408 //
  1409 //
  1410 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1411 //
  1412 // +---------------+ <--- sp
  1413 // |               |
  1414 // : reg save area :
  1415 // |               |
  1416 // +---------------+ <--- sp + 0x40
  1417 // |               |
  1418 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1419 // |               |
  1420 // +---------------+ <--- sp + 0x5c
  1421 // |               |
  1422 // :               :
  1423 // |               | <--- Lesp
  1424 // +---------------+ <--- Lmonitors (fp - 0x18)
  1425 // |   VM locals   |
  1426 // +---------------+ <--- fp
  1427 // |               |
  1428 // : reg save area :
  1429 // |               |
  1430 // +---------------+ <--- fp + 0x40
  1431 // |               |
  1432 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1433 // |               |
  1434 // +---------------+ <--- fp + 0x5c
  1435 // |               |
  1436 // :     free      :
  1437 // |               |
  1438 // +---------------+
  1439 // |               |
  1440 // : nonarg locals :
  1441 // |               |
  1442 // +---------------+
  1443 // |               |
  1444 // :   arguments   :
  1445 // |               | <--- Llocals
  1446 // +---------------+ <--- Gargs
  1447 // |               |
  1449 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1451   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1452   // expression stack, the callee will have callee_extra_locals (so we can account for
  1453   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1454   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1455   //
  1456   //
  1457   // The big complicating thing here is that we must ensure that the stack stays properly
  1458   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1459   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1460   // the caller so we must ensure that it is properly aligned for our callee.
  1461   //
  1462   const int rounded_vm_local_words =
  1463        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1464   // callee_locals and max_stack are counts, not the size in frame.
  1465   const int locals_size =
  1466        round_to(callee_extra_locals * Interpreter::stackElementWords(), WordsPerLong);
  1467   const int max_stack_words = max_stack * Interpreter::stackElementWords();
  1468   return (round_to((max_stack_words
  1469                    //6815692//+ methodOopDesc::extra_stack_words()
  1470                    + rounded_vm_local_words
  1471                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1472                    // already rounded
  1473                    + locals_size + monitor_size);
  1476 // How much stack a method top interpreter activation needs in words.
  1477 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1479   // See call_stub code
  1480   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1481                                  WordsPerLong);    // 7 + register save area
  1483   // Save space for one monitor to get into the interpreted method in case
  1484   // the method is synchronized
  1485   int monitor_size    = method->is_synchronized() ?
  1486                                 1*frame::interpreter_frame_monitor_size() : 0;
  1487   return size_activation_helper(method->max_locals(), method->max_stack(),
  1488                                  monitor_size) + call_stub_size;
  1491 int AbstractInterpreter::layout_activation(methodOop method,
  1492                                            int tempcount,
  1493                                            int popframe_extra_args,
  1494                                            int moncount,
  1495                                            int callee_param_count,
  1496                                            int callee_local_count,
  1497                                            frame* caller,
  1498                                            frame* interpreter_frame,
  1499                                            bool is_top_frame) {
  1500   // Note: This calculation must exactly parallel the frame setup
  1501   // in InterpreterGenerator::generate_fixed_frame.
  1502   // If f!=NULL, set up the following variables:
  1503   //   - Lmethod
  1504   //   - Llocals
  1505   //   - Lmonitors (to the indicated number of monitors)
  1506   //   - Lesp (to the indicated number of temps)
  1507   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1508   // we are about to layout. We are guaranteed that we will be able to fill in a
  1509   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1510   // the amount was determined by an earlier call to this method with f == NULL).
  1511   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1513   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1514   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1516   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1517   //
  1518   // Note: if you look closely this appears to be doing something much different
  1519   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1520   // this dance with interpreter_sp_adjustment because the window save area would
  1521   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1522   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1523   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1524   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1525   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1526   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1527   // because the oldest frame would have adjust its callers frame and yet that frame
  1528   // already exists and isn't part of this array of frames we are unpacking. So at first
  1529   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1530   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1531   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1532   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1533   // callee... parameters here). However this would mean that this routine would have to take
  1534   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1535   // and run the calling loop in the reverse order. This would also would appear to mean making
  1536   // this code aware of what the interactions are when that initial caller fram was an osr or
  1537   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1538   // there is no sense in messing working code.
  1539   //
  1541   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1542   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1544   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1545                                               monitor_size);
  1547   if (interpreter_frame != NULL) {
  1548     // The skeleton frame must already look like an interpreter frame
  1549     // even if not fully filled out.
  1550     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1552     intptr_t* fp = interpreter_frame->fp();
  1554     JavaThread* thread = JavaThread::current();
  1555     RegisterMap map(thread, false);
  1556     // More verification that skeleton frame is properly walkable
  1557     assert(fp == caller->sp(), "fp must match");
  1559     intptr_t* montop     = fp - rounded_vm_local_words;
  1561     // preallocate monitors (cf. __ add_monitor_to_stack)
  1562     intptr_t* monitors = montop - monitor_size;
  1564     // preallocate stack space
  1565     intptr_t*  esp = monitors - 1 -
  1566                      (tempcount * Interpreter::stackElementWords()) -
  1567                      popframe_extra_args;
  1569     int local_words = method->max_locals() * Interpreter::stackElementWords();
  1570     int parm_words  = method->size_of_parameters() * Interpreter::stackElementWords();
  1571     NEEDS_CLEANUP;
  1572     intptr_t* locals;
  1573     if (caller->is_interpreted_frame()) {
  1574       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1575       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1576       // Note that this computation means we replace size_of_parameters() values from the caller
  1577       // interpreter frame's expression stack with our argument locals
  1578       locals = Lesp_ptr + parm_words;
  1579       int delta = local_words - parm_words;
  1580       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1581       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1582     } else {
  1583       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1584       // Don't have Lesp available; lay out locals block in the caller
  1585       // adjacent to the register window save area.
  1586       //
  1587       // Compiled frames do not allocate a varargs area which is why this if
  1588       // statement is needed.
  1589       //
  1590       if (caller->is_compiled_frame()) {
  1591         locals = fp + frame::register_save_words + local_words - 1;
  1592       } else {
  1593         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1595       if (!caller->is_entry_frame()) {
  1596         // Caller wants his own SP back
  1597         int caller_frame_size = caller->cb()->frame_size();
  1598         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1601     if (TraceDeoptimization) {
  1602       if (caller->is_entry_frame()) {
  1603         // make sure I5_savedSP and the entry frames notion of saved SP
  1604         // agree.  This assertion duplicate a check in entry frame code
  1605         // but catches the failure earlier.
  1606         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1607                "would change callers SP");
  1609       if (caller->is_entry_frame()) {
  1610         tty->print("entry ");
  1612       if (caller->is_compiled_frame()) {
  1613         tty->print("compiled ");
  1614         if (caller->is_deoptimized_frame()) {
  1615           tty->print("(deopt) ");
  1618       if (caller->is_interpreted_frame()) {
  1619         tty->print("interpreted ");
  1621       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1622       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1623       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1624       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1625       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1626       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1627       tty->print_cr("Llocals = 0x%x", locals);
  1628       tty->print_cr("Lesp = 0x%x", esp);
  1629       tty->print_cr("Lmonitors = 0x%x", monitors);
  1632     if (method->max_locals() > 0) {
  1633       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1634       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1635       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1636       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1638 #ifdef _LP64
  1639     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1640 #endif
  1642     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1643     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1644     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1645     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1646     // Llast_SP will be same as SP as there is no adapter space
  1647     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1648     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1649 #ifdef FAST_DISPATCH
  1650     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1651 #endif
  1654 #ifdef ASSERT
  1655     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1657     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1658     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize())+Interpreter::value_offset_in_bytes()), "locals match");
  1659     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1660     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1661     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1663     // check bounds
  1664     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1665     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1666     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1667     assert(lo <= esp && esp < monitors, "esp in bounds");
  1668 #endif // ASSERT
  1671   return raw_frame_size;
  1674 //----------------------------------------------------------------------------------------------------
  1675 // Exceptions
  1676 void TemplateInterpreterGenerator::generate_throw_exception() {
  1678   // Entry point in previous activation (i.e., if the caller was interpreted)
  1679   Interpreter::_rethrow_exception_entry = __ pc();
  1680   // O0: exception
  1682   // entry point for exceptions thrown within interpreter code
  1683   Interpreter::_throw_exception_entry = __ pc();
  1684   __ verify_thread();
  1685   // expression stack is undefined here
  1686   // O0: exception, i.e. Oexception
  1687   // Lbcp: exception bcx
  1688   __ verify_oop(Oexception);
  1691   // expression stack must be empty before entering the VM in case of an exception
  1692   __ empty_expression_stack();
  1693   // find exception handler address and preserve exception oop
  1694   // call C routine to find handler and jump to it
  1695   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1696   __ push_ptr(O1); // push exception for exception handler bytecodes
  1698   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1699   __ delayed()->nop();
  1702   // if the exception is not handled in the current frame
  1703   // the frame is removed and the exception is rethrown
  1704   // (i.e. exception continuation is _rethrow_exception)
  1705   //
  1706   // Note: At this point the bci is still the bxi for the instruction which caused
  1707   //       the exception and the expression stack is empty. Thus, for any VM calls
  1708   //       at this point, GC will find a legal oop map (with empty expression stack).
  1710   // in current activation
  1711   // tos: exception
  1712   // Lbcp: exception bcp
  1714   //
  1715   // JVMTI PopFrame support
  1716   //
  1718   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1719   Address popframe_condition_addr (G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
  1720   // Set the popframe_processing bit in popframe_condition indicating that we are
  1721   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1722   // popframe handling cycles.
  1724   __ ld(popframe_condition_addr, G3_scratch);
  1725   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1726   __ stw(G3_scratch, popframe_condition_addr);
  1728   // Empty the expression stack, as in normal exception handling
  1729   __ empty_expression_stack();
  1730   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1733     // Check to see whether we are returning to a deoptimized frame.
  1734     // (The PopFrame call ensures that the caller of the popped frame is
  1735     // either interpreted or compiled and deoptimizes it if compiled.)
  1736     // In this case, we can't call dispatch_next() after the frame is
  1737     // popped, but instead must save the incoming arguments and restore
  1738     // them after deoptimization has occurred.
  1739     //
  1740     // Note that we don't compare the return PC against the
  1741     // deoptimization blob's unpack entry because of the presence of
  1742     // adapter frames in C2.
  1743     Label caller_not_deoptimized;
  1744     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1745     __ tst(O0);
  1746     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
  1747     __ delayed()->nop();
  1749     const Register Gtmp1 = G3_scratch;
  1750     const Register Gtmp2 = G1_scratch;
  1752     // Compute size of arguments for saving when returning to deoptimized caller
  1753     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
  1754     __ sll(Gtmp1, Interpreter::logStackElementSize(), Gtmp1);
  1755     __ sub(Llocals, Gtmp1, Gtmp2);
  1756     __ add(Gtmp2, wordSize, Gtmp2);
  1757     // Save these arguments
  1758     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1759     // Inform deoptimization that it is responsible for restoring these arguments
  1760     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1761     Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
  1762     __ st(Gtmp1, popframe_condition_addr);
  1764     // Return from the current method
  1765     // The caller's SP was adjusted upon method entry to accomodate
  1766     // the callee's non-argument locals. Undo that adjustment.
  1767     __ ret();
  1768     __ delayed()->restore(I5_savedSP, G0, SP);
  1770     __ bind(caller_not_deoptimized);
  1773   // Clear the popframe condition flag
  1774   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1776   // Get out of the current method (how this is done depends on the particular compiler calling
  1777   // convention that the interpreter currently follows)
  1778   // The caller's SP was adjusted upon method entry to accomodate
  1779   // the callee's non-argument locals. Undo that adjustment.
  1780   __ restore(I5_savedSP, G0, SP);
  1781   // The method data pointer was incremented already during
  1782   // call profiling. We have to restore the mdp for the current bcp.
  1783   if (ProfileInterpreter) {
  1784     __ set_method_data_pointer_for_bcp();
  1786   // Resume bytecode interpretation at the current bcp
  1787   __ dispatch_next(vtos);
  1788   // end of JVMTI PopFrame support
  1790   Interpreter::_remove_activation_entry = __ pc();
  1792   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1793   __ pop_ptr(Oexception);                                  // get exception
  1795   // Intel has the following comment:
  1796   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1797   // They remove the activation without checking for bad monitor state.
  1798   // %%% We should make sure this is the right semantics before implementing.
  1800   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
  1801   __ set_vm_result(Oexception);
  1802   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1804   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1806   __ get_vm_result(Oexception);
  1807   __ verify_oop(Oexception);
  1809     const int return_reg_adjustment = frame::pc_return_offset;
  1810   Address issuing_pc_addr(I7, 0, return_reg_adjustment);
  1812   // We are done with this activation frame; find out where to go next.
  1813   // The continuation point will be an exception handler, which expects
  1814   // the following registers set up:
  1815   //
  1816   // Oexception: exception
  1817   // Oissuing_pc: the local call that threw exception
  1818   // Other On: garbage
  1819   // In/Ln:  the contents of the caller's register window
  1820   //
  1821   // We do the required restore at the last possible moment, because we
  1822   // need to preserve some state across a runtime call.
  1823   // (Remember that the caller activation is unknown--it might not be
  1824   // interpreted, so things like Lscratch are useless in the caller.)
  1826   // Although the Intel version uses call_C, we can use the more
  1827   // compact call_VM.  (The only real difference on SPARC is a
  1828   // harmlessly ignored [re]set_last_Java_frame, compared with
  1829   // the Intel code which lacks this.)
  1830   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1831   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1832   __ super_call_VM_leaf(L7_thread_cache,
  1833                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1834                         Oissuing_pc->after_save());
  1836   // The caller's SP was adjusted upon method entry to accomodate
  1837   // the callee's non-argument locals. Undo that adjustment.
  1838   __ JMP(O0, 0);                         // return exception handler in caller
  1839   __ delayed()->restore(I5_savedSP, G0, SP);
  1841   // (same old exception object is already in Oexception; see above)
  1842   // Note that an "issuing PC" is actually the next PC after the call
  1846 //
  1847 // JVMTI ForceEarlyReturn support
  1848 //
  1850 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1851   address entry = __ pc();
  1853   __ empty_expression_stack();
  1854   __ load_earlyret_value(state);
  1856   __ ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())), G3_scratch);
  1857   Address cond_addr(G3_scratch, 0, in_bytes(JvmtiThreadState::earlyret_state_offset()));
  1859   // Clear the earlyret state
  1860   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1862   __ remove_activation(state,
  1863                        /* throw_monitor_exception */ false,
  1864                        /* install_monitor_exception */ false);
  1866   // The caller's SP was adjusted upon method entry to accomodate
  1867   // the callee's non-argument locals. Undo that adjustment.
  1868   __ ret();                             // return to caller
  1869   __ delayed()->restore(I5_savedSP, G0, SP);
  1871   return entry;
  1872 } // end of JVMTI ForceEarlyReturn support
  1875 //------------------------------------------------------------------------------------------------------------------------
  1876 // Helper for vtos entry point generation
  1878 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1879   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1880   Label L;
  1881   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
  1882   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
  1883   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
  1884   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
  1885   iep = __ pc(); __ push_i();
  1886   bep = cep = sep = iep;                        // there aren't any
  1887   vep = __ pc(); __ bind(L);                    // fall through
  1888   generate_and_dispatch(t);
  1891 // --------------------------------------------------------------------------------
  1894 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1895  : TemplateInterpreterGenerator(code) {
  1896    generate_all(); // down here so it can be "virtual"
  1899 // --------------------------------------------------------------------------------
  1901 // Non-product code
  1902 #ifndef PRODUCT
  1903 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1904   address entry = __ pc();
  1906   __ push(state);
  1907   __ mov(O7, Lscratch); // protect return address within interpreter
  1909   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  1910   __ mov( Otos_l2, G3_scratch );
  1911   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  1912   __ mov(Lscratch, O7); // restore return address
  1913   __ pop(state);
  1914   __ retl();
  1915   __ delayed()->nop();
  1917   return entry;
  1921 // helpers for generate_and_dispatch
  1923 void TemplateInterpreterGenerator::count_bytecode() {
  1924   Address c(G3_scratch, (address)&BytecodeCounter::_counter_value);
  1925   __ load_contents(c, G4_scratch);
  1926   __ inc(G4_scratch);
  1927   __ st(G4_scratch, c);
  1931 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1932   Address bucket( G3_scratch, (address) &BytecodeHistogram::_counters[t->bytecode()] );
  1933   __ load_contents(bucket, G4_scratch);
  1934   __ inc(G4_scratch);
  1935   __ st(G4_scratch, bucket);
  1939 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1940   address index_addr      = (address)&BytecodePairHistogram::_index;
  1941   Address index(G3_scratch, index_addr);
  1943   address counters_addr   = (address)&BytecodePairHistogram::_counters;
  1944   Address counters(G3_scratch, counters_addr);
  1946   // get index, shift out old bytecode, bring in new bytecode, and store it
  1947   // _index = (_index >> log2_number_of_codes) |
  1948   //          (bytecode << log2_number_of_codes);
  1951   __ load_contents( index,      G4_scratch );
  1952   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  1953   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  1954   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  1955   __ store_contents( G4_scratch, index );
  1957   // bump bucket contents
  1958   // _counters[_index] ++;
  1960   __ load_address( counters );  // loads into G3_scratch
  1961   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  1962   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  1963   __ ld (G3_scratch, 0, G4_scratch);
  1964   __ inc (G4_scratch);
  1965   __ st (G4_scratch, 0, G3_scratch);
  1969 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1970   // Call a little run-time stub to avoid blow-up for each bytecode.
  1971   // The run-time runtime saves the right registers, depending on
  1972   // the tosca in-state for the given template.
  1973   address entry = Interpreter::trace_code(t->tos_in());
  1974   guarantee(entry != NULL, "entry must have been generated");
  1975   __ call(entry, relocInfo::none);
  1976   __ delayed()->nop();
  1980 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1981   Address counter(G3_scratch , (address)&BytecodeCounter::_counter_value);
  1982   __ load_contents    (counter, G3_scratch );
  1983   Address stop_at(G4_scratch, (address)&StopInterpreterAt);
  1984   __ load_ptr_contents(stop_at, G4_scratch);
  1985   __ cmp(G3_scratch, G4_scratch);
  1986   __ breakpoint_trap(Assembler::equal);
  1988 #endif // not PRODUCT
  1989 #endif // !CC_INTERP

mercurial