src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp

Mon, 22 Apr 2013 20:27:36 +0200

author
stefank
date
Mon, 22 Apr 2013 20:27:36 +0200
changeset 5011
a08c80e9e1e5
parent 4129
22b8d3d181d9
child 5120
eba99d16dc6f
permissions
-rw-r--r--

8012687: Remove unused is_root checks and closures
Reviewed-by: tschatzl, jmasa

     1 /*
     2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "gc_implementation/shared/gcStats.hpp"
    30 #include "gc_implementation/shared/gcUtil.hpp"
    31 #include "gc_interface/gcCause.hpp"
    33 // This class keeps statistical information and computes the
    34 // optimal free space for both the young and old generation
    35 // based on current application characteristics (based on gc cost
    36 // and application footprint).
    37 //
    38 // It also computes an optimal tenuring threshold between the young
    39 // and old generations, so as to equalize the cost of collections
    40 // of those generations, as well as optimial survivor space sizes
    41 // for the young generation.
    42 //
    43 // While this class is specifically intended for a generational system
    44 // consisting of a young gen (containing an Eden and two semi-spaces)
    45 // and a tenured gen, as well as a perm gen for reflective data, it
    46 // makes NO references to specific generations.
    47 //
    48 // 05/02/2003 Update
    49 // The 1.5 policy makes use of data gathered for the costs of GC on
    50 // specific generations.  That data does reference specific
    51 // generation.  Also diagnostics specific to generations have
    52 // been added.
    54 // Forward decls
    55 class elapsedTimer;
    56 class GenerationSizer;
    58 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
    59  friend class PSGCAdaptivePolicyCounters;
    60  private:
    61   // These values are used to record decisions made during the
    62   // policy.  For example, if the young generation was decreased
    63   // to decrease the GC cost of minor collections the value
    64   // decrease_young_gen_for_throughput_true is used.
    66   // Last calculated sizes, in bytes, and aligned
    67   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
    69   // Time statistics
    70   AdaptivePaddedAverage* _avg_major_pause;
    72   // Footprint statistics
    73   AdaptiveWeightedAverage* _avg_base_footprint;
    75   // Statistical data gathered for GC
    76   GCStats _gc_stats;
    78   size_t _survivor_size_limit;   // Limit in bytes of survivor size
    79   const double _collection_cost_margin_fraction;
    81   // Variable for estimating the major and minor pause times.
    82   // These variables represent linear least-squares fits of
    83   // the data.
    84   //   major pause time vs. old gen size
    85   LinearLeastSquareFit* _major_pause_old_estimator;
    86   //   major pause time vs. young gen size
    87   LinearLeastSquareFit* _major_pause_young_estimator;
    90   // These record the most recent collection times.  They
    91   // are available as an alternative to using the averages
    92   // for making ergonomic decisions.
    93   double _latest_major_mutator_interval_seconds;
    95   const size_t _intra_generation_alignment; // alignment for eden, survivors
    97   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
    99   // The amount of live data in the heap at the last full GC, used
   100   // as a baseline to help us determine when we need to perform the
   101   // next full GC.
   102   size_t _live_at_last_full_gc;
   104   // decrease/increase the old generation for minor pause time
   105   int _change_old_gen_for_min_pauses;
   107   // increase/decrease the young generation for major pause time
   108   int _change_young_gen_for_maj_pauses;
   111   // Flag indicating that the adaptive policy is ready to use
   112   bool _old_gen_policy_is_ready;
   114   // Changing the generation sizing depends on the data that is
   115   // gathered about the effects of changes on the pause times and
   116   // throughput.  These variable count the number of data points
   117   // gathered.  The policy may use these counters as a threshhold
   118   // for reliable data.
   119   julong _young_gen_change_for_major_pause_count;
   121   // To facilitate faster growth at start up, supplement the normal
   122   // growth percentage for the young gen eden and the
   123   // old gen space for promotion with these value which decay
   124   // with increasing collections.
   125   uint _young_gen_size_increment_supplement;
   126   uint _old_gen_size_increment_supplement;
   128   // The number of bytes absorbed from eden into the old gen by moving the
   129   // boundary over live data.
   130   size_t _bytes_absorbed_from_eden;
   132  private:
   134   // Accessors
   135   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
   136   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
   138   // Change the young generation size to achieve a minor GC pause time goal
   139   void adjust_for_minor_pause_time(bool is_full_gc,
   140                                    size_t* desired_promo_size_ptr,
   141                                    size_t* desired_eden_size_ptr);
   142   // Change the generation sizes to achieve a GC pause time goal
   143   // Returned sizes are not necessarily aligned.
   144   void adjust_for_pause_time(bool is_full_gc,
   145                          size_t* desired_promo_size_ptr,
   146                          size_t* desired_eden_size_ptr);
   147   // Change the generation sizes to achieve an application throughput goal
   148   // Returned sizes are not necessarily aligned.
   149   void adjust_for_throughput(bool is_full_gc,
   150                              size_t* desired_promo_size_ptr,
   151                              size_t* desired_eden_size_ptr);
   152   // Change the generation sizes to achieve minimum footprint
   153   // Returned sizes are not aligned.
   154   size_t adjust_promo_for_footprint(size_t desired_promo_size,
   155                                     size_t desired_total);
   156   size_t adjust_eden_for_footprint(size_t desired_promo_size,
   157                                    size_t desired_total);
   159   // Size in bytes for an increment or decrement of eden.
   160   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   161   virtual size_t eden_decrement(size_t cur_eden);
   162   size_t eden_decrement_aligned_down(size_t cur_eden);
   163   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
   165   // Size in bytes for an increment or decrement of the promotion area
   166   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
   167   virtual size_t promo_decrement(size_t cur_promo);
   168   size_t promo_decrement_aligned_down(size_t cur_promo);
   169   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
   171   // Decay the supplemental growth additive.
   172   void decay_supplemental_growth(bool is_full_gc);
   174   // Returns a change that has been scaled down.  Result
   175   // is not aligned.  (If useful, move to some shared
   176   // location.)
   177   size_t scale_down(size_t change, double part, double total);
   179  protected:
   180   // Time accessors
   182   // Footprint accessors
   183   size_t live_space() const {
   184     return (size_t)(avg_base_footprint()->average() +
   185                     avg_young_live()->average() +
   186                     avg_old_live()->average());
   187   }
   188   size_t free_space() const {
   189     return _eden_size + _promo_size;
   190   }
   192   void set_promo_size(size_t new_size) {
   193     _promo_size = new_size;
   194   }
   195   void set_survivor_size(size_t new_size) {
   196     _survivor_size = new_size;
   197   }
   199   // Update estimators
   200   void update_minor_pause_old_estimator(double minor_pause_in_ms);
   202   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
   204  public:
   205   // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
   206   size_t eden_increment_aligned_up(size_t cur_eden);
   207   size_t eden_increment_aligned_down(size_t cur_eden);
   208   size_t promo_increment_aligned_up(size_t cur_promo);
   209   size_t promo_increment_aligned_down(size_t cur_promo);
   211   virtual size_t eden_increment(size_t cur_eden);
   212   virtual size_t promo_increment(size_t cur_promo);
   214   // Accessors for use by performance counters
   215   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
   216     return _gc_stats.avg_promoted();
   217   }
   218   AdaptiveWeightedAverage* avg_base_footprint() const {
   219     return _avg_base_footprint;
   220   }
   222   // Input arguments are initial free space sizes for young and old
   223   // generations, the initial survivor space size, the
   224   // alignment values and the pause & throughput goals.
   225   //
   226   // NEEDS_CLEANUP this is a singleton object
   227   PSAdaptiveSizePolicy(size_t init_eden_size,
   228                        size_t init_promo_size,
   229                        size_t init_survivor_size,
   230                        size_t intra_generation_alignment,
   231                        double gc_pause_goal_sec,
   232                        double gc_minor_pause_goal_sec,
   233                        uint gc_time_ratio);
   235   // Methods indicating events of interest to the adaptive size policy,
   236   // called by GC algorithms. It is the responsibility of users of this
   237   // policy to call these methods at the correct times!
   238   void major_collection_begin();
   239   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
   241   //
   242   void tenured_allocation(size_t size) {
   243     _avg_pretenured->sample(size);
   244   }
   246   // Accessors
   247   // NEEDS_CLEANUP   should use sizes.hpp
   249   size_t calculated_old_free_size_in_bytes() const {
   250     return (size_t)(_promo_size + avg_promoted()->padded_average());
   251   }
   253   size_t average_old_live_in_bytes() const {
   254     return (size_t) avg_old_live()->average();
   255   }
   257   size_t average_promoted_in_bytes() const {
   258     return (size_t)avg_promoted()->average();
   259   }
   261   size_t padded_average_promoted_in_bytes() const {
   262     return (size_t)avg_promoted()->padded_average();
   263   }
   265   int change_young_gen_for_maj_pauses() {
   266     return _change_young_gen_for_maj_pauses;
   267   }
   268   void set_change_young_gen_for_maj_pauses(int v) {
   269     _change_young_gen_for_maj_pauses = v;
   270   }
   272   int change_old_gen_for_min_pauses() {
   273     return _change_old_gen_for_min_pauses;
   274   }
   275   void set_change_old_gen_for_min_pauses(int v) {
   276     _change_old_gen_for_min_pauses = v;
   277   }
   279   // Return true if the old generation size was changed
   280   // to try to reach a pause time goal.
   281   bool old_gen_changed_for_pauses() {
   282     bool result = _change_old_gen_for_maj_pauses != 0 ||
   283                   _change_old_gen_for_min_pauses != 0;
   284     return result;
   285   }
   287   // Return true if the young generation size was changed
   288   // to try to reach a pause time goal.
   289   bool young_gen_changed_for_pauses() {
   290     bool result = _change_young_gen_for_min_pauses != 0 ||
   291                   _change_young_gen_for_maj_pauses != 0;
   292     return result;
   293   }
   294   // end flags for pause goal
   296   // Return true if the old generation size was changed
   297   // to try to reach a throughput goal.
   298   bool old_gen_changed_for_throughput() {
   299     bool result = _change_old_gen_for_throughput != 0;
   300     return result;
   301   }
   303   // Return true if the young generation size was changed
   304   // to try to reach a throughput goal.
   305   bool young_gen_changed_for_throughput() {
   306     bool result = _change_young_gen_for_throughput != 0;
   307     return result;
   308   }
   310   int decrease_for_footprint() { return _decrease_for_footprint; }
   313   // Accessors for estimators.  The slope of the linear fit is
   314   // currently all that is used for making decisions.
   316   LinearLeastSquareFit* major_pause_old_estimator() {
   317     return _major_pause_old_estimator;
   318   }
   320   LinearLeastSquareFit* major_pause_young_estimator() {
   321     return _major_pause_young_estimator;
   322   }
   325   virtual void clear_generation_free_space_flags();
   327   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
   328   float major_pause_young_slope() {
   329     return _major_pause_young_estimator->slope();
   330   }
   331   float major_collection_slope() { return _major_collection_estimator->slope();}
   333   bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
   335   // Given the amount of live data in the heap, should we
   336   // perform a Full GC?
   337   bool should_full_GC(size_t live_in_old_gen);
   339   // Calculates optimial free space sizes for both the old and young
   340   // generations.  Stores results in _eden_size and _promo_size.
   341   // Takes current used space in all generations as input, as well
   342   // as an indication if a full gc has just been performed, for use
   343   // in deciding if an OOM error should be thrown.
   344   void compute_generation_free_space(size_t young_live,
   345                                      size_t eden_live,
   346                                      size_t old_live,
   347                                      size_t cur_eden,  // current eden in bytes
   348                                      size_t max_old_gen_size,
   349                                      size_t max_eden_size,
   350                                      bool   is_full_gc,
   351                                      GCCause::Cause gc_cause,
   352                                      CollectorPolicy* collector_policy);
   354   // Calculates new survivor space size;  returns a new tenuring threshold
   355   // value. Stores new survivor size in _survivor_size.
   356   uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
   357                                                  uint    tenuring_threshold,
   358                                                  size_t survivor_limit);
   360   // Return the maximum size of a survivor space if the young generation were of
   361   // size gen_size.
   362   size_t max_survivor_size(size_t gen_size) {
   363     // Never allow the target survivor size to grow more than MinSurvivorRatio
   364     // of the young generation size.  We cannot grow into a two semi-space
   365     // system, with Eden zero sized.  Even if the survivor space grows, from()
   366     // might grow by moving the bottom boundary "down" -- so from space will
   367     // remain almost full anyway (top() will be near end(), but there will be a
   368     // large filler object at the bottom).
   369     const size_t sz = gen_size / MinSurvivorRatio;
   370     const size_t alignment = _intra_generation_alignment;
   371     return sz > alignment ? align_size_down(sz, alignment) : alignment;
   372   }
   374   size_t live_at_last_full_gc() {
   375     return _live_at_last_full_gc;
   376   }
   378   size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
   379   void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
   381   void set_bytes_absorbed_from_eden(size_t val) {
   382     _bytes_absorbed_from_eden = val;
   383   }
   385   // Update averages that are always used (even
   386   // if adaptive sizing is turned off).
   387   void update_averages(bool is_survivor_overflow,
   388                        size_t survived,
   389                        size_t promoted);
   391   // Printing support
   392   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   393 };
   395 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP

mercurial