src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp

Wed, 15 May 2013 10:41:22 -0700

author
tamao
date
Wed, 15 May 2013 10:41:22 -0700
changeset 5120
eba99d16dc6f
parent 4129
22b8d3d181d9
child 5192
14d3f71f831d
permissions
-rw-r--r--

8007763: Refactoring: split up compute_generation_free_space() into two functions for class PSAdaptiveSizePolicy
Summary: split up compute_generation_free_space() into two functions: compute_eden_space_size() + compute_old_gen_free_space(), each of which (if needed) can be reused without executing an overhead of the other.
Reviewed-by: jmasa, tschatzl
Contributed-by: tamao <tao.mao@oracle.com>

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "gc_implementation/shared/gcStats.hpp"
    30 #include "gc_implementation/shared/gcUtil.hpp"
    31 #include "gc_interface/gcCause.hpp"
    33 // This class keeps statistical information and computes the
    34 // optimal free space for both the young and old generation
    35 // based on current application characteristics (based on gc cost
    36 // and application footprint).
    37 //
    38 // It also computes an optimal tenuring threshold between the young
    39 // and old generations, so as to equalize the cost of collections
    40 // of those generations, as well as optimial survivor space sizes
    41 // for the young generation.
    42 //
    43 // While this class is specifically intended for a generational system
    44 // consisting of a young gen (containing an Eden and two semi-spaces)
    45 // and a tenured gen, as well as a perm gen for reflective data, it
    46 // makes NO references to specific generations.
    47 //
    48 // 05/02/2003 Update
    49 // The 1.5 policy makes use of data gathered for the costs of GC on
    50 // specific generations.  That data does reference specific
    51 // generation.  Also diagnostics specific to generations have
    52 // been added.
    54 // Forward decls
    55 class elapsedTimer;
    56 class GenerationSizer;
    58 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
    59  friend class PSGCAdaptivePolicyCounters;
    60  private:
    61   // These values are used to record decisions made during the
    62   // policy.  For example, if the young generation was decreased
    63   // to decrease the GC cost of minor collections the value
    64   // decrease_young_gen_for_throughput_true is used.
    66   // Last calculated sizes, in bytes, and aligned
    67   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
    69   // Time statistics
    70   AdaptivePaddedAverage* _avg_major_pause;
    72   // Footprint statistics
    73   AdaptiveWeightedAverage* _avg_base_footprint;
    75   // Statistical data gathered for GC
    76   GCStats _gc_stats;
    78   size_t _survivor_size_limit;   // Limit in bytes of survivor size
    79   const double _collection_cost_margin_fraction;
    81   // Variable for estimating the major and minor pause times.
    82   // These variables represent linear least-squares fits of
    83   // the data.
    84   //   major pause time vs. old gen size
    85   LinearLeastSquareFit* _major_pause_old_estimator;
    86   //   major pause time vs. young gen size
    87   LinearLeastSquareFit* _major_pause_young_estimator;
    90   // These record the most recent collection times.  They
    91   // are available as an alternative to using the averages
    92   // for making ergonomic decisions.
    93   double _latest_major_mutator_interval_seconds;
    95   const size_t _intra_generation_alignment; // alignment for eden, survivors
    97   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
    99   // The amount of live data in the heap at the last full GC, used
   100   // as a baseline to help us determine when we need to perform the
   101   // next full GC.
   102   size_t _live_at_last_full_gc;
   104   // decrease/increase the old generation for minor pause time
   105   int _change_old_gen_for_min_pauses;
   107   // increase/decrease the young generation for major pause time
   108   int _change_young_gen_for_maj_pauses;
   111   // Flag indicating that the adaptive policy is ready to use
   112   bool _old_gen_policy_is_ready;
   114   // Changing the generation sizing depends on the data that is
   115   // gathered about the effects of changes on the pause times and
   116   // throughput.  These variable count the number of data points
   117   // gathered.  The policy may use these counters as a threshhold
   118   // for reliable data.
   119   julong _young_gen_change_for_major_pause_count;
   121   // To facilitate faster growth at start up, supplement the normal
   122   // growth percentage for the young gen eden and the
   123   // old gen space for promotion with these value which decay
   124   // with increasing collections.
   125   uint _young_gen_size_increment_supplement;
   126   uint _old_gen_size_increment_supplement;
   128   // The number of bytes absorbed from eden into the old gen by moving the
   129   // boundary over live data.
   130   size_t _bytes_absorbed_from_eden;
   132  private:
   134   // Accessors
   135   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
   136   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
   138   // Change the young generation size to achieve a minor GC pause time goal
   139   void adjust_promo_for_minor_pause_time(bool is_full_gc,
   140                                    size_t* desired_promo_size_ptr,
   141                                    size_t* desired_eden_size_ptr);
   142   void adjust_eden_for_minor_pause_time(bool is_full_gc,
   143                                    size_t* desired_eden_size_ptr);
   144   // Change the generation sizes to achieve a GC pause time goal
   145   // Returned sizes are not necessarily aligned.
   146   void adjust_promo_for_pause_time(bool is_full_gc,
   147                          size_t* desired_promo_size_ptr,
   148                          size_t* desired_eden_size_ptr);
   149   void adjust_eden_for_pause_time(bool is_full_gc,
   150                          size_t* desired_promo_size_ptr,
   151                          size_t* desired_eden_size_ptr);
   152   // Change the generation sizes to achieve an application throughput goal
   153   // Returned sizes are not necessarily aligned.
   154   void adjust_promo_for_throughput(bool is_full_gc,
   155                              size_t* desired_promo_size_ptr);
   156   void adjust_eden_for_throughput(bool is_full_gc,
   157                              size_t* desired_eden_size_ptr);
   158   // Change the generation sizes to achieve minimum footprint
   159   // Returned sizes are not aligned.
   160   size_t adjust_promo_for_footprint(size_t desired_promo_size,
   161                                     size_t desired_total);
   162   size_t adjust_eden_for_footprint(size_t desired_promo_size,
   163                                    size_t desired_total);
   165   // Size in bytes for an increment or decrement of eden.
   166   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   167   virtual size_t eden_decrement(size_t cur_eden);
   168   size_t eden_decrement_aligned_down(size_t cur_eden);
   169   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
   171   // Size in bytes for an increment or decrement of the promotion area
   172   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
   173   virtual size_t promo_decrement(size_t cur_promo);
   174   size_t promo_decrement_aligned_down(size_t cur_promo);
   175   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
   177   // Returns a change that has been scaled down.  Result
   178   // is not aligned.  (If useful, move to some shared
   179   // location.)
   180   size_t scale_down(size_t change, double part, double total);
   182  protected:
   183   // Time accessors
   185   // Footprint accessors
   186   size_t live_space() const {
   187     return (size_t)(avg_base_footprint()->average() +
   188                     avg_young_live()->average() +
   189                     avg_old_live()->average());
   190   }
   191   size_t free_space() const {
   192     return _eden_size + _promo_size;
   193   }
   195   void set_promo_size(size_t new_size) {
   196     _promo_size = new_size;
   197   }
   198   void set_survivor_size(size_t new_size) {
   199     _survivor_size = new_size;
   200   }
   202   // Update estimators
   203   void update_minor_pause_old_estimator(double minor_pause_in_ms);
   205   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
   207  public:
   208   // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
   209   size_t eden_increment_aligned_up(size_t cur_eden);
   210   size_t eden_increment_aligned_down(size_t cur_eden);
   211   size_t promo_increment_aligned_up(size_t cur_promo);
   212   size_t promo_increment_aligned_down(size_t cur_promo);
   214   virtual size_t eden_increment(size_t cur_eden);
   215   virtual size_t promo_increment(size_t cur_promo);
   217   // Accessors for use by performance counters
   218   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
   219     return _gc_stats.avg_promoted();
   220   }
   221   AdaptiveWeightedAverage* avg_base_footprint() const {
   222     return _avg_base_footprint;
   223   }
   225   // Input arguments are initial free space sizes for young and old
   226   // generations, the initial survivor space size, the
   227   // alignment values and the pause & throughput goals.
   228   //
   229   // NEEDS_CLEANUP this is a singleton object
   230   PSAdaptiveSizePolicy(size_t init_eden_size,
   231                        size_t init_promo_size,
   232                        size_t init_survivor_size,
   233                        size_t intra_generation_alignment,
   234                        double gc_pause_goal_sec,
   235                        double gc_minor_pause_goal_sec,
   236                        uint gc_time_ratio);
   238   // Methods indicating events of interest to the adaptive size policy,
   239   // called by GC algorithms. It is the responsibility of users of this
   240   // policy to call these methods at the correct times!
   241   void major_collection_begin();
   242   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
   244   //
   245   void tenured_allocation(size_t size) {
   246     _avg_pretenured->sample(size);
   247   }
   249   // Accessors
   250   // NEEDS_CLEANUP   should use sizes.hpp
   252   size_t calculated_old_free_size_in_bytes() const {
   253     return (size_t)(_promo_size + avg_promoted()->padded_average());
   254   }
   256   size_t average_old_live_in_bytes() const {
   257     return (size_t) avg_old_live()->average();
   258   }
   260   size_t average_promoted_in_bytes() const {
   261     return (size_t)avg_promoted()->average();
   262   }
   264   size_t padded_average_promoted_in_bytes() const {
   265     return (size_t)avg_promoted()->padded_average();
   266   }
   268   int change_young_gen_for_maj_pauses() {
   269     return _change_young_gen_for_maj_pauses;
   270   }
   271   void set_change_young_gen_for_maj_pauses(int v) {
   272     _change_young_gen_for_maj_pauses = v;
   273   }
   275   int change_old_gen_for_min_pauses() {
   276     return _change_old_gen_for_min_pauses;
   277   }
   278   void set_change_old_gen_for_min_pauses(int v) {
   279     _change_old_gen_for_min_pauses = v;
   280   }
   282   // Return true if the old generation size was changed
   283   // to try to reach a pause time goal.
   284   bool old_gen_changed_for_pauses() {
   285     bool result = _change_old_gen_for_maj_pauses != 0 ||
   286                   _change_old_gen_for_min_pauses != 0;
   287     return result;
   288   }
   290   // Return true if the young generation size was changed
   291   // to try to reach a pause time goal.
   292   bool young_gen_changed_for_pauses() {
   293     bool result = _change_young_gen_for_min_pauses != 0 ||
   294                   _change_young_gen_for_maj_pauses != 0;
   295     return result;
   296   }
   297   // end flags for pause goal
   299   // Return true if the old generation size was changed
   300   // to try to reach a throughput goal.
   301   bool old_gen_changed_for_throughput() {
   302     bool result = _change_old_gen_for_throughput != 0;
   303     return result;
   304   }
   306   // Return true if the young generation size was changed
   307   // to try to reach a throughput goal.
   308   bool young_gen_changed_for_throughput() {
   309     bool result = _change_young_gen_for_throughput != 0;
   310     return result;
   311   }
   313   int decrease_for_footprint() { return _decrease_for_footprint; }
   316   // Accessors for estimators.  The slope of the linear fit is
   317   // currently all that is used for making decisions.
   319   LinearLeastSquareFit* major_pause_old_estimator() {
   320     return _major_pause_old_estimator;
   321   }
   323   LinearLeastSquareFit* major_pause_young_estimator() {
   324     return _major_pause_young_estimator;
   325   }
   328   virtual void clear_generation_free_space_flags();
   330   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
   331   float major_pause_young_slope() {
   332     return _major_pause_young_estimator->slope();
   333   }
   334   float major_collection_slope() { return _major_collection_estimator->slope();}
   336   bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
   338   // Given the amount of live data in the heap, should we
   339   // perform a Full GC?
   340   bool should_full_GC(size_t live_in_old_gen);
   342   // Calculates optimal (free) space sizes for both the young and old
   343   // generations.  Stores results in _eden_size and _promo_size.
   344   // Takes current used space in all generations as input, as well
   345   // as an indication if a full gc has just been performed, for use
   346   // in deciding if an OOM error should be thrown.
   347   void compute_generation_free_space(size_t young_live,
   348                                      size_t eden_live,
   349                                      size_t old_live,
   350                                      size_t cur_eden,  // current eden in bytes
   351                                      size_t max_old_gen_size,
   352                                      size_t max_eden_size,
   353                                      bool   is_full_gc);
   355   void compute_eden_space_size(size_t young_live,
   356                                size_t eden_live,
   357                                size_t cur_eden,  // current eden in bytes
   358                                size_t max_eden_size,
   359                                bool   is_full_gc);
   361   void compute_old_gen_free_space(size_t old_live,
   362                                              size_t cur_eden,  // current eden in bytes
   363                                              size_t max_old_gen_size,
   364                                              bool   is_full_gc);
   366   // Calculates new survivor space size;  returns a new tenuring threshold
   367   // value. Stores new survivor size in _survivor_size.
   368   uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
   369                                                  uint    tenuring_threshold,
   370                                                  size_t survivor_limit);
   372   // Return the maximum size of a survivor space if the young generation were of
   373   // size gen_size.
   374   size_t max_survivor_size(size_t gen_size) {
   375     // Never allow the target survivor size to grow more than MinSurvivorRatio
   376     // of the young generation size.  We cannot grow into a two semi-space
   377     // system, with Eden zero sized.  Even if the survivor space grows, from()
   378     // might grow by moving the bottom boundary "down" -- so from space will
   379     // remain almost full anyway (top() will be near end(), but there will be a
   380     // large filler object at the bottom).
   381     const size_t sz = gen_size / MinSurvivorRatio;
   382     const size_t alignment = _intra_generation_alignment;
   383     return sz > alignment ? align_size_down(sz, alignment) : alignment;
   384   }
   386   size_t live_at_last_full_gc() {
   387     return _live_at_last_full_gc;
   388   }
   390   size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
   391   void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
   393   void set_bytes_absorbed_from_eden(size_t val) {
   394     _bytes_absorbed_from_eden = val;
   395   }
   397   // Update averages that are always used (even
   398   // if adaptive sizing is turned off).
   399   void update_averages(bool is_survivor_overflow,
   400                        size_t survived,
   401                        size_t promoted);
   403   // Printing support
   404   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   406   // Decay the supplemental growth additive.
   407   void decay_supplemental_growth(bool is_full_gc);
   408 };
   410 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP

mercurial