src/share/vm/opto/memnode.cpp

Wed, 09 Apr 2008 15:10:22 -0700

author
rasbold
date
Wed, 09 Apr 2008 15:10:22 -0700
changeset 544
9f4457a14b58
parent 517
de93acbb64fc
child 520
f3b3fe64f59f
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *prev = NULL;
    98   Node *result = mchain;
    99   while (prev != result) {
   100     prev = result;
   101     // skip over a call which does not affect this memory slice
   102     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   103       Node *proj_in = result->in(0);
   104       if (proj_in->is_Call()) {
   105         CallNode *call = proj_in->as_Call();
   106         if (!call->may_modify(t_adr, phase)) {
   107           result = call->in(TypeFunc::Memory);
   108         }
   109       } else if (proj_in->is_Initialize()) {
   110         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   111         // Stop if this is the initialization for the object instance which
   112         // which contains this memory slice, otherwise skip over it.
   113         if (alloc != NULL && alloc->_idx != instance_id) {
   114           result = proj_in->in(TypeFunc::Memory);
   115         }
   116       } else if (proj_in->is_MemBar()) {
   117         result = proj_in->in(TypeFunc::Memory);
   118       }
   119     } else if (result->is_MergeMem()) {
   120       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   121     }
   122   }
   123   return result;
   124 }
   126 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   127   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   128   bool is_instance = (t_oop != NULL) && t_oop->is_instance_field();
   129   PhaseIterGVN *igvn = phase->is_IterGVN();
   130   Node *result = mchain;
   131   result = optimize_simple_memory_chain(result, t_adr, phase);
   132   if (is_instance && igvn != NULL  && result->is_Phi()) {
   133     PhiNode *mphi = result->as_Phi();
   134     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   135     const TypePtr *t = mphi->adr_type();
   136     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM) {
   137       // clone the Phi with our address type
   138       result = mphi->split_out_instance(t_adr, igvn);
   139     } else {
   140       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   141     }
   142   }
   143   return result;
   144 }
   146 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   147   uint alias_idx = phase->C->get_alias_index(tp);
   148   Node *mem = mmem;
   149 #ifdef ASSERT
   150   {
   151     // Check that current type is consistent with the alias index used during graph construction
   152     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   153     bool consistent =  adr_check == NULL || adr_check->empty() ||
   154                        phase->C->must_alias(adr_check, alias_idx );
   155     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   156     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   157            tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   158         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   159         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   160           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   161           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   162       // don't assert if it is dead code.
   163       consistent = true;
   164     }
   165     if( !consistent ) {
   166       st->print("alias_idx==%d, adr_check==", alias_idx);
   167       if( adr_check == NULL ) {
   168         st->print("NULL");
   169       } else {
   170         adr_check->dump();
   171       }
   172       st->cr();
   173       print_alias_types();
   174       assert(consistent, "adr_check must match alias idx");
   175     }
   176   }
   177 #endif
   178   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   179   // means an array I have not precisely typed yet.  Do not do any
   180   // alias stuff with it any time soon.
   181   const TypeOopPtr *tinst = tp->isa_oopptr();
   182   if( tp->base() != Type::AnyPtr &&
   183       !(tinst &&
   184         tinst->klass()->is_java_lang_Object() &&
   185         tinst->offset() == Type::OffsetBot) ) {
   186     // compress paths and change unreachable cycles to TOP
   187     // If not, we can update the input infinitely along a MergeMem cycle
   188     // Equivalent code in PhiNode::Ideal
   189     Node* m  = phase->transform(mmem);
   190     // If tranformed to a MergeMem, get the desired slice
   191     // Otherwise the returned node represents memory for every slice
   192     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   193     // Update input if it is progress over what we have now
   194   }
   195   return mem;
   196 }
   198 //--------------------------Ideal_common---------------------------------------
   199 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   200 // Unhook non-raw memories from complete (macro-expanded) initializations.
   201 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   202   // If our control input is a dead region, kill all below the region
   203   Node *ctl = in(MemNode::Control);
   204   if (ctl && remove_dead_region(phase, can_reshape))
   205     return this;
   207   // Ignore if memory is dead, or self-loop
   208   Node *mem = in(MemNode::Memory);
   209   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   210   assert( mem != this, "dead loop in MemNode::Ideal" );
   212   Node *address = in(MemNode::Address);
   213   const Type *t_adr = phase->type( address );
   214   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   216   // Avoid independent memory operations
   217   Node* old_mem = mem;
   219   // The code which unhooks non-raw memories from complete (macro-expanded)
   220   // initializations was removed. After macro-expansion all stores catched
   221   // by Initialize node became raw stores and there is no information
   222   // which memory slices they modify. So it is unsafe to move any memory
   223   // operation above these stores. Also in most cases hooked non-raw memories
   224   // were already unhooked by using information from detect_ptr_independence()
   225   // and find_previous_store().
   227   if (mem->is_MergeMem()) {
   228     MergeMemNode* mmem = mem->as_MergeMem();
   229     const TypePtr *tp = t_adr->is_ptr();
   231     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   232   }
   234   if (mem != old_mem) {
   235     set_req(MemNode::Memory, mem);
   236     return this;
   237   }
   239   // let the subclass continue analyzing...
   240   return NULL;
   241 }
   243 // Helper function for proving some simple control dominations.
   244 // Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
   245 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   246 // is not a constant (dominated by the method's StartNode).
   247 // Used by MemNode::find_previous_store to prove that the
   248 // control input of a memory operation predates (dominates)
   249 // an allocation it wants to look past.
   250 bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
   251   if (dom == NULL)      return false;
   252   if (dom->is_Proj())   dom = dom->in(0);
   253   if (dom->is_Start())  return true; // anything inside the method
   254   if (dom->is_Root())   return true; // dom 'controls' a constant
   255   int cnt = 20;                      // detect cycle or too much effort
   256   while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
   257     if (--cnt < 0)   return false;   // in a cycle or too complex
   258     if (sub == dom)  return true;
   259     if (sub->is_Start())  return false;
   260     if (sub->is_Root())   return false;
   261     Node* up = sub->in(0);
   262     if (sub == up && sub->is_Region()) {
   263       for (uint i = 1; i < sub->req(); i++) {
   264         Node* in = sub->in(i);
   265         if (in != NULL && !in->is_top() && in != sub) {
   266           up = in; break;            // take any path on the way up to 'dom'
   267         }
   268       }
   269     }
   270     if (sub == up)  return false;    // some kind of tight cycle
   271     sub = up;
   272   }
   273   return false;
   274 }
   276 //---------------------detect_ptr_independence---------------------------------
   277 // Used by MemNode::find_previous_store to prove that two base
   278 // pointers are never equal.
   279 // The pointers are accompanied by their associated allocations,
   280 // if any, which have been previously discovered by the caller.
   281 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   282                                       Node* p2, AllocateNode* a2,
   283                                       PhaseTransform* phase) {
   284   // Attempt to prove that these two pointers cannot be aliased.
   285   // They may both manifestly be allocations, and they should differ.
   286   // Or, if they are not both allocations, they can be distinct constants.
   287   // Otherwise, one is an allocation and the other a pre-existing value.
   288   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   289     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   290   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   291     return (a1 != a2);
   292   } else if (a1 != NULL) {                  // one allocation a1
   293     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   294     return detect_dominating_control(p2->in(0), a1->in(0));
   295   } else { //(a2 != NULL)                   // one allocation a2
   296     return detect_dominating_control(p1->in(0), a2->in(0));
   297   }
   298   return false;
   299 }
   302 // The logic for reordering loads and stores uses four steps:
   303 // (a) Walk carefully past stores and initializations which we
   304 //     can prove are independent of this load.
   305 // (b) Observe that the next memory state makes an exact match
   306 //     with self (load or store), and locate the relevant store.
   307 // (c) Ensure that, if we were to wire self directly to the store,
   308 //     the optimizer would fold it up somehow.
   309 // (d) Do the rewiring, and return, depending on some other part of
   310 //     the optimizer to fold up the load.
   311 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   312 // specific to loads and stores, so they are handled by the callers.
   313 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   314 //
   315 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   316   Node*         ctrl   = in(MemNode::Control);
   317   Node*         adr    = in(MemNode::Address);
   318   intptr_t      offset = 0;
   319   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   320   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   322   if (offset == Type::OffsetBot)
   323     return NULL;            // cannot unalias unless there are precise offsets
   325   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   327   intptr_t size_in_bytes = memory_size();
   329   Node* mem = in(MemNode::Memory);   // start searching here...
   331   int cnt = 50;             // Cycle limiter
   332   for (;;) {                // While we can dance past unrelated stores...
   333     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   335     if (mem->is_Store()) {
   336       Node* st_adr = mem->in(MemNode::Address);
   337       intptr_t st_offset = 0;
   338       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   339       if (st_base == NULL)
   340         break;              // inscrutable pointer
   341       if (st_offset != offset && st_offset != Type::OffsetBot) {
   342         const int MAX_STORE = BytesPerLong;
   343         if (st_offset >= offset + size_in_bytes ||
   344             st_offset <= offset - MAX_STORE ||
   345             st_offset <= offset - mem->as_Store()->memory_size()) {
   346           // Success:  The offsets are provably independent.
   347           // (You may ask, why not just test st_offset != offset and be done?
   348           // The answer is that stores of different sizes can co-exist
   349           // in the same sequence of RawMem effects.  We sometimes initialize
   350           // a whole 'tile' of array elements with a single jint or jlong.)
   351           mem = mem->in(MemNode::Memory);
   352           continue;           // (a) advance through independent store memory
   353         }
   354       }
   355       if (st_base != base &&
   356           detect_ptr_independence(base, alloc,
   357                                   st_base,
   358                                   AllocateNode::Ideal_allocation(st_base, phase),
   359                                   phase)) {
   360         // Success:  The bases are provably independent.
   361         mem = mem->in(MemNode::Memory);
   362         continue;           // (a) advance through independent store memory
   363       }
   365       // (b) At this point, if the bases or offsets do not agree, we lose,
   366       // since we have not managed to prove 'this' and 'mem' independent.
   367       if (st_base == base && st_offset == offset) {
   368         return mem;         // let caller handle steps (c), (d)
   369       }
   371     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   372       InitializeNode* st_init = mem->in(0)->as_Initialize();
   373       AllocateNode*  st_alloc = st_init->allocation();
   374       if (st_alloc == NULL)
   375         break;              // something degenerated
   376       bool known_identical = false;
   377       bool known_independent = false;
   378       if (alloc == st_alloc)
   379         known_identical = true;
   380       else if (alloc != NULL)
   381         known_independent = true;
   382       else if (ctrl != NULL &&
   383                detect_dominating_control(ctrl, st_alloc->in(0)))
   384         known_independent = true;
   386       if (known_independent) {
   387         // The bases are provably independent: Either they are
   388         // manifestly distinct allocations, or else the control
   389         // of this load dominates the store's allocation.
   390         int alias_idx = phase->C->get_alias_index(adr_type());
   391         if (alias_idx == Compile::AliasIdxRaw) {
   392           mem = st_alloc->in(TypeFunc::Memory);
   393         } else {
   394           mem = st_init->memory(alias_idx);
   395         }
   396         continue;           // (a) advance through independent store memory
   397       }
   399       // (b) at this point, if we are not looking at a store initializing
   400       // the same allocation we are loading from, we lose.
   401       if (known_identical) {
   402         // From caller, can_see_stored_value will consult find_captured_store.
   403         return mem;         // let caller handle steps (c), (d)
   404       }
   406     } else if (addr_t != NULL && addr_t->is_instance_field()) {
   407       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   408       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   409         CallNode *call = mem->in(0)->as_Call();
   410         if (!call->may_modify(addr_t, phase)) {
   411           mem = call->in(TypeFunc::Memory);
   412           continue;         // (a) advance through independent call memory
   413         }
   414       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   415         mem = mem->in(0)->in(TypeFunc::Memory);
   416         continue;           // (a) advance through independent MemBar memory
   417       } else if (mem->is_MergeMem()) {
   418         int alias_idx = phase->C->get_alias_index(adr_type());
   419         mem = mem->as_MergeMem()->memory_at(alias_idx);
   420         continue;           // (a) advance through independent MergeMem memory
   421       }
   422     }
   424     // Unless there is an explicit 'continue', we must bail out here,
   425     // because 'mem' is an inscrutable memory state (e.g., a call).
   426     break;
   427   }
   429   return NULL;              // bail out
   430 }
   432 //----------------------calculate_adr_type-------------------------------------
   433 // Helper function.  Notices when the given type of address hits top or bottom.
   434 // Also, asserts a cross-check of the type against the expected address type.
   435 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   436   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   437   #ifdef PRODUCT
   438   cross_check = NULL;
   439   #else
   440   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   441   #endif
   442   const TypePtr* tp = t->isa_ptr();
   443   if (tp == NULL) {
   444     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   445     return TypePtr::BOTTOM;           // touches lots of memory
   446   } else {
   447     #ifdef ASSERT
   448     // %%%% [phh] We don't check the alias index if cross_check is
   449     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   450     if (cross_check != NULL &&
   451         cross_check != TypePtr::BOTTOM &&
   452         cross_check != TypeRawPtr::BOTTOM) {
   453       // Recheck the alias index, to see if it has changed (due to a bug).
   454       Compile* C = Compile::current();
   455       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   456              "must stay in the original alias category");
   457       // The type of the address must be contained in the adr_type,
   458       // disregarding "null"-ness.
   459       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   460       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   461       assert(cross_check->meet(tp_notnull) == cross_check,
   462              "real address must not escape from expected memory type");
   463     }
   464     #endif
   465     return tp;
   466   }
   467 }
   469 //------------------------adr_phi_is_loop_invariant----------------------------
   470 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   471 // loop is loop invariant. Make a quick traversal of Phi and associated
   472 // CastPP nodes, looking to see if they are a closed group within the loop.
   473 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   474   // The idea is that the phi-nest must boil down to only CastPP nodes
   475   // with the same data. This implies that any path into the loop already
   476   // includes such a CastPP, and so the original cast, whatever its input,
   477   // must be covered by an equivalent cast, with an earlier control input.
   478   ResourceMark rm;
   480   // The loop entry input of the phi should be the unique dominating
   481   // node for every Phi/CastPP in the loop.
   482   Unique_Node_List closure;
   483   closure.push(adr_phi->in(LoopNode::EntryControl));
   485   // Add the phi node and the cast to the worklist.
   486   Unique_Node_List worklist;
   487   worklist.push(adr_phi);
   488   if( cast != NULL ){
   489     if( !cast->is_ConstraintCast() ) return false;
   490     worklist.push(cast);
   491   }
   493   // Begin recursive walk of phi nodes.
   494   while( worklist.size() ){
   495     // Take a node off the worklist
   496     Node *n = worklist.pop();
   497     if( !closure.member(n) ){
   498       // Add it to the closure.
   499       closure.push(n);
   500       // Make a sanity check to ensure we don't waste too much time here.
   501       if( closure.size() > 20) return false;
   502       // This node is OK if:
   503       //  - it is a cast of an identical value
   504       //  - or it is a phi node (then we add its inputs to the worklist)
   505       // Otherwise, the node is not OK, and we presume the cast is not invariant
   506       if( n->is_ConstraintCast() ){
   507         worklist.push(n->in(1));
   508       } else if( n->is_Phi() ) {
   509         for( uint i = 1; i < n->req(); i++ ) {
   510           worklist.push(n->in(i));
   511         }
   512       } else {
   513         return false;
   514       }
   515     }
   516   }
   518   // Quit when the worklist is empty, and we've found no offending nodes.
   519   return true;
   520 }
   522 //------------------------------Ideal_DU_postCCP-------------------------------
   523 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   524 // going away in this pass and we need to make this memory op depend on the
   525 // gating null check.
   527 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   528 // some sense; we get to keep around the knowledge that an oop is not-null
   529 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   530 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   531 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   532 // some of the more trivial cases in the optimizer.  Removing more useless
   533 // Phi's started allowing Loads to illegally float above null checks.  I gave
   534 // up on this approach.  CNC 10/20/2000
   535 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   536   Node *ctr = in(MemNode::Control);
   537   Node *mem = in(MemNode::Memory);
   538   Node *adr = in(MemNode::Address);
   539   Node *skipped_cast = NULL;
   540   // Need a null check?  Regular static accesses do not because they are
   541   // from constant addresses.  Array ops are gated by the range check (which
   542   // always includes a NULL check).  Just check field ops.
   543   if( !ctr ) {
   544     // Scan upwards for the highest location we can place this memory op.
   545     while( true ) {
   546       switch( adr->Opcode() ) {
   548       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   549         adr = adr->in(AddPNode::Base);
   550         continue;
   552       case Op_CastPP:
   553         // If the CastPP is useless, just peek on through it.
   554         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   555           // Remember the cast that we've peeked though. If we peek
   556           // through more than one, then we end up remembering the highest
   557           // one, that is, if in a loop, the one closest to the top.
   558           skipped_cast = adr;
   559           adr = adr->in(1);
   560           continue;
   561         }
   562         // CastPP is going away in this pass!  We need this memory op to be
   563         // control-dependent on the test that is guarding the CastPP.
   564         ccp->hash_delete(this);
   565         set_req(MemNode::Control, adr->in(0));
   566         ccp->hash_insert(this);
   567         return this;
   569       case Op_Phi:
   570         // Attempt to float above a Phi to some dominating point.
   571         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   572           // If we've already peeked through a Cast (which could have set the
   573           // control), we can't float above a Phi, because the skipped Cast
   574           // may not be loop invariant.
   575           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   576             adr = adr->in(1);
   577             continue;
   578           }
   579         }
   581         // Intentional fallthrough!
   583         // No obvious dominating point.  The mem op is pinned below the Phi
   584         // by the Phi itself.  If the Phi goes away (no true value is merged)
   585         // then the mem op can float, but not indefinitely.  It must be pinned
   586         // behind the controls leading to the Phi.
   587       case Op_CheckCastPP:
   588         // These usually stick around to change address type, however a
   589         // useless one can be elided and we still need to pick up a control edge
   590         if (adr->in(0) == NULL) {
   591           // This CheckCastPP node has NO control and is likely useless. But we
   592           // need check further up the ancestor chain for a control input to keep
   593           // the node in place. 4959717.
   594           skipped_cast = adr;
   595           adr = adr->in(1);
   596           continue;
   597         }
   598         ccp->hash_delete(this);
   599         set_req(MemNode::Control, adr->in(0));
   600         ccp->hash_insert(this);
   601         return this;
   603         // List of "safe" opcodes; those that implicitly block the memory
   604         // op below any null check.
   605       case Op_CastX2P:          // no null checks on native pointers
   606       case Op_Parm:             // 'this' pointer is not null
   607       case Op_LoadP:            // Loading from within a klass
   608       case Op_LoadKlass:        // Loading from within a klass
   609       case Op_ConP:             // Loading from a klass
   610       case Op_CreateEx:         // Sucking up the guts of an exception oop
   611       case Op_Con:              // Reading from TLS
   612       case Op_CMoveP:           // CMoveP is pinned
   613         break;                  // No progress
   615       case Op_Proj:             // Direct call to an allocation routine
   616       case Op_SCMemProj:        // Memory state from store conditional ops
   617 #ifdef ASSERT
   618         {
   619           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   620           const Node* call = adr->in(0);
   621           if (call->is_CallStaticJava()) {
   622             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   623             const TypeTuple *r = call_java->tf()->range();
   624             assert(r->cnt() > TypeFunc::Parms, "must return value");
   625             const Type* ret_type = r->field_at(TypeFunc::Parms);
   626             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   627             // We further presume that this is one of
   628             // new_instance_Java, new_array_Java, or
   629             // the like, but do not assert for this.
   630           } else if (call->is_Allocate()) {
   631             // similar case to new_instance_Java, etc.
   632           } else if (!call->is_CallLeaf()) {
   633             // Projections from fetch_oop (OSR) are allowed as well.
   634             ShouldNotReachHere();
   635           }
   636         }
   637 #endif
   638         break;
   639       default:
   640         ShouldNotReachHere();
   641       }
   642       break;
   643     }
   644   }
   646   return  NULL;               // No progress
   647 }
   650 //=============================================================================
   651 uint LoadNode::size_of() const { return sizeof(*this); }
   652 uint LoadNode::cmp( const Node &n ) const
   653 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   654 const Type *LoadNode::bottom_type() const { return _type; }
   655 uint LoadNode::ideal_reg() const {
   656   return Matcher::base2reg[_type->base()];
   657 }
   659 #ifndef PRODUCT
   660 void LoadNode::dump_spec(outputStream *st) const {
   661   MemNode::dump_spec(st);
   662   if( !Verbose && !WizardMode ) {
   663     // standard dump does this in Verbose and WizardMode
   664     st->print(" #"); _type->dump_on(st);
   665   }
   666 }
   667 #endif
   670 //----------------------------LoadNode::make-----------------------------------
   671 // Polymorphic factory method:
   672 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   673   // sanity check the alias category against the created node type
   674   assert(!(adr_type->isa_oopptr() &&
   675            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   676          "use LoadKlassNode instead");
   677   assert(!(adr_type->isa_aryptr() &&
   678            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   679          "use LoadRangeNode instead");
   680   switch (bt) {
   681   case T_BOOLEAN:
   682   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   683   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   684   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   685   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   686   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   687   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   688   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   689   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   690   case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   691   }
   692   ShouldNotReachHere();
   693   return (LoadNode*)NULL;
   694 }
   696 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   697   bool require_atomic = true;
   698   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   699 }
   704 //------------------------------hash-------------------------------------------
   705 uint LoadNode::hash() const {
   706   // unroll addition of interesting fields
   707   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   708 }
   710 //---------------------------can_see_stored_value------------------------------
   711 // This routine exists to make sure this set of tests is done the same
   712 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   713 // will change the graph shape in a way which makes memory alive twice at the
   714 // same time (uses the Oracle model of aliasing), then some
   715 // LoadXNode::Identity will fold things back to the equivalence-class model
   716 // of aliasing.
   717 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   718   Node* ld_adr = in(MemNode::Address);
   720   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   721   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   722   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   723       atp->field() != NULL && !atp->field()->is_volatile()) {
   724     uint alias_idx = atp->index();
   725     bool final = atp->field()->is_final();
   726     Node* result = NULL;
   727     Node* current = st;
   728     // Skip through chains of MemBarNodes checking the MergeMems for
   729     // new states for the slice of this load.  Stop once any other
   730     // kind of node is encountered.  Loads from final memory can skip
   731     // through any kind of MemBar but normal loads shouldn't skip
   732     // through MemBarAcquire since the could allow them to move out of
   733     // a synchronized region.
   734     while (current->is_Proj()) {
   735       int opc = current->in(0)->Opcode();
   736       if ((final && opc == Op_MemBarAcquire) ||
   737           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   738         Node* mem = current->in(0)->in(TypeFunc::Memory);
   739         if (mem->is_MergeMem()) {
   740           MergeMemNode* merge = mem->as_MergeMem();
   741           Node* new_st = merge->memory_at(alias_idx);
   742           if (new_st == merge->base_memory()) {
   743             // Keep searching
   744             current = merge->base_memory();
   745             continue;
   746           }
   747           // Save the new memory state for the slice and fall through
   748           // to exit.
   749           result = new_st;
   750         }
   751       }
   752       break;
   753     }
   754     if (result != NULL) {
   755       st = result;
   756     }
   757   }
   760   // Loop around twice in the case Load -> Initialize -> Store.
   761   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   762   for (int trip = 0; trip <= 1; trip++) {
   764     if (st->is_Store()) {
   765       Node* st_adr = st->in(MemNode::Address);
   766       if (!phase->eqv(st_adr, ld_adr)) {
   767         // Try harder before giving up...  Match raw and non-raw pointers.
   768         intptr_t st_off = 0;
   769         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   770         if (alloc == NULL)       return NULL;
   771         intptr_t ld_off = 0;
   772         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   773         if (alloc != allo2)      return NULL;
   774         if (ld_off != st_off)    return NULL;
   775         // At this point we have proven something like this setup:
   776         //  A = Allocate(...)
   777         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   778         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   779         // (Actually, we haven't yet proven the Q's are the same.)
   780         // In other words, we are loading from a casted version of
   781         // the same pointer-and-offset that we stored to.
   782         // Thus, we are able to replace L by V.
   783       }
   784       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   785       if (store_Opcode() != st->Opcode())
   786         return NULL;
   787       return st->in(MemNode::ValueIn);
   788     }
   790     intptr_t offset = 0;  // scratch
   792     // A load from a freshly-created object always returns zero.
   793     // (This can happen after LoadNode::Ideal resets the load's memory input
   794     // to find_captured_store, which returned InitializeNode::zero_memory.)
   795     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   796         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   797         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   798       // return a zero value for the load's basic type
   799       // (This is one of the few places where a generic PhaseTransform
   800       // can create new nodes.  Think of it as lazily manifesting
   801       // virtually pre-existing constants.)
   802       return phase->zerocon(memory_type());
   803     }
   805     // A load from an initialization barrier can match a captured store.
   806     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   807       InitializeNode* init = st->in(0)->as_Initialize();
   808       AllocateNode* alloc = init->allocation();
   809       if (alloc != NULL &&
   810           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   811         // examine a captured store value
   812         st = init->find_captured_store(offset, memory_size(), phase);
   813         if (st != NULL)
   814           continue;             // take one more trip around
   815       }
   816     }
   818     break;
   819   }
   821   return NULL;
   822 }
   824 //----------------------is_instance_field_load_with_local_phi------------------
   825 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   826   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   827       in(MemNode::Address)->is_AddP() ) {
   828     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   829     // Only instances.
   830     if( t_oop != NULL && t_oop->is_instance_field() &&
   831         t_oop->offset() != Type::OffsetBot &&
   832         t_oop->offset() != Type::OffsetTop) {
   833       return true;
   834     }
   835   }
   836   return false;
   837 }
   839 //------------------------------Identity---------------------------------------
   840 // Loads are identity if previous store is to same address
   841 Node *LoadNode::Identity( PhaseTransform *phase ) {
   842   // If the previous store-maker is the right kind of Store, and the store is
   843   // to the same address, then we are equal to the value stored.
   844   Node* mem = in(MemNode::Memory);
   845   Node* value = can_see_stored_value(mem, phase);
   846   if( value ) {
   847     // byte, short & char stores truncate naturally.
   848     // A load has to load the truncated value which requires
   849     // some sort of masking operation and that requires an
   850     // Ideal call instead of an Identity call.
   851     if (memory_size() < BytesPerInt) {
   852       // If the input to the store does not fit with the load's result type,
   853       // it must be truncated via an Ideal call.
   854       if (!phase->type(value)->higher_equal(phase->type(this)))
   855         return this;
   856     }
   857     // (This works even when value is a Con, but LoadNode::Value
   858     // usually runs first, producing the singleton type of the Con.)
   859     return value;
   860   }
   862   // Search for an existing data phi which was generated before for the same
   863   // instance's field to avoid infinite genertion of phis in a loop.
   864   Node *region = mem->in(0);
   865   if (is_instance_field_load_with_local_phi(region)) {
   866     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   867     int this_index  = phase->C->get_alias_index(addr_t);
   868     int this_offset = addr_t->offset();
   869     int this_id    = addr_t->is_oopptr()->instance_id();
   870     const Type* this_type = bottom_type();
   871     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   872       Node* phi = region->fast_out(i);
   873       if (phi->is_Phi() && phi != mem &&
   874           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   875         return phi;
   876       }
   877     }
   878   }
   880   return this;
   881 }
   884 // Returns true if the AliasType refers to the field that holds the
   885 // cached box array.  Currently only handles the IntegerCache case.
   886 static bool is_autobox_cache(Compile::AliasType* atp) {
   887   if (atp != NULL && atp->field() != NULL) {
   888     ciField* field = atp->field();
   889     ciSymbol* klass = field->holder()->name();
   890     if (field->name() == ciSymbol::cache_field_name() &&
   891         field->holder()->uses_default_loader() &&
   892         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   893       return true;
   894     }
   895   }
   896   return false;
   897 }
   899 // Fetch the base value in the autobox array
   900 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   901   if (atp != NULL && atp->field() != NULL) {
   902     ciField* field = atp->field();
   903     ciSymbol* klass = field->holder()->name();
   904     if (field->name() == ciSymbol::cache_field_name() &&
   905         field->holder()->uses_default_loader() &&
   906         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   907       assert(field->is_constant(), "what?");
   908       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   909       // Fetch the box object at the base of the array and get its value
   910       ciInstance* box = array->obj_at(0)->as_instance();
   911       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   912       if (ik->nof_nonstatic_fields() == 1) {
   913         // This should be true nonstatic_field_at requires calling
   914         // nof_nonstatic_fields so check it anyway
   915         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
   916         cache_offset = c.as_int();
   917       }
   918       return true;
   919     }
   920   }
   921   return false;
   922 }
   924 // Returns true if the AliasType refers to the value field of an
   925 // autobox object.  Currently only handles Integer.
   926 static bool is_autobox_object(Compile::AliasType* atp) {
   927   if (atp != NULL && atp->field() != NULL) {
   928     ciField* field = atp->field();
   929     ciSymbol* klass = field->holder()->name();
   930     if (field->name() == ciSymbol::value_name() &&
   931         field->holder()->uses_default_loader() &&
   932         klass == ciSymbol::java_lang_Integer()) {
   933       return true;
   934     }
   935   }
   936   return false;
   937 }
   940 // We're loading from an object which has autobox behaviour.
   941 // If this object is result of a valueOf call we'll have a phi
   942 // merging a newly allocated object and a load from the cache.
   943 // We want to replace this load with the original incoming
   944 // argument to the valueOf call.
   945 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
   946   Node* base = in(Address)->in(AddPNode::Base);
   947   if (base->is_Phi() && base->req() == 3) {
   948     AllocateNode* allocation = NULL;
   949     int allocation_index = -1;
   950     int load_index = -1;
   951     for (uint i = 1; i < base->req(); i++) {
   952       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
   953       if (allocation != NULL) {
   954         allocation_index = i;
   955         load_index = 3 - allocation_index;
   956         break;
   957       }
   958     }
   959     LoadNode* load = NULL;
   960     if (allocation != NULL && base->in(load_index)->is_Load()) {
   961       load = base->in(load_index)->as_Load();
   962     }
   963     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
   964       // Push the loads from the phi that comes from valueOf up
   965       // through it to allow elimination of the loads and the recovery
   966       // of the original value.
   967       Node* mem_phi = in(Memory);
   968       Node* offset = in(Address)->in(AddPNode::Offset);
   970       Node* in1 = clone();
   971       Node* in1_addr = in1->in(Address)->clone();
   972       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
   973       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
   974       in1_addr->set_req(AddPNode::Offset, offset);
   975       in1->set_req(0, base->in(allocation_index));
   976       in1->set_req(Address, in1_addr);
   977       in1->set_req(Memory, mem_phi->in(allocation_index));
   979       Node* in2 = clone();
   980       Node* in2_addr = in2->in(Address)->clone();
   981       in2_addr->set_req(AddPNode::Base, base->in(load_index));
   982       in2_addr->set_req(AddPNode::Address, base->in(load_index));
   983       in2_addr->set_req(AddPNode::Offset, offset);
   984       in2->set_req(0, base->in(load_index));
   985       in2->set_req(Address, in2_addr);
   986       in2->set_req(Memory, mem_phi->in(load_index));
   988       in1_addr = phase->transform(in1_addr);
   989       in1 =      phase->transform(in1);
   990       in2_addr = phase->transform(in2_addr);
   991       in2 =      phase->transform(in2);
   993       PhiNode* result = PhiNode::make_blank(base->in(0), this);
   994       result->set_req(allocation_index, in1);
   995       result->set_req(load_index, in2);
   996       return result;
   997     }
   998   } else if (base->is_Load()) {
   999     // Eliminate the load of Integer.value for integers from the cache
  1000     // array by deriving the value from the index into the array.
  1001     // Capture the offset of the load and then reverse the computation.
  1002     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1003     if (load_base != NULL) {
  1004       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1005       intptr_t cache_offset;
  1006       int shift = -1;
  1007       Node* cache = NULL;
  1008       if (is_autobox_cache(atp)) {
  1009         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1010         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1012       if (cache != NULL && base->in(Address)->is_AddP()) {
  1013         Node* elements[4];
  1014         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1015         int cache_low;
  1016         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1017           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1018           // Add up all the offsets making of the address of the load
  1019           Node* result = elements[0];
  1020           for (int i = 1; i < count; i++) {
  1021             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1023           // Remove the constant offset from the address and then
  1024           // remove the scaling of the offset to recover the original index.
  1025           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1026           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1027             // Peel the shift off directly but wrap it in a dummy node
  1028             // since Ideal can't return existing nodes
  1029             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1030           } else {
  1031             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1033 #ifdef _LP64
  1034           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1035 #endif
  1036           return result;
  1041   return NULL;
  1045 //------------------------------Ideal------------------------------------------
  1046 // If the load is from Field memory and the pointer is non-null, we can
  1047 // zero out the control input.
  1048 // If the offset is constant and the base is an object allocation,
  1049 // try to hook me up to the exact initializing store.
  1050 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1051   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1052   if (p)  return (p == NodeSentinel) ? NULL : p;
  1054   Node* ctrl    = in(MemNode::Control);
  1055   Node* address = in(MemNode::Address);
  1057   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1058   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1059   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1060       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1061     ctrl = ctrl->in(0);
  1062     set_req(MemNode::Control,ctrl);
  1065   // Check for useless control edge in some common special cases
  1066   if (in(MemNode::Control) != NULL) {
  1067     intptr_t ignore = 0;
  1068     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1069     if (base != NULL
  1070         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1071         && detect_dominating_control(base->in(0), phase->C->start())) {
  1072       // A method-invariant, non-null address (constant or 'this' argument).
  1073       set_req(MemNode::Control, NULL);
  1077   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1078     Node* base = in(Address)->in(AddPNode::Base);
  1079     if (base != NULL) {
  1080       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1081       if (is_autobox_object(atp)) {
  1082         Node* result = eliminate_autobox(phase);
  1083         if (result != NULL) return result;
  1088   Node* mem = in(MemNode::Memory);
  1089   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1091   if (addr_t != NULL) {
  1092     // try to optimize our memory input
  1093     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1094     if (opt_mem != mem) {
  1095       set_req(MemNode::Memory, opt_mem);
  1096       return this;
  1098     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1099     if (can_reshape && opt_mem->is_Phi() &&
  1100         (t_oop != NULL) && t_oop->is_instance_field()) {
  1101       assert(t_oop->offset() != Type::OffsetBot && t_oop->offset() != Type::OffsetTop, "");
  1102       Node *region = opt_mem->in(0);
  1103       uint cnt = opt_mem->req();
  1104       for( uint i = 1; i < cnt; i++ ) {
  1105         Node *in = opt_mem->in(i);
  1106         if( in == NULL ) {
  1107           region = NULL; // Wait stable graph
  1108           break;
  1111       if (region != NULL) {
  1112         // Check for loop invariant.
  1113         if (cnt == 3) {
  1114           for( uint i = 1; i < cnt; i++ ) {
  1115             Node *in = opt_mem->in(i);
  1116             Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1117             if (m == opt_mem) {
  1118               set_req(MemNode::Memory, opt_mem->in(cnt - i)); // Skip this phi.
  1119               return this;
  1123         // Split through Phi (see original code in loopopts.cpp).
  1124         assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1126         // Do nothing here if Identity will find a value
  1127         // (to avoid infinite chain of value phis generation).
  1128         if ( !phase->eqv(this, this->Identity(phase)) )
  1129           return NULL;
  1131         const Type* this_type = this->bottom_type();
  1132         int this_index  = phase->C->get_alias_index(addr_t);
  1133         int this_offset = addr_t->offset();
  1134         int this_iid    = addr_t->is_oopptr()->instance_id();
  1135         int wins = 0;
  1136         PhaseIterGVN *igvn = phase->is_IterGVN();
  1137         Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1138         for( uint i = 1; i < region->req(); i++ ) {
  1139           Node *x;
  1140           Node* the_clone = NULL;
  1141           if( region->in(i) == phase->C->top() ) {
  1142             x = phase->C->top();      // Dead path?  Use a dead data op
  1143           } else {
  1144             x = this->clone();        // Else clone up the data op
  1145             the_clone = x;            // Remember for possible deletion.
  1146             // Alter data node to use pre-phi inputs
  1147             if( this->in(0) == region ) {
  1148               x->set_req( 0, region->in(i) );
  1149             } else {
  1150               x->set_req( 0, NULL );
  1152             for( uint j = 1; j < this->req(); j++ ) {
  1153               Node *in = this->in(j);
  1154               if( in->is_Phi() && in->in(0) == region )
  1155                 x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1158           // Check for a 'win' on some paths
  1159           const Type *t = x->Value(igvn);
  1161           bool singleton = t->singleton();
  1163           // See comments in PhaseIdealLoop::split_thru_phi().
  1164           if( singleton && t == Type::TOP ) {
  1165             singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1168           if( singleton ) {
  1169             wins++;
  1170             x = igvn->makecon(t);
  1171           } else {
  1172             // We now call Identity to try to simplify the cloned node.
  1173             // Note that some Identity methods call phase->type(this).
  1174             // Make sure that the type array is big enough for
  1175             // our new node, even though we may throw the node away.
  1176             // (This tweaking with igvn only works because x is a new node.)
  1177             igvn->set_type(x, t);
  1178             Node *y = x->Identity(igvn);
  1179             if( y != x ) {
  1180               wins++;
  1181               x = y;
  1182             } else {
  1183               y = igvn->hash_find(x);
  1184               if( y ) {
  1185                 wins++;
  1186                 x = y;
  1187               } else {
  1188                 // Else x is a new node we are keeping
  1189                 // We do not need register_new_node_with_optimizer
  1190                 // because set_type has already been called.
  1191                 igvn->_worklist.push(x);
  1195           if (x != the_clone && the_clone != NULL)
  1196             igvn->remove_dead_node(the_clone);
  1197           phi->set_req(i, x);
  1199         if( wins > 0 ) {
  1200           // Record Phi
  1201           igvn->register_new_node_with_optimizer(phi);
  1202           return phi;
  1203         } else {
  1204           igvn->remove_dead_node(phi);
  1210   // Check for prior store with a different base or offset; make Load
  1211   // independent.  Skip through any number of them.  Bail out if the stores
  1212   // are in an endless dead cycle and report no progress.  This is a key
  1213   // transform for Reflection.  However, if after skipping through the Stores
  1214   // we can't then fold up against a prior store do NOT do the transform as
  1215   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1216   // array memory alive twice: once for the hoisted Load and again after the
  1217   // bypassed Store.  This situation only works if EVERYBODY who does
  1218   // anti-dependence work knows how to bypass.  I.e. we need all
  1219   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1220   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1221   // fold up, do so.
  1222   Node* prev_mem = find_previous_store(phase);
  1223   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1224   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1225     // (c) See if we can fold up on the spot, but don't fold up here.
  1226     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1227     // just return a prior value, which is done by Identity calls.
  1228     if (can_see_stored_value(prev_mem, phase)) {
  1229       // Make ready for step (d):
  1230       set_req(MemNode::Memory, prev_mem);
  1231       return this;
  1235   return NULL;                  // No further progress
  1238 // Helper to recognize certain Klass fields which are invariant across
  1239 // some group of array types (e.g., int[] or all T[] where T < Object).
  1240 const Type*
  1241 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1242                                  ciKlass* klass) const {
  1243   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1244     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1245     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1246     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1247     return TypeInt::make(klass->modifier_flags());
  1249   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1250     // The field is Klass::_access_flags.  Return its (constant) value.
  1251     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1252     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1253     return TypeInt::make(klass->access_flags());
  1255   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1256     // The field is Klass::_layout_helper.  Return its constant value if known.
  1257     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1258     return TypeInt::make(klass->layout_helper());
  1261   // No match.
  1262   return NULL;
  1265 //------------------------------Value-----------------------------------------
  1266 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1267   // Either input is TOP ==> the result is TOP
  1268   Node* mem = in(MemNode::Memory);
  1269   const Type *t1 = phase->type(mem);
  1270   if (t1 == Type::TOP)  return Type::TOP;
  1271   Node* adr = in(MemNode::Address);
  1272   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1273   if (tp == NULL || tp->empty())  return Type::TOP;
  1274   int off = tp->offset();
  1275   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1277   // Try to guess loaded type from pointer type
  1278   if (tp->base() == Type::AryPtr) {
  1279     const Type *t = tp->is_aryptr()->elem();
  1280     // Don't do this for integer types. There is only potential profit if
  1281     // the element type t is lower than _type; that is, for int types, if _type is
  1282     // more restrictive than t.  This only happens here if one is short and the other
  1283     // char (both 16 bits), and in those cases we've made an intentional decision
  1284     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1285     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1286     //
  1287     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1288     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1289     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1290     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1291     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1292     // In fact, that could have been the original type of p1, and p1 could have
  1293     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1294     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1295     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1296         && Opcode() != Op_LoadKlass) {
  1297       // t might actually be lower than _type, if _type is a unique
  1298       // concrete subclass of abstract class t.
  1299       // Make sure the reference is not into the header, by comparing
  1300       // the offset against the offset of the start of the array's data.
  1301       // Different array types begin at slightly different offsets (12 vs. 16).
  1302       // We choose T_BYTE as an example base type that is least restrictive
  1303       // as to alignment, which will therefore produce the smallest
  1304       // possible base offset.
  1305       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1306       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1307         const Type* jt = t->join(_type);
  1308         // In any case, do not allow the join, per se, to empty out the type.
  1309         if (jt->empty() && !t->empty()) {
  1310           // This can happen if a interface-typed array narrows to a class type.
  1311           jt = _type;
  1314         if (EliminateAutoBox) {
  1315           // The pointers in the autobox arrays are always non-null
  1316           Node* base = in(Address)->in(AddPNode::Base);
  1317           if (base != NULL) {
  1318             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1319             if (is_autobox_cache(atp)) {
  1320               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1324         return jt;
  1327   } else if (tp->base() == Type::InstPtr) {
  1328     assert( off != Type::OffsetBot ||
  1329             // arrays can be cast to Objects
  1330             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1331             // unsafe field access may not have a constant offset
  1332             phase->C->has_unsafe_access(),
  1333             "Field accesses must be precise" );
  1334     // For oop loads, we expect the _type to be precise
  1335   } else if (tp->base() == Type::KlassPtr) {
  1336     assert( off != Type::OffsetBot ||
  1337             // arrays can be cast to Objects
  1338             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1339             // also allow array-loading from the primary supertype
  1340             // array during subtype checks
  1341             Opcode() == Op_LoadKlass,
  1342             "Field accesses must be precise" );
  1343     // For klass/static loads, we expect the _type to be precise
  1346   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1347   if (tkls != NULL && !StressReflectiveCode) {
  1348     ciKlass* klass = tkls->klass();
  1349     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1350       // We are loading a field from a Klass metaobject whose identity
  1351       // is known at compile time (the type is "exact" or "precise").
  1352       // Check for fields we know are maintained as constants by the VM.
  1353       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1354         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1355         // (Folds up type checking code.)
  1356         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1357         return TypeInt::make(klass->super_check_offset());
  1359       // Compute index into primary_supers array
  1360       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1361       // Check for overflowing; use unsigned compare to handle the negative case.
  1362       if( depth < ciKlass::primary_super_limit() ) {
  1363         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1364         // (Folds up type checking code.)
  1365         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1366         ciKlass *ss = klass->super_of_depth(depth);
  1367         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1369       const Type* aift = load_array_final_field(tkls, klass);
  1370       if (aift != NULL)  return aift;
  1371       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1372           && klass->is_array_klass()) {
  1373         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1374         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1375         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1376         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1378       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1379         // The field is Klass::_java_mirror.  Return its (constant) value.
  1380         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1381         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1382         return TypeInstPtr::make(klass->java_mirror());
  1386     // We can still check if we are loading from the primary_supers array at a
  1387     // shallow enough depth.  Even though the klass is not exact, entries less
  1388     // than or equal to its super depth are correct.
  1389     if (klass->is_loaded() ) {
  1390       ciType *inner = klass->klass();
  1391       while( inner->is_obj_array_klass() )
  1392         inner = inner->as_obj_array_klass()->base_element_type();
  1393       if( inner->is_instance_klass() &&
  1394           !inner->as_instance_klass()->flags().is_interface() ) {
  1395         // Compute index into primary_supers array
  1396         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1397         // Check for overflowing; use unsigned compare to handle the negative case.
  1398         if( depth < ciKlass::primary_super_limit() &&
  1399             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1400           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1401           // (Folds up type checking code.)
  1402           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1403           ciKlass *ss = klass->super_of_depth(depth);
  1404           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1409     // If the type is enough to determine that the thing is not an array,
  1410     // we can give the layout_helper a positive interval type.
  1411     // This will help short-circuit some reflective code.
  1412     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1413         && !klass->is_array_klass() // not directly typed as an array
  1414         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1415         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1416         ) {
  1417       // Note:  When interfaces are reliable, we can narrow the interface
  1418       // test to (klass != Serializable && klass != Cloneable).
  1419       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1420       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1421       // The key property of this type is that it folds up tests
  1422       // for array-ness, since it proves that the layout_helper is positive.
  1423       // Thus, a generic value like the basic object layout helper works fine.
  1424       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1428   // If we are loading from a freshly-allocated object, produce a zero,
  1429   // if the load is provably beyond the header of the object.
  1430   // (Also allow a variable load from a fresh array to produce zero.)
  1431   if (ReduceFieldZeroing) {
  1432     Node* value = can_see_stored_value(mem,phase);
  1433     if (value != NULL && value->is_Con())
  1434       return value->bottom_type();
  1437   const TypeOopPtr *tinst = tp->isa_oopptr();
  1438   if (tinst != NULL && tinst->is_instance_field()) {
  1439     // If we have an instance type and our memory input is the
  1440     // programs's initial memory state, there is no matching store,
  1441     // so just return a zero of the appropriate type
  1442     Node *mem = in(MemNode::Memory);
  1443     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1444       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1445       return Type::get_zero_type(_type->basic_type());
  1448   return _type;
  1451 //------------------------------match_edge-------------------------------------
  1452 // Do we Match on this edge index or not?  Match only the address.
  1453 uint LoadNode::match_edge(uint idx) const {
  1454   return idx == MemNode::Address;
  1457 //--------------------------LoadBNode::Ideal--------------------------------------
  1458 //
  1459 //  If the previous store is to the same address as this load,
  1460 //  and the value stored was larger than a byte, replace this load
  1461 //  with the value stored truncated to a byte.  If no truncation is
  1462 //  needed, the replacement is done in LoadNode::Identity().
  1463 //
  1464 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1465   Node* mem = in(MemNode::Memory);
  1466   Node* value = can_see_stored_value(mem,phase);
  1467   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1468     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1469     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1471   // Identity call will handle the case where truncation is not needed.
  1472   return LoadNode::Ideal(phase, can_reshape);
  1475 //--------------------------LoadCNode::Ideal--------------------------------------
  1476 //
  1477 //  If the previous store is to the same address as this load,
  1478 //  and the value stored was larger than a char, replace this load
  1479 //  with the value stored truncated to a char.  If no truncation is
  1480 //  needed, the replacement is done in LoadNode::Identity().
  1481 //
  1482 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1483   Node* mem = in(MemNode::Memory);
  1484   Node* value = can_see_stored_value(mem,phase);
  1485   if( value && !phase->type(value)->higher_equal( _type ) )
  1486     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1487   // Identity call will handle the case where truncation is not needed.
  1488   return LoadNode::Ideal(phase, can_reshape);
  1491 //--------------------------LoadSNode::Ideal--------------------------------------
  1492 //
  1493 //  If the previous store is to the same address as this load,
  1494 //  and the value stored was larger than a short, replace this load
  1495 //  with the value stored truncated to a short.  If no truncation is
  1496 //  needed, the replacement is done in LoadNode::Identity().
  1497 //
  1498 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1499   Node* mem = in(MemNode::Memory);
  1500   Node* value = can_see_stored_value(mem,phase);
  1501   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1502     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1503     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1505   // Identity call will handle the case where truncation is not needed.
  1506   return LoadNode::Ideal(phase, can_reshape);
  1509 //=============================================================================
  1510 //------------------------------Value------------------------------------------
  1511 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1512   // Either input is TOP ==> the result is TOP
  1513   const Type *t1 = phase->type( in(MemNode::Memory) );
  1514   if (t1 == Type::TOP)  return Type::TOP;
  1515   Node *adr = in(MemNode::Address);
  1516   const Type *t2 = phase->type( adr );
  1517   if (t2 == Type::TOP)  return Type::TOP;
  1518   const TypePtr *tp = t2->is_ptr();
  1519   if (TypePtr::above_centerline(tp->ptr()) ||
  1520       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1522   // Return a more precise klass, if possible
  1523   const TypeInstPtr *tinst = tp->isa_instptr();
  1524   if (tinst != NULL) {
  1525     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1526     int offset = tinst->offset();
  1527     if (ik == phase->C->env()->Class_klass()
  1528         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1529             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1530       // We are loading a special hidden field from a Class mirror object,
  1531       // the field which points to the VM's Klass metaobject.
  1532       ciType* t = tinst->java_mirror_type();
  1533       // java_mirror_type returns non-null for compile-time Class constants.
  1534       if (t != NULL) {
  1535         // constant oop => constant klass
  1536         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1537           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1539         if (!t->is_klass()) {
  1540           // a primitive Class (e.g., int.class) has NULL for a klass field
  1541           return TypePtr::NULL_PTR;
  1543         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1544         return TypeKlassPtr::make(t->as_klass());
  1546       // non-constant mirror, so we can't tell what's going on
  1548     if( !ik->is_loaded() )
  1549       return _type;             // Bail out if not loaded
  1550     if (offset == oopDesc::klass_offset_in_bytes()) {
  1551       if (tinst->klass_is_exact()) {
  1552         return TypeKlassPtr::make(ik);
  1554       // See if we can become precise: no subklasses and no interface
  1555       // (Note:  We need to support verified interfaces.)
  1556       if (!ik->is_interface() && !ik->has_subklass()) {
  1557         //assert(!UseExactTypes, "this code should be useless with exact types");
  1558         // Add a dependence; if any subclass added we need to recompile
  1559         if (!ik->is_final()) {
  1560           // %%% should use stronger assert_unique_concrete_subtype instead
  1561           phase->C->dependencies()->assert_leaf_type(ik);
  1563         // Return precise klass
  1564         return TypeKlassPtr::make(ik);
  1567       // Return root of possible klass
  1568       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1572   // Check for loading klass from an array
  1573   const TypeAryPtr *tary = tp->isa_aryptr();
  1574   if( tary != NULL ) {
  1575     ciKlass *tary_klass = tary->klass();
  1576     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1577         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1578       if (tary->klass_is_exact()) {
  1579         return TypeKlassPtr::make(tary_klass);
  1581       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1582       // If the klass is an object array, we defer the question to the
  1583       // array component klass.
  1584       if( ak->is_obj_array_klass() ) {
  1585         assert( ak->is_loaded(), "" );
  1586         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1587         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1588           ciInstanceKlass* ik = base_k->as_instance_klass();
  1589           // See if we can become precise: no subklasses and no interface
  1590           if (!ik->is_interface() && !ik->has_subklass()) {
  1591             //assert(!UseExactTypes, "this code should be useless with exact types");
  1592             // Add a dependence; if any subclass added we need to recompile
  1593             if (!ik->is_final()) {
  1594               phase->C->dependencies()->assert_leaf_type(ik);
  1596             // Return precise array klass
  1597             return TypeKlassPtr::make(ak);
  1600         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1601       } else {                  // Found a type-array?
  1602         //assert(!UseExactTypes, "this code should be useless with exact types");
  1603         assert( ak->is_type_array_klass(), "" );
  1604         return TypeKlassPtr::make(ak); // These are always precise
  1609   // Check for loading klass from an array klass
  1610   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1611   if (tkls != NULL && !StressReflectiveCode) {
  1612     ciKlass* klass = tkls->klass();
  1613     if( !klass->is_loaded() )
  1614       return _type;             // Bail out if not loaded
  1615     if( klass->is_obj_array_klass() &&
  1616         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1617       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1618       // // Always returning precise element type is incorrect,
  1619       // // e.g., element type could be object and array may contain strings
  1620       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1622       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1623       // according to the element type's subclassing.
  1624       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1626     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1627         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1628       ciKlass* sup = klass->as_instance_klass()->super();
  1629       // The field is Klass::_super.  Return its (constant) value.
  1630       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1631       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1635   // Bailout case
  1636   return LoadNode::Value(phase);
  1639 //------------------------------Identity---------------------------------------
  1640 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1641 // Also feed through the klass in Allocate(...klass...)._klass.
  1642 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1643   Node* x = LoadNode::Identity(phase);
  1644   if (x != this)  return x;
  1646   // Take apart the address into an oop and and offset.
  1647   // Return 'this' if we cannot.
  1648   Node*    adr    = in(MemNode::Address);
  1649   intptr_t offset = 0;
  1650   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1651   if (base == NULL)     return this;
  1652   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1653   if (toop == NULL)     return this;
  1655   // We can fetch the klass directly through an AllocateNode.
  1656   // This works even if the klass is not constant (clone or newArray).
  1657   if (offset == oopDesc::klass_offset_in_bytes()) {
  1658     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1659     if (allocated_klass != NULL) {
  1660       return allocated_klass;
  1664   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1665   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1666   // See inline_native_Class_query for occurrences of these patterns.
  1667   // Java Example:  x.getClass().isAssignableFrom(y)
  1668   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1669   //
  1670   // This improves reflective code, often making the Class
  1671   // mirror go completely dead.  (Current exception:  Class
  1672   // mirrors may appear in debug info, but we could clean them out by
  1673   // introducing a new debug info operator for klassOop.java_mirror).
  1674   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1675       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1676           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1677     // We are loading a special hidden field from a Class mirror,
  1678     // the field which points to its Klass or arrayKlass metaobject.
  1679     if (base->is_Load()) {
  1680       Node* adr2 = base->in(MemNode::Address);
  1681       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1682       if (tkls != NULL && !tkls->empty()
  1683           && (tkls->klass()->is_instance_klass() ||
  1684               tkls->klass()->is_array_klass())
  1685           && adr2->is_AddP()
  1686           ) {
  1687         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1688         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1689           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1691         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1692           return adr2->in(AddPNode::Base);
  1698   return this;
  1701 //------------------------------Value-----------------------------------------
  1702 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1703   // Either input is TOP ==> the result is TOP
  1704   const Type *t1 = phase->type( in(MemNode::Memory) );
  1705   if( t1 == Type::TOP ) return Type::TOP;
  1706   Node *adr = in(MemNode::Address);
  1707   const Type *t2 = phase->type( adr );
  1708   if( t2 == Type::TOP ) return Type::TOP;
  1709   const TypePtr *tp = t2->is_ptr();
  1710   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1711   const TypeAryPtr *tap = tp->isa_aryptr();
  1712   if( !tap ) return _type;
  1713   return tap->size();
  1716 //------------------------------Identity---------------------------------------
  1717 // Feed through the length in AllocateArray(...length...)._length.
  1718 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1719   Node* x = LoadINode::Identity(phase);
  1720   if (x != this)  return x;
  1722   // Take apart the address into an oop and and offset.
  1723   // Return 'this' if we cannot.
  1724   Node*    adr    = in(MemNode::Address);
  1725   intptr_t offset = 0;
  1726   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1727   if (base == NULL)     return this;
  1728   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1729   if (tary == NULL)     return this;
  1731   // We can fetch the length directly through an AllocateArrayNode.
  1732   // This works even if the length is not constant (clone or newArray).
  1733   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1734     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1735     if (allocated_length != NULL) {
  1736       return allocated_length;
  1740   return this;
  1743 //=============================================================================
  1744 //---------------------------StoreNode::make-----------------------------------
  1745 // Polymorphic factory method:
  1746 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1747   switch (bt) {
  1748   case T_BOOLEAN:
  1749   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1750   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1751   case T_CHAR:
  1752   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1753   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1754   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1755   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1756   case T_ADDRESS:
  1757   case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1759   ShouldNotReachHere();
  1760   return (StoreNode*)NULL;
  1763 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1764   bool require_atomic = true;
  1765   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1769 //--------------------------bottom_type----------------------------------------
  1770 const Type *StoreNode::bottom_type() const {
  1771   return Type::MEMORY;
  1774 //------------------------------hash-------------------------------------------
  1775 uint StoreNode::hash() const {
  1776   // unroll addition of interesting fields
  1777   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1779   // Since they are not commoned, do not hash them:
  1780   return NO_HASH;
  1783 //------------------------------Ideal------------------------------------------
  1784 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1785 // When a store immediately follows a relevant allocation/initialization,
  1786 // try to capture it into the initialization, or hoist it above.
  1787 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1788   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1789   if (p)  return (p == NodeSentinel) ? NULL : p;
  1791   Node* mem     = in(MemNode::Memory);
  1792   Node* address = in(MemNode::Address);
  1794   // Back-to-back stores to same address?  Fold em up.
  1795   // Generally unsafe if I have intervening uses...
  1796   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1797     // Looking at a dead closed cycle of memory?
  1798     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1800     assert(Opcode() == mem->Opcode() ||
  1801            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1802            "no mismatched stores, except on raw memory");
  1804     if (mem->outcnt() == 1 &&           // check for intervening uses
  1805         mem->as_Store()->memory_size() <= this->memory_size()) {
  1806       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1807       // For example, 'mem' might be the final state at a conditional return.
  1808       // Or, 'mem' might be used by some node which is live at the same time
  1809       // 'this' is live, which might be unschedulable.  So, require exactly
  1810       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1811       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1812       if (can_reshape) {  // (%%% is this an anachronism?)
  1813         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1814                   phase->is_IterGVN());
  1815       } else {
  1816         // It's OK to do this in the parser, since DU info is always accurate,
  1817         // and the parser always refers to nodes via SafePointNode maps.
  1818         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1820       return this;
  1824   // Capture an unaliased, unconditional, simple store into an initializer.
  1825   // Or, if it is independent of the allocation, hoist it above the allocation.
  1826   if (ReduceFieldZeroing && /*can_reshape &&*/
  1827       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1828     InitializeNode* init = mem->in(0)->as_Initialize();
  1829     intptr_t offset = init->can_capture_store(this, phase);
  1830     if (offset > 0) {
  1831       Node* moved = init->capture_store(this, offset, phase);
  1832       // If the InitializeNode captured me, it made a raw copy of me,
  1833       // and I need to disappear.
  1834       if (moved != NULL) {
  1835         // %%% hack to ensure that Ideal returns a new node:
  1836         mem = MergeMemNode::make(phase->C, mem);
  1837         return mem;             // fold me away
  1842   return NULL;                  // No further progress
  1845 //------------------------------Value-----------------------------------------
  1846 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1847   // Either input is TOP ==> the result is TOP
  1848   const Type *t1 = phase->type( in(MemNode::Memory) );
  1849   if( t1 == Type::TOP ) return Type::TOP;
  1850   const Type *t2 = phase->type( in(MemNode::Address) );
  1851   if( t2 == Type::TOP ) return Type::TOP;
  1852   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1853   if( t3 == Type::TOP ) return Type::TOP;
  1854   return Type::MEMORY;
  1857 //------------------------------Identity---------------------------------------
  1858 // Remove redundant stores:
  1859 //   Store(m, p, Load(m, p)) changes to m.
  1860 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1861 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1862   Node* mem = in(MemNode::Memory);
  1863   Node* adr = in(MemNode::Address);
  1864   Node* val = in(MemNode::ValueIn);
  1866   // Load then Store?  Then the Store is useless
  1867   if (val->is_Load() &&
  1868       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1869       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1870       val->as_Load()->store_Opcode() == Opcode()) {
  1871     return mem;
  1874   // Two stores in a row of the same value?
  1875   if (mem->is_Store() &&
  1876       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1877       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1878       mem->Opcode() == Opcode()) {
  1879     return mem;
  1882   // Store of zero anywhere into a freshly-allocated object?
  1883   // Then the store is useless.
  1884   // (It must already have been captured by the InitializeNode.)
  1885   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1886     // a newly allocated object is already all-zeroes everywhere
  1887     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1888       return mem;
  1891     // the store may also apply to zero-bits in an earlier object
  1892     Node* prev_mem = find_previous_store(phase);
  1893     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1894     if (prev_mem != NULL) {
  1895       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1896       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1897         // prev_val and val might differ by a cast; it would be good
  1898         // to keep the more informative of the two.
  1899         return mem;
  1904   return this;
  1907 //------------------------------match_edge-------------------------------------
  1908 // Do we Match on this edge index or not?  Match only memory & value
  1909 uint StoreNode::match_edge(uint idx) const {
  1910   return idx == MemNode::Address || idx == MemNode::ValueIn;
  1913 //------------------------------cmp--------------------------------------------
  1914 // Do not common stores up together.  They generally have to be split
  1915 // back up anyways, so do not bother.
  1916 uint StoreNode::cmp( const Node &n ) const {
  1917   return (&n == this);          // Always fail except on self
  1920 //------------------------------Ideal_masked_input-----------------------------
  1921 // Check for a useless mask before a partial-word store
  1922 // (StoreB ... (AndI valIn conIa) )
  1923 // If (conIa & mask == mask) this simplifies to
  1924 // (StoreB ... (valIn) )
  1925 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1926   Node *val = in(MemNode::ValueIn);
  1927   if( val->Opcode() == Op_AndI ) {
  1928     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1929     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1930       set_req(MemNode::ValueIn, val->in(1));
  1931       return this;
  1934   return NULL;
  1938 //------------------------------Ideal_sign_extended_input----------------------
  1939 // Check for useless sign-extension before a partial-word store
  1940 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1941 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1942 // (StoreB ... (valIn) )
  1943 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1944   Node *val = in(MemNode::ValueIn);
  1945   if( val->Opcode() == Op_RShiftI ) {
  1946     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1947     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  1948       Node *shl = val->in(1);
  1949       if( shl->Opcode() == Op_LShiftI ) {
  1950         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  1951         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  1952           set_req(MemNode::ValueIn, shl->in(1));
  1953           return this;
  1958   return NULL;
  1961 //------------------------------value_never_loaded-----------------------------------
  1962 // Determine whether there are any possible loads of the value stored.
  1963 // For simplicity, we actually check if there are any loads from the
  1964 // address stored to, not just for loads of the value stored by this node.
  1965 //
  1966 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  1967   Node *adr = in(Address);
  1968   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  1969   if (adr_oop == NULL)
  1970     return false;
  1971   if (!adr_oop->is_instance_field())
  1972     return false; // if not a distinct instance, there may be aliases of the address
  1973   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  1974     Node *use = adr->fast_out(i);
  1975     int opc = use->Opcode();
  1976     if (use->is_Load() || use->is_LoadStore()) {
  1977       return false;
  1980   return true;
  1983 //=============================================================================
  1984 //------------------------------Ideal------------------------------------------
  1985 // If the store is from an AND mask that leaves the low bits untouched, then
  1986 // we can skip the AND operation.  If the store is from a sign-extension
  1987 // (a left shift, then right shift) we can skip both.
  1988 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1989   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  1990   if( progress != NULL ) return progress;
  1992   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  1993   if( progress != NULL ) return progress;
  1995   // Finally check the default case
  1996   return StoreNode::Ideal(phase, can_reshape);
  1999 //=============================================================================
  2000 //------------------------------Ideal------------------------------------------
  2001 // If the store is from an AND mask that leaves the low bits untouched, then
  2002 // we can skip the AND operation
  2003 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2004   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2005   if( progress != NULL ) return progress;
  2007   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2008   if( progress != NULL ) return progress;
  2010   // Finally check the default case
  2011   return StoreNode::Ideal(phase, can_reshape);
  2014 //=============================================================================
  2015 //------------------------------Identity---------------------------------------
  2016 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2017   // No need to card mark when storing a null ptr
  2018   Node* my_store = in(MemNode::OopStore);
  2019   if (my_store->is_Store()) {
  2020     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2021     if( t1 == TypePtr::NULL_PTR ) {
  2022       return in(MemNode::Memory);
  2025   return this;
  2028 //------------------------------Value-----------------------------------------
  2029 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2030   // Either input is TOP ==> the result is TOP
  2031   const Type *t = phase->type( in(MemNode::Memory) );
  2032   if( t == Type::TOP ) return Type::TOP;
  2033   t = phase->type( in(MemNode::Address) );
  2034   if( t == Type::TOP ) return Type::TOP;
  2035   t = phase->type( in(MemNode::ValueIn) );
  2036   if( t == Type::TOP ) return Type::TOP;
  2037   // If extra input is TOP ==> the result is TOP
  2038   t = phase->type( in(MemNode::OopStore) );
  2039   if( t == Type::TOP ) return Type::TOP;
  2041   return StoreNode::Value( phase );
  2045 //=============================================================================
  2046 //----------------------------------SCMemProjNode------------------------------
  2047 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2049   return bottom_type();
  2052 //=============================================================================
  2053 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2054   init_req(MemNode::Control, c  );
  2055   init_req(MemNode::Memory , mem);
  2056   init_req(MemNode::Address, adr);
  2057   init_req(MemNode::ValueIn, val);
  2058   init_req(         ExpectedIn, ex );
  2059   init_class_id(Class_LoadStore);
  2063 //=============================================================================
  2064 //-------------------------------adr_type--------------------------------------
  2065 // Do we Match on this edge index or not?  Do not match memory
  2066 const TypePtr* ClearArrayNode::adr_type() const {
  2067   Node *adr = in(3);
  2068   return MemNode::calculate_adr_type(adr->bottom_type());
  2071 //------------------------------match_edge-------------------------------------
  2072 // Do we Match on this edge index or not?  Do not match memory
  2073 uint ClearArrayNode::match_edge(uint idx) const {
  2074   return idx > 1;
  2077 //------------------------------Identity---------------------------------------
  2078 // Clearing a zero length array does nothing
  2079 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2080   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2083 //------------------------------Idealize---------------------------------------
  2084 // Clearing a short array is faster with stores
  2085 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2086   const int unit = BytesPerLong;
  2087   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2088   if (!t)  return NULL;
  2089   if (!t->is_con())  return NULL;
  2090   intptr_t raw_count = t->get_con();
  2091   intptr_t size = raw_count;
  2092   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2093   // Clearing nothing uses the Identity call.
  2094   // Negative clears are possible on dead ClearArrays
  2095   // (see jck test stmt114.stmt11402.val).
  2096   if (size <= 0 || size % unit != 0)  return NULL;
  2097   intptr_t count = size / unit;
  2098   // Length too long; use fast hardware clear
  2099   if (size > Matcher::init_array_short_size)  return NULL;
  2100   Node *mem = in(1);
  2101   if( phase->type(mem)==Type::TOP ) return NULL;
  2102   Node *adr = in(3);
  2103   const Type* at = phase->type(adr);
  2104   if( at==Type::TOP ) return NULL;
  2105   const TypePtr* atp = at->isa_ptr();
  2106   // adjust atp to be the correct array element address type
  2107   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2108   else              atp = atp->add_offset(Type::OffsetBot);
  2109   // Get base for derived pointer purposes
  2110   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2111   Node *base = adr->in(1);
  2113   Node *zero = phase->makecon(TypeLong::ZERO);
  2114   Node *off  = phase->MakeConX(BytesPerLong);
  2115   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2116   count--;
  2117   while( count-- ) {
  2118     mem = phase->transform(mem);
  2119     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2120     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2122   return mem;
  2125 //----------------------------clear_memory-------------------------------------
  2126 // Generate code to initialize object storage to zero.
  2127 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2128                                    intptr_t start_offset,
  2129                                    Node* end_offset,
  2130                                    PhaseGVN* phase) {
  2131   Compile* C = phase->C;
  2132   intptr_t offset = start_offset;
  2134   int unit = BytesPerLong;
  2135   if ((offset % unit) != 0) {
  2136     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2137     adr = phase->transform(adr);
  2138     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2139     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2140     mem = phase->transform(mem);
  2141     offset += BytesPerInt;
  2143   assert((offset % unit) == 0, "");
  2145   // Initialize the remaining stuff, if any, with a ClearArray.
  2146   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2149 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2150                                    Node* start_offset,
  2151                                    Node* end_offset,
  2152                                    PhaseGVN* phase) {
  2153   if (start_offset == end_offset) {
  2154     // nothing to do
  2155     return mem;
  2158   Compile* C = phase->C;
  2159   int unit = BytesPerLong;
  2160   Node* zbase = start_offset;
  2161   Node* zend  = end_offset;
  2163   // Scale to the unit required by the CPU:
  2164   if (!Matcher::init_array_count_is_in_bytes) {
  2165     Node* shift = phase->intcon(exact_log2(unit));
  2166     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2167     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2170   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2171   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2173   // Bulk clear double-words
  2174   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2175   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2176   return phase->transform(mem);
  2179 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2180                                    intptr_t start_offset,
  2181                                    intptr_t end_offset,
  2182                                    PhaseGVN* phase) {
  2183   if (start_offset == end_offset) {
  2184     // nothing to do
  2185     return mem;
  2188   Compile* C = phase->C;
  2189   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2190   intptr_t done_offset = end_offset;
  2191   if ((done_offset % BytesPerLong) != 0) {
  2192     done_offset -= BytesPerInt;
  2194   if (done_offset > start_offset) {
  2195     mem = clear_memory(ctl, mem, dest,
  2196                        start_offset, phase->MakeConX(done_offset), phase);
  2198   if (done_offset < end_offset) { // emit the final 32-bit store
  2199     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2200     adr = phase->transform(adr);
  2201     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2202     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2203     mem = phase->transform(mem);
  2204     done_offset += BytesPerInt;
  2206   assert(done_offset == end_offset, "");
  2207   return mem;
  2210 //=============================================================================
  2211 // Do we match on this edge? No memory edges
  2212 uint StrCompNode::match_edge(uint idx) const {
  2213   return idx == 5 || idx == 6;
  2216 //------------------------------Ideal------------------------------------------
  2217 // Return a node which is more "ideal" than the current node.  Strip out
  2218 // control copies
  2219 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2220   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2224 //=============================================================================
  2225 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2226   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2227     _adr_type(C->get_adr_type(alias_idx))
  2229   init_class_id(Class_MemBar);
  2230   Node* top = C->top();
  2231   init_req(TypeFunc::I_O,top);
  2232   init_req(TypeFunc::FramePtr,top);
  2233   init_req(TypeFunc::ReturnAdr,top);
  2234   if (precedent != NULL)
  2235     init_req(TypeFunc::Parms, precedent);
  2238 //------------------------------cmp--------------------------------------------
  2239 uint MemBarNode::hash() const { return NO_HASH; }
  2240 uint MemBarNode::cmp( const Node &n ) const {
  2241   return (&n == this);          // Always fail except on self
  2244 //------------------------------make-------------------------------------------
  2245 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2246   int len = Precedent + (pn == NULL? 0: 1);
  2247   switch (opcode) {
  2248   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2249   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2250   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2251   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2252   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2253   default:                 ShouldNotReachHere(); return NULL;
  2257 //------------------------------Ideal------------------------------------------
  2258 // Return a node which is more "ideal" than the current node.  Strip out
  2259 // control copies
  2260 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2261   if (remove_dead_region(phase, can_reshape))  return this;
  2262   return NULL;
  2265 //------------------------------Value------------------------------------------
  2266 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2267   if( !in(0) ) return Type::TOP;
  2268   if( phase->type(in(0)) == Type::TOP )
  2269     return Type::TOP;
  2270   return TypeTuple::MEMBAR;
  2273 //------------------------------match------------------------------------------
  2274 // Construct projections for memory.
  2275 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2276   switch (proj->_con) {
  2277   case TypeFunc::Control:
  2278   case TypeFunc::Memory:
  2279     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2281   ShouldNotReachHere();
  2282   return NULL;
  2285 //===========================InitializeNode====================================
  2286 // SUMMARY:
  2287 // This node acts as a memory barrier on raw memory, after some raw stores.
  2288 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2289 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2290 // It can coalesce related raw stores into larger units (called 'tiles').
  2291 // It can avoid zeroing new storage for memory units which have raw inits.
  2292 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2293 //
  2294 // EXAMPLE:
  2295 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2296 //   ctl = incoming control; mem* = incoming memory
  2297 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2298 // First allocate uninitialized memory and fill in the header:
  2299 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2300 //   ctl := alloc.Control; mem* := alloc.Memory*
  2301 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2302 // Then initialize to zero the non-header parts of the raw memory block:
  2303 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2304 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2305 // After the initialize node executes, the object is ready for service:
  2306 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2307 // Suppose its body is immediately initialized as {1,2}:
  2308 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2309 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2310 //   mem.SLICE(#short[*]) := store2
  2311 //
  2312 // DETAILS:
  2313 // An InitializeNode collects and isolates object initialization after
  2314 // an AllocateNode and before the next possible safepoint.  As a
  2315 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2316 // down past any safepoint or any publication of the allocation.
  2317 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2318 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2319 //
  2320 // The semantics of the InitializeNode include an implicit zeroing of
  2321 // the new object from object header to the end of the object.
  2322 // (The object header and end are determined by the AllocateNode.)
  2323 //
  2324 // Certain stores may be added as direct inputs to the InitializeNode.
  2325 // These stores must update raw memory, and they must be to addresses
  2326 // derived from the raw address produced by AllocateNode, and with
  2327 // a constant offset.  They must be ordered by increasing offset.
  2328 // The first one is at in(RawStores), the last at in(req()-1).
  2329 // Unlike most memory operations, they are not linked in a chain,
  2330 // but are displayed in parallel as users of the rawmem output of
  2331 // the allocation.
  2332 //
  2333 // (See comments in InitializeNode::capture_store, which continue
  2334 // the example given above.)
  2335 //
  2336 // When the associated Allocate is macro-expanded, the InitializeNode
  2337 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2338 // may also be created at that point to represent any required zeroing.
  2339 // The InitializeNode is then marked 'complete', prohibiting further
  2340 // capturing of nearby memory operations.
  2341 //
  2342 // During macro-expansion, all captured initializations which store
  2343 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2344 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2345 // initialized in fewer memory operations.  Memory words which are
  2346 // covered by neither tiles nor non-constant stores are pre-zeroed
  2347 // by explicit stores of zero.  (The code shape happens to do all
  2348 // zeroing first, then all other stores, with both sequences occurring
  2349 // in order of ascending offsets.)
  2350 //
  2351 // Alternatively, code may be inserted between an AllocateNode and its
  2352 // InitializeNode, to perform arbitrary initialization of the new object.
  2353 // E.g., the object copying intrinsics insert complex data transfers here.
  2354 // The initialization must then be marked as 'complete' disable the
  2355 // built-in zeroing semantics and the collection of initializing stores.
  2356 //
  2357 // While an InitializeNode is incomplete, reads from the memory state
  2358 // produced by it are optimizable if they match the control edge and
  2359 // new oop address associated with the allocation/initialization.
  2360 // They return a stored value (if the offset matches) or else zero.
  2361 // A write to the memory state, if it matches control and address,
  2362 // and if it is to a constant offset, may be 'captured' by the
  2363 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2364 // inside the initialization, to the raw oop produced by the allocation.
  2365 // Operations on addresses which are provably distinct (e.g., to
  2366 // other AllocateNodes) are allowed to bypass the initialization.
  2367 //
  2368 // The effect of all this is to consolidate object initialization
  2369 // (both arrays and non-arrays, both piecewise and bulk) into a
  2370 // single location, where it can be optimized as a unit.
  2371 //
  2372 // Only stores with an offset less than TrackedInitializationLimit words
  2373 // will be considered for capture by an InitializeNode.  This puts a
  2374 // reasonable limit on the complexity of optimized initializations.
  2376 //---------------------------InitializeNode------------------------------------
  2377 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2378   : _is_complete(false),
  2379     MemBarNode(C, adr_type, rawoop)
  2381   init_class_id(Class_Initialize);
  2383   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2384   assert(in(RawAddress) == rawoop, "proper init");
  2385   // Note:  allocation() can be NULL, for secondary initialization barriers
  2388 // Since this node is not matched, it will be processed by the
  2389 // register allocator.  Declare that there are no constraints
  2390 // on the allocation of the RawAddress edge.
  2391 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2392   // This edge should be set to top, by the set_complete.  But be conservative.
  2393   if (idx == InitializeNode::RawAddress)
  2394     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2395   return RegMask::Empty;
  2398 Node* InitializeNode::memory(uint alias_idx) {
  2399   Node* mem = in(Memory);
  2400   if (mem->is_MergeMem()) {
  2401     return mem->as_MergeMem()->memory_at(alias_idx);
  2402   } else {
  2403     // incoming raw memory is not split
  2404     return mem;
  2408 bool InitializeNode::is_non_zero() {
  2409   if (is_complete())  return false;
  2410   remove_extra_zeroes();
  2411   return (req() > RawStores);
  2414 void InitializeNode::set_complete(PhaseGVN* phase) {
  2415   assert(!is_complete(), "caller responsibility");
  2416   _is_complete = true;
  2418   // After this node is complete, it contains a bunch of
  2419   // raw-memory initializations.  There is no need for
  2420   // it to have anything to do with non-raw memory effects.
  2421   // Therefore, tell all non-raw users to re-optimize themselves,
  2422   // after skipping the memory effects of this initialization.
  2423   PhaseIterGVN* igvn = phase->is_IterGVN();
  2424   if (igvn)  igvn->add_users_to_worklist(this);
  2427 // convenience function
  2428 // return false if the init contains any stores already
  2429 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2430   InitializeNode* init = initialization();
  2431   if (init == NULL || init->is_complete())  return false;
  2432   init->remove_extra_zeroes();
  2433   // for now, if this allocation has already collected any inits, bail:
  2434   if (init->is_non_zero())  return false;
  2435   init->set_complete(phase);
  2436   return true;
  2439 void InitializeNode::remove_extra_zeroes() {
  2440   if (req() == RawStores)  return;
  2441   Node* zmem = zero_memory();
  2442   uint fill = RawStores;
  2443   for (uint i = fill; i < req(); i++) {
  2444     Node* n = in(i);
  2445     if (n->is_top() || n == zmem)  continue;  // skip
  2446     if (fill < i)  set_req(fill, n);          // compact
  2447     ++fill;
  2449   // delete any empty spaces created:
  2450   while (fill < req()) {
  2451     del_req(fill);
  2455 // Helper for remembering which stores go with which offsets.
  2456 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2457   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2458   intptr_t offset = -1;
  2459   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2460                                                phase, offset);
  2461   if (base == NULL)     return -1;  // something is dead,
  2462   if (offset < 0)       return -1;  //        dead, dead
  2463   return offset;
  2466 // Helper for proving that an initialization expression is
  2467 // "simple enough" to be folded into an object initialization.
  2468 // Attempts to prove that a store's initial value 'n' can be captured
  2469 // within the initialization without creating a vicious cycle, such as:
  2470 //     { Foo p = new Foo(); p.next = p; }
  2471 // True for constants and parameters and small combinations thereof.
  2472 bool InitializeNode::detect_init_independence(Node* n,
  2473                                               bool st_is_pinned,
  2474                                               int& count) {
  2475   if (n == NULL)      return true;   // (can this really happen?)
  2476   if (n->is_Proj())   n = n->in(0);
  2477   if (n == this)      return false;  // found a cycle
  2478   if (n->is_Con())    return true;
  2479   if (n->is_Start())  return true;   // params, etc., are OK
  2480   if (n->is_Root())   return true;   // even better
  2482   Node* ctl = n->in(0);
  2483   if (ctl != NULL && !ctl->is_top()) {
  2484     if (ctl->is_Proj())  ctl = ctl->in(0);
  2485     if (ctl == this)  return false;
  2487     // If we already know that the enclosing memory op is pinned right after
  2488     // the init, then any control flow that the store has picked up
  2489     // must have preceded the init, or else be equal to the init.
  2490     // Even after loop optimizations (which might change control edges)
  2491     // a store is never pinned *before* the availability of its inputs.
  2492     if (!MemNode::detect_dominating_control(ctl, this->in(0)))
  2493       return false;                  // failed to prove a good control
  2497   // Check data edges for possible dependencies on 'this'.
  2498   if ((count += 1) > 20)  return false;  // complexity limit
  2499   for (uint i = 1; i < n->req(); i++) {
  2500     Node* m = n->in(i);
  2501     if (m == NULL || m == n || m->is_top())  continue;
  2502     uint first_i = n->find_edge(m);
  2503     if (i != first_i)  continue;  // process duplicate edge just once
  2504     if (!detect_init_independence(m, st_is_pinned, count)) {
  2505       return false;
  2509   return true;
  2512 // Here are all the checks a Store must pass before it can be moved into
  2513 // an initialization.  Returns zero if a check fails.
  2514 // On success, returns the (constant) offset to which the store applies,
  2515 // within the initialized memory.
  2516 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2517   const int FAIL = 0;
  2518   if (st->req() != MemNode::ValueIn + 1)
  2519     return FAIL;                // an inscrutable StoreNode (card mark?)
  2520   Node* ctl = st->in(MemNode::Control);
  2521   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2522     return FAIL;                // must be unconditional after the initialization
  2523   Node* mem = st->in(MemNode::Memory);
  2524   if (!(mem->is_Proj() && mem->in(0) == this))
  2525     return FAIL;                // must not be preceded by other stores
  2526   Node* adr = st->in(MemNode::Address);
  2527   intptr_t offset;
  2528   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2529   if (alloc == NULL)
  2530     return FAIL;                // inscrutable address
  2531   if (alloc != allocation())
  2532     return FAIL;                // wrong allocation!  (store needs to float up)
  2533   Node* val = st->in(MemNode::ValueIn);
  2534   int complexity_count = 0;
  2535   if (!detect_init_independence(val, true, complexity_count))
  2536     return FAIL;                // stored value must be 'simple enough'
  2538   return offset;                // success
  2541 // Find the captured store in(i) which corresponds to the range
  2542 // [start..start+size) in the initialized object.
  2543 // If there is one, return its index i.  If there isn't, return the
  2544 // negative of the index where it should be inserted.
  2545 // Return 0 if the queried range overlaps an initialization boundary
  2546 // or if dead code is encountered.
  2547 // If size_in_bytes is zero, do not bother with overlap checks.
  2548 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2549                                                    int size_in_bytes,
  2550                                                    PhaseTransform* phase) {
  2551   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2553   if (is_complete())
  2554     return FAIL;                // arraycopy got here first; punt
  2556   assert(allocation() != NULL, "must be present");
  2558   // no negatives, no header fields:
  2559   if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
  2560   if (start < (intptr_t) sizeof(arrayOopDesc) &&
  2561       start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2563   // after a certain size, we bail out on tracking all the stores:
  2564   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2565   if (start >= ti_limit)  return FAIL;
  2567   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2568     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2570     Node*    st     = in(i);
  2571     intptr_t st_off = get_store_offset(st, phase);
  2572     if (st_off < 0) {
  2573       if (st != zero_memory()) {
  2574         return FAIL;            // bail out if there is dead garbage
  2576     } else if (st_off > start) {
  2577       // ...we are done, since stores are ordered
  2578       if (st_off < start + size_in_bytes) {
  2579         return FAIL;            // the next store overlaps
  2581       return -(int)i;           // not found; here is where to put it
  2582     } else if (st_off < start) {
  2583       if (size_in_bytes != 0 &&
  2584           start < st_off + MAX_STORE &&
  2585           start < st_off + st->as_Store()->memory_size()) {
  2586         return FAIL;            // the previous store overlaps
  2588     } else {
  2589       if (size_in_bytes != 0 &&
  2590           st->as_Store()->memory_size() != size_in_bytes) {
  2591         return FAIL;            // mismatched store size
  2593       return i;
  2596     ++i;
  2600 // Look for a captured store which initializes at the offset 'start'
  2601 // with the given size.  If there is no such store, and no other
  2602 // initialization interferes, then return zero_memory (the memory
  2603 // projection of the AllocateNode).
  2604 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2605                                           PhaseTransform* phase) {
  2606   assert(stores_are_sane(phase), "");
  2607   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2608   if (i == 0) {
  2609     return NULL;                // something is dead
  2610   } else if (i < 0) {
  2611     return zero_memory();       // just primordial zero bits here
  2612   } else {
  2613     Node* st = in(i);           // here is the store at this position
  2614     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2615     return st;
  2619 // Create, as a raw pointer, an address within my new object at 'offset'.
  2620 Node* InitializeNode::make_raw_address(intptr_t offset,
  2621                                        PhaseTransform* phase) {
  2622   Node* addr = in(RawAddress);
  2623   if (offset != 0) {
  2624     Compile* C = phase->C;
  2625     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2626                                                  phase->MakeConX(offset)) );
  2628   return addr;
  2631 // Clone the given store, converting it into a raw store
  2632 // initializing a field or element of my new object.
  2633 // Caller is responsible for retiring the original store,
  2634 // with subsume_node or the like.
  2635 //
  2636 // From the example above InitializeNode::InitializeNode,
  2637 // here are the old stores to be captured:
  2638 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2639 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2640 //
  2641 // Here is the changed code; note the extra edges on init:
  2642 //   alloc = (Allocate ...)
  2643 //   rawoop = alloc.RawAddress
  2644 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2645 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2646 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2647 //                      rawstore1 rawstore2)
  2648 //
  2649 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2650                                     PhaseTransform* phase) {
  2651   assert(stores_are_sane(phase), "");
  2653   if (start < 0)  return NULL;
  2654   assert(can_capture_store(st, phase) == start, "sanity");
  2656   Compile* C = phase->C;
  2657   int size_in_bytes = st->memory_size();
  2658   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2659   if (i == 0)  return NULL;     // bail out
  2660   Node* prev_mem = NULL;        // raw memory for the captured store
  2661   if (i > 0) {
  2662     prev_mem = in(i);           // there is a pre-existing store under this one
  2663     set_req(i, C->top());       // temporarily disconnect it
  2664     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2665   } else {
  2666     i = -i;                     // no pre-existing store
  2667     prev_mem = zero_memory();   // a slice of the newly allocated object
  2668     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2669       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2670     else
  2671       ins_req(i, C->top());     // build a new edge
  2673   Node* new_st = st->clone();
  2674   new_st->set_req(MemNode::Control, in(Control));
  2675   new_st->set_req(MemNode::Memory,  prev_mem);
  2676   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2677   new_st = phase->transform(new_st);
  2679   // At this point, new_st might have swallowed a pre-existing store
  2680   // at the same offset, or perhaps new_st might have disappeared,
  2681   // if it redundantly stored the same value (or zero to fresh memory).
  2683   // In any case, wire it in:
  2684   set_req(i, new_st);
  2686   // The caller may now kill the old guy.
  2687   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2688   assert(check_st == new_st || check_st == NULL, "must be findable");
  2689   assert(!is_complete(), "");
  2690   return new_st;
  2693 static bool store_constant(jlong* tiles, int num_tiles,
  2694                            intptr_t st_off, int st_size,
  2695                            jlong con) {
  2696   if ((st_off & (st_size-1)) != 0)
  2697     return false;               // strange store offset (assume size==2**N)
  2698   address addr = (address)tiles + st_off;
  2699   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2700   switch (st_size) {
  2701   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2702   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2703   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2704   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2705   default: return false;        // strange store size (detect size!=2**N here)
  2707   return true;                  // return success to caller
  2710 // Coalesce subword constants into int constants and possibly
  2711 // into long constants.  The goal, if the CPU permits,
  2712 // is to initialize the object with a small number of 64-bit tiles.
  2713 // Also, convert floating-point constants to bit patterns.
  2714 // Non-constants are not relevant to this pass.
  2715 //
  2716 // In terms of the running example on InitializeNode::InitializeNode
  2717 // and InitializeNode::capture_store, here is the transformation
  2718 // of rawstore1 and rawstore2 into rawstore12:
  2719 //   alloc = (Allocate ...)
  2720 //   rawoop = alloc.RawAddress
  2721 //   tile12 = 0x00010002
  2722 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2723 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2724 //
  2725 void
  2726 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2727                                         Node* size_in_bytes,
  2728                                         PhaseGVN* phase) {
  2729   Compile* C = phase->C;
  2731   assert(stores_are_sane(phase), "");
  2732   // Note:  After this pass, they are not completely sane,
  2733   // since there may be some overlaps.
  2735   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2737   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2738   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2739   size_limit = MIN2(size_limit, ti_limit);
  2740   size_limit = align_size_up(size_limit, BytesPerLong);
  2741   int num_tiles = size_limit / BytesPerLong;
  2743   // allocate space for the tile map:
  2744   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2745   jlong  tiles_buf[small_len];
  2746   Node*  nodes_buf[small_len];
  2747   jlong  inits_buf[small_len];
  2748   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2749                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2750   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2751                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2752   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2753                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2754   // tiles: exact bitwise model of all primitive constants
  2755   // nodes: last constant-storing node subsumed into the tiles model
  2756   // inits: which bytes (in each tile) are touched by any initializations
  2758   //// Pass A: Fill in the tile model with any relevant stores.
  2760   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2761   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2762   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2763   Node* zmem = zero_memory(); // initially zero memory state
  2764   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2765     Node* st = in(i);
  2766     intptr_t st_off = get_store_offset(st, phase);
  2768     // Figure out the store's offset and constant value:
  2769     if (st_off < header_size)             continue; //skip (ignore header)
  2770     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2771     int st_size = st->as_Store()->memory_size();
  2772     if (st_off + st_size > size_limit)    break;
  2774     // Record which bytes are touched, whether by constant or not.
  2775     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2776       continue;                 // skip (strange store size)
  2778     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2779     if (!val->singleton())                continue; //skip (non-con store)
  2780     BasicType type = val->basic_type();
  2782     jlong con = 0;
  2783     switch (type) {
  2784     case T_INT:    con = val->is_int()->get_con();  break;
  2785     case T_LONG:   con = val->is_long()->get_con(); break;
  2786     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2787     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2788     default:                              continue; //skip (odd store type)
  2791     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2792         st->Opcode() == Op_StoreL) {
  2793       continue;                 // This StoreL is already optimal.
  2796     // Store down the constant.
  2797     store_constant(tiles, num_tiles, st_off, st_size, con);
  2799     intptr_t j = st_off >> LogBytesPerLong;
  2801     if (type == T_INT && st_size == BytesPerInt
  2802         && (st_off & BytesPerInt) == BytesPerInt) {
  2803       jlong lcon = tiles[j];
  2804       if (!Matcher::isSimpleConstant64(lcon) &&
  2805           st->Opcode() == Op_StoreI) {
  2806         // This StoreI is already optimal by itself.
  2807         jint* intcon = (jint*) &tiles[j];
  2808         intcon[1] = 0;  // undo the store_constant()
  2810         // If the previous store is also optimal by itself, back up and
  2811         // undo the action of the previous loop iteration... if we can.
  2812         // But if we can't, just let the previous half take care of itself.
  2813         st = nodes[j];
  2814         st_off -= BytesPerInt;
  2815         con = intcon[0];
  2816         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2817           assert(st_off >= header_size, "still ignoring header");
  2818           assert(get_store_offset(st, phase) == st_off, "must be");
  2819           assert(in(i-1) == zmem, "must be");
  2820           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2821           assert(con == tcon->is_int()->get_con(), "must be");
  2822           // Undo the effects of the previous loop trip, which swallowed st:
  2823           intcon[0] = 0;        // undo store_constant()
  2824           set_req(i-1, st);     // undo set_req(i, zmem)
  2825           nodes[j] = NULL;      // undo nodes[j] = st
  2826           --old_subword;        // undo ++old_subword
  2828         continue;               // This StoreI is already optimal.
  2832     // This store is not needed.
  2833     set_req(i, zmem);
  2834     nodes[j] = st;              // record for the moment
  2835     if (st_size < BytesPerLong) // something has changed
  2836           ++old_subword;        // includes int/float, but who's counting...
  2837     else  ++old_long;
  2840   if ((old_subword + old_long) == 0)
  2841     return;                     // nothing more to do
  2843   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2844   // Be sure to insert them before overlapping non-constant stores.
  2845   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2846   for (int j = 0; j < num_tiles; j++) {
  2847     jlong con  = tiles[j];
  2848     jlong init = inits[j];
  2849     if (con == 0)  continue;
  2850     jint con0,  con1;           // split the constant, address-wise
  2851     jint init0, init1;          // split the init map, address-wise
  2852     { union { jlong con; jint intcon[2]; } u;
  2853       u.con = con;
  2854       con0  = u.intcon[0];
  2855       con1  = u.intcon[1];
  2856       u.con = init;
  2857       init0 = u.intcon[0];
  2858       init1 = u.intcon[1];
  2861     Node* old = nodes[j];
  2862     assert(old != NULL, "need the prior store");
  2863     intptr_t offset = (j * BytesPerLong);
  2865     bool split = !Matcher::isSimpleConstant64(con);
  2867     if (offset < header_size) {
  2868       assert(offset + BytesPerInt >= header_size, "second int counts");
  2869       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2870       split = true;             // only the second word counts
  2871       // Example:  int a[] = { 42 ... }
  2872     } else if (con0 == 0 && init0 == -1) {
  2873       split = true;             // first word is covered by full inits
  2874       // Example:  int a[] = { ... foo(), 42 ... }
  2875     } else if (con1 == 0 && init1 == -1) {
  2876       split = true;             // second word is covered by full inits
  2877       // Example:  int a[] = { ... 42, foo() ... }
  2880     // Here's a case where init0 is neither 0 nor -1:
  2881     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2882     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2883     // In this case the tile is not split; it is (jlong)42.
  2884     // The big tile is stored down, and then the foo() value is inserted.
  2885     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2887     Node* ctl = old->in(MemNode::Control);
  2888     Node* adr = make_raw_address(offset, phase);
  2889     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2891     // One or two coalesced stores to plop down.
  2892     Node*    st[2];
  2893     intptr_t off[2];
  2894     int  nst = 0;
  2895     if (!split) {
  2896       ++new_long;
  2897       off[nst] = offset;
  2898       st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2899                                   phase->longcon(con), T_LONG);
  2900     } else {
  2901       // Omit either if it is a zero.
  2902       if (con0 != 0) {
  2903         ++new_int;
  2904         off[nst]  = offset;
  2905         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2906                                     phase->intcon(con0), T_INT);
  2908       if (con1 != 0) {
  2909         ++new_int;
  2910         offset += BytesPerInt;
  2911         adr = make_raw_address(offset, phase);
  2912         off[nst]  = offset;
  2913         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2914                                     phase->intcon(con1), T_INT);
  2918     // Insert second store first, then the first before the second.
  2919     // Insert each one just before any overlapping non-constant stores.
  2920     while (nst > 0) {
  2921       Node* st1 = st[--nst];
  2922       C->copy_node_notes_to(st1, old);
  2923       st1 = phase->transform(st1);
  2924       offset = off[nst];
  2925       assert(offset >= header_size, "do not smash header");
  2926       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  2927       guarantee(ins_idx != 0, "must re-insert constant store");
  2928       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  2929       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  2930         set_req(--ins_idx, st1);
  2931       else
  2932         ins_req(ins_idx, st1);
  2936   if (PrintCompilation && WizardMode)
  2937     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  2938                   old_subword, old_long, new_int, new_long);
  2939   if (C->log() != NULL)
  2940     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  2941                    old_subword, old_long, new_int, new_long);
  2943   // Clean up any remaining occurrences of zmem:
  2944   remove_extra_zeroes();
  2947 // Explore forward from in(start) to find the first fully initialized
  2948 // word, and return its offset.  Skip groups of subword stores which
  2949 // together initialize full words.  If in(start) is itself part of a
  2950 // fully initialized word, return the offset of in(start).  If there
  2951 // are no following full-word stores, or if something is fishy, return
  2952 // a negative value.
  2953 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  2954   int       int_map = 0;
  2955   intptr_t  int_map_off = 0;
  2956   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  2958   for (uint i = start, limit = req(); i < limit; i++) {
  2959     Node* st = in(i);
  2961     intptr_t st_off = get_store_offset(st, phase);
  2962     if (st_off < 0)  break;  // return conservative answer
  2964     int st_size = st->as_Store()->memory_size();
  2965     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  2966       return st_off;            // we found a complete word init
  2969     // update the map:
  2971     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  2972     if (this_int_off != int_map_off) {
  2973       // reset the map:
  2974       int_map = 0;
  2975       int_map_off = this_int_off;
  2978     int subword_off = st_off - this_int_off;
  2979     int_map |= right_n_bits(st_size) << subword_off;
  2980     if ((int_map & FULL_MAP) == FULL_MAP) {
  2981       return this_int_off;      // we found a complete word init
  2984     // Did this store hit or cross the word boundary?
  2985     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  2986     if (next_int_off == this_int_off + BytesPerInt) {
  2987       // We passed the current int, without fully initializing it.
  2988       int_map_off = next_int_off;
  2989       int_map >>= BytesPerInt;
  2990     } else if (next_int_off > this_int_off + BytesPerInt) {
  2991       // We passed the current and next int.
  2992       return this_int_off + BytesPerInt;
  2996   return -1;
  3000 // Called when the associated AllocateNode is expanded into CFG.
  3001 // At this point, we may perform additional optimizations.
  3002 // Linearize the stores by ascending offset, to make memory
  3003 // activity as coherent as possible.
  3004 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3005                                       intptr_t header_size,
  3006                                       Node* size_in_bytes,
  3007                                       PhaseGVN* phase) {
  3008   assert(!is_complete(), "not already complete");
  3009   assert(stores_are_sane(phase), "");
  3010   assert(allocation() != NULL, "must be present");
  3012   remove_extra_zeroes();
  3014   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3015     // reduce instruction count for common initialization patterns
  3016     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3018   Node* zmem = zero_memory();   // initially zero memory state
  3019   Node* inits = zmem;           // accumulating a linearized chain of inits
  3020   #ifdef ASSERT
  3021   intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
  3022   intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
  3023   intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
  3024   #endif
  3025   intptr_t zeroes_done = header_size;
  3027   bool do_zeroing = true;       // we might give up if inits are very sparse
  3028   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3030   if (ZeroTLAB)  do_zeroing = false;
  3031   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3033   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3034     Node* st = in(i);
  3035     intptr_t st_off = get_store_offset(st, phase);
  3036     if (st_off < 0)
  3037       break;                    // unknown junk in the inits
  3038     if (st->in(MemNode::Memory) != zmem)
  3039       break;                    // complicated store chains somehow in list
  3041     int st_size = st->as_Store()->memory_size();
  3042     intptr_t next_init_off = st_off + st_size;
  3044     if (do_zeroing && zeroes_done < next_init_off) {
  3045       // See if this store needs a zero before it or under it.
  3046       intptr_t zeroes_needed = st_off;
  3048       if (st_size < BytesPerInt) {
  3049         // Look for subword stores which only partially initialize words.
  3050         // If we find some, we must lay down some word-level zeroes first,
  3051         // underneath the subword stores.
  3052         //
  3053         // Examples:
  3054         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3055         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3056         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3057         //
  3058         // Note:  coalesce_subword_stores may have already done this,
  3059         // if it was prompted by constant non-zero subword initializers.
  3060         // But this case can still arise with non-constant stores.
  3062         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3064         // In the examples above:
  3065         //   in(i)          p   q   r   s     x   y     z
  3066         //   st_off        12  13  14  15    12  13    14
  3067         //   st_size        1   1   1   1     1   1     1
  3068         //   next_full_s.  12  16  16  16    16  16    16
  3069         //   z's_done      12  16  16  16    12  16    12
  3070         //   z's_needed    12  16  16  16    16  16    16
  3071         //   zsize          0   0   0   0     4   0     4
  3072         if (next_full_store < 0) {
  3073           // Conservative tack:  Zero to end of current word.
  3074           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3075         } else {
  3076           // Zero to beginning of next fully initialized word.
  3077           // Or, don't zero at all, if we are already in that word.
  3078           assert(next_full_store >= zeroes_needed, "must go forward");
  3079           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3080           zeroes_needed = next_full_store;
  3084       if (zeroes_needed > zeroes_done) {
  3085         intptr_t zsize = zeroes_needed - zeroes_done;
  3086         // Do some incremental zeroing on rawmem, in parallel with inits.
  3087         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3088         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3089                                               zeroes_done, zeroes_needed,
  3090                                               phase);
  3091         zeroes_done = zeroes_needed;
  3092         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3093           do_zeroing = false;   // leave the hole, next time
  3097     // Collect the store and move on:
  3098     st->set_req(MemNode::Memory, inits);
  3099     inits = st;                 // put it on the linearized chain
  3100     set_req(i, zmem);           // unhook from previous position
  3102     if (zeroes_done == st_off)
  3103       zeroes_done = next_init_off;
  3105     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3107     #ifdef ASSERT
  3108     // Various order invariants.  Weaker than stores_are_sane because
  3109     // a large constant tile can be filled in by smaller non-constant stores.
  3110     assert(st_off >= last_init_off, "inits do not reverse");
  3111     last_init_off = st_off;
  3112     const Type* val = NULL;
  3113     if (st_size >= BytesPerInt &&
  3114         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3115         (int)val->basic_type() < (int)T_OBJECT) {
  3116       assert(st_off >= last_tile_end, "tiles do not overlap");
  3117       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3118       last_tile_end = MAX2(last_tile_end, next_init_off);
  3119     } else {
  3120       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3121       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3122       assert(st_off      >= last_init_end, "inits do not overlap");
  3123       last_init_end = next_init_off;  // it's a non-tile
  3125     #endif //ASSERT
  3128   remove_extra_zeroes();        // clear out all the zmems left over
  3129   add_req(inits);
  3131   if (!ZeroTLAB) {
  3132     // If anything remains to be zeroed, zero it all now.
  3133     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3134     // if it is the last unused 4 bytes of an instance, forget about it
  3135     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3136     if (zeroes_done + BytesPerLong >= size_limit) {
  3137       assert(allocation() != NULL, "");
  3138       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3139       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3140       if (zeroes_done == k->layout_helper())
  3141         zeroes_done = size_limit;
  3143     if (zeroes_done < size_limit) {
  3144       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3145                                             zeroes_done, size_in_bytes, phase);
  3149   set_complete(phase);
  3150   return rawmem;
  3154 #ifdef ASSERT
  3155 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3156   if (is_complete())
  3157     return true;                // stores could be anything at this point
  3158   intptr_t last_off = sizeof(oopDesc);
  3159   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3160     Node* st = in(i);
  3161     intptr_t st_off = get_store_offset(st, phase);
  3162     if (st_off < 0)  continue;  // ignore dead garbage
  3163     if (last_off > st_off) {
  3164       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3165       this->dump(2);
  3166       assert(false, "ascending store offsets");
  3167       return false;
  3169     last_off = st_off + st->as_Store()->memory_size();
  3171   return true;
  3173 #endif //ASSERT
  3178 //============================MergeMemNode=====================================
  3179 //
  3180 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3181 // contributing store or call operations.  Each contributor provides the memory
  3182 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3183 // if a MergeMem has an input X for alias category #6, then any memory reference
  3184 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3185 // to using the MergeMem as a whole.
  3186 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3187 //
  3188 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3189 //
  3190 // In one special case (and more cases in the future), alias categories overlap.
  3191 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3192 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3193 // it is exactly equivalent to that state W:
  3194 //   MergeMem(<Bot>: W) <==> W
  3195 //
  3196 // Usually, the merge has more than one input.  In that case, where inputs
  3197 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3198 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3199 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3200 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3201 //
  3202 // A merge can take a "wide" memory state as one of its narrow inputs.
  3203 // This simply means that the merge observes out only the relevant parts of
  3204 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3205 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3206 //
  3207 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3208 // and that memory slices "leak through":
  3209 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3210 //
  3211 // But, in such a cascade, repeated memory slices can "block the leak":
  3212 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3213 //
  3214 // In the last example, Y is not part of the combined memory state of the
  3215 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3216 // memory states from arising, so you can be sure that the state Y is somehow
  3217 // a precursor to state Y'.
  3218 //
  3219 //
  3220 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3221 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3222 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3223 // Compile::alias_type (and kin) produce and manage these indexes.
  3224 //
  3225 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3226 // (Note that this provides quick access to the top node inside MergeMem methods,
  3227 // without the need to reach out via TLS to Compile::current.)
  3228 //
  3229 // As a consequence of what was just described, a MergeMem that represents a full
  3230 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3231 // containing all alias categories.
  3232 //
  3233 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3234 //
  3235 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3236 // a memory state for the alias type <N>, or else the top node, meaning that
  3237 // there is no particular input for that alias type.  Note that the length of
  3238 // a MergeMem is variable, and may be extended at any time to accommodate new
  3239 // memory states at larger alias indexes.  When merges grow, they are of course
  3240 // filled with "top" in the unused in() positions.
  3241 //
  3242 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3243 // (Top was chosen because it works smoothly with passes like GCM.)
  3244 //
  3245 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3246 // the type of random VM bits like TLS references.)  Since it is always the
  3247 // first non-Bot memory slice, some low-level loops use it to initialize an
  3248 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3249 //
  3250 //
  3251 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3252 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3253 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3254 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3255 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3256 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3257 //
  3258 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3259 // really that different from the other memory inputs.  An abbreviation called
  3260 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3261 //
  3262 //
  3263 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3264 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3265 // that "emerges though" the base memory will be marked as excluding the alias types
  3266 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3267 //
  3268 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3269 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3270 //
  3271 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3272 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3273 // actually a disjoint union of memory states, rather than an overlay.
  3274 //
  3276 //------------------------------MergeMemNode-----------------------------------
  3277 Node* MergeMemNode::make_empty_memory() {
  3278   Node* empty_memory = (Node*) Compile::current()->top();
  3279   assert(empty_memory->is_top(), "correct sentinel identity");
  3280   return empty_memory;
  3283 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3284   init_class_id(Class_MergeMem);
  3285   // all inputs are nullified in Node::Node(int)
  3286   // set_input(0, NULL);  // no control input
  3288   // Initialize the edges uniformly to top, for starters.
  3289   Node* empty_mem = make_empty_memory();
  3290   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3291     init_req(i,empty_mem);
  3293   assert(empty_memory() == empty_mem, "");
  3295   if( new_base != NULL && new_base->is_MergeMem() ) {
  3296     MergeMemNode* mdef = new_base->as_MergeMem();
  3297     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3298     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3299       mms.set_memory(mms.memory2());
  3301     assert(base_memory() == mdef->base_memory(), "");
  3302   } else {
  3303     set_base_memory(new_base);
  3307 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3308 // If mem is itself a MergeMem, populate the result with the same edges.
  3309 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3310   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3313 //------------------------------cmp--------------------------------------------
  3314 uint MergeMemNode::hash() const { return NO_HASH; }
  3315 uint MergeMemNode::cmp( const Node &n ) const {
  3316   return (&n == this);          // Always fail except on self
  3319 //------------------------------Identity---------------------------------------
  3320 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3321   // Identity if this merge point does not record any interesting memory
  3322   // disambiguations.
  3323   Node* base_mem = base_memory();
  3324   Node* empty_mem = empty_memory();
  3325   if (base_mem != empty_mem) {  // Memory path is not dead?
  3326     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3327       Node* mem = in(i);
  3328       if (mem != empty_mem && mem != base_mem) {
  3329         return this;            // Many memory splits; no change
  3333   return base_mem;              // No memory splits; ID on the one true input
  3336 //------------------------------Ideal------------------------------------------
  3337 // This method is invoked recursively on chains of MergeMem nodes
  3338 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3339   // Remove chain'd MergeMems
  3340   //
  3341   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3342   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3343   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3344   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3345   Node *progress = NULL;
  3348   Node* old_base = base_memory();
  3349   Node* empty_mem = empty_memory();
  3350   if (old_base == empty_mem)
  3351     return NULL; // Dead memory path.
  3353   MergeMemNode* old_mbase;
  3354   if (old_base != NULL && old_base->is_MergeMem())
  3355     old_mbase = old_base->as_MergeMem();
  3356   else
  3357     old_mbase = NULL;
  3358   Node* new_base = old_base;
  3360   // simplify stacked MergeMems in base memory
  3361   if (old_mbase)  new_base = old_mbase->base_memory();
  3363   // the base memory might contribute new slices beyond my req()
  3364   if (old_mbase)  grow_to_match(old_mbase);
  3366   // Look carefully at the base node if it is a phi.
  3367   PhiNode* phi_base;
  3368   if (new_base != NULL && new_base->is_Phi())
  3369     phi_base = new_base->as_Phi();
  3370   else
  3371     phi_base = NULL;
  3373   Node*    phi_reg = NULL;
  3374   uint     phi_len = (uint)-1;
  3375   if (phi_base != NULL && !phi_base->is_copy()) {
  3376     // do not examine phi if degraded to a copy
  3377     phi_reg = phi_base->region();
  3378     phi_len = phi_base->req();
  3379     // see if the phi is unfinished
  3380     for (uint i = 1; i < phi_len; i++) {
  3381       if (phi_base->in(i) == NULL) {
  3382         // incomplete phi; do not look at it yet!
  3383         phi_reg = NULL;
  3384         phi_len = (uint)-1;
  3385         break;
  3390   // Note:  We do not call verify_sparse on entry, because inputs
  3391   // can normalize to the base_memory via subsume_node or similar
  3392   // mechanisms.  This method repairs that damage.
  3394   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3396   // Look at each slice.
  3397   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3398     Node* old_in = in(i);
  3399     // calculate the old memory value
  3400     Node* old_mem = old_in;
  3401     if (old_mem == empty_mem)  old_mem = old_base;
  3402     assert(old_mem == memory_at(i), "");
  3404     // maybe update (reslice) the old memory value
  3406     // simplify stacked MergeMems
  3407     Node* new_mem = old_mem;
  3408     MergeMemNode* old_mmem;
  3409     if (old_mem != NULL && old_mem->is_MergeMem())
  3410       old_mmem = old_mem->as_MergeMem();
  3411     else
  3412       old_mmem = NULL;
  3413     if (old_mmem == this) {
  3414       // This can happen if loops break up and safepoints disappear.
  3415       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3416       // safepoint can be rewritten to a merge of the same BotPtr with
  3417       // the BotPtr phi coming into the loop.  If that phi disappears
  3418       // also, we can end up with a self-loop of the mergemem.
  3419       // In general, if loops degenerate and memory effects disappear,
  3420       // a mergemem can be left looking at itself.  This simply means
  3421       // that the mergemem's default should be used, since there is
  3422       // no longer any apparent effect on this slice.
  3423       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3424       //       from start.  Update the input to TOP.
  3425       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3427     else if (old_mmem != NULL) {
  3428       new_mem = old_mmem->memory_at(i);
  3430     // else preceeding memory was not a MergeMem
  3432     // replace equivalent phis (unfortunately, they do not GVN together)
  3433     if (new_mem != NULL && new_mem != new_base &&
  3434         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3435       if (new_mem->is_Phi()) {
  3436         PhiNode* phi_mem = new_mem->as_Phi();
  3437         for (uint i = 1; i < phi_len; i++) {
  3438           if (phi_base->in(i) != phi_mem->in(i)) {
  3439             phi_mem = NULL;
  3440             break;
  3443         if (phi_mem != NULL) {
  3444           // equivalent phi nodes; revert to the def
  3445           new_mem = new_base;
  3450     // maybe store down a new value
  3451     Node* new_in = new_mem;
  3452     if (new_in == new_base)  new_in = empty_mem;
  3454     if (new_in != old_in) {
  3455       // Warning:  Do not combine this "if" with the previous "if"
  3456       // A memory slice might have be be rewritten even if it is semantically
  3457       // unchanged, if the base_memory value has changed.
  3458       set_req(i, new_in);
  3459       progress = this;          // Report progress
  3463   if (new_base != old_base) {
  3464     set_req(Compile::AliasIdxBot, new_base);
  3465     // Don't use set_base_memory(new_base), because we need to update du.
  3466     assert(base_memory() == new_base, "");
  3467     progress = this;
  3470   if( base_memory() == this ) {
  3471     // a self cycle indicates this memory path is dead
  3472     set_req(Compile::AliasIdxBot, empty_mem);
  3475   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3476   // Recursion must occur after the self cycle check above
  3477   if( base_memory()->is_MergeMem() ) {
  3478     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3479     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3480     if( m != NULL && (m->is_top() ||
  3481         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3482       // propagate rollup of dead cycle to self
  3483       set_req(Compile::AliasIdxBot, empty_mem);
  3487   if( base_memory() == empty_mem ) {
  3488     progress = this;
  3489     // Cut inputs during Parse phase only.
  3490     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3491     if( !can_reshape ) {
  3492       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3493         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3498   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3499     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3500     // transform should be attempted. Look for this->phi->this cycle.
  3501     uint merge_width = req();
  3502     if (merge_width > Compile::AliasIdxRaw) {
  3503       PhiNode* phi = base_memory()->as_Phi();
  3504       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3505         if (phi->in(i) == this) {
  3506           phase->is_IterGVN()->_worklist.push(phi);
  3507           break;
  3513   assert(progress || verify_sparse(), "please, no dups of base");
  3514   return progress;
  3517 //-------------------------set_base_memory-------------------------------------
  3518 void MergeMemNode::set_base_memory(Node *new_base) {
  3519   Node* empty_mem = empty_memory();
  3520   set_req(Compile::AliasIdxBot, new_base);
  3521   assert(memory_at(req()) == new_base, "must set default memory");
  3522   // Clear out other occurrences of new_base:
  3523   if (new_base != empty_mem) {
  3524     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3525       if (in(i) == new_base)  set_req(i, empty_mem);
  3530 //------------------------------out_RegMask------------------------------------
  3531 const RegMask &MergeMemNode::out_RegMask() const {
  3532   return RegMask::Empty;
  3535 //------------------------------dump_spec--------------------------------------
  3536 #ifndef PRODUCT
  3537 void MergeMemNode::dump_spec(outputStream *st) const {
  3538   st->print(" {");
  3539   Node* base_mem = base_memory();
  3540   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3541     Node* mem = memory_at(i);
  3542     if (mem == base_mem) { st->print(" -"); continue; }
  3543     st->print( " N%d:", mem->_idx );
  3544     Compile::current()->get_adr_type(i)->dump_on(st);
  3546   st->print(" }");
  3548 #endif // !PRODUCT
  3551 #ifdef ASSERT
  3552 static bool might_be_same(Node* a, Node* b) {
  3553   if (a == b)  return true;
  3554   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3555   // phis shift around during optimization
  3556   return true;  // pretty stupid...
  3559 // verify a narrow slice (either incoming or outgoing)
  3560 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3561   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3562   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3563   if (Node::in_dump())      return;  // muzzle asserts when printing
  3564   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3565   assert(n != NULL, "");
  3566   // Elide intervening MergeMem's
  3567   while (n->is_MergeMem()) {
  3568     n = n->as_MergeMem()->memory_at(alias_idx);
  3570   Compile* C = Compile::current();
  3571   const TypePtr* n_adr_type = n->adr_type();
  3572   if (n == m->empty_memory()) {
  3573     // Implicit copy of base_memory()
  3574   } else if (n_adr_type != TypePtr::BOTTOM) {
  3575     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3576     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3577   } else {
  3578     // A few places like make_runtime_call "know" that VM calls are narrow,
  3579     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3580     bool expected_wide_mem = false;
  3581     if (n == m->base_memory()) {
  3582       expected_wide_mem = true;
  3583     } else if (alias_idx == Compile::AliasIdxRaw ||
  3584                n == m->memory_at(Compile::AliasIdxRaw)) {
  3585       expected_wide_mem = true;
  3586     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3587       // memory can "leak through" calls on channels that
  3588       // are write-once.  Allow this also.
  3589       expected_wide_mem = true;
  3591     assert(expected_wide_mem, "expected narrow slice replacement");
  3594 #else // !ASSERT
  3595 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3596 #endif
  3599 //-----------------------------memory_at---------------------------------------
  3600 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3601   assert(alias_idx >= Compile::AliasIdxRaw ||
  3602          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3603          "must avoid base_memory and AliasIdxTop");
  3605   // Otherwise, it is a narrow slice.
  3606   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3607   Compile *C = Compile::current();
  3608   if (is_empty_memory(n)) {
  3609     // the array is sparse; empty slots are the "top" node
  3610     n = base_memory();
  3611     assert(Node::in_dump()
  3612            || n == NULL || n->bottom_type() == Type::TOP
  3613            || n->adr_type() == TypePtr::BOTTOM
  3614            || n->adr_type() == TypeRawPtr::BOTTOM
  3615            || Compile::current()->AliasLevel() == 0,
  3616            "must be a wide memory");
  3617     // AliasLevel == 0 if we are organizing the memory states manually.
  3618     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3619   } else {
  3620     // make sure the stored slice is sane
  3621     #ifdef ASSERT
  3622     if (is_error_reported() || Node::in_dump()) {
  3623     } else if (might_be_same(n, base_memory())) {
  3624       // Give it a pass:  It is a mostly harmless repetition of the base.
  3625       // This can arise normally from node subsumption during optimization.
  3626     } else {
  3627       verify_memory_slice(this, alias_idx, n);
  3629     #endif
  3631   return n;
  3634 //---------------------------set_memory_at-------------------------------------
  3635 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3636   verify_memory_slice(this, alias_idx, n);
  3637   Node* empty_mem = empty_memory();
  3638   if (n == base_memory())  n = empty_mem;  // collapse default
  3639   uint need_req = alias_idx+1;
  3640   if (req() < need_req) {
  3641     if (n == empty_mem)  return;  // already the default, so do not grow me
  3642     // grow the sparse array
  3643     do {
  3644       add_req(empty_mem);
  3645     } while (req() < need_req);
  3647   set_req( alias_idx, n );
  3652 //--------------------------iteration_setup------------------------------------
  3653 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3654   if (other != NULL) {
  3655     grow_to_match(other);
  3656     // invariant:  the finite support of mm2 is within mm->req()
  3657     #ifdef ASSERT
  3658     for (uint i = req(); i < other->req(); i++) {
  3659       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3661     #endif
  3663   // Replace spurious copies of base_memory by top.
  3664   Node* base_mem = base_memory();
  3665   if (base_mem != NULL && !base_mem->is_top()) {
  3666     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3667       if (in(i) == base_mem)
  3668         set_req(i, empty_memory());
  3673 //---------------------------grow_to_match-------------------------------------
  3674 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3675   Node* empty_mem = empty_memory();
  3676   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3677   // look for the finite support of the other memory
  3678   for (uint i = other->req(); --i >= req(); ) {
  3679     if (other->in(i) != empty_mem) {
  3680       uint new_len = i+1;
  3681       while (req() < new_len)  add_req(empty_mem);
  3682       break;
  3687 //---------------------------verify_sparse-------------------------------------
  3688 #ifndef PRODUCT
  3689 bool MergeMemNode::verify_sparse() const {
  3690   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3691   Node* base_mem = base_memory();
  3692   // The following can happen in degenerate cases, since empty==top.
  3693   if (is_empty_memory(base_mem))  return true;
  3694   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3695     assert(in(i) != NULL, "sane slice");
  3696     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3698   return true;
  3701 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3702   Node* n;
  3703   n = mm->in(idx);
  3704   if (mem == n)  return true;  // might be empty_memory()
  3705   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3706   if (mem == n)  return true;
  3707   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3708     if (mem == n)  return true;
  3709     if (n == NULL)  break;
  3711   return false;
  3713 #endif // !PRODUCT

mercurial