src/share/vm/opto/memnode.cpp

Tue, 15 Apr 2008 10:49:32 -0700

author
kvn
date
Tue, 15 Apr 2008 10:49:32 -0700
changeset 520
f3b3fe64f59f
parent 517
de93acbb64fc
child 557
ec73d88d5b43
permissions
-rw-r--r--

6692301: Side effect in NumberFormat tests with -server -Xcomp
Summary: Optimization in CmpPNode::sub() removed the valid compare instruction because of false positive answer from detect_dominating_control().
Reviewed-by: jrose, sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *prev = NULL;
    98   Node *result = mchain;
    99   while (prev != result) {
   100     prev = result;
   101     // skip over a call which does not affect this memory slice
   102     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   103       Node *proj_in = result->in(0);
   104       if (proj_in->is_Call()) {
   105         CallNode *call = proj_in->as_Call();
   106         if (!call->may_modify(t_adr, phase)) {
   107           result = call->in(TypeFunc::Memory);
   108         }
   109       } else if (proj_in->is_Initialize()) {
   110         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   111         // Stop if this is the initialization for the object instance which
   112         // which contains this memory slice, otherwise skip over it.
   113         if (alloc != NULL && alloc->_idx != instance_id) {
   114           result = proj_in->in(TypeFunc::Memory);
   115         }
   116       } else if (proj_in->is_MemBar()) {
   117         result = proj_in->in(TypeFunc::Memory);
   118       }
   119     } else if (result->is_MergeMem()) {
   120       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   121     }
   122   }
   123   return result;
   124 }
   126 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   127   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   128   bool is_instance = (t_oop != NULL) && t_oop->is_instance_field();
   129   PhaseIterGVN *igvn = phase->is_IterGVN();
   130   Node *result = mchain;
   131   result = optimize_simple_memory_chain(result, t_adr, phase);
   132   if (is_instance && igvn != NULL  && result->is_Phi()) {
   133     PhiNode *mphi = result->as_Phi();
   134     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   135     const TypePtr *t = mphi->adr_type();
   136     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM) {
   137       // clone the Phi with our address type
   138       result = mphi->split_out_instance(t_adr, igvn);
   139     } else {
   140       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   141     }
   142   }
   143   return result;
   144 }
   146 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   147   uint alias_idx = phase->C->get_alias_index(tp);
   148   Node *mem = mmem;
   149 #ifdef ASSERT
   150   {
   151     // Check that current type is consistent with the alias index used during graph construction
   152     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   153     bool consistent =  adr_check == NULL || adr_check->empty() ||
   154                        phase->C->must_alias(adr_check, alias_idx );
   155     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   156     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   157            tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   158         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   159         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   160           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   161           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   162       // don't assert if it is dead code.
   163       consistent = true;
   164     }
   165     if( !consistent ) {
   166       st->print("alias_idx==%d, adr_check==", alias_idx);
   167       if( adr_check == NULL ) {
   168         st->print("NULL");
   169       } else {
   170         adr_check->dump();
   171       }
   172       st->cr();
   173       print_alias_types();
   174       assert(consistent, "adr_check must match alias idx");
   175     }
   176   }
   177 #endif
   178   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   179   // means an array I have not precisely typed yet.  Do not do any
   180   // alias stuff with it any time soon.
   181   const TypeOopPtr *tinst = tp->isa_oopptr();
   182   if( tp->base() != Type::AnyPtr &&
   183       !(tinst &&
   184         tinst->klass()->is_java_lang_Object() &&
   185         tinst->offset() == Type::OffsetBot) ) {
   186     // compress paths and change unreachable cycles to TOP
   187     // If not, we can update the input infinitely along a MergeMem cycle
   188     // Equivalent code in PhiNode::Ideal
   189     Node* m  = phase->transform(mmem);
   190     // If tranformed to a MergeMem, get the desired slice
   191     // Otherwise the returned node represents memory for every slice
   192     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   193     // Update input if it is progress over what we have now
   194   }
   195   return mem;
   196 }
   198 //--------------------------Ideal_common---------------------------------------
   199 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   200 // Unhook non-raw memories from complete (macro-expanded) initializations.
   201 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   202   // If our control input is a dead region, kill all below the region
   203   Node *ctl = in(MemNode::Control);
   204   if (ctl && remove_dead_region(phase, can_reshape))
   205     return this;
   207   // Ignore if memory is dead, or self-loop
   208   Node *mem = in(MemNode::Memory);
   209   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   210   assert( mem != this, "dead loop in MemNode::Ideal" );
   212   Node *address = in(MemNode::Address);
   213   const Type *t_adr = phase->type( address );
   214   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   216   // Avoid independent memory operations
   217   Node* old_mem = mem;
   219   // The code which unhooks non-raw memories from complete (macro-expanded)
   220   // initializations was removed. After macro-expansion all stores catched
   221   // by Initialize node became raw stores and there is no information
   222   // which memory slices they modify. So it is unsafe to move any memory
   223   // operation above these stores. Also in most cases hooked non-raw memories
   224   // were already unhooked by using information from detect_ptr_independence()
   225   // and find_previous_store().
   227   if (mem->is_MergeMem()) {
   228     MergeMemNode* mmem = mem->as_MergeMem();
   229     const TypePtr *tp = t_adr->is_ptr();
   231     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   232   }
   234   if (mem != old_mem) {
   235     set_req(MemNode::Memory, mem);
   236     return this;
   237   }
   239   // let the subclass continue analyzing...
   240   return NULL;
   241 }
   243 // Helper function for proving some simple control dominations.
   244 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   245 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   246 // is not a constant (dominated by the method's StartNode).
   247 // Used by MemNode::find_previous_store to prove that the
   248 // control input of a memory operation predates (dominates)
   249 // an allocation it wants to look past.
   250 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   251   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   252     return false; // Conservative answer for dead code
   254   // Check 'dom'.
   255   dom = dom->find_exact_control(dom);
   256   if (dom == NULL || dom->is_top())
   257     return false; // Conservative answer for dead code
   259   if (dom->is_Start() || dom->is_Root() || dom == sub)
   260     return true;
   262   // 'dom' dominates 'sub' if its control edge and control edges
   263   // of all its inputs dominate or equal to sub's control edge.
   265   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   266   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start(), "expecting only these nodes");
   268   // Get control edge of 'sub'.
   269   sub = sub->find_exact_control(sub->in(0));
   270   if (sub == NULL || sub->is_top())
   271     return false; // Conservative answer for dead code
   273   assert(sub->is_CFG(), "expecting control");
   275   if (sub == dom)
   276     return true;
   278   if (sub->is_Start() || sub->is_Root())
   279     return false;
   281   {
   282     // Check all control edges of 'dom'.
   284     ResourceMark rm;
   285     Arena* arena = Thread::current()->resource_area();
   286     Node_List nlist(arena);
   287     Unique_Node_List dom_list(arena);
   289     dom_list.push(dom);
   290     bool only_dominating_controls = false;
   292     for (uint next = 0; next < dom_list.size(); next++) {
   293       Node* n = dom_list.at(next);
   294       if (!n->is_CFG() && n->pinned()) {
   295         // Check only own control edge for pinned non-control nodes.
   296         n = n->find_exact_control(n->in(0));
   297         if (n == NULL || n->is_top())
   298           return false; // Conservative answer for dead code
   299         assert(n->is_CFG(), "expecting control");
   300       }
   301       if (n->is_Start() || n->is_Root()) {
   302         only_dominating_controls = true;
   303       } else if (n->is_CFG()) {
   304         if (n->dominates(sub, nlist))
   305           only_dominating_controls = true;
   306         else
   307           return false;
   308       } else {
   309         // First, own control edge.
   310         Node* m = n->find_exact_control(n->in(0));
   311         if (m == NULL)
   312           continue;
   313         if (m->is_top())
   314           return false; // Conservative answer for dead code
   315         dom_list.push(m);
   317         // Now, the rest of edges.
   318         uint cnt = n->req();
   319         for (uint i = 1; i < cnt; i++) {
   320           m = n->find_exact_control(n->in(i));
   321           if (m == NULL || m->is_top())
   322             continue;
   323           dom_list.push(m);
   324         }
   325       }
   326     }
   327     return only_dominating_controls;
   328   }
   329 }
   331 //---------------------detect_ptr_independence---------------------------------
   332 // Used by MemNode::find_previous_store to prove that two base
   333 // pointers are never equal.
   334 // The pointers are accompanied by their associated allocations,
   335 // if any, which have been previously discovered by the caller.
   336 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   337                                       Node* p2, AllocateNode* a2,
   338                                       PhaseTransform* phase) {
   339   // Attempt to prove that these two pointers cannot be aliased.
   340   // They may both manifestly be allocations, and they should differ.
   341   // Or, if they are not both allocations, they can be distinct constants.
   342   // Otherwise, one is an allocation and the other a pre-existing value.
   343   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   344     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   345   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   346     return (a1 != a2);
   347   } else if (a1 != NULL) {                  // one allocation a1
   348     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   349     return all_controls_dominate(p2, a1);
   350   } else { //(a2 != NULL)                   // one allocation a2
   351     return all_controls_dominate(p1, a2);
   352   }
   353   return false;
   354 }
   357 // The logic for reordering loads and stores uses four steps:
   358 // (a) Walk carefully past stores and initializations which we
   359 //     can prove are independent of this load.
   360 // (b) Observe that the next memory state makes an exact match
   361 //     with self (load or store), and locate the relevant store.
   362 // (c) Ensure that, if we were to wire self directly to the store,
   363 //     the optimizer would fold it up somehow.
   364 // (d) Do the rewiring, and return, depending on some other part of
   365 //     the optimizer to fold up the load.
   366 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   367 // specific to loads and stores, so they are handled by the callers.
   368 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   369 //
   370 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   371   Node*         ctrl   = in(MemNode::Control);
   372   Node*         adr    = in(MemNode::Address);
   373   intptr_t      offset = 0;
   374   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   375   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   377   if (offset == Type::OffsetBot)
   378     return NULL;            // cannot unalias unless there are precise offsets
   380   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   382   intptr_t size_in_bytes = memory_size();
   384   Node* mem = in(MemNode::Memory);   // start searching here...
   386   int cnt = 50;             // Cycle limiter
   387   for (;;) {                // While we can dance past unrelated stores...
   388     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   390     if (mem->is_Store()) {
   391       Node* st_adr = mem->in(MemNode::Address);
   392       intptr_t st_offset = 0;
   393       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   394       if (st_base == NULL)
   395         break;              // inscrutable pointer
   396       if (st_offset != offset && st_offset != Type::OffsetBot) {
   397         const int MAX_STORE = BytesPerLong;
   398         if (st_offset >= offset + size_in_bytes ||
   399             st_offset <= offset - MAX_STORE ||
   400             st_offset <= offset - mem->as_Store()->memory_size()) {
   401           // Success:  The offsets are provably independent.
   402           // (You may ask, why not just test st_offset != offset and be done?
   403           // The answer is that stores of different sizes can co-exist
   404           // in the same sequence of RawMem effects.  We sometimes initialize
   405           // a whole 'tile' of array elements with a single jint or jlong.)
   406           mem = mem->in(MemNode::Memory);
   407           continue;           // (a) advance through independent store memory
   408         }
   409       }
   410       if (st_base != base &&
   411           detect_ptr_independence(base, alloc,
   412                                   st_base,
   413                                   AllocateNode::Ideal_allocation(st_base, phase),
   414                                   phase)) {
   415         // Success:  The bases are provably independent.
   416         mem = mem->in(MemNode::Memory);
   417         continue;           // (a) advance through independent store memory
   418       }
   420       // (b) At this point, if the bases or offsets do not agree, we lose,
   421       // since we have not managed to prove 'this' and 'mem' independent.
   422       if (st_base == base && st_offset == offset) {
   423         return mem;         // let caller handle steps (c), (d)
   424       }
   426     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   427       InitializeNode* st_init = mem->in(0)->as_Initialize();
   428       AllocateNode*  st_alloc = st_init->allocation();
   429       if (st_alloc == NULL)
   430         break;              // something degenerated
   431       bool known_identical = false;
   432       bool known_independent = false;
   433       if (alloc == st_alloc)
   434         known_identical = true;
   435       else if (alloc != NULL)
   436         known_independent = true;
   437       else if (all_controls_dominate(this, st_alloc))
   438         known_independent = true;
   440       if (known_independent) {
   441         // The bases are provably independent: Either they are
   442         // manifestly distinct allocations, or else the control
   443         // of this load dominates the store's allocation.
   444         int alias_idx = phase->C->get_alias_index(adr_type());
   445         if (alias_idx == Compile::AliasIdxRaw) {
   446           mem = st_alloc->in(TypeFunc::Memory);
   447         } else {
   448           mem = st_init->memory(alias_idx);
   449         }
   450         continue;           // (a) advance through independent store memory
   451       }
   453       // (b) at this point, if we are not looking at a store initializing
   454       // the same allocation we are loading from, we lose.
   455       if (known_identical) {
   456         // From caller, can_see_stored_value will consult find_captured_store.
   457         return mem;         // let caller handle steps (c), (d)
   458       }
   460     } else if (addr_t != NULL && addr_t->is_instance_field()) {
   461       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   462       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   463         CallNode *call = mem->in(0)->as_Call();
   464         if (!call->may_modify(addr_t, phase)) {
   465           mem = call->in(TypeFunc::Memory);
   466           continue;         // (a) advance through independent call memory
   467         }
   468       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   469         mem = mem->in(0)->in(TypeFunc::Memory);
   470         continue;           // (a) advance through independent MemBar memory
   471       } else if (mem->is_MergeMem()) {
   472         int alias_idx = phase->C->get_alias_index(adr_type());
   473         mem = mem->as_MergeMem()->memory_at(alias_idx);
   474         continue;           // (a) advance through independent MergeMem memory
   475       }
   476     }
   478     // Unless there is an explicit 'continue', we must bail out here,
   479     // because 'mem' is an inscrutable memory state (e.g., a call).
   480     break;
   481   }
   483   return NULL;              // bail out
   484 }
   486 //----------------------calculate_adr_type-------------------------------------
   487 // Helper function.  Notices when the given type of address hits top or bottom.
   488 // Also, asserts a cross-check of the type against the expected address type.
   489 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   490   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   491   #ifdef PRODUCT
   492   cross_check = NULL;
   493   #else
   494   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   495   #endif
   496   const TypePtr* tp = t->isa_ptr();
   497   if (tp == NULL) {
   498     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   499     return TypePtr::BOTTOM;           // touches lots of memory
   500   } else {
   501     #ifdef ASSERT
   502     // %%%% [phh] We don't check the alias index if cross_check is
   503     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   504     if (cross_check != NULL &&
   505         cross_check != TypePtr::BOTTOM &&
   506         cross_check != TypeRawPtr::BOTTOM) {
   507       // Recheck the alias index, to see if it has changed (due to a bug).
   508       Compile* C = Compile::current();
   509       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   510              "must stay in the original alias category");
   511       // The type of the address must be contained in the adr_type,
   512       // disregarding "null"-ness.
   513       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   514       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   515       assert(cross_check->meet(tp_notnull) == cross_check,
   516              "real address must not escape from expected memory type");
   517     }
   518     #endif
   519     return tp;
   520   }
   521 }
   523 //------------------------adr_phi_is_loop_invariant----------------------------
   524 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   525 // loop is loop invariant. Make a quick traversal of Phi and associated
   526 // CastPP nodes, looking to see if they are a closed group within the loop.
   527 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   528   // The idea is that the phi-nest must boil down to only CastPP nodes
   529   // with the same data. This implies that any path into the loop already
   530   // includes such a CastPP, and so the original cast, whatever its input,
   531   // must be covered by an equivalent cast, with an earlier control input.
   532   ResourceMark rm;
   534   // The loop entry input of the phi should be the unique dominating
   535   // node for every Phi/CastPP in the loop.
   536   Unique_Node_List closure;
   537   closure.push(adr_phi->in(LoopNode::EntryControl));
   539   // Add the phi node and the cast to the worklist.
   540   Unique_Node_List worklist;
   541   worklist.push(adr_phi);
   542   if( cast != NULL ){
   543     if( !cast->is_ConstraintCast() ) return false;
   544     worklist.push(cast);
   545   }
   547   // Begin recursive walk of phi nodes.
   548   while( worklist.size() ){
   549     // Take a node off the worklist
   550     Node *n = worklist.pop();
   551     if( !closure.member(n) ){
   552       // Add it to the closure.
   553       closure.push(n);
   554       // Make a sanity check to ensure we don't waste too much time here.
   555       if( closure.size() > 20) return false;
   556       // This node is OK if:
   557       //  - it is a cast of an identical value
   558       //  - or it is a phi node (then we add its inputs to the worklist)
   559       // Otherwise, the node is not OK, and we presume the cast is not invariant
   560       if( n->is_ConstraintCast() ){
   561         worklist.push(n->in(1));
   562       } else if( n->is_Phi() ) {
   563         for( uint i = 1; i < n->req(); i++ ) {
   564           worklist.push(n->in(i));
   565         }
   566       } else {
   567         return false;
   568       }
   569     }
   570   }
   572   // Quit when the worklist is empty, and we've found no offending nodes.
   573   return true;
   574 }
   576 //------------------------------Ideal_DU_postCCP-------------------------------
   577 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   578 // going away in this pass and we need to make this memory op depend on the
   579 // gating null check.
   581 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   582 // some sense; we get to keep around the knowledge that an oop is not-null
   583 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   584 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   585 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   586 // some of the more trivial cases in the optimizer.  Removing more useless
   587 // Phi's started allowing Loads to illegally float above null checks.  I gave
   588 // up on this approach.  CNC 10/20/2000
   589 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   590   Node *ctr = in(MemNode::Control);
   591   Node *mem = in(MemNode::Memory);
   592   Node *adr = in(MemNode::Address);
   593   Node *skipped_cast = NULL;
   594   // Need a null check?  Regular static accesses do not because they are
   595   // from constant addresses.  Array ops are gated by the range check (which
   596   // always includes a NULL check).  Just check field ops.
   597   if( !ctr ) {
   598     // Scan upwards for the highest location we can place this memory op.
   599     while( true ) {
   600       switch( adr->Opcode() ) {
   602       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   603         adr = adr->in(AddPNode::Base);
   604         continue;
   606       case Op_CastPP:
   607         // If the CastPP is useless, just peek on through it.
   608         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   609           // Remember the cast that we've peeked though. If we peek
   610           // through more than one, then we end up remembering the highest
   611           // one, that is, if in a loop, the one closest to the top.
   612           skipped_cast = adr;
   613           adr = adr->in(1);
   614           continue;
   615         }
   616         // CastPP is going away in this pass!  We need this memory op to be
   617         // control-dependent on the test that is guarding the CastPP.
   618         ccp->hash_delete(this);
   619         set_req(MemNode::Control, adr->in(0));
   620         ccp->hash_insert(this);
   621         return this;
   623       case Op_Phi:
   624         // Attempt to float above a Phi to some dominating point.
   625         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   626           // If we've already peeked through a Cast (which could have set the
   627           // control), we can't float above a Phi, because the skipped Cast
   628           // may not be loop invariant.
   629           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   630             adr = adr->in(1);
   631             continue;
   632           }
   633         }
   635         // Intentional fallthrough!
   637         // No obvious dominating point.  The mem op is pinned below the Phi
   638         // by the Phi itself.  If the Phi goes away (no true value is merged)
   639         // then the mem op can float, but not indefinitely.  It must be pinned
   640         // behind the controls leading to the Phi.
   641       case Op_CheckCastPP:
   642         // These usually stick around to change address type, however a
   643         // useless one can be elided and we still need to pick up a control edge
   644         if (adr->in(0) == NULL) {
   645           // This CheckCastPP node has NO control and is likely useless. But we
   646           // need check further up the ancestor chain for a control input to keep
   647           // the node in place. 4959717.
   648           skipped_cast = adr;
   649           adr = adr->in(1);
   650           continue;
   651         }
   652         ccp->hash_delete(this);
   653         set_req(MemNode::Control, adr->in(0));
   654         ccp->hash_insert(this);
   655         return this;
   657         // List of "safe" opcodes; those that implicitly block the memory
   658         // op below any null check.
   659       case Op_CastX2P:          // no null checks on native pointers
   660       case Op_Parm:             // 'this' pointer is not null
   661       case Op_LoadP:            // Loading from within a klass
   662       case Op_LoadKlass:        // Loading from within a klass
   663       case Op_ConP:             // Loading from a klass
   664       case Op_CreateEx:         // Sucking up the guts of an exception oop
   665       case Op_Con:              // Reading from TLS
   666       case Op_CMoveP:           // CMoveP is pinned
   667         break;                  // No progress
   669       case Op_Proj:             // Direct call to an allocation routine
   670       case Op_SCMemProj:        // Memory state from store conditional ops
   671 #ifdef ASSERT
   672         {
   673           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   674           const Node* call = adr->in(0);
   675           if (call->is_CallStaticJava()) {
   676             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   677             const TypeTuple *r = call_java->tf()->range();
   678             assert(r->cnt() > TypeFunc::Parms, "must return value");
   679             const Type* ret_type = r->field_at(TypeFunc::Parms);
   680             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   681             // We further presume that this is one of
   682             // new_instance_Java, new_array_Java, or
   683             // the like, but do not assert for this.
   684           } else if (call->is_Allocate()) {
   685             // similar case to new_instance_Java, etc.
   686           } else if (!call->is_CallLeaf()) {
   687             // Projections from fetch_oop (OSR) are allowed as well.
   688             ShouldNotReachHere();
   689           }
   690         }
   691 #endif
   692         break;
   693       default:
   694         ShouldNotReachHere();
   695       }
   696       break;
   697     }
   698   }
   700   return  NULL;               // No progress
   701 }
   704 //=============================================================================
   705 uint LoadNode::size_of() const { return sizeof(*this); }
   706 uint LoadNode::cmp( const Node &n ) const
   707 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   708 const Type *LoadNode::bottom_type() const { return _type; }
   709 uint LoadNode::ideal_reg() const {
   710   return Matcher::base2reg[_type->base()];
   711 }
   713 #ifndef PRODUCT
   714 void LoadNode::dump_spec(outputStream *st) const {
   715   MemNode::dump_spec(st);
   716   if( !Verbose && !WizardMode ) {
   717     // standard dump does this in Verbose and WizardMode
   718     st->print(" #"); _type->dump_on(st);
   719   }
   720 }
   721 #endif
   724 //----------------------------LoadNode::make-----------------------------------
   725 // Polymorphic factory method:
   726 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   727   // sanity check the alias category against the created node type
   728   assert(!(adr_type->isa_oopptr() &&
   729            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   730          "use LoadKlassNode instead");
   731   assert(!(adr_type->isa_aryptr() &&
   732            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   733          "use LoadRangeNode instead");
   734   switch (bt) {
   735   case T_BOOLEAN:
   736   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   737   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   738   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   739   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   740   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   741   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   742   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   743   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   744   case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   745   }
   746   ShouldNotReachHere();
   747   return (LoadNode*)NULL;
   748 }
   750 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   751   bool require_atomic = true;
   752   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   753 }
   758 //------------------------------hash-------------------------------------------
   759 uint LoadNode::hash() const {
   760   // unroll addition of interesting fields
   761   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   762 }
   764 //---------------------------can_see_stored_value------------------------------
   765 // This routine exists to make sure this set of tests is done the same
   766 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   767 // will change the graph shape in a way which makes memory alive twice at the
   768 // same time (uses the Oracle model of aliasing), then some
   769 // LoadXNode::Identity will fold things back to the equivalence-class model
   770 // of aliasing.
   771 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   772   Node* ld_adr = in(MemNode::Address);
   774   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   775   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   776   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   777       atp->field() != NULL && !atp->field()->is_volatile()) {
   778     uint alias_idx = atp->index();
   779     bool final = atp->field()->is_final();
   780     Node* result = NULL;
   781     Node* current = st;
   782     // Skip through chains of MemBarNodes checking the MergeMems for
   783     // new states for the slice of this load.  Stop once any other
   784     // kind of node is encountered.  Loads from final memory can skip
   785     // through any kind of MemBar but normal loads shouldn't skip
   786     // through MemBarAcquire since the could allow them to move out of
   787     // a synchronized region.
   788     while (current->is_Proj()) {
   789       int opc = current->in(0)->Opcode();
   790       if ((final && opc == Op_MemBarAcquire) ||
   791           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   792         Node* mem = current->in(0)->in(TypeFunc::Memory);
   793         if (mem->is_MergeMem()) {
   794           MergeMemNode* merge = mem->as_MergeMem();
   795           Node* new_st = merge->memory_at(alias_idx);
   796           if (new_st == merge->base_memory()) {
   797             // Keep searching
   798             current = merge->base_memory();
   799             continue;
   800           }
   801           // Save the new memory state for the slice and fall through
   802           // to exit.
   803           result = new_st;
   804         }
   805       }
   806       break;
   807     }
   808     if (result != NULL) {
   809       st = result;
   810     }
   811   }
   814   // Loop around twice in the case Load -> Initialize -> Store.
   815   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   816   for (int trip = 0; trip <= 1; trip++) {
   818     if (st->is_Store()) {
   819       Node* st_adr = st->in(MemNode::Address);
   820       if (!phase->eqv(st_adr, ld_adr)) {
   821         // Try harder before giving up...  Match raw and non-raw pointers.
   822         intptr_t st_off = 0;
   823         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   824         if (alloc == NULL)       return NULL;
   825         intptr_t ld_off = 0;
   826         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   827         if (alloc != allo2)      return NULL;
   828         if (ld_off != st_off)    return NULL;
   829         // At this point we have proven something like this setup:
   830         //  A = Allocate(...)
   831         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   832         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   833         // (Actually, we haven't yet proven the Q's are the same.)
   834         // In other words, we are loading from a casted version of
   835         // the same pointer-and-offset that we stored to.
   836         // Thus, we are able to replace L by V.
   837       }
   838       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   839       if (store_Opcode() != st->Opcode())
   840         return NULL;
   841       return st->in(MemNode::ValueIn);
   842     }
   844     intptr_t offset = 0;  // scratch
   846     // A load from a freshly-created object always returns zero.
   847     // (This can happen after LoadNode::Ideal resets the load's memory input
   848     // to find_captured_store, which returned InitializeNode::zero_memory.)
   849     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   850         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   851         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   852       // return a zero value for the load's basic type
   853       // (This is one of the few places where a generic PhaseTransform
   854       // can create new nodes.  Think of it as lazily manifesting
   855       // virtually pre-existing constants.)
   856       return phase->zerocon(memory_type());
   857     }
   859     // A load from an initialization barrier can match a captured store.
   860     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   861       InitializeNode* init = st->in(0)->as_Initialize();
   862       AllocateNode* alloc = init->allocation();
   863       if (alloc != NULL &&
   864           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   865         // examine a captured store value
   866         st = init->find_captured_store(offset, memory_size(), phase);
   867         if (st != NULL)
   868           continue;             // take one more trip around
   869       }
   870     }
   872     break;
   873   }
   875   return NULL;
   876 }
   878 //----------------------is_instance_field_load_with_local_phi------------------
   879 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   880   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   881       in(MemNode::Address)->is_AddP() ) {
   882     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   883     // Only instances.
   884     if( t_oop != NULL && t_oop->is_instance_field() &&
   885         t_oop->offset() != Type::OffsetBot &&
   886         t_oop->offset() != Type::OffsetTop) {
   887       return true;
   888     }
   889   }
   890   return false;
   891 }
   893 //------------------------------Identity---------------------------------------
   894 // Loads are identity if previous store is to same address
   895 Node *LoadNode::Identity( PhaseTransform *phase ) {
   896   // If the previous store-maker is the right kind of Store, and the store is
   897   // to the same address, then we are equal to the value stored.
   898   Node* mem = in(MemNode::Memory);
   899   Node* value = can_see_stored_value(mem, phase);
   900   if( value ) {
   901     // byte, short & char stores truncate naturally.
   902     // A load has to load the truncated value which requires
   903     // some sort of masking operation and that requires an
   904     // Ideal call instead of an Identity call.
   905     if (memory_size() < BytesPerInt) {
   906       // If the input to the store does not fit with the load's result type,
   907       // it must be truncated via an Ideal call.
   908       if (!phase->type(value)->higher_equal(phase->type(this)))
   909         return this;
   910     }
   911     // (This works even when value is a Con, but LoadNode::Value
   912     // usually runs first, producing the singleton type of the Con.)
   913     return value;
   914   }
   916   // Search for an existing data phi which was generated before for the same
   917   // instance's field to avoid infinite genertion of phis in a loop.
   918   Node *region = mem->in(0);
   919   if (is_instance_field_load_with_local_phi(region)) {
   920     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   921     int this_index  = phase->C->get_alias_index(addr_t);
   922     int this_offset = addr_t->offset();
   923     int this_id    = addr_t->is_oopptr()->instance_id();
   924     const Type* this_type = bottom_type();
   925     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   926       Node* phi = region->fast_out(i);
   927       if (phi->is_Phi() && phi != mem &&
   928           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   929         return phi;
   930       }
   931     }
   932   }
   934   return this;
   935 }
   938 // Returns true if the AliasType refers to the field that holds the
   939 // cached box array.  Currently only handles the IntegerCache case.
   940 static bool is_autobox_cache(Compile::AliasType* atp) {
   941   if (atp != NULL && atp->field() != NULL) {
   942     ciField* field = atp->field();
   943     ciSymbol* klass = field->holder()->name();
   944     if (field->name() == ciSymbol::cache_field_name() &&
   945         field->holder()->uses_default_loader() &&
   946         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   947       return true;
   948     }
   949   }
   950   return false;
   951 }
   953 // Fetch the base value in the autobox array
   954 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   955   if (atp != NULL && atp->field() != NULL) {
   956     ciField* field = atp->field();
   957     ciSymbol* klass = field->holder()->name();
   958     if (field->name() == ciSymbol::cache_field_name() &&
   959         field->holder()->uses_default_loader() &&
   960         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   961       assert(field->is_constant(), "what?");
   962       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
   963       // Fetch the box object at the base of the array and get its value
   964       ciInstance* box = array->obj_at(0)->as_instance();
   965       ciInstanceKlass* ik = box->klass()->as_instance_klass();
   966       if (ik->nof_nonstatic_fields() == 1) {
   967         // This should be true nonstatic_field_at requires calling
   968         // nof_nonstatic_fields so check it anyway
   969         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
   970         cache_offset = c.as_int();
   971       }
   972       return true;
   973     }
   974   }
   975   return false;
   976 }
   978 // Returns true if the AliasType refers to the value field of an
   979 // autobox object.  Currently only handles Integer.
   980 static bool is_autobox_object(Compile::AliasType* atp) {
   981   if (atp != NULL && atp->field() != NULL) {
   982     ciField* field = atp->field();
   983     ciSymbol* klass = field->holder()->name();
   984     if (field->name() == ciSymbol::value_name() &&
   985         field->holder()->uses_default_loader() &&
   986         klass == ciSymbol::java_lang_Integer()) {
   987       return true;
   988     }
   989   }
   990   return false;
   991 }
   994 // We're loading from an object which has autobox behaviour.
   995 // If this object is result of a valueOf call we'll have a phi
   996 // merging a newly allocated object and a load from the cache.
   997 // We want to replace this load with the original incoming
   998 // argument to the valueOf call.
   999 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1000   Node* base = in(Address)->in(AddPNode::Base);
  1001   if (base->is_Phi() && base->req() == 3) {
  1002     AllocateNode* allocation = NULL;
  1003     int allocation_index = -1;
  1004     int load_index = -1;
  1005     for (uint i = 1; i < base->req(); i++) {
  1006       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1007       if (allocation != NULL) {
  1008         allocation_index = i;
  1009         load_index = 3 - allocation_index;
  1010         break;
  1013     LoadNode* load = NULL;
  1014     if (allocation != NULL && base->in(load_index)->is_Load()) {
  1015       load = base->in(load_index)->as_Load();
  1017     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1018       // Push the loads from the phi that comes from valueOf up
  1019       // through it to allow elimination of the loads and the recovery
  1020       // of the original value.
  1021       Node* mem_phi = in(Memory);
  1022       Node* offset = in(Address)->in(AddPNode::Offset);
  1024       Node* in1 = clone();
  1025       Node* in1_addr = in1->in(Address)->clone();
  1026       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1027       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1028       in1_addr->set_req(AddPNode::Offset, offset);
  1029       in1->set_req(0, base->in(allocation_index));
  1030       in1->set_req(Address, in1_addr);
  1031       in1->set_req(Memory, mem_phi->in(allocation_index));
  1033       Node* in2 = clone();
  1034       Node* in2_addr = in2->in(Address)->clone();
  1035       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1036       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1037       in2_addr->set_req(AddPNode::Offset, offset);
  1038       in2->set_req(0, base->in(load_index));
  1039       in2->set_req(Address, in2_addr);
  1040       in2->set_req(Memory, mem_phi->in(load_index));
  1042       in1_addr = phase->transform(in1_addr);
  1043       in1 =      phase->transform(in1);
  1044       in2_addr = phase->transform(in2_addr);
  1045       in2 =      phase->transform(in2);
  1047       PhiNode* result = PhiNode::make_blank(base->in(0), this);
  1048       result->set_req(allocation_index, in1);
  1049       result->set_req(load_index, in2);
  1050       return result;
  1052   } else if (base->is_Load()) {
  1053     // Eliminate the load of Integer.value for integers from the cache
  1054     // array by deriving the value from the index into the array.
  1055     // Capture the offset of the load and then reverse the computation.
  1056     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1057     if (load_base != NULL) {
  1058       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1059       intptr_t cache_offset;
  1060       int shift = -1;
  1061       Node* cache = NULL;
  1062       if (is_autobox_cache(atp)) {
  1063         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1064         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1066       if (cache != NULL && base->in(Address)->is_AddP()) {
  1067         Node* elements[4];
  1068         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1069         int cache_low;
  1070         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1071           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1072           // Add up all the offsets making of the address of the load
  1073           Node* result = elements[0];
  1074           for (int i = 1; i < count; i++) {
  1075             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1077           // Remove the constant offset from the address and then
  1078           // remove the scaling of the offset to recover the original index.
  1079           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1080           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1081             // Peel the shift off directly but wrap it in a dummy node
  1082             // since Ideal can't return existing nodes
  1083             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1084           } else {
  1085             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1087 #ifdef _LP64
  1088           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1089 #endif
  1090           return result;
  1095   return NULL;
  1099 //------------------------------Ideal------------------------------------------
  1100 // If the load is from Field memory and the pointer is non-null, we can
  1101 // zero out the control input.
  1102 // If the offset is constant and the base is an object allocation,
  1103 // try to hook me up to the exact initializing store.
  1104 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1105   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1106   if (p)  return (p == NodeSentinel) ? NULL : p;
  1108   Node* ctrl    = in(MemNode::Control);
  1109   Node* address = in(MemNode::Address);
  1111   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1112   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1113   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1114       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1115     ctrl = ctrl->in(0);
  1116     set_req(MemNode::Control,ctrl);
  1119   // Check for useless control edge in some common special cases
  1120   if (in(MemNode::Control) != NULL) {
  1121     intptr_t ignore = 0;
  1122     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1123     if (base != NULL
  1124         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1125         && all_controls_dominate(base, phase->C->start())) {
  1126       // A method-invariant, non-null address (constant or 'this' argument).
  1127       set_req(MemNode::Control, NULL);
  1131   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1132     Node* base = in(Address)->in(AddPNode::Base);
  1133     if (base != NULL) {
  1134       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1135       if (is_autobox_object(atp)) {
  1136         Node* result = eliminate_autobox(phase);
  1137         if (result != NULL) return result;
  1142   Node* mem = in(MemNode::Memory);
  1143   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1145   if (addr_t != NULL) {
  1146     // try to optimize our memory input
  1147     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1148     if (opt_mem != mem) {
  1149       set_req(MemNode::Memory, opt_mem);
  1150       return this;
  1152     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1153     if (can_reshape && opt_mem->is_Phi() &&
  1154         (t_oop != NULL) && t_oop->is_instance_field()) {
  1155       assert(t_oop->offset() != Type::OffsetBot && t_oop->offset() != Type::OffsetTop, "");
  1156       Node *region = opt_mem->in(0);
  1157       uint cnt = opt_mem->req();
  1158       for( uint i = 1; i < cnt; i++ ) {
  1159         Node *in = opt_mem->in(i);
  1160         if( in == NULL ) {
  1161           region = NULL; // Wait stable graph
  1162           break;
  1165       if (region != NULL) {
  1166         // Check for loop invariant.
  1167         if (cnt == 3) {
  1168           for( uint i = 1; i < cnt; i++ ) {
  1169             Node *in = opt_mem->in(i);
  1170             Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1171             if (m == opt_mem) {
  1172               set_req(MemNode::Memory, opt_mem->in(cnt - i)); // Skip this phi.
  1173               return this;
  1177         // Split through Phi (see original code in loopopts.cpp).
  1178         assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1180         // Do nothing here if Identity will find a value
  1181         // (to avoid infinite chain of value phis generation).
  1182         if ( !phase->eqv(this, this->Identity(phase)) )
  1183           return NULL;
  1185         const Type* this_type = this->bottom_type();
  1186         int this_index  = phase->C->get_alias_index(addr_t);
  1187         int this_offset = addr_t->offset();
  1188         int this_iid    = addr_t->is_oopptr()->instance_id();
  1189         int wins = 0;
  1190         PhaseIterGVN *igvn = phase->is_IterGVN();
  1191         Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1192         for( uint i = 1; i < region->req(); i++ ) {
  1193           Node *x;
  1194           Node* the_clone = NULL;
  1195           if( region->in(i) == phase->C->top() ) {
  1196             x = phase->C->top();      // Dead path?  Use a dead data op
  1197           } else {
  1198             x = this->clone();        // Else clone up the data op
  1199             the_clone = x;            // Remember for possible deletion.
  1200             // Alter data node to use pre-phi inputs
  1201             if( this->in(0) == region ) {
  1202               x->set_req( 0, region->in(i) );
  1203             } else {
  1204               x->set_req( 0, NULL );
  1206             for( uint j = 1; j < this->req(); j++ ) {
  1207               Node *in = this->in(j);
  1208               if( in->is_Phi() && in->in(0) == region )
  1209                 x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1212           // Check for a 'win' on some paths
  1213           const Type *t = x->Value(igvn);
  1215           bool singleton = t->singleton();
  1217           // See comments in PhaseIdealLoop::split_thru_phi().
  1218           if( singleton && t == Type::TOP ) {
  1219             singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1222           if( singleton ) {
  1223             wins++;
  1224             x = igvn->makecon(t);
  1225           } else {
  1226             // We now call Identity to try to simplify the cloned node.
  1227             // Note that some Identity methods call phase->type(this).
  1228             // Make sure that the type array is big enough for
  1229             // our new node, even though we may throw the node away.
  1230             // (This tweaking with igvn only works because x is a new node.)
  1231             igvn->set_type(x, t);
  1232             Node *y = x->Identity(igvn);
  1233             if( y != x ) {
  1234               wins++;
  1235               x = y;
  1236             } else {
  1237               y = igvn->hash_find(x);
  1238               if( y ) {
  1239                 wins++;
  1240                 x = y;
  1241               } else {
  1242                 // Else x is a new node we are keeping
  1243                 // We do not need register_new_node_with_optimizer
  1244                 // because set_type has already been called.
  1245                 igvn->_worklist.push(x);
  1249           if (x != the_clone && the_clone != NULL)
  1250             igvn->remove_dead_node(the_clone);
  1251           phi->set_req(i, x);
  1253         if( wins > 0 ) {
  1254           // Record Phi
  1255           igvn->register_new_node_with_optimizer(phi);
  1256           return phi;
  1257         } else {
  1258           igvn->remove_dead_node(phi);
  1264   // Check for prior store with a different base or offset; make Load
  1265   // independent.  Skip through any number of them.  Bail out if the stores
  1266   // are in an endless dead cycle and report no progress.  This is a key
  1267   // transform for Reflection.  However, if after skipping through the Stores
  1268   // we can't then fold up against a prior store do NOT do the transform as
  1269   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1270   // array memory alive twice: once for the hoisted Load and again after the
  1271   // bypassed Store.  This situation only works if EVERYBODY who does
  1272   // anti-dependence work knows how to bypass.  I.e. we need all
  1273   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1274   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1275   // fold up, do so.
  1276   Node* prev_mem = find_previous_store(phase);
  1277   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1278   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1279     // (c) See if we can fold up on the spot, but don't fold up here.
  1280     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1281     // just return a prior value, which is done by Identity calls.
  1282     if (can_see_stored_value(prev_mem, phase)) {
  1283       // Make ready for step (d):
  1284       set_req(MemNode::Memory, prev_mem);
  1285       return this;
  1289   return NULL;                  // No further progress
  1292 // Helper to recognize certain Klass fields which are invariant across
  1293 // some group of array types (e.g., int[] or all T[] where T < Object).
  1294 const Type*
  1295 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1296                                  ciKlass* klass) const {
  1297   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1298     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1299     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1300     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1301     return TypeInt::make(klass->modifier_flags());
  1303   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1304     // The field is Klass::_access_flags.  Return its (constant) value.
  1305     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1306     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1307     return TypeInt::make(klass->access_flags());
  1309   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1310     // The field is Klass::_layout_helper.  Return its constant value if known.
  1311     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1312     return TypeInt::make(klass->layout_helper());
  1315   // No match.
  1316   return NULL;
  1319 //------------------------------Value-----------------------------------------
  1320 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1321   // Either input is TOP ==> the result is TOP
  1322   Node* mem = in(MemNode::Memory);
  1323   const Type *t1 = phase->type(mem);
  1324   if (t1 == Type::TOP)  return Type::TOP;
  1325   Node* adr = in(MemNode::Address);
  1326   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1327   if (tp == NULL || tp->empty())  return Type::TOP;
  1328   int off = tp->offset();
  1329   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1331   // Try to guess loaded type from pointer type
  1332   if (tp->base() == Type::AryPtr) {
  1333     const Type *t = tp->is_aryptr()->elem();
  1334     // Don't do this for integer types. There is only potential profit if
  1335     // the element type t is lower than _type; that is, for int types, if _type is
  1336     // more restrictive than t.  This only happens here if one is short and the other
  1337     // char (both 16 bits), and in those cases we've made an intentional decision
  1338     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1339     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1340     //
  1341     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1342     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1343     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1344     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1345     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1346     // In fact, that could have been the original type of p1, and p1 could have
  1347     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1348     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1349     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1350         && Opcode() != Op_LoadKlass) {
  1351       // t might actually be lower than _type, if _type is a unique
  1352       // concrete subclass of abstract class t.
  1353       // Make sure the reference is not into the header, by comparing
  1354       // the offset against the offset of the start of the array's data.
  1355       // Different array types begin at slightly different offsets (12 vs. 16).
  1356       // We choose T_BYTE as an example base type that is least restrictive
  1357       // as to alignment, which will therefore produce the smallest
  1358       // possible base offset.
  1359       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1360       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1361         const Type* jt = t->join(_type);
  1362         // In any case, do not allow the join, per se, to empty out the type.
  1363         if (jt->empty() && !t->empty()) {
  1364           // This can happen if a interface-typed array narrows to a class type.
  1365           jt = _type;
  1368         if (EliminateAutoBox) {
  1369           // The pointers in the autobox arrays are always non-null
  1370           Node* base = in(Address)->in(AddPNode::Base);
  1371           if (base != NULL) {
  1372             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1373             if (is_autobox_cache(atp)) {
  1374               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1378         return jt;
  1381   } else if (tp->base() == Type::InstPtr) {
  1382     assert( off != Type::OffsetBot ||
  1383             // arrays can be cast to Objects
  1384             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1385             // unsafe field access may not have a constant offset
  1386             phase->C->has_unsafe_access(),
  1387             "Field accesses must be precise" );
  1388     // For oop loads, we expect the _type to be precise
  1389   } else if (tp->base() == Type::KlassPtr) {
  1390     assert( off != Type::OffsetBot ||
  1391             // arrays can be cast to Objects
  1392             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1393             // also allow array-loading from the primary supertype
  1394             // array during subtype checks
  1395             Opcode() == Op_LoadKlass,
  1396             "Field accesses must be precise" );
  1397     // For klass/static loads, we expect the _type to be precise
  1400   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1401   if (tkls != NULL && !StressReflectiveCode) {
  1402     ciKlass* klass = tkls->klass();
  1403     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1404       // We are loading a field from a Klass metaobject whose identity
  1405       // is known at compile time (the type is "exact" or "precise").
  1406       // Check for fields we know are maintained as constants by the VM.
  1407       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1408         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1409         // (Folds up type checking code.)
  1410         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1411         return TypeInt::make(klass->super_check_offset());
  1413       // Compute index into primary_supers array
  1414       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1415       // Check for overflowing; use unsigned compare to handle the negative case.
  1416       if( depth < ciKlass::primary_super_limit() ) {
  1417         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1418         // (Folds up type checking code.)
  1419         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1420         ciKlass *ss = klass->super_of_depth(depth);
  1421         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1423       const Type* aift = load_array_final_field(tkls, klass);
  1424       if (aift != NULL)  return aift;
  1425       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1426           && klass->is_array_klass()) {
  1427         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1428         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1429         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1430         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1432       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1433         // The field is Klass::_java_mirror.  Return its (constant) value.
  1434         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1435         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1436         return TypeInstPtr::make(klass->java_mirror());
  1440     // We can still check if we are loading from the primary_supers array at a
  1441     // shallow enough depth.  Even though the klass is not exact, entries less
  1442     // than or equal to its super depth are correct.
  1443     if (klass->is_loaded() ) {
  1444       ciType *inner = klass->klass();
  1445       while( inner->is_obj_array_klass() )
  1446         inner = inner->as_obj_array_klass()->base_element_type();
  1447       if( inner->is_instance_klass() &&
  1448           !inner->as_instance_klass()->flags().is_interface() ) {
  1449         // Compute index into primary_supers array
  1450         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1451         // Check for overflowing; use unsigned compare to handle the negative case.
  1452         if( depth < ciKlass::primary_super_limit() &&
  1453             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1454           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1455           // (Folds up type checking code.)
  1456           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1457           ciKlass *ss = klass->super_of_depth(depth);
  1458           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1463     // If the type is enough to determine that the thing is not an array,
  1464     // we can give the layout_helper a positive interval type.
  1465     // This will help short-circuit some reflective code.
  1466     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1467         && !klass->is_array_klass() // not directly typed as an array
  1468         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1469         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1470         ) {
  1471       // Note:  When interfaces are reliable, we can narrow the interface
  1472       // test to (klass != Serializable && klass != Cloneable).
  1473       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1474       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1475       // The key property of this type is that it folds up tests
  1476       // for array-ness, since it proves that the layout_helper is positive.
  1477       // Thus, a generic value like the basic object layout helper works fine.
  1478       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1482   // If we are loading from a freshly-allocated object, produce a zero,
  1483   // if the load is provably beyond the header of the object.
  1484   // (Also allow a variable load from a fresh array to produce zero.)
  1485   if (ReduceFieldZeroing) {
  1486     Node* value = can_see_stored_value(mem,phase);
  1487     if (value != NULL && value->is_Con())
  1488       return value->bottom_type();
  1491   const TypeOopPtr *tinst = tp->isa_oopptr();
  1492   if (tinst != NULL && tinst->is_instance_field()) {
  1493     // If we have an instance type and our memory input is the
  1494     // programs's initial memory state, there is no matching store,
  1495     // so just return a zero of the appropriate type
  1496     Node *mem = in(MemNode::Memory);
  1497     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1498       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1499       return Type::get_zero_type(_type->basic_type());
  1502   return _type;
  1505 //------------------------------match_edge-------------------------------------
  1506 // Do we Match on this edge index or not?  Match only the address.
  1507 uint LoadNode::match_edge(uint idx) const {
  1508   return idx == MemNode::Address;
  1511 //--------------------------LoadBNode::Ideal--------------------------------------
  1512 //
  1513 //  If the previous store is to the same address as this load,
  1514 //  and the value stored was larger than a byte, replace this load
  1515 //  with the value stored truncated to a byte.  If no truncation is
  1516 //  needed, the replacement is done in LoadNode::Identity().
  1517 //
  1518 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1519   Node* mem = in(MemNode::Memory);
  1520   Node* value = can_see_stored_value(mem,phase);
  1521   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1522     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1523     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1525   // Identity call will handle the case where truncation is not needed.
  1526   return LoadNode::Ideal(phase, can_reshape);
  1529 //--------------------------LoadCNode::Ideal--------------------------------------
  1530 //
  1531 //  If the previous store is to the same address as this load,
  1532 //  and the value stored was larger than a char, replace this load
  1533 //  with the value stored truncated to a char.  If no truncation is
  1534 //  needed, the replacement is done in LoadNode::Identity().
  1535 //
  1536 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1537   Node* mem = in(MemNode::Memory);
  1538   Node* value = can_see_stored_value(mem,phase);
  1539   if( value && !phase->type(value)->higher_equal( _type ) )
  1540     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1541   // Identity call will handle the case where truncation is not needed.
  1542   return LoadNode::Ideal(phase, can_reshape);
  1545 //--------------------------LoadSNode::Ideal--------------------------------------
  1546 //
  1547 //  If the previous store is to the same address as this load,
  1548 //  and the value stored was larger than a short, replace this load
  1549 //  with the value stored truncated to a short.  If no truncation is
  1550 //  needed, the replacement is done in LoadNode::Identity().
  1551 //
  1552 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1553   Node* mem = in(MemNode::Memory);
  1554   Node* value = can_see_stored_value(mem,phase);
  1555   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1556     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1557     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1559   // Identity call will handle the case where truncation is not needed.
  1560   return LoadNode::Ideal(phase, can_reshape);
  1563 //=============================================================================
  1564 //------------------------------Value------------------------------------------
  1565 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1566   // Either input is TOP ==> the result is TOP
  1567   const Type *t1 = phase->type( in(MemNode::Memory) );
  1568   if (t1 == Type::TOP)  return Type::TOP;
  1569   Node *adr = in(MemNode::Address);
  1570   const Type *t2 = phase->type( adr );
  1571   if (t2 == Type::TOP)  return Type::TOP;
  1572   const TypePtr *tp = t2->is_ptr();
  1573   if (TypePtr::above_centerline(tp->ptr()) ||
  1574       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1576   // Return a more precise klass, if possible
  1577   const TypeInstPtr *tinst = tp->isa_instptr();
  1578   if (tinst != NULL) {
  1579     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1580     int offset = tinst->offset();
  1581     if (ik == phase->C->env()->Class_klass()
  1582         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1583             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1584       // We are loading a special hidden field from a Class mirror object,
  1585       // the field which points to the VM's Klass metaobject.
  1586       ciType* t = tinst->java_mirror_type();
  1587       // java_mirror_type returns non-null for compile-time Class constants.
  1588       if (t != NULL) {
  1589         // constant oop => constant klass
  1590         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1591           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1593         if (!t->is_klass()) {
  1594           // a primitive Class (e.g., int.class) has NULL for a klass field
  1595           return TypePtr::NULL_PTR;
  1597         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1598         return TypeKlassPtr::make(t->as_klass());
  1600       // non-constant mirror, so we can't tell what's going on
  1602     if( !ik->is_loaded() )
  1603       return _type;             // Bail out if not loaded
  1604     if (offset == oopDesc::klass_offset_in_bytes()) {
  1605       if (tinst->klass_is_exact()) {
  1606         return TypeKlassPtr::make(ik);
  1608       // See if we can become precise: no subklasses and no interface
  1609       // (Note:  We need to support verified interfaces.)
  1610       if (!ik->is_interface() && !ik->has_subklass()) {
  1611         //assert(!UseExactTypes, "this code should be useless with exact types");
  1612         // Add a dependence; if any subclass added we need to recompile
  1613         if (!ik->is_final()) {
  1614           // %%% should use stronger assert_unique_concrete_subtype instead
  1615           phase->C->dependencies()->assert_leaf_type(ik);
  1617         // Return precise klass
  1618         return TypeKlassPtr::make(ik);
  1621       // Return root of possible klass
  1622       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1626   // Check for loading klass from an array
  1627   const TypeAryPtr *tary = tp->isa_aryptr();
  1628   if( tary != NULL ) {
  1629     ciKlass *tary_klass = tary->klass();
  1630     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1631         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1632       if (tary->klass_is_exact()) {
  1633         return TypeKlassPtr::make(tary_klass);
  1635       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1636       // If the klass is an object array, we defer the question to the
  1637       // array component klass.
  1638       if( ak->is_obj_array_klass() ) {
  1639         assert( ak->is_loaded(), "" );
  1640         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1641         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1642           ciInstanceKlass* ik = base_k->as_instance_klass();
  1643           // See if we can become precise: no subklasses and no interface
  1644           if (!ik->is_interface() && !ik->has_subklass()) {
  1645             //assert(!UseExactTypes, "this code should be useless with exact types");
  1646             // Add a dependence; if any subclass added we need to recompile
  1647             if (!ik->is_final()) {
  1648               phase->C->dependencies()->assert_leaf_type(ik);
  1650             // Return precise array klass
  1651             return TypeKlassPtr::make(ak);
  1654         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1655       } else {                  // Found a type-array?
  1656         //assert(!UseExactTypes, "this code should be useless with exact types");
  1657         assert( ak->is_type_array_klass(), "" );
  1658         return TypeKlassPtr::make(ak); // These are always precise
  1663   // Check for loading klass from an array klass
  1664   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1665   if (tkls != NULL && !StressReflectiveCode) {
  1666     ciKlass* klass = tkls->klass();
  1667     if( !klass->is_loaded() )
  1668       return _type;             // Bail out if not loaded
  1669     if( klass->is_obj_array_klass() &&
  1670         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1671       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1672       // // Always returning precise element type is incorrect,
  1673       // // e.g., element type could be object and array may contain strings
  1674       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1676       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1677       // according to the element type's subclassing.
  1678       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1680     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1681         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1682       ciKlass* sup = klass->as_instance_klass()->super();
  1683       // The field is Klass::_super.  Return its (constant) value.
  1684       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1685       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1689   // Bailout case
  1690   return LoadNode::Value(phase);
  1693 //------------------------------Identity---------------------------------------
  1694 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1695 // Also feed through the klass in Allocate(...klass...)._klass.
  1696 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1697   Node* x = LoadNode::Identity(phase);
  1698   if (x != this)  return x;
  1700   // Take apart the address into an oop and and offset.
  1701   // Return 'this' if we cannot.
  1702   Node*    adr    = in(MemNode::Address);
  1703   intptr_t offset = 0;
  1704   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1705   if (base == NULL)     return this;
  1706   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1707   if (toop == NULL)     return this;
  1709   // We can fetch the klass directly through an AllocateNode.
  1710   // This works even if the klass is not constant (clone or newArray).
  1711   if (offset == oopDesc::klass_offset_in_bytes()) {
  1712     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1713     if (allocated_klass != NULL) {
  1714       return allocated_klass;
  1718   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1719   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1720   // See inline_native_Class_query for occurrences of these patterns.
  1721   // Java Example:  x.getClass().isAssignableFrom(y)
  1722   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1723   //
  1724   // This improves reflective code, often making the Class
  1725   // mirror go completely dead.  (Current exception:  Class
  1726   // mirrors may appear in debug info, but we could clean them out by
  1727   // introducing a new debug info operator for klassOop.java_mirror).
  1728   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1729       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1730           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1731     // We are loading a special hidden field from a Class mirror,
  1732     // the field which points to its Klass or arrayKlass metaobject.
  1733     if (base->is_Load()) {
  1734       Node* adr2 = base->in(MemNode::Address);
  1735       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1736       if (tkls != NULL && !tkls->empty()
  1737           && (tkls->klass()->is_instance_klass() ||
  1738               tkls->klass()->is_array_klass())
  1739           && adr2->is_AddP()
  1740           ) {
  1741         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1742         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1743           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1745         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1746           return adr2->in(AddPNode::Base);
  1752   return this;
  1755 //------------------------------Value-----------------------------------------
  1756 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1757   // Either input is TOP ==> the result is TOP
  1758   const Type *t1 = phase->type( in(MemNode::Memory) );
  1759   if( t1 == Type::TOP ) return Type::TOP;
  1760   Node *adr = in(MemNode::Address);
  1761   const Type *t2 = phase->type( adr );
  1762   if( t2 == Type::TOP ) return Type::TOP;
  1763   const TypePtr *tp = t2->is_ptr();
  1764   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1765   const TypeAryPtr *tap = tp->isa_aryptr();
  1766   if( !tap ) return _type;
  1767   return tap->size();
  1770 //------------------------------Identity---------------------------------------
  1771 // Feed through the length in AllocateArray(...length...)._length.
  1772 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1773   Node* x = LoadINode::Identity(phase);
  1774   if (x != this)  return x;
  1776   // Take apart the address into an oop and and offset.
  1777   // Return 'this' if we cannot.
  1778   Node*    adr    = in(MemNode::Address);
  1779   intptr_t offset = 0;
  1780   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1781   if (base == NULL)     return this;
  1782   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1783   if (tary == NULL)     return this;
  1785   // We can fetch the length directly through an AllocateArrayNode.
  1786   // This works even if the length is not constant (clone or newArray).
  1787   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1788     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1789     if (allocated_length != NULL) {
  1790       return allocated_length;
  1794   return this;
  1797 //=============================================================================
  1798 //---------------------------StoreNode::make-----------------------------------
  1799 // Polymorphic factory method:
  1800 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1801   switch (bt) {
  1802   case T_BOOLEAN:
  1803   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1804   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1805   case T_CHAR:
  1806   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1807   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1808   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1809   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1810   case T_ADDRESS:
  1811   case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1813   ShouldNotReachHere();
  1814   return (StoreNode*)NULL;
  1817 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1818   bool require_atomic = true;
  1819   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1823 //--------------------------bottom_type----------------------------------------
  1824 const Type *StoreNode::bottom_type() const {
  1825   return Type::MEMORY;
  1828 //------------------------------hash-------------------------------------------
  1829 uint StoreNode::hash() const {
  1830   // unroll addition of interesting fields
  1831   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1833   // Since they are not commoned, do not hash them:
  1834   return NO_HASH;
  1837 //------------------------------Ideal------------------------------------------
  1838 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1839 // When a store immediately follows a relevant allocation/initialization,
  1840 // try to capture it into the initialization, or hoist it above.
  1841 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1842   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1843   if (p)  return (p == NodeSentinel) ? NULL : p;
  1845   Node* mem     = in(MemNode::Memory);
  1846   Node* address = in(MemNode::Address);
  1848   // Back-to-back stores to same address?  Fold em up.
  1849   // Generally unsafe if I have intervening uses...
  1850   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1851     // Looking at a dead closed cycle of memory?
  1852     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1854     assert(Opcode() == mem->Opcode() ||
  1855            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1856            "no mismatched stores, except on raw memory");
  1858     if (mem->outcnt() == 1 &&           // check for intervening uses
  1859         mem->as_Store()->memory_size() <= this->memory_size()) {
  1860       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1861       // For example, 'mem' might be the final state at a conditional return.
  1862       // Or, 'mem' might be used by some node which is live at the same time
  1863       // 'this' is live, which might be unschedulable.  So, require exactly
  1864       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1865       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1866       if (can_reshape) {  // (%%% is this an anachronism?)
  1867         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1868                   phase->is_IterGVN());
  1869       } else {
  1870         // It's OK to do this in the parser, since DU info is always accurate,
  1871         // and the parser always refers to nodes via SafePointNode maps.
  1872         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1874       return this;
  1878   // Capture an unaliased, unconditional, simple store into an initializer.
  1879   // Or, if it is independent of the allocation, hoist it above the allocation.
  1880   if (ReduceFieldZeroing && /*can_reshape &&*/
  1881       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1882     InitializeNode* init = mem->in(0)->as_Initialize();
  1883     intptr_t offset = init->can_capture_store(this, phase);
  1884     if (offset > 0) {
  1885       Node* moved = init->capture_store(this, offset, phase);
  1886       // If the InitializeNode captured me, it made a raw copy of me,
  1887       // and I need to disappear.
  1888       if (moved != NULL) {
  1889         // %%% hack to ensure that Ideal returns a new node:
  1890         mem = MergeMemNode::make(phase->C, mem);
  1891         return mem;             // fold me away
  1896   return NULL;                  // No further progress
  1899 //------------------------------Value-----------------------------------------
  1900 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1901   // Either input is TOP ==> the result is TOP
  1902   const Type *t1 = phase->type( in(MemNode::Memory) );
  1903   if( t1 == Type::TOP ) return Type::TOP;
  1904   const Type *t2 = phase->type( in(MemNode::Address) );
  1905   if( t2 == Type::TOP ) return Type::TOP;
  1906   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1907   if( t3 == Type::TOP ) return Type::TOP;
  1908   return Type::MEMORY;
  1911 //------------------------------Identity---------------------------------------
  1912 // Remove redundant stores:
  1913 //   Store(m, p, Load(m, p)) changes to m.
  1914 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1915 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1916   Node* mem = in(MemNode::Memory);
  1917   Node* adr = in(MemNode::Address);
  1918   Node* val = in(MemNode::ValueIn);
  1920   // Load then Store?  Then the Store is useless
  1921   if (val->is_Load() &&
  1922       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1923       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1924       val->as_Load()->store_Opcode() == Opcode()) {
  1925     return mem;
  1928   // Two stores in a row of the same value?
  1929   if (mem->is_Store() &&
  1930       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1931       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1932       mem->Opcode() == Opcode()) {
  1933     return mem;
  1936   // Store of zero anywhere into a freshly-allocated object?
  1937   // Then the store is useless.
  1938   // (It must already have been captured by the InitializeNode.)
  1939   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1940     // a newly allocated object is already all-zeroes everywhere
  1941     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1942       return mem;
  1945     // the store may also apply to zero-bits in an earlier object
  1946     Node* prev_mem = find_previous_store(phase);
  1947     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1948     if (prev_mem != NULL) {
  1949       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1950       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1951         // prev_val and val might differ by a cast; it would be good
  1952         // to keep the more informative of the two.
  1953         return mem;
  1958   return this;
  1961 //------------------------------match_edge-------------------------------------
  1962 // Do we Match on this edge index or not?  Match only memory & value
  1963 uint StoreNode::match_edge(uint idx) const {
  1964   return idx == MemNode::Address || idx == MemNode::ValueIn;
  1967 //------------------------------cmp--------------------------------------------
  1968 // Do not common stores up together.  They generally have to be split
  1969 // back up anyways, so do not bother.
  1970 uint StoreNode::cmp( const Node &n ) const {
  1971   return (&n == this);          // Always fail except on self
  1974 //------------------------------Ideal_masked_input-----------------------------
  1975 // Check for a useless mask before a partial-word store
  1976 // (StoreB ... (AndI valIn conIa) )
  1977 // If (conIa & mask == mask) this simplifies to
  1978 // (StoreB ... (valIn) )
  1979 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1980   Node *val = in(MemNode::ValueIn);
  1981   if( val->Opcode() == Op_AndI ) {
  1982     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1983     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1984       set_req(MemNode::ValueIn, val->in(1));
  1985       return this;
  1988   return NULL;
  1992 //------------------------------Ideal_sign_extended_input----------------------
  1993 // Check for useless sign-extension before a partial-word store
  1994 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1995 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1996 // (StoreB ... (valIn) )
  1997 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1998   Node *val = in(MemNode::ValueIn);
  1999   if( val->Opcode() == Op_RShiftI ) {
  2000     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2001     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2002       Node *shl = val->in(1);
  2003       if( shl->Opcode() == Op_LShiftI ) {
  2004         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2005         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2006           set_req(MemNode::ValueIn, shl->in(1));
  2007           return this;
  2012   return NULL;
  2015 //------------------------------value_never_loaded-----------------------------------
  2016 // Determine whether there are any possible loads of the value stored.
  2017 // For simplicity, we actually check if there are any loads from the
  2018 // address stored to, not just for loads of the value stored by this node.
  2019 //
  2020 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2021   Node *adr = in(Address);
  2022   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2023   if (adr_oop == NULL)
  2024     return false;
  2025   if (!adr_oop->is_instance_field())
  2026     return false; // if not a distinct instance, there may be aliases of the address
  2027   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2028     Node *use = adr->fast_out(i);
  2029     int opc = use->Opcode();
  2030     if (use->is_Load() || use->is_LoadStore()) {
  2031       return false;
  2034   return true;
  2037 //=============================================================================
  2038 //------------------------------Ideal------------------------------------------
  2039 // If the store is from an AND mask that leaves the low bits untouched, then
  2040 // we can skip the AND operation.  If the store is from a sign-extension
  2041 // (a left shift, then right shift) we can skip both.
  2042 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2043   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2044   if( progress != NULL ) return progress;
  2046   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2047   if( progress != NULL ) return progress;
  2049   // Finally check the default case
  2050   return StoreNode::Ideal(phase, can_reshape);
  2053 //=============================================================================
  2054 //------------------------------Ideal------------------------------------------
  2055 // If the store is from an AND mask that leaves the low bits untouched, then
  2056 // we can skip the AND operation
  2057 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2058   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2059   if( progress != NULL ) return progress;
  2061   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2062   if( progress != NULL ) return progress;
  2064   // Finally check the default case
  2065   return StoreNode::Ideal(phase, can_reshape);
  2068 //=============================================================================
  2069 //------------------------------Identity---------------------------------------
  2070 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2071   // No need to card mark when storing a null ptr
  2072   Node* my_store = in(MemNode::OopStore);
  2073   if (my_store->is_Store()) {
  2074     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2075     if( t1 == TypePtr::NULL_PTR ) {
  2076       return in(MemNode::Memory);
  2079   return this;
  2082 //------------------------------Value-----------------------------------------
  2083 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2084   // Either input is TOP ==> the result is TOP
  2085   const Type *t = phase->type( in(MemNode::Memory) );
  2086   if( t == Type::TOP ) return Type::TOP;
  2087   t = phase->type( in(MemNode::Address) );
  2088   if( t == Type::TOP ) return Type::TOP;
  2089   t = phase->type( in(MemNode::ValueIn) );
  2090   if( t == Type::TOP ) return Type::TOP;
  2091   // If extra input is TOP ==> the result is TOP
  2092   t = phase->type( in(MemNode::OopStore) );
  2093   if( t == Type::TOP ) return Type::TOP;
  2095   return StoreNode::Value( phase );
  2099 //=============================================================================
  2100 //----------------------------------SCMemProjNode------------------------------
  2101 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2103   return bottom_type();
  2106 //=============================================================================
  2107 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2108   init_req(MemNode::Control, c  );
  2109   init_req(MemNode::Memory , mem);
  2110   init_req(MemNode::Address, adr);
  2111   init_req(MemNode::ValueIn, val);
  2112   init_req(         ExpectedIn, ex );
  2113   init_class_id(Class_LoadStore);
  2117 //=============================================================================
  2118 //-------------------------------adr_type--------------------------------------
  2119 // Do we Match on this edge index or not?  Do not match memory
  2120 const TypePtr* ClearArrayNode::adr_type() const {
  2121   Node *adr = in(3);
  2122   return MemNode::calculate_adr_type(adr->bottom_type());
  2125 //------------------------------match_edge-------------------------------------
  2126 // Do we Match on this edge index or not?  Do not match memory
  2127 uint ClearArrayNode::match_edge(uint idx) const {
  2128   return idx > 1;
  2131 //------------------------------Identity---------------------------------------
  2132 // Clearing a zero length array does nothing
  2133 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2134   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2137 //------------------------------Idealize---------------------------------------
  2138 // Clearing a short array is faster with stores
  2139 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2140   const int unit = BytesPerLong;
  2141   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2142   if (!t)  return NULL;
  2143   if (!t->is_con())  return NULL;
  2144   intptr_t raw_count = t->get_con();
  2145   intptr_t size = raw_count;
  2146   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2147   // Clearing nothing uses the Identity call.
  2148   // Negative clears are possible on dead ClearArrays
  2149   // (see jck test stmt114.stmt11402.val).
  2150   if (size <= 0 || size % unit != 0)  return NULL;
  2151   intptr_t count = size / unit;
  2152   // Length too long; use fast hardware clear
  2153   if (size > Matcher::init_array_short_size)  return NULL;
  2154   Node *mem = in(1);
  2155   if( phase->type(mem)==Type::TOP ) return NULL;
  2156   Node *adr = in(3);
  2157   const Type* at = phase->type(adr);
  2158   if( at==Type::TOP ) return NULL;
  2159   const TypePtr* atp = at->isa_ptr();
  2160   // adjust atp to be the correct array element address type
  2161   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2162   else              atp = atp->add_offset(Type::OffsetBot);
  2163   // Get base for derived pointer purposes
  2164   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2165   Node *base = adr->in(1);
  2167   Node *zero = phase->makecon(TypeLong::ZERO);
  2168   Node *off  = phase->MakeConX(BytesPerLong);
  2169   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2170   count--;
  2171   while( count-- ) {
  2172     mem = phase->transform(mem);
  2173     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2174     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2176   return mem;
  2179 //----------------------------clear_memory-------------------------------------
  2180 // Generate code to initialize object storage to zero.
  2181 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2182                                    intptr_t start_offset,
  2183                                    Node* end_offset,
  2184                                    PhaseGVN* phase) {
  2185   Compile* C = phase->C;
  2186   intptr_t offset = start_offset;
  2188   int unit = BytesPerLong;
  2189   if ((offset % unit) != 0) {
  2190     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2191     adr = phase->transform(adr);
  2192     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2193     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2194     mem = phase->transform(mem);
  2195     offset += BytesPerInt;
  2197   assert((offset % unit) == 0, "");
  2199   // Initialize the remaining stuff, if any, with a ClearArray.
  2200   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2203 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2204                                    Node* start_offset,
  2205                                    Node* end_offset,
  2206                                    PhaseGVN* phase) {
  2207   if (start_offset == end_offset) {
  2208     // nothing to do
  2209     return mem;
  2212   Compile* C = phase->C;
  2213   int unit = BytesPerLong;
  2214   Node* zbase = start_offset;
  2215   Node* zend  = end_offset;
  2217   // Scale to the unit required by the CPU:
  2218   if (!Matcher::init_array_count_is_in_bytes) {
  2219     Node* shift = phase->intcon(exact_log2(unit));
  2220     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2221     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2224   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2225   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2227   // Bulk clear double-words
  2228   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2229   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2230   return phase->transform(mem);
  2233 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2234                                    intptr_t start_offset,
  2235                                    intptr_t end_offset,
  2236                                    PhaseGVN* phase) {
  2237   if (start_offset == end_offset) {
  2238     // nothing to do
  2239     return mem;
  2242   Compile* C = phase->C;
  2243   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2244   intptr_t done_offset = end_offset;
  2245   if ((done_offset % BytesPerLong) != 0) {
  2246     done_offset -= BytesPerInt;
  2248   if (done_offset > start_offset) {
  2249     mem = clear_memory(ctl, mem, dest,
  2250                        start_offset, phase->MakeConX(done_offset), phase);
  2252   if (done_offset < end_offset) { // emit the final 32-bit store
  2253     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2254     adr = phase->transform(adr);
  2255     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2256     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2257     mem = phase->transform(mem);
  2258     done_offset += BytesPerInt;
  2260   assert(done_offset == end_offset, "");
  2261   return mem;
  2264 //=============================================================================
  2265 // Do we match on this edge? No memory edges
  2266 uint StrCompNode::match_edge(uint idx) const {
  2267   return idx == 5 || idx == 6;
  2270 //------------------------------Ideal------------------------------------------
  2271 // Return a node which is more "ideal" than the current node.  Strip out
  2272 // control copies
  2273 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2274   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2278 //=============================================================================
  2279 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2280   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2281     _adr_type(C->get_adr_type(alias_idx))
  2283   init_class_id(Class_MemBar);
  2284   Node* top = C->top();
  2285   init_req(TypeFunc::I_O,top);
  2286   init_req(TypeFunc::FramePtr,top);
  2287   init_req(TypeFunc::ReturnAdr,top);
  2288   if (precedent != NULL)
  2289     init_req(TypeFunc::Parms, precedent);
  2292 //------------------------------cmp--------------------------------------------
  2293 uint MemBarNode::hash() const { return NO_HASH; }
  2294 uint MemBarNode::cmp( const Node &n ) const {
  2295   return (&n == this);          // Always fail except on self
  2298 //------------------------------make-------------------------------------------
  2299 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2300   int len = Precedent + (pn == NULL? 0: 1);
  2301   switch (opcode) {
  2302   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2303   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2304   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2305   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2306   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2307   default:                 ShouldNotReachHere(); return NULL;
  2311 //------------------------------Ideal------------------------------------------
  2312 // Return a node which is more "ideal" than the current node.  Strip out
  2313 // control copies
  2314 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2315   if (remove_dead_region(phase, can_reshape))  return this;
  2316   return NULL;
  2319 //------------------------------Value------------------------------------------
  2320 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2321   if( !in(0) ) return Type::TOP;
  2322   if( phase->type(in(0)) == Type::TOP )
  2323     return Type::TOP;
  2324   return TypeTuple::MEMBAR;
  2327 //------------------------------match------------------------------------------
  2328 // Construct projections for memory.
  2329 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2330   switch (proj->_con) {
  2331   case TypeFunc::Control:
  2332   case TypeFunc::Memory:
  2333     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2335   ShouldNotReachHere();
  2336   return NULL;
  2339 //===========================InitializeNode====================================
  2340 // SUMMARY:
  2341 // This node acts as a memory barrier on raw memory, after some raw stores.
  2342 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2343 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2344 // It can coalesce related raw stores into larger units (called 'tiles').
  2345 // It can avoid zeroing new storage for memory units which have raw inits.
  2346 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2347 //
  2348 // EXAMPLE:
  2349 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2350 //   ctl = incoming control; mem* = incoming memory
  2351 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2352 // First allocate uninitialized memory and fill in the header:
  2353 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2354 //   ctl := alloc.Control; mem* := alloc.Memory*
  2355 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2356 // Then initialize to zero the non-header parts of the raw memory block:
  2357 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2358 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2359 // After the initialize node executes, the object is ready for service:
  2360 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2361 // Suppose its body is immediately initialized as {1,2}:
  2362 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2363 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2364 //   mem.SLICE(#short[*]) := store2
  2365 //
  2366 // DETAILS:
  2367 // An InitializeNode collects and isolates object initialization after
  2368 // an AllocateNode and before the next possible safepoint.  As a
  2369 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2370 // down past any safepoint or any publication of the allocation.
  2371 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2372 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2373 //
  2374 // The semantics of the InitializeNode include an implicit zeroing of
  2375 // the new object from object header to the end of the object.
  2376 // (The object header and end are determined by the AllocateNode.)
  2377 //
  2378 // Certain stores may be added as direct inputs to the InitializeNode.
  2379 // These stores must update raw memory, and they must be to addresses
  2380 // derived from the raw address produced by AllocateNode, and with
  2381 // a constant offset.  They must be ordered by increasing offset.
  2382 // The first one is at in(RawStores), the last at in(req()-1).
  2383 // Unlike most memory operations, they are not linked in a chain,
  2384 // but are displayed in parallel as users of the rawmem output of
  2385 // the allocation.
  2386 //
  2387 // (See comments in InitializeNode::capture_store, which continue
  2388 // the example given above.)
  2389 //
  2390 // When the associated Allocate is macro-expanded, the InitializeNode
  2391 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2392 // may also be created at that point to represent any required zeroing.
  2393 // The InitializeNode is then marked 'complete', prohibiting further
  2394 // capturing of nearby memory operations.
  2395 //
  2396 // During macro-expansion, all captured initializations which store
  2397 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2398 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2399 // initialized in fewer memory operations.  Memory words which are
  2400 // covered by neither tiles nor non-constant stores are pre-zeroed
  2401 // by explicit stores of zero.  (The code shape happens to do all
  2402 // zeroing first, then all other stores, with both sequences occurring
  2403 // in order of ascending offsets.)
  2404 //
  2405 // Alternatively, code may be inserted between an AllocateNode and its
  2406 // InitializeNode, to perform arbitrary initialization of the new object.
  2407 // E.g., the object copying intrinsics insert complex data transfers here.
  2408 // The initialization must then be marked as 'complete' disable the
  2409 // built-in zeroing semantics and the collection of initializing stores.
  2410 //
  2411 // While an InitializeNode is incomplete, reads from the memory state
  2412 // produced by it are optimizable if they match the control edge and
  2413 // new oop address associated with the allocation/initialization.
  2414 // They return a stored value (if the offset matches) or else zero.
  2415 // A write to the memory state, if it matches control and address,
  2416 // and if it is to a constant offset, may be 'captured' by the
  2417 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2418 // inside the initialization, to the raw oop produced by the allocation.
  2419 // Operations on addresses which are provably distinct (e.g., to
  2420 // other AllocateNodes) are allowed to bypass the initialization.
  2421 //
  2422 // The effect of all this is to consolidate object initialization
  2423 // (both arrays and non-arrays, both piecewise and bulk) into a
  2424 // single location, where it can be optimized as a unit.
  2425 //
  2426 // Only stores with an offset less than TrackedInitializationLimit words
  2427 // will be considered for capture by an InitializeNode.  This puts a
  2428 // reasonable limit on the complexity of optimized initializations.
  2430 //---------------------------InitializeNode------------------------------------
  2431 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2432   : _is_complete(false),
  2433     MemBarNode(C, adr_type, rawoop)
  2435   init_class_id(Class_Initialize);
  2437   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2438   assert(in(RawAddress) == rawoop, "proper init");
  2439   // Note:  allocation() can be NULL, for secondary initialization barriers
  2442 // Since this node is not matched, it will be processed by the
  2443 // register allocator.  Declare that there are no constraints
  2444 // on the allocation of the RawAddress edge.
  2445 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2446   // This edge should be set to top, by the set_complete.  But be conservative.
  2447   if (idx == InitializeNode::RawAddress)
  2448     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2449   return RegMask::Empty;
  2452 Node* InitializeNode::memory(uint alias_idx) {
  2453   Node* mem = in(Memory);
  2454   if (mem->is_MergeMem()) {
  2455     return mem->as_MergeMem()->memory_at(alias_idx);
  2456   } else {
  2457     // incoming raw memory is not split
  2458     return mem;
  2462 bool InitializeNode::is_non_zero() {
  2463   if (is_complete())  return false;
  2464   remove_extra_zeroes();
  2465   return (req() > RawStores);
  2468 void InitializeNode::set_complete(PhaseGVN* phase) {
  2469   assert(!is_complete(), "caller responsibility");
  2470   _is_complete = true;
  2472   // After this node is complete, it contains a bunch of
  2473   // raw-memory initializations.  There is no need for
  2474   // it to have anything to do with non-raw memory effects.
  2475   // Therefore, tell all non-raw users to re-optimize themselves,
  2476   // after skipping the memory effects of this initialization.
  2477   PhaseIterGVN* igvn = phase->is_IterGVN();
  2478   if (igvn)  igvn->add_users_to_worklist(this);
  2481 // convenience function
  2482 // return false if the init contains any stores already
  2483 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2484   InitializeNode* init = initialization();
  2485   if (init == NULL || init->is_complete())  return false;
  2486   init->remove_extra_zeroes();
  2487   // for now, if this allocation has already collected any inits, bail:
  2488   if (init->is_non_zero())  return false;
  2489   init->set_complete(phase);
  2490   return true;
  2493 void InitializeNode::remove_extra_zeroes() {
  2494   if (req() == RawStores)  return;
  2495   Node* zmem = zero_memory();
  2496   uint fill = RawStores;
  2497   for (uint i = fill; i < req(); i++) {
  2498     Node* n = in(i);
  2499     if (n->is_top() || n == zmem)  continue;  // skip
  2500     if (fill < i)  set_req(fill, n);          // compact
  2501     ++fill;
  2503   // delete any empty spaces created:
  2504   while (fill < req()) {
  2505     del_req(fill);
  2509 // Helper for remembering which stores go with which offsets.
  2510 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2511   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2512   intptr_t offset = -1;
  2513   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2514                                                phase, offset);
  2515   if (base == NULL)     return -1;  // something is dead,
  2516   if (offset < 0)       return -1;  //        dead, dead
  2517   return offset;
  2520 // Helper for proving that an initialization expression is
  2521 // "simple enough" to be folded into an object initialization.
  2522 // Attempts to prove that a store's initial value 'n' can be captured
  2523 // within the initialization without creating a vicious cycle, such as:
  2524 //     { Foo p = new Foo(); p.next = p; }
  2525 // True for constants and parameters and small combinations thereof.
  2526 bool InitializeNode::detect_init_independence(Node* n,
  2527                                               bool st_is_pinned,
  2528                                               int& count) {
  2529   if (n == NULL)      return true;   // (can this really happen?)
  2530   if (n->is_Proj())   n = n->in(0);
  2531   if (n == this)      return false;  // found a cycle
  2532   if (n->is_Con())    return true;
  2533   if (n->is_Start())  return true;   // params, etc., are OK
  2534   if (n->is_Root())   return true;   // even better
  2536   Node* ctl = n->in(0);
  2537   if (ctl != NULL && !ctl->is_top()) {
  2538     if (ctl->is_Proj())  ctl = ctl->in(0);
  2539     if (ctl == this)  return false;
  2541     // If we already know that the enclosing memory op is pinned right after
  2542     // the init, then any control flow that the store has picked up
  2543     // must have preceded the init, or else be equal to the init.
  2544     // Even after loop optimizations (which might change control edges)
  2545     // a store is never pinned *before* the availability of its inputs.
  2546     if (!MemNode::all_controls_dominate(n, this))
  2547       return false;                  // failed to prove a good control
  2551   // Check data edges for possible dependencies on 'this'.
  2552   if ((count += 1) > 20)  return false;  // complexity limit
  2553   for (uint i = 1; i < n->req(); i++) {
  2554     Node* m = n->in(i);
  2555     if (m == NULL || m == n || m->is_top())  continue;
  2556     uint first_i = n->find_edge(m);
  2557     if (i != first_i)  continue;  // process duplicate edge just once
  2558     if (!detect_init_independence(m, st_is_pinned, count)) {
  2559       return false;
  2563   return true;
  2566 // Here are all the checks a Store must pass before it can be moved into
  2567 // an initialization.  Returns zero if a check fails.
  2568 // On success, returns the (constant) offset to which the store applies,
  2569 // within the initialized memory.
  2570 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2571   const int FAIL = 0;
  2572   if (st->req() != MemNode::ValueIn + 1)
  2573     return FAIL;                // an inscrutable StoreNode (card mark?)
  2574   Node* ctl = st->in(MemNode::Control);
  2575   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2576     return FAIL;                // must be unconditional after the initialization
  2577   Node* mem = st->in(MemNode::Memory);
  2578   if (!(mem->is_Proj() && mem->in(0) == this))
  2579     return FAIL;                // must not be preceded by other stores
  2580   Node* adr = st->in(MemNode::Address);
  2581   intptr_t offset;
  2582   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2583   if (alloc == NULL)
  2584     return FAIL;                // inscrutable address
  2585   if (alloc != allocation())
  2586     return FAIL;                // wrong allocation!  (store needs to float up)
  2587   Node* val = st->in(MemNode::ValueIn);
  2588   int complexity_count = 0;
  2589   if (!detect_init_independence(val, true, complexity_count))
  2590     return FAIL;                // stored value must be 'simple enough'
  2592   return offset;                // success
  2595 // Find the captured store in(i) which corresponds to the range
  2596 // [start..start+size) in the initialized object.
  2597 // If there is one, return its index i.  If there isn't, return the
  2598 // negative of the index where it should be inserted.
  2599 // Return 0 if the queried range overlaps an initialization boundary
  2600 // or if dead code is encountered.
  2601 // If size_in_bytes is zero, do not bother with overlap checks.
  2602 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2603                                                    int size_in_bytes,
  2604                                                    PhaseTransform* phase) {
  2605   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2607   if (is_complete())
  2608     return FAIL;                // arraycopy got here first; punt
  2610   assert(allocation() != NULL, "must be present");
  2612   // no negatives, no header fields:
  2613   if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
  2614   if (start < (intptr_t) sizeof(arrayOopDesc) &&
  2615       start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2617   // after a certain size, we bail out on tracking all the stores:
  2618   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2619   if (start >= ti_limit)  return FAIL;
  2621   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2622     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2624     Node*    st     = in(i);
  2625     intptr_t st_off = get_store_offset(st, phase);
  2626     if (st_off < 0) {
  2627       if (st != zero_memory()) {
  2628         return FAIL;            // bail out if there is dead garbage
  2630     } else if (st_off > start) {
  2631       // ...we are done, since stores are ordered
  2632       if (st_off < start + size_in_bytes) {
  2633         return FAIL;            // the next store overlaps
  2635       return -(int)i;           // not found; here is where to put it
  2636     } else if (st_off < start) {
  2637       if (size_in_bytes != 0 &&
  2638           start < st_off + MAX_STORE &&
  2639           start < st_off + st->as_Store()->memory_size()) {
  2640         return FAIL;            // the previous store overlaps
  2642     } else {
  2643       if (size_in_bytes != 0 &&
  2644           st->as_Store()->memory_size() != size_in_bytes) {
  2645         return FAIL;            // mismatched store size
  2647       return i;
  2650     ++i;
  2654 // Look for a captured store which initializes at the offset 'start'
  2655 // with the given size.  If there is no such store, and no other
  2656 // initialization interferes, then return zero_memory (the memory
  2657 // projection of the AllocateNode).
  2658 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2659                                           PhaseTransform* phase) {
  2660   assert(stores_are_sane(phase), "");
  2661   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2662   if (i == 0) {
  2663     return NULL;                // something is dead
  2664   } else if (i < 0) {
  2665     return zero_memory();       // just primordial zero bits here
  2666   } else {
  2667     Node* st = in(i);           // here is the store at this position
  2668     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2669     return st;
  2673 // Create, as a raw pointer, an address within my new object at 'offset'.
  2674 Node* InitializeNode::make_raw_address(intptr_t offset,
  2675                                        PhaseTransform* phase) {
  2676   Node* addr = in(RawAddress);
  2677   if (offset != 0) {
  2678     Compile* C = phase->C;
  2679     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2680                                                  phase->MakeConX(offset)) );
  2682   return addr;
  2685 // Clone the given store, converting it into a raw store
  2686 // initializing a field or element of my new object.
  2687 // Caller is responsible for retiring the original store,
  2688 // with subsume_node or the like.
  2689 //
  2690 // From the example above InitializeNode::InitializeNode,
  2691 // here are the old stores to be captured:
  2692 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2693 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2694 //
  2695 // Here is the changed code; note the extra edges on init:
  2696 //   alloc = (Allocate ...)
  2697 //   rawoop = alloc.RawAddress
  2698 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2699 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2700 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2701 //                      rawstore1 rawstore2)
  2702 //
  2703 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2704                                     PhaseTransform* phase) {
  2705   assert(stores_are_sane(phase), "");
  2707   if (start < 0)  return NULL;
  2708   assert(can_capture_store(st, phase) == start, "sanity");
  2710   Compile* C = phase->C;
  2711   int size_in_bytes = st->memory_size();
  2712   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2713   if (i == 0)  return NULL;     // bail out
  2714   Node* prev_mem = NULL;        // raw memory for the captured store
  2715   if (i > 0) {
  2716     prev_mem = in(i);           // there is a pre-existing store under this one
  2717     set_req(i, C->top());       // temporarily disconnect it
  2718     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2719   } else {
  2720     i = -i;                     // no pre-existing store
  2721     prev_mem = zero_memory();   // a slice of the newly allocated object
  2722     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2723       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2724     else
  2725       ins_req(i, C->top());     // build a new edge
  2727   Node* new_st = st->clone();
  2728   new_st->set_req(MemNode::Control, in(Control));
  2729   new_st->set_req(MemNode::Memory,  prev_mem);
  2730   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2731   new_st = phase->transform(new_st);
  2733   // At this point, new_st might have swallowed a pre-existing store
  2734   // at the same offset, or perhaps new_st might have disappeared,
  2735   // if it redundantly stored the same value (or zero to fresh memory).
  2737   // In any case, wire it in:
  2738   set_req(i, new_st);
  2740   // The caller may now kill the old guy.
  2741   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2742   assert(check_st == new_st || check_st == NULL, "must be findable");
  2743   assert(!is_complete(), "");
  2744   return new_st;
  2747 static bool store_constant(jlong* tiles, int num_tiles,
  2748                            intptr_t st_off, int st_size,
  2749                            jlong con) {
  2750   if ((st_off & (st_size-1)) != 0)
  2751     return false;               // strange store offset (assume size==2**N)
  2752   address addr = (address)tiles + st_off;
  2753   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2754   switch (st_size) {
  2755   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2756   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2757   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2758   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2759   default: return false;        // strange store size (detect size!=2**N here)
  2761   return true;                  // return success to caller
  2764 // Coalesce subword constants into int constants and possibly
  2765 // into long constants.  The goal, if the CPU permits,
  2766 // is to initialize the object with a small number of 64-bit tiles.
  2767 // Also, convert floating-point constants to bit patterns.
  2768 // Non-constants are not relevant to this pass.
  2769 //
  2770 // In terms of the running example on InitializeNode::InitializeNode
  2771 // and InitializeNode::capture_store, here is the transformation
  2772 // of rawstore1 and rawstore2 into rawstore12:
  2773 //   alloc = (Allocate ...)
  2774 //   rawoop = alloc.RawAddress
  2775 //   tile12 = 0x00010002
  2776 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2777 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2778 //
  2779 void
  2780 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2781                                         Node* size_in_bytes,
  2782                                         PhaseGVN* phase) {
  2783   Compile* C = phase->C;
  2785   assert(stores_are_sane(phase), "");
  2786   // Note:  After this pass, they are not completely sane,
  2787   // since there may be some overlaps.
  2789   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2791   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2792   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2793   size_limit = MIN2(size_limit, ti_limit);
  2794   size_limit = align_size_up(size_limit, BytesPerLong);
  2795   int num_tiles = size_limit / BytesPerLong;
  2797   // allocate space for the tile map:
  2798   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2799   jlong  tiles_buf[small_len];
  2800   Node*  nodes_buf[small_len];
  2801   jlong  inits_buf[small_len];
  2802   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2803                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2804   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2805                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2806   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2807                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2808   // tiles: exact bitwise model of all primitive constants
  2809   // nodes: last constant-storing node subsumed into the tiles model
  2810   // inits: which bytes (in each tile) are touched by any initializations
  2812   //// Pass A: Fill in the tile model with any relevant stores.
  2814   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2815   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2816   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2817   Node* zmem = zero_memory(); // initially zero memory state
  2818   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2819     Node* st = in(i);
  2820     intptr_t st_off = get_store_offset(st, phase);
  2822     // Figure out the store's offset and constant value:
  2823     if (st_off < header_size)             continue; //skip (ignore header)
  2824     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2825     int st_size = st->as_Store()->memory_size();
  2826     if (st_off + st_size > size_limit)    break;
  2828     // Record which bytes are touched, whether by constant or not.
  2829     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2830       continue;                 // skip (strange store size)
  2832     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2833     if (!val->singleton())                continue; //skip (non-con store)
  2834     BasicType type = val->basic_type();
  2836     jlong con = 0;
  2837     switch (type) {
  2838     case T_INT:    con = val->is_int()->get_con();  break;
  2839     case T_LONG:   con = val->is_long()->get_con(); break;
  2840     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2841     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2842     default:                              continue; //skip (odd store type)
  2845     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2846         st->Opcode() == Op_StoreL) {
  2847       continue;                 // This StoreL is already optimal.
  2850     // Store down the constant.
  2851     store_constant(tiles, num_tiles, st_off, st_size, con);
  2853     intptr_t j = st_off >> LogBytesPerLong;
  2855     if (type == T_INT && st_size == BytesPerInt
  2856         && (st_off & BytesPerInt) == BytesPerInt) {
  2857       jlong lcon = tiles[j];
  2858       if (!Matcher::isSimpleConstant64(lcon) &&
  2859           st->Opcode() == Op_StoreI) {
  2860         // This StoreI is already optimal by itself.
  2861         jint* intcon = (jint*) &tiles[j];
  2862         intcon[1] = 0;  // undo the store_constant()
  2864         // If the previous store is also optimal by itself, back up and
  2865         // undo the action of the previous loop iteration... if we can.
  2866         // But if we can't, just let the previous half take care of itself.
  2867         st = nodes[j];
  2868         st_off -= BytesPerInt;
  2869         con = intcon[0];
  2870         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2871           assert(st_off >= header_size, "still ignoring header");
  2872           assert(get_store_offset(st, phase) == st_off, "must be");
  2873           assert(in(i-1) == zmem, "must be");
  2874           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2875           assert(con == tcon->is_int()->get_con(), "must be");
  2876           // Undo the effects of the previous loop trip, which swallowed st:
  2877           intcon[0] = 0;        // undo store_constant()
  2878           set_req(i-1, st);     // undo set_req(i, zmem)
  2879           nodes[j] = NULL;      // undo nodes[j] = st
  2880           --old_subword;        // undo ++old_subword
  2882         continue;               // This StoreI is already optimal.
  2886     // This store is not needed.
  2887     set_req(i, zmem);
  2888     nodes[j] = st;              // record for the moment
  2889     if (st_size < BytesPerLong) // something has changed
  2890           ++old_subword;        // includes int/float, but who's counting...
  2891     else  ++old_long;
  2894   if ((old_subword + old_long) == 0)
  2895     return;                     // nothing more to do
  2897   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2898   // Be sure to insert them before overlapping non-constant stores.
  2899   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2900   for (int j = 0; j < num_tiles; j++) {
  2901     jlong con  = tiles[j];
  2902     jlong init = inits[j];
  2903     if (con == 0)  continue;
  2904     jint con0,  con1;           // split the constant, address-wise
  2905     jint init0, init1;          // split the init map, address-wise
  2906     { union { jlong con; jint intcon[2]; } u;
  2907       u.con = con;
  2908       con0  = u.intcon[0];
  2909       con1  = u.intcon[1];
  2910       u.con = init;
  2911       init0 = u.intcon[0];
  2912       init1 = u.intcon[1];
  2915     Node* old = nodes[j];
  2916     assert(old != NULL, "need the prior store");
  2917     intptr_t offset = (j * BytesPerLong);
  2919     bool split = !Matcher::isSimpleConstant64(con);
  2921     if (offset < header_size) {
  2922       assert(offset + BytesPerInt >= header_size, "second int counts");
  2923       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2924       split = true;             // only the second word counts
  2925       // Example:  int a[] = { 42 ... }
  2926     } else if (con0 == 0 && init0 == -1) {
  2927       split = true;             // first word is covered by full inits
  2928       // Example:  int a[] = { ... foo(), 42 ... }
  2929     } else if (con1 == 0 && init1 == -1) {
  2930       split = true;             // second word is covered by full inits
  2931       // Example:  int a[] = { ... 42, foo() ... }
  2934     // Here's a case where init0 is neither 0 nor -1:
  2935     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2936     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2937     // In this case the tile is not split; it is (jlong)42.
  2938     // The big tile is stored down, and then the foo() value is inserted.
  2939     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2941     Node* ctl = old->in(MemNode::Control);
  2942     Node* adr = make_raw_address(offset, phase);
  2943     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2945     // One or two coalesced stores to plop down.
  2946     Node*    st[2];
  2947     intptr_t off[2];
  2948     int  nst = 0;
  2949     if (!split) {
  2950       ++new_long;
  2951       off[nst] = offset;
  2952       st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2953                                   phase->longcon(con), T_LONG);
  2954     } else {
  2955       // Omit either if it is a zero.
  2956       if (con0 != 0) {
  2957         ++new_int;
  2958         off[nst]  = offset;
  2959         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2960                                     phase->intcon(con0), T_INT);
  2962       if (con1 != 0) {
  2963         ++new_int;
  2964         offset += BytesPerInt;
  2965         adr = make_raw_address(offset, phase);
  2966         off[nst]  = offset;
  2967         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2968                                     phase->intcon(con1), T_INT);
  2972     // Insert second store first, then the first before the second.
  2973     // Insert each one just before any overlapping non-constant stores.
  2974     while (nst > 0) {
  2975       Node* st1 = st[--nst];
  2976       C->copy_node_notes_to(st1, old);
  2977       st1 = phase->transform(st1);
  2978       offset = off[nst];
  2979       assert(offset >= header_size, "do not smash header");
  2980       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  2981       guarantee(ins_idx != 0, "must re-insert constant store");
  2982       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  2983       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  2984         set_req(--ins_idx, st1);
  2985       else
  2986         ins_req(ins_idx, st1);
  2990   if (PrintCompilation && WizardMode)
  2991     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  2992                   old_subword, old_long, new_int, new_long);
  2993   if (C->log() != NULL)
  2994     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  2995                    old_subword, old_long, new_int, new_long);
  2997   // Clean up any remaining occurrences of zmem:
  2998   remove_extra_zeroes();
  3001 // Explore forward from in(start) to find the first fully initialized
  3002 // word, and return its offset.  Skip groups of subword stores which
  3003 // together initialize full words.  If in(start) is itself part of a
  3004 // fully initialized word, return the offset of in(start).  If there
  3005 // are no following full-word stores, or if something is fishy, return
  3006 // a negative value.
  3007 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3008   int       int_map = 0;
  3009   intptr_t  int_map_off = 0;
  3010   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3012   for (uint i = start, limit = req(); i < limit; i++) {
  3013     Node* st = in(i);
  3015     intptr_t st_off = get_store_offset(st, phase);
  3016     if (st_off < 0)  break;  // return conservative answer
  3018     int st_size = st->as_Store()->memory_size();
  3019     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3020       return st_off;            // we found a complete word init
  3023     // update the map:
  3025     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3026     if (this_int_off != int_map_off) {
  3027       // reset the map:
  3028       int_map = 0;
  3029       int_map_off = this_int_off;
  3032     int subword_off = st_off - this_int_off;
  3033     int_map |= right_n_bits(st_size) << subword_off;
  3034     if ((int_map & FULL_MAP) == FULL_MAP) {
  3035       return this_int_off;      // we found a complete word init
  3038     // Did this store hit or cross the word boundary?
  3039     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3040     if (next_int_off == this_int_off + BytesPerInt) {
  3041       // We passed the current int, without fully initializing it.
  3042       int_map_off = next_int_off;
  3043       int_map >>= BytesPerInt;
  3044     } else if (next_int_off > this_int_off + BytesPerInt) {
  3045       // We passed the current and next int.
  3046       return this_int_off + BytesPerInt;
  3050   return -1;
  3054 // Called when the associated AllocateNode is expanded into CFG.
  3055 // At this point, we may perform additional optimizations.
  3056 // Linearize the stores by ascending offset, to make memory
  3057 // activity as coherent as possible.
  3058 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3059                                       intptr_t header_size,
  3060                                       Node* size_in_bytes,
  3061                                       PhaseGVN* phase) {
  3062   assert(!is_complete(), "not already complete");
  3063   assert(stores_are_sane(phase), "");
  3064   assert(allocation() != NULL, "must be present");
  3066   remove_extra_zeroes();
  3068   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3069     // reduce instruction count for common initialization patterns
  3070     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3072   Node* zmem = zero_memory();   // initially zero memory state
  3073   Node* inits = zmem;           // accumulating a linearized chain of inits
  3074   #ifdef ASSERT
  3075   intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
  3076   intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
  3077   intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
  3078   #endif
  3079   intptr_t zeroes_done = header_size;
  3081   bool do_zeroing = true;       // we might give up if inits are very sparse
  3082   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3084   if (ZeroTLAB)  do_zeroing = false;
  3085   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3087   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3088     Node* st = in(i);
  3089     intptr_t st_off = get_store_offset(st, phase);
  3090     if (st_off < 0)
  3091       break;                    // unknown junk in the inits
  3092     if (st->in(MemNode::Memory) != zmem)
  3093       break;                    // complicated store chains somehow in list
  3095     int st_size = st->as_Store()->memory_size();
  3096     intptr_t next_init_off = st_off + st_size;
  3098     if (do_zeroing && zeroes_done < next_init_off) {
  3099       // See if this store needs a zero before it or under it.
  3100       intptr_t zeroes_needed = st_off;
  3102       if (st_size < BytesPerInt) {
  3103         // Look for subword stores which only partially initialize words.
  3104         // If we find some, we must lay down some word-level zeroes first,
  3105         // underneath the subword stores.
  3106         //
  3107         // Examples:
  3108         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3109         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3110         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3111         //
  3112         // Note:  coalesce_subword_stores may have already done this,
  3113         // if it was prompted by constant non-zero subword initializers.
  3114         // But this case can still arise with non-constant stores.
  3116         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3118         // In the examples above:
  3119         //   in(i)          p   q   r   s     x   y     z
  3120         //   st_off        12  13  14  15    12  13    14
  3121         //   st_size        1   1   1   1     1   1     1
  3122         //   next_full_s.  12  16  16  16    16  16    16
  3123         //   z's_done      12  16  16  16    12  16    12
  3124         //   z's_needed    12  16  16  16    16  16    16
  3125         //   zsize          0   0   0   0     4   0     4
  3126         if (next_full_store < 0) {
  3127           // Conservative tack:  Zero to end of current word.
  3128           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3129         } else {
  3130           // Zero to beginning of next fully initialized word.
  3131           // Or, don't zero at all, if we are already in that word.
  3132           assert(next_full_store >= zeroes_needed, "must go forward");
  3133           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3134           zeroes_needed = next_full_store;
  3138       if (zeroes_needed > zeroes_done) {
  3139         intptr_t zsize = zeroes_needed - zeroes_done;
  3140         // Do some incremental zeroing on rawmem, in parallel with inits.
  3141         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3142         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3143                                               zeroes_done, zeroes_needed,
  3144                                               phase);
  3145         zeroes_done = zeroes_needed;
  3146         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3147           do_zeroing = false;   // leave the hole, next time
  3151     // Collect the store and move on:
  3152     st->set_req(MemNode::Memory, inits);
  3153     inits = st;                 // put it on the linearized chain
  3154     set_req(i, zmem);           // unhook from previous position
  3156     if (zeroes_done == st_off)
  3157       zeroes_done = next_init_off;
  3159     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3161     #ifdef ASSERT
  3162     // Various order invariants.  Weaker than stores_are_sane because
  3163     // a large constant tile can be filled in by smaller non-constant stores.
  3164     assert(st_off >= last_init_off, "inits do not reverse");
  3165     last_init_off = st_off;
  3166     const Type* val = NULL;
  3167     if (st_size >= BytesPerInt &&
  3168         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3169         (int)val->basic_type() < (int)T_OBJECT) {
  3170       assert(st_off >= last_tile_end, "tiles do not overlap");
  3171       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3172       last_tile_end = MAX2(last_tile_end, next_init_off);
  3173     } else {
  3174       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3175       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3176       assert(st_off      >= last_init_end, "inits do not overlap");
  3177       last_init_end = next_init_off;  // it's a non-tile
  3179     #endif //ASSERT
  3182   remove_extra_zeroes();        // clear out all the zmems left over
  3183   add_req(inits);
  3185   if (!ZeroTLAB) {
  3186     // If anything remains to be zeroed, zero it all now.
  3187     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3188     // if it is the last unused 4 bytes of an instance, forget about it
  3189     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3190     if (zeroes_done + BytesPerLong >= size_limit) {
  3191       assert(allocation() != NULL, "");
  3192       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3193       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3194       if (zeroes_done == k->layout_helper())
  3195         zeroes_done = size_limit;
  3197     if (zeroes_done < size_limit) {
  3198       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3199                                             zeroes_done, size_in_bytes, phase);
  3203   set_complete(phase);
  3204   return rawmem;
  3208 #ifdef ASSERT
  3209 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3210   if (is_complete())
  3211     return true;                // stores could be anything at this point
  3212   intptr_t last_off = sizeof(oopDesc);
  3213   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3214     Node* st = in(i);
  3215     intptr_t st_off = get_store_offset(st, phase);
  3216     if (st_off < 0)  continue;  // ignore dead garbage
  3217     if (last_off > st_off) {
  3218       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3219       this->dump(2);
  3220       assert(false, "ascending store offsets");
  3221       return false;
  3223     last_off = st_off + st->as_Store()->memory_size();
  3225   return true;
  3227 #endif //ASSERT
  3232 //============================MergeMemNode=====================================
  3233 //
  3234 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3235 // contributing store or call operations.  Each contributor provides the memory
  3236 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3237 // if a MergeMem has an input X for alias category #6, then any memory reference
  3238 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3239 // to using the MergeMem as a whole.
  3240 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3241 //
  3242 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3243 //
  3244 // In one special case (and more cases in the future), alias categories overlap.
  3245 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3246 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3247 // it is exactly equivalent to that state W:
  3248 //   MergeMem(<Bot>: W) <==> W
  3249 //
  3250 // Usually, the merge has more than one input.  In that case, where inputs
  3251 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3252 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3253 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3254 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3255 //
  3256 // A merge can take a "wide" memory state as one of its narrow inputs.
  3257 // This simply means that the merge observes out only the relevant parts of
  3258 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3259 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3260 //
  3261 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3262 // and that memory slices "leak through":
  3263 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3264 //
  3265 // But, in such a cascade, repeated memory slices can "block the leak":
  3266 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3267 //
  3268 // In the last example, Y is not part of the combined memory state of the
  3269 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3270 // memory states from arising, so you can be sure that the state Y is somehow
  3271 // a precursor to state Y'.
  3272 //
  3273 //
  3274 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3275 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3276 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3277 // Compile::alias_type (and kin) produce and manage these indexes.
  3278 //
  3279 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3280 // (Note that this provides quick access to the top node inside MergeMem methods,
  3281 // without the need to reach out via TLS to Compile::current.)
  3282 //
  3283 // As a consequence of what was just described, a MergeMem that represents a full
  3284 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3285 // containing all alias categories.
  3286 //
  3287 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3288 //
  3289 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3290 // a memory state for the alias type <N>, or else the top node, meaning that
  3291 // there is no particular input for that alias type.  Note that the length of
  3292 // a MergeMem is variable, and may be extended at any time to accommodate new
  3293 // memory states at larger alias indexes.  When merges grow, they are of course
  3294 // filled with "top" in the unused in() positions.
  3295 //
  3296 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3297 // (Top was chosen because it works smoothly with passes like GCM.)
  3298 //
  3299 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3300 // the type of random VM bits like TLS references.)  Since it is always the
  3301 // first non-Bot memory slice, some low-level loops use it to initialize an
  3302 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3303 //
  3304 //
  3305 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3306 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3307 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3308 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3309 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3310 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3311 //
  3312 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3313 // really that different from the other memory inputs.  An abbreviation called
  3314 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3315 //
  3316 //
  3317 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3318 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3319 // that "emerges though" the base memory will be marked as excluding the alias types
  3320 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3321 //
  3322 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3323 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3324 //
  3325 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3326 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3327 // actually a disjoint union of memory states, rather than an overlay.
  3328 //
  3330 //------------------------------MergeMemNode-----------------------------------
  3331 Node* MergeMemNode::make_empty_memory() {
  3332   Node* empty_memory = (Node*) Compile::current()->top();
  3333   assert(empty_memory->is_top(), "correct sentinel identity");
  3334   return empty_memory;
  3337 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3338   init_class_id(Class_MergeMem);
  3339   // all inputs are nullified in Node::Node(int)
  3340   // set_input(0, NULL);  // no control input
  3342   // Initialize the edges uniformly to top, for starters.
  3343   Node* empty_mem = make_empty_memory();
  3344   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3345     init_req(i,empty_mem);
  3347   assert(empty_memory() == empty_mem, "");
  3349   if( new_base != NULL && new_base->is_MergeMem() ) {
  3350     MergeMemNode* mdef = new_base->as_MergeMem();
  3351     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3352     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3353       mms.set_memory(mms.memory2());
  3355     assert(base_memory() == mdef->base_memory(), "");
  3356   } else {
  3357     set_base_memory(new_base);
  3361 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3362 // If mem is itself a MergeMem, populate the result with the same edges.
  3363 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3364   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3367 //------------------------------cmp--------------------------------------------
  3368 uint MergeMemNode::hash() const { return NO_HASH; }
  3369 uint MergeMemNode::cmp( const Node &n ) const {
  3370   return (&n == this);          // Always fail except on self
  3373 //------------------------------Identity---------------------------------------
  3374 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3375   // Identity if this merge point does not record any interesting memory
  3376   // disambiguations.
  3377   Node* base_mem = base_memory();
  3378   Node* empty_mem = empty_memory();
  3379   if (base_mem != empty_mem) {  // Memory path is not dead?
  3380     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3381       Node* mem = in(i);
  3382       if (mem != empty_mem && mem != base_mem) {
  3383         return this;            // Many memory splits; no change
  3387   return base_mem;              // No memory splits; ID on the one true input
  3390 //------------------------------Ideal------------------------------------------
  3391 // This method is invoked recursively on chains of MergeMem nodes
  3392 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3393   // Remove chain'd MergeMems
  3394   //
  3395   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3396   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3397   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3398   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3399   Node *progress = NULL;
  3402   Node* old_base = base_memory();
  3403   Node* empty_mem = empty_memory();
  3404   if (old_base == empty_mem)
  3405     return NULL; // Dead memory path.
  3407   MergeMemNode* old_mbase;
  3408   if (old_base != NULL && old_base->is_MergeMem())
  3409     old_mbase = old_base->as_MergeMem();
  3410   else
  3411     old_mbase = NULL;
  3412   Node* new_base = old_base;
  3414   // simplify stacked MergeMems in base memory
  3415   if (old_mbase)  new_base = old_mbase->base_memory();
  3417   // the base memory might contribute new slices beyond my req()
  3418   if (old_mbase)  grow_to_match(old_mbase);
  3420   // Look carefully at the base node if it is a phi.
  3421   PhiNode* phi_base;
  3422   if (new_base != NULL && new_base->is_Phi())
  3423     phi_base = new_base->as_Phi();
  3424   else
  3425     phi_base = NULL;
  3427   Node*    phi_reg = NULL;
  3428   uint     phi_len = (uint)-1;
  3429   if (phi_base != NULL && !phi_base->is_copy()) {
  3430     // do not examine phi if degraded to a copy
  3431     phi_reg = phi_base->region();
  3432     phi_len = phi_base->req();
  3433     // see if the phi is unfinished
  3434     for (uint i = 1; i < phi_len; i++) {
  3435       if (phi_base->in(i) == NULL) {
  3436         // incomplete phi; do not look at it yet!
  3437         phi_reg = NULL;
  3438         phi_len = (uint)-1;
  3439         break;
  3444   // Note:  We do not call verify_sparse on entry, because inputs
  3445   // can normalize to the base_memory via subsume_node or similar
  3446   // mechanisms.  This method repairs that damage.
  3448   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3450   // Look at each slice.
  3451   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3452     Node* old_in = in(i);
  3453     // calculate the old memory value
  3454     Node* old_mem = old_in;
  3455     if (old_mem == empty_mem)  old_mem = old_base;
  3456     assert(old_mem == memory_at(i), "");
  3458     // maybe update (reslice) the old memory value
  3460     // simplify stacked MergeMems
  3461     Node* new_mem = old_mem;
  3462     MergeMemNode* old_mmem;
  3463     if (old_mem != NULL && old_mem->is_MergeMem())
  3464       old_mmem = old_mem->as_MergeMem();
  3465     else
  3466       old_mmem = NULL;
  3467     if (old_mmem == this) {
  3468       // This can happen if loops break up and safepoints disappear.
  3469       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3470       // safepoint can be rewritten to a merge of the same BotPtr with
  3471       // the BotPtr phi coming into the loop.  If that phi disappears
  3472       // also, we can end up with a self-loop of the mergemem.
  3473       // In general, if loops degenerate and memory effects disappear,
  3474       // a mergemem can be left looking at itself.  This simply means
  3475       // that the mergemem's default should be used, since there is
  3476       // no longer any apparent effect on this slice.
  3477       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3478       //       from start.  Update the input to TOP.
  3479       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3481     else if (old_mmem != NULL) {
  3482       new_mem = old_mmem->memory_at(i);
  3484     // else preceeding memory was not a MergeMem
  3486     // replace equivalent phis (unfortunately, they do not GVN together)
  3487     if (new_mem != NULL && new_mem != new_base &&
  3488         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3489       if (new_mem->is_Phi()) {
  3490         PhiNode* phi_mem = new_mem->as_Phi();
  3491         for (uint i = 1; i < phi_len; i++) {
  3492           if (phi_base->in(i) != phi_mem->in(i)) {
  3493             phi_mem = NULL;
  3494             break;
  3497         if (phi_mem != NULL) {
  3498           // equivalent phi nodes; revert to the def
  3499           new_mem = new_base;
  3504     // maybe store down a new value
  3505     Node* new_in = new_mem;
  3506     if (new_in == new_base)  new_in = empty_mem;
  3508     if (new_in != old_in) {
  3509       // Warning:  Do not combine this "if" with the previous "if"
  3510       // A memory slice might have be be rewritten even if it is semantically
  3511       // unchanged, if the base_memory value has changed.
  3512       set_req(i, new_in);
  3513       progress = this;          // Report progress
  3517   if (new_base != old_base) {
  3518     set_req(Compile::AliasIdxBot, new_base);
  3519     // Don't use set_base_memory(new_base), because we need to update du.
  3520     assert(base_memory() == new_base, "");
  3521     progress = this;
  3524   if( base_memory() == this ) {
  3525     // a self cycle indicates this memory path is dead
  3526     set_req(Compile::AliasIdxBot, empty_mem);
  3529   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3530   // Recursion must occur after the self cycle check above
  3531   if( base_memory()->is_MergeMem() ) {
  3532     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3533     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3534     if( m != NULL && (m->is_top() ||
  3535         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3536       // propagate rollup of dead cycle to self
  3537       set_req(Compile::AliasIdxBot, empty_mem);
  3541   if( base_memory() == empty_mem ) {
  3542     progress = this;
  3543     // Cut inputs during Parse phase only.
  3544     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3545     if( !can_reshape ) {
  3546       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3547         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3552   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3553     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3554     // transform should be attempted. Look for this->phi->this cycle.
  3555     uint merge_width = req();
  3556     if (merge_width > Compile::AliasIdxRaw) {
  3557       PhiNode* phi = base_memory()->as_Phi();
  3558       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3559         if (phi->in(i) == this) {
  3560           phase->is_IterGVN()->_worklist.push(phi);
  3561           break;
  3567   assert(progress || verify_sparse(), "please, no dups of base");
  3568   return progress;
  3571 //-------------------------set_base_memory-------------------------------------
  3572 void MergeMemNode::set_base_memory(Node *new_base) {
  3573   Node* empty_mem = empty_memory();
  3574   set_req(Compile::AliasIdxBot, new_base);
  3575   assert(memory_at(req()) == new_base, "must set default memory");
  3576   // Clear out other occurrences of new_base:
  3577   if (new_base != empty_mem) {
  3578     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3579       if (in(i) == new_base)  set_req(i, empty_mem);
  3584 //------------------------------out_RegMask------------------------------------
  3585 const RegMask &MergeMemNode::out_RegMask() const {
  3586   return RegMask::Empty;
  3589 //------------------------------dump_spec--------------------------------------
  3590 #ifndef PRODUCT
  3591 void MergeMemNode::dump_spec(outputStream *st) const {
  3592   st->print(" {");
  3593   Node* base_mem = base_memory();
  3594   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3595     Node* mem = memory_at(i);
  3596     if (mem == base_mem) { st->print(" -"); continue; }
  3597     st->print( " N%d:", mem->_idx );
  3598     Compile::current()->get_adr_type(i)->dump_on(st);
  3600   st->print(" }");
  3602 #endif // !PRODUCT
  3605 #ifdef ASSERT
  3606 static bool might_be_same(Node* a, Node* b) {
  3607   if (a == b)  return true;
  3608   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3609   // phis shift around during optimization
  3610   return true;  // pretty stupid...
  3613 // verify a narrow slice (either incoming or outgoing)
  3614 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3615   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3616   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3617   if (Node::in_dump())      return;  // muzzle asserts when printing
  3618   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3619   assert(n != NULL, "");
  3620   // Elide intervening MergeMem's
  3621   while (n->is_MergeMem()) {
  3622     n = n->as_MergeMem()->memory_at(alias_idx);
  3624   Compile* C = Compile::current();
  3625   const TypePtr* n_adr_type = n->adr_type();
  3626   if (n == m->empty_memory()) {
  3627     // Implicit copy of base_memory()
  3628   } else if (n_adr_type != TypePtr::BOTTOM) {
  3629     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3630     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3631   } else {
  3632     // A few places like make_runtime_call "know" that VM calls are narrow,
  3633     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3634     bool expected_wide_mem = false;
  3635     if (n == m->base_memory()) {
  3636       expected_wide_mem = true;
  3637     } else if (alias_idx == Compile::AliasIdxRaw ||
  3638                n == m->memory_at(Compile::AliasIdxRaw)) {
  3639       expected_wide_mem = true;
  3640     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3641       // memory can "leak through" calls on channels that
  3642       // are write-once.  Allow this also.
  3643       expected_wide_mem = true;
  3645     assert(expected_wide_mem, "expected narrow slice replacement");
  3648 #else // !ASSERT
  3649 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3650 #endif
  3653 //-----------------------------memory_at---------------------------------------
  3654 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3655   assert(alias_idx >= Compile::AliasIdxRaw ||
  3656          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3657          "must avoid base_memory and AliasIdxTop");
  3659   // Otherwise, it is a narrow slice.
  3660   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3661   Compile *C = Compile::current();
  3662   if (is_empty_memory(n)) {
  3663     // the array is sparse; empty slots are the "top" node
  3664     n = base_memory();
  3665     assert(Node::in_dump()
  3666            || n == NULL || n->bottom_type() == Type::TOP
  3667            || n->adr_type() == TypePtr::BOTTOM
  3668            || n->adr_type() == TypeRawPtr::BOTTOM
  3669            || Compile::current()->AliasLevel() == 0,
  3670            "must be a wide memory");
  3671     // AliasLevel == 0 if we are organizing the memory states manually.
  3672     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3673   } else {
  3674     // make sure the stored slice is sane
  3675     #ifdef ASSERT
  3676     if (is_error_reported() || Node::in_dump()) {
  3677     } else if (might_be_same(n, base_memory())) {
  3678       // Give it a pass:  It is a mostly harmless repetition of the base.
  3679       // This can arise normally from node subsumption during optimization.
  3680     } else {
  3681       verify_memory_slice(this, alias_idx, n);
  3683     #endif
  3685   return n;
  3688 //---------------------------set_memory_at-------------------------------------
  3689 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3690   verify_memory_slice(this, alias_idx, n);
  3691   Node* empty_mem = empty_memory();
  3692   if (n == base_memory())  n = empty_mem;  // collapse default
  3693   uint need_req = alias_idx+1;
  3694   if (req() < need_req) {
  3695     if (n == empty_mem)  return;  // already the default, so do not grow me
  3696     // grow the sparse array
  3697     do {
  3698       add_req(empty_mem);
  3699     } while (req() < need_req);
  3701   set_req( alias_idx, n );
  3706 //--------------------------iteration_setup------------------------------------
  3707 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3708   if (other != NULL) {
  3709     grow_to_match(other);
  3710     // invariant:  the finite support of mm2 is within mm->req()
  3711     #ifdef ASSERT
  3712     for (uint i = req(); i < other->req(); i++) {
  3713       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3715     #endif
  3717   // Replace spurious copies of base_memory by top.
  3718   Node* base_mem = base_memory();
  3719   if (base_mem != NULL && !base_mem->is_top()) {
  3720     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3721       if (in(i) == base_mem)
  3722         set_req(i, empty_memory());
  3727 //---------------------------grow_to_match-------------------------------------
  3728 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3729   Node* empty_mem = empty_memory();
  3730   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3731   // look for the finite support of the other memory
  3732   for (uint i = other->req(); --i >= req(); ) {
  3733     if (other->in(i) != empty_mem) {
  3734       uint new_len = i+1;
  3735       while (req() < new_len)  add_req(empty_mem);
  3736       break;
  3741 //---------------------------verify_sparse-------------------------------------
  3742 #ifndef PRODUCT
  3743 bool MergeMemNode::verify_sparse() const {
  3744   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3745   Node* base_mem = base_memory();
  3746   // The following can happen in degenerate cases, since empty==top.
  3747   if (is_empty_memory(base_mem))  return true;
  3748   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3749     assert(in(i) != NULL, "sane slice");
  3750     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3752   return true;
  3755 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3756   Node* n;
  3757   n = mm->in(idx);
  3758   if (mem == n)  return true;  // might be empty_memory()
  3759   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3760   if (mem == n)  return true;
  3761   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3762     if (mem == n)  return true;
  3763     if (n == NULL)  break;
  3765   return false;
  3767 #endif // !PRODUCT

mercurial