src/share/vm/opto/runtime.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 777
37f87013dfd8
child 1462
39b01ab7035a
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_runtime.cpp.incl"
    29 // For debugging purposes:
    30 //  To force FullGCALot inside a runtime function, add the following two lines
    31 //
    32 //  Universe::release_fullgc_alot_dummy();
    33 //  MarkSweep::invoke(0, "Debugging");
    34 //
    35 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    40 // Compiled code entry points
    41 address OptoRuntime::_new_instance_Java                           = NULL;
    42 address OptoRuntime::_new_array_Java                              = NULL;
    43 address OptoRuntime::_multianewarray2_Java                        = NULL;
    44 address OptoRuntime::_multianewarray3_Java                        = NULL;
    45 address OptoRuntime::_multianewarray4_Java                        = NULL;
    46 address OptoRuntime::_multianewarray5_Java                        = NULL;
    47 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
    48 address OptoRuntime::_g1_wb_post_Java                             = NULL;
    49 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
    50 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
    51 address OptoRuntime::_rethrow_Java                                = NULL;
    53 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
    54 address OptoRuntime::_register_finalizer_Java                     = NULL;
    56 # ifdef ENABLE_ZAP_DEAD_LOCALS
    57 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
    58 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
    59 # endif
    62 // This should be called in an assertion at the start of OptoRuntime routines
    63 // which are entered from compiled code (all of them)
    64 #ifndef PRODUCT
    65 static bool check_compiled_frame(JavaThread* thread) {
    66   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
    67 #ifdef ASSERT
    68   RegisterMap map(thread, false);
    69   frame caller = thread->last_frame().sender(&map);
    70   assert(caller.is_compiled_frame(), "not being called from compiled like code");
    71 #endif  /* ASSERT */
    72   return true;
    73 }
    74 #endif
    77 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
    78   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
    80 void OptoRuntime::generate(ciEnv* env) {
    82   generate_exception_blob();
    84   // Note: tls: Means fetching the return oop out of the thread-local storage
    85   //
    86   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
    87   // -------------------------------------------------------------------------------------------------------------------------------
    88   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
    89   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
    90   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
    91   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
    92   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
    93   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
    94   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
    95   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
    96   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
    97   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
    99   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   100   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   102 # ifdef ENABLE_ZAP_DEAD_LOCALS
   103   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   104   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   105 # endif
   107 }
   109 #undef gen
   112 // Helper method to do generation of RunTimeStub's
   113 address OptoRuntime::generate_stub( ciEnv* env,
   114                                     TypeFunc_generator gen, address C_function,
   115                                     const char *name, int is_fancy_jump,
   116                                     bool pass_tls,
   117                                     bool save_argument_registers,
   118                                     bool return_pc ) {
   119   ResourceMark rm;
   120   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   121   return  C.stub_entry_point();
   122 }
   124 const char* OptoRuntime::stub_name(address entry) {
   125 #ifndef PRODUCT
   126   CodeBlob* cb = CodeCache::find_blob(entry);
   127   RuntimeStub* rs =(RuntimeStub *)cb;
   128   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   129   return rs->name();
   130 #else
   131   // Fast implementation for product mode (maybe it should be inlined too)
   132   return "runtime stub";
   133 #endif
   134 }
   137 //=============================================================================
   138 // Opto compiler runtime routines
   139 //=============================================================================
   142 //=============================allocation======================================
   143 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   144 // and try allocation again.
   146 void OptoRuntime::do_eager_card_mark(JavaThread* thread) {
   147   // After any safepoint, just before going back to compiled code,
   148   // we perform a card mark.  This lets the compiled code omit
   149   // card marks for initialization of new objects.
   150   // Keep this code consistent with GraphKit::store_barrier.
   152   oop new_obj = thread->vm_result();
   153   if (new_obj == NULL)  return;
   155   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   156          "compiler must check this first");
   157   new_obj = Universe::heap()->new_store_barrier(new_obj);
   158   thread->set_vm_result(new_obj);
   159 }
   161 // object allocation
   162 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   163   JRT_BLOCK;
   164 #ifndef PRODUCT
   165   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   166 #endif
   167   assert(check_compiled_frame(thread), "incorrect caller");
   169   // These checks are cheap to make and support reflective allocation.
   170   int lh = Klass::cast(klass)->layout_helper();
   171   if (Klass::layout_helper_needs_slow_path(lh)
   172       || !instanceKlass::cast(klass)->is_initialized()) {
   173     KlassHandle kh(THREAD, klass);
   174     kh->check_valid_for_instantiation(false, THREAD);
   175     if (!HAS_PENDING_EXCEPTION) {
   176       instanceKlass::cast(kh())->initialize(THREAD);
   177     }
   178     if (!HAS_PENDING_EXCEPTION) {
   179       klass = kh();
   180     } else {
   181       klass = NULL;
   182     }
   183   }
   185   if (klass != NULL) {
   186     // Scavenge and allocate an instance.
   187     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   188     thread->set_vm_result(result);
   190     // Pass oops back through thread local storage.  Our apparent type to Java
   191     // is that we return an oop, but we can block on exit from this routine and
   192     // a GC can trash the oop in C's return register.  The generated stub will
   193     // fetch the oop from TLS after any possible GC.
   194   }
   196   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   197   JRT_BLOCK_END;
   199   if (GraphKit::use_ReduceInitialCardMarks()) {
   200     // do them now so we don't have to do them on the fast path
   201     do_eager_card_mark(thread);
   202   }
   203 JRT_END
   206 // array allocation
   207 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   208   JRT_BLOCK;
   209 #ifndef PRODUCT
   210   SharedRuntime::_new_array_ctr++;            // new array requires GC
   211 #endif
   212   assert(check_compiled_frame(thread), "incorrect caller");
   214   // Scavenge and allocate an instance.
   215   oop result;
   217   if (Klass::cast(array_type)->oop_is_typeArray()) {
   218     // The oopFactory likes to work with the element type.
   219     // (We could bypass the oopFactory, since it doesn't add much value.)
   220     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   221     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   222   } else {
   223     // Although the oopFactory likes to work with the elem_type,
   224     // the compiler prefers the array_type, since it must already have
   225     // that latter value in hand for the fast path.
   226     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   227     result = oopFactory::new_objArray(elem_type, len, THREAD);
   228   }
   230   // Pass oops back through thread local storage.  Our apparent type to Java
   231   // is that we return an oop, but we can block on exit from this routine and
   232   // a GC can trash the oop in C's return register.  The generated stub will
   233   // fetch the oop from TLS after any possible GC.
   234   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   235   thread->set_vm_result(result);
   236   JRT_BLOCK_END;
   238   if (GraphKit::use_ReduceInitialCardMarks()) {
   239     // do them now so we don't have to do them on the fast path
   240     do_eager_card_mark(thread);
   241   }
   242 JRT_END
   244 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   246 // multianewarray for 2 dimensions
   247 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   248 #ifndef PRODUCT
   249   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   250 #endif
   251   assert(check_compiled_frame(thread), "incorrect caller");
   252   assert(oop(elem_type)->is_klass(), "not a class");
   253   jint dims[2];
   254   dims[0] = len1;
   255   dims[1] = len2;
   256   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   257   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   258   thread->set_vm_result(obj);
   259 JRT_END
   261 // multianewarray for 3 dimensions
   262 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   263 #ifndef PRODUCT
   264   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   265 #endif
   266   assert(check_compiled_frame(thread), "incorrect caller");
   267   assert(oop(elem_type)->is_klass(), "not a class");
   268   jint dims[3];
   269   dims[0] = len1;
   270   dims[1] = len2;
   271   dims[2] = len3;
   272   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   273   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   274   thread->set_vm_result(obj);
   275 JRT_END
   277 // multianewarray for 4 dimensions
   278 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   279 #ifndef PRODUCT
   280   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   281 #endif
   282   assert(check_compiled_frame(thread), "incorrect caller");
   283   assert(oop(elem_type)->is_klass(), "not a class");
   284   jint dims[4];
   285   dims[0] = len1;
   286   dims[1] = len2;
   287   dims[2] = len3;
   288   dims[3] = len4;
   289   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   290   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   291   thread->set_vm_result(obj);
   292 JRT_END
   294 // multianewarray for 5 dimensions
   295 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   296 #ifndef PRODUCT
   297   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   298 #endif
   299   assert(check_compiled_frame(thread), "incorrect caller");
   300   assert(oop(elem_type)->is_klass(), "not a class");
   301   jint dims[5];
   302   dims[0] = len1;
   303   dims[1] = len2;
   304   dims[2] = len3;
   305   dims[3] = len4;
   306   dims[4] = len5;
   307   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   308   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   309   thread->set_vm_result(obj);
   310 JRT_END
   312 const TypeFunc *OptoRuntime::new_instance_Type() {
   313   // create input type (domain)
   314   const Type **fields = TypeTuple::fields(1);
   315   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   316   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   318   // create result type (range)
   319   fields = TypeTuple::fields(1);
   320   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   322   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   324   return TypeFunc::make(domain, range);
   325 }
   328 const TypeFunc *OptoRuntime::athrow_Type() {
   329   // create input type (domain)
   330   const Type **fields = TypeTuple::fields(1);
   331   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   332   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   334   // create result type (range)
   335   fields = TypeTuple::fields(0);
   337   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   339   return TypeFunc::make(domain, range);
   340 }
   343 const TypeFunc *OptoRuntime::new_array_Type() {
   344   // create input type (domain)
   345   const Type **fields = TypeTuple::fields(2);
   346   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   347   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   348   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   350   // create result type (range)
   351   fields = TypeTuple::fields(1);
   352   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   354   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   356   return TypeFunc::make(domain, range);
   357 }
   359 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   360   // create input type (domain)
   361   const int nargs = ndim + 1;
   362   const Type **fields = TypeTuple::fields(nargs);
   363   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   364   for( int i = 1; i < nargs; i++ )
   365     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   366   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   368   // create result type (range)
   369   fields = TypeTuple::fields(1);
   370   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   371   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   373   return TypeFunc::make(domain, range);
   374 }
   376 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   377   return multianewarray_Type(2);
   378 }
   380 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   381   return multianewarray_Type(3);
   382 }
   384 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   385   return multianewarray_Type(4);
   386 }
   388 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   389   return multianewarray_Type(5);
   390 }
   392 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   393   const Type **fields = TypeTuple::fields(2);
   394   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   395   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   396   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   398   // create result type (range)
   399   fields = TypeTuple::fields(0);
   400   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   402   return TypeFunc::make(domain, range);
   403 }
   405 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   407   const Type **fields = TypeTuple::fields(2);
   408   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   409   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   410   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   412   // create result type (range)
   413   fields = TypeTuple::fields(0);
   414   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   416   return TypeFunc::make(domain, range);
   417 }
   419 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   420   // create input type (domain)
   421   const Type **fields = TypeTuple::fields(1);
   422   // symbolOop name of class to be loaded
   423   fields[TypeFunc::Parms+0] = TypeInt::INT;
   424   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   426   // create result type (range)
   427   fields = TypeTuple::fields(0);
   428   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   430   return TypeFunc::make(domain, range);
   431 }
   433 # ifdef ENABLE_ZAP_DEAD_LOCALS
   434 // Type used for stub generation for zap_dead_locals.
   435 // No inputs or outputs
   436 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   437   // create input type (domain)
   438   const Type **fields = TypeTuple::fields(0);
   439   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   441   // create result type (range)
   442   fields = TypeTuple::fields(0);
   443   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   445   return TypeFunc::make(domain,range);
   446 }
   447 # endif
   450 //-----------------------------------------------------------------------------
   451 // Monitor Handling
   452 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   453   // create input type (domain)
   454   const Type **fields = TypeTuple::fields(2);
   455   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   456   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   457   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   459   // create result type (range)
   460   fields = TypeTuple::fields(0);
   462   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   464   return TypeFunc::make(domain,range);
   465 }
   468 //-----------------------------------------------------------------------------
   469 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   470   // create input type (domain)
   471   const Type **fields = TypeTuple::fields(2);
   472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   473   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   474   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   476   // create result type (range)
   477   fields = TypeTuple::fields(0);
   479   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   481   return TypeFunc::make(domain,range);
   482 }
   484 const TypeFunc* OptoRuntime::flush_windows_Type() {
   485   // create input type (domain)
   486   const Type** fields = TypeTuple::fields(1);
   487   fields[TypeFunc::Parms+0] = NULL; // void
   488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   490   // create result type
   491   fields = TypeTuple::fields(1);
   492   fields[TypeFunc::Parms+0] = NULL; // void
   493   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   495   return TypeFunc::make(domain, range);
   496 }
   498 const TypeFunc* OptoRuntime::l2f_Type() {
   499   // create input type (domain)
   500   const Type **fields = TypeTuple::fields(2);
   501   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   502   fields[TypeFunc::Parms+1] = Type::HALF;
   503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   505   // create result type (range)
   506   fields = TypeTuple::fields(1);
   507   fields[TypeFunc::Parms+0] = Type::FLOAT;
   508   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   510   return TypeFunc::make(domain, range);
   511 }
   513 const TypeFunc* OptoRuntime::modf_Type() {
   514   const Type **fields = TypeTuple::fields(2);
   515   fields[TypeFunc::Parms+0] = Type::FLOAT;
   516   fields[TypeFunc::Parms+1] = Type::FLOAT;
   517   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   519   // create result type (range)
   520   fields = TypeTuple::fields(1);
   521   fields[TypeFunc::Parms+0] = Type::FLOAT;
   523   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   525   return TypeFunc::make(domain, range);
   526 }
   528 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   529   // create input type (domain)
   530   const Type **fields = TypeTuple::fields(2);
   531   // symbolOop name of class to be loaded
   532   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   533   fields[TypeFunc::Parms+1] = Type::HALF;
   534   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   536   // create result type (range)
   537   fields = TypeTuple::fields(2);
   538   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   539   fields[TypeFunc::Parms+1] = Type::HALF;
   540   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   542   return TypeFunc::make(domain, range);
   543 }
   545 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   546   const Type **fields = TypeTuple::fields(4);
   547   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   548   fields[TypeFunc::Parms+1] = Type::HALF;
   549   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   550   fields[TypeFunc::Parms+3] = Type::HALF;
   551   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   553   // create result type (range)
   554   fields = TypeTuple::fields(2);
   555   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   556   fields[TypeFunc::Parms+1] = Type::HALF;
   557   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   559   return TypeFunc::make(domain, range);
   560 }
   562 //-------------- currentTimeMillis
   564 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   565   // create input type (domain)
   566   const Type **fields = TypeTuple::fields(0);
   567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   569   // create result type (range)
   570   fields = TypeTuple::fields(2);
   571   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   572   fields[TypeFunc::Parms+1] = Type::HALF;
   573   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   575   return TypeFunc::make(domain, range);
   576 }
   578 // arraycopy stub variations:
   579 enum ArrayCopyType {
   580   ac_fast,                      // void(ptr, ptr, size_t)
   581   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   582   ac_slow,                      // void(ptr, int, ptr, int, int)
   583   ac_generic                    //  int(ptr, int, ptr, int, int)
   584 };
   586 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   587   // create input type (domain)
   588   int num_args      = (act == ac_fast ? 3 : 5);
   589   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   590   int argcnt = num_args;
   591   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   592   const Type** fields = TypeTuple::fields(argcnt);
   593   int argp = TypeFunc::Parms;
   594   fields[argp++] = TypePtr::NOTNULL;    // src
   595   if (num_size_args == 0) {
   596     fields[argp++] = TypeInt::INT;      // src_pos
   597   }
   598   fields[argp++] = TypePtr::NOTNULL;    // dest
   599   if (num_size_args == 0) {
   600     fields[argp++] = TypeInt::INT;      // dest_pos
   601     fields[argp++] = TypeInt::INT;      // length
   602   }
   603   while (num_size_args-- > 0) {
   604     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   605     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   606   }
   607   if (act == ac_checkcast) {
   608     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   609   }
   610   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   611   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   613   // create result type if needed
   614   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   615   fields = TypeTuple::fields(1);
   616   if (retcnt == 0)
   617     fields[TypeFunc::Parms+0] = NULL; // void
   618   else
   619     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   620   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   621   return TypeFunc::make(domain, range);
   622 }
   624 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   625   // This signature is simple:  Two base pointers and a size_t.
   626   return make_arraycopy_Type(ac_fast);
   627 }
   629 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   630   // An extension of fast_arraycopy_Type which adds type checking.
   631   return make_arraycopy_Type(ac_checkcast);
   632 }
   634 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   635   // This signature is exactly the same as System.arraycopy.
   636   // There are no intptr_t (int/long) arguments.
   637   return make_arraycopy_Type(ac_slow);
   638 }
   640 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   641   // This signature is like System.arraycopy, except that it returns status.
   642   return make_arraycopy_Type(ac_generic);
   643 }
   646 //------------- Interpreter state access for on stack replacement
   647 const TypeFunc* OptoRuntime::osr_end_Type() {
   648   // create input type (domain)
   649   const Type **fields = TypeTuple::fields(1);
   650   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   653   // create result type
   654   fields = TypeTuple::fields(1);
   655   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   656   fields[TypeFunc::Parms+0] = NULL; // void
   657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   658   return TypeFunc::make(domain, range);
   659 }
   661 //-------------- methodData update helpers
   663 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   664   // create input type (domain)
   665   const Type **fields = TypeTuple::fields(2);
   666   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   667   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   670   // create result type
   671   fields = TypeTuple::fields(1);
   672   fields[TypeFunc::Parms+0] = NULL; // void
   673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   674   return TypeFunc::make(domain,range);
   675 }
   677 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   678   if (receiver == NULL) return;
   679   klassOop receiver_klass = receiver->klass();
   681   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   682   int empty_row = -1;           // free row, if any is encountered
   684   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   685   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   686     // if (vc->receiver(row) == receiver_klass)
   687     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   688     intptr_t row_recv = *(mdp + receiver_off);
   689     if (row_recv == (intptr_t) receiver_klass) {
   690       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   691       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   692       *(mdp + count_off) += DataLayout::counter_increment;
   693       return;
   694     } else if (row_recv == 0) {
   695       // else if (vc->receiver(row) == NULL)
   696       empty_row = (int) row;
   697     }
   698   }
   700   if (empty_row != -1) {
   701     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   702     // vc->set_receiver(empty_row, receiver_klass);
   703     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   704     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   705     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   706     *(mdp + count_off) = DataLayout::counter_increment;
   707   }
   708 JRT_END
   710 //-----------------------------------------------------------------------------
   711 // implicit exception support.
   713 static void report_null_exception_in_code_cache(address exception_pc) {
   714   ResourceMark rm;
   715   CodeBlob* n = CodeCache::find_blob(exception_pc);
   716   if (n != NULL) {
   717     tty->print_cr("#");
   718     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   719     tty->print_cr("#");
   720     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   722     if (n->is_nmethod()) {
   723       methodOop method = ((nmethod*)n)->method();
   724       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   725       tty->print_cr("#");
   726       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   727         const char* title    = "HotSpot Runtime Error";
   728         const char* question = "Do you want to exclude compilation of this method in future runs?";
   729         if (os::message_box(title, question)) {
   730           CompilerOracle::append_comment_to_file("");
   731           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   732           CompilerOracle::append_comment_to_file("");
   733           CompilerOracle::append_exclude_to_file(method);
   734           tty->print_cr("#");
   735           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   736           tty->print_cr("#");
   737         }
   738       }
   739       fatal("Implicit null exception happened in compiled method");
   740     } else {
   741       n->print();
   742       fatal("Implicit null exception happened in generated stub");
   743     }
   744   }
   745   fatal("Implicit null exception at wrong place");
   746 }
   749 //-------------------------------------------------------------------------------------
   750 // register policy
   752 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   753   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   754   switch (register_save_policy[reg]) {
   755     case 'C': return false; //SOC
   756     case 'E': return true ; //SOE
   757     case 'N': return false; //NS
   758     case 'A': return false; //AS
   759   }
   760   ShouldNotReachHere();
   761   return false;
   762 }
   764 //-----------------------------------------------------------------------
   765 // Exceptions
   766 //
   768 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   770 // The method is an entry that is always called by a C++ method not
   771 // directly from compiled code. Compiled code will call the C++ method following.
   772 // We can't allow async exception to be installed during  exception processing.
   773 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   775   // Do not confuse exception_oop with pending_exception. The exception_oop
   776   // is only used to pass arguments into the method. Not for general
   777   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   778   // the runtime stubs checks this on exit.
   779   assert(thread->exception_oop() != NULL, "exception oop is found");
   780   address handler_address = NULL;
   782   Handle exception(thread, thread->exception_oop());
   784   if (TraceExceptions) {
   785     trace_exception(exception(), thread->exception_pc(), "");
   786   }
   787   // for AbortVMOnException flag
   788   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   790   #ifdef ASSERT
   791     if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   792       // should throw an exception here
   793       ShouldNotReachHere();
   794     }
   795   #endif
   798   // new exception handling: this method is entered only from adapters
   799   // exceptions from compiled java methods are handled in compiled code
   800   // using rethrow node
   802   address pc = thread->exception_pc();
   803   nm = CodeCache::find_nmethod(pc);
   804   assert(nm != NULL, "No NMethod found");
   805   if (nm->is_native_method()) {
   806     fatal("Native mathod should not have path to exception handling");
   807   } else {
   808     // we are switching to old paradigm: search for exception handler in caller_frame
   809     // instead in exception handler of caller_frame.sender()
   811     if (JvmtiExport::can_post_exceptions()) {
   812       // "Full-speed catching" is not necessary here,
   813       // since we're notifying the VM on every catch.
   814       // Force deoptimization and the rest of the lookup
   815       // will be fine.
   816       deoptimize_caller_frame(thread, true);
   817     }
   819     // Check the stack guard pages.  If enabled, look for handler in this frame;
   820     // otherwise, forcibly unwind the frame.
   821     //
   822     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   823     bool force_unwind = !thread->reguard_stack();
   824     bool deopting = false;
   825     if (nm->is_deopt_pc(pc)) {
   826       deopting = true;
   827       RegisterMap map(thread, false);
   828       frame deoptee = thread->last_frame().sender(&map);
   829       assert(deoptee.is_deoptimized_frame(), "must be deopted");
   830       // Adjust the pc back to the original throwing pc
   831       pc = deoptee.pc();
   832     }
   834     // If we are forcing an unwind because of stack overflow then deopt is
   835     // irrelevant sice we are throwing the frame away anyway.
   837     if (deopting && !force_unwind) {
   838       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   839     } else {
   841       handler_address =
   842         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
   844       if (handler_address == NULL) {
   845         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
   846         assert (handler_address != NULL, "must have compiled handler");
   847         // Update the exception cache only when the unwind was not forced.
   848         if (!force_unwind) {
   849           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
   850         }
   851       } else {
   852         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
   853       }
   854     }
   856     thread->set_exception_pc(pc);
   857     thread->set_exception_handler_pc(handler_address);
   858     thread->set_exception_stack_size(0);
   859   }
   861   // Restore correct return pc.  Was saved above.
   862   thread->set_exception_oop(exception());
   863   return handler_address;
   865 JRT_END
   867 // We are entering here from exception_blob
   868 // If there is a compiled exception handler in this method, we will continue there;
   869 // otherwise we will unwind the stack and continue at the caller of top frame method
   870 // Note we enter without the usual JRT wrapper. We will call a helper routine that
   871 // will do the normal VM entry. We do it this way so that we can see if the nmethod
   872 // we looked up the handler for has been deoptimized in the meantime. If it has been
   873 // we must not use the handler and instread return the deopt blob.
   874 address OptoRuntime::handle_exception_C(JavaThread* thread) {
   875 //
   876 // We are in Java not VM and in debug mode we have a NoHandleMark
   877 //
   878 #ifndef PRODUCT
   879   SharedRuntime::_find_handler_ctr++;          // find exception handler
   880 #endif
   881   debug_only(NoHandleMark __hm;)
   882   nmethod* nm = NULL;
   883   address handler_address = NULL;
   884   {
   885     // Enter the VM
   887     ResetNoHandleMark rnhm;
   888     handler_address = handle_exception_C_helper(thread, nm);
   889   }
   891   // Back in java: Use no oops, DON'T safepoint
   893   // Now check to see if the handler we are returning is in a now
   894   // deoptimized frame
   896   if (nm != NULL) {
   897     RegisterMap map(thread, false);
   898     frame caller = thread->last_frame().sender(&map);
   899 #ifdef ASSERT
   900     assert(caller.is_compiled_frame(), "must be");
   901 #endif // ASSERT
   902     if (caller.is_deoptimized_frame()) {
   903       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   904     }
   905   }
   906   return handler_address;
   907 }
   909 //------------------------------rethrow----------------------------------------
   910 // We get here after compiled code has executed a 'RethrowNode'.  The callee
   911 // is either throwing or rethrowing an exception.  The callee-save registers
   912 // have been restored, synchronized objects have been unlocked and the callee
   913 // stack frame has been removed.  The return address was passed in.
   914 // Exception oop is passed as the 1st argument.  This routine is then called
   915 // from the stub.  On exit, we know where to jump in the caller's code.
   916 // After this C code exits, the stub will pop his frame and end in a jump
   917 // (instead of a return).  We enter the caller's default handler.
   918 //
   919 // This must be JRT_LEAF:
   920 //     - caller will not change its state as we cannot block on exit,
   921 //       therefore raw_exception_handler_for_return_address is all it takes
   922 //       to handle deoptimized blobs
   923 //
   924 // However, there needs to be a safepoint check in the middle!  So compiled
   925 // safepoints are completely watertight.
   926 //
   927 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
   928 //
   929 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
   930 //
   931 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
   932 #ifndef PRODUCT
   933   SharedRuntime::_rethrow_ctr++;               // count rethrows
   934 #endif
   935   assert (exception != NULL, "should have thrown a NULLPointerException");
   936 #ifdef ASSERT
   937   if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   938     // should throw an exception here
   939     ShouldNotReachHere();
   940   }
   941 #endif
   943   thread->set_vm_result(exception);
   944   // Frame not compiled (handles deoptimization blob)
   945   return SharedRuntime::raw_exception_handler_for_return_address(ret_pc);
   946 }
   949 const TypeFunc *OptoRuntime::rethrow_Type() {
   950   // create input type (domain)
   951   const Type **fields = TypeTuple::fields(1);
   952   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
   953   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
   955   // create result type (range)
   956   fields = TypeTuple::fields(1);
   957   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
   958   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   960   return TypeFunc::make(domain, range);
   961 }
   964 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
   965   // Deoptimize frame
   966   if (doit) {
   967     // Called from within the owner thread, so no need for safepoint
   968     RegisterMap reg_map(thread);
   969     frame stub_frame = thread->last_frame();
   970     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
   971     frame caller_frame = stub_frame.sender(&reg_map);
   973     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   974     VMThread::execute(&deopt);
   975   }
   976 }
   979 const TypeFunc *OptoRuntime::register_finalizer_Type() {
   980   // create input type (domain)
   981   const Type **fields = TypeTuple::fields(1);
   982   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
   983   // // The JavaThread* is passed to each routine as the last argument
   984   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
   985   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
   987   // create result type (range)
   988   fields = TypeTuple::fields(0);
   990   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   992   return TypeFunc::make(domain,range);
   993 }
   996 //-----------------------------------------------------------------------------
   997 // Dtrace support.  entry and exit probes have the same signature
   998 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
   999   // create input type (domain)
  1000   const Type **fields = TypeTuple::fields(2);
  1001   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1002   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  1003   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1005   // create result type (range)
  1006   fields = TypeTuple::fields(0);
  1008   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1010   return TypeFunc::make(domain,range);
  1013 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1014   // create input type (domain)
  1015   const Type **fields = TypeTuple::fields(2);
  1016   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1017   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1019   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1021   // create result type (range)
  1022   fields = TypeTuple::fields(0);
  1024   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1026   return TypeFunc::make(domain,range);
  1030 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1031   assert(obj->is_oop(), "must be a valid oop");
  1032   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1033   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1034 JRT_END
  1036 //-----------------------------------------------------------------------------
  1038 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1040 //
  1041 // dump the collected NamedCounters.
  1042 //
  1043 void OptoRuntime::print_named_counters() {
  1044   int total_lock_count = 0;
  1045   int eliminated_lock_count = 0;
  1047   NamedCounter* c = _named_counters;
  1048   while (c) {
  1049     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1050       int count = c->count();
  1051       if (count > 0) {
  1052         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1053         if (Verbose) {
  1054           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1056         total_lock_count += count;
  1057         if (eliminated) {
  1058           eliminated_lock_count += count;
  1061     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1062       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1063       if (blc->nonzero()) {
  1064         tty->print_cr("%s", c->name());
  1065         blc->print_on(tty);
  1068     c = c->next();
  1070   if (total_lock_count > 0) {
  1071     tty->print_cr("dynamic locks: %d", total_lock_count);
  1072     if (eliminated_lock_count) {
  1073       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1074                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1079 //
  1080 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1081 //  name which consists of method@line for the inlining tree.
  1082 //
  1084 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1085   int max_depth = youngest_jvms->depth();
  1087   // Visit scopes from youngest to oldest.
  1088   bool first = true;
  1089   stringStream st;
  1090   for (int depth = max_depth; depth >= 1; depth--) {
  1091     JVMState* jvms = youngest_jvms->of_depth(depth);
  1092     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1093     if (!first) {
  1094       st.print(" ");
  1095     } else {
  1096       first = false;
  1098     int bci = jvms->bci();
  1099     if (bci < 0) bci = 0;
  1100     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1101     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1103   NamedCounter* c;
  1104   if (tag == NamedCounter::BiasedLockingCounter) {
  1105     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1106   } else {
  1107     c = new NamedCounter(strdup(st.as_string()), tag);
  1110   // atomically add the new counter to the head of the list.  We only
  1111   // add counters so this is safe.
  1112   NamedCounter* head;
  1113   do {
  1114     head = _named_counters;
  1115     c->set_next(head);
  1116   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1117   return c;
  1120 //-----------------------------------------------------------------------------
  1121 // Non-product code
  1122 #ifndef PRODUCT
  1124 int trace_exception_counter = 0;
  1125 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1126   ttyLocker ttyl;
  1127   trace_exception_counter++;
  1128   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1129   exception_oop->print_value();
  1130   tty->print(" in ");
  1131   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1132   if (blob->is_nmethod()) {
  1133     ((nmethod*)blob)->method()->print_value();
  1134   } else if (blob->is_runtime_stub()) {
  1135     tty->print("<runtime-stub>");
  1136   } else {
  1137     tty->print("<unknown>");
  1139   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1140   tty->print_cr("]");
  1143 #endif  // PRODUCT
  1146 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1147 // Called from call sites in compiled code with oop maps (actually safepoints)
  1148 // Zaps dead locals in first java frame.
  1149 // Is entry because may need to lock to generate oop maps
  1150 // Currently, only used for compiler frames, but someday may be used
  1151 // for interpreter frames, too.
  1153 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1155 // avoid pointers to member funcs with these helpers
  1156 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1157 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1160 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1161                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1162   assert(JavaThread::current() == thread, "is this needed?");
  1164   if ( !ZapDeadCompiledLocals )  return;
  1166   bool skip = false;
  1168        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1169   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1170   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1171     warning("starting zapping after skipping");
  1173        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1174   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1175   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1176     warning("about to zap last zap");
  1178   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1180   if ( skip )  return;
  1182   // find java frame and zap it
  1184   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1185     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1186       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1187       return;
  1190   warning("no frame found to zap in zap_dead_Java_locals_C");
  1193 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1194   zap_dead_java_or_native_locals(thread, is_java_frame);
  1195 JRT_END
  1197 // The following does not work because for one thing, the
  1198 // thread state is wrong; it expects java, but it is native.
  1199 // Also, the invariants in a native stub are different and
  1200 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1201 // in there.
  1202 // So for now, we do not zap in native stubs.
  1204 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1205   zap_dead_java_or_native_locals(thread, is_native_frame);
  1206 JRT_END
  1208 # endif

mercurial