src/share/vm/opto/runtime.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1040
98cb887364d3
child 1570
e66fd840cb6b
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_runtime.cpp.incl"
    29 // For debugging purposes:
    30 //  To force FullGCALot inside a runtime function, add the following two lines
    31 //
    32 //  Universe::release_fullgc_alot_dummy();
    33 //  MarkSweep::invoke(0, "Debugging");
    34 //
    35 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    40 // Compiled code entry points
    41 address OptoRuntime::_new_instance_Java                           = NULL;
    42 address OptoRuntime::_new_array_Java                              = NULL;
    43 address OptoRuntime::_multianewarray2_Java                        = NULL;
    44 address OptoRuntime::_multianewarray3_Java                        = NULL;
    45 address OptoRuntime::_multianewarray4_Java                        = NULL;
    46 address OptoRuntime::_multianewarray5_Java                        = NULL;
    47 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
    48 address OptoRuntime::_g1_wb_post_Java                             = NULL;
    49 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
    50 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
    51 address OptoRuntime::_rethrow_Java                                = NULL;
    53 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
    54 address OptoRuntime::_register_finalizer_Java                     = NULL;
    56 # ifdef ENABLE_ZAP_DEAD_LOCALS
    57 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
    58 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
    59 # endif
    62 // This should be called in an assertion at the start of OptoRuntime routines
    63 // which are entered from compiled code (all of them)
    64 #ifndef PRODUCT
    65 static bool check_compiled_frame(JavaThread* thread) {
    66   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
    67 #ifdef ASSERT
    68   RegisterMap map(thread, false);
    69   frame caller = thread->last_frame().sender(&map);
    70   assert(caller.is_compiled_frame(), "not being called from compiled like code");
    71 #endif  /* ASSERT */
    72   return true;
    73 }
    74 #endif
    77 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
    78   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
    80 void OptoRuntime::generate(ciEnv* env) {
    82   generate_exception_blob();
    84   // Note: tls: Means fetching the return oop out of the thread-local storage
    85   //
    86   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
    87   // -------------------------------------------------------------------------------------------------------------------------------
    88   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
    89   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
    90   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
    91   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
    92   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
    93   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
    94   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
    95   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
    96   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
    97   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
    99   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   100   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   102 # ifdef ENABLE_ZAP_DEAD_LOCALS
   103   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   104   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   105 # endif
   107 }
   109 #undef gen
   112 // Helper method to do generation of RunTimeStub's
   113 address OptoRuntime::generate_stub( ciEnv* env,
   114                                     TypeFunc_generator gen, address C_function,
   115                                     const char *name, int is_fancy_jump,
   116                                     bool pass_tls,
   117                                     bool save_argument_registers,
   118                                     bool return_pc ) {
   119   ResourceMark rm;
   120   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   121   return  C.stub_entry_point();
   122 }
   124 const char* OptoRuntime::stub_name(address entry) {
   125 #ifndef PRODUCT
   126   CodeBlob* cb = CodeCache::find_blob(entry);
   127   RuntimeStub* rs =(RuntimeStub *)cb;
   128   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   129   return rs->name();
   130 #else
   131   // Fast implementation for product mode (maybe it should be inlined too)
   132   return "runtime stub";
   133 #endif
   134 }
   137 //=============================================================================
   138 // Opto compiler runtime routines
   139 //=============================================================================
   142 //=============================allocation======================================
   143 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   144 // and try allocation again.
   146 void OptoRuntime::maybe_defer_card_mark(JavaThread* thread) {
   147   // After any safepoint, just before going back to compiled code,
   148   // we inform the GC that we will be doing initializing writes to
   149   // this object in the future without emitting card-marks, so
   150   // GC may take any compensating steps.
   151   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   153   oop new_obj = thread->vm_result();
   154   if (new_obj == NULL)  return;
   156   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   157          "compiler must check this first");
   158   // GC may decide to give back a safer copy of new_obj.
   159   new_obj = Universe::heap()->defer_store_barrier(thread, new_obj);
   160   thread->set_vm_result(new_obj);
   161 }
   163 // object allocation
   164 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   165   JRT_BLOCK;
   166 #ifndef PRODUCT
   167   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   168 #endif
   169   assert(check_compiled_frame(thread), "incorrect caller");
   171   // These checks are cheap to make and support reflective allocation.
   172   int lh = Klass::cast(klass)->layout_helper();
   173   if (Klass::layout_helper_needs_slow_path(lh)
   174       || !instanceKlass::cast(klass)->is_initialized()) {
   175     KlassHandle kh(THREAD, klass);
   176     kh->check_valid_for_instantiation(false, THREAD);
   177     if (!HAS_PENDING_EXCEPTION) {
   178       instanceKlass::cast(kh())->initialize(THREAD);
   179     }
   180     if (!HAS_PENDING_EXCEPTION) {
   181       klass = kh();
   182     } else {
   183       klass = NULL;
   184     }
   185   }
   187   if (klass != NULL) {
   188     // Scavenge and allocate an instance.
   189     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   190     thread->set_vm_result(result);
   192     // Pass oops back through thread local storage.  Our apparent type to Java
   193     // is that we return an oop, but we can block on exit from this routine and
   194     // a GC can trash the oop in C's return register.  The generated stub will
   195     // fetch the oop from TLS after any possible GC.
   196   }
   198   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   199   JRT_BLOCK_END;
   201   if (GraphKit::use_ReduceInitialCardMarks()) {
   202     // inform GC that we won't do card marks for initializing writes.
   203     maybe_defer_card_mark(thread);
   204   }
   205 JRT_END
   208 // array allocation
   209 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   210   JRT_BLOCK;
   211 #ifndef PRODUCT
   212   SharedRuntime::_new_array_ctr++;            // new array requires GC
   213 #endif
   214   assert(check_compiled_frame(thread), "incorrect caller");
   216   // Scavenge and allocate an instance.
   217   oop result;
   219   if (Klass::cast(array_type)->oop_is_typeArray()) {
   220     // The oopFactory likes to work with the element type.
   221     // (We could bypass the oopFactory, since it doesn't add much value.)
   222     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   223     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   224   } else {
   225     // Although the oopFactory likes to work with the elem_type,
   226     // the compiler prefers the array_type, since it must already have
   227     // that latter value in hand for the fast path.
   228     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   229     result = oopFactory::new_objArray(elem_type, len, THREAD);
   230   }
   232   // Pass oops back through thread local storage.  Our apparent type to Java
   233   // is that we return an oop, but we can block on exit from this routine and
   234   // a GC can trash the oop in C's return register.  The generated stub will
   235   // fetch the oop from TLS after any possible GC.
   236   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   237   thread->set_vm_result(result);
   238   JRT_BLOCK_END;
   240   if (GraphKit::use_ReduceInitialCardMarks()) {
   241     // inform GC that we won't do card marks for initializing writes.
   242     maybe_defer_card_mark(thread);
   243   }
   244 JRT_END
   246 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   248 // multianewarray for 2 dimensions
   249 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   250 #ifndef PRODUCT
   251   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   252 #endif
   253   assert(check_compiled_frame(thread), "incorrect caller");
   254   assert(oop(elem_type)->is_klass(), "not a class");
   255   jint dims[2];
   256   dims[0] = len1;
   257   dims[1] = len2;
   258   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   259   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   260   thread->set_vm_result(obj);
   261 JRT_END
   263 // multianewarray for 3 dimensions
   264 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   265 #ifndef PRODUCT
   266   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   267 #endif
   268   assert(check_compiled_frame(thread), "incorrect caller");
   269   assert(oop(elem_type)->is_klass(), "not a class");
   270   jint dims[3];
   271   dims[0] = len1;
   272   dims[1] = len2;
   273   dims[2] = len3;
   274   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   275   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   276   thread->set_vm_result(obj);
   277 JRT_END
   279 // multianewarray for 4 dimensions
   280 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   281 #ifndef PRODUCT
   282   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   283 #endif
   284   assert(check_compiled_frame(thread), "incorrect caller");
   285   assert(oop(elem_type)->is_klass(), "not a class");
   286   jint dims[4];
   287   dims[0] = len1;
   288   dims[1] = len2;
   289   dims[2] = len3;
   290   dims[3] = len4;
   291   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   292   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   293   thread->set_vm_result(obj);
   294 JRT_END
   296 // multianewarray for 5 dimensions
   297 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   298 #ifndef PRODUCT
   299   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   300 #endif
   301   assert(check_compiled_frame(thread), "incorrect caller");
   302   assert(oop(elem_type)->is_klass(), "not a class");
   303   jint dims[5];
   304   dims[0] = len1;
   305   dims[1] = len2;
   306   dims[2] = len3;
   307   dims[3] = len4;
   308   dims[4] = len5;
   309   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   310   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   311   thread->set_vm_result(obj);
   312 JRT_END
   314 const TypeFunc *OptoRuntime::new_instance_Type() {
   315   // create input type (domain)
   316   const Type **fields = TypeTuple::fields(1);
   317   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   318   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   320   // create result type (range)
   321   fields = TypeTuple::fields(1);
   322   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   324   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   326   return TypeFunc::make(domain, range);
   327 }
   330 const TypeFunc *OptoRuntime::athrow_Type() {
   331   // create input type (domain)
   332   const Type **fields = TypeTuple::fields(1);
   333   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   334   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   336   // create result type (range)
   337   fields = TypeTuple::fields(0);
   339   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   341   return TypeFunc::make(domain, range);
   342 }
   345 const TypeFunc *OptoRuntime::new_array_Type() {
   346   // create input type (domain)
   347   const Type **fields = TypeTuple::fields(2);
   348   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   349   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   350   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   352   // create result type (range)
   353   fields = TypeTuple::fields(1);
   354   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   356   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   358   return TypeFunc::make(domain, range);
   359 }
   361 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   362   // create input type (domain)
   363   const int nargs = ndim + 1;
   364   const Type **fields = TypeTuple::fields(nargs);
   365   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   366   for( int i = 1; i < nargs; i++ )
   367     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   368   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   370   // create result type (range)
   371   fields = TypeTuple::fields(1);
   372   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   373   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   375   return TypeFunc::make(domain, range);
   376 }
   378 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   379   return multianewarray_Type(2);
   380 }
   382 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   383   return multianewarray_Type(3);
   384 }
   386 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   387   return multianewarray_Type(4);
   388 }
   390 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   391   return multianewarray_Type(5);
   392 }
   394 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   395   const Type **fields = TypeTuple::fields(2);
   396   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   397   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   398   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   400   // create result type (range)
   401   fields = TypeTuple::fields(0);
   402   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   404   return TypeFunc::make(domain, range);
   405 }
   407 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   409   const Type **fields = TypeTuple::fields(2);
   410   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   411   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   412   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   414   // create result type (range)
   415   fields = TypeTuple::fields(0);
   416   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   418   return TypeFunc::make(domain, range);
   419 }
   421 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   422   // create input type (domain)
   423   const Type **fields = TypeTuple::fields(1);
   424   // symbolOop name of class to be loaded
   425   fields[TypeFunc::Parms+0] = TypeInt::INT;
   426   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   428   // create result type (range)
   429   fields = TypeTuple::fields(0);
   430   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   432   return TypeFunc::make(domain, range);
   433 }
   435 # ifdef ENABLE_ZAP_DEAD_LOCALS
   436 // Type used for stub generation for zap_dead_locals.
   437 // No inputs or outputs
   438 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   439   // create input type (domain)
   440   const Type **fields = TypeTuple::fields(0);
   441   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   443   // create result type (range)
   444   fields = TypeTuple::fields(0);
   445   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   447   return TypeFunc::make(domain,range);
   448 }
   449 # endif
   452 //-----------------------------------------------------------------------------
   453 // Monitor Handling
   454 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   455   // create input type (domain)
   456   const Type **fields = TypeTuple::fields(2);
   457   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   458   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   459   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   461   // create result type (range)
   462   fields = TypeTuple::fields(0);
   464   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   466   return TypeFunc::make(domain,range);
   467 }
   470 //-----------------------------------------------------------------------------
   471 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   472   // create input type (domain)
   473   const Type **fields = TypeTuple::fields(2);
   474   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   475   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   476   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   478   // create result type (range)
   479   fields = TypeTuple::fields(0);
   481   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   483   return TypeFunc::make(domain,range);
   484 }
   486 const TypeFunc* OptoRuntime::flush_windows_Type() {
   487   // create input type (domain)
   488   const Type** fields = TypeTuple::fields(1);
   489   fields[TypeFunc::Parms+0] = NULL; // void
   490   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   492   // create result type
   493   fields = TypeTuple::fields(1);
   494   fields[TypeFunc::Parms+0] = NULL; // void
   495   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   497   return TypeFunc::make(domain, range);
   498 }
   500 const TypeFunc* OptoRuntime::l2f_Type() {
   501   // create input type (domain)
   502   const Type **fields = TypeTuple::fields(2);
   503   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   504   fields[TypeFunc::Parms+1] = Type::HALF;
   505   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   507   // create result type (range)
   508   fields = TypeTuple::fields(1);
   509   fields[TypeFunc::Parms+0] = Type::FLOAT;
   510   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   512   return TypeFunc::make(domain, range);
   513 }
   515 const TypeFunc* OptoRuntime::modf_Type() {
   516   const Type **fields = TypeTuple::fields(2);
   517   fields[TypeFunc::Parms+0] = Type::FLOAT;
   518   fields[TypeFunc::Parms+1] = Type::FLOAT;
   519   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   521   // create result type (range)
   522   fields = TypeTuple::fields(1);
   523   fields[TypeFunc::Parms+0] = Type::FLOAT;
   525   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   527   return TypeFunc::make(domain, range);
   528 }
   530 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   531   // create input type (domain)
   532   const Type **fields = TypeTuple::fields(2);
   533   // symbolOop name of class to be loaded
   534   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   535   fields[TypeFunc::Parms+1] = Type::HALF;
   536   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   538   // create result type (range)
   539   fields = TypeTuple::fields(2);
   540   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   541   fields[TypeFunc::Parms+1] = Type::HALF;
   542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   544   return TypeFunc::make(domain, range);
   545 }
   547 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   548   const Type **fields = TypeTuple::fields(4);
   549   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   550   fields[TypeFunc::Parms+1] = Type::HALF;
   551   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   552   fields[TypeFunc::Parms+3] = Type::HALF;
   553   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   555   // create result type (range)
   556   fields = TypeTuple::fields(2);
   557   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   558   fields[TypeFunc::Parms+1] = Type::HALF;
   559   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   561   return TypeFunc::make(domain, range);
   562 }
   564 //-------------- currentTimeMillis
   566 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   567   // create input type (domain)
   568   const Type **fields = TypeTuple::fields(0);
   569   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   571   // create result type (range)
   572   fields = TypeTuple::fields(2);
   573   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   574   fields[TypeFunc::Parms+1] = Type::HALF;
   575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   577   return TypeFunc::make(domain, range);
   578 }
   580 // arraycopy stub variations:
   581 enum ArrayCopyType {
   582   ac_fast,                      // void(ptr, ptr, size_t)
   583   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   584   ac_slow,                      // void(ptr, int, ptr, int, int)
   585   ac_generic                    //  int(ptr, int, ptr, int, int)
   586 };
   588 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   589   // create input type (domain)
   590   int num_args      = (act == ac_fast ? 3 : 5);
   591   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   592   int argcnt = num_args;
   593   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   594   const Type** fields = TypeTuple::fields(argcnt);
   595   int argp = TypeFunc::Parms;
   596   fields[argp++] = TypePtr::NOTNULL;    // src
   597   if (num_size_args == 0) {
   598     fields[argp++] = TypeInt::INT;      // src_pos
   599   }
   600   fields[argp++] = TypePtr::NOTNULL;    // dest
   601   if (num_size_args == 0) {
   602     fields[argp++] = TypeInt::INT;      // dest_pos
   603     fields[argp++] = TypeInt::INT;      // length
   604   }
   605   while (num_size_args-- > 0) {
   606     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   607     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   608   }
   609   if (act == ac_checkcast) {
   610     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   611   }
   612   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   613   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   615   // create result type if needed
   616   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   617   fields = TypeTuple::fields(1);
   618   if (retcnt == 0)
   619     fields[TypeFunc::Parms+0] = NULL; // void
   620   else
   621     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   622   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   623   return TypeFunc::make(domain, range);
   624 }
   626 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   627   // This signature is simple:  Two base pointers and a size_t.
   628   return make_arraycopy_Type(ac_fast);
   629 }
   631 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   632   // An extension of fast_arraycopy_Type which adds type checking.
   633   return make_arraycopy_Type(ac_checkcast);
   634 }
   636 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   637   // This signature is exactly the same as System.arraycopy.
   638   // There are no intptr_t (int/long) arguments.
   639   return make_arraycopy_Type(ac_slow);
   640 }
   642 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   643   // This signature is like System.arraycopy, except that it returns status.
   644   return make_arraycopy_Type(ac_generic);
   645 }
   648 //------------- Interpreter state access for on stack replacement
   649 const TypeFunc* OptoRuntime::osr_end_Type() {
   650   // create input type (domain)
   651   const Type **fields = TypeTuple::fields(1);
   652   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   655   // create result type
   656   fields = TypeTuple::fields(1);
   657   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   658   fields[TypeFunc::Parms+0] = NULL; // void
   659   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   660   return TypeFunc::make(domain, range);
   661 }
   663 //-------------- methodData update helpers
   665 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   666   // create input type (domain)
   667   const Type **fields = TypeTuple::fields(2);
   668   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   669   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   670   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   672   // create result type
   673   fields = TypeTuple::fields(1);
   674   fields[TypeFunc::Parms+0] = NULL; // void
   675   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   676   return TypeFunc::make(domain,range);
   677 }
   679 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   680   if (receiver == NULL) return;
   681   klassOop receiver_klass = receiver->klass();
   683   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   684   int empty_row = -1;           // free row, if any is encountered
   686   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   687   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   688     // if (vc->receiver(row) == receiver_klass)
   689     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   690     intptr_t row_recv = *(mdp + receiver_off);
   691     if (row_recv == (intptr_t) receiver_klass) {
   692       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   693       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   694       *(mdp + count_off) += DataLayout::counter_increment;
   695       return;
   696     } else if (row_recv == 0) {
   697       // else if (vc->receiver(row) == NULL)
   698       empty_row = (int) row;
   699     }
   700   }
   702   if (empty_row != -1) {
   703     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   704     // vc->set_receiver(empty_row, receiver_klass);
   705     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   706     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   707     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   708     *(mdp + count_off) = DataLayout::counter_increment;
   709   }
   710 JRT_END
   712 //-----------------------------------------------------------------------------
   713 // implicit exception support.
   715 static void report_null_exception_in_code_cache(address exception_pc) {
   716   ResourceMark rm;
   717   CodeBlob* n = CodeCache::find_blob(exception_pc);
   718   if (n != NULL) {
   719     tty->print_cr("#");
   720     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   721     tty->print_cr("#");
   722     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   724     if (n->is_nmethod()) {
   725       methodOop method = ((nmethod*)n)->method();
   726       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   727       tty->print_cr("#");
   728       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   729         const char* title    = "HotSpot Runtime Error";
   730         const char* question = "Do you want to exclude compilation of this method in future runs?";
   731         if (os::message_box(title, question)) {
   732           CompilerOracle::append_comment_to_file("");
   733           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   734           CompilerOracle::append_comment_to_file("");
   735           CompilerOracle::append_exclude_to_file(method);
   736           tty->print_cr("#");
   737           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   738           tty->print_cr("#");
   739         }
   740       }
   741       fatal("Implicit null exception happened in compiled method");
   742     } else {
   743       n->print();
   744       fatal("Implicit null exception happened in generated stub");
   745     }
   746   }
   747   fatal("Implicit null exception at wrong place");
   748 }
   751 //-------------------------------------------------------------------------------------
   752 // register policy
   754 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   755   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   756   switch (register_save_policy[reg]) {
   757     case 'C': return false; //SOC
   758     case 'E': return true ; //SOE
   759     case 'N': return false; //NS
   760     case 'A': return false; //AS
   761   }
   762   ShouldNotReachHere();
   763   return false;
   764 }
   766 //-----------------------------------------------------------------------
   767 // Exceptions
   768 //
   770 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   772 // The method is an entry that is always called by a C++ method not
   773 // directly from compiled code. Compiled code will call the C++ method following.
   774 // We can't allow async exception to be installed during  exception processing.
   775 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   777   // Do not confuse exception_oop with pending_exception. The exception_oop
   778   // is only used to pass arguments into the method. Not for general
   779   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   780   // the runtime stubs checks this on exit.
   781   assert(thread->exception_oop() != NULL, "exception oop is found");
   782   address handler_address = NULL;
   784   Handle exception(thread, thread->exception_oop());
   786   if (TraceExceptions) {
   787     trace_exception(exception(), thread->exception_pc(), "");
   788   }
   789   // for AbortVMOnException flag
   790   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   792   #ifdef ASSERT
   793     if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   794       // should throw an exception here
   795       ShouldNotReachHere();
   796     }
   797   #endif
   800   // new exception handling: this method is entered only from adapters
   801   // exceptions from compiled java methods are handled in compiled code
   802   // using rethrow node
   804   address pc = thread->exception_pc();
   805   nm = CodeCache::find_nmethod(pc);
   806   assert(nm != NULL, "No NMethod found");
   807   if (nm->is_native_method()) {
   808     fatal("Native mathod should not have path to exception handling");
   809   } else {
   810     // we are switching to old paradigm: search for exception handler in caller_frame
   811     // instead in exception handler of caller_frame.sender()
   813     if (JvmtiExport::can_post_exceptions()) {
   814       // "Full-speed catching" is not necessary here,
   815       // since we're notifying the VM on every catch.
   816       // Force deoptimization and the rest of the lookup
   817       // will be fine.
   818       deoptimize_caller_frame(thread, true);
   819     }
   821     // Check the stack guard pages.  If enabled, look for handler in this frame;
   822     // otherwise, forcibly unwind the frame.
   823     //
   824     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   825     bool force_unwind = !thread->reguard_stack();
   826     bool deopting = false;
   827     if (nm->is_deopt_pc(pc)) {
   828       deopting = true;
   829       RegisterMap map(thread, false);
   830       frame deoptee = thread->last_frame().sender(&map);
   831       assert(deoptee.is_deoptimized_frame(), "must be deopted");
   832       // Adjust the pc back to the original throwing pc
   833       pc = deoptee.pc();
   834     }
   836     // If we are forcing an unwind because of stack overflow then deopt is
   837     // irrelevant sice we are throwing the frame away anyway.
   839     if (deopting && !force_unwind) {
   840       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   841     } else {
   843       handler_address =
   844         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
   846       if (handler_address == NULL) {
   847         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
   848         assert (handler_address != NULL, "must have compiled handler");
   849         // Update the exception cache only when the unwind was not forced.
   850         if (!force_unwind) {
   851           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
   852         }
   853       } else {
   854         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
   855       }
   856     }
   858     thread->set_exception_pc(pc);
   859     thread->set_exception_handler_pc(handler_address);
   860     thread->set_exception_stack_size(0);
   861   }
   863   // Restore correct return pc.  Was saved above.
   864   thread->set_exception_oop(exception());
   865   return handler_address;
   867 JRT_END
   869 // We are entering here from exception_blob
   870 // If there is a compiled exception handler in this method, we will continue there;
   871 // otherwise we will unwind the stack and continue at the caller of top frame method
   872 // Note we enter without the usual JRT wrapper. We will call a helper routine that
   873 // will do the normal VM entry. We do it this way so that we can see if the nmethod
   874 // we looked up the handler for has been deoptimized in the meantime. If it has been
   875 // we must not use the handler and instread return the deopt blob.
   876 address OptoRuntime::handle_exception_C(JavaThread* thread) {
   877 //
   878 // We are in Java not VM and in debug mode we have a NoHandleMark
   879 //
   880 #ifndef PRODUCT
   881   SharedRuntime::_find_handler_ctr++;          // find exception handler
   882 #endif
   883   debug_only(NoHandleMark __hm;)
   884   nmethod* nm = NULL;
   885   address handler_address = NULL;
   886   {
   887     // Enter the VM
   889     ResetNoHandleMark rnhm;
   890     handler_address = handle_exception_C_helper(thread, nm);
   891   }
   893   // Back in java: Use no oops, DON'T safepoint
   895   // Now check to see if the handler we are returning is in a now
   896   // deoptimized frame
   898   if (nm != NULL) {
   899     RegisterMap map(thread, false);
   900     frame caller = thread->last_frame().sender(&map);
   901 #ifdef ASSERT
   902     assert(caller.is_compiled_frame(), "must be");
   903 #endif // ASSERT
   904     if (caller.is_deoptimized_frame()) {
   905       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   906     }
   907   }
   908   return handler_address;
   909 }
   911 //------------------------------rethrow----------------------------------------
   912 // We get here after compiled code has executed a 'RethrowNode'.  The callee
   913 // is either throwing or rethrowing an exception.  The callee-save registers
   914 // have been restored, synchronized objects have been unlocked and the callee
   915 // stack frame has been removed.  The return address was passed in.
   916 // Exception oop is passed as the 1st argument.  This routine is then called
   917 // from the stub.  On exit, we know where to jump in the caller's code.
   918 // After this C code exits, the stub will pop his frame and end in a jump
   919 // (instead of a return).  We enter the caller's default handler.
   920 //
   921 // This must be JRT_LEAF:
   922 //     - caller will not change its state as we cannot block on exit,
   923 //       therefore raw_exception_handler_for_return_address is all it takes
   924 //       to handle deoptimized blobs
   925 //
   926 // However, there needs to be a safepoint check in the middle!  So compiled
   927 // safepoints are completely watertight.
   928 //
   929 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
   930 //
   931 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
   932 //
   933 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
   934 #ifndef PRODUCT
   935   SharedRuntime::_rethrow_ctr++;               // count rethrows
   936 #endif
   937   assert (exception != NULL, "should have thrown a NULLPointerException");
   938 #ifdef ASSERT
   939   if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   940     // should throw an exception here
   941     ShouldNotReachHere();
   942   }
   943 #endif
   945   thread->set_vm_result(exception);
   946   // Frame not compiled (handles deoptimization blob)
   947   return SharedRuntime::raw_exception_handler_for_return_address(ret_pc);
   948 }
   951 const TypeFunc *OptoRuntime::rethrow_Type() {
   952   // create input type (domain)
   953   const Type **fields = TypeTuple::fields(1);
   954   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
   955   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
   957   // create result type (range)
   958   fields = TypeTuple::fields(1);
   959   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
   960   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   962   return TypeFunc::make(domain, range);
   963 }
   966 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
   967   // Deoptimize frame
   968   if (doit) {
   969     // Called from within the owner thread, so no need for safepoint
   970     RegisterMap reg_map(thread);
   971     frame stub_frame = thread->last_frame();
   972     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
   973     frame caller_frame = stub_frame.sender(&reg_map);
   975     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   976     VMThread::execute(&deopt);
   977   }
   978 }
   981 const TypeFunc *OptoRuntime::register_finalizer_Type() {
   982   // create input type (domain)
   983   const Type **fields = TypeTuple::fields(1);
   984   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
   985   // // The JavaThread* is passed to each routine as the last argument
   986   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
   987   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
   989   // create result type (range)
   990   fields = TypeTuple::fields(0);
   992   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   994   return TypeFunc::make(domain,range);
   995 }
   998 //-----------------------------------------------------------------------------
   999 // Dtrace support.  entry and exit probes have the same signature
  1000 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1001   // create input type (domain)
  1002   const Type **fields = TypeTuple::fields(2);
  1003   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1004   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  1005   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1007   // create result type (range)
  1008   fields = TypeTuple::fields(0);
  1010   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1012   return TypeFunc::make(domain,range);
  1015 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1016   // create input type (domain)
  1017   const Type **fields = TypeTuple::fields(2);
  1018   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1019   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1021   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1023   // create result type (range)
  1024   fields = TypeTuple::fields(0);
  1026   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1028   return TypeFunc::make(domain,range);
  1032 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1033   assert(obj->is_oop(), "must be a valid oop");
  1034   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1035   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1036 JRT_END
  1038 //-----------------------------------------------------------------------------
  1040 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1042 //
  1043 // dump the collected NamedCounters.
  1044 //
  1045 void OptoRuntime::print_named_counters() {
  1046   int total_lock_count = 0;
  1047   int eliminated_lock_count = 0;
  1049   NamedCounter* c = _named_counters;
  1050   while (c) {
  1051     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1052       int count = c->count();
  1053       if (count > 0) {
  1054         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1055         if (Verbose) {
  1056           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1058         total_lock_count += count;
  1059         if (eliminated) {
  1060           eliminated_lock_count += count;
  1063     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1064       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1065       if (blc->nonzero()) {
  1066         tty->print_cr("%s", c->name());
  1067         blc->print_on(tty);
  1070     c = c->next();
  1072   if (total_lock_count > 0) {
  1073     tty->print_cr("dynamic locks: %d", total_lock_count);
  1074     if (eliminated_lock_count) {
  1075       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1076                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1081 //
  1082 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1083 //  name which consists of method@line for the inlining tree.
  1084 //
  1086 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1087   int max_depth = youngest_jvms->depth();
  1089   // Visit scopes from youngest to oldest.
  1090   bool first = true;
  1091   stringStream st;
  1092   for (int depth = max_depth; depth >= 1; depth--) {
  1093     JVMState* jvms = youngest_jvms->of_depth(depth);
  1094     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1095     if (!first) {
  1096       st.print(" ");
  1097     } else {
  1098       first = false;
  1100     int bci = jvms->bci();
  1101     if (bci < 0) bci = 0;
  1102     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1103     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1105   NamedCounter* c;
  1106   if (tag == NamedCounter::BiasedLockingCounter) {
  1107     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1108   } else {
  1109     c = new NamedCounter(strdup(st.as_string()), tag);
  1112   // atomically add the new counter to the head of the list.  We only
  1113   // add counters so this is safe.
  1114   NamedCounter* head;
  1115   do {
  1116     head = _named_counters;
  1117     c->set_next(head);
  1118   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1119   return c;
  1122 //-----------------------------------------------------------------------------
  1123 // Non-product code
  1124 #ifndef PRODUCT
  1126 int trace_exception_counter = 0;
  1127 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1128   ttyLocker ttyl;
  1129   trace_exception_counter++;
  1130   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1131   exception_oop->print_value();
  1132   tty->print(" in ");
  1133   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1134   if (blob->is_nmethod()) {
  1135     ((nmethod*)blob)->method()->print_value();
  1136   } else if (blob->is_runtime_stub()) {
  1137     tty->print("<runtime-stub>");
  1138   } else {
  1139     tty->print("<unknown>");
  1141   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1142   tty->print_cr("]");
  1145 #endif  // PRODUCT
  1148 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1149 // Called from call sites in compiled code with oop maps (actually safepoints)
  1150 // Zaps dead locals in first java frame.
  1151 // Is entry because may need to lock to generate oop maps
  1152 // Currently, only used for compiler frames, but someday may be used
  1153 // for interpreter frames, too.
  1155 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1157 // avoid pointers to member funcs with these helpers
  1158 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1159 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1162 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1163                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1164   assert(JavaThread::current() == thread, "is this needed?");
  1166   if ( !ZapDeadCompiledLocals )  return;
  1168   bool skip = false;
  1170        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1171   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1172   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1173     warning("starting zapping after skipping");
  1175        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1176   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1177   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1178     warning("about to zap last zap");
  1180   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1182   if ( skip )  return;
  1184   // find java frame and zap it
  1186   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1187     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1188       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1189       return;
  1192   warning("no frame found to zap in zap_dead_Java_locals_C");
  1195 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1196   zap_dead_java_or_native_locals(thread, is_java_frame);
  1197 JRT_END
  1199 // The following does not work because for one thing, the
  1200 // thread state is wrong; it expects java, but it is native.
  1201 // Also, the invariants in a native stub are different and
  1202 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1203 // in there.
  1204 // So for now, we do not zap in native stubs.
  1206 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1207   zap_dead_java_or_native_locals(thread, is_native_frame);
  1208 JRT_END
  1210 # endif

mercurial