src/cpu/x86/vm/x86_32.ad

Tue, 05 Jan 2010 13:05:58 +0100

author
twisti
date
Tue, 05 Jan 2010 13:05:58 +0100
changeset 1572
97125851f396
parent 1424
148e5441d916
child 1644
e8443c7be117
permissions
-rw-r--r--

6829187: compiler optimizations required for JSR 292
Summary: C2 implementation for invokedynamic support.
Reviewed-by: kvn, never

     1 //
     2 // Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source %{
   239 #define   RELOC_IMM32    Assembler::imm_operand
   240 #define   RELOC_DISP32   Assembler::disp32_operand
   242 #define __ _masm.
   244 // How to find the high register of a Long pair, given the low register
   245 #define   HIGH_FROM_LOW(x) ((x)+2)
   247 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   248 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   249 // fast versions of NegF/NegD and AbsF/AbsD.
   251 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   252 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   253   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   254   // of 128-bits operands for SSE instructions.
   255   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   256   // Store the value to a 128-bits operand.
   257   operand[0] = lo;
   258   operand[1] = hi;
   259   return operand;
   260 }
   262 // Buffer for 128-bits masks used by SSE instructions.
   263 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   265 // Static initialization during VM startup.
   266 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   267 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   268 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   269 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   271 // Offset hacking within calls.
   272 static int pre_call_FPU_size() {
   273   if (Compile::current()->in_24_bit_fp_mode())
   274     return 6; // fldcw
   275   return 0;
   276 }
   278 static int preserve_SP_size() {
   279   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   280 }
   282 // !!!!! Special hack to get all type of calls to specify the byte offset
   283 //       from the start of the call to the point where the return address
   284 //       will point.
   285 int MachCallStaticJavaNode::ret_addr_offset() {
   286   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   287   if (_method_handle_invoke)
   288     offset += preserve_SP_size();
   289   return offset;
   290 }
   292 int MachCallDynamicJavaNode::ret_addr_offset() {
   293   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   294 }
   296 static int sizeof_FFree_Float_Stack_All = -1;
   298 int MachCallRuntimeNode::ret_addr_offset() {
   299   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   300   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   301 }
   303 // Indicate if the safepoint node needs the polling page as an input.
   304 // Since x86 does have absolute addressing, it doesn't.
   305 bool SafePointNode::needs_polling_address_input() {
   306   return false;
   307 }
   309 //
   310 // Compute padding required for nodes which need alignment
   311 //
   313 // The address of the call instruction needs to be 4-byte aligned to
   314 // ensure that it does not span a cache line so that it can be patched.
   315 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   316   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   317   current_offset += 1;      // skip call opcode byte
   318   return round_to(current_offset, alignment_required()) - current_offset;
   319 }
   321 // The address of the call instruction needs to be 4-byte aligned to
   322 // ensure that it does not span a cache line so that it can be patched.
   323 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   324   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   325   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   326   current_offset += 1;      // skip call opcode byte
   327   return round_to(current_offset, alignment_required()) - current_offset;
   328 }
   330 // The address of the call instruction needs to be 4-byte aligned to
   331 // ensure that it does not span a cache line so that it can be patched.
   332 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   333   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   334   current_offset += 5;      // skip MOV instruction
   335   current_offset += 1;      // skip call opcode byte
   336   return round_to(current_offset, alignment_required()) - current_offset;
   337 }
   339 #ifndef PRODUCT
   340 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   341   st->print("INT3");
   342 }
   343 #endif
   345 // EMIT_RM()
   346 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   347   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   348   *(cbuf.code_end()) = c;
   349   cbuf.set_code_end(cbuf.code_end() + 1);
   350 }
   352 // EMIT_CC()
   353 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   354   unsigned char c = (unsigned char)( f1 | f2 );
   355   *(cbuf.code_end()) = c;
   356   cbuf.set_code_end(cbuf.code_end() + 1);
   357 }
   359 // EMIT_OPCODE()
   360 void emit_opcode(CodeBuffer &cbuf, int code) {
   361   *(cbuf.code_end()) = (unsigned char)code;
   362   cbuf.set_code_end(cbuf.code_end() + 1);
   363 }
   365 // EMIT_OPCODE() w/ relocation information
   366 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   367   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
   368   emit_opcode(cbuf, code);
   369 }
   371 // EMIT_D8()
   372 void emit_d8(CodeBuffer &cbuf, int d8) {
   373   *(cbuf.code_end()) = (unsigned char)d8;
   374   cbuf.set_code_end(cbuf.code_end() + 1);
   375 }
   377 // EMIT_D16()
   378 void emit_d16(CodeBuffer &cbuf, int d16) {
   379   *((short *)(cbuf.code_end())) = d16;
   380   cbuf.set_code_end(cbuf.code_end() + 2);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   *((int *)(cbuf.code_end())) = d32;
   386   cbuf.set_code_end(cbuf.code_end() + 4);
   387 }
   389 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   390 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   391         int format) {
   392   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   394   *((int *)(cbuf.code_end())) = d32;
   395   cbuf.set_code_end(cbuf.code_end() + 4);
   396 }
   398 // emit 32 bit value and construct relocation entry from RelocationHolder
   399 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   400         int format) {
   401 #ifdef ASSERT
   402   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   403     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   404   }
   405 #endif
   406   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   408   *((int *)(cbuf.code_end())) = d32;
   409   cbuf.set_code_end(cbuf.code_end() + 4);
   410 }
   412 // Access stack slot for load or store
   413 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   414   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   415   if( -128 <= disp && disp <= 127 ) {
   416     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   417     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   418     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   419   } else {
   420     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   421     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   422     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   423   }
   424 }
   426    // eRegI ereg, memory mem) %{    // emit_reg_mem
   427 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   428   // There is no index & no scale, use form without SIB byte
   429   if ((index == 0x4) &&
   430       (scale == 0) && (base != ESP_enc)) {
   431     // If no displacement, mode is 0x0; unless base is [EBP]
   432     if ( (displace == 0) && (base != EBP_enc) ) {
   433       emit_rm(cbuf, 0x0, reg_encoding, base);
   434     }
   435     else {                    // If 8-bit displacement, mode 0x1
   436       if ((displace >= -128) && (displace <= 127)
   437           && !(displace_is_oop) ) {
   438         emit_rm(cbuf, 0x1, reg_encoding, base);
   439         emit_d8(cbuf, displace);
   440       }
   441       else {                  // If 32-bit displacement
   442         if (base == -1) { // Special flag for absolute address
   443           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   444           // (manual lies; no SIB needed here)
   445           if ( displace_is_oop ) {
   446             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   447           } else {
   448             emit_d32      (cbuf, displace);
   449           }
   450         }
   451         else {                // Normal base + offset
   452           emit_rm(cbuf, 0x2, reg_encoding, base);
   453           if ( displace_is_oop ) {
   454             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   455           } else {
   456             emit_d32      (cbuf, displace);
   457           }
   458         }
   459       }
   460     }
   461   }
   462   else {                      // Else, encode with the SIB byte
   463     // If no displacement, mode is 0x0; unless base is [EBP]
   464     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   465       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   466       emit_rm(cbuf, scale, index, base);
   467     }
   468     else {                    // If 8-bit displacement, mode 0x1
   469       if ((displace >= -128) && (displace <= 127)
   470           && !(displace_is_oop) ) {
   471         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   472         emit_rm(cbuf, scale, index, base);
   473         emit_d8(cbuf, displace);
   474       }
   475       else {                  // If 32-bit displacement
   476         if (base == 0x04 ) {
   477           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   478           emit_rm(cbuf, scale, index, 0x04);
   479         } else {
   480           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   481           emit_rm(cbuf, scale, index, base);
   482         }
   483         if ( displace_is_oop ) {
   484           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   485         } else {
   486           emit_d32      (cbuf, displace);
   487         }
   488       }
   489     }
   490   }
   491 }
   494 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   495   if( dst_encoding == src_encoding ) {
   496     // reg-reg copy, use an empty encoding
   497   } else {
   498     emit_opcode( cbuf, 0x8B );
   499     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   500   }
   501 }
   503 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   504   if( dst_encoding == src_encoding ) {
   505     // reg-reg copy, use an empty encoding
   506   } else {
   507     MacroAssembler _masm(&cbuf);
   509     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   510   }
   511 }
   514 //=============================================================================
   515 #ifndef PRODUCT
   516 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   517   Compile* C = ra_->C;
   518   if( C->in_24_bit_fp_mode() ) {
   519     st->print("FLDCW  24 bit fpu control word");
   520     st->print_cr(""); st->print("\t");
   521   }
   523   int framesize = C->frame_slots() << LogBytesPerInt;
   524   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   525   // Remove two words for return addr and rbp,
   526   framesize -= 2*wordSize;
   528   // Calls to C2R adapters often do not accept exceptional returns.
   529   // We require that their callers must bang for them.  But be careful, because
   530   // some VM calls (such as call site linkage) can use several kilobytes of
   531   // stack.  But the stack safety zone should account for that.
   532   // See bugs 4446381, 4468289, 4497237.
   533   if (C->need_stack_bang(framesize)) {
   534     st->print_cr("# stack bang"); st->print("\t");
   535   }
   536   st->print_cr("PUSHL  EBP"); st->print("\t");
   538   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   539     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   540     st->print_cr(""); st->print("\t");
   541     framesize -= wordSize;
   542   }
   544   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   545     if (framesize) {
   546       st->print("SUB    ESP,%d\t# Create frame",framesize);
   547     }
   548   } else {
   549     st->print("SUB    ESP,%d\t# Create frame",framesize);
   550   }
   551 }
   552 #endif
   555 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   556   Compile* C = ra_->C;
   558   if (UseSSE >= 2 && VerifyFPU) {
   559     MacroAssembler masm(&cbuf);
   560     masm.verify_FPU(0, "FPU stack must be clean on entry");
   561   }
   563   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   564   // NativeJump::patch_verified_entry will be able to patch out the entry
   565   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   566   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   567   // 6 bytes. So if we don't do the fldcw or the push then we must
   568   // use the 6 byte frame allocation even if we have no frame. :-(
   569   // If method sets FPU control word do it now
   570   if( C->in_24_bit_fp_mode() ) {
   571     MacroAssembler masm(&cbuf);
   572     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   573   }
   575   int framesize = C->frame_slots() << LogBytesPerInt;
   576   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   577   // Remove two words for return addr and rbp,
   578   framesize -= 2*wordSize;
   580   // Calls to C2R adapters often do not accept exceptional returns.
   581   // We require that their callers must bang for them.  But be careful, because
   582   // some VM calls (such as call site linkage) can use several kilobytes of
   583   // stack.  But the stack safety zone should account for that.
   584   // See bugs 4446381, 4468289, 4497237.
   585   if (C->need_stack_bang(framesize)) {
   586     MacroAssembler masm(&cbuf);
   587     masm.generate_stack_overflow_check(framesize);
   588   }
   590   // We always push rbp, so that on return to interpreter rbp, will be
   591   // restored correctly and we can correct the stack.
   592   emit_opcode(cbuf, 0x50 | EBP_enc);
   594   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   595     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   596     emit_d32(cbuf, 0xbadb100d);
   597     framesize -= wordSize;
   598   }
   600   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   601     if (framesize) {
   602       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   603       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   604       emit_d8(cbuf, framesize);
   605     }
   606   } else {
   607     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   608     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   609     emit_d32(cbuf, framesize);
   610   }
   611   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   613 #ifdef ASSERT
   614   if (VerifyStackAtCalls) {
   615     Label L;
   616     MacroAssembler masm(&cbuf);
   617     masm.push(rax);
   618     masm.mov(rax, rsp);
   619     masm.andptr(rax, StackAlignmentInBytes-1);
   620     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   621     masm.pop(rax);
   622     masm.jcc(Assembler::equal, L);
   623     masm.stop("Stack is not properly aligned!");
   624     masm.bind(L);
   625   }
   626 #endif
   628 }
   630 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   631   return MachNode::size(ra_); // too many variables; just compute it the hard way
   632 }
   634 int MachPrologNode::reloc() const {
   635   return 0; // a large enough number
   636 }
   638 //=============================================================================
   639 #ifndef PRODUCT
   640 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   641   Compile *C = ra_->C;
   642   int framesize = C->frame_slots() << LogBytesPerInt;
   643   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   644   // Remove two words for return addr and rbp,
   645   framesize -= 2*wordSize;
   647   if( C->in_24_bit_fp_mode() ) {
   648     st->print("FLDCW  standard control word");
   649     st->cr(); st->print("\t");
   650   }
   651   if( framesize ) {
   652     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   653     st->cr(); st->print("\t");
   654   }
   655   st->print_cr("POPL   EBP"); st->print("\t");
   656   if( do_polling() && C->is_method_compilation() ) {
   657     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   658     st->cr(); st->print("\t");
   659   }
   660 }
   661 #endif
   663 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   664   Compile *C = ra_->C;
   666   // If method set FPU control word, restore to standard control word
   667   if( C->in_24_bit_fp_mode() ) {
   668     MacroAssembler masm(&cbuf);
   669     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   670   }
   672   int framesize = C->frame_slots() << LogBytesPerInt;
   673   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   674   // Remove two words for return addr and rbp,
   675   framesize -= 2*wordSize;
   677   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   679   if( framesize >= 128 ) {
   680     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   681     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   682     emit_d32(cbuf, framesize);
   683   }
   684   else if( framesize ) {
   685     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   686     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   687     emit_d8(cbuf, framesize);
   688   }
   690   emit_opcode(cbuf, 0x58 | EBP_enc);
   692   if( do_polling() && C->is_method_compilation() ) {
   693     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
   694     emit_opcode(cbuf,0x85);
   695     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   696     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   697   }
   698 }
   700 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   701   Compile *C = ra_->C;
   702   // If method set FPU control word, restore to standard control word
   703   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   704   if( do_polling() && C->is_method_compilation() ) size += 6;
   706   int framesize = C->frame_slots() << LogBytesPerInt;
   707   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   708   // Remove two words for return addr and rbp,
   709   framesize -= 2*wordSize;
   711   size++; // popl rbp,
   713   if( framesize >= 128 ) {
   714     size += 6;
   715   } else {
   716     size += framesize ? 3 : 0;
   717   }
   718   return size;
   719 }
   721 int MachEpilogNode::reloc() const {
   722   return 0; // a large enough number
   723 }
   725 const Pipeline * MachEpilogNode::pipeline() const {
   726   return MachNode::pipeline_class();
   727 }
   729 int MachEpilogNode::safepoint_offset() const { return 0; }
   731 //=============================================================================
   733 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   734 static enum RC rc_class( OptoReg::Name reg ) {
   736   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   737   if (OptoReg::is_stack(reg)) return rc_stack;
   739   VMReg r = OptoReg::as_VMReg(reg);
   740   if (r->is_Register()) return rc_int;
   741   if (r->is_FloatRegister()) {
   742     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   743     return rc_float;
   744   }
   745   assert(r->is_XMMRegister(), "must be");
   746   return rc_xmm;
   747 }
   749 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   750                         int opcode, const char *op_str, int size, outputStream* st ) {
   751   if( cbuf ) {
   752     emit_opcode  (*cbuf, opcode );
   753     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   754 #ifndef PRODUCT
   755   } else if( !do_size ) {
   756     if( size != 0 ) st->print("\n\t");
   757     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   758       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   759       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   760     } else { // FLD, FST, PUSH, POP
   761       st->print("%s [ESP + #%d]",op_str,offset);
   762     }
   763 #endif
   764   }
   765   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   766   return size+3+offset_size;
   767 }
   769 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   770 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   771                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   772   if( cbuf ) {
   773     if( reg_lo+1 == reg_hi ) { // double move?
   774       if( is_load && !UseXmmLoadAndClearUpper )
   775         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   776       else
   777         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   778     } else {
   779       emit_opcode(*cbuf, 0xF3 );
   780     }
   781     emit_opcode(*cbuf, 0x0F );
   782     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   783       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   784     else
   785       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   786     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   787 #ifndef PRODUCT
   788   } else if( !do_size ) {
   789     if( size != 0 ) st->print("\n\t");
   790     if( reg_lo+1 == reg_hi ) { // double move?
   791       if( is_load ) st->print("%s %s,[ESP + #%d]",
   792                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   793                                Matcher::regName[reg_lo], offset);
   794       else          st->print("MOVSD  [ESP + #%d],%s",
   795                                offset, Matcher::regName[reg_lo]);
   796     } else {
   797       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   798                                Matcher::regName[reg_lo], offset);
   799       else          st->print("MOVSS  [ESP + #%d],%s",
   800                                offset, Matcher::regName[reg_lo]);
   801     }
   802 #endif
   803   }
   804   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   805   return size+5+offset_size;
   806 }
   809 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   810                             int src_hi, int dst_hi, int size, outputStream* st ) {
   811   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   812     if( cbuf ) {
   813       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   814         emit_opcode(*cbuf, 0x66 );
   815       }
   816       emit_opcode(*cbuf, 0x0F );
   817       emit_opcode(*cbuf, 0x28 );
   818       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   819 #ifndef PRODUCT
   820     } else if( !do_size ) {
   821       if( size != 0 ) st->print("\n\t");
   822       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   823         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   824       } else {
   825         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   826       }
   827 #endif
   828     }
   829     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   830   } else {
   831     if( cbuf ) {
   832       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   833       emit_opcode(*cbuf, 0x0F );
   834       emit_opcode(*cbuf, 0x10 );
   835       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   836 #ifndef PRODUCT
   837     } else if( !do_size ) {
   838       if( size != 0 ) st->print("\n\t");
   839       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   840         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   841       } else {
   842         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   843       }
   844 #endif
   845     }
   846     return size+4;
   847   }
   848 }
   850 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   851   if( cbuf ) {
   852     emit_opcode(*cbuf, 0x8B );
   853     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   854 #ifndef PRODUCT
   855   } else if( !do_size ) {
   856     if( size != 0 ) st->print("\n\t");
   857     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   858 #endif
   859   }
   860   return size+2;
   861 }
   863 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   864                                  int offset, int size, outputStream* st ) {
   865   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   866     if( cbuf ) {
   867       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   868       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   869 #ifndef PRODUCT
   870     } else if( !do_size ) {
   871       if( size != 0 ) st->print("\n\t");
   872       st->print("FLD    %s",Matcher::regName[src_lo]);
   873 #endif
   874     }
   875     size += 2;
   876   }
   878   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   879   const char *op_str;
   880   int op;
   881   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   882     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   883     op = 0xDD;
   884   } else {                   // 32-bit store
   885     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   886     op = 0xD9;
   887     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   888   }
   890   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   891 }
   893 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   894   // Get registers to move
   895   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   896   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   897   OptoReg::Name dst_second = ra_->get_reg_second(this );
   898   OptoReg::Name dst_first = ra_->get_reg_first(this );
   900   enum RC src_second_rc = rc_class(src_second);
   901   enum RC src_first_rc = rc_class(src_first);
   902   enum RC dst_second_rc = rc_class(dst_second);
   903   enum RC dst_first_rc = rc_class(dst_first);
   905   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   907   // Generate spill code!
   908   int size = 0;
   910   if( src_first == dst_first && src_second == dst_second )
   911     return size;            // Self copy, no move
   913   // --------------------------------------
   914   // Check for mem-mem move.  push/pop to move.
   915   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   916     if( src_second == dst_first ) { // overlapping stack copy ranges
   917       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   918       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   919       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   920       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   921     }
   922     // move low bits
   923     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   924     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   925     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   926       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   927       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   928     }
   929     return size;
   930   }
   932   // --------------------------------------
   933   // Check for integer reg-reg copy
   934   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   935     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   937   // Check for integer store
   938   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   939     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   941   // Check for integer load
   942   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   943     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   945   // --------------------------------------
   946   // Check for float reg-reg copy
   947   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   948     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   949             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   950     if( cbuf ) {
   952       // Note the mucking with the register encode to compensate for the 0/1
   953       // indexing issue mentioned in a comment in the reg_def sections
   954       // for FPR registers many lines above here.
   956       if( src_first != FPR1L_num ) {
   957         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   958         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   959         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   960         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   961      } else {
   962         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   963         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   964      }
   965 #ifndef PRODUCT
   966     } else if( !do_size ) {
   967       if( size != 0 ) st->print("\n\t");
   968       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   969       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   970 #endif
   971     }
   972     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   973   }
   975   // Check for float store
   976   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   977     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   978   }
   980   // Check for float load
   981   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
   982     int offset = ra_->reg2offset(src_first);
   983     const char *op_str;
   984     int op;
   985     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
   986       op_str = "FLD_D";
   987       op = 0xDD;
   988     } else {                   // 32-bit load
   989       op_str = "FLD_S";
   990       op = 0xD9;
   991       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
   992     }
   993     if( cbuf ) {
   994       emit_opcode  (*cbuf, op );
   995       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
   996       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   997       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   998 #ifndef PRODUCT
   999     } else if( !do_size ) {
  1000       if( size != 0 ) st->print("\n\t");
  1001       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1002 #endif
  1004     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1005     return size + 3+offset_size+2;
  1008   // Check for xmm reg-reg copy
  1009   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1010     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1011             (src_first+1 == src_second && dst_first+1 == dst_second),
  1012             "no non-adjacent float-moves" );
  1013     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1016   // Check for xmm store
  1017   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1018     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1021   // Check for float xmm load
  1022   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1023     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1026   // Copy from float reg to xmm reg
  1027   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1028     // copy to the top of stack from floating point reg
  1029     // and use LEA to preserve flags
  1030     if( cbuf ) {
  1031       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1032       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1033       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1034       emit_d8(*cbuf,0xF8);
  1035 #ifndef PRODUCT
  1036     } else if( !do_size ) {
  1037       if( size != 0 ) st->print("\n\t");
  1038       st->print("LEA    ESP,[ESP-8]");
  1039 #endif
  1041     size += 4;
  1043     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1045     // Copy from the temp memory to the xmm reg.
  1046     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1048     if( cbuf ) {
  1049       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1050       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1051       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1052       emit_d8(*cbuf,0x08);
  1053 #ifndef PRODUCT
  1054     } else if( !do_size ) {
  1055       if( size != 0 ) st->print("\n\t");
  1056       st->print("LEA    ESP,[ESP+8]");
  1057 #endif
  1059     size += 4;
  1060     return size;
  1063   assert( size > 0, "missed a case" );
  1065   // --------------------------------------------------------------------
  1066   // Check for second bits still needing moving.
  1067   if( src_second == dst_second )
  1068     return size;               // Self copy; no move
  1069   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1071   // Check for second word int-int move
  1072   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1073     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1075   // Check for second word integer store
  1076   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1077     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1079   // Check for second word integer load
  1080   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1081     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1084   Unimplemented();
  1087 #ifndef PRODUCT
  1088 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1089   implementation( NULL, ra_, false, st );
  1091 #endif
  1093 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1094   implementation( &cbuf, ra_, false, NULL );
  1097 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1098   return implementation( NULL, ra_, true, NULL );
  1101 //=============================================================================
  1102 #ifndef PRODUCT
  1103 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1104   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1106 #endif
  1108 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1109   MacroAssembler _masm(&cbuf);
  1110   __ nop(_count);
  1113 uint MachNopNode::size(PhaseRegAlloc *) const {
  1114   return _count;
  1118 //=============================================================================
  1119 #ifndef PRODUCT
  1120 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1121   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1122   int reg = ra_->get_reg_first(this);
  1123   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1125 #endif
  1127 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1128   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1129   int reg = ra_->get_encode(this);
  1130   if( offset >= 128 ) {
  1131     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1132     emit_rm(cbuf, 0x2, reg, 0x04);
  1133     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1134     emit_d32(cbuf, offset);
  1136   else {
  1137     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1138     emit_rm(cbuf, 0x1, reg, 0x04);
  1139     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1140     emit_d8(cbuf, offset);
  1144 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1145   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1146   if( offset >= 128 ) {
  1147     return 7;
  1149   else {
  1150     return 4;
  1154 //=============================================================================
  1156 // emit call stub, compiled java to interpreter
  1157 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1158   // Stub is fixed up when the corresponding call is converted from calling
  1159   // compiled code to calling interpreted code.
  1160   // mov rbx,0
  1161   // jmp -1
  1163   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1165   // Note that the code buffer's inst_mark is always relative to insts.
  1166   // That's why we must use the macroassembler to generate a stub.
  1167   MacroAssembler _masm(&cbuf);
  1169   address base =
  1170   __ start_a_stub(Compile::MAX_stubs_size);
  1171   if (base == NULL)  return;  // CodeBuffer::expand failed
  1172   // static stub relocation stores the instruction address of the call
  1173   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1174   // static stub relocation also tags the methodOop in the code-stream.
  1175   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1176   // This is recognized as unresolved by relocs/nativeInst/ic code
  1177   __ jump(RuntimeAddress(__ pc()));
  1179   __ end_a_stub();
  1180   // Update current stubs pointer and restore code_end.
  1182 // size of call stub, compiled java to interpretor
  1183 uint size_java_to_interp() {
  1184   return 10;  // movl; jmp
  1186 // relocation entries for call stub, compiled java to interpretor
  1187 uint reloc_java_to_interp() {
  1188   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1191 //=============================================================================
  1192 #ifndef PRODUCT
  1193 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1194   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1195   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1196   st->print_cr("\tNOP");
  1197   st->print_cr("\tNOP");
  1198   if( !OptoBreakpoint )
  1199     st->print_cr("\tNOP");
  1201 #endif
  1203 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1204   MacroAssembler masm(&cbuf);
  1205 #ifdef ASSERT
  1206   uint code_size = cbuf.code_size();
  1207 #endif
  1208   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1209   masm.jump_cc(Assembler::notEqual,
  1210                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1211   /* WARNING these NOPs are critical so that verified entry point is properly
  1212      aligned for patching by NativeJump::patch_verified_entry() */
  1213   int nops_cnt = 2;
  1214   if( !OptoBreakpoint ) // Leave space for int3
  1215      nops_cnt += 1;
  1216   masm.nop(nops_cnt);
  1218   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
  1221 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1222   return OptoBreakpoint ? 11 : 12;
  1226 //=============================================================================
  1227 uint size_exception_handler() {
  1228   // NativeCall instruction size is the same as NativeJump.
  1229   // exception handler starts out as jump and can be patched to
  1230   // a call be deoptimization.  (4932387)
  1231   // Note that this value is also credited (in output.cpp) to
  1232   // the size of the code section.
  1233   return NativeJump::instruction_size;
  1236 // Emit exception handler code.  Stuff framesize into a register
  1237 // and call a VM stub routine.
  1238 int emit_exception_handler(CodeBuffer& cbuf) {
  1240   // Note that the code buffer's inst_mark is always relative to insts.
  1241   // That's why we must use the macroassembler to generate a handler.
  1242   MacroAssembler _masm(&cbuf);
  1243   address base =
  1244   __ start_a_stub(size_exception_handler());
  1245   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1246   int offset = __ offset();
  1247   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1248   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1249   __ end_a_stub();
  1250   return offset;
  1253 uint size_deopt_handler() {
  1254   // NativeCall instruction size is the same as NativeJump.
  1255   // exception handler starts out as jump and can be patched to
  1256   // a call be deoptimization.  (4932387)
  1257   // Note that this value is also credited (in output.cpp) to
  1258   // the size of the code section.
  1259   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1262 // Emit deopt handler code.
  1263 int emit_deopt_handler(CodeBuffer& cbuf) {
  1265   // Note that the code buffer's inst_mark is always relative to insts.
  1266   // That's why we must use the macroassembler to generate a handler.
  1267   MacroAssembler _masm(&cbuf);
  1268   address base =
  1269   __ start_a_stub(size_exception_handler());
  1270   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1271   int offset = __ offset();
  1272   InternalAddress here(__ pc());
  1273   __ pushptr(here.addr());
  1275   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1276   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1277   __ end_a_stub();
  1278   return offset;
  1282 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1283   int mark = cbuf.insts()->mark_off();
  1284   MacroAssembler _masm(&cbuf);
  1285   address double_address = __ double_constant(x);
  1286   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1287   emit_d32_reloc(cbuf,
  1288                  (int)double_address,
  1289                  internal_word_Relocation::spec(double_address),
  1290                  RELOC_DISP32);
  1293 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1294   int mark = cbuf.insts()->mark_off();
  1295   MacroAssembler _masm(&cbuf);
  1296   address float_address = __ float_constant(x);
  1297   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1298   emit_d32_reloc(cbuf,
  1299                  (int)float_address,
  1300                  internal_word_Relocation::spec(float_address),
  1301                  RELOC_DISP32);
  1305 const bool Matcher::match_rule_supported(int opcode) {
  1306   if (!has_match_rule(opcode))
  1307     return false;
  1309   return true;  // Per default match rules are supported.
  1312 int Matcher::regnum_to_fpu_offset(int regnum) {
  1313   return regnum - 32; // The FP registers are in the second chunk
  1316 bool is_positive_zero_float(jfloat f) {
  1317   return jint_cast(f) == jint_cast(0.0F);
  1320 bool is_positive_one_float(jfloat f) {
  1321   return jint_cast(f) == jint_cast(1.0F);
  1324 bool is_positive_zero_double(jdouble d) {
  1325   return jlong_cast(d) == jlong_cast(0.0);
  1328 bool is_positive_one_double(jdouble d) {
  1329   return jlong_cast(d) == jlong_cast(1.0);
  1332 // This is UltraSparc specific, true just means we have fast l2f conversion
  1333 const bool Matcher::convL2FSupported(void) {
  1334   return true;
  1337 // Vector width in bytes
  1338 const uint Matcher::vector_width_in_bytes(void) {
  1339   return UseSSE >= 2 ? 8 : 0;
  1342 // Vector ideal reg
  1343 const uint Matcher::vector_ideal_reg(void) {
  1344   return Op_RegD;
  1347 // Is this branch offset short enough that a short branch can be used?
  1348 //
  1349 // NOTE: If the platform does not provide any short branch variants, then
  1350 //       this method should return false for offset 0.
  1351 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1352   // the short version of jmpConUCF2 contains multiple branches,
  1353   // making the reach slightly less
  1354   if (rule == jmpConUCF2_rule)
  1355     return (-126 <= offset && offset <= 125);
  1356   return (-128 <= offset && offset <= 127);
  1359 const bool Matcher::isSimpleConstant64(jlong value) {
  1360   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1361   return false;
  1364 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1365 const bool Matcher::init_array_count_is_in_bytes = false;
  1367 // Threshold size for cleararray.
  1368 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1370 // Should the Matcher clone shifts on addressing modes, expecting them to
  1371 // be subsumed into complex addressing expressions or compute them into
  1372 // registers?  True for Intel but false for most RISCs
  1373 const bool Matcher::clone_shift_expressions = true;
  1375 // Is it better to copy float constants, or load them directly from memory?
  1376 // Intel can load a float constant from a direct address, requiring no
  1377 // extra registers.  Most RISCs will have to materialize an address into a
  1378 // register first, so they would do better to copy the constant from stack.
  1379 const bool Matcher::rematerialize_float_constants = true;
  1381 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1382 // needed.  Else we split the double into 2 integer pieces and move it
  1383 // piece-by-piece.  Only happens when passing doubles into C code as the
  1384 // Java calling convention forces doubles to be aligned.
  1385 const bool Matcher::misaligned_doubles_ok = true;
  1388 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1389   // Get the memory operand from the node
  1390   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1391   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1392   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1393   uint opcnt     = 1;                 // First operand
  1394   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1395   while( idx >= skipped+num_edges ) {
  1396     skipped += num_edges;
  1397     opcnt++;                          // Bump operand count
  1398     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1399     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1402   MachOper *memory = node->_opnds[opcnt];
  1403   MachOper *new_memory = NULL;
  1404   switch (memory->opcode()) {
  1405   case DIRECT:
  1406   case INDOFFSET32X:
  1407     // No transformation necessary.
  1408     return;
  1409   case INDIRECT:
  1410     new_memory = new (C) indirect_win95_safeOper( );
  1411     break;
  1412   case INDOFFSET8:
  1413     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1414     break;
  1415   case INDOFFSET32:
  1416     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1417     break;
  1418   case INDINDEXOFFSET:
  1419     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1420     break;
  1421   case INDINDEXSCALE:
  1422     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1423     break;
  1424   case INDINDEXSCALEOFFSET:
  1425     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1426     break;
  1427   case LOAD_LONG_INDIRECT:
  1428   case LOAD_LONG_INDOFFSET32:
  1429     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1430     return;
  1431   default:
  1432     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1433     return;
  1435   node->_opnds[opcnt] = new_memory;
  1438 // Advertise here if the CPU requires explicit rounding operations
  1439 // to implement the UseStrictFP mode.
  1440 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1442 // Do floats take an entire double register or just half?
  1443 const bool Matcher::float_in_double = true;
  1444 // Do ints take an entire long register or just half?
  1445 const bool Matcher::int_in_long = false;
  1447 // Return whether or not this register is ever used as an argument.  This
  1448 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1449 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1450 // arguments in those registers not be available to the callee.
  1451 bool Matcher::can_be_java_arg( int reg ) {
  1452   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1453   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1454   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1455   return false;
  1458 bool Matcher::is_spillable_arg( int reg ) {
  1459   return can_be_java_arg(reg);
  1462 // Register for DIVI projection of divmodI
  1463 RegMask Matcher::divI_proj_mask() {
  1464   return EAX_REG_mask;
  1467 // Register for MODI projection of divmodI
  1468 RegMask Matcher::modI_proj_mask() {
  1469   return EDX_REG_mask;
  1472 // Register for DIVL projection of divmodL
  1473 RegMask Matcher::divL_proj_mask() {
  1474   ShouldNotReachHere();
  1475   return RegMask();
  1478 // Register for MODL projection of divmodL
  1479 RegMask Matcher::modL_proj_mask() {
  1480   ShouldNotReachHere();
  1481   return RegMask();
  1484 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1485   return EBP_REG_mask;
  1488 %}
  1490 //----------ENCODING BLOCK-----------------------------------------------------
  1491 // This block specifies the encoding classes used by the compiler to output
  1492 // byte streams.  Encoding classes generate functions which are called by
  1493 // Machine Instruction Nodes in order to generate the bit encoding of the
  1494 // instruction.  Operands specify their base encoding interface with the
  1495 // interface keyword.  There are currently supported four interfaces,
  1496 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1497 // operand to generate a function which returns its register number when
  1498 // queried.   CONST_INTER causes an operand to generate a function which
  1499 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1500 // operand to generate four functions which return the Base Register, the
  1501 // Index Register, the Scale Value, and the Offset Value of the operand when
  1502 // queried.  COND_INTER causes an operand to generate six functions which
  1503 // return the encoding code (ie - encoding bits for the instruction)
  1504 // associated with each basic boolean condition for a conditional instruction.
  1505 // Instructions specify two basic values for encoding.  They use the
  1506 // ins_encode keyword to specify their encoding class (which must be one of
  1507 // the class names specified in the encoding block), and they use the
  1508 // opcode keyword to specify, in order, their primary, secondary, and
  1509 // tertiary opcode.  Only the opcode sections which a particular instruction
  1510 // needs for encoding need to be specified.
  1511 encode %{
  1512   // Build emit functions for each basic byte or larger field in the intel
  1513   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1514   // code in the enc_class source block.  Emit functions will live in the
  1515   // main source block for now.  In future, we can generalize this by
  1516   // adding a syntax that specifies the sizes of fields in an order,
  1517   // so that the adlc can build the emit functions automagically
  1519   // Emit primary opcode
  1520   enc_class OpcP %{
  1521     emit_opcode(cbuf, $primary);
  1522   %}
  1524   // Emit secondary opcode
  1525   enc_class OpcS %{
  1526     emit_opcode(cbuf, $secondary);
  1527   %}
  1529   // Emit opcode directly
  1530   enc_class Opcode(immI d8) %{
  1531     emit_opcode(cbuf, $d8$$constant);
  1532   %}
  1534   enc_class SizePrefix %{
  1535     emit_opcode(cbuf,0x66);
  1536   %}
  1538   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1539     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1540   %}
  1542   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1543     emit_opcode(cbuf,$opcode$$constant);
  1544     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1545   %}
  1547   enc_class mov_r32_imm0( eRegI dst ) %{
  1548     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1549     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1550   %}
  1552   enc_class cdq_enc %{
  1553     // Full implementation of Java idiv and irem; checks for
  1554     // special case as described in JVM spec., p.243 & p.271.
  1555     //
  1556     //         normal case                           special case
  1557     //
  1558     // input : rax,: dividend                         min_int
  1559     //         reg: divisor                          -1
  1560     //
  1561     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1562     //         rdx: remainder (= rax, irem reg)       0
  1563     //
  1564     //  Code sequnce:
  1565     //
  1566     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1567     //  0F 85 0B 00 00 00    jne         normal_case
  1568     //  33 D2                xor         rdx,edx
  1569     //  83 F9 FF             cmp         rcx,0FFh
  1570     //  0F 84 03 00 00 00    je          done
  1571     //                  normal_case:
  1572     //  99                   cdq
  1573     //  F7 F9                idiv        rax,ecx
  1574     //                  done:
  1575     //
  1576     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1577     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1578     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1579     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1580     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1581     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1582     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1583     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1584     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1585     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1586     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1587     // normal_case:
  1588     emit_opcode(cbuf,0x99);                                         // cdq
  1589     // idiv (note: must be emitted by the user of this rule)
  1590     // normal:
  1591   %}
  1593   // Dense encoding for older common ops
  1594   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1595     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1596   %}
  1599   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1600   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1601     // Check for 8-bit immediate, and set sign extend bit in opcode
  1602     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1603       emit_opcode(cbuf, $primary | 0x02);
  1605     else {                          // If 32-bit immediate
  1606       emit_opcode(cbuf, $primary);
  1608   %}
  1610   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1611     // Emit primary opcode and set sign-extend bit
  1612     // Check for 8-bit immediate, and set sign extend bit in opcode
  1613     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1614       emit_opcode(cbuf, $primary | 0x02);    }
  1615     else {                          // If 32-bit immediate
  1616       emit_opcode(cbuf, $primary);
  1618     // Emit r/m byte with secondary opcode, after primary opcode.
  1619     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1620   %}
  1622   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1623     // Check for 8-bit immediate, and set sign extend bit in opcode
  1624     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1625       $$$emit8$imm$$constant;
  1627     else {                          // If 32-bit immediate
  1628       // Output immediate
  1629       $$$emit32$imm$$constant;
  1631   %}
  1633   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1634     // Emit primary opcode and set sign-extend bit
  1635     // Check for 8-bit immediate, and set sign extend bit in opcode
  1636     int con = (int)$imm$$constant; // Throw away top bits
  1637     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1638     // Emit r/m byte with secondary opcode, after primary opcode.
  1639     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1640     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1641     else                               emit_d32(cbuf,con);
  1642   %}
  1644   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1645     // Emit primary opcode and set sign-extend bit
  1646     // Check for 8-bit immediate, and set sign extend bit in opcode
  1647     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1648     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1649     // Emit r/m byte with tertiary opcode, after primary opcode.
  1650     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1651     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1652     else                               emit_d32(cbuf,con);
  1653   %}
  1655   enc_class Lbl (label labl) %{ // JMP, CALL
  1656     Label *l = $labl$$label;
  1657     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1658   %}
  1660   enc_class LblShort (label labl) %{ // JMP, CALL
  1661     Label *l = $labl$$label;
  1662     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1663     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1664     emit_d8(cbuf, disp);
  1665   %}
  1667   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1668     emit_cc(cbuf, $secondary, $dst$$reg );
  1669   %}
  1671   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1672     int destlo = $dst$$reg;
  1673     int desthi = HIGH_FROM_LOW(destlo);
  1674     // bswap lo
  1675     emit_opcode(cbuf, 0x0F);
  1676     emit_cc(cbuf, 0xC8, destlo);
  1677     // bswap hi
  1678     emit_opcode(cbuf, 0x0F);
  1679     emit_cc(cbuf, 0xC8, desthi);
  1680     // xchg lo and hi
  1681     emit_opcode(cbuf, 0x87);
  1682     emit_rm(cbuf, 0x3, destlo, desthi);
  1683   %}
  1685   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1686     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1687   %}
  1689   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1690     Label *l = $labl$$label;
  1691     $$$emit8$primary;
  1692     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1693     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1694   %}
  1696   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1697     Label *l = $labl$$label;
  1698     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1699     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1700     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1701     emit_d8(cbuf, disp);
  1702   %}
  1704   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1705     $$$emit8$primary;
  1706     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1707   %}
  1709   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1710     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1711     emit_d8(cbuf, op >> 8 );
  1712     emit_d8(cbuf, op & 255);
  1713   %}
  1715   // emulate a CMOV with a conditional branch around a MOV
  1716   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1717     // Invert sense of branch from sense of CMOV
  1718     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1719     emit_d8( cbuf, $brOffs$$constant );
  1720   %}
  1722   enc_class enc_PartialSubtypeCheck( ) %{
  1723     Register Redi = as_Register(EDI_enc); // result register
  1724     Register Reax = as_Register(EAX_enc); // super class
  1725     Register Recx = as_Register(ECX_enc); // killed
  1726     Register Resi = as_Register(ESI_enc); // sub class
  1727     Label miss;
  1729     MacroAssembler _masm(&cbuf);
  1730     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1731                                      NULL, &miss,
  1732                                      /*set_cond_codes:*/ true);
  1733     if ($primary) {
  1734       __ xorptr(Redi, Redi);
  1736     __ bind(miss);
  1737   %}
  1739   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1740     MacroAssembler masm(&cbuf);
  1741     int start = masm.offset();
  1742     if (UseSSE >= 2) {
  1743       if (VerifyFPU) {
  1744         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1746     } else {
  1747       // External c_calling_convention expects the FPU stack to be 'clean'.
  1748       // Compiled code leaves it dirty.  Do cleanup now.
  1749       masm.empty_FPU_stack();
  1751     if (sizeof_FFree_Float_Stack_All == -1) {
  1752       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1753     } else {
  1754       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1756   %}
  1758   enc_class Verify_FPU_For_Leaf %{
  1759     if( VerifyFPU ) {
  1760       MacroAssembler masm(&cbuf);
  1761       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1763   %}
  1765   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1766     // This is the instruction starting address for relocation info.
  1767     cbuf.set_inst_mark();
  1768     $$$emit8$primary;
  1769     // CALL directly to the runtime
  1770     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1771                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1773     if (UseSSE >= 2) {
  1774       MacroAssembler _masm(&cbuf);
  1775       BasicType rt = tf()->return_type();
  1777       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1778         // A C runtime call where the return value is unused.  In SSE2+
  1779         // mode the result needs to be removed from the FPU stack.  It's
  1780         // likely that this function call could be removed by the
  1781         // optimizer if the C function is a pure function.
  1782         __ ffree(0);
  1783       } else if (rt == T_FLOAT) {
  1784         __ lea(rsp, Address(rsp, -4));
  1785         __ fstp_s(Address(rsp, 0));
  1786         __ movflt(xmm0, Address(rsp, 0));
  1787         __ lea(rsp, Address(rsp,  4));
  1788       } else if (rt == T_DOUBLE) {
  1789         __ lea(rsp, Address(rsp, -8));
  1790         __ fstp_d(Address(rsp, 0));
  1791         __ movdbl(xmm0, Address(rsp, 0));
  1792         __ lea(rsp, Address(rsp,  8));
  1795   %}
  1798   enc_class pre_call_FPU %{
  1799     // If method sets FPU control word restore it here
  1800     debug_only(int off0 = cbuf.code_size());
  1801     if( Compile::current()->in_24_bit_fp_mode() ) {
  1802       MacroAssembler masm(&cbuf);
  1803       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1805     debug_only(int off1 = cbuf.code_size());
  1806     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1807   %}
  1809   enc_class post_call_FPU %{
  1810     // If method sets FPU control word do it here also
  1811     if( Compile::current()->in_24_bit_fp_mode() ) {
  1812       MacroAssembler masm(&cbuf);
  1813       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1815   %}
  1817   enc_class preserve_SP %{
  1818     debug_only(int off0 = cbuf.code_size());
  1819     MacroAssembler _masm(&cbuf);
  1820     // RBP is preserved across all calls, even compiled calls.
  1821     // Use it to preserve RSP in places where the callee might change the SP.
  1822     __ movptr(rbp, rsp);
  1823     debug_only(int off1 = cbuf.code_size());
  1824     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1825   %}
  1827   enc_class restore_SP %{
  1828     MacroAssembler _masm(&cbuf);
  1829     __ movptr(rsp, rbp);
  1830   %}
  1832   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1833     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1834     // who we intended to call.
  1835     cbuf.set_inst_mark();
  1836     $$$emit8$primary;
  1837     if ( !_method ) {
  1838       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1839                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1840     } else if(_optimized_virtual) {
  1841       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1842                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1843     } else {
  1844       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1845                      static_call_Relocation::spec(), RELOC_IMM32 );
  1847     if( _method ) {  // Emit stub for static call
  1848       emit_java_to_interp(cbuf);
  1850   %}
  1852   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1853     // !!!!!
  1854     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1855     // emit_call_dynamic_prologue( cbuf );
  1856     cbuf.set_inst_mark();
  1857     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1858     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1859     address  virtual_call_oop_addr = cbuf.inst_mark();
  1860     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1861     // who we intended to call.
  1862     cbuf.set_inst_mark();
  1863     $$$emit8$primary;
  1864     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1865                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1866   %}
  1868   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1869     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1870     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1872     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1873     cbuf.set_inst_mark();
  1874     $$$emit8$primary;
  1875     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1876     emit_d8(cbuf, disp);             // Displacement
  1878   %}
  1880   enc_class Xor_Reg (eRegI dst) %{
  1881     emit_opcode(cbuf, 0x33);
  1882     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1883   %}
  1885 //   Following encoding is no longer used, but may be restored if calling
  1886 //   convention changes significantly.
  1887 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1888 //
  1889 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1890 //     // int ic_reg     = Matcher::inline_cache_reg();
  1891 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1892 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1893 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1894 //
  1895 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1896 //     // // so we load it immediately before the call
  1897 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1898 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1899 //
  1900 //     // xor rbp,ebp
  1901 //     emit_opcode(cbuf, 0x33);
  1902 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1903 //
  1904 //     // CALL to interpreter.
  1905 //     cbuf.set_inst_mark();
  1906 //     $$$emit8$primary;
  1907 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
  1908 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1909 //   %}
  1911   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1912     $$$emit8$primary;
  1913     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1914     $$$emit8$shift$$constant;
  1915   %}
  1917   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1918     // Load immediate does not have a zero or sign extended version
  1919     // for 8-bit immediates
  1920     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1921     $$$emit32$src$$constant;
  1922   %}
  1924   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1925     // Load immediate does not have a zero or sign extended version
  1926     // for 8-bit immediates
  1927     emit_opcode(cbuf, $primary + $dst$$reg);
  1928     $$$emit32$src$$constant;
  1929   %}
  1931   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1932     // Load immediate does not have a zero or sign extended version
  1933     // for 8-bit immediates
  1934     int dst_enc = $dst$$reg;
  1935     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1936     if (src_con == 0) {
  1937       // xor dst, dst
  1938       emit_opcode(cbuf, 0x33);
  1939       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1940     } else {
  1941       emit_opcode(cbuf, $primary + dst_enc);
  1942       emit_d32(cbuf, src_con);
  1944   %}
  1946   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1947     // Load immediate does not have a zero or sign extended version
  1948     // for 8-bit immediates
  1949     int dst_enc = $dst$$reg + 2;
  1950     int src_con = ((julong)($src$$constant)) >> 32;
  1951     if (src_con == 0) {
  1952       // xor dst, dst
  1953       emit_opcode(cbuf, 0x33);
  1954       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1955     } else {
  1956       emit_opcode(cbuf, $primary + dst_enc);
  1957       emit_d32(cbuf, src_con);
  1959   %}
  1962   enc_class LdImmD (immD src) %{    // Load Immediate
  1963     if( is_positive_zero_double($src$$constant)) {
  1964       // FLDZ
  1965       emit_opcode(cbuf,0xD9);
  1966       emit_opcode(cbuf,0xEE);
  1967     } else if( is_positive_one_double($src$$constant)) {
  1968       // FLD1
  1969       emit_opcode(cbuf,0xD9);
  1970       emit_opcode(cbuf,0xE8);
  1971     } else {
  1972       emit_opcode(cbuf,0xDD);
  1973       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1974       emit_double_constant(cbuf, $src$$constant);
  1976   %}
  1979   enc_class LdImmF (immF src) %{    // Load Immediate
  1980     if( is_positive_zero_float($src$$constant)) {
  1981       emit_opcode(cbuf,0xD9);
  1982       emit_opcode(cbuf,0xEE);
  1983     } else if( is_positive_one_float($src$$constant)) {
  1984       emit_opcode(cbuf,0xD9);
  1985       emit_opcode(cbuf,0xE8);
  1986     } else {
  1987       $$$emit8$primary;
  1988       // Load immediate does not have a zero or sign extended version
  1989       // for 8-bit immediates
  1990       // First load to TOS, then move to dst
  1991       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1992       emit_float_constant(cbuf, $src$$constant);
  1994   %}
  1996   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  1997     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1998     emit_float_constant(cbuf, $con$$constant);
  1999   %}
  2001   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  2002     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2003     emit_double_constant(cbuf, $con$$constant);
  2004   %}
  2006   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  2007     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2008     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2009     emit_opcode(cbuf, 0x0F);
  2010     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2011     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2012     emit_double_constant(cbuf, $con$$constant);
  2013   %}
  2015   enc_class Opc_MemImm_F(immF src) %{
  2016     cbuf.set_inst_mark();
  2017     $$$emit8$primary;
  2018     emit_rm(cbuf, 0x0, $secondary, 0x5);
  2019     emit_float_constant(cbuf, $src$$constant);
  2020   %}
  2023   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2024     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2025     emit_opcode(cbuf, 0x0F );
  2026     emit_opcode(cbuf, 0x6E );
  2027     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2028   %}
  2030   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2031     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2032     emit_opcode(cbuf, 0x0F );
  2033     emit_opcode(cbuf, 0x7E );
  2034     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2035   %}
  2037   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2038     { // MOVD $dst,$src.lo
  2039       emit_opcode(cbuf,0x66);
  2040       emit_opcode(cbuf,0x0F);
  2041       emit_opcode(cbuf,0x6E);
  2042       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2044     { // MOVD $tmp,$src.hi
  2045       emit_opcode(cbuf,0x66);
  2046       emit_opcode(cbuf,0x0F);
  2047       emit_opcode(cbuf,0x6E);
  2048       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2050     { // PUNPCKLDQ $dst,$tmp
  2051       emit_opcode(cbuf,0x66);
  2052       emit_opcode(cbuf,0x0F);
  2053       emit_opcode(cbuf,0x62);
  2054       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2056   %}
  2058   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2059     { // MOVD $dst.lo,$src
  2060       emit_opcode(cbuf,0x66);
  2061       emit_opcode(cbuf,0x0F);
  2062       emit_opcode(cbuf,0x7E);
  2063       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2065     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2066       emit_opcode(cbuf,0xF2);
  2067       emit_opcode(cbuf,0x0F);
  2068       emit_opcode(cbuf,0x70);
  2069       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2070       emit_d8(cbuf, 0x4E);
  2072     { // MOVD $dst.hi,$tmp
  2073       emit_opcode(cbuf,0x66);
  2074       emit_opcode(cbuf,0x0F);
  2075       emit_opcode(cbuf,0x7E);
  2076       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2078   %}
  2081   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2082   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2083     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2084   %}
  2086   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2087     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2088   %}
  2090   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2091   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2092     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2093   %}
  2095   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2096     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2097   %}
  2099   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2100     $$$emit8$primary;
  2101     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2102   %}
  2104   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2105     $$$emit8$secondary;
  2106     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2107   %}
  2109   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2110     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2111   %}
  2113   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2114     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2115   %}
  2117   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2118     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2119   %}
  2121   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2122     // Output immediate
  2123     $$$emit32$src$$constant;
  2124   %}
  2126   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2127     // Output Float immediate bits
  2128     jfloat jf = $src$$constant;
  2129     int    jf_as_bits = jint_cast( jf );
  2130     emit_d32(cbuf, jf_as_bits);
  2131   %}
  2133   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2134     // Output Float immediate bits
  2135     jfloat jf = $src$$constant;
  2136     int    jf_as_bits = jint_cast( jf );
  2137     emit_d32(cbuf, jf_as_bits);
  2138   %}
  2140   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2141     // Output immediate
  2142     $$$emit16$src$$constant;
  2143   %}
  2145   enc_class Con_d32(immI src) %{
  2146     emit_d32(cbuf,$src$$constant);
  2147   %}
  2149   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2150     // Output immediate memory reference
  2151     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2152     emit_d32(cbuf, 0x00);
  2153   %}
  2155   enc_class lock_prefix( ) %{
  2156     if( os::is_MP() )
  2157       emit_opcode(cbuf,0xF0);         // [Lock]
  2158   %}
  2160   // Cmp-xchg long value.
  2161   // Note: we need to swap rbx, and rcx before and after the
  2162   //       cmpxchg8 instruction because the instruction uses
  2163   //       rcx as the high order word of the new value to store but
  2164   //       our register encoding uses rbx,.
  2165   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2167     // XCHG  rbx,ecx
  2168     emit_opcode(cbuf,0x87);
  2169     emit_opcode(cbuf,0xD9);
  2170     // [Lock]
  2171     if( os::is_MP() )
  2172       emit_opcode(cbuf,0xF0);
  2173     // CMPXCHG8 [Eptr]
  2174     emit_opcode(cbuf,0x0F);
  2175     emit_opcode(cbuf,0xC7);
  2176     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2177     // XCHG  rbx,ecx
  2178     emit_opcode(cbuf,0x87);
  2179     emit_opcode(cbuf,0xD9);
  2180   %}
  2182   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2183     // [Lock]
  2184     if( os::is_MP() )
  2185       emit_opcode(cbuf,0xF0);
  2187     // CMPXCHG [Eptr]
  2188     emit_opcode(cbuf,0x0F);
  2189     emit_opcode(cbuf,0xB1);
  2190     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2191   %}
  2193   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2194     int res_encoding = $res$$reg;
  2196     // MOV  res,0
  2197     emit_opcode( cbuf, 0xB8 + res_encoding);
  2198     emit_d32( cbuf, 0 );
  2199     // JNE,s  fail
  2200     emit_opcode(cbuf,0x75);
  2201     emit_d8(cbuf, 5 );
  2202     // MOV  res,1
  2203     emit_opcode( cbuf, 0xB8 + res_encoding);
  2204     emit_d32( cbuf, 1 );
  2205     // fail:
  2206   %}
  2208   enc_class set_instruction_start( ) %{
  2209     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  2210   %}
  2212   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2213     int reg_encoding = $ereg$$reg;
  2214     int base  = $mem$$base;
  2215     int index = $mem$$index;
  2216     int scale = $mem$$scale;
  2217     int displace = $mem$$disp;
  2218     bool disp_is_oop = $mem->disp_is_oop();
  2219     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2220   %}
  2222   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2223     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2224     int base  = $mem$$base;
  2225     int index = $mem$$index;
  2226     int scale = $mem$$scale;
  2227     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2228     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2229     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2230   %}
  2232   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2233     int r1, r2;
  2234     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2235     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2236     emit_opcode(cbuf,0x0F);
  2237     emit_opcode(cbuf,$tertiary);
  2238     emit_rm(cbuf, 0x3, r1, r2);
  2239     emit_d8(cbuf,$cnt$$constant);
  2240     emit_d8(cbuf,$primary);
  2241     emit_rm(cbuf, 0x3, $secondary, r1);
  2242     emit_d8(cbuf,$cnt$$constant);
  2243   %}
  2245   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2246     emit_opcode( cbuf, 0x8B ); // Move
  2247     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2248     emit_d8(cbuf,$primary);
  2249     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2250     emit_d8(cbuf,$cnt$$constant-32);
  2251     emit_d8(cbuf,$primary);
  2252     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2253     emit_d8(cbuf,31);
  2254   %}
  2256   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2257     int r1, r2;
  2258     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2259     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2261     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2262     emit_rm(cbuf, 0x3, r1, r2);
  2263     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2264       emit_opcode(cbuf,$primary);
  2265       emit_rm(cbuf, 0x3, $secondary, r1);
  2266       emit_d8(cbuf,$cnt$$constant-32);
  2268     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2269     emit_rm(cbuf, 0x3, r2, r2);
  2270   %}
  2272   // Clone of RegMem but accepts an extra parameter to access each
  2273   // half of a double in memory; it never needs relocation info.
  2274   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2275     emit_opcode(cbuf,$opcode$$constant);
  2276     int reg_encoding = $rm_reg$$reg;
  2277     int base     = $mem$$base;
  2278     int index    = $mem$$index;
  2279     int scale    = $mem$$scale;
  2280     int displace = $mem$$disp + $disp_for_half$$constant;
  2281     bool disp_is_oop = false;
  2282     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2283   %}
  2285   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2286   //
  2287   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2288   // and it never needs relocation information.
  2289   // Frequently used to move data between FPU's Stack Top and memory.
  2290   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2291     int rm_byte_opcode = $rm_opcode$$constant;
  2292     int base     = $mem$$base;
  2293     int index    = $mem$$index;
  2294     int scale    = $mem$$scale;
  2295     int displace = $mem$$disp;
  2296     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2297     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2298   %}
  2300   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2301     int rm_byte_opcode = $rm_opcode$$constant;
  2302     int base     = $mem$$base;
  2303     int index    = $mem$$index;
  2304     int scale    = $mem$$scale;
  2305     int displace = $mem$$disp;
  2306     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2307     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2308   %}
  2310   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2311     int reg_encoding = $dst$$reg;
  2312     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2313     int index        = 0x04;            // 0x04 indicates no index
  2314     int scale        = 0x00;            // 0x00 indicates no scale
  2315     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2316     bool disp_is_oop = false;
  2317     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2318   %}
  2320   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2321     // Compare dst,src
  2322     emit_opcode(cbuf,0x3B);
  2323     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2324     // jmp dst < src around move
  2325     emit_opcode(cbuf,0x7C);
  2326     emit_d8(cbuf,2);
  2327     // move dst,src
  2328     emit_opcode(cbuf,0x8B);
  2329     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2330   %}
  2332   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2333     // Compare dst,src
  2334     emit_opcode(cbuf,0x3B);
  2335     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2336     // jmp dst > src around move
  2337     emit_opcode(cbuf,0x7F);
  2338     emit_d8(cbuf,2);
  2339     // move dst,src
  2340     emit_opcode(cbuf,0x8B);
  2341     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2342   %}
  2344   enc_class enc_FP_store(memory mem, regD src) %{
  2345     // If src is FPR1, we can just FST to store it.
  2346     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2347     int reg_encoding = 0x2; // Just store
  2348     int base  = $mem$$base;
  2349     int index = $mem$$index;
  2350     int scale = $mem$$scale;
  2351     int displace = $mem$$disp;
  2352     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2353     if( $src$$reg != FPR1L_enc ) {
  2354       reg_encoding = 0x3;  // Store & pop
  2355       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2356       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2358     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2359     emit_opcode(cbuf,$primary);
  2360     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2361   %}
  2363   enc_class neg_reg(eRegI dst) %{
  2364     // NEG $dst
  2365     emit_opcode(cbuf,0xF7);
  2366     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2367   %}
  2369   enc_class setLT_reg(eCXRegI dst) %{
  2370     // SETLT $dst
  2371     emit_opcode(cbuf,0x0F);
  2372     emit_opcode(cbuf,0x9C);
  2373     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2374   %}
  2376   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2377     int tmpReg = $tmp$$reg;
  2379     // SUB $p,$q
  2380     emit_opcode(cbuf,0x2B);
  2381     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2382     // SBB $tmp,$tmp
  2383     emit_opcode(cbuf,0x1B);
  2384     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2385     // AND $tmp,$y
  2386     emit_opcode(cbuf,0x23);
  2387     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2388     // ADD $p,$tmp
  2389     emit_opcode(cbuf,0x03);
  2390     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2391   %}
  2393   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2394     int tmpReg = $tmp$$reg;
  2396     // SUB $p,$q
  2397     emit_opcode(cbuf,0x2B);
  2398     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2399     // SBB $tmp,$tmp
  2400     emit_opcode(cbuf,0x1B);
  2401     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2402     // AND $tmp,$y
  2403     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2404     emit_opcode(cbuf,0x23);
  2405     int reg_encoding = tmpReg;
  2406     int base  = $mem$$base;
  2407     int index = $mem$$index;
  2408     int scale = $mem$$scale;
  2409     int displace = $mem$$disp;
  2410     bool disp_is_oop = $mem->disp_is_oop();
  2411     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2412     // ADD $p,$tmp
  2413     emit_opcode(cbuf,0x03);
  2414     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2415   %}
  2417   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2418     // TEST shift,32
  2419     emit_opcode(cbuf,0xF7);
  2420     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2421     emit_d32(cbuf,0x20);
  2422     // JEQ,s small
  2423     emit_opcode(cbuf, 0x74);
  2424     emit_d8(cbuf, 0x04);
  2425     // MOV    $dst.hi,$dst.lo
  2426     emit_opcode( cbuf, 0x8B );
  2427     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2428     // CLR    $dst.lo
  2429     emit_opcode(cbuf, 0x33);
  2430     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2431 // small:
  2432     // SHLD   $dst.hi,$dst.lo,$shift
  2433     emit_opcode(cbuf,0x0F);
  2434     emit_opcode(cbuf,0xA5);
  2435     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2436     // SHL    $dst.lo,$shift"
  2437     emit_opcode(cbuf,0xD3);
  2438     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2439   %}
  2441   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2442     // TEST shift,32
  2443     emit_opcode(cbuf,0xF7);
  2444     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2445     emit_d32(cbuf,0x20);
  2446     // JEQ,s small
  2447     emit_opcode(cbuf, 0x74);
  2448     emit_d8(cbuf, 0x04);
  2449     // MOV    $dst.lo,$dst.hi
  2450     emit_opcode( cbuf, 0x8B );
  2451     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2452     // CLR    $dst.hi
  2453     emit_opcode(cbuf, 0x33);
  2454     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2455 // small:
  2456     // SHRD   $dst.lo,$dst.hi,$shift
  2457     emit_opcode(cbuf,0x0F);
  2458     emit_opcode(cbuf,0xAD);
  2459     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2460     // SHR    $dst.hi,$shift"
  2461     emit_opcode(cbuf,0xD3);
  2462     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2463   %}
  2465   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2466     // TEST shift,32
  2467     emit_opcode(cbuf,0xF7);
  2468     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2469     emit_d32(cbuf,0x20);
  2470     // JEQ,s small
  2471     emit_opcode(cbuf, 0x74);
  2472     emit_d8(cbuf, 0x05);
  2473     // MOV    $dst.lo,$dst.hi
  2474     emit_opcode( cbuf, 0x8B );
  2475     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2476     // SAR    $dst.hi,31
  2477     emit_opcode(cbuf, 0xC1);
  2478     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2479     emit_d8(cbuf, 0x1F );
  2480 // small:
  2481     // SHRD   $dst.lo,$dst.hi,$shift
  2482     emit_opcode(cbuf,0x0F);
  2483     emit_opcode(cbuf,0xAD);
  2484     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2485     // SAR    $dst.hi,$shift"
  2486     emit_opcode(cbuf,0xD3);
  2487     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2488   %}
  2491   // ----------------- Encodings for floating point unit -----------------
  2492   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2493   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2494     $$$emit8$primary;
  2495     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2496   %}
  2498   // Pop argument in FPR0 with FSTP ST(0)
  2499   enc_class PopFPU() %{
  2500     emit_opcode( cbuf, 0xDD );
  2501     emit_d8( cbuf, 0xD8 );
  2502   %}
  2504   // !!!!! equivalent to Pop_Reg_F
  2505   enc_class Pop_Reg_D( regD dst ) %{
  2506     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2507     emit_d8( cbuf, 0xD8+$dst$$reg );
  2508   %}
  2510   enc_class Push_Reg_D( regD dst ) %{
  2511     emit_opcode( cbuf, 0xD9 );
  2512     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2513   %}
  2515   enc_class strictfp_bias1( regD dst ) %{
  2516     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2517     emit_opcode( cbuf, 0x2D );
  2518     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2519     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2520     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2521   %}
  2523   enc_class strictfp_bias2( regD dst ) %{
  2524     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2525     emit_opcode( cbuf, 0x2D );
  2526     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2527     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2528     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2529   %}
  2531   // Special case for moving an integer register to a stack slot.
  2532   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2533     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2534   %}
  2536   // Special case for moving a register to a stack slot.
  2537   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2538     // Opcode already emitted
  2539     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2540     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2541     emit_d32(cbuf, $dst$$disp);   // Displacement
  2542   %}
  2544   // Push the integer in stackSlot 'src' onto FP-stack
  2545   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2546     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2547   %}
  2549   // Push the float in stackSlot 'src' onto FP-stack
  2550   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2551     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2552   %}
  2554   // Push the double in stackSlot 'src' onto FP-stack
  2555   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2556     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2557   %}
  2559   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2560   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2561     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2562   %}
  2564   // Same as Pop_Mem_F except for opcode
  2565   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2566   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2567     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2568   %}
  2570   enc_class Pop_Reg_F( regF dst ) %{
  2571     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2572     emit_d8( cbuf, 0xD8+$dst$$reg );
  2573   %}
  2575   enc_class Push_Reg_F( regF dst ) %{
  2576     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2577     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2578   %}
  2580   // Push FPU's float to a stack-slot, and pop FPU-stack
  2581   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2582     int pop = 0x02;
  2583     if ($src$$reg != FPR1L_enc) {
  2584       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2585       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2586       pop = 0x03;
  2588     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2589   %}
  2591   // Push FPU's double to a stack-slot, and pop FPU-stack
  2592   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2593     int pop = 0x02;
  2594     if ($src$$reg != FPR1L_enc) {
  2595       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2596       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2597       pop = 0x03;
  2599     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2600   %}
  2602   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2603   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2604     int pop = 0xD0 - 1; // -1 since we skip FLD
  2605     if ($src$$reg != FPR1L_enc) {
  2606       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2607       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2608       pop = 0xD8;
  2610     emit_opcode( cbuf, 0xDD );
  2611     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2612   %}
  2615   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2616     MacroAssembler masm(&cbuf);
  2617     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2618     masm.fmul(   $src2$$reg+0);   // value at TOS
  2619     masm.fadd(   $src$$reg+0);    // value at TOS
  2620     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2621   %}
  2624   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2625     // load dst in FPR0
  2626     emit_opcode( cbuf, 0xD9 );
  2627     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2628     if ($src$$reg != FPR1L_enc) {
  2629       // fincstp
  2630       emit_opcode (cbuf, 0xD9);
  2631       emit_opcode (cbuf, 0xF7);
  2632       // swap src with FPR1:
  2633       // FXCH FPR1 with src
  2634       emit_opcode(cbuf, 0xD9);
  2635       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2636       // fdecstp
  2637       emit_opcode (cbuf, 0xD9);
  2638       emit_opcode (cbuf, 0xF6);
  2640   %}
  2642   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2643     // Allocate a word
  2644     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2645     emit_opcode(cbuf,0xEC);
  2646     emit_d8(cbuf,0x08);
  2648     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2649     emit_opcode  (cbuf, 0x0F );
  2650     emit_opcode  (cbuf, 0x11 );
  2651     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2653     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2654     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2656     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2657     emit_opcode  (cbuf, 0x0F );
  2658     emit_opcode  (cbuf, 0x11 );
  2659     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2661     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2662     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2664   %}
  2666   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2667     // Allocate a word
  2668     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2669     emit_opcode(cbuf,0xEC);
  2670     emit_d8(cbuf,0x04);
  2672     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2673     emit_opcode  (cbuf, 0x0F );
  2674     emit_opcode  (cbuf, 0x11 );
  2675     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2677     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2678     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2680     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2681     emit_opcode  (cbuf, 0x0F );
  2682     emit_opcode  (cbuf, 0x11 );
  2683     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2685     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2686     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2688   %}
  2690   enc_class Push_ResultXD(regXD dst) %{
  2691     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2693     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2694     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2695     emit_opcode  (cbuf, 0x0F );
  2696     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2697     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2699     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2700     emit_opcode(cbuf,0xC4);
  2701     emit_d8(cbuf,0x08);
  2702   %}
  2704   enc_class Push_ResultX(regX dst, immI d8) %{
  2705     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2707     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2708     emit_opcode  (cbuf, 0x0F );
  2709     emit_opcode  (cbuf, 0x10 );
  2710     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2712     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2713     emit_opcode(cbuf,0xC4);
  2714     emit_d8(cbuf,$d8$$constant);
  2715   %}
  2717   enc_class Push_SrcXD(regXD src) %{
  2718     // Allocate a word
  2719     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2720     emit_opcode(cbuf,0xEC);
  2721     emit_d8(cbuf,0x08);
  2723     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2724     emit_opcode  (cbuf, 0x0F );
  2725     emit_opcode  (cbuf, 0x11 );
  2726     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2728     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2729     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2730   %}
  2732   enc_class push_stack_temp_qword() %{
  2733     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2734     emit_opcode(cbuf,0xEC);
  2735     emit_d8    (cbuf,0x08);
  2736   %}
  2738   enc_class pop_stack_temp_qword() %{
  2739     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2740     emit_opcode(cbuf,0xC4);
  2741     emit_d8    (cbuf,0x08);
  2742   %}
  2744   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2745     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2746     emit_opcode  (cbuf, 0x0F );
  2747     emit_opcode  (cbuf, 0x11 );
  2748     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2750     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2751     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2752   %}
  2754   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2755   // Otherwise return a NaN.
  2756   enc_class pow_exp_core_encoding %{
  2757     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2758     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2759     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2760     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2761     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2762     emit_opcode(cbuf,0x1C);
  2763     emit_d8(cbuf,0x24);
  2764     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2765     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2766     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2767     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2768     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2769     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2770     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2771     emit_d32(cbuf,0xFFFFF800);
  2772     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2773     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2774     emit_d32(cbuf,1023);
  2775     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2776     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2777     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2778     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2779     emit_d8(cbuf,20);
  2780     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2781     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2782     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2783     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2784     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2785     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2786     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2787     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2788     emit_d32(cbuf,0);
  2789     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2790     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2791   %}
  2793 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2794 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2796   enc_class Push_Result_Mod_D( regD src) %{
  2797     if ($src$$reg != FPR1L_enc) {
  2798       // fincstp
  2799       emit_opcode (cbuf, 0xD9);
  2800       emit_opcode (cbuf, 0xF7);
  2801       // FXCH FPR1 with src
  2802       emit_opcode(cbuf, 0xD9);
  2803       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2804       // fdecstp
  2805       emit_opcode (cbuf, 0xD9);
  2806       emit_opcode (cbuf, 0xF6);
  2808     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2809     // // FSTP   FPR$dst$$reg
  2810     // emit_opcode( cbuf, 0xDD );
  2811     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2812   %}
  2814   enc_class fnstsw_sahf_skip_parity() %{
  2815     // fnstsw ax
  2816     emit_opcode( cbuf, 0xDF );
  2817     emit_opcode( cbuf, 0xE0 );
  2818     // sahf
  2819     emit_opcode( cbuf, 0x9E );
  2820     // jnp  ::skip
  2821     emit_opcode( cbuf, 0x7B );
  2822     emit_opcode( cbuf, 0x05 );
  2823   %}
  2825   enc_class emitModD() %{
  2826     // fprem must be iterative
  2827     // :: loop
  2828     // fprem
  2829     emit_opcode( cbuf, 0xD9 );
  2830     emit_opcode( cbuf, 0xF8 );
  2831     // wait
  2832     emit_opcode( cbuf, 0x9b );
  2833     // fnstsw ax
  2834     emit_opcode( cbuf, 0xDF );
  2835     emit_opcode( cbuf, 0xE0 );
  2836     // sahf
  2837     emit_opcode( cbuf, 0x9E );
  2838     // jp  ::loop
  2839     emit_opcode( cbuf, 0x0F );
  2840     emit_opcode( cbuf, 0x8A );
  2841     emit_opcode( cbuf, 0xF4 );
  2842     emit_opcode( cbuf, 0xFF );
  2843     emit_opcode( cbuf, 0xFF );
  2844     emit_opcode( cbuf, 0xFF );
  2845   %}
  2847   enc_class fpu_flags() %{
  2848     // fnstsw_ax
  2849     emit_opcode( cbuf, 0xDF);
  2850     emit_opcode( cbuf, 0xE0);
  2851     // test ax,0x0400
  2852     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2853     emit_opcode( cbuf, 0xA9 );
  2854     emit_d16   ( cbuf, 0x0400 );
  2855     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2856     // // test rax,0x0400
  2857     // emit_opcode( cbuf, 0xA9 );
  2858     // emit_d32   ( cbuf, 0x00000400 );
  2859     //
  2860     // jz exit (no unordered comparison)
  2861     emit_opcode( cbuf, 0x74 );
  2862     emit_d8    ( cbuf, 0x02 );
  2863     // mov ah,1 - treat as LT case (set carry flag)
  2864     emit_opcode( cbuf, 0xB4 );
  2865     emit_d8    ( cbuf, 0x01 );
  2866     // sahf
  2867     emit_opcode( cbuf, 0x9E);
  2868   %}
  2870   enc_class cmpF_P6_fixup() %{
  2871     // Fixup the integer flags in case comparison involved a NaN
  2872     //
  2873     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2874     emit_opcode( cbuf, 0x7B );
  2875     emit_d8    ( cbuf, 0x03 );
  2876     // MOV AH,1 - treat as LT case (set carry flag)
  2877     emit_opcode( cbuf, 0xB4 );
  2878     emit_d8    ( cbuf, 0x01 );
  2879     // SAHF
  2880     emit_opcode( cbuf, 0x9E);
  2881     // NOP     // target for branch to avoid branch to branch
  2882     emit_opcode( cbuf, 0x90);
  2883   %}
  2885 //     fnstsw_ax();
  2886 //     sahf();
  2887 //     movl(dst, nan_result);
  2888 //     jcc(Assembler::parity, exit);
  2889 //     movl(dst, less_result);
  2890 //     jcc(Assembler::below, exit);
  2891 //     movl(dst, equal_result);
  2892 //     jcc(Assembler::equal, exit);
  2893 //     movl(dst, greater_result);
  2895 // less_result     =  1;
  2896 // greater_result  = -1;
  2897 // equal_result    = 0;
  2898 // nan_result      = -1;
  2900   enc_class CmpF_Result(eRegI dst) %{
  2901     // fnstsw_ax();
  2902     emit_opcode( cbuf, 0xDF);
  2903     emit_opcode( cbuf, 0xE0);
  2904     // sahf
  2905     emit_opcode( cbuf, 0x9E);
  2906     // movl(dst, nan_result);
  2907     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2908     emit_d32( cbuf, -1 );
  2909     // jcc(Assembler::parity, exit);
  2910     emit_opcode( cbuf, 0x7A );
  2911     emit_d8    ( cbuf, 0x13 );
  2912     // movl(dst, less_result);
  2913     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2914     emit_d32( cbuf, -1 );
  2915     // jcc(Assembler::below, exit);
  2916     emit_opcode( cbuf, 0x72 );
  2917     emit_d8    ( cbuf, 0x0C );
  2918     // movl(dst, equal_result);
  2919     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2920     emit_d32( cbuf, 0 );
  2921     // jcc(Assembler::equal, exit);
  2922     emit_opcode( cbuf, 0x74 );
  2923     emit_d8    ( cbuf, 0x05 );
  2924     // movl(dst, greater_result);
  2925     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2926     emit_d32( cbuf, 1 );
  2927   %}
  2930   // XMM version of CmpF_Result. Because the XMM compare
  2931   // instructions set the EFLAGS directly. It becomes simpler than
  2932   // the float version above.
  2933   enc_class CmpX_Result(eRegI dst) %{
  2934     MacroAssembler _masm(&cbuf);
  2935     Label nan, inc, done;
  2937     __ jccb(Assembler::parity, nan);
  2938     __ jccb(Assembler::equal,  done);
  2939     __ jccb(Assembler::above,  inc);
  2940     __ bind(nan);
  2941     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2942     __ jmpb(done);
  2943     __ bind(inc);
  2944     __ increment(as_Register($dst$$reg)); // NO L qqq
  2945     __ bind(done);
  2946   %}
  2948   // Compare the longs and set flags
  2949   // BROKEN!  Do Not use as-is
  2950   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2951     // CMP    $src1.hi,$src2.hi
  2952     emit_opcode( cbuf, 0x3B );
  2953     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2954     // JNE,s  done
  2955     emit_opcode(cbuf,0x75);
  2956     emit_d8(cbuf, 2 );
  2957     // CMP    $src1.lo,$src2.lo
  2958     emit_opcode( cbuf, 0x3B );
  2959     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2960 // done:
  2961   %}
  2963   enc_class convert_int_long( regL dst, eRegI src ) %{
  2964     // mov $dst.lo,$src
  2965     int dst_encoding = $dst$$reg;
  2966     int src_encoding = $src$$reg;
  2967     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2968     // mov $dst.hi,$src
  2969     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2970     // sar $dst.hi,31
  2971     emit_opcode( cbuf, 0xC1 );
  2972     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2973     emit_d8(cbuf, 0x1F );
  2974   %}
  2976   enc_class convert_long_double( eRegL src ) %{
  2977     // push $src.hi
  2978     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2979     // push $src.lo
  2980     emit_opcode(cbuf, 0x50+$src$$reg  );
  2981     // fild 64-bits at [SP]
  2982     emit_opcode(cbuf,0xdf);
  2983     emit_d8(cbuf, 0x6C);
  2984     emit_d8(cbuf, 0x24);
  2985     emit_d8(cbuf, 0x00);
  2986     // pop stack
  2987     emit_opcode(cbuf, 0x83); // add  SP, #8
  2988     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2989     emit_d8(cbuf, 0x8);
  2990   %}
  2992   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2993     // IMUL   EDX:EAX,$src1
  2994     emit_opcode( cbuf, 0xF7 );
  2995     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2996     // SAR    EDX,$cnt-32
  2997     int shift_count = ((int)$cnt$$constant) - 32;
  2998     if (shift_count > 0) {
  2999       emit_opcode(cbuf, 0xC1);
  3000       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  3001       emit_d8(cbuf, shift_count);
  3003   %}
  3005   // this version doesn't have add sp, 8
  3006   enc_class convert_long_double2( eRegL src ) %{
  3007     // push $src.hi
  3008     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3009     // push $src.lo
  3010     emit_opcode(cbuf, 0x50+$src$$reg  );
  3011     // fild 64-bits at [SP]
  3012     emit_opcode(cbuf,0xdf);
  3013     emit_d8(cbuf, 0x6C);
  3014     emit_d8(cbuf, 0x24);
  3015     emit_d8(cbuf, 0x00);
  3016   %}
  3018   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3019     // Basic idea: long = (long)int * (long)int
  3020     // IMUL EDX:EAX, src
  3021     emit_opcode( cbuf, 0xF7 );
  3022     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3023   %}
  3025   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3026     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3027     // MUL EDX:EAX, src
  3028     emit_opcode( cbuf, 0xF7 );
  3029     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3030   %}
  3032   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3033     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3034     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3035     // MOV    $tmp,$src.lo
  3036     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3037     // IMUL   $tmp,EDX
  3038     emit_opcode( cbuf, 0x0F );
  3039     emit_opcode( cbuf, 0xAF );
  3040     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3041     // MOV    EDX,$src.hi
  3042     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3043     // IMUL   EDX,EAX
  3044     emit_opcode( cbuf, 0x0F );
  3045     emit_opcode( cbuf, 0xAF );
  3046     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3047     // ADD    $tmp,EDX
  3048     emit_opcode( cbuf, 0x03 );
  3049     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3050     // MUL   EDX:EAX,$src.lo
  3051     emit_opcode( cbuf, 0xF7 );
  3052     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3053     // ADD    EDX,ESI
  3054     emit_opcode( cbuf, 0x03 );
  3055     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3056   %}
  3058   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3059     // Basic idea: lo(result) = lo(src * y_lo)
  3060     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3061     // IMUL   $tmp,EDX,$src
  3062     emit_opcode( cbuf, 0x6B );
  3063     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3064     emit_d8( cbuf, (int)$src$$constant );
  3065     // MOV    EDX,$src
  3066     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3067     emit_d32( cbuf, (int)$src$$constant );
  3068     // MUL   EDX:EAX,EDX
  3069     emit_opcode( cbuf, 0xF7 );
  3070     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3071     // ADD    EDX,ESI
  3072     emit_opcode( cbuf, 0x03 );
  3073     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3074   %}
  3076   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3077     // PUSH src1.hi
  3078     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3079     // PUSH src1.lo
  3080     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3081     // PUSH src2.hi
  3082     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3083     // PUSH src2.lo
  3084     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3085     // CALL directly to the runtime
  3086     cbuf.set_inst_mark();
  3087     emit_opcode(cbuf,0xE8);       // Call into runtime
  3088     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3089     // Restore stack
  3090     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3091     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3092     emit_d8(cbuf, 4*4);
  3093   %}
  3095   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3096     // PUSH src1.hi
  3097     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3098     // PUSH src1.lo
  3099     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3100     // PUSH src2.hi
  3101     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3102     // PUSH src2.lo
  3103     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3104     // CALL directly to the runtime
  3105     cbuf.set_inst_mark();
  3106     emit_opcode(cbuf,0xE8);       // Call into runtime
  3107     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3108     // Restore stack
  3109     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3110     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3111     emit_d8(cbuf, 4*4);
  3112   %}
  3114   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3115     // MOV   $tmp,$src.lo
  3116     emit_opcode(cbuf, 0x8B);
  3117     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3118     // OR    $tmp,$src.hi
  3119     emit_opcode(cbuf, 0x0B);
  3120     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3121   %}
  3123   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3124     // CMP    $src1.lo,$src2.lo
  3125     emit_opcode( cbuf, 0x3B );
  3126     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3127     // JNE,s  skip
  3128     emit_cc(cbuf, 0x70, 0x5);
  3129     emit_d8(cbuf,2);
  3130     // CMP    $src1.hi,$src2.hi
  3131     emit_opcode( cbuf, 0x3B );
  3132     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3133   %}
  3135   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3136     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3137     emit_opcode( cbuf, 0x3B );
  3138     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3139     // MOV    $tmp,$src1.hi
  3140     emit_opcode( cbuf, 0x8B );
  3141     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3142     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3143     emit_opcode( cbuf, 0x1B );
  3144     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3145   %}
  3147   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3148     // XOR    $tmp,$tmp
  3149     emit_opcode(cbuf,0x33);  // XOR
  3150     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3151     // CMP    $tmp,$src.lo
  3152     emit_opcode( cbuf, 0x3B );
  3153     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3154     // SBB    $tmp,$src.hi
  3155     emit_opcode( cbuf, 0x1B );
  3156     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3157   %}
  3159  // Sniff, sniff... smells like Gnu Superoptimizer
  3160   enc_class neg_long( eRegL dst ) %{
  3161     emit_opcode(cbuf,0xF7);    // NEG hi
  3162     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3163     emit_opcode(cbuf,0xF7);    // NEG lo
  3164     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3165     emit_opcode(cbuf,0x83);    // SBB hi,0
  3166     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3167     emit_d8    (cbuf,0 );
  3168   %}
  3170   enc_class movq_ld(regXD dst, memory mem) %{
  3171     MacroAssembler _masm(&cbuf);
  3172     __ movq($dst$$XMMRegister, $mem$$Address);
  3173   %}
  3175   enc_class movq_st(memory mem, regXD src) %{
  3176     MacroAssembler _masm(&cbuf);
  3177     __ movq($mem$$Address, $src$$XMMRegister);
  3178   %}
  3180   enc_class pshufd_8x8(regX dst, regX src) %{
  3181     MacroAssembler _masm(&cbuf);
  3183     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3184     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3185     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3186   %}
  3188   enc_class pshufd_4x16(regX dst, regX src) %{
  3189     MacroAssembler _masm(&cbuf);
  3191     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3192   %}
  3194   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3195     MacroAssembler _masm(&cbuf);
  3197     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3198   %}
  3200   enc_class pxor(regXD dst, regXD src) %{
  3201     MacroAssembler _masm(&cbuf);
  3203     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3204   %}
  3206   enc_class mov_i2x(regXD dst, eRegI src) %{
  3207     MacroAssembler _masm(&cbuf);
  3209     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3210   %}
  3213   // Because the transitions from emitted code to the runtime
  3214   // monitorenter/exit helper stubs are so slow it's critical that
  3215   // we inline both the stack-locking fast-path and the inflated fast path.
  3216   //
  3217   // See also: cmpFastLock and cmpFastUnlock.
  3218   //
  3219   // What follows is a specialized inline transliteration of the code
  3220   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3221   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3222   // at startup-time.  These methods would accept arguments as
  3223   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3224   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3225   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3226   // In practice, however, the # of lock sites is bounded and is usually small.
  3227   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3228   // if the processor uses simple bimodal branch predictors keyed by EIP
  3229   // Since the helper routines would be called from multiple synchronization
  3230   // sites.
  3231   //
  3232   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3233   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3234   // to those specialized methods.  That'd give us a mostly platform-independent
  3235   // implementation that the JITs could optimize and inline at their pleasure.
  3236   // Done correctly, the only time we'd need to cross to native could would be
  3237   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3238   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3239   // (b) explicit barriers or fence operations.
  3240   //
  3241   // TODO:
  3242   //
  3243   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3244   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3245   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3246   //    the lock operators would typically be faster than reifying Self.
  3247   //
  3248   // *  Ideally I'd define the primitives as:
  3249   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3250   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3251   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3252   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3253   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3254   //    sub-optimal code near the synchronization site.
  3255   //
  3256   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3257   //    Alternately, use a better sp-proximity test.
  3258   //
  3259   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3260   //    Either one is sufficient to uniquely identify a thread.
  3261   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3262   //
  3263   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3264   //    object is locked by the calling thread but the waitlist is empty.
  3265   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3266   //
  3267   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3268   //    But beware of excessive branch density on AMD Opterons.
  3269   //
  3270   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3271   //    or failure of the fast-path.  If the fast-path fails then we pass
  3272   //    control to the slow-path, typically in C.  In Fast_Lock and
  3273   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3274   //    will emit a conditional branch immediately after the node.
  3275   //    So we have branches to branches and lots of ICC.ZF games.
  3276   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3277   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3278   //    will drop through the node.  ICC.ZF is undefined at exit.
  3279   //    In the case of failure, the node will branch directly to the
  3280   //    FailureLabel
  3283   // obj: object to lock
  3284   // box: on-stack box address (displaced header location) - KILLED
  3285   // rax,: tmp -- KILLED
  3286   // scr: tmp -- KILLED
  3287   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3289     Register objReg = as_Register($obj$$reg);
  3290     Register boxReg = as_Register($box$$reg);
  3291     Register tmpReg = as_Register($tmp$$reg);
  3292     Register scrReg = as_Register($scr$$reg);
  3294     // Ensure the register assignents are disjoint
  3295     guarantee (objReg != boxReg, "") ;
  3296     guarantee (objReg != tmpReg, "") ;
  3297     guarantee (objReg != scrReg, "") ;
  3298     guarantee (boxReg != tmpReg, "") ;
  3299     guarantee (boxReg != scrReg, "") ;
  3300     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3302     MacroAssembler masm(&cbuf);
  3304     if (_counters != NULL) {
  3305       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3307     if (EmitSync & 1) {
  3308         // set box->dhw = unused_mark (3)
  3309         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3310         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3311         masm.cmpptr (rsp, (int32_t)0) ;                        
  3312     } else 
  3313     if (EmitSync & 2) { 
  3314         Label DONE_LABEL ;           
  3315         if (UseBiasedLocking) {
  3316            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3317            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3320         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3321         masm.orptr (tmpReg, 0x1);
  3322         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3323         if (os::is_MP()) { masm.lock();  }
  3324         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3325         masm.jcc(Assembler::equal, DONE_LABEL);
  3326         // Recursive locking
  3327         masm.subptr(tmpReg, rsp);
  3328         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3329         masm.movptr(Address(boxReg, 0), tmpReg);
  3330         masm.bind(DONE_LABEL) ; 
  3331     } else {  
  3332       // Possible cases that we'll encounter in fast_lock 
  3333       // ------------------------------------------------
  3334       // * Inflated
  3335       //    -- unlocked
  3336       //    -- Locked
  3337       //       = by self
  3338       //       = by other
  3339       // * biased
  3340       //    -- by Self
  3341       //    -- by other
  3342       // * neutral
  3343       // * stack-locked
  3344       //    -- by self
  3345       //       = sp-proximity test hits
  3346       //       = sp-proximity test generates false-negative
  3347       //    -- by other
  3348       //
  3350       Label IsInflated, DONE_LABEL, PopDone ;
  3352       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3353       // order to reduce the number of conditional branches in the most common cases.
  3354       // Beware -- there's a subtle invariant that fetch of the markword
  3355       // at [FETCH], below, will never observe a biased encoding (*101b).
  3356       // If this invariant is not held we risk exclusion (safety) failure.
  3357       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3358         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3361       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3362       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3363       masm.jccb  (Assembler::notZero, IsInflated) ;
  3365       // Attempt stack-locking ...
  3366       masm.orptr (tmpReg, 0x1);
  3367       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3368       if (os::is_MP()) { masm.lock();  }
  3369       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3370       if (_counters != NULL) {
  3371         masm.cond_inc32(Assembler::equal,
  3372                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3374       masm.jccb (Assembler::equal, DONE_LABEL);
  3376       // Recursive locking
  3377       masm.subptr(tmpReg, rsp);
  3378       masm.andptr(tmpReg, 0xFFFFF003 );
  3379       masm.movptr(Address(boxReg, 0), tmpReg);
  3380       if (_counters != NULL) {
  3381         masm.cond_inc32(Assembler::equal,
  3382                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3384       masm.jmp  (DONE_LABEL) ;
  3386       masm.bind (IsInflated) ;
  3388       // The object is inflated.
  3389       //
  3390       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3391       //   Use markOopDesc::monitor_value instead of "2".
  3392       //   use markOop::unused_mark() instead of "3".
  3393       // The tmpReg value is an objectMonitor reference ORed with
  3394       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3395       // objectmonitor pointer by masking off the "2" bit or we can just
  3396       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3397       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3398       //
  3399       // I use the latter as it avoids AGI stalls.
  3400       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3401       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3402       //
  3403       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3405       // boxReg refers to the on-stack BasicLock in the current frame.
  3406       // We'd like to write:
  3407       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3408       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3409       // additional latency as we have another ST in the store buffer that must drain.
  3411       if (EmitSync & 8192) { 
  3412          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3413          masm.get_thread (scrReg) ; 
  3414          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3415          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3416          if (os::is_MP()) { masm.lock(); } 
  3417          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3418       } else 
  3419       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3420          masm.movptr(scrReg, boxReg) ; 
  3421          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3423          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3424          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3425             // prefetchw [eax + Offset(_owner)-2]
  3426             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3429          if ((EmitSync & 64) == 0) {
  3430            // Optimistic form: consider XORL tmpReg,tmpReg
  3431            masm.movptr(tmpReg, NULL_WORD) ; 
  3432          } else { 
  3433            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3434            // Test-And-CAS instead of CAS
  3435            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3436            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3437            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3440          // Appears unlocked - try to swing _owner from null to non-null.
  3441          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3442          // to CAS the register containing Self into m->Owner.
  3443          // But we don't have enough registers, so instead we can either try to CAS
  3444          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3445          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3446          // (rsp or the address of the box) into  m->owner is harmless.
  3447          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3448          if (os::is_MP()) { masm.lock();  }
  3449          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3450          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3451          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3452          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3453          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3454          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3456          // If the CAS fails we can either retry or pass control to the slow-path.  
  3457          // We use the latter tactic.  
  3458          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3459          // If the CAS was successful ...
  3460          //   Self has acquired the lock
  3461          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3462          // Intentional fall-through into DONE_LABEL ...
  3463       } else {
  3464          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3465          masm.movptr(boxReg, tmpReg) ; 
  3467          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3468          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3469             // prefetchw [eax + Offset(_owner)-2]
  3470             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3473          if ((EmitSync & 64) == 0) {
  3474            // Optimistic form
  3475            masm.xorptr  (tmpReg, tmpReg) ; 
  3476          } else { 
  3477            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3478            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3479            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3480            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3483          // Appears unlocked - try to swing _owner from null to non-null.
  3484          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3485          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3486          masm.get_thread (scrReg) ;
  3487          if (os::is_MP()) { masm.lock(); }
  3488          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3490          // If the CAS fails we can either retry or pass control to the slow-path.
  3491          // We use the latter tactic.
  3492          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3493          // If the CAS was successful ...
  3494          //   Self has acquired the lock
  3495          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3496          // Intentional fall-through into DONE_LABEL ...
  3499       // DONE_LABEL is a hot target - we'd really like to place it at the
  3500       // start of cache line by padding with NOPs.
  3501       // See the AMD and Intel software optimization manuals for the
  3502       // most efficient "long" NOP encodings.
  3503       // Unfortunately none of our alignment mechanisms suffice.
  3504       masm.bind(DONE_LABEL);
  3506       // Avoid branch-to-branch on AMD processors
  3507       // This appears to be superstition.
  3508       if (EmitSync & 32) masm.nop() ;
  3511       // At DONE_LABEL the icc ZFlag is set as follows ...
  3512       // Fast_Unlock uses the same protocol.
  3513       // ZFlag == 1 -> Success
  3514       // ZFlag == 0 -> Failure - force control through the slow-path
  3516   %}
  3518   // obj: object to unlock
  3519   // box: box address (displaced header location), killed.  Must be EAX.
  3520   // rbx,: killed tmp; cannot be obj nor box.
  3521   //
  3522   // Some commentary on balanced locking:
  3523   //
  3524   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3525   // Methods that don't have provably balanced locking are forced to run in the
  3526   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3527   // The interpreter provides two properties:
  3528   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3529   //      objects acquired the current activation (frame).  Recall that the
  3530   //      interpreter maintains an on-stack list of locks currently held by
  3531   //      a frame.
  3532   // I2:  If a method attempts to unlock an object that is not held by the
  3533   //      the frame the interpreter throws IMSX.
  3534   //
  3535   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3536   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3537   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3538   // is still locked by A().
  3539   //
  3540   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3541   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3542   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3543   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3545   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3547     Register objReg = as_Register($obj$$reg);
  3548     Register boxReg = as_Register($box$$reg);
  3549     Register tmpReg = as_Register($tmp$$reg);
  3551     guarantee (objReg != boxReg, "") ;
  3552     guarantee (objReg != tmpReg, "") ;
  3553     guarantee (boxReg != tmpReg, "") ;
  3554     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3555     MacroAssembler masm(&cbuf);
  3557     if (EmitSync & 4) {
  3558       // Disable - inhibit all inlining.  Force control through the slow-path
  3559       masm.cmpptr (rsp, 0) ; 
  3560     } else 
  3561     if (EmitSync & 8) {
  3562       Label DONE_LABEL ;
  3563       if (UseBiasedLocking) {
  3564          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3566       // classic stack-locking code ...
  3567       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3568       masm.testptr(tmpReg, tmpReg) ;
  3569       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3570       if (os::is_MP()) { masm.lock(); }
  3571       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3572       masm.bind(DONE_LABEL);
  3573     } else {
  3574       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3576       // Critically, the biased locking test must have precedence over
  3577       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3578       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3579          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3582       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3583       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3584       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3586       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3587       masm.jccb  (Assembler::zero, Stacked) ;
  3589       masm.bind  (Inflated) ;
  3590       // It's inflated.
  3591       // Despite our balanced locking property we still check that m->_owner == Self
  3592       // as java routines or native JNI code called by this thread might
  3593       // have released the lock.
  3594       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3595       // state in _succ so we can avoid fetching EntryList|cxq.
  3596       //
  3597       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3598       // such as recursive enter and exit -- but we have to be wary of
  3599       // I$ bloat, T$ effects and BP$ effects.
  3600       //
  3601       // If there's no contention try a 1-0 exit.  That is, exit without
  3602       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3603       // we detect and recover from the race that the 1-0 exit admits.
  3604       //
  3605       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3606       // before it STs null into _owner, releasing the lock.  Updates
  3607       // to data protected by the critical section must be visible before
  3608       // we drop the lock (and thus before any other thread could acquire
  3609       // the lock and observe the fields protected by the lock).
  3610       // IA32's memory-model is SPO, so STs are ordered with respect to
  3611       // each other and there's no need for an explicit barrier (fence).
  3612       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3614       masm.get_thread (boxReg) ;
  3615       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3616         // prefetchw [ebx + Offset(_owner)-2]
  3617         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3620       // Note that we could employ various encoding schemes to reduce
  3621       // the number of loads below (currently 4) to just 2 or 3.
  3622       // Refer to the comments in synchronizer.cpp.
  3623       // In practice the chain of fetches doesn't seem to impact performance, however.
  3624       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3625          // Attempt to reduce branch density - AMD's branch predictor.
  3626          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3627          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3628          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3629          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3630          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3631          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3632          masm.jmpb  (DONE_LABEL) ; 
  3633       } else { 
  3634          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3635          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3636          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3637          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3638          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3639          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3640          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3641          masm.jmpb  (DONE_LABEL) ; 
  3644       // The Following code fragment (EmitSync & 65536) improves the performance of
  3645       // contended applications and contended synchronization microbenchmarks.
  3646       // Unfortunately the emission of the code - even though not executed - causes regressions
  3647       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3648       // with an equal number of never-executed NOPs results in the same regression.
  3649       // We leave it off by default.
  3651       if ((EmitSync & 65536) != 0) {
  3652          Label LSuccess, LGoSlowPath ;
  3654          masm.bind  (CheckSucc) ;
  3656          // Optional pre-test ... it's safe to elide this
  3657          if ((EmitSync & 16) == 0) { 
  3658             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3659             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3662          // We have a classic Dekker-style idiom:
  3663          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3664          // There are a number of ways to implement the barrier:
  3665          // (1) lock:andl &m->_owner, 0
  3666          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3667          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3668          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3669          // (2) If supported, an explicit MFENCE is appealing.
  3670          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3671          //     particularly if the write-buffer is full as might be the case if
  3672          //     if stores closely precede the fence or fence-equivalent instruction.
  3673          //     In more modern implementations MFENCE appears faster, however.
  3674          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3675          //     The $lines underlying the top-of-stack should be in M-state.
  3676          //     The locked add instruction is serializing, of course.
  3677          // (4) Use xchg, which is serializing
  3678          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3679          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3680          //     The integer condition codes will tell us if succ was 0.
  3681          //     Since _succ and _owner should reside in the same $line and
  3682          //     we just stored into _owner, it's likely that the $line
  3683          //     remains in M-state for the lock:orl.
  3684          //
  3685          // We currently use (3), although it's likely that switching to (2)
  3686          // is correct for the future.
  3688          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3689          if (os::is_MP()) { 
  3690             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3691               masm.mfence();
  3692             } else { 
  3693               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3696          // Ratify _succ remains non-null
  3697          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3698          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3700          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3701          if (os::is_MP()) { masm.lock(); }
  3702          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3703          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3704          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3705          // Now install Self over rsp.  This is safe as we're transitioning from
  3706          // non-null to non=null
  3707          masm.get_thread (boxReg) ;
  3708          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3709          // Intentional fall-through into LGoSlowPath ...
  3711          masm.bind  (LGoSlowPath) ; 
  3712          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3713          masm.jmpb  (DONE_LABEL) ; 
  3715          masm.bind  (LSuccess) ; 
  3716          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3717          masm.jmpb  (DONE_LABEL) ; 
  3720       masm.bind (Stacked) ;
  3721       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3722       // It must be stack-locked.
  3723       // Try to reset the header to displaced header.
  3724       // The "box" value on the stack is stable, so we can reload
  3725       // and be assured we observe the same value as above.
  3726       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3727       if (os::is_MP()) {   masm.lock();    }
  3728       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3729       // Intention fall-thru into DONE_LABEL
  3732       // DONE_LABEL is a hot target - we'd really like to place it at the
  3733       // start of cache line by padding with NOPs.
  3734       // See the AMD and Intel software optimization manuals for the
  3735       // most efficient "long" NOP encodings.
  3736       // Unfortunately none of our alignment mechanisms suffice.
  3737       if ((EmitSync & 65536) == 0) {
  3738          masm.bind (CheckSucc) ;
  3740       masm.bind(DONE_LABEL);
  3742       // Avoid branch to branch on AMD processors
  3743       if (EmitSync & 32768) { masm.nop() ; }
  3745   %}
  3748   enc_class enc_pop_rdx() %{
  3749     emit_opcode(cbuf,0x5A);
  3750   %}
  3752   enc_class enc_rethrow() %{
  3753     cbuf.set_inst_mark();
  3754     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3755     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
  3756                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3757   %}
  3760   // Convert a double to an int.  Java semantics require we do complex
  3761   // manglelations in the corner cases.  So we set the rounding mode to
  3762   // 'zero', store the darned double down as an int, and reset the
  3763   // rounding mode to 'nearest'.  The hardware throws an exception which
  3764   // patches up the correct value directly to the stack.
  3765   enc_class D2I_encoding( regD src ) %{
  3766     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3767     // exceptions here, so that a NAN or other corner-case value will
  3768     // thrown an exception (but normal values get converted at full speed).
  3769     // However, I2C adapters and other float-stack manglers leave pending
  3770     // invalid-op exceptions hanging.  We would have to clear them before
  3771     // enabling them and that is more expensive than just testing for the
  3772     // invalid value Intel stores down in the corner cases.
  3773     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3774     emit_opcode(cbuf,0x2D);
  3775     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3776     // Allocate a word
  3777     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3778     emit_opcode(cbuf,0xEC);
  3779     emit_d8(cbuf,0x04);
  3780     // Encoding assumes a double has been pushed into FPR0.
  3781     // Store down the double as an int, popping the FPU stack
  3782     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3783     emit_opcode(cbuf,0x1C);
  3784     emit_d8(cbuf,0x24);
  3785     // Restore the rounding mode; mask the exception
  3786     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3787     emit_opcode(cbuf,0x2D);
  3788     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3789         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3790         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3792     // Load the converted int; adjust CPU stack
  3793     emit_opcode(cbuf,0x58);       // POP EAX
  3794     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3795     emit_d32   (cbuf,0x80000000); //         0x80000000
  3796     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3797     emit_d8    (cbuf,0x07);       // Size of slow_call
  3798     // Push src onto stack slow-path
  3799     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3800     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3801     // CALL directly to the runtime
  3802     cbuf.set_inst_mark();
  3803     emit_opcode(cbuf,0xE8);       // Call into runtime
  3804     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3805     // Carry on here...
  3806   %}
  3808   enc_class D2L_encoding( regD src ) %{
  3809     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3810     emit_opcode(cbuf,0x2D);
  3811     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3812     // Allocate a word
  3813     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3814     emit_opcode(cbuf,0xEC);
  3815     emit_d8(cbuf,0x08);
  3816     // Encoding assumes a double has been pushed into FPR0.
  3817     // Store down the double as a long, popping the FPU stack
  3818     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3819     emit_opcode(cbuf,0x3C);
  3820     emit_d8(cbuf,0x24);
  3821     // Restore the rounding mode; mask the exception
  3822     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3823     emit_opcode(cbuf,0x2D);
  3824     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3825         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3826         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3828     // Load the converted int; adjust CPU stack
  3829     emit_opcode(cbuf,0x58);       // POP EAX
  3830     emit_opcode(cbuf,0x5A);       // POP EDX
  3831     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3832     emit_d8    (cbuf,0xFA);       // rdx
  3833     emit_d32   (cbuf,0x80000000); //         0x80000000
  3834     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3835     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3836     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3837     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3838     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3839     emit_d8    (cbuf,0x07);       // Size of slow_call
  3840     // Push src onto stack slow-path
  3841     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3842     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3843     // CALL directly to the runtime
  3844     cbuf.set_inst_mark();
  3845     emit_opcode(cbuf,0xE8);       // Call into runtime
  3846     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3847     // Carry on here...
  3848   %}
  3850   enc_class X2L_encoding( regX src ) %{
  3851     // Allocate a word
  3852     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3853     emit_opcode(cbuf,0xEC);
  3854     emit_d8(cbuf,0x08);
  3856     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3857     emit_opcode  (cbuf, 0x0F );
  3858     emit_opcode  (cbuf, 0x11 );
  3859     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3861     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3862     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3864     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3865     emit_opcode(cbuf,0x2D);
  3866     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3868     // Encoding assumes a double has been pushed into FPR0.
  3869     // Store down the double as a long, popping the FPU stack
  3870     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3871     emit_opcode(cbuf,0x3C);
  3872     emit_d8(cbuf,0x24);
  3874     // Restore the rounding mode; mask the exception
  3875     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3876     emit_opcode(cbuf,0x2D);
  3877     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3878       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3879       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3881     // Load the converted int; adjust CPU stack
  3882     emit_opcode(cbuf,0x58);      // POP EAX
  3884     emit_opcode(cbuf,0x5A);      // POP EDX
  3886     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3887     emit_d8    (cbuf,0xFA);      // rdx
  3888     emit_d32   (cbuf,0x80000000);//         0x80000000
  3890     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3891     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3893     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3894     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3896     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3897     emit_d8    (cbuf,0x13);      // Size of slow_call
  3899     // Allocate a word
  3900     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3901     emit_opcode(cbuf,0xEC);
  3902     emit_d8(cbuf,0x04);
  3904     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3905     emit_opcode  (cbuf, 0x0F );
  3906     emit_opcode  (cbuf, 0x11 );
  3907     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3909     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3910     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3912     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3913     emit_opcode(cbuf,0xC4);
  3914     emit_d8(cbuf,0x04);
  3916     // CALL directly to the runtime
  3917     cbuf.set_inst_mark();
  3918     emit_opcode(cbuf,0xE8);       // Call into runtime
  3919     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3920     // Carry on here...
  3921   %}
  3923   enc_class XD2L_encoding( regXD src ) %{
  3924     // Allocate a word
  3925     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3926     emit_opcode(cbuf,0xEC);
  3927     emit_d8(cbuf,0x08);
  3929     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3930     emit_opcode  (cbuf, 0x0F );
  3931     emit_opcode  (cbuf, 0x11 );
  3932     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3934     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3935     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3937     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3938     emit_opcode(cbuf,0x2D);
  3939     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3941     // Encoding assumes a double has been pushed into FPR0.
  3942     // Store down the double as a long, popping the FPU stack
  3943     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3944     emit_opcode(cbuf,0x3C);
  3945     emit_d8(cbuf,0x24);
  3947     // Restore the rounding mode; mask the exception
  3948     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3949     emit_opcode(cbuf,0x2D);
  3950     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3951       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3952       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3954     // Load the converted int; adjust CPU stack
  3955     emit_opcode(cbuf,0x58);      // POP EAX
  3957     emit_opcode(cbuf,0x5A);      // POP EDX
  3959     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3960     emit_d8    (cbuf,0xFA);      // rdx
  3961     emit_d32   (cbuf,0x80000000); //         0x80000000
  3963     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3964     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3966     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3967     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3969     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3970     emit_d8    (cbuf,0x13);      // Size of slow_call
  3972     // Push src onto stack slow-path
  3973     // Allocate a word
  3974     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3975     emit_opcode(cbuf,0xEC);
  3976     emit_d8(cbuf,0x08);
  3978     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3979     emit_opcode  (cbuf, 0x0F );
  3980     emit_opcode  (cbuf, 0x11 );
  3981     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3983     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3984     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3986     emit_opcode(cbuf,0x83);      // ADD ESP,8
  3987     emit_opcode(cbuf,0xC4);
  3988     emit_d8(cbuf,0x08);
  3990     // CALL directly to the runtime
  3991     cbuf.set_inst_mark();
  3992     emit_opcode(cbuf,0xE8);      // Call into runtime
  3993     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3994     // Carry on here...
  3995   %}
  3997   enc_class D2X_encoding( regX dst, regD src ) %{
  3998     // Allocate a word
  3999     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4000     emit_opcode(cbuf,0xEC);
  4001     emit_d8(cbuf,0x04);
  4002     int pop = 0x02;
  4003     if ($src$$reg != FPR1L_enc) {
  4004       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4005       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4006       pop = 0x03;
  4008     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4010     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4011     emit_opcode  (cbuf, 0x0F );
  4012     emit_opcode  (cbuf, 0x10 );
  4013     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4015     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4016     emit_opcode(cbuf,0xC4);
  4017     emit_d8(cbuf,0x04);
  4018     // Carry on here...
  4019   %}
  4021   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4022     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4024     // Compare the result to see if we need to go to the slow path
  4025     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4026     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4027     emit_d32   (cbuf,0x80000000); //         0x80000000
  4029     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4030     emit_d8    (cbuf,0x13);       // Size of slow_call
  4031     // Store xmm to a temp memory
  4032     // location and push it onto stack.
  4034     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4035     emit_opcode(cbuf,0xEC);
  4036     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4038     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4039     emit_opcode  (cbuf, 0x0F );
  4040     emit_opcode  (cbuf, 0x11 );
  4041     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4043     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4044     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4046     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4047     emit_opcode(cbuf,0xC4);
  4048     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4050     // CALL directly to the runtime
  4051     cbuf.set_inst_mark();
  4052     emit_opcode(cbuf,0xE8);       // Call into runtime
  4053     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4055     // Carry on here...
  4056   %}
  4058   enc_class X2D_encoding( regD dst, regX src ) %{
  4059     // Allocate a word
  4060     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4061     emit_opcode(cbuf,0xEC);
  4062     emit_d8(cbuf,0x04);
  4064     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4065     emit_opcode  (cbuf, 0x0F );
  4066     emit_opcode  (cbuf, 0x11 );
  4067     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4069     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4070     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4072     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4073     emit_opcode(cbuf,0xC4);
  4074     emit_d8(cbuf,0x04);
  4076     // Carry on here...
  4077   %}
  4079   enc_class AbsXF_encoding(regX dst) %{
  4080     address signmask_address=(address)float_signmask_pool;
  4081     // andpd:\tANDPS  $dst,[signconst]
  4082     emit_opcode(cbuf, 0x0F);
  4083     emit_opcode(cbuf, 0x54);
  4084     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4085     emit_d32(cbuf, (int)signmask_address);
  4086   %}
  4088   enc_class AbsXD_encoding(regXD dst) %{
  4089     address signmask_address=(address)double_signmask_pool;
  4090     // andpd:\tANDPD  $dst,[signconst]
  4091     emit_opcode(cbuf, 0x66);
  4092     emit_opcode(cbuf, 0x0F);
  4093     emit_opcode(cbuf, 0x54);
  4094     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4095     emit_d32(cbuf, (int)signmask_address);
  4096   %}
  4098   enc_class NegXF_encoding(regX dst) %{
  4099     address signmask_address=(address)float_signflip_pool;
  4100     // andpd:\tXORPS  $dst,[signconst]
  4101     emit_opcode(cbuf, 0x0F);
  4102     emit_opcode(cbuf, 0x57);
  4103     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4104     emit_d32(cbuf, (int)signmask_address);
  4105   %}
  4107   enc_class NegXD_encoding(regXD dst) %{
  4108     address signmask_address=(address)double_signflip_pool;
  4109     // andpd:\tXORPD  $dst,[signconst]
  4110     emit_opcode(cbuf, 0x66);
  4111     emit_opcode(cbuf, 0x0F);
  4112     emit_opcode(cbuf, 0x57);
  4113     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4114     emit_d32(cbuf, (int)signmask_address);
  4115   %}
  4117   enc_class FMul_ST_reg( eRegF src1 ) %{
  4118     // Operand was loaded from memory into fp ST (stack top)
  4119     // FMUL   ST,$src  /* D8 C8+i */
  4120     emit_opcode(cbuf, 0xD8);
  4121     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4122   %}
  4124   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4125     // FADDP  ST,src2  /* D8 C0+i */
  4126     emit_opcode(cbuf, 0xD8);
  4127     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4128     //could use FADDP  src2,fpST  /* DE C0+i */
  4129   %}
  4131   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4132     // FADDP  src2,ST  /* DE C0+i */
  4133     emit_opcode(cbuf, 0xDE);
  4134     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4135   %}
  4137   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4138     // Operand has been loaded into fp ST (stack top)
  4139       // FSUB   ST,$src1
  4140       emit_opcode(cbuf, 0xD8);
  4141       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4143       // FDIV
  4144       emit_opcode(cbuf, 0xD8);
  4145       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4146   %}
  4148   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4149     // Operand was loaded from memory into fp ST (stack top)
  4150     // FADD   ST,$src  /* D8 C0+i */
  4151     emit_opcode(cbuf, 0xD8);
  4152     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4154     // FMUL  ST,src2  /* D8 C*+i */
  4155     emit_opcode(cbuf, 0xD8);
  4156     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4157   %}
  4160   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4161     // Operand was loaded from memory into fp ST (stack top)
  4162     // FADD   ST,$src  /* D8 C0+i */
  4163     emit_opcode(cbuf, 0xD8);
  4164     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4166     // FMULP  src2,ST  /* DE C8+i */
  4167     emit_opcode(cbuf, 0xDE);
  4168     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4169   %}
  4171   // Atomically load the volatile long
  4172   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4173     emit_opcode(cbuf,0xDF);
  4174     int rm_byte_opcode = 0x05;
  4175     int base     = $mem$$base;
  4176     int index    = $mem$$index;
  4177     int scale    = $mem$$scale;
  4178     int displace = $mem$$disp;
  4179     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4180     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4181     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4182   %}
  4184   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4185     { // Atomic long load
  4186       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4187       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4188       emit_opcode(cbuf,0x0F);
  4189       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4190       int base     = $mem$$base;
  4191       int index    = $mem$$index;
  4192       int scale    = $mem$$scale;
  4193       int displace = $mem$$disp;
  4194       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4195       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4197     { // MOVSD $dst,$tmp ! atomic long store
  4198       emit_opcode(cbuf,0xF2);
  4199       emit_opcode(cbuf,0x0F);
  4200       emit_opcode(cbuf,0x11);
  4201       int base     = $dst$$base;
  4202       int index    = $dst$$index;
  4203       int scale    = $dst$$scale;
  4204       int displace = $dst$$disp;
  4205       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4206       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4208   %}
  4210   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4211     { // Atomic long load
  4212       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4213       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4214       emit_opcode(cbuf,0x0F);
  4215       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4216       int base     = $mem$$base;
  4217       int index    = $mem$$index;
  4218       int scale    = $mem$$scale;
  4219       int displace = $mem$$disp;
  4220       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4221       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4223     { // MOVD $dst.lo,$tmp
  4224       emit_opcode(cbuf,0x66);
  4225       emit_opcode(cbuf,0x0F);
  4226       emit_opcode(cbuf,0x7E);
  4227       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4229     { // PSRLQ $tmp,32
  4230       emit_opcode(cbuf,0x66);
  4231       emit_opcode(cbuf,0x0F);
  4232       emit_opcode(cbuf,0x73);
  4233       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4234       emit_d8(cbuf, 0x20);
  4236     { // MOVD $dst.hi,$tmp
  4237       emit_opcode(cbuf,0x66);
  4238       emit_opcode(cbuf,0x0F);
  4239       emit_opcode(cbuf,0x7E);
  4240       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4242   %}
  4244   // Volatile Store Long.  Must be atomic, so move it into
  4245   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4246   // target address before the store (for null-ptr checks)
  4247   // so the memory operand is used twice in the encoding.
  4248   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4249     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4250     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
  4251     emit_opcode(cbuf,0xDF);
  4252     int rm_byte_opcode = 0x07;
  4253     int base     = $mem$$base;
  4254     int index    = $mem$$index;
  4255     int scale    = $mem$$scale;
  4256     int displace = $mem$$disp;
  4257     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4258     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4259   %}
  4261   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4262     { // Atomic long load
  4263       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4264       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4265       emit_opcode(cbuf,0x0F);
  4266       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4267       int base     = $src$$base;
  4268       int index    = $src$$index;
  4269       int scale    = $src$$scale;
  4270       int displace = $src$$disp;
  4271       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4272       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4274     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4275     { // MOVSD $mem,$tmp ! atomic long store
  4276       emit_opcode(cbuf,0xF2);
  4277       emit_opcode(cbuf,0x0F);
  4278       emit_opcode(cbuf,0x11);
  4279       int base     = $mem$$base;
  4280       int index    = $mem$$index;
  4281       int scale    = $mem$$scale;
  4282       int displace = $mem$$disp;
  4283       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4284       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4286   %}
  4288   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4289     { // MOVD $tmp,$src.lo
  4290       emit_opcode(cbuf,0x66);
  4291       emit_opcode(cbuf,0x0F);
  4292       emit_opcode(cbuf,0x6E);
  4293       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4295     { // MOVD $tmp2,$src.hi
  4296       emit_opcode(cbuf,0x66);
  4297       emit_opcode(cbuf,0x0F);
  4298       emit_opcode(cbuf,0x6E);
  4299       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4301     { // PUNPCKLDQ $tmp,$tmp2
  4302       emit_opcode(cbuf,0x66);
  4303       emit_opcode(cbuf,0x0F);
  4304       emit_opcode(cbuf,0x62);
  4305       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4307     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4308     { // MOVSD $mem,$tmp ! atomic long store
  4309       emit_opcode(cbuf,0xF2);
  4310       emit_opcode(cbuf,0x0F);
  4311       emit_opcode(cbuf,0x11);
  4312       int base     = $mem$$base;
  4313       int index    = $mem$$index;
  4314       int scale    = $mem$$scale;
  4315       int displace = $mem$$disp;
  4316       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4317       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4319   %}
  4321   // Safepoint Poll.  This polls the safepoint page, and causes an
  4322   // exception if it is not readable. Unfortunately, it kills the condition code
  4323   // in the process
  4324   // We current use TESTL [spp],EDI
  4325   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4327   enc_class Safepoint_Poll() %{
  4328     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
  4329     emit_opcode(cbuf,0x85);
  4330     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4331     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4332   %}
  4333 %}
  4336 //----------FRAME--------------------------------------------------------------
  4337 // Definition of frame structure and management information.
  4338 //
  4339 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4340 //                             |   (to get allocators register number
  4341 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4342 //  r   CALLER     |        |
  4343 //  o     |        +--------+      pad to even-align allocators stack-slot
  4344 //  w     V        |  pad0  |        numbers; owned by CALLER
  4345 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4346 //  h     ^        |   in   |  5
  4347 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4348 //  |     |        |        |  3
  4349 //  |     |        +--------+
  4350 //  V     |        | old out|      Empty on Intel, window on Sparc
  4351 //        |    old |preserve|      Must be even aligned.
  4352 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4353 //        |        |   in   |  3   area for Intel ret address
  4354 //     Owned by    |preserve|      Empty on Sparc.
  4355 //       SELF      +--------+
  4356 //        |        |  pad2  |  2   pad to align old SP
  4357 //        |        +--------+  1
  4358 //        |        | locks  |  0
  4359 //        |        +--------+----> OptoReg::stack0(), even aligned
  4360 //        |        |  pad1  | 11   pad to align new SP
  4361 //        |        +--------+
  4362 //        |        |        | 10
  4363 //        |        | spills |  9   spills
  4364 //        V        |        |  8   (pad0 slot for callee)
  4365 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4366 //        ^        |  out   |  7
  4367 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4368 //     Owned by    +--------+
  4369 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4370 //        |    new |preserve|      Must be even-aligned.
  4371 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4372 //        |        |        |
  4373 //
  4374 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4375 //         known from SELF's arguments and the Java calling convention.
  4376 //         Region 6-7 is determined per call site.
  4377 // Note 2: If the calling convention leaves holes in the incoming argument
  4378 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4379 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4380 //         incoming area, as the Java calling convention is completely under
  4381 //         the control of the AD file.  Doubles can be sorted and packed to
  4382 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4383 //         varargs C calling conventions.
  4384 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4385 //         even aligned with pad0 as needed.
  4386 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4387 //         region 6-11 is even aligned; it may be padded out more so that
  4388 //         the region from SP to FP meets the minimum stack alignment.
  4390 frame %{
  4391   // What direction does stack grow in (assumed to be same for C & Java)
  4392   stack_direction(TOWARDS_LOW);
  4394   // These three registers define part of the calling convention
  4395   // between compiled code and the interpreter.
  4396   inline_cache_reg(EAX);                // Inline Cache Register
  4397   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4399   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4400   cisc_spilling_operand_name(indOffset32);
  4402   // Number of stack slots consumed by locking an object
  4403   sync_stack_slots(1);
  4405   // Compiled code's Frame Pointer
  4406   frame_pointer(ESP);
  4407   // Interpreter stores its frame pointer in a register which is
  4408   // stored to the stack by I2CAdaptors.
  4409   // I2CAdaptors convert from interpreted java to compiled java.
  4410   interpreter_frame_pointer(EBP);
  4412   // Stack alignment requirement
  4413   // Alignment size in bytes (128-bit -> 16 bytes)
  4414   stack_alignment(StackAlignmentInBytes);
  4416   // Number of stack slots between incoming argument block and the start of
  4417   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4418   // EPILOG must remove this many slots.  Intel needs one slot for
  4419   // return address and one for rbp, (must save rbp)
  4420   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4422   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4423   // for calls to C.  Supports the var-args backing area for register parms.
  4424   varargs_C_out_slots_killed(0);
  4426   // The after-PROLOG location of the return address.  Location of
  4427   // return address specifies a type (REG or STACK) and a number
  4428   // representing the register number (i.e. - use a register name) or
  4429   // stack slot.
  4430   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4431   // Otherwise, it is above the locks and verification slot and alignment word
  4432   return_addr(STACK - 1 +
  4433               round_to(1+VerifyStackAtCalls+
  4434               Compile::current()->fixed_slots(),
  4435               (StackAlignmentInBytes/wordSize)));
  4437   // Body of function which returns an integer array locating
  4438   // arguments either in registers or in stack slots.  Passed an array
  4439   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4440   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4441   // arguments for a CALLEE.  Incoming stack arguments are
  4442   // automatically biased by the preserve_stack_slots field above.
  4443   calling_convention %{
  4444     // No difference between ingoing/outgoing just pass false
  4445     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4446   %}
  4449   // Body of function which returns an integer array locating
  4450   // arguments either in registers or in stack slots.  Passed an array
  4451   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4452   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4453   // arguments for a CALLEE.  Incoming stack arguments are
  4454   // automatically biased by the preserve_stack_slots field above.
  4455   c_calling_convention %{
  4456     // This is obviously always outgoing
  4457     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4458   %}
  4460   // Location of C & interpreter return values
  4461   c_return_value %{
  4462     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4463     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4464     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4466     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4467     // that C functions return float and double results in XMM0.
  4468     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4469       return OptoRegPair(XMM0b_num,XMM0a_num);
  4470     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4471       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4473     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4474   %}
  4476   // Location of return values
  4477   return_value %{
  4478     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4479     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4480     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4481     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4482       return OptoRegPair(XMM0b_num,XMM0a_num);
  4483     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4484       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4485     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4486   %}
  4488 %}
  4490 //----------ATTRIBUTES---------------------------------------------------------
  4491 //----------Operand Attributes-------------------------------------------------
  4492 op_attrib op_cost(0);        // Required cost attribute
  4494 //----------Instruction Attributes---------------------------------------------
  4495 ins_attrib ins_cost(100);       // Required cost attribute
  4496 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4497 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4498 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4499                                 // non-matching short branch variant of some
  4500                                                             // long branch?
  4501 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4502                                 // specifies the alignment that some part of the instruction (not
  4503                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4504                                 // function must be provided for the instruction
  4506 //----------OPERANDS-----------------------------------------------------------
  4507 // Operand definitions must precede instruction definitions for correct parsing
  4508 // in the ADLC because operands constitute user defined types which are used in
  4509 // instruction definitions.
  4511 //----------Simple Operands----------------------------------------------------
  4512 // Immediate Operands
  4513 // Integer Immediate
  4514 operand immI() %{
  4515   match(ConI);
  4517   op_cost(10);
  4518   format %{ %}
  4519   interface(CONST_INTER);
  4520 %}
  4522 // Constant for test vs zero
  4523 operand immI0() %{
  4524   predicate(n->get_int() == 0);
  4525   match(ConI);
  4527   op_cost(0);
  4528   format %{ %}
  4529   interface(CONST_INTER);
  4530 %}
  4532 // Constant for increment
  4533 operand immI1() %{
  4534   predicate(n->get_int() == 1);
  4535   match(ConI);
  4537   op_cost(0);
  4538   format %{ %}
  4539   interface(CONST_INTER);
  4540 %}
  4542 // Constant for decrement
  4543 operand immI_M1() %{
  4544   predicate(n->get_int() == -1);
  4545   match(ConI);
  4547   op_cost(0);
  4548   format %{ %}
  4549   interface(CONST_INTER);
  4550 %}
  4552 // Valid scale values for addressing modes
  4553 operand immI2() %{
  4554   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4555   match(ConI);
  4557   format %{ %}
  4558   interface(CONST_INTER);
  4559 %}
  4561 operand immI8() %{
  4562   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4563   match(ConI);
  4565   op_cost(5);
  4566   format %{ %}
  4567   interface(CONST_INTER);
  4568 %}
  4570 operand immI16() %{
  4571   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4572   match(ConI);
  4574   op_cost(10);
  4575   format %{ %}
  4576   interface(CONST_INTER);
  4577 %}
  4579 // Constant for long shifts
  4580 operand immI_32() %{
  4581   predicate( n->get_int() == 32 );
  4582   match(ConI);
  4584   op_cost(0);
  4585   format %{ %}
  4586   interface(CONST_INTER);
  4587 %}
  4589 operand immI_1_31() %{
  4590   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4591   match(ConI);
  4593   op_cost(0);
  4594   format %{ %}
  4595   interface(CONST_INTER);
  4596 %}
  4598 operand immI_32_63() %{
  4599   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4600   match(ConI);
  4601   op_cost(0);
  4603   format %{ %}
  4604   interface(CONST_INTER);
  4605 %}
  4607 operand immI_1() %{
  4608   predicate( n->get_int() == 1 );
  4609   match(ConI);
  4611   op_cost(0);
  4612   format %{ %}
  4613   interface(CONST_INTER);
  4614 %}
  4616 operand immI_2() %{
  4617   predicate( n->get_int() == 2 );
  4618   match(ConI);
  4620   op_cost(0);
  4621   format %{ %}
  4622   interface(CONST_INTER);
  4623 %}
  4625 operand immI_3() %{
  4626   predicate( n->get_int() == 3 );
  4627   match(ConI);
  4629   op_cost(0);
  4630   format %{ %}
  4631   interface(CONST_INTER);
  4632 %}
  4634 // Pointer Immediate
  4635 operand immP() %{
  4636   match(ConP);
  4638   op_cost(10);
  4639   format %{ %}
  4640   interface(CONST_INTER);
  4641 %}
  4643 // NULL Pointer Immediate
  4644 operand immP0() %{
  4645   predicate( n->get_ptr() == 0 );
  4646   match(ConP);
  4647   op_cost(0);
  4649   format %{ %}
  4650   interface(CONST_INTER);
  4651 %}
  4653 // Long Immediate
  4654 operand immL() %{
  4655   match(ConL);
  4657   op_cost(20);
  4658   format %{ %}
  4659   interface(CONST_INTER);
  4660 %}
  4662 // Long Immediate zero
  4663 operand immL0() %{
  4664   predicate( n->get_long() == 0L );
  4665   match(ConL);
  4666   op_cost(0);
  4668   format %{ %}
  4669   interface(CONST_INTER);
  4670 %}
  4672 // Long Immediate zero
  4673 operand immL_M1() %{
  4674   predicate( n->get_long() == -1L );
  4675   match(ConL);
  4676   op_cost(0);
  4678   format %{ %}
  4679   interface(CONST_INTER);
  4680 %}
  4682 // Long immediate from 0 to 127.
  4683 // Used for a shorter form of long mul by 10.
  4684 operand immL_127() %{
  4685   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4686   match(ConL);
  4687   op_cost(0);
  4689   format %{ %}
  4690   interface(CONST_INTER);
  4691 %}
  4693 // Long Immediate: low 32-bit mask
  4694 operand immL_32bits() %{
  4695   predicate(n->get_long() == 0xFFFFFFFFL);
  4696   match(ConL);
  4697   op_cost(0);
  4699   format %{ %}
  4700   interface(CONST_INTER);
  4701 %}
  4703 // Long Immediate: low 32-bit mask
  4704 operand immL32() %{
  4705   predicate(n->get_long() == (int)(n->get_long()));
  4706   match(ConL);
  4707   op_cost(20);
  4709   format %{ %}
  4710   interface(CONST_INTER);
  4711 %}
  4713 //Double Immediate zero
  4714 operand immD0() %{
  4715   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4716   // bug that generates code such that NaNs compare equal to 0.0
  4717   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4718   match(ConD);
  4720   op_cost(5);
  4721   format %{ %}
  4722   interface(CONST_INTER);
  4723 %}
  4725 // Double Immediate
  4726 operand immD1() %{
  4727   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4728   match(ConD);
  4730   op_cost(5);
  4731   format %{ %}
  4732   interface(CONST_INTER);
  4733 %}
  4735 // Double Immediate
  4736 operand immD() %{
  4737   predicate(UseSSE<=1);
  4738   match(ConD);
  4740   op_cost(5);
  4741   format %{ %}
  4742   interface(CONST_INTER);
  4743 %}
  4745 operand immXD() %{
  4746   predicate(UseSSE>=2);
  4747   match(ConD);
  4749   op_cost(5);
  4750   format %{ %}
  4751   interface(CONST_INTER);
  4752 %}
  4754 // Double Immediate zero
  4755 operand immXD0() %{
  4756   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4757   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4758   // compare equal to -0.0.
  4759   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4760   match(ConD);
  4762   format %{ %}
  4763   interface(CONST_INTER);
  4764 %}
  4766 // Float Immediate zero
  4767 operand immF0() %{
  4768   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4769   match(ConF);
  4771   op_cost(5);
  4772   format %{ %}
  4773   interface(CONST_INTER);
  4774 %}
  4776 // Float Immediate
  4777 operand immF() %{
  4778   predicate( UseSSE == 0 );
  4779   match(ConF);
  4781   op_cost(5);
  4782   format %{ %}
  4783   interface(CONST_INTER);
  4784 %}
  4786 // Float Immediate
  4787 operand immXF() %{
  4788   predicate(UseSSE >= 1);
  4789   match(ConF);
  4791   op_cost(5);
  4792   format %{ %}
  4793   interface(CONST_INTER);
  4794 %}
  4796 // Float Immediate zero.  Zero and not -0.0
  4797 operand immXF0() %{
  4798   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4799   match(ConF);
  4801   op_cost(5);
  4802   format %{ %}
  4803   interface(CONST_INTER);
  4804 %}
  4806 // Immediates for special shifts (sign extend)
  4808 // Constants for increment
  4809 operand immI_16() %{
  4810   predicate( n->get_int() == 16 );
  4811   match(ConI);
  4813   format %{ %}
  4814   interface(CONST_INTER);
  4815 %}
  4817 operand immI_24() %{
  4818   predicate( n->get_int() == 24 );
  4819   match(ConI);
  4821   format %{ %}
  4822   interface(CONST_INTER);
  4823 %}
  4825 // Constant for byte-wide masking
  4826 operand immI_255() %{
  4827   predicate( n->get_int() == 255 );
  4828   match(ConI);
  4830   format %{ %}
  4831   interface(CONST_INTER);
  4832 %}
  4834 // Constant for short-wide masking
  4835 operand immI_65535() %{
  4836   predicate(n->get_int() == 65535);
  4837   match(ConI);
  4839   format %{ %}
  4840   interface(CONST_INTER);
  4841 %}
  4843 // Register Operands
  4844 // Integer Register
  4845 operand eRegI() %{
  4846   constraint(ALLOC_IN_RC(e_reg));
  4847   match(RegI);
  4848   match(xRegI);
  4849   match(eAXRegI);
  4850   match(eBXRegI);
  4851   match(eCXRegI);
  4852   match(eDXRegI);
  4853   match(eDIRegI);
  4854   match(eSIRegI);
  4856   format %{ %}
  4857   interface(REG_INTER);
  4858 %}
  4860 // Subset of Integer Register
  4861 operand xRegI(eRegI reg) %{
  4862   constraint(ALLOC_IN_RC(x_reg));
  4863   match(reg);
  4864   match(eAXRegI);
  4865   match(eBXRegI);
  4866   match(eCXRegI);
  4867   match(eDXRegI);
  4869   format %{ %}
  4870   interface(REG_INTER);
  4871 %}
  4873 // Special Registers
  4874 operand eAXRegI(xRegI reg) %{
  4875   constraint(ALLOC_IN_RC(eax_reg));
  4876   match(reg);
  4877   match(eRegI);
  4879   format %{ "EAX" %}
  4880   interface(REG_INTER);
  4881 %}
  4883 // Special Registers
  4884 operand eBXRegI(xRegI reg) %{
  4885   constraint(ALLOC_IN_RC(ebx_reg));
  4886   match(reg);
  4887   match(eRegI);
  4889   format %{ "EBX" %}
  4890   interface(REG_INTER);
  4891 %}
  4893 operand eCXRegI(xRegI reg) %{
  4894   constraint(ALLOC_IN_RC(ecx_reg));
  4895   match(reg);
  4896   match(eRegI);
  4898   format %{ "ECX" %}
  4899   interface(REG_INTER);
  4900 %}
  4902 operand eDXRegI(xRegI reg) %{
  4903   constraint(ALLOC_IN_RC(edx_reg));
  4904   match(reg);
  4905   match(eRegI);
  4907   format %{ "EDX" %}
  4908   interface(REG_INTER);
  4909 %}
  4911 operand eDIRegI(xRegI reg) %{
  4912   constraint(ALLOC_IN_RC(edi_reg));
  4913   match(reg);
  4914   match(eRegI);
  4916   format %{ "EDI" %}
  4917   interface(REG_INTER);
  4918 %}
  4920 operand naxRegI() %{
  4921   constraint(ALLOC_IN_RC(nax_reg));
  4922   match(RegI);
  4923   match(eCXRegI);
  4924   match(eDXRegI);
  4925   match(eSIRegI);
  4926   match(eDIRegI);
  4928   format %{ %}
  4929   interface(REG_INTER);
  4930 %}
  4932 operand nadxRegI() %{
  4933   constraint(ALLOC_IN_RC(nadx_reg));
  4934   match(RegI);
  4935   match(eBXRegI);
  4936   match(eCXRegI);
  4937   match(eSIRegI);
  4938   match(eDIRegI);
  4940   format %{ %}
  4941   interface(REG_INTER);
  4942 %}
  4944 operand ncxRegI() %{
  4945   constraint(ALLOC_IN_RC(ncx_reg));
  4946   match(RegI);
  4947   match(eAXRegI);
  4948   match(eDXRegI);
  4949   match(eSIRegI);
  4950   match(eDIRegI);
  4952   format %{ %}
  4953   interface(REG_INTER);
  4954 %}
  4956 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4957 // //
  4958 operand eSIRegI(xRegI reg) %{
  4959    constraint(ALLOC_IN_RC(esi_reg));
  4960    match(reg);
  4961    match(eRegI);
  4963    format %{ "ESI" %}
  4964    interface(REG_INTER);
  4965 %}
  4967 // Pointer Register
  4968 operand anyRegP() %{
  4969   constraint(ALLOC_IN_RC(any_reg));
  4970   match(RegP);
  4971   match(eAXRegP);
  4972   match(eBXRegP);
  4973   match(eCXRegP);
  4974   match(eDIRegP);
  4975   match(eRegP);
  4977   format %{ %}
  4978   interface(REG_INTER);
  4979 %}
  4981 operand eRegP() %{
  4982   constraint(ALLOC_IN_RC(e_reg));
  4983   match(RegP);
  4984   match(eAXRegP);
  4985   match(eBXRegP);
  4986   match(eCXRegP);
  4987   match(eDIRegP);
  4989   format %{ %}
  4990   interface(REG_INTER);
  4991 %}
  4993 // On windows95, EBP is not safe to use for implicit null tests.
  4994 operand eRegP_no_EBP() %{
  4995   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  4996   match(RegP);
  4997   match(eAXRegP);
  4998   match(eBXRegP);
  4999   match(eCXRegP);
  5000   match(eDIRegP);
  5002   op_cost(100);
  5003   format %{ %}
  5004   interface(REG_INTER);
  5005 %}
  5007 operand naxRegP() %{
  5008   constraint(ALLOC_IN_RC(nax_reg));
  5009   match(RegP);
  5010   match(eBXRegP);
  5011   match(eDXRegP);
  5012   match(eCXRegP);
  5013   match(eSIRegP);
  5014   match(eDIRegP);
  5016   format %{ %}
  5017   interface(REG_INTER);
  5018 %}
  5020 operand nabxRegP() %{
  5021   constraint(ALLOC_IN_RC(nabx_reg));
  5022   match(RegP);
  5023   match(eCXRegP);
  5024   match(eDXRegP);
  5025   match(eSIRegP);
  5026   match(eDIRegP);
  5028   format %{ %}
  5029   interface(REG_INTER);
  5030 %}
  5032 operand pRegP() %{
  5033   constraint(ALLOC_IN_RC(p_reg));
  5034   match(RegP);
  5035   match(eBXRegP);
  5036   match(eDXRegP);
  5037   match(eSIRegP);
  5038   match(eDIRegP);
  5040   format %{ %}
  5041   interface(REG_INTER);
  5042 %}
  5044 // Special Registers
  5045 // Return a pointer value
  5046 operand eAXRegP(eRegP reg) %{
  5047   constraint(ALLOC_IN_RC(eax_reg));
  5048   match(reg);
  5049   format %{ "EAX" %}
  5050   interface(REG_INTER);
  5051 %}
  5053 // Used in AtomicAdd
  5054 operand eBXRegP(eRegP reg) %{
  5055   constraint(ALLOC_IN_RC(ebx_reg));
  5056   match(reg);
  5057   format %{ "EBX" %}
  5058   interface(REG_INTER);
  5059 %}
  5061 // Tail-call (interprocedural jump) to interpreter
  5062 operand eCXRegP(eRegP reg) %{
  5063   constraint(ALLOC_IN_RC(ecx_reg));
  5064   match(reg);
  5065   format %{ "ECX" %}
  5066   interface(REG_INTER);
  5067 %}
  5069 operand eSIRegP(eRegP reg) %{
  5070   constraint(ALLOC_IN_RC(esi_reg));
  5071   match(reg);
  5072   format %{ "ESI" %}
  5073   interface(REG_INTER);
  5074 %}
  5076 // Used in rep stosw
  5077 operand eDIRegP(eRegP reg) %{
  5078   constraint(ALLOC_IN_RC(edi_reg));
  5079   match(reg);
  5080   format %{ "EDI" %}
  5081   interface(REG_INTER);
  5082 %}
  5084 operand eBPRegP() %{
  5085   constraint(ALLOC_IN_RC(ebp_reg));
  5086   match(RegP);
  5087   format %{ "EBP" %}
  5088   interface(REG_INTER);
  5089 %}
  5091 operand eRegL() %{
  5092   constraint(ALLOC_IN_RC(long_reg));
  5093   match(RegL);
  5094   match(eADXRegL);
  5096   format %{ %}
  5097   interface(REG_INTER);
  5098 %}
  5100 operand eADXRegL( eRegL reg ) %{
  5101   constraint(ALLOC_IN_RC(eadx_reg));
  5102   match(reg);
  5104   format %{ "EDX:EAX" %}
  5105   interface(REG_INTER);
  5106 %}
  5108 operand eBCXRegL( eRegL reg ) %{
  5109   constraint(ALLOC_IN_RC(ebcx_reg));
  5110   match(reg);
  5112   format %{ "EBX:ECX" %}
  5113   interface(REG_INTER);
  5114 %}
  5116 // Special case for integer high multiply
  5117 operand eADXRegL_low_only() %{
  5118   constraint(ALLOC_IN_RC(eadx_reg));
  5119   match(RegL);
  5121   format %{ "EAX" %}
  5122   interface(REG_INTER);
  5123 %}
  5125 // Flags register, used as output of compare instructions
  5126 operand eFlagsReg() %{
  5127   constraint(ALLOC_IN_RC(int_flags));
  5128   match(RegFlags);
  5130   format %{ "EFLAGS" %}
  5131   interface(REG_INTER);
  5132 %}
  5134 // Flags register, used as output of FLOATING POINT compare instructions
  5135 operand eFlagsRegU() %{
  5136   constraint(ALLOC_IN_RC(int_flags));
  5137   match(RegFlags);
  5139   format %{ "EFLAGS_U" %}
  5140   interface(REG_INTER);
  5141 %}
  5143 operand eFlagsRegUCF() %{
  5144   constraint(ALLOC_IN_RC(int_flags));
  5145   match(RegFlags);
  5146   predicate(false);
  5148   format %{ "EFLAGS_U_CF" %}
  5149   interface(REG_INTER);
  5150 %}
  5152 // Condition Code Register used by long compare
  5153 operand flagsReg_long_LTGE() %{
  5154   constraint(ALLOC_IN_RC(int_flags));
  5155   match(RegFlags);
  5156   format %{ "FLAGS_LTGE" %}
  5157   interface(REG_INTER);
  5158 %}
  5159 operand flagsReg_long_EQNE() %{
  5160   constraint(ALLOC_IN_RC(int_flags));
  5161   match(RegFlags);
  5162   format %{ "FLAGS_EQNE" %}
  5163   interface(REG_INTER);
  5164 %}
  5165 operand flagsReg_long_LEGT() %{
  5166   constraint(ALLOC_IN_RC(int_flags));
  5167   match(RegFlags);
  5168   format %{ "FLAGS_LEGT" %}
  5169   interface(REG_INTER);
  5170 %}
  5172 // Float register operands
  5173 operand regD() %{
  5174   predicate( UseSSE < 2 );
  5175   constraint(ALLOC_IN_RC(dbl_reg));
  5176   match(RegD);
  5177   match(regDPR1);
  5178   match(regDPR2);
  5179   format %{ %}
  5180   interface(REG_INTER);
  5181 %}
  5183 operand regDPR1(regD reg) %{
  5184   predicate( UseSSE < 2 );
  5185   constraint(ALLOC_IN_RC(dbl_reg0));
  5186   match(reg);
  5187   format %{ "FPR1" %}
  5188   interface(REG_INTER);
  5189 %}
  5191 operand regDPR2(regD reg) %{
  5192   predicate( UseSSE < 2 );
  5193   constraint(ALLOC_IN_RC(dbl_reg1));
  5194   match(reg);
  5195   format %{ "FPR2" %}
  5196   interface(REG_INTER);
  5197 %}
  5199 operand regnotDPR1(regD reg) %{
  5200   predicate( UseSSE < 2 );
  5201   constraint(ALLOC_IN_RC(dbl_notreg0));
  5202   match(reg);
  5203   format %{ %}
  5204   interface(REG_INTER);
  5205 %}
  5207 // XMM Double register operands
  5208 operand regXD() %{
  5209   predicate( UseSSE>=2 );
  5210   constraint(ALLOC_IN_RC(xdb_reg));
  5211   match(RegD);
  5212   match(regXD6);
  5213   match(regXD7);
  5214   format %{ %}
  5215   interface(REG_INTER);
  5216 %}
  5218 // XMM6 double register operands
  5219 operand regXD6(regXD reg) %{
  5220   predicate( UseSSE>=2 );
  5221   constraint(ALLOC_IN_RC(xdb_reg6));
  5222   match(reg);
  5223   format %{ "XMM6" %}
  5224   interface(REG_INTER);
  5225 %}
  5227 // XMM7 double register operands
  5228 operand regXD7(regXD reg) %{
  5229   predicate( UseSSE>=2 );
  5230   constraint(ALLOC_IN_RC(xdb_reg7));
  5231   match(reg);
  5232   format %{ "XMM7" %}
  5233   interface(REG_INTER);
  5234 %}
  5236 // Float register operands
  5237 operand regF() %{
  5238   predicate( UseSSE < 2 );
  5239   constraint(ALLOC_IN_RC(flt_reg));
  5240   match(RegF);
  5241   match(regFPR1);
  5242   format %{ %}
  5243   interface(REG_INTER);
  5244 %}
  5246 // Float register operands
  5247 operand regFPR1(regF reg) %{
  5248   predicate( UseSSE < 2 );
  5249   constraint(ALLOC_IN_RC(flt_reg0));
  5250   match(reg);
  5251   format %{ "FPR1" %}
  5252   interface(REG_INTER);
  5253 %}
  5255 // XMM register operands
  5256 operand regX() %{
  5257   predicate( UseSSE>=1 );
  5258   constraint(ALLOC_IN_RC(xmm_reg));
  5259   match(RegF);
  5260   format %{ %}
  5261   interface(REG_INTER);
  5262 %}
  5265 //----------Memory Operands----------------------------------------------------
  5266 // Direct Memory Operand
  5267 operand direct(immP addr) %{
  5268   match(addr);
  5270   format %{ "[$addr]" %}
  5271   interface(MEMORY_INTER) %{
  5272     base(0xFFFFFFFF);
  5273     index(0x4);
  5274     scale(0x0);
  5275     disp($addr);
  5276   %}
  5277 %}
  5279 // Indirect Memory Operand
  5280 operand indirect(eRegP reg) %{
  5281   constraint(ALLOC_IN_RC(e_reg));
  5282   match(reg);
  5284   format %{ "[$reg]" %}
  5285   interface(MEMORY_INTER) %{
  5286     base($reg);
  5287     index(0x4);
  5288     scale(0x0);
  5289     disp(0x0);
  5290   %}
  5291 %}
  5293 // Indirect Memory Plus Short Offset Operand
  5294 operand indOffset8(eRegP reg, immI8 off) %{
  5295   match(AddP reg off);
  5297   format %{ "[$reg + $off]" %}
  5298   interface(MEMORY_INTER) %{
  5299     base($reg);
  5300     index(0x4);
  5301     scale(0x0);
  5302     disp($off);
  5303   %}
  5304 %}
  5306 // Indirect Memory Plus Long Offset Operand
  5307 operand indOffset32(eRegP reg, immI off) %{
  5308   match(AddP reg off);
  5310   format %{ "[$reg + $off]" %}
  5311   interface(MEMORY_INTER) %{
  5312     base($reg);
  5313     index(0x4);
  5314     scale(0x0);
  5315     disp($off);
  5316   %}
  5317 %}
  5319 // Indirect Memory Plus Long Offset Operand
  5320 operand indOffset32X(eRegI reg, immP off) %{
  5321   match(AddP off reg);
  5323   format %{ "[$reg + $off]" %}
  5324   interface(MEMORY_INTER) %{
  5325     base($reg);
  5326     index(0x4);
  5327     scale(0x0);
  5328     disp($off);
  5329   %}
  5330 %}
  5332 // Indirect Memory Plus Index Register Plus Offset Operand
  5333 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5334   match(AddP (AddP reg ireg) off);
  5336   op_cost(10);
  5337   format %{"[$reg + $off + $ireg]" %}
  5338   interface(MEMORY_INTER) %{
  5339     base($reg);
  5340     index($ireg);
  5341     scale(0x0);
  5342     disp($off);
  5343   %}
  5344 %}
  5346 // Indirect Memory Plus Index Register Plus Offset Operand
  5347 operand indIndex(eRegP reg, eRegI ireg) %{
  5348   match(AddP reg ireg);
  5350   op_cost(10);
  5351   format %{"[$reg + $ireg]" %}
  5352   interface(MEMORY_INTER) %{
  5353     base($reg);
  5354     index($ireg);
  5355     scale(0x0);
  5356     disp(0x0);
  5357   %}
  5358 %}
  5360 // // -------------------------------------------------------------------------
  5361 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5362 // // -------------------------------------------------------------------------
  5363 // // Scaled Memory Operands
  5364 // // Indirect Memory Times Scale Plus Offset Operand
  5365 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5366 //   match(AddP off (LShiftI ireg scale));
  5367 //
  5368 //   op_cost(10);
  5369 //   format %{"[$off + $ireg << $scale]" %}
  5370 //   interface(MEMORY_INTER) %{
  5371 //     base(0x4);
  5372 //     index($ireg);
  5373 //     scale($scale);
  5374 //     disp($off);
  5375 //   %}
  5376 // %}
  5378 // Indirect Memory Times Scale Plus Index Register
  5379 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5380   match(AddP reg (LShiftI ireg scale));
  5382   op_cost(10);
  5383   format %{"[$reg + $ireg << $scale]" %}
  5384   interface(MEMORY_INTER) %{
  5385     base($reg);
  5386     index($ireg);
  5387     scale($scale);
  5388     disp(0x0);
  5389   %}
  5390 %}
  5392 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5393 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5394   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5396   op_cost(10);
  5397   format %{"[$reg + $off + $ireg << $scale]" %}
  5398   interface(MEMORY_INTER) %{
  5399     base($reg);
  5400     index($ireg);
  5401     scale($scale);
  5402     disp($off);
  5403   %}
  5404 %}
  5406 //----------Load Long Memory Operands------------------------------------------
  5407 // The load-long idiom will use it's address expression again after loading
  5408 // the first word of the long.  If the load-long destination overlaps with
  5409 // registers used in the addressing expression, the 2nd half will be loaded
  5410 // from a clobbered address.  Fix this by requiring that load-long use
  5411 // address registers that do not overlap with the load-long target.
  5413 // load-long support
  5414 operand load_long_RegP() %{
  5415   constraint(ALLOC_IN_RC(esi_reg));
  5416   match(RegP);
  5417   match(eSIRegP);
  5418   op_cost(100);
  5419   format %{  %}
  5420   interface(REG_INTER);
  5421 %}
  5423 // Indirect Memory Operand Long
  5424 operand load_long_indirect(load_long_RegP reg) %{
  5425   constraint(ALLOC_IN_RC(esi_reg));
  5426   match(reg);
  5428   format %{ "[$reg]" %}
  5429   interface(MEMORY_INTER) %{
  5430     base($reg);
  5431     index(0x4);
  5432     scale(0x0);
  5433     disp(0x0);
  5434   %}
  5435 %}
  5437 // Indirect Memory Plus Long Offset Operand
  5438 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5439   match(AddP reg off);
  5441   format %{ "[$reg + $off]" %}
  5442   interface(MEMORY_INTER) %{
  5443     base($reg);
  5444     index(0x4);
  5445     scale(0x0);
  5446     disp($off);
  5447   %}
  5448 %}
  5450 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5453 //----------Special Memory Operands--------------------------------------------
  5454 // Stack Slot Operand - This operand is used for loading and storing temporary
  5455 //                      values on the stack where a match requires a value to
  5456 //                      flow through memory.
  5457 operand stackSlotP(sRegP reg) %{
  5458   constraint(ALLOC_IN_RC(stack_slots));
  5459   // No match rule because this operand is only generated in matching
  5460   format %{ "[$reg]" %}
  5461   interface(MEMORY_INTER) %{
  5462     base(0x4);   // ESP
  5463     index(0x4);  // No Index
  5464     scale(0x0);  // No Scale
  5465     disp($reg);  // Stack Offset
  5466   %}
  5467 %}
  5469 operand stackSlotI(sRegI reg) %{
  5470   constraint(ALLOC_IN_RC(stack_slots));
  5471   // No match rule because this operand is only generated in matching
  5472   format %{ "[$reg]" %}
  5473   interface(MEMORY_INTER) %{
  5474     base(0x4);   // ESP
  5475     index(0x4);  // No Index
  5476     scale(0x0);  // No Scale
  5477     disp($reg);  // Stack Offset
  5478   %}
  5479 %}
  5481 operand stackSlotF(sRegF reg) %{
  5482   constraint(ALLOC_IN_RC(stack_slots));
  5483   // No match rule because this operand is only generated in matching
  5484   format %{ "[$reg]" %}
  5485   interface(MEMORY_INTER) %{
  5486     base(0x4);   // ESP
  5487     index(0x4);  // No Index
  5488     scale(0x0);  // No Scale
  5489     disp($reg);  // Stack Offset
  5490   %}
  5491 %}
  5493 operand stackSlotD(sRegD reg) %{
  5494   constraint(ALLOC_IN_RC(stack_slots));
  5495   // No match rule because this operand is only generated in matching
  5496   format %{ "[$reg]" %}
  5497   interface(MEMORY_INTER) %{
  5498     base(0x4);   // ESP
  5499     index(0x4);  // No Index
  5500     scale(0x0);  // No Scale
  5501     disp($reg);  // Stack Offset
  5502   %}
  5503 %}
  5505 operand stackSlotL(sRegL reg) %{
  5506   constraint(ALLOC_IN_RC(stack_slots));
  5507   // No match rule because this operand is only generated in matching
  5508   format %{ "[$reg]" %}
  5509   interface(MEMORY_INTER) %{
  5510     base(0x4);   // ESP
  5511     index(0x4);  // No Index
  5512     scale(0x0);  // No Scale
  5513     disp($reg);  // Stack Offset
  5514   %}
  5515 %}
  5517 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5518 // Indirect Memory Operand
  5519 operand indirect_win95_safe(eRegP_no_EBP reg)
  5520 %{
  5521   constraint(ALLOC_IN_RC(e_reg));
  5522   match(reg);
  5524   op_cost(100);
  5525   format %{ "[$reg]" %}
  5526   interface(MEMORY_INTER) %{
  5527     base($reg);
  5528     index(0x4);
  5529     scale(0x0);
  5530     disp(0x0);
  5531   %}
  5532 %}
  5534 // Indirect Memory Plus Short Offset Operand
  5535 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5536 %{
  5537   match(AddP reg off);
  5539   op_cost(100);
  5540   format %{ "[$reg + $off]" %}
  5541   interface(MEMORY_INTER) %{
  5542     base($reg);
  5543     index(0x4);
  5544     scale(0x0);
  5545     disp($off);
  5546   %}
  5547 %}
  5549 // Indirect Memory Plus Long Offset Operand
  5550 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5551 %{
  5552   match(AddP reg off);
  5554   op_cost(100);
  5555   format %{ "[$reg + $off]" %}
  5556   interface(MEMORY_INTER) %{
  5557     base($reg);
  5558     index(0x4);
  5559     scale(0x0);
  5560     disp($off);
  5561   %}
  5562 %}
  5564 // Indirect Memory Plus Index Register Plus Offset Operand
  5565 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5566 %{
  5567   match(AddP (AddP reg ireg) off);
  5569   op_cost(100);
  5570   format %{"[$reg + $off + $ireg]" %}
  5571   interface(MEMORY_INTER) %{
  5572     base($reg);
  5573     index($ireg);
  5574     scale(0x0);
  5575     disp($off);
  5576   %}
  5577 %}
  5579 // Indirect Memory Times Scale Plus Index Register
  5580 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5581 %{
  5582   match(AddP reg (LShiftI ireg scale));
  5584   op_cost(100);
  5585   format %{"[$reg + $ireg << $scale]" %}
  5586   interface(MEMORY_INTER) %{
  5587     base($reg);
  5588     index($ireg);
  5589     scale($scale);
  5590     disp(0x0);
  5591   %}
  5592 %}
  5594 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5595 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5596 %{
  5597   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5599   op_cost(100);
  5600   format %{"[$reg + $off + $ireg << $scale]" %}
  5601   interface(MEMORY_INTER) %{
  5602     base($reg);
  5603     index($ireg);
  5604     scale($scale);
  5605     disp($off);
  5606   %}
  5607 %}
  5609 //----------Conditional Branch Operands----------------------------------------
  5610 // Comparison Op  - This is the operation of the comparison, and is limited to
  5611 //                  the following set of codes:
  5612 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5613 //
  5614 // Other attributes of the comparison, such as unsignedness, are specified
  5615 // by the comparison instruction that sets a condition code flags register.
  5616 // That result is represented by a flags operand whose subtype is appropriate
  5617 // to the unsignedness (etc.) of the comparison.
  5618 //
  5619 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5620 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5621 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5623 // Comparision Code
  5624 operand cmpOp() %{
  5625   match(Bool);
  5627   format %{ "" %}
  5628   interface(COND_INTER) %{
  5629     equal(0x4, "e");
  5630     not_equal(0x5, "ne");
  5631     less(0xC, "l");
  5632     greater_equal(0xD, "ge");
  5633     less_equal(0xE, "le");
  5634     greater(0xF, "g");
  5635   %}
  5636 %}
  5638 // Comparison Code, unsigned compare.  Used by FP also, with
  5639 // C2 (unordered) turned into GT or LT already.  The other bits
  5640 // C0 and C3 are turned into Carry & Zero flags.
  5641 operand cmpOpU() %{
  5642   match(Bool);
  5644   format %{ "" %}
  5645   interface(COND_INTER) %{
  5646     equal(0x4, "e");
  5647     not_equal(0x5, "ne");
  5648     less(0x2, "b");
  5649     greater_equal(0x3, "nb");
  5650     less_equal(0x6, "be");
  5651     greater(0x7, "nbe");
  5652   %}
  5653 %}
  5655 // Floating comparisons that don't require any fixup for the unordered case
  5656 operand cmpOpUCF() %{
  5657   match(Bool);
  5658   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5659             n->as_Bool()->_test._test == BoolTest::ge ||
  5660             n->as_Bool()->_test._test == BoolTest::le ||
  5661             n->as_Bool()->_test._test == BoolTest::gt);
  5662   format %{ "" %}
  5663   interface(COND_INTER) %{
  5664     equal(0x4, "e");
  5665     not_equal(0x5, "ne");
  5666     less(0x2, "b");
  5667     greater_equal(0x3, "nb");
  5668     less_equal(0x6, "be");
  5669     greater(0x7, "nbe");
  5670   %}
  5671 %}
  5674 // Floating comparisons that can be fixed up with extra conditional jumps
  5675 operand cmpOpUCF2() %{
  5676   match(Bool);
  5677   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5678             n->as_Bool()->_test._test == BoolTest::eq);
  5679   format %{ "" %}
  5680   interface(COND_INTER) %{
  5681     equal(0x4, "e");
  5682     not_equal(0x5, "ne");
  5683     less(0x2, "b");
  5684     greater_equal(0x3, "nb");
  5685     less_equal(0x6, "be");
  5686     greater(0x7, "nbe");
  5687   %}
  5688 %}
  5690 // Comparison Code for FP conditional move
  5691 operand cmpOp_fcmov() %{
  5692   match(Bool);
  5694   format %{ "" %}
  5695   interface(COND_INTER) %{
  5696     equal        (0x0C8);
  5697     not_equal    (0x1C8);
  5698     less         (0x0C0);
  5699     greater_equal(0x1C0);
  5700     less_equal   (0x0D0);
  5701     greater      (0x1D0);
  5702   %}
  5703 %}
  5705 // Comparision Code used in long compares
  5706 operand cmpOp_commute() %{
  5707   match(Bool);
  5709   format %{ "" %}
  5710   interface(COND_INTER) %{
  5711     equal(0x4, "e");
  5712     not_equal(0x5, "ne");
  5713     less(0xF, "g");
  5714     greater_equal(0xE, "le");
  5715     less_equal(0xD, "ge");
  5716     greater(0xC, "l");
  5717   %}
  5718 %}
  5720 //----------OPERAND CLASSES----------------------------------------------------
  5721 // Operand Classes are groups of operands that are used as to simplify
  5722 // instruction definitions by not requiring the AD writer to specify separate
  5723 // instructions for every form of operand when the instruction accepts
  5724 // multiple operand types with the same basic encoding and format.  The classic
  5725 // case of this is memory operands.
  5727 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5728                indIndex, indIndexScale, indIndexScaleOffset);
  5730 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5731 // This means some kind of offset is always required and you cannot use
  5732 // an oop as the offset (done when working on static globals).
  5733 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5734                     indIndex, indIndexScale, indIndexScaleOffset);
  5737 //----------PIPELINE-----------------------------------------------------------
  5738 // Rules which define the behavior of the target architectures pipeline.
  5739 pipeline %{
  5741 //----------ATTRIBUTES---------------------------------------------------------
  5742 attributes %{
  5743   variable_size_instructions;        // Fixed size instructions
  5744   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5745   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5746   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5747   instruction_fetch_units = 1;       // of 16 bytes
  5749   // List of nop instructions
  5750   nops( MachNop );
  5751 %}
  5753 //----------RESOURCES----------------------------------------------------------
  5754 // Resources are the functional units available to the machine
  5756 // Generic P2/P3 pipeline
  5757 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5758 // 3 instructions decoded per cycle.
  5759 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5760 // 2 ALU op, only ALU0 handles mul/div instructions.
  5761 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5762            MS0, MS1, MEM = MS0 | MS1,
  5763            BR, FPU,
  5764            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5766 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5767 // Pipeline Description specifies the stages in the machine's pipeline
  5769 // Generic P2/P3 pipeline
  5770 pipe_desc(S0, S1, S2, S3, S4, S5);
  5772 //----------PIPELINE CLASSES---------------------------------------------------
  5773 // Pipeline Classes describe the stages in which input and output are
  5774 // referenced by the hardware pipeline.
  5776 // Naming convention: ialu or fpu
  5777 // Then: _reg
  5778 // Then: _reg if there is a 2nd register
  5779 // Then: _long if it's a pair of instructions implementing a long
  5780 // Then: _fat if it requires the big decoder
  5781 //   Or: _mem if it requires the big decoder and a memory unit.
  5783 // Integer ALU reg operation
  5784 pipe_class ialu_reg(eRegI dst) %{
  5785     single_instruction;
  5786     dst    : S4(write);
  5787     dst    : S3(read);
  5788     DECODE : S0;        // any decoder
  5789     ALU    : S3;        // any alu
  5790 %}
  5792 // Long ALU reg operation
  5793 pipe_class ialu_reg_long(eRegL dst) %{
  5794     instruction_count(2);
  5795     dst    : S4(write);
  5796     dst    : S3(read);
  5797     DECODE : S0(2);     // any 2 decoders
  5798     ALU    : S3(2);     // both alus
  5799 %}
  5801 // Integer ALU reg operation using big decoder
  5802 pipe_class ialu_reg_fat(eRegI dst) %{
  5803     single_instruction;
  5804     dst    : S4(write);
  5805     dst    : S3(read);
  5806     D0     : S0;        // big decoder only
  5807     ALU    : S3;        // any alu
  5808 %}
  5810 // Long ALU reg operation using big decoder
  5811 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5812     instruction_count(2);
  5813     dst    : S4(write);
  5814     dst    : S3(read);
  5815     D0     : S0(2);     // big decoder only; twice
  5816     ALU    : S3(2);     // any 2 alus
  5817 %}
  5819 // Integer ALU reg-reg operation
  5820 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5821     single_instruction;
  5822     dst    : S4(write);
  5823     src    : S3(read);
  5824     DECODE : S0;        // any decoder
  5825     ALU    : S3;        // any alu
  5826 %}
  5828 // Long ALU reg-reg operation
  5829 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5830     instruction_count(2);
  5831     dst    : S4(write);
  5832     src    : S3(read);
  5833     DECODE : S0(2);     // any 2 decoders
  5834     ALU    : S3(2);     // both alus
  5835 %}
  5837 // Integer ALU reg-reg operation
  5838 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5839     single_instruction;
  5840     dst    : S4(write);
  5841     src    : S3(read);
  5842     D0     : S0;        // big decoder only
  5843     ALU    : S3;        // any alu
  5844 %}
  5846 // Long ALU reg-reg operation
  5847 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5848     instruction_count(2);
  5849     dst    : S4(write);
  5850     src    : S3(read);
  5851     D0     : S0(2);     // big decoder only; twice
  5852     ALU    : S3(2);     // both alus
  5853 %}
  5855 // Integer ALU reg-mem operation
  5856 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5857     single_instruction;
  5858     dst    : S5(write);
  5859     mem    : S3(read);
  5860     D0     : S0;        // big decoder only
  5861     ALU    : S4;        // any alu
  5862     MEM    : S3;        // any mem
  5863 %}
  5865 // Long ALU reg-mem operation
  5866 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5867     instruction_count(2);
  5868     dst    : S5(write);
  5869     mem    : S3(read);
  5870     D0     : S0(2);     // big decoder only; twice
  5871     ALU    : S4(2);     // any 2 alus
  5872     MEM    : S3(2);     // both mems
  5873 %}
  5875 // Integer mem operation (prefetch)
  5876 pipe_class ialu_mem(memory mem)
  5877 %{
  5878     single_instruction;
  5879     mem    : S3(read);
  5880     D0     : S0;        // big decoder only
  5881     MEM    : S3;        // any mem
  5882 %}
  5884 // Integer Store to Memory
  5885 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5886     single_instruction;
  5887     mem    : S3(read);
  5888     src    : S5(read);
  5889     D0     : S0;        // big decoder only
  5890     ALU    : S4;        // any alu
  5891     MEM    : S3;
  5892 %}
  5894 // Long Store to Memory
  5895 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5896     instruction_count(2);
  5897     mem    : S3(read);
  5898     src    : S5(read);
  5899     D0     : S0(2);     // big decoder only; twice
  5900     ALU    : S4(2);     // any 2 alus
  5901     MEM    : S3(2);     // Both mems
  5902 %}
  5904 // Integer Store to Memory
  5905 pipe_class ialu_mem_imm(memory mem) %{
  5906     single_instruction;
  5907     mem    : S3(read);
  5908     D0     : S0;        // big decoder only
  5909     ALU    : S4;        // any alu
  5910     MEM    : S3;
  5911 %}
  5913 // Integer ALU0 reg-reg operation
  5914 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5915     single_instruction;
  5916     dst    : S4(write);
  5917     src    : S3(read);
  5918     D0     : S0;        // Big decoder only
  5919     ALU0   : S3;        // only alu0
  5920 %}
  5922 // Integer ALU0 reg-mem operation
  5923 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5924     single_instruction;
  5925     dst    : S5(write);
  5926     mem    : S3(read);
  5927     D0     : S0;        // big decoder only
  5928     ALU0   : S4;        // ALU0 only
  5929     MEM    : S3;        // any mem
  5930 %}
  5932 // Integer ALU reg-reg operation
  5933 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5934     single_instruction;
  5935     cr     : S4(write);
  5936     src1   : S3(read);
  5937     src2   : S3(read);
  5938     DECODE : S0;        // any decoder
  5939     ALU    : S3;        // any alu
  5940 %}
  5942 // Integer ALU reg-imm operation
  5943 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5944     single_instruction;
  5945     cr     : S4(write);
  5946     src1   : S3(read);
  5947     DECODE : S0;        // any decoder
  5948     ALU    : S3;        // any alu
  5949 %}
  5951 // Integer ALU reg-mem operation
  5952 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5953     single_instruction;
  5954     cr     : S4(write);
  5955     src1   : S3(read);
  5956     src2   : S3(read);
  5957     D0     : S0;        // big decoder only
  5958     ALU    : S4;        // any alu
  5959     MEM    : S3;
  5960 %}
  5962 // Conditional move reg-reg
  5963 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5964     instruction_count(4);
  5965     y      : S4(read);
  5966     q      : S3(read);
  5967     p      : S3(read);
  5968     DECODE : S0(4);     // any decoder
  5969 %}
  5971 // Conditional move reg-reg
  5972 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5973     single_instruction;
  5974     dst    : S4(write);
  5975     src    : S3(read);
  5976     cr     : S3(read);
  5977     DECODE : S0;        // any decoder
  5978 %}
  5980 // Conditional move reg-mem
  5981 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5982     single_instruction;
  5983     dst    : S4(write);
  5984     src    : S3(read);
  5985     cr     : S3(read);
  5986     DECODE : S0;        // any decoder
  5987     MEM    : S3;
  5988 %}
  5990 // Conditional move reg-reg long
  5991 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5992     single_instruction;
  5993     dst    : S4(write);
  5994     src    : S3(read);
  5995     cr     : S3(read);
  5996     DECODE : S0(2);     // any 2 decoders
  5997 %}
  5999 // Conditional move double reg-reg
  6000 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6001     single_instruction;
  6002     dst    : S4(write);
  6003     src    : S3(read);
  6004     cr     : S3(read);
  6005     DECODE : S0;        // any decoder
  6006 %}
  6008 // Float reg-reg operation
  6009 pipe_class fpu_reg(regD dst) %{
  6010     instruction_count(2);
  6011     dst    : S3(read);
  6012     DECODE : S0(2);     // any 2 decoders
  6013     FPU    : S3;
  6014 %}
  6016 // Float reg-reg operation
  6017 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6018     instruction_count(2);
  6019     dst    : S4(write);
  6020     src    : S3(read);
  6021     DECODE : S0(2);     // any 2 decoders
  6022     FPU    : S3;
  6023 %}
  6025 // Float reg-reg operation
  6026 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6027     instruction_count(3);
  6028     dst    : S4(write);
  6029     src1   : S3(read);
  6030     src2   : S3(read);
  6031     DECODE : S0(3);     // any 3 decoders
  6032     FPU    : S3(2);
  6033 %}
  6035 // Float reg-reg operation
  6036 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6037     instruction_count(4);
  6038     dst    : S4(write);
  6039     src1   : S3(read);
  6040     src2   : S3(read);
  6041     src3   : S3(read);
  6042     DECODE : S0(4);     // any 3 decoders
  6043     FPU    : S3(2);
  6044 %}
  6046 // Float reg-reg operation
  6047 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6048     instruction_count(4);
  6049     dst    : S4(write);
  6050     src1   : S3(read);
  6051     src2   : S3(read);
  6052     src3   : S3(read);
  6053     DECODE : S1(3);     // any 3 decoders
  6054     D0     : S0;        // Big decoder only
  6055     FPU    : S3(2);
  6056     MEM    : S3;
  6057 %}
  6059 // Float reg-mem operation
  6060 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6061     instruction_count(2);
  6062     dst    : S5(write);
  6063     mem    : S3(read);
  6064     D0     : S0;        // big decoder only
  6065     DECODE : S1;        // any decoder for FPU POP
  6066     FPU    : S4;
  6067     MEM    : S3;        // any mem
  6068 %}
  6070 // Float reg-mem operation
  6071 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6072     instruction_count(3);
  6073     dst    : S5(write);
  6074     src1   : S3(read);
  6075     mem    : S3(read);
  6076     D0     : S0;        // big decoder only
  6077     DECODE : S1(2);     // any decoder for FPU POP
  6078     FPU    : S4;
  6079     MEM    : S3;        // any mem
  6080 %}
  6082 // Float mem-reg operation
  6083 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6084     instruction_count(2);
  6085     src    : S5(read);
  6086     mem    : S3(read);
  6087     DECODE : S0;        // any decoder for FPU PUSH
  6088     D0     : S1;        // big decoder only
  6089     FPU    : S4;
  6090     MEM    : S3;        // any mem
  6091 %}
  6093 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6094     instruction_count(3);
  6095     src1   : S3(read);
  6096     src2   : S3(read);
  6097     mem    : S3(read);
  6098     DECODE : S0(2);     // any decoder for FPU PUSH
  6099     D0     : S1;        // big decoder only
  6100     FPU    : S4;
  6101     MEM    : S3;        // any mem
  6102 %}
  6104 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6105     instruction_count(3);
  6106     src1   : S3(read);
  6107     src2   : S3(read);
  6108     mem    : S4(read);
  6109     DECODE : S0;        // any decoder for FPU PUSH
  6110     D0     : S0(2);     // big decoder only
  6111     FPU    : S4;
  6112     MEM    : S3(2);     // any mem
  6113 %}
  6115 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6116     instruction_count(2);
  6117     src1   : S3(read);
  6118     dst    : S4(read);
  6119     D0     : S0(2);     // big decoder only
  6120     MEM    : S3(2);     // any mem
  6121 %}
  6123 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6124     instruction_count(3);
  6125     src1   : S3(read);
  6126     src2   : S3(read);
  6127     dst    : S4(read);
  6128     D0     : S0(3);     // big decoder only
  6129     FPU    : S4;
  6130     MEM    : S3(3);     // any mem
  6131 %}
  6133 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6134     instruction_count(3);
  6135     src1   : S4(read);
  6136     mem    : S4(read);
  6137     DECODE : S0;        // any decoder for FPU PUSH
  6138     D0     : S0(2);     // big decoder only
  6139     FPU    : S4;
  6140     MEM    : S3(2);     // any mem
  6141 %}
  6143 // Float load constant
  6144 pipe_class fpu_reg_con(regD dst) %{
  6145     instruction_count(2);
  6146     dst    : S5(write);
  6147     D0     : S0;        // big decoder only for the load
  6148     DECODE : S1;        // any decoder for FPU POP
  6149     FPU    : S4;
  6150     MEM    : S3;        // any mem
  6151 %}
  6153 // Float load constant
  6154 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6155     instruction_count(3);
  6156     dst    : S5(write);
  6157     src    : S3(read);
  6158     D0     : S0;        // big decoder only for the load
  6159     DECODE : S1(2);     // any decoder for FPU POP
  6160     FPU    : S4;
  6161     MEM    : S3;        // any mem
  6162 %}
  6164 // UnConditional branch
  6165 pipe_class pipe_jmp( label labl ) %{
  6166     single_instruction;
  6167     BR   : S3;
  6168 %}
  6170 // Conditional branch
  6171 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6172     single_instruction;
  6173     cr    : S1(read);
  6174     BR    : S3;
  6175 %}
  6177 // Allocation idiom
  6178 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6179     instruction_count(1); force_serialization;
  6180     fixed_latency(6);
  6181     heap_ptr : S3(read);
  6182     DECODE   : S0(3);
  6183     D0       : S2;
  6184     MEM      : S3;
  6185     ALU      : S3(2);
  6186     dst      : S5(write);
  6187     BR       : S5;
  6188 %}
  6190 // Generic big/slow expanded idiom
  6191 pipe_class pipe_slow(  ) %{
  6192     instruction_count(10); multiple_bundles; force_serialization;
  6193     fixed_latency(100);
  6194     D0  : S0(2);
  6195     MEM : S3(2);
  6196 %}
  6198 // The real do-nothing guy
  6199 pipe_class empty( ) %{
  6200     instruction_count(0);
  6201 %}
  6203 // Define the class for the Nop node
  6204 define %{
  6205    MachNop = empty;
  6206 %}
  6208 %}
  6210 //----------INSTRUCTIONS-------------------------------------------------------
  6211 //
  6212 // match      -- States which machine-independent subtree may be replaced
  6213 //               by this instruction.
  6214 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6215 //               selection to identify a minimum cost tree of machine
  6216 //               instructions that matches a tree of machine-independent
  6217 //               instructions.
  6218 // format     -- A string providing the disassembly for this instruction.
  6219 //               The value of an instruction's operand may be inserted
  6220 //               by referring to it with a '$' prefix.
  6221 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6222 //               to within an encode class as $primary, $secondary, and $tertiary
  6223 //               respectively.  The primary opcode is commonly used to
  6224 //               indicate the type of machine instruction, while secondary
  6225 //               and tertiary are often used for prefix options or addressing
  6226 //               modes.
  6227 // ins_encode -- A list of encode classes with parameters. The encode class
  6228 //               name must have been defined in an 'enc_class' specification
  6229 //               in the encode section of the architecture description.
  6231 //----------BSWAP-Instruction--------------------------------------------------
  6232 instruct bytes_reverse_int(eRegI dst) %{
  6233   match(Set dst (ReverseBytesI dst));
  6235   format %{ "BSWAP  $dst" %}
  6236   opcode(0x0F, 0xC8);
  6237   ins_encode( OpcP, OpcSReg(dst) );
  6238   ins_pipe( ialu_reg );
  6239 %}
  6241 instruct bytes_reverse_long(eRegL dst) %{
  6242   match(Set dst (ReverseBytesL dst));
  6244   format %{ "BSWAP  $dst.lo\n\t"
  6245             "BSWAP  $dst.hi\n\t"
  6246             "XCHG   $dst.lo $dst.hi" %}
  6248   ins_cost(125);
  6249   ins_encode( bswap_long_bytes(dst) );
  6250   ins_pipe( ialu_reg_reg);
  6251 %}
  6254 //---------- Zeros Count Instructions ------------------------------------------
  6256 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6257   predicate(UseCountLeadingZerosInstruction);
  6258   match(Set dst (CountLeadingZerosI src));
  6259   effect(KILL cr);
  6261   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6262   ins_encode %{
  6263     __ lzcntl($dst$$Register, $src$$Register);
  6264   %}
  6265   ins_pipe(ialu_reg);
  6266 %}
  6268 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6269   predicate(!UseCountLeadingZerosInstruction);
  6270   match(Set dst (CountLeadingZerosI src));
  6271   effect(KILL cr);
  6273   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6274             "JNZ    skip\n\t"
  6275             "MOV    $dst, -1\n"
  6276       "skip:\n\t"
  6277             "NEG    $dst\n\t"
  6278             "ADD    $dst, 31" %}
  6279   ins_encode %{
  6280     Register Rdst = $dst$$Register;
  6281     Register Rsrc = $src$$Register;
  6282     Label skip;
  6283     __ bsrl(Rdst, Rsrc);
  6284     __ jccb(Assembler::notZero, skip);
  6285     __ movl(Rdst, -1);
  6286     __ bind(skip);
  6287     __ negl(Rdst);
  6288     __ addl(Rdst, BitsPerInt - 1);
  6289   %}
  6290   ins_pipe(ialu_reg);
  6291 %}
  6293 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6294   predicate(UseCountLeadingZerosInstruction);
  6295   match(Set dst (CountLeadingZerosL src));
  6296   effect(TEMP dst, KILL cr);
  6298   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6299             "JNC    done\n\t"
  6300             "LZCNT  $dst, $src.lo\n\t"
  6301             "ADD    $dst, 32\n"
  6302       "done:" %}
  6303   ins_encode %{
  6304     Register Rdst = $dst$$Register;
  6305     Register Rsrc = $src$$Register;
  6306     Label done;
  6307     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6308     __ jccb(Assembler::carryClear, done);
  6309     __ lzcntl(Rdst, Rsrc);
  6310     __ addl(Rdst, BitsPerInt);
  6311     __ bind(done);
  6312   %}
  6313   ins_pipe(ialu_reg);
  6314 %}
  6316 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6317   predicate(!UseCountLeadingZerosInstruction);
  6318   match(Set dst (CountLeadingZerosL src));
  6319   effect(TEMP dst, KILL cr);
  6321   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6322             "JZ     msw_is_zero\n\t"
  6323             "ADD    $dst, 32\n\t"
  6324             "JMP    not_zero\n"
  6325       "msw_is_zero:\n\t"
  6326             "BSR    $dst, $src.lo\n\t"
  6327             "JNZ    not_zero\n\t"
  6328             "MOV    $dst, -1\n"
  6329       "not_zero:\n\t"
  6330             "NEG    $dst\n\t"
  6331             "ADD    $dst, 63\n" %}
  6332  ins_encode %{
  6333     Register Rdst = $dst$$Register;
  6334     Register Rsrc = $src$$Register;
  6335     Label msw_is_zero;
  6336     Label not_zero;
  6337     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6338     __ jccb(Assembler::zero, msw_is_zero);
  6339     __ addl(Rdst, BitsPerInt);
  6340     __ jmpb(not_zero);
  6341     __ bind(msw_is_zero);
  6342     __ bsrl(Rdst, Rsrc);
  6343     __ jccb(Assembler::notZero, not_zero);
  6344     __ movl(Rdst, -1);
  6345     __ bind(not_zero);
  6346     __ negl(Rdst);
  6347     __ addl(Rdst, BitsPerLong - 1);
  6348   %}
  6349   ins_pipe(ialu_reg);
  6350 %}
  6352 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6353   match(Set dst (CountTrailingZerosI src));
  6354   effect(KILL cr);
  6356   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6357             "JNZ    done\n\t"
  6358             "MOV    $dst, 32\n"
  6359       "done:" %}
  6360   ins_encode %{
  6361     Register Rdst = $dst$$Register;
  6362     Label done;
  6363     __ bsfl(Rdst, $src$$Register);
  6364     __ jccb(Assembler::notZero, done);
  6365     __ movl(Rdst, BitsPerInt);
  6366     __ bind(done);
  6367   %}
  6368   ins_pipe(ialu_reg);
  6369 %}
  6371 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6372   match(Set dst (CountTrailingZerosL src));
  6373   effect(TEMP dst, KILL cr);
  6375   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6376             "JNZ    done\n\t"
  6377             "BSF    $dst, $src.hi\n\t"
  6378             "JNZ    msw_not_zero\n\t"
  6379             "MOV    $dst, 32\n"
  6380       "msw_not_zero:\n\t"
  6381             "ADD    $dst, 32\n"
  6382       "done:" %}
  6383   ins_encode %{
  6384     Register Rdst = $dst$$Register;
  6385     Register Rsrc = $src$$Register;
  6386     Label msw_not_zero;
  6387     Label done;
  6388     __ bsfl(Rdst, Rsrc);
  6389     __ jccb(Assembler::notZero, done);
  6390     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6391     __ jccb(Assembler::notZero, msw_not_zero);
  6392     __ movl(Rdst, BitsPerInt);
  6393     __ bind(msw_not_zero);
  6394     __ addl(Rdst, BitsPerInt);
  6395     __ bind(done);
  6396   %}
  6397   ins_pipe(ialu_reg);
  6398 %}
  6401 //---------- Population Count Instructions -------------------------------------
  6403 instruct popCountI(eRegI dst, eRegI src) %{
  6404   predicate(UsePopCountInstruction);
  6405   match(Set dst (PopCountI src));
  6407   format %{ "POPCNT $dst, $src" %}
  6408   ins_encode %{
  6409     __ popcntl($dst$$Register, $src$$Register);
  6410   %}
  6411   ins_pipe(ialu_reg);
  6412 %}
  6414 instruct popCountI_mem(eRegI dst, memory mem) %{
  6415   predicate(UsePopCountInstruction);
  6416   match(Set dst (PopCountI (LoadI mem)));
  6418   format %{ "POPCNT $dst, $mem" %}
  6419   ins_encode %{
  6420     __ popcntl($dst$$Register, $mem$$Address);
  6421   %}
  6422   ins_pipe(ialu_reg);
  6423 %}
  6425 // Note: Long.bitCount(long) returns an int.
  6426 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6427   predicate(UsePopCountInstruction);
  6428   match(Set dst (PopCountL src));
  6429   effect(KILL cr, TEMP tmp, TEMP dst);
  6431   format %{ "POPCNT $dst, $src.lo\n\t"
  6432             "POPCNT $tmp, $src.hi\n\t"
  6433             "ADD    $dst, $tmp" %}
  6434   ins_encode %{
  6435     __ popcntl($dst$$Register, $src$$Register);
  6436     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6437     __ addl($dst$$Register, $tmp$$Register);
  6438   %}
  6439   ins_pipe(ialu_reg);
  6440 %}
  6442 // Note: Long.bitCount(long) returns an int.
  6443 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6444   predicate(UsePopCountInstruction);
  6445   match(Set dst (PopCountL (LoadL mem)));
  6446   effect(KILL cr, TEMP tmp, TEMP dst);
  6448   format %{ "POPCNT $dst, $mem\n\t"
  6449             "POPCNT $tmp, $mem+4\n\t"
  6450             "ADD    $dst, $tmp" %}
  6451   ins_encode %{
  6452     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6453     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6454     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6455     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6456     __ addl($dst$$Register, $tmp$$Register);
  6457   %}
  6458   ins_pipe(ialu_reg);
  6459 %}
  6462 //----------Load/Store/Move Instructions---------------------------------------
  6463 //----------Load Instructions--------------------------------------------------
  6464 // Load Byte (8bit signed)
  6465 instruct loadB(xRegI dst, memory mem) %{
  6466   match(Set dst (LoadB mem));
  6468   ins_cost(125);
  6469   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6471   ins_encode %{
  6472     __ movsbl($dst$$Register, $mem$$Address);
  6473   %}
  6475   ins_pipe(ialu_reg_mem);
  6476 %}
  6478 // Load Byte (8bit signed) into Long Register
  6479 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6480   match(Set dst (ConvI2L (LoadB mem)));
  6481   effect(KILL cr);
  6483   ins_cost(375);
  6484   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6485             "MOV    $dst.hi,$dst.lo\n\t"
  6486             "SAR    $dst.hi,7" %}
  6488   ins_encode %{
  6489     __ movsbl($dst$$Register, $mem$$Address);
  6490     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6491     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6492   %}
  6494   ins_pipe(ialu_reg_mem);
  6495 %}
  6497 // Load Unsigned Byte (8bit UNsigned)
  6498 instruct loadUB(xRegI dst, memory mem) %{
  6499   match(Set dst (LoadUB mem));
  6501   ins_cost(125);
  6502   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6504   ins_encode %{
  6505     __ movzbl($dst$$Register, $mem$$Address);
  6506   %}
  6508   ins_pipe(ialu_reg_mem);
  6509 %}
  6511 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6512 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6513   match(Set dst (ConvI2L (LoadUB mem)));
  6514   effect(KILL cr);
  6516   ins_cost(250);
  6517   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6518             "XOR    $dst.hi,$dst.hi" %}
  6520   ins_encode %{
  6521     Register Rdst = $dst$$Register;
  6522     __ movzbl(Rdst, $mem$$Address);
  6523     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6524   %}
  6526   ins_pipe(ialu_reg_mem);
  6527 %}
  6529 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6530 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6531   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6532   effect(KILL cr);
  6534   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6535             "XOR    $dst.hi,$dst.hi\n\t"
  6536             "AND    $dst.lo,$mask" %}
  6537   ins_encode %{
  6538     Register Rdst = $dst$$Register;
  6539     __ movzbl(Rdst, $mem$$Address);
  6540     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6541     __ andl(Rdst, $mask$$constant);
  6542   %}
  6543   ins_pipe(ialu_reg_mem);
  6544 %}
  6546 // Load Short (16bit signed)
  6547 instruct loadS(eRegI dst, memory mem) %{
  6548   match(Set dst (LoadS mem));
  6550   ins_cost(125);
  6551   format %{ "MOVSX  $dst,$mem\t# short" %}
  6553   ins_encode %{
  6554     __ movswl($dst$$Register, $mem$$Address);
  6555   %}
  6557   ins_pipe(ialu_reg_mem);
  6558 %}
  6560 // Load Short (16 bit signed) to Byte (8 bit signed)
  6561 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6562   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6564   ins_cost(125);
  6565   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6566   ins_encode %{
  6567     __ movsbl($dst$$Register, $mem$$Address);
  6568   %}
  6569   ins_pipe(ialu_reg_mem);
  6570 %}
  6572 // Load Short (16bit signed) into Long Register
  6573 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6574   match(Set dst (ConvI2L (LoadS mem)));
  6575   effect(KILL cr);
  6577   ins_cost(375);
  6578   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6579             "MOV    $dst.hi,$dst.lo\n\t"
  6580             "SAR    $dst.hi,15" %}
  6582   ins_encode %{
  6583     __ movswl($dst$$Register, $mem$$Address);
  6584     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6585     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6586   %}
  6588   ins_pipe(ialu_reg_mem);
  6589 %}
  6591 // Load Unsigned Short/Char (16bit unsigned)
  6592 instruct loadUS(eRegI dst, memory mem) %{
  6593   match(Set dst (LoadUS mem));
  6595   ins_cost(125);
  6596   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6598   ins_encode %{
  6599     __ movzwl($dst$$Register, $mem$$Address);
  6600   %}
  6602   ins_pipe(ialu_reg_mem);
  6603 %}
  6605 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6606 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6607   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6609   ins_cost(125);
  6610   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6611   ins_encode %{
  6612     __ movsbl($dst$$Register, $mem$$Address);
  6613   %}
  6614   ins_pipe(ialu_reg_mem);
  6615 %}
  6617 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6618 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6619   match(Set dst (ConvI2L (LoadUS mem)));
  6620   effect(KILL cr);
  6622   ins_cost(250);
  6623   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6624             "XOR    $dst.hi,$dst.hi" %}
  6626   ins_encode %{
  6627     __ movzwl($dst$$Register, $mem$$Address);
  6628     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6629   %}
  6631   ins_pipe(ialu_reg_mem);
  6632 %}
  6634 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6635 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6636   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6637   effect(KILL cr);
  6639   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6640             "XOR    $dst.hi,$dst.hi" %}
  6641   ins_encode %{
  6642     Register Rdst = $dst$$Register;
  6643     __ movzbl(Rdst, $mem$$Address);
  6644     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6645   %}
  6646   ins_pipe(ialu_reg_mem);
  6647 %}
  6649 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6650 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6651   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6652   effect(KILL cr);
  6654   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6655             "XOR    $dst.hi,$dst.hi\n\t"
  6656             "AND    $dst.lo,$mask" %}
  6657   ins_encode %{
  6658     Register Rdst = $dst$$Register;
  6659     __ movzwl(Rdst, $mem$$Address);
  6660     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6661     __ andl(Rdst, $mask$$constant);
  6662   %}
  6663   ins_pipe(ialu_reg_mem);
  6664 %}
  6666 // Load Integer
  6667 instruct loadI(eRegI dst, memory mem) %{
  6668   match(Set dst (LoadI mem));
  6670   ins_cost(125);
  6671   format %{ "MOV    $dst,$mem\t# int" %}
  6673   ins_encode %{
  6674     __ movl($dst$$Register, $mem$$Address);
  6675   %}
  6677   ins_pipe(ialu_reg_mem);
  6678 %}
  6680 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6681 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6682   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6684   ins_cost(125);
  6685   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6686   ins_encode %{
  6687     __ movsbl($dst$$Register, $mem$$Address);
  6688   %}
  6689   ins_pipe(ialu_reg_mem);
  6690 %}
  6692 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6693 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6694   match(Set dst (AndI (LoadI mem) mask));
  6696   ins_cost(125);
  6697   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6698   ins_encode %{
  6699     __ movzbl($dst$$Register, $mem$$Address);
  6700   %}
  6701   ins_pipe(ialu_reg_mem);
  6702 %}
  6704 // Load Integer (32 bit signed) to Short (16 bit signed)
  6705 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6706   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6708   ins_cost(125);
  6709   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6710   ins_encode %{
  6711     __ movswl($dst$$Register, $mem$$Address);
  6712   %}
  6713   ins_pipe(ialu_reg_mem);
  6714 %}
  6716 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6717 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6718   match(Set dst (AndI (LoadI mem) mask));
  6720   ins_cost(125);
  6721   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6722   ins_encode %{
  6723     __ movzwl($dst$$Register, $mem$$Address);
  6724   %}
  6725   ins_pipe(ialu_reg_mem);
  6726 %}
  6728 // Load Integer into Long Register
  6729 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6730   match(Set dst (ConvI2L (LoadI mem)));
  6731   effect(KILL cr);
  6733   ins_cost(375);
  6734   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6735             "MOV    $dst.hi,$dst.lo\n\t"
  6736             "SAR    $dst.hi,31" %}
  6738   ins_encode %{
  6739     __ movl($dst$$Register, $mem$$Address);
  6740     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6741     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6742   %}
  6744   ins_pipe(ialu_reg_mem);
  6745 %}
  6747 // Load Integer with mask 0xFF into Long Register
  6748 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6749   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6750   effect(KILL cr);
  6752   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6753             "XOR    $dst.hi,$dst.hi" %}
  6754   ins_encode %{
  6755     Register Rdst = $dst$$Register;
  6756     __ movzbl(Rdst, $mem$$Address);
  6757     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6758   %}
  6759   ins_pipe(ialu_reg_mem);
  6760 %}
  6762 // Load Integer with mask 0xFFFF into Long Register
  6763 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6764   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6765   effect(KILL cr);
  6767   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6768             "XOR    $dst.hi,$dst.hi" %}
  6769   ins_encode %{
  6770     Register Rdst = $dst$$Register;
  6771     __ movzwl(Rdst, $mem$$Address);
  6772     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6773   %}
  6774   ins_pipe(ialu_reg_mem);
  6775 %}
  6777 // Load Integer with 32-bit mask into Long Register
  6778 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6779   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6780   effect(KILL cr);
  6782   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6783             "XOR    $dst.hi,$dst.hi\n\t"
  6784             "AND    $dst.lo,$mask" %}
  6785   ins_encode %{
  6786     Register Rdst = $dst$$Register;
  6787     __ movl(Rdst, $mem$$Address);
  6788     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6789     __ andl(Rdst, $mask$$constant);
  6790   %}
  6791   ins_pipe(ialu_reg_mem);
  6792 %}
  6794 // Load Unsigned Integer into Long Register
  6795 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6796   match(Set dst (LoadUI2L mem));
  6797   effect(KILL cr);
  6799   ins_cost(250);
  6800   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6801             "XOR    $dst.hi,$dst.hi" %}
  6803   ins_encode %{
  6804     __ movl($dst$$Register, $mem$$Address);
  6805     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6806   %}
  6808   ins_pipe(ialu_reg_mem);
  6809 %}
  6811 // Load Long.  Cannot clobber address while loading, so restrict address
  6812 // register to ESI
  6813 instruct loadL(eRegL dst, load_long_memory mem) %{
  6814   predicate(!((LoadLNode*)n)->require_atomic_access());
  6815   match(Set dst (LoadL mem));
  6817   ins_cost(250);
  6818   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6819             "MOV    $dst.hi,$mem+4" %}
  6821   ins_encode %{
  6822     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6823     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6824     __ movl($dst$$Register, Amemlo);
  6825     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6826   %}
  6828   ins_pipe(ialu_reg_long_mem);
  6829 %}
  6831 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6832 // then store it down to the stack and reload on the int
  6833 // side.
  6834 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6835   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6836   match(Set dst (LoadL mem));
  6838   ins_cost(200);
  6839   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6840             "FISTp  $dst" %}
  6841   ins_encode(enc_loadL_volatile(mem,dst));
  6842   ins_pipe( fpu_reg_mem );
  6843 %}
  6845 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6846   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6847   match(Set dst (LoadL mem));
  6848   effect(TEMP tmp);
  6849   ins_cost(180);
  6850   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6851             "MOVSD  $dst,$tmp" %}
  6852   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6853   ins_pipe( pipe_slow );
  6854 %}
  6856 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6857   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6858   match(Set dst (LoadL mem));
  6859   effect(TEMP tmp);
  6860   ins_cost(160);
  6861   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6862             "MOVD   $dst.lo,$tmp\n\t"
  6863             "PSRLQ  $tmp,32\n\t"
  6864             "MOVD   $dst.hi,$tmp" %}
  6865   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6866   ins_pipe( pipe_slow );
  6867 %}
  6869 // Load Range
  6870 instruct loadRange(eRegI dst, memory mem) %{
  6871   match(Set dst (LoadRange mem));
  6873   ins_cost(125);
  6874   format %{ "MOV    $dst,$mem" %}
  6875   opcode(0x8B);
  6876   ins_encode( OpcP, RegMem(dst,mem));
  6877   ins_pipe( ialu_reg_mem );
  6878 %}
  6881 // Load Pointer
  6882 instruct loadP(eRegP dst, memory mem) %{
  6883   match(Set dst (LoadP mem));
  6885   ins_cost(125);
  6886   format %{ "MOV    $dst,$mem" %}
  6887   opcode(0x8B);
  6888   ins_encode( OpcP, RegMem(dst,mem));
  6889   ins_pipe( ialu_reg_mem );
  6890 %}
  6892 // Load Klass Pointer
  6893 instruct loadKlass(eRegP dst, memory mem) %{
  6894   match(Set dst (LoadKlass mem));
  6896   ins_cost(125);
  6897   format %{ "MOV    $dst,$mem" %}
  6898   opcode(0x8B);
  6899   ins_encode( OpcP, RegMem(dst,mem));
  6900   ins_pipe( ialu_reg_mem );
  6901 %}
  6903 // Load Double
  6904 instruct loadD(regD dst, memory mem) %{
  6905   predicate(UseSSE<=1);
  6906   match(Set dst (LoadD mem));
  6908   ins_cost(150);
  6909   format %{ "FLD_D  ST,$mem\n\t"
  6910             "FSTP   $dst" %}
  6911   opcode(0xDD);               /* DD /0 */
  6912   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6913               Pop_Reg_D(dst) );
  6914   ins_pipe( fpu_reg_mem );
  6915 %}
  6917 // Load Double to XMM
  6918 instruct loadXD(regXD dst, memory mem) %{
  6919   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6920   match(Set dst (LoadD mem));
  6921   ins_cost(145);
  6922   format %{ "MOVSD  $dst,$mem" %}
  6923   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6924   ins_pipe( pipe_slow );
  6925 %}
  6927 instruct loadXD_partial(regXD dst, memory mem) %{
  6928   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6929   match(Set dst (LoadD mem));
  6930   ins_cost(145);
  6931   format %{ "MOVLPD $dst,$mem" %}
  6932   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6933   ins_pipe( pipe_slow );
  6934 %}
  6936 // Load to XMM register (single-precision floating point)
  6937 // MOVSS instruction
  6938 instruct loadX(regX dst, memory mem) %{
  6939   predicate(UseSSE>=1);
  6940   match(Set dst (LoadF mem));
  6941   ins_cost(145);
  6942   format %{ "MOVSS  $dst,$mem" %}
  6943   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6944   ins_pipe( pipe_slow );
  6945 %}
  6947 // Load Float
  6948 instruct loadF(regF dst, memory mem) %{
  6949   predicate(UseSSE==0);
  6950   match(Set dst (LoadF mem));
  6952   ins_cost(150);
  6953   format %{ "FLD_S  ST,$mem\n\t"
  6954             "FSTP   $dst" %}
  6955   opcode(0xD9);               /* D9 /0 */
  6956   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6957               Pop_Reg_F(dst) );
  6958   ins_pipe( fpu_reg_mem );
  6959 %}
  6961 // Load Aligned Packed Byte to XMM register
  6962 instruct loadA8B(regXD dst, memory mem) %{
  6963   predicate(UseSSE>=1);
  6964   match(Set dst (Load8B mem));
  6965   ins_cost(125);
  6966   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6967   ins_encode( movq_ld(dst, mem));
  6968   ins_pipe( pipe_slow );
  6969 %}
  6971 // Load Aligned Packed Short to XMM register
  6972 instruct loadA4S(regXD dst, memory mem) %{
  6973   predicate(UseSSE>=1);
  6974   match(Set dst (Load4S mem));
  6975   ins_cost(125);
  6976   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6977   ins_encode( movq_ld(dst, mem));
  6978   ins_pipe( pipe_slow );
  6979 %}
  6981 // Load Aligned Packed Char to XMM register
  6982 instruct loadA4C(regXD dst, memory mem) %{
  6983   predicate(UseSSE>=1);
  6984   match(Set dst (Load4C mem));
  6985   ins_cost(125);
  6986   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6987   ins_encode( movq_ld(dst, mem));
  6988   ins_pipe( pipe_slow );
  6989 %}
  6991 // Load Aligned Packed Integer to XMM register
  6992 instruct load2IU(regXD dst, memory mem) %{
  6993   predicate(UseSSE>=1);
  6994   match(Set dst (Load2I mem));
  6995   ins_cost(125);
  6996   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6997   ins_encode( movq_ld(dst, mem));
  6998   ins_pipe( pipe_slow );
  6999 %}
  7001 // Load Aligned Packed Single to XMM
  7002 instruct loadA2F(regXD dst, memory mem) %{
  7003   predicate(UseSSE>=1);
  7004   match(Set dst (Load2F mem));
  7005   ins_cost(145);
  7006   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7007   ins_encode( movq_ld(dst, mem));
  7008   ins_pipe( pipe_slow );
  7009 %}
  7011 // Load Effective Address
  7012 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7013   match(Set dst mem);
  7015   ins_cost(110);
  7016   format %{ "LEA    $dst,$mem" %}
  7017   opcode(0x8D);
  7018   ins_encode( OpcP, RegMem(dst,mem));
  7019   ins_pipe( ialu_reg_reg_fat );
  7020 %}
  7022 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7023   match(Set dst mem);
  7025   ins_cost(110);
  7026   format %{ "LEA    $dst,$mem" %}
  7027   opcode(0x8D);
  7028   ins_encode( OpcP, RegMem(dst,mem));
  7029   ins_pipe( ialu_reg_reg_fat );
  7030 %}
  7032 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7033   match(Set dst mem);
  7035   ins_cost(110);
  7036   format %{ "LEA    $dst,$mem" %}
  7037   opcode(0x8D);
  7038   ins_encode( OpcP, RegMem(dst,mem));
  7039   ins_pipe( ialu_reg_reg_fat );
  7040 %}
  7042 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7043   match(Set dst mem);
  7045   ins_cost(110);
  7046   format %{ "LEA    $dst,$mem" %}
  7047   opcode(0x8D);
  7048   ins_encode( OpcP, RegMem(dst,mem));
  7049   ins_pipe( ialu_reg_reg_fat );
  7050 %}
  7052 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7053   match(Set dst mem);
  7055   ins_cost(110);
  7056   format %{ "LEA    $dst,$mem" %}
  7057   opcode(0x8D);
  7058   ins_encode( OpcP, RegMem(dst,mem));
  7059   ins_pipe( ialu_reg_reg_fat );
  7060 %}
  7062 // Load Constant
  7063 instruct loadConI(eRegI dst, immI src) %{
  7064   match(Set dst src);
  7066   format %{ "MOV    $dst,$src" %}
  7067   ins_encode( LdImmI(dst, src) );
  7068   ins_pipe( ialu_reg_fat );
  7069 %}
  7071 // Load Constant zero
  7072 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7073   match(Set dst src);
  7074   effect(KILL cr);
  7076   ins_cost(50);
  7077   format %{ "XOR    $dst,$dst" %}
  7078   opcode(0x33);  /* + rd */
  7079   ins_encode( OpcP, RegReg( dst, dst ) );
  7080   ins_pipe( ialu_reg );
  7081 %}
  7083 instruct loadConP(eRegP dst, immP src) %{
  7084   match(Set dst src);
  7086   format %{ "MOV    $dst,$src" %}
  7087   opcode(0xB8);  /* + rd */
  7088   ins_encode( LdImmP(dst, src) );
  7089   ins_pipe( ialu_reg_fat );
  7090 %}
  7092 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7093   match(Set dst src);
  7094   effect(KILL cr);
  7095   ins_cost(200);
  7096   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7097             "MOV    $dst.hi,$src.hi" %}
  7098   opcode(0xB8);
  7099   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7100   ins_pipe( ialu_reg_long_fat );
  7101 %}
  7103 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7104   match(Set dst src);
  7105   effect(KILL cr);
  7106   ins_cost(150);
  7107   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7108             "XOR    $dst.hi,$dst.hi" %}
  7109   opcode(0x33,0x33);
  7110   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7111   ins_pipe( ialu_reg_long );
  7112 %}
  7114 // The instruction usage is guarded by predicate in operand immF().
  7115 instruct loadConF(regF dst, immF src) %{
  7116   match(Set dst src);
  7117   ins_cost(125);
  7119   format %{ "FLD_S  ST,$src\n\t"
  7120             "FSTP   $dst" %}
  7121   opcode(0xD9, 0x00);       /* D9 /0 */
  7122   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  7123   ins_pipe( fpu_reg_con );
  7124 %}
  7126 // The instruction usage is guarded by predicate in operand immXF().
  7127 instruct loadConX(regX dst, immXF con) %{
  7128   match(Set dst con);
  7129   ins_cost(125);
  7130   format %{ "MOVSS  $dst,[$con]" %}
  7131   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  7132   ins_pipe( pipe_slow );
  7133 %}
  7135 // The instruction usage is guarded by predicate in operand immXF0().
  7136 instruct loadConX0(regX dst, immXF0 src) %{
  7137   match(Set dst src);
  7138   ins_cost(100);
  7139   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7140   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7141   ins_pipe( pipe_slow );
  7142 %}
  7144 // The instruction usage is guarded by predicate in operand immD().
  7145 instruct loadConD(regD dst, immD src) %{
  7146   match(Set dst src);
  7147   ins_cost(125);
  7149   format %{ "FLD_D  ST,$src\n\t"
  7150             "FSTP   $dst" %}
  7151   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  7152   ins_pipe( fpu_reg_con );
  7153 %}
  7155 // The instruction usage is guarded by predicate in operand immXD().
  7156 instruct loadConXD(regXD dst, immXD con) %{
  7157   match(Set dst con);
  7158   ins_cost(125);
  7159   format %{ "MOVSD  $dst,[$con]" %}
  7160   ins_encode(load_conXD(dst, con));
  7161   ins_pipe( pipe_slow );
  7162 %}
  7164 // The instruction usage is guarded by predicate in operand immXD0().
  7165 instruct loadConXD0(regXD dst, immXD0 src) %{
  7166   match(Set dst src);
  7167   ins_cost(100);
  7168   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7169   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7170   ins_pipe( pipe_slow );
  7171 %}
  7173 // Load Stack Slot
  7174 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7175   match(Set dst src);
  7176   ins_cost(125);
  7178   format %{ "MOV    $dst,$src" %}
  7179   opcode(0x8B);
  7180   ins_encode( OpcP, RegMem(dst,src));
  7181   ins_pipe( ialu_reg_mem );
  7182 %}
  7184 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7185   match(Set dst src);
  7187   ins_cost(200);
  7188   format %{ "MOV    $dst,$src.lo\n\t"
  7189             "MOV    $dst+4,$src.hi" %}
  7190   opcode(0x8B, 0x8B);
  7191   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7192   ins_pipe( ialu_mem_long_reg );
  7193 %}
  7195 // Load Stack Slot
  7196 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7197   match(Set dst src);
  7198   ins_cost(125);
  7200   format %{ "MOV    $dst,$src" %}
  7201   opcode(0x8B);
  7202   ins_encode( OpcP, RegMem(dst,src));
  7203   ins_pipe( ialu_reg_mem );
  7204 %}
  7206 // Load Stack Slot
  7207 instruct loadSSF(regF dst, stackSlotF src) %{
  7208   match(Set dst src);
  7209   ins_cost(125);
  7211   format %{ "FLD_S  $src\n\t"
  7212             "FSTP   $dst" %}
  7213   opcode(0xD9);               /* D9 /0, FLD m32real */
  7214   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7215               Pop_Reg_F(dst) );
  7216   ins_pipe( fpu_reg_mem );
  7217 %}
  7219 // Load Stack Slot
  7220 instruct loadSSD(regD dst, stackSlotD src) %{
  7221   match(Set dst src);
  7222   ins_cost(125);
  7224   format %{ "FLD_D  $src\n\t"
  7225             "FSTP   $dst" %}
  7226   opcode(0xDD);               /* DD /0, FLD m64real */
  7227   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7228               Pop_Reg_D(dst) );
  7229   ins_pipe( fpu_reg_mem );
  7230 %}
  7232 // Prefetch instructions.
  7233 // Must be safe to execute with invalid address (cannot fault).
  7235 instruct prefetchr0( memory mem ) %{
  7236   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7237   match(PrefetchRead mem);
  7238   ins_cost(0);
  7239   size(0);
  7240   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7241   ins_encode();
  7242   ins_pipe(empty);
  7243 %}
  7245 instruct prefetchr( memory mem ) %{
  7246   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7247   match(PrefetchRead mem);
  7248   ins_cost(100);
  7250   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7251   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7252   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7253   ins_pipe(ialu_mem);
  7254 %}
  7256 instruct prefetchrNTA( memory mem ) %{
  7257   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7258   match(PrefetchRead mem);
  7259   ins_cost(100);
  7261   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7262   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7263   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7264   ins_pipe(ialu_mem);
  7265 %}
  7267 instruct prefetchrT0( memory mem ) %{
  7268   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7269   match(PrefetchRead mem);
  7270   ins_cost(100);
  7272   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7273   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7274   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7275   ins_pipe(ialu_mem);
  7276 %}
  7278 instruct prefetchrT2( memory mem ) %{
  7279   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7280   match(PrefetchRead mem);
  7281   ins_cost(100);
  7283   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7284   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7285   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7286   ins_pipe(ialu_mem);
  7287 %}
  7289 instruct prefetchw0( memory mem ) %{
  7290   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7291   match(PrefetchWrite mem);
  7292   ins_cost(0);
  7293   size(0);
  7294   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7295   ins_encode();
  7296   ins_pipe(empty);
  7297 %}
  7299 instruct prefetchw( memory mem ) %{
  7300   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7301   match( PrefetchWrite mem );
  7302   ins_cost(100);
  7304   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7305   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7306   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7307   ins_pipe(ialu_mem);
  7308 %}
  7310 instruct prefetchwNTA( memory mem ) %{
  7311   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7312   match(PrefetchWrite mem);
  7313   ins_cost(100);
  7315   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7316   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7317   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7318   ins_pipe(ialu_mem);
  7319 %}
  7321 instruct prefetchwT0( memory mem ) %{
  7322   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7323   match(PrefetchWrite mem);
  7324   ins_cost(100);
  7326   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7327   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7328   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7329   ins_pipe(ialu_mem);
  7330 %}
  7332 instruct prefetchwT2( memory mem ) %{
  7333   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7334   match(PrefetchWrite mem);
  7335   ins_cost(100);
  7337   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7338   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7339   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7340   ins_pipe(ialu_mem);
  7341 %}
  7343 //----------Store Instructions-------------------------------------------------
  7345 // Store Byte
  7346 instruct storeB(memory mem, xRegI src) %{
  7347   match(Set mem (StoreB mem src));
  7349   ins_cost(125);
  7350   format %{ "MOV8   $mem,$src" %}
  7351   opcode(0x88);
  7352   ins_encode( OpcP, RegMem( src, mem ) );
  7353   ins_pipe( ialu_mem_reg );
  7354 %}
  7356 // Store Char/Short
  7357 instruct storeC(memory mem, eRegI src) %{
  7358   match(Set mem (StoreC mem src));
  7360   ins_cost(125);
  7361   format %{ "MOV16  $mem,$src" %}
  7362   opcode(0x89, 0x66);
  7363   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7364   ins_pipe( ialu_mem_reg );
  7365 %}
  7367 // Store Integer
  7368 instruct storeI(memory mem, eRegI src) %{
  7369   match(Set mem (StoreI mem src));
  7371   ins_cost(125);
  7372   format %{ "MOV    $mem,$src" %}
  7373   opcode(0x89);
  7374   ins_encode( OpcP, RegMem( src, mem ) );
  7375   ins_pipe( ialu_mem_reg );
  7376 %}
  7378 // Store Long
  7379 instruct storeL(long_memory mem, eRegL src) %{
  7380   predicate(!((StoreLNode*)n)->require_atomic_access());
  7381   match(Set mem (StoreL mem src));
  7383   ins_cost(200);
  7384   format %{ "MOV    $mem,$src.lo\n\t"
  7385             "MOV    $mem+4,$src.hi" %}
  7386   opcode(0x89, 0x89);
  7387   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7388   ins_pipe( ialu_mem_long_reg );
  7389 %}
  7391 // Store Long to Integer
  7392 instruct storeL2I(memory mem, eRegL src) %{
  7393   match(Set mem (StoreI mem (ConvL2I src)));
  7395   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7396   ins_encode %{
  7397     __ movl($mem$$Address, $src$$Register);
  7398   %}
  7399   ins_pipe(ialu_mem_reg);
  7400 %}
  7402 // Volatile Store Long.  Must be atomic, so move it into
  7403 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7404 // target address before the store (for null-ptr checks)
  7405 // so the memory operand is used twice in the encoding.
  7406 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7407   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7408   match(Set mem (StoreL mem src));
  7409   effect( KILL cr );
  7410   ins_cost(400);
  7411   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7412             "FILD   $src\n\t"
  7413             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7414   opcode(0x3B);
  7415   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7416   ins_pipe( fpu_reg_mem );
  7417 %}
  7419 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7420   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7421   match(Set mem (StoreL mem src));
  7422   effect( TEMP tmp, KILL cr );
  7423   ins_cost(380);
  7424   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7425             "MOVSD  $tmp,$src\n\t"
  7426             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7427   opcode(0x3B);
  7428   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7429   ins_pipe( pipe_slow );
  7430 %}
  7432 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7433   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7434   match(Set mem (StoreL mem src));
  7435   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7436   ins_cost(360);
  7437   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7438             "MOVD   $tmp,$src.lo\n\t"
  7439             "MOVD   $tmp2,$src.hi\n\t"
  7440             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7441             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7442   opcode(0x3B);
  7443   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7444   ins_pipe( pipe_slow );
  7445 %}
  7447 // Store Pointer; for storing unknown oops and raw pointers
  7448 instruct storeP(memory mem, anyRegP src) %{
  7449   match(Set mem (StoreP mem src));
  7451   ins_cost(125);
  7452   format %{ "MOV    $mem,$src" %}
  7453   opcode(0x89);
  7454   ins_encode( OpcP, RegMem( src, mem ) );
  7455   ins_pipe( ialu_mem_reg );
  7456 %}
  7458 // Store Integer Immediate
  7459 instruct storeImmI(memory mem, immI src) %{
  7460   match(Set mem (StoreI mem src));
  7462   ins_cost(150);
  7463   format %{ "MOV    $mem,$src" %}
  7464   opcode(0xC7);               /* C7 /0 */
  7465   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7466   ins_pipe( ialu_mem_imm );
  7467 %}
  7469 // Store Short/Char Immediate
  7470 instruct storeImmI16(memory mem, immI16 src) %{
  7471   predicate(UseStoreImmI16);
  7472   match(Set mem (StoreC mem src));
  7474   ins_cost(150);
  7475   format %{ "MOV16  $mem,$src" %}
  7476   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7477   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7478   ins_pipe( ialu_mem_imm );
  7479 %}
  7481 // Store Pointer Immediate; null pointers or constant oops that do not
  7482 // need card-mark barriers.
  7483 instruct storeImmP(memory mem, immP src) %{
  7484   match(Set mem (StoreP mem src));
  7486   ins_cost(150);
  7487   format %{ "MOV    $mem,$src" %}
  7488   opcode(0xC7);               /* C7 /0 */
  7489   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7490   ins_pipe( ialu_mem_imm );
  7491 %}
  7493 // Store Byte Immediate
  7494 instruct storeImmB(memory mem, immI8 src) %{
  7495   match(Set mem (StoreB mem src));
  7497   ins_cost(150);
  7498   format %{ "MOV8   $mem,$src" %}
  7499   opcode(0xC6);               /* C6 /0 */
  7500   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7501   ins_pipe( ialu_mem_imm );
  7502 %}
  7504 // Store Aligned Packed Byte XMM register to memory
  7505 instruct storeA8B(memory mem, regXD src) %{
  7506   predicate(UseSSE>=1);
  7507   match(Set mem (Store8B mem src));
  7508   ins_cost(145);
  7509   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7510   ins_encode( movq_st(mem, src));
  7511   ins_pipe( pipe_slow );
  7512 %}
  7514 // Store Aligned Packed Char/Short XMM register to memory
  7515 instruct storeA4C(memory mem, regXD src) %{
  7516   predicate(UseSSE>=1);
  7517   match(Set mem (Store4C mem src));
  7518   ins_cost(145);
  7519   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7520   ins_encode( movq_st(mem, src));
  7521   ins_pipe( pipe_slow );
  7522 %}
  7524 // Store Aligned Packed Integer XMM register to memory
  7525 instruct storeA2I(memory mem, regXD src) %{
  7526   predicate(UseSSE>=1);
  7527   match(Set mem (Store2I mem src));
  7528   ins_cost(145);
  7529   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7530   ins_encode( movq_st(mem, src));
  7531   ins_pipe( pipe_slow );
  7532 %}
  7534 // Store CMS card-mark Immediate
  7535 instruct storeImmCM(memory mem, immI8 src) %{
  7536   match(Set mem (StoreCM mem src));
  7538   ins_cost(150);
  7539   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7540   opcode(0xC6);               /* C6 /0 */
  7541   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7542   ins_pipe( ialu_mem_imm );
  7543 %}
  7545 // Store Double
  7546 instruct storeD( memory mem, regDPR1 src) %{
  7547   predicate(UseSSE<=1);
  7548   match(Set mem (StoreD mem src));
  7550   ins_cost(100);
  7551   format %{ "FST_D  $mem,$src" %}
  7552   opcode(0xDD);       /* DD /2 */
  7553   ins_encode( enc_FP_store(mem,src) );
  7554   ins_pipe( fpu_mem_reg );
  7555 %}
  7557 // Store double does rounding on x86
  7558 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7559   predicate(UseSSE<=1);
  7560   match(Set mem (StoreD mem (RoundDouble src)));
  7562   ins_cost(100);
  7563   format %{ "FST_D  $mem,$src\t# round" %}
  7564   opcode(0xDD);       /* DD /2 */
  7565   ins_encode( enc_FP_store(mem,src) );
  7566   ins_pipe( fpu_mem_reg );
  7567 %}
  7569 // Store XMM register to memory (double-precision floating points)
  7570 // MOVSD instruction
  7571 instruct storeXD(memory mem, regXD src) %{
  7572   predicate(UseSSE>=2);
  7573   match(Set mem (StoreD mem src));
  7574   ins_cost(95);
  7575   format %{ "MOVSD  $mem,$src" %}
  7576   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7577   ins_pipe( pipe_slow );
  7578 %}
  7580 // Store XMM register to memory (single-precision floating point)
  7581 // MOVSS instruction
  7582 instruct storeX(memory mem, regX src) %{
  7583   predicate(UseSSE>=1);
  7584   match(Set mem (StoreF mem src));
  7585   ins_cost(95);
  7586   format %{ "MOVSS  $mem,$src" %}
  7587   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7588   ins_pipe( pipe_slow );
  7589 %}
  7591 // Store Aligned Packed Single Float XMM register to memory
  7592 instruct storeA2F(memory mem, regXD src) %{
  7593   predicate(UseSSE>=1);
  7594   match(Set mem (Store2F mem src));
  7595   ins_cost(145);
  7596   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7597   ins_encode( movq_st(mem, src));
  7598   ins_pipe( pipe_slow );
  7599 %}
  7601 // Store Float
  7602 instruct storeF( memory mem, regFPR1 src) %{
  7603   predicate(UseSSE==0);
  7604   match(Set mem (StoreF mem src));
  7606   ins_cost(100);
  7607   format %{ "FST_S  $mem,$src" %}
  7608   opcode(0xD9);       /* D9 /2 */
  7609   ins_encode( enc_FP_store(mem,src) );
  7610   ins_pipe( fpu_mem_reg );
  7611 %}
  7613 // Store Float does rounding on x86
  7614 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7615   predicate(UseSSE==0);
  7616   match(Set mem (StoreF mem (RoundFloat src)));
  7618   ins_cost(100);
  7619   format %{ "FST_S  $mem,$src\t# round" %}
  7620   opcode(0xD9);       /* D9 /2 */
  7621   ins_encode( enc_FP_store(mem,src) );
  7622   ins_pipe( fpu_mem_reg );
  7623 %}
  7625 // Store Float does rounding on x86
  7626 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7627   predicate(UseSSE<=1);
  7628   match(Set mem (StoreF mem (ConvD2F src)));
  7630   ins_cost(100);
  7631   format %{ "FST_S  $mem,$src\t# D-round" %}
  7632   opcode(0xD9);       /* D9 /2 */
  7633   ins_encode( enc_FP_store(mem,src) );
  7634   ins_pipe( fpu_mem_reg );
  7635 %}
  7637 // Store immediate Float value (it is faster than store from FPU register)
  7638 // The instruction usage is guarded by predicate in operand immF().
  7639 instruct storeF_imm( memory mem, immF src) %{
  7640   match(Set mem (StoreF mem src));
  7642   ins_cost(50);
  7643   format %{ "MOV    $mem,$src\t# store float" %}
  7644   opcode(0xC7);               /* C7 /0 */
  7645   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7646   ins_pipe( ialu_mem_imm );
  7647 %}
  7649 // Store immediate Float value (it is faster than store from XMM register)
  7650 // The instruction usage is guarded by predicate in operand immXF().
  7651 instruct storeX_imm( memory mem, immXF src) %{
  7652   match(Set mem (StoreF mem src));
  7654   ins_cost(50);
  7655   format %{ "MOV    $mem,$src\t# store float" %}
  7656   opcode(0xC7);               /* C7 /0 */
  7657   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7658   ins_pipe( ialu_mem_imm );
  7659 %}
  7661 // Store Integer to stack slot
  7662 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7663   match(Set dst src);
  7665   ins_cost(100);
  7666   format %{ "MOV    $dst,$src" %}
  7667   opcode(0x89);
  7668   ins_encode( OpcPRegSS( dst, src ) );
  7669   ins_pipe( ialu_mem_reg );
  7670 %}
  7672 // Store Integer to stack slot
  7673 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7674   match(Set dst src);
  7676   ins_cost(100);
  7677   format %{ "MOV    $dst,$src" %}
  7678   opcode(0x89);
  7679   ins_encode( OpcPRegSS( dst, src ) );
  7680   ins_pipe( ialu_mem_reg );
  7681 %}
  7683 // Store Long to stack slot
  7684 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7685   match(Set dst src);
  7687   ins_cost(200);
  7688   format %{ "MOV    $dst,$src.lo\n\t"
  7689             "MOV    $dst+4,$src.hi" %}
  7690   opcode(0x89, 0x89);
  7691   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7692   ins_pipe( ialu_mem_long_reg );
  7693 %}
  7695 //----------MemBar Instructions-----------------------------------------------
  7696 // Memory barrier flavors
  7698 instruct membar_acquire() %{
  7699   match(MemBarAcquire);
  7700   ins_cost(400);
  7702   size(0);
  7703   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7704   ins_encode();
  7705   ins_pipe(empty);
  7706 %}
  7708 instruct membar_acquire_lock() %{
  7709   match(MemBarAcquire);
  7710   predicate(Matcher::prior_fast_lock(n));
  7711   ins_cost(0);
  7713   size(0);
  7714   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7715   ins_encode( );
  7716   ins_pipe(empty);
  7717 %}
  7719 instruct membar_release() %{
  7720   match(MemBarRelease);
  7721   ins_cost(400);
  7723   size(0);
  7724   format %{ "MEMBAR-release ! (empty encoding)" %}
  7725   ins_encode( );
  7726   ins_pipe(empty);
  7727 %}
  7729 instruct membar_release_lock() %{
  7730   match(MemBarRelease);
  7731   predicate(Matcher::post_fast_unlock(n));
  7732   ins_cost(0);
  7734   size(0);
  7735   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7736   ins_encode( );
  7737   ins_pipe(empty);
  7738 %}
  7740 instruct membar_volatile(eFlagsReg cr) %{
  7741   match(MemBarVolatile);
  7742   effect(KILL cr);
  7743   ins_cost(400);
  7745   format %{ 
  7746     $$template
  7747     if (os::is_MP()) {
  7748       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7749     } else {
  7750       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7752   %}
  7753   ins_encode %{
  7754     __ membar(Assembler::StoreLoad);
  7755   %}
  7756   ins_pipe(pipe_slow);
  7757 %}
  7759 instruct unnecessary_membar_volatile() %{
  7760   match(MemBarVolatile);
  7761   predicate(Matcher::post_store_load_barrier(n));
  7762   ins_cost(0);
  7764   size(0);
  7765   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7766   ins_encode( );
  7767   ins_pipe(empty);
  7768 %}
  7770 //----------Move Instructions--------------------------------------------------
  7771 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7772   match(Set dst (CastX2P src));
  7773   format %{ "# X2P  $dst, $src" %}
  7774   ins_encode( /*empty encoding*/ );
  7775   ins_cost(0);
  7776   ins_pipe(empty);
  7777 %}
  7779 instruct castP2X(eRegI dst, eRegP src ) %{
  7780   match(Set dst (CastP2X src));
  7781   ins_cost(50);
  7782   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7783   ins_encode( enc_Copy( dst, src) );
  7784   ins_pipe( ialu_reg_reg );
  7785 %}
  7787 //----------Conditional Move---------------------------------------------------
  7788 // Conditional move
  7789 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7790   predicate(VM_Version::supports_cmov() );
  7791   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7792   ins_cost(200);
  7793   format %{ "CMOV$cop $dst,$src" %}
  7794   opcode(0x0F,0x40);
  7795   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7796   ins_pipe( pipe_cmov_reg );
  7797 %}
  7799 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7800   predicate(VM_Version::supports_cmov() );
  7801   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7802   ins_cost(200);
  7803   format %{ "CMOV$cop $dst,$src" %}
  7804   opcode(0x0F,0x40);
  7805   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7806   ins_pipe( pipe_cmov_reg );
  7807 %}
  7809 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7810   predicate(VM_Version::supports_cmov() );
  7811   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7812   ins_cost(200);
  7813   expand %{
  7814     cmovI_regU(cop, cr, dst, src);
  7815   %}
  7816 %}
  7818 // Conditional move
  7819 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7820   predicate(VM_Version::supports_cmov() );
  7821   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7822   ins_cost(250);
  7823   format %{ "CMOV$cop $dst,$src" %}
  7824   opcode(0x0F,0x40);
  7825   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7826   ins_pipe( pipe_cmov_mem );
  7827 %}
  7829 // Conditional move
  7830 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7831   predicate(VM_Version::supports_cmov() );
  7832   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7833   ins_cost(250);
  7834   format %{ "CMOV$cop $dst,$src" %}
  7835   opcode(0x0F,0x40);
  7836   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7837   ins_pipe( pipe_cmov_mem );
  7838 %}
  7840 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7841   predicate(VM_Version::supports_cmov() );
  7842   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7843   ins_cost(250);
  7844   expand %{
  7845     cmovI_memU(cop, cr, dst, src);
  7846   %}
  7847 %}
  7849 // Conditional move
  7850 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7851   predicate(VM_Version::supports_cmov() );
  7852   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7853   ins_cost(200);
  7854   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7855   opcode(0x0F,0x40);
  7856   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7857   ins_pipe( pipe_cmov_reg );
  7858 %}
  7860 // Conditional move (non-P6 version)
  7861 // Note:  a CMoveP is generated for  stubs and native wrappers
  7862 //        regardless of whether we are on a P6, so we
  7863 //        emulate a cmov here
  7864 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7865   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7866   ins_cost(300);
  7867   format %{ "Jn$cop   skip\n\t"
  7868           "MOV    $dst,$src\t# pointer\n"
  7869       "skip:" %}
  7870   opcode(0x8b);
  7871   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7872   ins_pipe( pipe_cmov_reg );
  7873 %}
  7875 // Conditional move
  7876 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7877   predicate(VM_Version::supports_cmov() );
  7878   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7879   ins_cost(200);
  7880   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7881   opcode(0x0F,0x40);
  7882   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7883   ins_pipe( pipe_cmov_reg );
  7884 %}
  7886 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7887   predicate(VM_Version::supports_cmov() );
  7888   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7889   ins_cost(200);
  7890   expand %{
  7891     cmovP_regU(cop, cr, dst, src);
  7892   %}
  7893 %}
  7895 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7896 // correctly meets the two pointer arguments; one is an incoming
  7897 // register but the other is a memory operand.  ALSO appears to
  7898 // be buggy with implicit null checks.
  7899 //
  7900 //// Conditional move
  7901 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7902 //  predicate(VM_Version::supports_cmov() );
  7903 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7904 //  ins_cost(250);
  7905 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7906 //  opcode(0x0F,0x40);
  7907 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7908 //  ins_pipe( pipe_cmov_mem );
  7909 //%}
  7910 //
  7911 //// Conditional move
  7912 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7913 //  predicate(VM_Version::supports_cmov() );
  7914 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7915 //  ins_cost(250);
  7916 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7917 //  opcode(0x0F,0x40);
  7918 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7919 //  ins_pipe( pipe_cmov_mem );
  7920 //%}
  7922 // Conditional move
  7923 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  7924   predicate(UseSSE<=1);
  7925   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7926   ins_cost(200);
  7927   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7928   opcode(0xDA);
  7929   ins_encode( enc_cmov_d(cop,src) );
  7930   ins_pipe( pipe_cmovD_reg );
  7931 %}
  7933 // Conditional move
  7934 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  7935   predicate(UseSSE==0);
  7936   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7937   ins_cost(200);
  7938   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7939   opcode(0xDA);
  7940   ins_encode( enc_cmov_d(cop,src) );
  7941   ins_pipe( pipe_cmovD_reg );
  7942 %}
  7944 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7945 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7946   predicate(UseSSE<=1);
  7947   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7948   ins_cost(200);
  7949   format %{ "Jn$cop   skip\n\t"
  7950             "MOV    $dst,$src\t# double\n"
  7951       "skip:" %}
  7952   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7953   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  7954   ins_pipe( pipe_cmovD_reg );
  7955 %}
  7957 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7958 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7959   predicate(UseSSE==0);
  7960   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7961   ins_cost(200);
  7962   format %{ "Jn$cop    skip\n\t"
  7963             "MOV    $dst,$src\t# float\n"
  7964       "skip:" %}
  7965   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7966   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  7967   ins_pipe( pipe_cmovD_reg );
  7968 %}
  7970 // No CMOVE with SSE/SSE2
  7971 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  7972   predicate (UseSSE>=1);
  7973   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7974   ins_cost(200);
  7975   format %{ "Jn$cop   skip\n\t"
  7976             "MOVSS  $dst,$src\t# float\n"
  7977       "skip:" %}
  7978   ins_encode %{
  7979     Label skip;
  7980     // Invert sense of branch from sense of CMOV
  7981     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7982     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7983     __ bind(skip);
  7984   %}
  7985   ins_pipe( pipe_slow );
  7986 %}
  7988 // No CMOVE with SSE/SSE2
  7989 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  7990   predicate (UseSSE>=2);
  7991   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7992   ins_cost(200);
  7993   format %{ "Jn$cop   skip\n\t"
  7994             "MOVSD  $dst,$src\t# float\n"
  7995       "skip:" %}
  7996   ins_encode %{
  7997     Label skip;
  7998     // Invert sense of branch from sense of CMOV
  7999     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8000     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8001     __ bind(skip);
  8002   %}
  8003   ins_pipe( pipe_slow );
  8004 %}
  8006 // unsigned version
  8007 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8008   predicate (UseSSE>=1);
  8009   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8010   ins_cost(200);
  8011   format %{ "Jn$cop   skip\n\t"
  8012             "MOVSS  $dst,$src\t# float\n"
  8013       "skip:" %}
  8014   ins_encode %{
  8015     Label skip;
  8016     // Invert sense of branch from sense of CMOV
  8017     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8018     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8019     __ bind(skip);
  8020   %}
  8021   ins_pipe( pipe_slow );
  8022 %}
  8024 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8025   predicate (UseSSE>=1);
  8026   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8027   ins_cost(200);
  8028   expand %{
  8029     fcmovX_regU(cop, cr, dst, src);
  8030   %}
  8031 %}
  8033 // unsigned version
  8034 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8035   predicate (UseSSE>=2);
  8036   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8037   ins_cost(200);
  8038   format %{ "Jn$cop   skip\n\t"
  8039             "MOVSD  $dst,$src\t# float\n"
  8040       "skip:" %}
  8041   ins_encode %{
  8042     Label skip;
  8043     // Invert sense of branch from sense of CMOV
  8044     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8045     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8046     __ bind(skip);
  8047   %}
  8048   ins_pipe( pipe_slow );
  8049 %}
  8051 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8052   predicate (UseSSE>=2);
  8053   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8054   ins_cost(200);
  8055   expand %{
  8056     fcmovXD_regU(cop, cr, dst, src);
  8057   %}
  8058 %}
  8060 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8061   predicate(VM_Version::supports_cmov() );
  8062   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8063   ins_cost(200);
  8064   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8065             "CMOV$cop $dst.hi,$src.hi" %}
  8066   opcode(0x0F,0x40);
  8067   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8068   ins_pipe( pipe_cmov_reg_long );
  8069 %}
  8071 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8072   predicate(VM_Version::supports_cmov() );
  8073   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8074   ins_cost(200);
  8075   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8076             "CMOV$cop $dst.hi,$src.hi" %}
  8077   opcode(0x0F,0x40);
  8078   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8079   ins_pipe( pipe_cmov_reg_long );
  8080 %}
  8082 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8083   predicate(VM_Version::supports_cmov() );
  8084   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8085   ins_cost(200);
  8086   expand %{
  8087     cmovL_regU(cop, cr, dst, src);
  8088   %}
  8089 %}
  8091 //----------Arithmetic Instructions--------------------------------------------
  8092 //----------Addition Instructions----------------------------------------------
  8093 // Integer Addition Instructions
  8094 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8095   match(Set dst (AddI dst src));
  8096   effect(KILL cr);
  8098   size(2);
  8099   format %{ "ADD    $dst,$src" %}
  8100   opcode(0x03);
  8101   ins_encode( OpcP, RegReg( dst, src) );
  8102   ins_pipe( ialu_reg_reg );
  8103 %}
  8105 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8106   match(Set dst (AddI dst src));
  8107   effect(KILL cr);
  8109   format %{ "ADD    $dst,$src" %}
  8110   opcode(0x81, 0x00); /* /0 id */
  8111   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8112   ins_pipe( ialu_reg );
  8113 %}
  8115 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8116   predicate(UseIncDec);
  8117   match(Set dst (AddI dst src));
  8118   effect(KILL cr);
  8120   size(1);
  8121   format %{ "INC    $dst" %}
  8122   opcode(0x40); /*  */
  8123   ins_encode( Opc_plus( primary, dst ) );
  8124   ins_pipe( ialu_reg );
  8125 %}
  8127 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8128   match(Set dst (AddI src0 src1));
  8129   ins_cost(110);
  8131   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8132   opcode(0x8D); /* 0x8D /r */
  8133   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8134   ins_pipe( ialu_reg_reg );
  8135 %}
  8137 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8138   match(Set dst (AddP src0 src1));
  8139   ins_cost(110);
  8141   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8142   opcode(0x8D); /* 0x8D /r */
  8143   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8144   ins_pipe( ialu_reg_reg );
  8145 %}
  8147 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8148   predicate(UseIncDec);
  8149   match(Set dst (AddI dst src));
  8150   effect(KILL cr);
  8152   size(1);
  8153   format %{ "DEC    $dst" %}
  8154   opcode(0x48); /*  */
  8155   ins_encode( Opc_plus( primary, dst ) );
  8156   ins_pipe( ialu_reg );
  8157 %}
  8159 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8160   match(Set dst (AddP dst src));
  8161   effect(KILL cr);
  8163   size(2);
  8164   format %{ "ADD    $dst,$src" %}
  8165   opcode(0x03);
  8166   ins_encode( OpcP, RegReg( dst, src) );
  8167   ins_pipe( ialu_reg_reg );
  8168 %}
  8170 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8171   match(Set dst (AddP dst src));
  8172   effect(KILL cr);
  8174   format %{ "ADD    $dst,$src" %}
  8175   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8176   // ins_encode( RegImm( dst, src) );
  8177   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8178   ins_pipe( ialu_reg );
  8179 %}
  8181 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8182   match(Set dst (AddI dst (LoadI src)));
  8183   effect(KILL cr);
  8185   ins_cost(125);
  8186   format %{ "ADD    $dst,$src" %}
  8187   opcode(0x03);
  8188   ins_encode( OpcP, RegMem( dst, src) );
  8189   ins_pipe( ialu_reg_mem );
  8190 %}
  8192 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8193   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8194   effect(KILL cr);
  8196   ins_cost(150);
  8197   format %{ "ADD    $dst,$src" %}
  8198   opcode(0x01);  /* Opcode 01 /r */
  8199   ins_encode( OpcP, RegMem( src, dst ) );
  8200   ins_pipe( ialu_mem_reg );
  8201 %}
  8203 // Add Memory with Immediate
  8204 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8205   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8206   effect(KILL cr);
  8208   ins_cost(125);
  8209   format %{ "ADD    $dst,$src" %}
  8210   opcode(0x81);               /* Opcode 81 /0 id */
  8211   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8212   ins_pipe( ialu_mem_imm );
  8213 %}
  8215 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8216   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8217   effect(KILL cr);
  8219   ins_cost(125);
  8220   format %{ "INC    $dst" %}
  8221   opcode(0xFF);               /* Opcode FF /0 */
  8222   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8223   ins_pipe( ialu_mem_imm );
  8224 %}
  8226 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8227   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8228   effect(KILL cr);
  8230   ins_cost(125);
  8231   format %{ "DEC    $dst" %}
  8232   opcode(0xFF);               /* Opcode FF /1 */
  8233   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8234   ins_pipe( ialu_mem_imm );
  8235 %}
  8238 instruct checkCastPP( eRegP dst ) %{
  8239   match(Set dst (CheckCastPP dst));
  8241   size(0);
  8242   format %{ "#checkcastPP of $dst" %}
  8243   ins_encode( /*empty encoding*/ );
  8244   ins_pipe( empty );
  8245 %}
  8247 instruct castPP( eRegP dst ) %{
  8248   match(Set dst (CastPP dst));
  8249   format %{ "#castPP of $dst" %}
  8250   ins_encode( /*empty encoding*/ );
  8251   ins_pipe( empty );
  8252 %}
  8254 instruct castII( eRegI dst ) %{
  8255   match(Set dst (CastII dst));
  8256   format %{ "#castII of $dst" %}
  8257   ins_encode( /*empty encoding*/ );
  8258   ins_cost(0);
  8259   ins_pipe( empty );
  8260 %}
  8263 // Load-locked - same as a regular pointer load when used with compare-swap
  8264 instruct loadPLocked(eRegP dst, memory mem) %{
  8265   match(Set dst (LoadPLocked mem));
  8267   ins_cost(125);
  8268   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8269   opcode(0x8B);
  8270   ins_encode( OpcP, RegMem(dst,mem));
  8271   ins_pipe( ialu_reg_mem );
  8272 %}
  8274 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8275 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8276   predicate(UseSSE<=1);
  8277   match(Set dst (LoadLLocked mem));
  8279   ins_cost(200);
  8280   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8281             "FISTp  $dst" %}
  8282   ins_encode(enc_loadL_volatile(mem,dst));
  8283   ins_pipe( fpu_reg_mem );
  8284 %}
  8286 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8287   predicate(UseSSE>=2);
  8288   match(Set dst (LoadLLocked mem));
  8289   effect(TEMP tmp);
  8290   ins_cost(180);
  8291   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8292             "MOVSD  $dst,$tmp" %}
  8293   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8294   ins_pipe( pipe_slow );
  8295 %}
  8297 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8298   predicate(UseSSE>=2);
  8299   match(Set dst (LoadLLocked mem));
  8300   effect(TEMP tmp);
  8301   ins_cost(160);
  8302   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8303             "MOVD   $dst.lo,$tmp\n\t"
  8304             "PSRLQ  $tmp,32\n\t"
  8305             "MOVD   $dst.hi,$tmp" %}
  8306   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8307   ins_pipe( pipe_slow );
  8308 %}
  8310 // Conditional-store of the updated heap-top.
  8311 // Used during allocation of the shared heap.
  8312 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8313 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8314   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8315   // EAX is killed if there is contention, but then it's also unused.
  8316   // In the common case of no contention, EAX holds the new oop address.
  8317   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8318   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8319   ins_pipe( pipe_cmpxchg );
  8320 %}
  8322 // Conditional-store of an int value.
  8323 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8324 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8325   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8326   effect(KILL oldval);
  8327   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8328   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8329   ins_pipe( pipe_cmpxchg );
  8330 %}
  8332 // Conditional-store of a long value.
  8333 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8334 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8335   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8336   effect(KILL oldval);
  8337   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8338             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8339             "XCHG   EBX,ECX"
  8340   %}
  8341   ins_encode %{
  8342     // Note: we need to swap rbx, and rcx before and after the
  8343     //       cmpxchg8 instruction because the instruction uses
  8344     //       rcx as the high order word of the new value to store but
  8345     //       our register encoding uses rbx.
  8346     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8347     if( os::is_MP() )
  8348       __ lock();
  8349     __ cmpxchg8($mem$$Address);
  8350     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8351   %}
  8352   ins_pipe( pipe_cmpxchg );
  8353 %}
  8355 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8357 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8358   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8359   effect(KILL cr, KILL oldval);
  8360   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8361             "MOV    $res,0\n\t"
  8362             "JNE,s  fail\n\t"
  8363             "MOV    $res,1\n"
  8364           "fail:" %}
  8365   ins_encode( enc_cmpxchg8(mem_ptr),
  8366               enc_flags_ne_to_boolean(res) );
  8367   ins_pipe( pipe_cmpxchg );
  8368 %}
  8370 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8371   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8372   effect(KILL cr, KILL oldval);
  8373   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8374             "MOV    $res,0\n\t"
  8375             "JNE,s  fail\n\t"
  8376             "MOV    $res,1\n"
  8377           "fail:" %}
  8378   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8379   ins_pipe( pipe_cmpxchg );
  8380 %}
  8382 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8383   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8384   effect(KILL cr, KILL oldval);
  8385   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8386             "MOV    $res,0\n\t"
  8387             "JNE,s  fail\n\t"
  8388             "MOV    $res,1\n"
  8389           "fail:" %}
  8390   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8391   ins_pipe( pipe_cmpxchg );
  8392 %}
  8394 //----------Subtraction Instructions-------------------------------------------
  8395 // Integer Subtraction Instructions
  8396 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8397   match(Set dst (SubI dst src));
  8398   effect(KILL cr);
  8400   size(2);
  8401   format %{ "SUB    $dst,$src" %}
  8402   opcode(0x2B);
  8403   ins_encode( OpcP, RegReg( dst, src) );
  8404   ins_pipe( ialu_reg_reg );
  8405 %}
  8407 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8408   match(Set dst (SubI dst src));
  8409   effect(KILL cr);
  8411   format %{ "SUB    $dst,$src" %}
  8412   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8413   // ins_encode( RegImm( dst, src) );
  8414   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8415   ins_pipe( ialu_reg );
  8416 %}
  8418 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8419   match(Set dst (SubI dst (LoadI src)));
  8420   effect(KILL cr);
  8422   ins_cost(125);
  8423   format %{ "SUB    $dst,$src" %}
  8424   opcode(0x2B);
  8425   ins_encode( OpcP, RegMem( dst, src) );
  8426   ins_pipe( ialu_reg_mem );
  8427 %}
  8429 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8430   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8431   effect(KILL cr);
  8433   ins_cost(150);
  8434   format %{ "SUB    $dst,$src" %}
  8435   opcode(0x29);  /* Opcode 29 /r */
  8436   ins_encode( OpcP, RegMem( src, dst ) );
  8437   ins_pipe( ialu_mem_reg );
  8438 %}
  8440 // Subtract from a pointer
  8441 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8442   match(Set dst (AddP dst (SubI zero src)));
  8443   effect(KILL cr);
  8445   size(2);
  8446   format %{ "SUB    $dst,$src" %}
  8447   opcode(0x2B);
  8448   ins_encode( OpcP, RegReg( dst, src) );
  8449   ins_pipe( ialu_reg_reg );
  8450 %}
  8452 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8453   match(Set dst (SubI zero dst));
  8454   effect(KILL cr);
  8456   size(2);
  8457   format %{ "NEG    $dst" %}
  8458   opcode(0xF7,0x03);  // Opcode F7 /3
  8459   ins_encode( OpcP, RegOpc( dst ) );
  8460   ins_pipe( ialu_reg );
  8461 %}
  8464 //----------Multiplication/Division Instructions-------------------------------
  8465 // Integer Multiplication Instructions
  8466 // Multiply Register
  8467 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8468   match(Set dst (MulI dst src));
  8469   effect(KILL cr);
  8471   size(3);
  8472   ins_cost(300);
  8473   format %{ "IMUL   $dst,$src" %}
  8474   opcode(0xAF, 0x0F);
  8475   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8476   ins_pipe( ialu_reg_reg_alu0 );
  8477 %}
  8479 // Multiply 32-bit Immediate
  8480 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8481   match(Set dst (MulI src imm));
  8482   effect(KILL cr);
  8484   ins_cost(300);
  8485   format %{ "IMUL   $dst,$src,$imm" %}
  8486   opcode(0x69);  /* 69 /r id */
  8487   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8488   ins_pipe( ialu_reg_reg_alu0 );
  8489 %}
  8491 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8492   match(Set dst src);
  8493   effect(KILL cr);
  8495   // Note that this is artificially increased to make it more expensive than loadConL
  8496   ins_cost(250);
  8497   format %{ "MOV    EAX,$src\t// low word only" %}
  8498   opcode(0xB8);
  8499   ins_encode( LdImmL_Lo(dst, src) );
  8500   ins_pipe( ialu_reg_fat );
  8501 %}
  8503 // Multiply by 32-bit Immediate, taking the shifted high order results
  8504 //  (special case for shift by 32)
  8505 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8506   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8507   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8508              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8509              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8510   effect(USE src1, KILL cr);
  8512   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8513   ins_cost(0*100 + 1*400 - 150);
  8514   format %{ "IMUL   EDX:EAX,$src1" %}
  8515   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8516   ins_pipe( pipe_slow );
  8517 %}
  8519 // Multiply by 32-bit Immediate, taking the shifted high order results
  8520 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8521   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8522   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8523              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8524              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8525   effect(USE src1, KILL cr);
  8527   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8528   ins_cost(1*100 + 1*400 - 150);
  8529   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8530             "SAR    EDX,$cnt-32" %}
  8531   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8532   ins_pipe( pipe_slow );
  8533 %}
  8535 // Multiply Memory 32-bit Immediate
  8536 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8537   match(Set dst (MulI (LoadI src) imm));
  8538   effect(KILL cr);
  8540   ins_cost(300);
  8541   format %{ "IMUL   $dst,$src,$imm" %}
  8542   opcode(0x69);  /* 69 /r id */
  8543   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8544   ins_pipe( ialu_reg_mem_alu0 );
  8545 %}
  8547 // Multiply Memory
  8548 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8549   match(Set dst (MulI dst (LoadI src)));
  8550   effect(KILL cr);
  8552   ins_cost(350);
  8553   format %{ "IMUL   $dst,$src" %}
  8554   opcode(0xAF, 0x0F);
  8555   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8556   ins_pipe( ialu_reg_mem_alu0 );
  8557 %}
  8559 // Multiply Register Int to Long
  8560 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8561   // Basic Idea: long = (long)int * (long)int
  8562   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8563   effect(DEF dst, USE src, USE src1, KILL flags);
  8565   ins_cost(300);
  8566   format %{ "IMUL   $dst,$src1" %}
  8568   ins_encode( long_int_multiply( dst, src1 ) );
  8569   ins_pipe( ialu_reg_reg_alu0 );
  8570 %}
  8572 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8573   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8574   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8575   effect(KILL flags);
  8577   ins_cost(300);
  8578   format %{ "MUL    $dst,$src1" %}
  8580   ins_encode( long_uint_multiply(dst, src1) );
  8581   ins_pipe( ialu_reg_reg_alu0 );
  8582 %}
  8584 // Multiply Register Long
  8585 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8586   match(Set dst (MulL dst src));
  8587   effect(KILL cr, TEMP tmp);
  8588   ins_cost(4*100+3*400);
  8589 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8590 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8591   format %{ "MOV    $tmp,$src.lo\n\t"
  8592             "IMUL   $tmp,EDX\n\t"
  8593             "MOV    EDX,$src.hi\n\t"
  8594             "IMUL   EDX,EAX\n\t"
  8595             "ADD    $tmp,EDX\n\t"
  8596             "MUL    EDX:EAX,$src.lo\n\t"
  8597             "ADD    EDX,$tmp" %}
  8598   ins_encode( long_multiply( dst, src, tmp ) );
  8599   ins_pipe( pipe_slow );
  8600 %}
  8602 // Multiply Register Long by small constant
  8603 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8604   match(Set dst (MulL dst src));
  8605   effect(KILL cr, TEMP tmp);
  8606   ins_cost(2*100+2*400);
  8607   size(12);
  8608 // Basic idea: lo(result) = lo(src * EAX)
  8609 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8610   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8611             "MOV    EDX,$src\n\t"
  8612             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8613             "ADD    EDX,$tmp" %}
  8614   ins_encode( long_multiply_con( dst, src, tmp ) );
  8615   ins_pipe( pipe_slow );
  8616 %}
  8618 // Integer DIV with Register
  8619 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8620   match(Set rax (DivI rax div));
  8621   effect(KILL rdx, KILL cr);
  8622   size(26);
  8623   ins_cost(30*100+10*100);
  8624   format %{ "CMP    EAX,0x80000000\n\t"
  8625             "JNE,s  normal\n\t"
  8626             "XOR    EDX,EDX\n\t"
  8627             "CMP    ECX,-1\n\t"
  8628             "JE,s   done\n"
  8629     "normal: CDQ\n\t"
  8630             "IDIV   $div\n\t"
  8631     "done:"        %}
  8632   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8633   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8634   ins_pipe( ialu_reg_reg_alu0 );
  8635 %}
  8637 // Divide Register Long
  8638 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8639   match(Set dst (DivL src1 src2));
  8640   effect( KILL cr, KILL cx, KILL bx );
  8641   ins_cost(10000);
  8642   format %{ "PUSH   $src1.hi\n\t"
  8643             "PUSH   $src1.lo\n\t"
  8644             "PUSH   $src2.hi\n\t"
  8645             "PUSH   $src2.lo\n\t"
  8646             "CALL   SharedRuntime::ldiv\n\t"
  8647             "ADD    ESP,16" %}
  8648   ins_encode( long_div(src1,src2) );
  8649   ins_pipe( pipe_slow );
  8650 %}
  8652 // Integer DIVMOD with Register, both quotient and mod results
  8653 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8654   match(DivModI rax div);
  8655   effect(KILL cr);
  8656   size(26);
  8657   ins_cost(30*100+10*100);
  8658   format %{ "CMP    EAX,0x80000000\n\t"
  8659             "JNE,s  normal\n\t"
  8660             "XOR    EDX,EDX\n\t"
  8661             "CMP    ECX,-1\n\t"
  8662             "JE,s   done\n"
  8663     "normal: CDQ\n\t"
  8664             "IDIV   $div\n\t"
  8665     "done:"        %}
  8666   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8667   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8668   ins_pipe( pipe_slow );
  8669 %}
  8671 // Integer MOD with Register
  8672 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8673   match(Set rdx (ModI rax div));
  8674   effect(KILL rax, KILL cr);
  8676   size(26);
  8677   ins_cost(300);
  8678   format %{ "CDQ\n\t"
  8679             "IDIV   $div" %}
  8680   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8681   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8682   ins_pipe( ialu_reg_reg_alu0 );
  8683 %}
  8685 // Remainder Register Long
  8686 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8687   match(Set dst (ModL src1 src2));
  8688   effect( KILL cr, KILL cx, KILL bx );
  8689   ins_cost(10000);
  8690   format %{ "PUSH   $src1.hi\n\t"
  8691             "PUSH   $src1.lo\n\t"
  8692             "PUSH   $src2.hi\n\t"
  8693             "PUSH   $src2.lo\n\t"
  8694             "CALL   SharedRuntime::lrem\n\t"
  8695             "ADD    ESP,16" %}
  8696   ins_encode( long_mod(src1,src2) );
  8697   ins_pipe( pipe_slow );
  8698 %}
  8700 // Integer Shift Instructions
  8701 // Shift Left by one
  8702 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8703   match(Set dst (LShiftI dst shift));
  8704   effect(KILL cr);
  8706   size(2);
  8707   format %{ "SHL    $dst,$shift" %}
  8708   opcode(0xD1, 0x4);  /* D1 /4 */
  8709   ins_encode( OpcP, RegOpc( dst ) );
  8710   ins_pipe( ialu_reg );
  8711 %}
  8713 // Shift Left by 8-bit immediate
  8714 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8715   match(Set dst (LShiftI dst shift));
  8716   effect(KILL cr);
  8718   size(3);
  8719   format %{ "SHL    $dst,$shift" %}
  8720   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8721   ins_encode( RegOpcImm( dst, shift) );
  8722   ins_pipe( ialu_reg );
  8723 %}
  8725 // Shift Left by variable
  8726 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8727   match(Set dst (LShiftI dst shift));
  8728   effect(KILL cr);
  8730   size(2);
  8731   format %{ "SHL    $dst,$shift" %}
  8732   opcode(0xD3, 0x4);  /* D3 /4 */
  8733   ins_encode( OpcP, RegOpc( dst ) );
  8734   ins_pipe( ialu_reg_reg );
  8735 %}
  8737 // Arithmetic shift right by one
  8738 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8739   match(Set dst (RShiftI dst shift));
  8740   effect(KILL cr);
  8742   size(2);
  8743   format %{ "SAR    $dst,$shift" %}
  8744   opcode(0xD1, 0x7);  /* D1 /7 */
  8745   ins_encode( OpcP, RegOpc( dst ) );
  8746   ins_pipe( ialu_reg );
  8747 %}
  8749 // Arithmetic shift right by one
  8750 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8751   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8752   effect(KILL cr);
  8753   format %{ "SAR    $dst,$shift" %}
  8754   opcode(0xD1, 0x7);  /* D1 /7 */
  8755   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8756   ins_pipe( ialu_mem_imm );
  8757 %}
  8759 // Arithmetic Shift Right by 8-bit immediate
  8760 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8761   match(Set dst (RShiftI dst shift));
  8762   effect(KILL cr);
  8764   size(3);
  8765   format %{ "SAR    $dst,$shift" %}
  8766   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8767   ins_encode( RegOpcImm( dst, shift ) );
  8768   ins_pipe( ialu_mem_imm );
  8769 %}
  8771 // Arithmetic Shift Right by 8-bit immediate
  8772 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8773   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8774   effect(KILL cr);
  8776   format %{ "SAR    $dst,$shift" %}
  8777   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8778   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8779   ins_pipe( ialu_mem_imm );
  8780 %}
  8782 // Arithmetic Shift Right by variable
  8783 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8784   match(Set dst (RShiftI dst shift));
  8785   effect(KILL cr);
  8787   size(2);
  8788   format %{ "SAR    $dst,$shift" %}
  8789   opcode(0xD3, 0x7);  /* D3 /7 */
  8790   ins_encode( OpcP, RegOpc( dst ) );
  8791   ins_pipe( ialu_reg_reg );
  8792 %}
  8794 // Logical shift right by one
  8795 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8796   match(Set dst (URShiftI dst shift));
  8797   effect(KILL cr);
  8799   size(2);
  8800   format %{ "SHR    $dst,$shift" %}
  8801   opcode(0xD1, 0x5);  /* D1 /5 */
  8802   ins_encode( OpcP, RegOpc( dst ) );
  8803   ins_pipe( ialu_reg );
  8804 %}
  8806 // Logical Shift Right by 8-bit immediate
  8807 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8808   match(Set dst (URShiftI dst shift));
  8809   effect(KILL cr);
  8811   size(3);
  8812   format %{ "SHR    $dst,$shift" %}
  8813   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8814   ins_encode( RegOpcImm( dst, shift) );
  8815   ins_pipe( ialu_reg );
  8816 %}
  8819 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8820 // This idiom is used by the compiler for the i2b bytecode.
  8821 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8822   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8824   size(3);
  8825   format %{ "MOVSX  $dst,$src :8" %}
  8826   ins_encode %{
  8827     __ movsbl($dst$$Register, $src$$Register);
  8828   %}
  8829   ins_pipe(ialu_reg_reg);
  8830 %}
  8832 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8833 // This idiom is used by the compiler the i2s bytecode.
  8834 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8835   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8837   size(3);
  8838   format %{ "MOVSX  $dst,$src :16" %}
  8839   ins_encode %{
  8840     __ movswl($dst$$Register, $src$$Register);
  8841   %}
  8842   ins_pipe(ialu_reg_reg);
  8843 %}
  8846 // Logical Shift Right by variable
  8847 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8848   match(Set dst (URShiftI dst shift));
  8849   effect(KILL cr);
  8851   size(2);
  8852   format %{ "SHR    $dst,$shift" %}
  8853   opcode(0xD3, 0x5);  /* D3 /5 */
  8854   ins_encode( OpcP, RegOpc( dst ) );
  8855   ins_pipe( ialu_reg_reg );
  8856 %}
  8859 //----------Logical Instructions-----------------------------------------------
  8860 //----------Integer Logical Instructions---------------------------------------
  8861 // And Instructions
  8862 // And Register with Register
  8863 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8864   match(Set dst (AndI dst src));
  8865   effect(KILL cr);
  8867   size(2);
  8868   format %{ "AND    $dst,$src" %}
  8869   opcode(0x23);
  8870   ins_encode( OpcP, RegReg( dst, src) );
  8871   ins_pipe( ialu_reg_reg );
  8872 %}
  8874 // And Register with Immediate
  8875 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8876   match(Set dst (AndI dst src));
  8877   effect(KILL cr);
  8879   format %{ "AND    $dst,$src" %}
  8880   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8881   // ins_encode( RegImm( dst, src) );
  8882   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8883   ins_pipe( ialu_reg );
  8884 %}
  8886 // And Register with Memory
  8887 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8888   match(Set dst (AndI dst (LoadI src)));
  8889   effect(KILL cr);
  8891   ins_cost(125);
  8892   format %{ "AND    $dst,$src" %}
  8893   opcode(0x23);
  8894   ins_encode( OpcP, RegMem( dst, src) );
  8895   ins_pipe( ialu_reg_mem );
  8896 %}
  8898 // And Memory with Register
  8899 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8900   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8901   effect(KILL cr);
  8903   ins_cost(150);
  8904   format %{ "AND    $dst,$src" %}
  8905   opcode(0x21);  /* Opcode 21 /r */
  8906   ins_encode( OpcP, RegMem( src, dst ) );
  8907   ins_pipe( ialu_mem_reg );
  8908 %}
  8910 // And Memory with Immediate
  8911 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8912   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8913   effect(KILL cr);
  8915   ins_cost(125);
  8916   format %{ "AND    $dst,$src" %}
  8917   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8918   // ins_encode( MemImm( dst, src) );
  8919   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8920   ins_pipe( ialu_mem_imm );
  8921 %}
  8923 // Or Instructions
  8924 // Or Register with Register
  8925 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8926   match(Set dst (OrI dst src));
  8927   effect(KILL cr);
  8929   size(2);
  8930   format %{ "OR     $dst,$src" %}
  8931   opcode(0x0B);
  8932   ins_encode( OpcP, RegReg( dst, src) );
  8933   ins_pipe( ialu_reg_reg );
  8934 %}
  8936 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8937   match(Set dst (OrI dst (CastP2X src)));
  8938   effect(KILL cr);
  8940   size(2);
  8941   format %{ "OR     $dst,$src" %}
  8942   opcode(0x0B);
  8943   ins_encode( OpcP, RegReg( dst, src) );
  8944   ins_pipe( ialu_reg_reg );
  8945 %}
  8948 // Or Register with Immediate
  8949 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8950   match(Set dst (OrI dst src));
  8951   effect(KILL cr);
  8953   format %{ "OR     $dst,$src" %}
  8954   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8955   // ins_encode( RegImm( dst, src) );
  8956   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8957   ins_pipe( ialu_reg );
  8958 %}
  8960 // Or Register with Memory
  8961 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8962   match(Set dst (OrI dst (LoadI src)));
  8963   effect(KILL cr);
  8965   ins_cost(125);
  8966   format %{ "OR     $dst,$src" %}
  8967   opcode(0x0B);
  8968   ins_encode( OpcP, RegMem( dst, src) );
  8969   ins_pipe( ialu_reg_mem );
  8970 %}
  8972 // Or Memory with Register
  8973 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8974   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8975   effect(KILL cr);
  8977   ins_cost(150);
  8978   format %{ "OR     $dst,$src" %}
  8979   opcode(0x09);  /* Opcode 09 /r */
  8980   ins_encode( OpcP, RegMem( src, dst ) );
  8981   ins_pipe( ialu_mem_reg );
  8982 %}
  8984 // Or Memory with Immediate
  8985 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8986   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8987   effect(KILL cr);
  8989   ins_cost(125);
  8990   format %{ "OR     $dst,$src" %}
  8991   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8992   // ins_encode( MemImm( dst, src) );
  8993   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8994   ins_pipe( ialu_mem_imm );
  8995 %}
  8997 // ROL/ROR
  8998 // ROL expand
  8999 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9000   effect(USE_DEF dst, USE shift, KILL cr);
  9002   format %{ "ROL    $dst, $shift" %}
  9003   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9004   ins_encode( OpcP, RegOpc( dst ));
  9005   ins_pipe( ialu_reg );
  9006 %}
  9008 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9009   effect(USE_DEF dst, USE shift, KILL cr);
  9011   format %{ "ROL    $dst, $shift" %}
  9012   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9013   ins_encode( RegOpcImm(dst, shift) );
  9014   ins_pipe(ialu_reg);
  9015 %}
  9017 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9018   effect(USE_DEF dst, USE shift, KILL cr);
  9020   format %{ "ROL    $dst, $shift" %}
  9021   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9022   ins_encode(OpcP, RegOpc(dst));
  9023   ins_pipe( ialu_reg_reg );
  9024 %}
  9025 // end of ROL expand
  9027 // ROL 32bit by one once
  9028 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9029   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9031   expand %{
  9032     rolI_eReg_imm1(dst, lshift, cr);
  9033   %}
  9034 %}
  9036 // ROL 32bit var by imm8 once
  9037 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9038   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9039   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9041   expand %{
  9042     rolI_eReg_imm8(dst, lshift, cr);
  9043   %}
  9044 %}
  9046 // ROL 32bit var by var once
  9047 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9048   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9050   expand %{
  9051     rolI_eReg_CL(dst, shift, cr);
  9052   %}
  9053 %}
  9055 // ROL 32bit var by var once
  9056 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9057   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9059   expand %{
  9060     rolI_eReg_CL(dst, shift, cr);
  9061   %}
  9062 %}
  9064 // ROR expand
  9065 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9066   effect(USE_DEF dst, USE shift, KILL cr);
  9068   format %{ "ROR    $dst, $shift" %}
  9069   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9070   ins_encode( OpcP, RegOpc( dst ) );
  9071   ins_pipe( ialu_reg );
  9072 %}
  9074 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9075   effect (USE_DEF dst, USE shift, KILL cr);
  9077   format %{ "ROR    $dst, $shift" %}
  9078   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9079   ins_encode( RegOpcImm(dst, shift) );
  9080   ins_pipe( ialu_reg );
  9081 %}
  9083 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9084   effect(USE_DEF dst, USE shift, KILL cr);
  9086   format %{ "ROR    $dst, $shift" %}
  9087   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9088   ins_encode(OpcP, RegOpc(dst));
  9089   ins_pipe( ialu_reg_reg );
  9090 %}
  9091 // end of ROR expand
  9093 // ROR right once
  9094 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9095   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9097   expand %{
  9098     rorI_eReg_imm1(dst, rshift, cr);
  9099   %}
  9100 %}
  9102 // ROR 32bit by immI8 once
  9103 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9104   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9105   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9107   expand %{
  9108     rorI_eReg_imm8(dst, rshift, cr);
  9109   %}
  9110 %}
  9112 // ROR 32bit var by var once
  9113 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9114   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9116   expand %{
  9117     rorI_eReg_CL(dst, shift, cr);
  9118   %}
  9119 %}
  9121 // ROR 32bit var by var once
  9122 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9123   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9125   expand %{
  9126     rorI_eReg_CL(dst, shift, cr);
  9127   %}
  9128 %}
  9130 // Xor Instructions
  9131 // Xor Register with Register
  9132 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9133   match(Set dst (XorI dst src));
  9134   effect(KILL cr);
  9136   size(2);
  9137   format %{ "XOR    $dst,$src" %}
  9138   opcode(0x33);
  9139   ins_encode( OpcP, RegReg( dst, src) );
  9140   ins_pipe( ialu_reg_reg );
  9141 %}
  9143 // Xor Register with Immediate -1
  9144 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9145   match(Set dst (XorI dst imm));  
  9147   size(2);
  9148   format %{ "NOT    $dst" %}  
  9149   ins_encode %{
  9150      __ notl($dst$$Register);
  9151   %}
  9152   ins_pipe( ialu_reg );
  9153 %}
  9155 // Xor Register with Immediate
  9156 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9157   match(Set dst (XorI dst src));
  9158   effect(KILL cr);
  9160   format %{ "XOR    $dst,$src" %}
  9161   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9162   // ins_encode( RegImm( dst, src) );
  9163   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9164   ins_pipe( ialu_reg );
  9165 %}
  9167 // Xor Register with Memory
  9168 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9169   match(Set dst (XorI dst (LoadI src)));
  9170   effect(KILL cr);
  9172   ins_cost(125);
  9173   format %{ "XOR    $dst,$src" %}
  9174   opcode(0x33);
  9175   ins_encode( OpcP, RegMem(dst, src) );
  9176   ins_pipe( ialu_reg_mem );
  9177 %}
  9179 // Xor Memory with Register
  9180 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9181   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9182   effect(KILL cr);
  9184   ins_cost(150);
  9185   format %{ "XOR    $dst,$src" %}
  9186   opcode(0x31);  /* Opcode 31 /r */
  9187   ins_encode( OpcP, RegMem( src, dst ) );
  9188   ins_pipe( ialu_mem_reg );
  9189 %}
  9191 // Xor Memory with Immediate
  9192 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9193   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9194   effect(KILL cr);
  9196   ins_cost(125);
  9197   format %{ "XOR    $dst,$src" %}
  9198   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9199   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9200   ins_pipe( ialu_mem_imm );
  9201 %}
  9203 //----------Convert Int to Boolean---------------------------------------------
  9205 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9206   effect( DEF dst, USE src );
  9207   format %{ "MOV    $dst,$src" %}
  9208   ins_encode( enc_Copy( dst, src) );
  9209   ins_pipe( ialu_reg_reg );
  9210 %}
  9212 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9213   effect( USE_DEF dst, USE src, KILL cr );
  9215   size(4);
  9216   format %{ "NEG    $dst\n\t"
  9217             "ADC    $dst,$src" %}
  9218   ins_encode( neg_reg(dst),
  9219               OpcRegReg(0x13,dst,src) );
  9220   ins_pipe( ialu_reg_reg_long );
  9221 %}
  9223 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9224   match(Set dst (Conv2B src));
  9226   expand %{
  9227     movI_nocopy(dst,src);
  9228     ci2b(dst,src,cr);
  9229   %}
  9230 %}
  9232 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9233   effect( DEF dst, USE src );
  9234   format %{ "MOV    $dst,$src" %}
  9235   ins_encode( enc_Copy( dst, src) );
  9236   ins_pipe( ialu_reg_reg );
  9237 %}
  9239 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9240   effect( USE_DEF dst, USE src, KILL cr );
  9241   format %{ "NEG    $dst\n\t"
  9242             "ADC    $dst,$src" %}
  9243   ins_encode( neg_reg(dst),
  9244               OpcRegReg(0x13,dst,src) );
  9245   ins_pipe( ialu_reg_reg_long );
  9246 %}
  9248 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9249   match(Set dst (Conv2B src));
  9251   expand %{
  9252     movP_nocopy(dst,src);
  9253     cp2b(dst,src,cr);
  9254   %}
  9255 %}
  9257 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9258   match(Set dst (CmpLTMask p q));
  9259   effect( KILL cr );
  9260   ins_cost(400);
  9262   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9263   format %{ "XOR    $dst,$dst\n\t"
  9264             "CMP    $p,$q\n\t"
  9265             "SETlt  $dst\n\t"
  9266             "NEG    $dst" %}
  9267   ins_encode( OpcRegReg(0x33,dst,dst),
  9268               OpcRegReg(0x3B,p,q),
  9269               setLT_reg(dst), neg_reg(dst) );
  9270   ins_pipe( pipe_slow );
  9271 %}
  9273 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9274   match(Set dst (CmpLTMask dst zero));
  9275   effect( DEF dst, KILL cr );
  9276   ins_cost(100);
  9278   format %{ "SAR    $dst,31" %}
  9279   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9280   ins_encode( RegOpcImm( dst, 0x1F ) );
  9281   ins_pipe( ialu_reg );
  9282 %}
  9285 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9286   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9287   effect( KILL tmp, KILL cr );
  9288   ins_cost(400);
  9289   // annoyingly, $tmp has no edges so you cant ask for it in
  9290   // any format or encoding
  9291   format %{ "SUB    $p,$q\n\t"
  9292             "SBB    ECX,ECX\n\t"
  9293             "AND    ECX,$y\n\t"
  9294             "ADD    $p,ECX" %}
  9295   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9296   ins_pipe( pipe_cmplt );
  9297 %}
  9299 /* If I enable this, I encourage spilling in the inner loop of compress.
  9300 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9301   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9302   effect( USE_KILL tmp, KILL cr );
  9303   ins_cost(400);
  9305   format %{ "SUB    $p,$q\n\t"
  9306             "SBB    ECX,ECX\n\t"
  9307             "AND    ECX,$y\n\t"
  9308             "ADD    $p,ECX" %}
  9309   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9310 %}
  9311 */
  9313 //----------Long Instructions------------------------------------------------
  9314 // Add Long Register with Register
  9315 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9316   match(Set dst (AddL dst src));
  9317   effect(KILL cr);
  9318   ins_cost(200);
  9319   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9320             "ADC    $dst.hi,$src.hi" %}
  9321   opcode(0x03, 0x13);
  9322   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9323   ins_pipe( ialu_reg_reg_long );
  9324 %}
  9326 // Add Long Register with Immediate
  9327 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9328   match(Set dst (AddL dst src));
  9329   effect(KILL cr);
  9330   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9331             "ADC    $dst.hi,$src.hi" %}
  9332   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9333   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9334   ins_pipe( ialu_reg_long );
  9335 %}
  9337 // Add Long Register with Memory
  9338 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9339   match(Set dst (AddL dst (LoadL mem)));
  9340   effect(KILL cr);
  9341   ins_cost(125);
  9342   format %{ "ADD    $dst.lo,$mem\n\t"
  9343             "ADC    $dst.hi,$mem+4" %}
  9344   opcode(0x03, 0x13);
  9345   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9346   ins_pipe( ialu_reg_long_mem );
  9347 %}
  9349 // Subtract Long Register with Register.
  9350 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9351   match(Set dst (SubL dst src));
  9352   effect(KILL cr);
  9353   ins_cost(200);
  9354   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9355             "SBB    $dst.hi,$src.hi" %}
  9356   opcode(0x2B, 0x1B);
  9357   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9358   ins_pipe( ialu_reg_reg_long );
  9359 %}
  9361 // Subtract Long Register with Immediate
  9362 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9363   match(Set dst (SubL dst src));
  9364   effect(KILL cr);
  9365   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9366             "SBB    $dst.hi,$src.hi" %}
  9367   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9368   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9369   ins_pipe( ialu_reg_long );
  9370 %}
  9372 // Subtract Long Register with Memory
  9373 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9374   match(Set dst (SubL dst (LoadL mem)));
  9375   effect(KILL cr);
  9376   ins_cost(125);
  9377   format %{ "SUB    $dst.lo,$mem\n\t"
  9378             "SBB    $dst.hi,$mem+4" %}
  9379   opcode(0x2B, 0x1B);
  9380   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9381   ins_pipe( ialu_reg_long_mem );
  9382 %}
  9384 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9385   match(Set dst (SubL zero dst));
  9386   effect(KILL cr);
  9387   ins_cost(300);
  9388   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9389   ins_encode( neg_long(dst) );
  9390   ins_pipe( ialu_reg_reg_long );
  9391 %}
  9393 // And Long Register with Register
  9394 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9395   match(Set dst (AndL dst src));
  9396   effect(KILL cr);
  9397   format %{ "AND    $dst.lo,$src.lo\n\t"
  9398             "AND    $dst.hi,$src.hi" %}
  9399   opcode(0x23,0x23);
  9400   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9401   ins_pipe( ialu_reg_reg_long );
  9402 %}
  9404 // And Long Register with Immediate
  9405 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9406   match(Set dst (AndL dst src));
  9407   effect(KILL cr);
  9408   format %{ "AND    $dst.lo,$src.lo\n\t"
  9409             "AND    $dst.hi,$src.hi" %}
  9410   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9411   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9412   ins_pipe( ialu_reg_long );
  9413 %}
  9415 // And Long Register with Memory
  9416 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9417   match(Set dst (AndL dst (LoadL mem)));
  9418   effect(KILL cr);
  9419   ins_cost(125);
  9420   format %{ "AND    $dst.lo,$mem\n\t"
  9421             "AND    $dst.hi,$mem+4" %}
  9422   opcode(0x23, 0x23);
  9423   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9424   ins_pipe( ialu_reg_long_mem );
  9425 %}
  9427 // Or Long Register with Register
  9428 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9429   match(Set dst (OrL dst src));
  9430   effect(KILL cr);
  9431   format %{ "OR     $dst.lo,$src.lo\n\t"
  9432             "OR     $dst.hi,$src.hi" %}
  9433   opcode(0x0B,0x0B);
  9434   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9435   ins_pipe( ialu_reg_reg_long );
  9436 %}
  9438 // Or Long Register with Immediate
  9439 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9440   match(Set dst (OrL dst src));
  9441   effect(KILL cr);
  9442   format %{ "OR     $dst.lo,$src.lo\n\t"
  9443             "OR     $dst.hi,$src.hi" %}
  9444   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9445   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9446   ins_pipe( ialu_reg_long );
  9447 %}
  9449 // Or Long Register with Memory
  9450 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9451   match(Set dst (OrL dst (LoadL mem)));
  9452   effect(KILL cr);
  9453   ins_cost(125);
  9454   format %{ "OR     $dst.lo,$mem\n\t"
  9455             "OR     $dst.hi,$mem+4" %}
  9456   opcode(0x0B,0x0B);
  9457   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9458   ins_pipe( ialu_reg_long_mem );
  9459 %}
  9461 // Xor Long Register with Register
  9462 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9463   match(Set dst (XorL dst src));
  9464   effect(KILL cr);
  9465   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9466             "XOR    $dst.hi,$src.hi" %}
  9467   opcode(0x33,0x33);
  9468   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9469   ins_pipe( ialu_reg_reg_long );
  9470 %}
  9472 // Xor Long Register with Immediate -1
  9473 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9474   match(Set dst (XorL dst imm));  
  9475   format %{ "NOT    $dst.lo\n\t"
  9476             "NOT    $dst.hi" %}
  9477   ins_encode %{
  9478      __ notl($dst$$Register);
  9479      __ notl(HIGH_FROM_LOW($dst$$Register));
  9480   %}
  9481   ins_pipe( ialu_reg_long );
  9482 %}
  9484 // Xor Long Register with Immediate
  9485 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9486   match(Set dst (XorL dst src));
  9487   effect(KILL cr);
  9488   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9489             "XOR    $dst.hi,$src.hi" %}
  9490   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9491   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9492   ins_pipe( ialu_reg_long );
  9493 %}
  9495 // Xor Long Register with Memory
  9496 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9497   match(Set dst (XorL dst (LoadL mem)));
  9498   effect(KILL cr);
  9499   ins_cost(125);
  9500   format %{ "XOR    $dst.lo,$mem\n\t"
  9501             "XOR    $dst.hi,$mem+4" %}
  9502   opcode(0x33,0x33);
  9503   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9504   ins_pipe( ialu_reg_long_mem );
  9505 %}
  9507 // Shift Left Long by 1
  9508 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9509   predicate(UseNewLongLShift);
  9510   match(Set dst (LShiftL dst cnt));
  9511   effect(KILL cr);
  9512   ins_cost(100);
  9513   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9514             "ADC    $dst.hi,$dst.hi" %}
  9515   ins_encode %{
  9516     __ addl($dst$$Register,$dst$$Register);
  9517     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9518   %}
  9519   ins_pipe( ialu_reg_long );
  9520 %}
  9522 // Shift Left Long by 2
  9523 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9524   predicate(UseNewLongLShift);
  9525   match(Set dst (LShiftL dst cnt));
  9526   effect(KILL cr);
  9527   ins_cost(100);
  9528   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9529             "ADC    $dst.hi,$dst.hi\n\t" 
  9530             "ADD    $dst.lo,$dst.lo\n\t"
  9531             "ADC    $dst.hi,$dst.hi" %}
  9532   ins_encode %{
  9533     __ addl($dst$$Register,$dst$$Register);
  9534     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9535     __ addl($dst$$Register,$dst$$Register);
  9536     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9537   %}
  9538   ins_pipe( ialu_reg_long );
  9539 %}
  9541 // Shift Left Long by 3
  9542 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9543   predicate(UseNewLongLShift);
  9544   match(Set dst (LShiftL dst cnt));
  9545   effect(KILL cr);
  9546   ins_cost(100);
  9547   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9548             "ADC    $dst.hi,$dst.hi\n\t" 
  9549             "ADD    $dst.lo,$dst.lo\n\t"
  9550             "ADC    $dst.hi,$dst.hi\n\t" 
  9551             "ADD    $dst.lo,$dst.lo\n\t"
  9552             "ADC    $dst.hi,$dst.hi" %}
  9553   ins_encode %{
  9554     __ addl($dst$$Register,$dst$$Register);
  9555     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9556     __ addl($dst$$Register,$dst$$Register);
  9557     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9558     __ addl($dst$$Register,$dst$$Register);
  9559     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9560   %}
  9561   ins_pipe( ialu_reg_long );
  9562 %}
  9564 // Shift Left Long by 1-31
  9565 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9566   match(Set dst (LShiftL dst cnt));
  9567   effect(KILL cr);
  9568   ins_cost(200);
  9569   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9570             "SHL    $dst.lo,$cnt" %}
  9571   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9572   ins_encode( move_long_small_shift(dst,cnt) );
  9573   ins_pipe( ialu_reg_long );
  9574 %}
  9576 // Shift Left Long by 32-63
  9577 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9578   match(Set dst (LShiftL dst cnt));
  9579   effect(KILL cr);
  9580   ins_cost(300);
  9581   format %{ "MOV    $dst.hi,$dst.lo\n"
  9582           "\tSHL    $dst.hi,$cnt-32\n"
  9583           "\tXOR    $dst.lo,$dst.lo" %}
  9584   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9585   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9586   ins_pipe( ialu_reg_long );
  9587 %}
  9589 // Shift Left Long by variable
  9590 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9591   match(Set dst (LShiftL dst shift));
  9592   effect(KILL cr);
  9593   ins_cost(500+200);
  9594   size(17);
  9595   format %{ "TEST   $shift,32\n\t"
  9596             "JEQ,s  small\n\t"
  9597             "MOV    $dst.hi,$dst.lo\n\t"
  9598             "XOR    $dst.lo,$dst.lo\n"
  9599     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9600             "SHL    $dst.lo,$shift" %}
  9601   ins_encode( shift_left_long( dst, shift ) );
  9602   ins_pipe( pipe_slow );
  9603 %}
  9605 // Shift Right Long by 1-31
  9606 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9607   match(Set dst (URShiftL dst cnt));
  9608   effect(KILL cr);
  9609   ins_cost(200);
  9610   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9611             "SHR    $dst.hi,$cnt" %}
  9612   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9613   ins_encode( move_long_small_shift(dst,cnt) );
  9614   ins_pipe( ialu_reg_long );
  9615 %}
  9617 // Shift Right Long by 32-63
  9618 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9619   match(Set dst (URShiftL dst cnt));
  9620   effect(KILL cr);
  9621   ins_cost(300);
  9622   format %{ "MOV    $dst.lo,$dst.hi\n"
  9623           "\tSHR    $dst.lo,$cnt-32\n"
  9624           "\tXOR    $dst.hi,$dst.hi" %}
  9625   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9626   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9627   ins_pipe( ialu_reg_long );
  9628 %}
  9630 // Shift Right Long by variable
  9631 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9632   match(Set dst (URShiftL dst shift));
  9633   effect(KILL cr);
  9634   ins_cost(600);
  9635   size(17);
  9636   format %{ "TEST   $shift,32\n\t"
  9637             "JEQ,s  small\n\t"
  9638             "MOV    $dst.lo,$dst.hi\n\t"
  9639             "XOR    $dst.hi,$dst.hi\n"
  9640     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9641             "SHR    $dst.hi,$shift" %}
  9642   ins_encode( shift_right_long( dst, shift ) );
  9643   ins_pipe( pipe_slow );
  9644 %}
  9646 // Shift Right Long by 1-31
  9647 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9648   match(Set dst (RShiftL dst cnt));
  9649   effect(KILL cr);
  9650   ins_cost(200);
  9651   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9652             "SAR    $dst.hi,$cnt" %}
  9653   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9654   ins_encode( move_long_small_shift(dst,cnt) );
  9655   ins_pipe( ialu_reg_long );
  9656 %}
  9658 // Shift Right Long by 32-63
  9659 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9660   match(Set dst (RShiftL dst cnt));
  9661   effect(KILL cr);
  9662   ins_cost(300);
  9663   format %{ "MOV    $dst.lo,$dst.hi\n"
  9664           "\tSAR    $dst.lo,$cnt-32\n"
  9665           "\tSAR    $dst.hi,31" %}
  9666   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9667   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9668   ins_pipe( ialu_reg_long );
  9669 %}
  9671 // Shift Right arithmetic Long by variable
  9672 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9673   match(Set dst (RShiftL dst shift));
  9674   effect(KILL cr);
  9675   ins_cost(600);
  9676   size(18);
  9677   format %{ "TEST   $shift,32\n\t"
  9678             "JEQ,s  small\n\t"
  9679             "MOV    $dst.lo,$dst.hi\n\t"
  9680             "SAR    $dst.hi,31\n"
  9681     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9682             "SAR    $dst.hi,$shift" %}
  9683   ins_encode( shift_right_arith_long( dst, shift ) );
  9684   ins_pipe( pipe_slow );
  9685 %}
  9688 //----------Double Instructions------------------------------------------------
  9689 // Double Math
  9691 // Compare & branch
  9693 // P6 version of float compare, sets condition codes in EFLAGS
  9694 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9695   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9696   match(Set cr (CmpD src1 src2));
  9697   effect(KILL rax);
  9698   ins_cost(150);
  9699   format %{ "FLD    $src1\n\t"
  9700             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9701             "JNP    exit\n\t"
  9702             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9703             "SAHF\n"
  9704      "exit:\tNOP               // avoid branch to branch" %}
  9705   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9706   ins_encode( Push_Reg_D(src1),
  9707               OpcP, RegOpc(src2),
  9708               cmpF_P6_fixup );
  9709   ins_pipe( pipe_slow );
  9710 %}
  9712 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9713   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9714   match(Set cr (CmpD src1 src2));
  9715   ins_cost(150);
  9716   format %{ "FLD    $src1\n\t"
  9717             "FUCOMIP ST,$src2  // P6 instruction" %}
  9718   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9719   ins_encode( Push_Reg_D(src1),
  9720               OpcP, RegOpc(src2));
  9721   ins_pipe( pipe_slow );
  9722 %}
  9724 // Compare & branch
  9725 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9726   predicate(UseSSE<=1);
  9727   match(Set cr (CmpD src1 src2));
  9728   effect(KILL rax);
  9729   ins_cost(200);
  9730   format %{ "FLD    $src1\n\t"
  9731             "FCOMp  $src2\n\t"
  9732             "FNSTSW AX\n\t"
  9733             "TEST   AX,0x400\n\t"
  9734             "JZ,s   flags\n\t"
  9735             "MOV    AH,1\t# unordered treat as LT\n"
  9736     "flags:\tSAHF" %}
  9737   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9738   ins_encode( Push_Reg_D(src1),
  9739               OpcP, RegOpc(src2),
  9740               fpu_flags);
  9741   ins_pipe( pipe_slow );
  9742 %}
  9744 // Compare vs zero into -1,0,1
  9745 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9746   predicate(UseSSE<=1);
  9747   match(Set dst (CmpD3 src1 zero));
  9748   effect(KILL cr, KILL rax);
  9749   ins_cost(280);
  9750   format %{ "FTSTD  $dst,$src1" %}
  9751   opcode(0xE4, 0xD9);
  9752   ins_encode( Push_Reg_D(src1),
  9753               OpcS, OpcP, PopFPU,
  9754               CmpF_Result(dst));
  9755   ins_pipe( pipe_slow );
  9756 %}
  9758 // Compare into -1,0,1
  9759 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9760   predicate(UseSSE<=1);
  9761   match(Set dst (CmpD3 src1 src2));
  9762   effect(KILL cr, KILL rax);
  9763   ins_cost(300);
  9764   format %{ "FCMPD  $dst,$src1,$src2" %}
  9765   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9766   ins_encode( Push_Reg_D(src1),
  9767               OpcP, RegOpc(src2),
  9768               CmpF_Result(dst));
  9769   ins_pipe( pipe_slow );
  9770 %}
  9772 // float compare and set condition codes in EFLAGS by XMM regs
  9773 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9774   predicate(UseSSE>=2);
  9775   match(Set cr (CmpD dst src));
  9776   effect(KILL rax);
  9777   ins_cost(125);
  9778   format %{ "COMISD $dst,$src\n"
  9779           "\tJNP    exit\n"
  9780           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9781           "\tSAHF\n"
  9782      "exit:\tNOP               // avoid branch to branch" %}
  9783   opcode(0x66, 0x0F, 0x2F);
  9784   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9785   ins_pipe( pipe_slow );
  9786 %}
  9788 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9789   predicate(UseSSE>=2);
  9790   match(Set cr (CmpD dst src));
  9791   ins_cost(100);
  9792   format %{ "COMISD $dst,$src" %}
  9793   opcode(0x66, 0x0F, 0x2F);
  9794   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9795   ins_pipe( pipe_slow );
  9796 %}
  9798 // float compare and set condition codes in EFLAGS by XMM regs
  9799 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9800   predicate(UseSSE>=2);
  9801   match(Set cr (CmpD dst (LoadD src)));
  9802   effect(KILL rax);
  9803   ins_cost(145);
  9804   format %{ "COMISD $dst,$src\n"
  9805           "\tJNP    exit\n"
  9806           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9807           "\tSAHF\n"
  9808      "exit:\tNOP               // avoid branch to branch" %}
  9809   opcode(0x66, 0x0F, 0x2F);
  9810   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9811   ins_pipe( pipe_slow );
  9812 %}
  9814 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9815   predicate(UseSSE>=2);
  9816   match(Set cr (CmpD dst (LoadD src)));
  9817   ins_cost(100);
  9818   format %{ "COMISD $dst,$src" %}
  9819   opcode(0x66, 0x0F, 0x2F);
  9820   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9821   ins_pipe( pipe_slow );
  9822 %}
  9824 // Compare into -1,0,1 in XMM
  9825 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9826   predicate(UseSSE>=2);
  9827   match(Set dst (CmpD3 src1 src2));
  9828   effect(KILL cr);
  9829   ins_cost(255);
  9830   format %{ "XOR    $dst,$dst\n"
  9831           "\tCOMISD $src1,$src2\n"
  9832           "\tJP,s   nan\n"
  9833           "\tJEQ,s  exit\n"
  9834           "\tJA,s   inc\n"
  9835       "nan:\tDEC    $dst\n"
  9836           "\tJMP,s  exit\n"
  9837       "inc:\tINC    $dst\n"
  9838       "exit:"
  9839                 %}
  9840   opcode(0x66, 0x0F, 0x2F);
  9841   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9842              CmpX_Result(dst));
  9843   ins_pipe( pipe_slow );
  9844 %}
  9846 // Compare into -1,0,1 in XMM and memory
  9847 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  9848   predicate(UseSSE>=2);
  9849   match(Set dst (CmpD3 src1 (LoadD mem)));
  9850   effect(KILL cr);
  9851   ins_cost(275);
  9852   format %{ "COMISD $src1,$mem\n"
  9853           "\tMOV    $dst,0\t\t# do not blow flags\n"
  9854           "\tJP,s   nan\n"
  9855           "\tJEQ,s  exit\n"
  9856           "\tJA,s   inc\n"
  9857       "nan:\tDEC    $dst\n"
  9858           "\tJMP,s  exit\n"
  9859       "inc:\tINC    $dst\n"
  9860       "exit:"
  9861                 %}
  9862   opcode(0x66, 0x0F, 0x2F);
  9863   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
  9864              LdImmI(dst,0x0), CmpX_Result(dst));
  9865   ins_pipe( pipe_slow );
  9866 %}
  9869 instruct subD_reg(regD dst, regD src) %{
  9870   predicate (UseSSE <=1);
  9871   match(Set dst (SubD dst src));
  9873   format %{ "FLD    $src\n\t"
  9874             "DSUBp  $dst,ST" %}
  9875   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9876   ins_cost(150);
  9877   ins_encode( Push_Reg_D(src),
  9878               OpcP, RegOpc(dst) );
  9879   ins_pipe( fpu_reg_reg );
  9880 %}
  9882 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9883   predicate (UseSSE <=1);
  9884   match(Set dst (RoundDouble (SubD src1 src2)));
  9885   ins_cost(250);
  9887   format %{ "FLD    $src2\n\t"
  9888             "DSUB   ST,$src1\n\t"
  9889             "FSTP_D $dst\t# D-round" %}
  9890   opcode(0xD8, 0x5);
  9891   ins_encode( Push_Reg_D(src2),
  9892               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9893   ins_pipe( fpu_mem_reg_reg );
  9894 %}
  9897 instruct subD_reg_mem(regD dst, memory src) %{
  9898   predicate (UseSSE <=1);
  9899   match(Set dst (SubD dst (LoadD src)));
  9900   ins_cost(150);
  9902   format %{ "FLD    $src\n\t"
  9903             "DSUBp  $dst,ST" %}
  9904   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9905   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9906               OpcP, RegOpc(dst) );
  9907   ins_pipe( fpu_reg_mem );
  9908 %}
  9910 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
  9911   predicate (UseSSE<=1);
  9912   match(Set dst (AbsD src));
  9913   ins_cost(100);
  9914   format %{ "FABS" %}
  9915   opcode(0xE1, 0xD9);
  9916   ins_encode( OpcS, OpcP );
  9917   ins_pipe( fpu_reg_reg );
  9918 %}
  9920 instruct absXD_reg( regXD dst ) %{
  9921   predicate(UseSSE>=2);
  9922   match(Set dst (AbsD dst));
  9923   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
  9924   ins_encode( AbsXD_encoding(dst));
  9925   ins_pipe( pipe_slow );
  9926 %}
  9928 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
  9929   predicate(UseSSE<=1);
  9930   match(Set dst (NegD src));
  9931   ins_cost(100);
  9932   format %{ "FCHS" %}
  9933   opcode(0xE0, 0xD9);
  9934   ins_encode( OpcS, OpcP );
  9935   ins_pipe( fpu_reg_reg );
  9936 %}
  9938 instruct negXD_reg( regXD dst ) %{
  9939   predicate(UseSSE>=2);
  9940   match(Set dst (NegD dst));
  9941   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
  9942   ins_encode %{
  9943      __ xorpd($dst$$XMMRegister,
  9944               ExternalAddress((address)double_signflip_pool));
  9945   %}
  9946   ins_pipe( pipe_slow );
  9947 %}
  9949 instruct addD_reg(regD dst, regD src) %{
  9950   predicate(UseSSE<=1);
  9951   match(Set dst (AddD dst src));
  9952   format %{ "FLD    $src\n\t"
  9953             "DADD   $dst,ST" %}
  9954   size(4);
  9955   ins_cost(150);
  9956   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9957   ins_encode( Push_Reg_D(src),
  9958               OpcP, RegOpc(dst) );
  9959   ins_pipe( fpu_reg_reg );
  9960 %}
  9963 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9964   predicate(UseSSE<=1);
  9965   match(Set dst (RoundDouble (AddD src1 src2)));
  9966   ins_cost(250);
  9968   format %{ "FLD    $src2\n\t"
  9969             "DADD   ST,$src1\n\t"
  9970             "FSTP_D $dst\t# D-round" %}
  9971   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9972   ins_encode( Push_Reg_D(src2),
  9973               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9974   ins_pipe( fpu_mem_reg_reg );
  9975 %}
  9978 instruct addD_reg_mem(regD dst, memory src) %{
  9979   predicate(UseSSE<=1);
  9980   match(Set dst (AddD dst (LoadD src)));
  9981   ins_cost(150);
  9983   format %{ "FLD    $src\n\t"
  9984             "DADDp  $dst,ST" %}
  9985   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9986   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9987               OpcP, RegOpc(dst) );
  9988   ins_pipe( fpu_reg_mem );
  9989 %}
  9991 // add-to-memory
  9992 instruct addD_mem_reg(memory dst, regD src) %{
  9993   predicate(UseSSE<=1);
  9994   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9995   ins_cost(150);
  9997   format %{ "FLD_D  $dst\n\t"
  9998             "DADD   ST,$src\n\t"
  9999             "FST_D  $dst" %}
 10000   opcode(0xDD, 0x0);
 10001   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10002               Opcode(0xD8), RegOpc(src),
 10003               set_instruction_start,
 10004               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10005   ins_pipe( fpu_reg_mem );
 10006 %}
 10008 instruct addD_reg_imm1(regD dst, immD1 src) %{
 10009   predicate(UseSSE<=1);
 10010   match(Set dst (AddD dst src));
 10011   ins_cost(125);
 10012   format %{ "FLD1\n\t"
 10013             "DADDp  $dst,ST" %}
 10014   opcode(0xDE, 0x00);
 10015   ins_encode( LdImmD(src),
 10016               OpcP, RegOpc(dst) );
 10017   ins_pipe( fpu_reg );
 10018 %}
 10020 instruct addD_reg_imm(regD dst, immD src) %{
 10021   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10022   match(Set dst (AddD dst src));
 10023   ins_cost(200);
 10024   format %{ "FLD_D  [$src]\n\t"
 10025             "DADDp  $dst,ST" %}
 10026   opcode(0xDE, 0x00);       /* DE /0 */
 10027   ins_encode( LdImmD(src),
 10028               OpcP, RegOpc(dst));
 10029   ins_pipe( fpu_reg_mem );
 10030 %}
 10032 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10033   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10034   match(Set dst (RoundDouble (AddD src con)));
 10035   ins_cost(200);
 10036   format %{ "FLD_D  [$con]\n\t"
 10037             "DADD   ST,$src\n\t"
 10038             "FSTP_D $dst\t# D-round" %}
 10039   opcode(0xD8, 0x00);       /* D8 /0 */
 10040   ins_encode( LdImmD(con),
 10041               OpcP, RegOpc(src), Pop_Mem_D(dst));
 10042   ins_pipe( fpu_mem_reg_con );
 10043 %}
 10045 // Add two double precision floating point values in xmm
 10046 instruct addXD_reg(regXD dst, regXD src) %{
 10047   predicate(UseSSE>=2);
 10048   match(Set dst (AddD dst src));
 10049   format %{ "ADDSD  $dst,$src" %}
 10050   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10051   ins_pipe( pipe_slow );
 10052 %}
 10054 instruct addXD_imm(regXD dst, immXD con) %{
 10055   predicate(UseSSE>=2);
 10056   match(Set dst (AddD dst con));
 10057   format %{ "ADDSD  $dst,[$con]" %}
 10058   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
 10059   ins_pipe( pipe_slow );
 10060 %}
 10062 instruct addXD_mem(regXD dst, memory mem) %{
 10063   predicate(UseSSE>=2);
 10064   match(Set dst (AddD dst (LoadD mem)));
 10065   format %{ "ADDSD  $dst,$mem" %}
 10066   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10067   ins_pipe( pipe_slow );
 10068 %}
 10070 // Sub two double precision floating point values in xmm
 10071 instruct subXD_reg(regXD dst, regXD src) %{
 10072   predicate(UseSSE>=2);
 10073   match(Set dst (SubD dst src));
 10074   format %{ "SUBSD  $dst,$src" %}
 10075   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10076   ins_pipe( pipe_slow );
 10077 %}
 10079 instruct subXD_imm(regXD dst, immXD con) %{
 10080   predicate(UseSSE>=2);
 10081   match(Set dst (SubD dst con));
 10082   format %{ "SUBSD  $dst,[$con]" %}
 10083   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
 10084   ins_pipe( pipe_slow );
 10085 %}
 10087 instruct subXD_mem(regXD dst, memory mem) %{
 10088   predicate(UseSSE>=2);
 10089   match(Set dst (SubD dst (LoadD mem)));
 10090   format %{ "SUBSD  $dst,$mem" %}
 10091   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10092   ins_pipe( pipe_slow );
 10093 %}
 10095 // Mul two double precision floating point values in xmm
 10096 instruct mulXD_reg(regXD dst, regXD src) %{
 10097   predicate(UseSSE>=2);
 10098   match(Set dst (MulD dst src));
 10099   format %{ "MULSD  $dst,$src" %}
 10100   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10101   ins_pipe( pipe_slow );
 10102 %}
 10104 instruct mulXD_imm(regXD dst, immXD con) %{
 10105   predicate(UseSSE>=2);
 10106   match(Set dst (MulD dst con));
 10107   format %{ "MULSD  $dst,[$con]" %}
 10108   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
 10109   ins_pipe( pipe_slow );
 10110 %}
 10112 instruct mulXD_mem(regXD dst, memory mem) %{
 10113   predicate(UseSSE>=2);
 10114   match(Set dst (MulD dst (LoadD mem)));
 10115   format %{ "MULSD  $dst,$mem" %}
 10116   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10117   ins_pipe( pipe_slow );
 10118 %}
 10120 // Div two double precision floating point values in xmm
 10121 instruct divXD_reg(regXD dst, regXD src) %{
 10122   predicate(UseSSE>=2);
 10123   match(Set dst (DivD dst src));
 10124   format %{ "DIVSD  $dst,$src" %}
 10125   opcode(0xF2, 0x0F, 0x5E);
 10126   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10127   ins_pipe( pipe_slow );
 10128 %}
 10130 instruct divXD_imm(regXD dst, immXD con) %{
 10131   predicate(UseSSE>=2);
 10132   match(Set dst (DivD dst con));
 10133   format %{ "DIVSD  $dst,[$con]" %}
 10134   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
 10135   ins_pipe( pipe_slow );
 10136 %}
 10138 instruct divXD_mem(regXD dst, memory mem) %{
 10139   predicate(UseSSE>=2);
 10140   match(Set dst (DivD dst (LoadD mem)));
 10141   format %{ "DIVSD  $dst,$mem" %}
 10142   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10143   ins_pipe( pipe_slow );
 10144 %}
 10147 instruct mulD_reg(regD dst, regD src) %{
 10148   predicate(UseSSE<=1);
 10149   match(Set dst (MulD dst src));
 10150   format %{ "FLD    $src\n\t"
 10151             "DMULp  $dst,ST" %}
 10152   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10153   ins_cost(150);
 10154   ins_encode( Push_Reg_D(src),
 10155               OpcP, RegOpc(dst) );
 10156   ins_pipe( fpu_reg_reg );
 10157 %}
 10159 // Strict FP instruction biases argument before multiply then
 10160 // biases result to avoid double rounding of subnormals.
 10161 //
 10162 // scale arg1 by multiplying arg1 by 2^(-15360)
 10163 // load arg2
 10164 // multiply scaled arg1 by arg2
 10165 // rescale product by 2^(15360)
 10166 //
 10167 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10168   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10169   match(Set dst (MulD dst src));
 10170   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10172   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10173             "DMULp  $dst,ST\n\t"
 10174             "FLD    $src\n\t"
 10175             "DMULp  $dst,ST\n\t"
 10176             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10177             "DMULp  $dst,ST\n\t" %}
 10178   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10179   ins_encode( strictfp_bias1(dst),
 10180               Push_Reg_D(src),
 10181               OpcP, RegOpc(dst),
 10182               strictfp_bias2(dst) );
 10183   ins_pipe( fpu_reg_reg );
 10184 %}
 10186 instruct mulD_reg_imm(regD dst, immD src) %{
 10187   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10188   match(Set dst (MulD dst src));
 10189   ins_cost(200);
 10190   format %{ "FLD_D  [$src]\n\t"
 10191             "DMULp  $dst,ST" %}
 10192   opcode(0xDE, 0x1); /* DE /1 */
 10193   ins_encode( LdImmD(src),
 10194               OpcP, RegOpc(dst) );
 10195   ins_pipe( fpu_reg_mem );
 10196 %}
 10199 instruct mulD_reg_mem(regD dst, memory src) %{
 10200   predicate( UseSSE<=1 );
 10201   match(Set dst (MulD dst (LoadD src)));
 10202   ins_cost(200);
 10203   format %{ "FLD_D  $src\n\t"
 10204             "DMULp  $dst,ST" %}
 10205   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10206   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10207               OpcP, RegOpc(dst) );
 10208   ins_pipe( fpu_reg_mem );
 10209 %}
 10211 //
 10212 // Cisc-alternate to reg-reg multiply
 10213 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10214   predicate( UseSSE<=1 );
 10215   match(Set dst (MulD src (LoadD mem)));
 10216   ins_cost(250);
 10217   format %{ "FLD_D  $mem\n\t"
 10218             "DMUL   ST,$src\n\t"
 10219             "FSTP_D $dst" %}
 10220   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10221   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10222               OpcReg_F(src),
 10223               Pop_Reg_D(dst) );
 10224   ins_pipe( fpu_reg_reg_mem );
 10225 %}
 10228 // MACRO3 -- addD a mulD
 10229 // This instruction is a '2-address' instruction in that the result goes
 10230 // back to src2.  This eliminates a move from the macro; possibly the
 10231 // register allocator will have to add it back (and maybe not).
 10232 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10233   predicate( UseSSE<=1 );
 10234   match(Set src2 (AddD (MulD src0 src1) src2));
 10235   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10236             "DMUL   ST,$src1\n\t"
 10237             "DADDp  $src2,ST" %}
 10238   ins_cost(250);
 10239   opcode(0xDD); /* LoadD DD /0 */
 10240   ins_encode( Push_Reg_F(src0),
 10241               FMul_ST_reg(src1),
 10242               FAddP_reg_ST(src2) );
 10243   ins_pipe( fpu_reg_reg_reg );
 10244 %}
 10247 // MACRO3 -- subD a mulD
 10248 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10249   predicate( UseSSE<=1 );
 10250   match(Set src2 (SubD (MulD src0 src1) src2));
 10251   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10252             "DMUL   ST,$src1\n\t"
 10253             "DSUBRp $src2,ST" %}
 10254   ins_cost(250);
 10255   ins_encode( Push_Reg_F(src0),
 10256               FMul_ST_reg(src1),
 10257               Opcode(0xDE), Opc_plus(0xE0,src2));
 10258   ins_pipe( fpu_reg_reg_reg );
 10259 %}
 10262 instruct divD_reg(regD dst, regD src) %{
 10263   predicate( UseSSE<=1 );
 10264   match(Set dst (DivD dst src));
 10266   format %{ "FLD    $src\n\t"
 10267             "FDIVp  $dst,ST" %}
 10268   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10269   ins_cost(150);
 10270   ins_encode( Push_Reg_D(src),
 10271               OpcP, RegOpc(dst) );
 10272   ins_pipe( fpu_reg_reg );
 10273 %}
 10275 // Strict FP instruction biases argument before division then
 10276 // biases result, to avoid double rounding of subnormals.
 10277 //
 10278 // scale dividend by multiplying dividend by 2^(-15360)
 10279 // load divisor
 10280 // divide scaled dividend by divisor
 10281 // rescale quotient by 2^(15360)
 10282 //
 10283 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10284   predicate (UseSSE<=1);
 10285   match(Set dst (DivD dst src));
 10286   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10287   ins_cost(01);
 10289   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10290             "DMULp  $dst,ST\n\t"
 10291             "FLD    $src\n\t"
 10292             "FDIVp  $dst,ST\n\t"
 10293             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10294             "DMULp  $dst,ST\n\t" %}
 10295   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10296   ins_encode( strictfp_bias1(dst),
 10297               Push_Reg_D(src),
 10298               OpcP, RegOpc(dst),
 10299               strictfp_bias2(dst) );
 10300   ins_pipe( fpu_reg_reg );
 10301 %}
 10303 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10304   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10305   match(Set dst (RoundDouble (DivD src1 src2)));
 10307   format %{ "FLD    $src1\n\t"
 10308             "FDIV   ST,$src2\n\t"
 10309             "FSTP_D $dst\t# D-round" %}
 10310   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10311   ins_encode( Push_Reg_D(src1),
 10312               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10313   ins_pipe( fpu_mem_reg_reg );
 10314 %}
 10317 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10318   predicate(UseSSE<=1);
 10319   match(Set dst (ModD dst src));
 10320   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10322   format %{ "DMOD   $dst,$src" %}
 10323   ins_cost(250);
 10324   ins_encode(Push_Reg_Mod_D(dst, src),
 10325               emitModD(),
 10326               Push_Result_Mod_D(src),
 10327               Pop_Reg_D(dst));
 10328   ins_pipe( pipe_slow );
 10329 %}
 10331 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10332   predicate(UseSSE>=2);
 10333   match(Set dst (ModD src0 src1));
 10334   effect(KILL rax, KILL cr);
 10336   format %{ "SUB    ESP,8\t # DMOD\n"
 10337           "\tMOVSD  [ESP+0],$src1\n"
 10338           "\tFLD_D  [ESP+0]\n"
 10339           "\tMOVSD  [ESP+0],$src0\n"
 10340           "\tFLD_D  [ESP+0]\n"
 10341      "loop:\tFPREM\n"
 10342           "\tFWAIT\n"
 10343           "\tFNSTSW AX\n"
 10344           "\tSAHF\n"
 10345           "\tJP     loop\n"
 10346           "\tFSTP_D [ESP+0]\n"
 10347           "\tMOVSD  $dst,[ESP+0]\n"
 10348           "\tADD    ESP,8\n"
 10349           "\tFSTP   ST0\t # Restore FPU Stack"
 10350     %}
 10351   ins_cost(250);
 10352   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10353   ins_pipe( pipe_slow );
 10354 %}
 10356 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10357   predicate (UseSSE<=1);
 10358   match(Set dst (SinD src));
 10359   ins_cost(1800);
 10360   format %{ "DSIN   $dst" %}
 10361   opcode(0xD9, 0xFE);
 10362   ins_encode( OpcP, OpcS );
 10363   ins_pipe( pipe_slow );
 10364 %}
 10366 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10367   predicate (UseSSE>=2);
 10368   match(Set dst (SinD dst));
 10369   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10370   ins_cost(1800);
 10371   format %{ "DSIN   $dst" %}
 10372   opcode(0xD9, 0xFE);
 10373   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10374   ins_pipe( pipe_slow );
 10375 %}
 10377 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10378   predicate (UseSSE<=1);
 10379   match(Set dst (CosD src));
 10380   ins_cost(1800);
 10381   format %{ "DCOS   $dst" %}
 10382   opcode(0xD9, 0xFF);
 10383   ins_encode( OpcP, OpcS );
 10384   ins_pipe( pipe_slow );
 10385 %}
 10387 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10388   predicate (UseSSE>=2);
 10389   match(Set dst (CosD dst));
 10390   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10391   ins_cost(1800);
 10392   format %{ "DCOS   $dst" %}
 10393   opcode(0xD9, 0xFF);
 10394   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10395   ins_pipe( pipe_slow );
 10396 %}
 10398 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10399   predicate (UseSSE<=1);
 10400   match(Set dst(TanD src));
 10401   format %{ "DTAN   $dst" %}
 10402   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10403               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10404   ins_pipe( pipe_slow );
 10405 %}
 10407 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10408   predicate (UseSSE>=2);
 10409   match(Set dst(TanD dst));
 10410   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10411   format %{ "DTAN   $dst" %}
 10412   ins_encode( Push_SrcXD(dst),
 10413               Opcode(0xD9), Opcode(0xF2),    // fptan
 10414               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10415               Push_ResultXD(dst) );
 10416   ins_pipe( pipe_slow );
 10417 %}
 10419 instruct atanD_reg(regD dst, regD src) %{
 10420   predicate (UseSSE<=1);
 10421   match(Set dst(AtanD dst src));
 10422   format %{ "DATA   $dst,$src" %}
 10423   opcode(0xD9, 0xF3);
 10424   ins_encode( Push_Reg_D(src),
 10425               OpcP, OpcS, RegOpc(dst) );
 10426   ins_pipe( pipe_slow );
 10427 %}
 10429 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10430   predicate (UseSSE>=2);
 10431   match(Set dst(AtanD dst src));
 10432   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10433   format %{ "DATA   $dst,$src" %}
 10434   opcode(0xD9, 0xF3);
 10435   ins_encode( Push_SrcXD(src),
 10436               OpcP, OpcS, Push_ResultXD(dst) );
 10437   ins_pipe( pipe_slow );
 10438 %}
 10440 instruct sqrtD_reg(regD dst, regD src) %{
 10441   predicate (UseSSE<=1);
 10442   match(Set dst (SqrtD src));
 10443   format %{ "DSQRT  $dst,$src" %}
 10444   opcode(0xFA, 0xD9);
 10445   ins_encode( Push_Reg_D(src),
 10446               OpcS, OpcP, Pop_Reg_D(dst) );
 10447   ins_pipe( pipe_slow );
 10448 %}
 10450 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10451   predicate (UseSSE<=1);
 10452   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10453   effect(KILL rax, KILL rbx, KILL rcx);
 10454   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10455             "FLD_D  $X\n\t"
 10456             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10458             "FDUP   \t\t\t# Q Q\n\t"
 10459             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10460             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10461             "FISTP  dword [ESP]\n\t"
 10462             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10463             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10464             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10465             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10466             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10467             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10468             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10469             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10470             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10471             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10472             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10473             "MOV    [ESP+0],0\n\t"
 10474             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10476             "ADD    ESP,8"
 10477              %}
 10478   ins_encode( push_stack_temp_qword,
 10479               Push_Reg_D(X),
 10480               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10481               pow_exp_core_encoding,
 10482               pop_stack_temp_qword);
 10483   ins_pipe( pipe_slow );
 10484 %}
 10486 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10487   predicate (UseSSE>=2);
 10488   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10489   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10490   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10491             "MOVSD  [ESP],$src1\n\t"
 10492             "FLD    FPR1,$src1\n\t"
 10493             "MOVSD  [ESP],$src0\n\t"
 10494             "FLD    FPR1,$src0\n\t"
 10495             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10497             "FDUP   \t\t\t# Q Q\n\t"
 10498             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10499             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10500             "FISTP  dword [ESP]\n\t"
 10501             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10502             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10503             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10504             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10505             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10506             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10507             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10508             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10509             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10510             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10511             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10512             "MOV    [ESP+0],0\n\t"
 10513             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10515             "FST_D  [ESP]\n\t"
 10516             "MOVSD  $dst,[ESP]\n\t"
 10517             "ADD    ESP,8"
 10518              %}
 10519   ins_encode( push_stack_temp_qword,
 10520               push_xmm_to_fpr1(src1),
 10521               push_xmm_to_fpr1(src0),
 10522               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10523               pow_exp_core_encoding,
 10524               Push_ResultXD(dst) );
 10525   ins_pipe( pipe_slow );
 10526 %}
 10529 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10530   predicate (UseSSE<=1);
 10531   match(Set dpr1 (ExpD dpr1));
 10532   effect(KILL rax, KILL rbx, KILL rcx);
 10533   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10534             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10535             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10537             "FDUP   \t\t\t# Q Q\n\t"
 10538             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10539             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10540             "FISTP  dword [ESP]\n\t"
 10541             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10542             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10543             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10544             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10545             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10546             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10547             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10548             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10549             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10550             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10551             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10552             "MOV    [ESP+0],0\n\t"
 10553             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10555             "ADD    ESP,8"
 10556              %}
 10557   ins_encode( push_stack_temp_qword,
 10558               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10559               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10560               pow_exp_core_encoding,
 10561               pop_stack_temp_qword);
 10562   ins_pipe( pipe_slow );
 10563 %}
 10565 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10566   predicate (UseSSE>=2);
 10567   match(Set dst (ExpD src));
 10568   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10569   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10570             "MOVSD  [ESP],$src\n\t"
 10571             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10572             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10574             "FDUP   \t\t\t# Q Q\n\t"
 10575             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10576             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10577             "FISTP  dword [ESP]\n\t"
 10578             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10579             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10580             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10581             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10582             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10583             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10584             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10585             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10586             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10587             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10588             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10589             "MOV    [ESP+0],0\n\t"
 10590             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10592             "FST_D  [ESP]\n\t"
 10593             "MOVSD  $dst,[ESP]\n\t"
 10594             "ADD    ESP,8"
 10595              %}
 10596   ins_encode( Push_SrcXD(src),
 10597               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10598               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10599               pow_exp_core_encoding,
 10600               Push_ResultXD(dst) );
 10601   ins_pipe( pipe_slow );
 10602 %}
 10606 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10607   predicate (UseSSE<=1);
 10608   // The source Double operand on FPU stack
 10609   match(Set dst (Log10D src));
 10610   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10611   // fxch         ; swap ST(0) with ST(1)
 10612   // fyl2x        ; compute log_10(2) * log_2(x)
 10613   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10614             "FXCH   \n\t"
 10615             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10616          %}
 10617   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10618               Opcode(0xD9), Opcode(0xC9),   // fxch
 10619               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10621   ins_pipe( pipe_slow );
 10622 %}
 10624 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10625   predicate (UseSSE>=2);
 10626   effect(KILL cr);
 10627   match(Set dst (Log10D src));
 10628   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10629   // fyl2x        ; compute log_10(2) * log_2(x)
 10630   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10631             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10632          %}
 10633   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10634               Push_SrcXD(src),
 10635               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10636               Push_ResultXD(dst));
 10638   ins_pipe( pipe_slow );
 10639 %}
 10641 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10642   predicate (UseSSE<=1);
 10643   // The source Double operand on FPU stack
 10644   match(Set dst (LogD src));
 10645   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10646   // fxch         ; swap ST(0) with ST(1)
 10647   // fyl2x        ; compute log_e(2) * log_2(x)
 10648   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10649             "FXCH   \n\t"
 10650             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10651          %}
 10652   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10653               Opcode(0xD9), Opcode(0xC9),   // fxch
 10654               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10656   ins_pipe( pipe_slow );
 10657 %}
 10659 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10660   predicate (UseSSE>=2);
 10661   effect(KILL cr);
 10662   // The source and result Double operands in XMM registers
 10663   match(Set dst (LogD src));
 10664   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10665   // fyl2x        ; compute log_e(2) * log_2(x)
 10666   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10667             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10668          %}
 10669   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10670               Push_SrcXD(src),
 10671               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10672               Push_ResultXD(dst));
 10673   ins_pipe( pipe_slow );
 10674 %}
 10676 //-------------Float Instructions-------------------------------
 10677 // Float Math
 10679 // Code for float compare:
 10680 //     fcompp();
 10681 //     fwait(); fnstsw_ax();
 10682 //     sahf();
 10683 //     movl(dst, unordered_result);
 10684 //     jcc(Assembler::parity, exit);
 10685 //     movl(dst, less_result);
 10686 //     jcc(Assembler::below, exit);
 10687 //     movl(dst, equal_result);
 10688 //     jcc(Assembler::equal, exit);
 10689 //     movl(dst, greater_result);
 10690 //   exit:
 10692 // P6 version of float compare, sets condition codes in EFLAGS
 10693 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10694   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10695   match(Set cr (CmpF src1 src2));
 10696   effect(KILL rax);
 10697   ins_cost(150);
 10698   format %{ "FLD    $src1\n\t"
 10699             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10700             "JNP    exit\n\t"
 10701             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10702             "SAHF\n"
 10703      "exit:\tNOP               // avoid branch to branch" %}
 10704   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10705   ins_encode( Push_Reg_D(src1),
 10706               OpcP, RegOpc(src2),
 10707               cmpF_P6_fixup );
 10708   ins_pipe( pipe_slow );
 10709 %}
 10711 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10712   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10713   match(Set cr (CmpF src1 src2));
 10714   ins_cost(100);
 10715   format %{ "FLD    $src1\n\t"
 10716             "FUCOMIP ST,$src2  // P6 instruction" %}
 10717   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10718   ins_encode( Push_Reg_D(src1),
 10719               OpcP, RegOpc(src2));
 10720   ins_pipe( pipe_slow );
 10721 %}
 10724 // Compare & branch
 10725 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10726   predicate(UseSSE == 0);
 10727   match(Set cr (CmpF src1 src2));
 10728   effect(KILL rax);
 10729   ins_cost(200);
 10730   format %{ "FLD    $src1\n\t"
 10731             "FCOMp  $src2\n\t"
 10732             "FNSTSW AX\n\t"
 10733             "TEST   AX,0x400\n\t"
 10734             "JZ,s   flags\n\t"
 10735             "MOV    AH,1\t# unordered treat as LT\n"
 10736     "flags:\tSAHF" %}
 10737   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10738   ins_encode( Push_Reg_D(src1),
 10739               OpcP, RegOpc(src2),
 10740               fpu_flags);
 10741   ins_pipe( pipe_slow );
 10742 %}
 10744 // Compare vs zero into -1,0,1
 10745 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10746   predicate(UseSSE == 0);
 10747   match(Set dst (CmpF3 src1 zero));
 10748   effect(KILL cr, KILL rax);
 10749   ins_cost(280);
 10750   format %{ "FTSTF  $dst,$src1" %}
 10751   opcode(0xE4, 0xD9);
 10752   ins_encode( Push_Reg_D(src1),
 10753               OpcS, OpcP, PopFPU,
 10754               CmpF_Result(dst));
 10755   ins_pipe( pipe_slow );
 10756 %}
 10758 // Compare into -1,0,1
 10759 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10760   predicate(UseSSE == 0);
 10761   match(Set dst (CmpF3 src1 src2));
 10762   effect(KILL cr, KILL rax);
 10763   ins_cost(300);
 10764   format %{ "FCMPF  $dst,$src1,$src2" %}
 10765   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10766   ins_encode( Push_Reg_D(src1),
 10767               OpcP, RegOpc(src2),
 10768               CmpF_Result(dst));
 10769   ins_pipe( pipe_slow );
 10770 %}
 10772 // float compare and set condition codes in EFLAGS by XMM regs
 10773 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10774   predicate(UseSSE>=1);
 10775   match(Set cr (CmpF dst src));
 10776   effect(KILL rax);
 10777   ins_cost(145);
 10778   format %{ "COMISS $dst,$src\n"
 10779           "\tJNP    exit\n"
 10780           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10781           "\tSAHF\n"
 10782      "exit:\tNOP               // avoid branch to branch" %}
 10783   opcode(0x0F, 0x2F);
 10784   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10785   ins_pipe( pipe_slow );
 10786 %}
 10788 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10789   predicate(UseSSE>=1);
 10790   match(Set cr (CmpF dst src));
 10791   ins_cost(100);
 10792   format %{ "COMISS $dst,$src" %}
 10793   opcode(0x0F, 0x2F);
 10794   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10795   ins_pipe( pipe_slow );
 10796 %}
 10798 // float compare and set condition codes in EFLAGS by XMM regs
 10799 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10800   predicate(UseSSE>=1);
 10801   match(Set cr (CmpF dst (LoadF src)));
 10802   effect(KILL rax);
 10803   ins_cost(165);
 10804   format %{ "COMISS $dst,$src\n"
 10805           "\tJNP    exit\n"
 10806           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10807           "\tSAHF\n"
 10808      "exit:\tNOP               // avoid branch to branch" %}
 10809   opcode(0x0F, 0x2F);
 10810   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10811   ins_pipe( pipe_slow );
 10812 %}
 10814 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10815   predicate(UseSSE>=1);
 10816   match(Set cr (CmpF dst (LoadF src)));
 10817   ins_cost(100);
 10818   format %{ "COMISS $dst,$src" %}
 10819   opcode(0x0F, 0x2F);
 10820   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10821   ins_pipe( pipe_slow );
 10822 %}
 10824 // Compare into -1,0,1 in XMM
 10825 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10826   predicate(UseSSE>=1);
 10827   match(Set dst (CmpF3 src1 src2));
 10828   effect(KILL cr);
 10829   ins_cost(255);
 10830   format %{ "XOR    $dst,$dst\n"
 10831           "\tCOMISS $src1,$src2\n"
 10832           "\tJP,s   nan\n"
 10833           "\tJEQ,s  exit\n"
 10834           "\tJA,s   inc\n"
 10835       "nan:\tDEC    $dst\n"
 10836           "\tJMP,s  exit\n"
 10837       "inc:\tINC    $dst\n"
 10838       "exit:"
 10839                 %}
 10840   opcode(0x0F, 0x2F);
 10841   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10842   ins_pipe( pipe_slow );
 10843 %}
 10845 // Compare into -1,0,1 in XMM and memory
 10846 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 10847   predicate(UseSSE>=1);
 10848   match(Set dst (CmpF3 src1 (LoadF mem)));
 10849   effect(KILL cr);
 10850   ins_cost(275);
 10851   format %{ "COMISS $src1,$mem\n"
 10852           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10853           "\tJP,s   nan\n"
 10854           "\tJEQ,s  exit\n"
 10855           "\tJA,s   inc\n"
 10856       "nan:\tDEC    $dst\n"
 10857           "\tJMP,s  exit\n"
 10858       "inc:\tINC    $dst\n"
 10859       "exit:"
 10860                 %}
 10861   opcode(0x0F, 0x2F);
 10862   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 10863   ins_pipe( pipe_slow );
 10864 %}
 10866 // Spill to obtain 24-bit precision
 10867 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10868   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10869   match(Set dst (SubF src1 src2));
 10871   format %{ "FSUB   $dst,$src1 - $src2" %}
 10872   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10873   ins_encode( Push_Reg_F(src1),
 10874               OpcReg_F(src2),
 10875               Pop_Mem_F(dst) );
 10876   ins_pipe( fpu_mem_reg_reg );
 10877 %}
 10878 //
 10879 // This instruction does not round to 24-bits
 10880 instruct subF_reg(regF dst, regF src) %{
 10881   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10882   match(Set dst (SubF dst src));
 10884   format %{ "FSUB   $dst,$src" %}
 10885   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10886   ins_encode( Push_Reg_F(src),
 10887               OpcP, RegOpc(dst) );
 10888   ins_pipe( fpu_reg_reg );
 10889 %}
 10891 // Spill to obtain 24-bit precision
 10892 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10893   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10894   match(Set dst (AddF src1 src2));
 10896   format %{ "FADD   $dst,$src1,$src2" %}
 10897   opcode(0xD8, 0x0); /* D8 C0+i */
 10898   ins_encode( Push_Reg_F(src2),
 10899               OpcReg_F(src1),
 10900               Pop_Mem_F(dst) );
 10901   ins_pipe( fpu_mem_reg_reg );
 10902 %}
 10903 //
 10904 // This instruction does not round to 24-bits
 10905 instruct addF_reg(regF dst, regF src) %{
 10906   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10907   match(Set dst (AddF dst src));
 10909   format %{ "FLD    $src\n\t"
 10910             "FADDp  $dst,ST" %}
 10911   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10912   ins_encode( Push_Reg_F(src),
 10913               OpcP, RegOpc(dst) );
 10914   ins_pipe( fpu_reg_reg );
 10915 %}
 10917 // Add two single precision floating point values in xmm
 10918 instruct addX_reg(regX dst, regX src) %{
 10919   predicate(UseSSE>=1);
 10920   match(Set dst (AddF dst src));
 10921   format %{ "ADDSS  $dst,$src" %}
 10922   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10923   ins_pipe( pipe_slow );
 10924 %}
 10926 instruct addX_imm(regX dst, immXF con) %{
 10927   predicate(UseSSE>=1);
 10928   match(Set dst (AddF dst con));
 10929   format %{ "ADDSS  $dst,[$con]" %}
 10930   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 10931   ins_pipe( pipe_slow );
 10932 %}
 10934 instruct addX_mem(regX dst, memory mem) %{
 10935   predicate(UseSSE>=1);
 10936   match(Set dst (AddF dst (LoadF mem)));
 10937   format %{ "ADDSS  $dst,$mem" %}
 10938   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 10939   ins_pipe( pipe_slow );
 10940 %}
 10942 // Subtract two single precision floating point values in xmm
 10943 instruct subX_reg(regX dst, regX src) %{
 10944   predicate(UseSSE>=1);
 10945   match(Set dst (SubF dst src));
 10946   format %{ "SUBSS  $dst,$src" %}
 10947   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10948   ins_pipe( pipe_slow );
 10949 %}
 10951 instruct subX_imm(regX dst, immXF con) %{
 10952   predicate(UseSSE>=1);
 10953   match(Set dst (SubF dst con));
 10954   format %{ "SUBSS  $dst,[$con]" %}
 10955   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 10956   ins_pipe( pipe_slow );
 10957 %}
 10959 instruct subX_mem(regX dst, memory mem) %{
 10960   predicate(UseSSE>=1);
 10961   match(Set dst (SubF dst (LoadF mem)));
 10962   format %{ "SUBSS  $dst,$mem" %}
 10963   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10964   ins_pipe( pipe_slow );
 10965 %}
 10967 // Multiply two single precision floating point values in xmm
 10968 instruct mulX_reg(regX dst, regX src) %{
 10969   predicate(UseSSE>=1);
 10970   match(Set dst (MulF dst src));
 10971   format %{ "MULSS  $dst,$src" %}
 10972   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10973   ins_pipe( pipe_slow );
 10974 %}
 10976 instruct mulX_imm(regX dst, immXF con) %{
 10977   predicate(UseSSE>=1);
 10978   match(Set dst (MulF dst con));
 10979   format %{ "MULSS  $dst,[$con]" %}
 10980   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 10981   ins_pipe( pipe_slow );
 10982 %}
 10984 instruct mulX_mem(regX dst, memory mem) %{
 10985   predicate(UseSSE>=1);
 10986   match(Set dst (MulF dst (LoadF mem)));
 10987   format %{ "MULSS  $dst,$mem" %}
 10988   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10989   ins_pipe( pipe_slow );
 10990 %}
 10992 // Divide two single precision floating point values in xmm
 10993 instruct divX_reg(regX dst, regX src) %{
 10994   predicate(UseSSE>=1);
 10995   match(Set dst (DivF dst src));
 10996   format %{ "DIVSS  $dst,$src" %}
 10997   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10998   ins_pipe( pipe_slow );
 10999 %}
 11001 instruct divX_imm(regX dst, immXF con) %{
 11002   predicate(UseSSE>=1);
 11003   match(Set dst (DivF dst con));
 11004   format %{ "DIVSS  $dst,[$con]" %}
 11005   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 11006   ins_pipe( pipe_slow );
 11007 %}
 11009 instruct divX_mem(regX dst, memory mem) %{
 11010   predicate(UseSSE>=1);
 11011   match(Set dst (DivF dst (LoadF mem)));
 11012   format %{ "DIVSS  $dst,$mem" %}
 11013   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11014   ins_pipe( pipe_slow );
 11015 %}
 11017 // Get the square root of a single precision floating point values in xmm
 11018 instruct sqrtX_reg(regX dst, regX src) %{
 11019   predicate(UseSSE>=1);
 11020   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11021   format %{ "SQRTSS $dst,$src" %}
 11022   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11023   ins_pipe( pipe_slow );
 11024 %}
 11026 instruct sqrtX_mem(regX dst, memory mem) %{
 11027   predicate(UseSSE>=1);
 11028   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11029   format %{ "SQRTSS $dst,$mem" %}
 11030   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11031   ins_pipe( pipe_slow );
 11032 %}
 11034 // Get the square root of a double precision floating point values in xmm
 11035 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11036   predicate(UseSSE>=2);
 11037   match(Set dst (SqrtD src));
 11038   format %{ "SQRTSD $dst,$src" %}
 11039   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11040   ins_pipe( pipe_slow );
 11041 %}
 11043 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11044   predicate(UseSSE>=2);
 11045   match(Set dst (SqrtD (LoadD mem)));
 11046   format %{ "SQRTSD $dst,$mem" %}
 11047   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11048   ins_pipe( pipe_slow );
 11049 %}
 11051 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11052   predicate(UseSSE==0);
 11053   match(Set dst (AbsF src));
 11054   ins_cost(100);
 11055   format %{ "FABS" %}
 11056   opcode(0xE1, 0xD9);
 11057   ins_encode( OpcS, OpcP );
 11058   ins_pipe( fpu_reg_reg );
 11059 %}
 11061 instruct absX_reg(regX dst ) %{
 11062   predicate(UseSSE>=1);
 11063   match(Set dst (AbsF dst));
 11064   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11065   ins_encode( AbsXF_encoding(dst));
 11066   ins_pipe( pipe_slow );
 11067 %}
 11069 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11070   predicate(UseSSE==0);
 11071   match(Set dst (NegF src));
 11072   ins_cost(100);
 11073   format %{ "FCHS" %}
 11074   opcode(0xE0, 0xD9);
 11075   ins_encode( OpcS, OpcP );
 11076   ins_pipe( fpu_reg_reg );
 11077 %}
 11079 instruct negX_reg( regX dst ) %{
 11080   predicate(UseSSE>=1);
 11081   match(Set dst (NegF dst));
 11082   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11083   ins_encode( NegXF_encoding(dst));
 11084   ins_pipe( pipe_slow );
 11085 %}
 11087 // Cisc-alternate to addF_reg
 11088 // Spill to obtain 24-bit precision
 11089 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11090   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11091   match(Set dst (AddF src1 (LoadF src2)));
 11093   format %{ "FLD    $src2\n\t"
 11094             "FADD   ST,$src1\n\t"
 11095             "FSTP_S $dst" %}
 11096   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11097   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11098               OpcReg_F(src1),
 11099               Pop_Mem_F(dst) );
 11100   ins_pipe( fpu_mem_reg_mem );
 11101 %}
 11102 //
 11103 // Cisc-alternate to addF_reg
 11104 // This instruction does not round to 24-bits
 11105 instruct addF_reg_mem(regF dst, memory src) %{
 11106   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11107   match(Set dst (AddF dst (LoadF src)));
 11109   format %{ "FADD   $dst,$src" %}
 11110   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11111   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11112               OpcP, RegOpc(dst) );
 11113   ins_pipe( fpu_reg_mem );
 11114 %}
 11116 // // Following two instructions for _222_mpegaudio
 11117 // Spill to obtain 24-bit precision
 11118 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11119   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11120   match(Set dst (AddF src1 src2));
 11122   format %{ "FADD   $dst,$src1,$src2" %}
 11123   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11124   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11125               OpcReg_F(src2),
 11126               Pop_Mem_F(dst) );
 11127   ins_pipe( fpu_mem_reg_mem );
 11128 %}
 11130 // Cisc-spill variant
 11131 // Spill to obtain 24-bit precision
 11132 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11133   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11134   match(Set dst (AddF src1 (LoadF src2)));
 11136   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11137   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11138   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11139               set_instruction_start,
 11140               OpcP, RMopc_Mem(secondary,src1),
 11141               Pop_Mem_F(dst) );
 11142   ins_pipe( fpu_mem_mem_mem );
 11143 %}
 11145 // Spill to obtain 24-bit precision
 11146 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11147   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11148   match(Set dst (AddF src1 src2));
 11150   format %{ "FADD   $dst,$src1,$src2" %}
 11151   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11152   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11153               set_instruction_start,
 11154               OpcP, RMopc_Mem(secondary,src1),
 11155               Pop_Mem_F(dst) );
 11156   ins_pipe( fpu_mem_mem_mem );
 11157 %}
 11160 // Spill to obtain 24-bit precision
 11161 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11162   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11163   match(Set dst (AddF src1 src2));
 11164   format %{ "FLD    $src1\n\t"
 11165             "FADD   $src2\n\t"
 11166             "FSTP_S $dst"  %}
 11167   opcode(0xD8, 0x00);       /* D8 /0 */
 11168   ins_encode( Push_Reg_F(src1),
 11169               Opc_MemImm_F(src2),
 11170               Pop_Mem_F(dst));
 11171   ins_pipe( fpu_mem_reg_con );
 11172 %}
 11173 //
 11174 // This instruction does not round to 24-bits
 11175 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 11176   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11177   match(Set dst (AddF src1 src2));
 11178   format %{ "FLD    $src1\n\t"
 11179             "FADD   $src2\n\t"
 11180             "FSTP_S $dst"  %}
 11181   opcode(0xD8, 0x00);       /* D8 /0 */
 11182   ins_encode( Push_Reg_F(src1),
 11183               Opc_MemImm_F(src2),
 11184               Pop_Reg_F(dst));
 11185   ins_pipe( fpu_reg_reg_con );
 11186 %}
 11188 // Spill to obtain 24-bit precision
 11189 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11190   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11191   match(Set dst (MulF src1 src2));
 11193   format %{ "FLD    $src1\n\t"
 11194             "FMUL   $src2\n\t"
 11195             "FSTP_S $dst"  %}
 11196   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11197   ins_encode( Push_Reg_F(src1),
 11198               OpcReg_F(src2),
 11199               Pop_Mem_F(dst) );
 11200   ins_pipe( fpu_mem_reg_reg );
 11201 %}
 11202 //
 11203 // This instruction does not round to 24-bits
 11204 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11205   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11206   match(Set dst (MulF src1 src2));
 11208   format %{ "FLD    $src1\n\t"
 11209             "FMUL   $src2\n\t"
 11210             "FSTP_S $dst"  %}
 11211   opcode(0xD8, 0x1); /* D8 C8+i */
 11212   ins_encode( Push_Reg_F(src2),
 11213               OpcReg_F(src1),
 11214               Pop_Reg_F(dst) );
 11215   ins_pipe( fpu_reg_reg_reg );
 11216 %}
 11219 // Spill to obtain 24-bit precision
 11220 // Cisc-alternate to reg-reg multiply
 11221 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11222   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11223   match(Set dst (MulF src1 (LoadF src2)));
 11225   format %{ "FLD_S  $src2\n\t"
 11226             "FMUL   $src1\n\t"
 11227             "FSTP_S $dst"  %}
 11228   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11229   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11230               OpcReg_F(src1),
 11231               Pop_Mem_F(dst) );
 11232   ins_pipe( fpu_mem_reg_mem );
 11233 %}
 11234 //
 11235 // This instruction does not round to 24-bits
 11236 // Cisc-alternate to reg-reg multiply
 11237 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11238   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11239   match(Set dst (MulF src1 (LoadF src2)));
 11241   format %{ "FMUL   $dst,$src1,$src2" %}
 11242   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11243   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11244               OpcReg_F(src1),
 11245               Pop_Reg_F(dst) );
 11246   ins_pipe( fpu_reg_reg_mem );
 11247 %}
 11249 // Spill to obtain 24-bit precision
 11250 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11251   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11252   match(Set dst (MulF src1 src2));
 11254   format %{ "FMUL   $dst,$src1,$src2" %}
 11255   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11256   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11257               set_instruction_start,
 11258               OpcP, RMopc_Mem(secondary,src1),
 11259               Pop_Mem_F(dst) );
 11260   ins_pipe( fpu_mem_mem_mem );
 11261 %}
 11263 // Spill to obtain 24-bit precision
 11264 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11265   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11266   match(Set dst (MulF src1 src2));
 11268   format %{ "FMULc $dst,$src1,$src2" %}
 11269   opcode(0xD8, 0x1);  /* D8 /1*/
 11270   ins_encode( Push_Reg_F(src1),
 11271               Opc_MemImm_F(src2),
 11272               Pop_Mem_F(dst));
 11273   ins_pipe( fpu_mem_reg_con );
 11274 %}
 11275 //
 11276 // This instruction does not round to 24-bits
 11277 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11278   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11279   match(Set dst (MulF src1 src2));
 11281   format %{ "FMULc $dst. $src1, $src2" %}
 11282   opcode(0xD8, 0x1);  /* D8 /1*/
 11283   ins_encode( Push_Reg_F(src1),
 11284               Opc_MemImm_F(src2),
 11285               Pop_Reg_F(dst));
 11286   ins_pipe( fpu_reg_reg_con );
 11287 %}
 11290 //
 11291 // MACRO1 -- subsume unshared load into mulF
 11292 // This instruction does not round to 24-bits
 11293 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11294   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11295   match(Set dst (MulF (LoadF mem1) src));
 11297   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11298             "FMUL   ST,$src\n\t"
 11299             "FSTP   $dst" %}
 11300   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11301   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11302               OpcReg_F(src),
 11303               Pop_Reg_F(dst) );
 11304   ins_pipe( fpu_reg_reg_mem );
 11305 %}
 11306 //
 11307 // MACRO2 -- addF a mulF which subsumed an unshared load
 11308 // This instruction does not round to 24-bits
 11309 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11310   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11311   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11312   ins_cost(95);
 11314   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11315             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11316             "FADD   ST,$src2\n\t"
 11317             "FSTP   $dst" %}
 11318   opcode(0xD9); /* LoadF D9 /0 */
 11319   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11320               FMul_ST_reg(src1),
 11321               FAdd_ST_reg(src2),
 11322               Pop_Reg_F(dst) );
 11323   ins_pipe( fpu_reg_mem_reg_reg );
 11324 %}
 11326 // MACRO3 -- addF a mulF
 11327 // This instruction does not round to 24-bits.  It is a '2-address'
 11328 // instruction in that the result goes back to src2.  This eliminates
 11329 // a move from the macro; possibly the register allocator will have
 11330 // to add it back (and maybe not).
 11331 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11332   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11333   match(Set src2 (AddF (MulF src0 src1) src2));
 11335   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11336             "FMUL   ST,$src1\n\t"
 11337             "FADDP  $src2,ST" %}
 11338   opcode(0xD9); /* LoadF D9 /0 */
 11339   ins_encode( Push_Reg_F(src0),
 11340               FMul_ST_reg(src1),
 11341               FAddP_reg_ST(src2) );
 11342   ins_pipe( fpu_reg_reg_reg );
 11343 %}
 11345 // MACRO4 -- divF subF
 11346 // This instruction does not round to 24-bits
 11347 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11348   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11349   match(Set dst (DivF (SubF src2 src1) src3));
 11351   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11352             "FSUB   ST,$src1\n\t"
 11353             "FDIV   ST,$src3\n\t"
 11354             "FSTP  $dst" %}
 11355   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11356   ins_encode( Push_Reg_F(src2),
 11357               subF_divF_encode(src1,src3),
 11358               Pop_Reg_F(dst) );
 11359   ins_pipe( fpu_reg_reg_reg_reg );
 11360 %}
 11362 // Spill to obtain 24-bit precision
 11363 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11364   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11365   match(Set dst (DivF src1 src2));
 11367   format %{ "FDIV   $dst,$src1,$src2" %}
 11368   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11369   ins_encode( Push_Reg_F(src1),
 11370               OpcReg_F(src2),
 11371               Pop_Mem_F(dst) );
 11372   ins_pipe( fpu_mem_reg_reg );
 11373 %}
 11374 //
 11375 // This instruction does not round to 24-bits
 11376 instruct divF_reg(regF dst, regF src) %{
 11377   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11378   match(Set dst (DivF dst src));
 11380   format %{ "FDIV   $dst,$src" %}
 11381   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11382   ins_encode( Push_Reg_F(src),
 11383               OpcP, RegOpc(dst) );
 11384   ins_pipe( fpu_reg_reg );
 11385 %}
 11388 // Spill to obtain 24-bit precision
 11389 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11390   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11391   match(Set dst (ModF src1 src2));
 11392   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11394   format %{ "FMOD   $dst,$src1,$src2" %}
 11395   ins_encode( Push_Reg_Mod_D(src1, src2),
 11396               emitModD(),
 11397               Push_Result_Mod_D(src2),
 11398               Pop_Mem_F(dst));
 11399   ins_pipe( pipe_slow );
 11400 %}
 11401 //
 11402 // This instruction does not round to 24-bits
 11403 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11404   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11405   match(Set dst (ModF dst src));
 11406   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11408   format %{ "FMOD   $dst,$src" %}
 11409   ins_encode(Push_Reg_Mod_D(dst, src),
 11410               emitModD(),
 11411               Push_Result_Mod_D(src),
 11412               Pop_Reg_F(dst));
 11413   ins_pipe( pipe_slow );
 11414 %}
 11416 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11417   predicate(UseSSE>=1);
 11418   match(Set dst (ModF src0 src1));
 11419   effect(KILL rax, KILL cr);
 11420   format %{ "SUB    ESP,4\t # FMOD\n"
 11421           "\tMOVSS  [ESP+0],$src1\n"
 11422           "\tFLD_S  [ESP+0]\n"
 11423           "\tMOVSS  [ESP+0],$src0\n"
 11424           "\tFLD_S  [ESP+0]\n"
 11425      "loop:\tFPREM\n"
 11426           "\tFWAIT\n"
 11427           "\tFNSTSW AX\n"
 11428           "\tSAHF\n"
 11429           "\tJP     loop\n"
 11430           "\tFSTP_S [ESP+0]\n"
 11431           "\tMOVSS  $dst,[ESP+0]\n"
 11432           "\tADD    ESP,4\n"
 11433           "\tFSTP   ST0\t # Restore FPU Stack"
 11434     %}
 11435   ins_cost(250);
 11436   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11437   ins_pipe( pipe_slow );
 11438 %}
 11441 //----------Arithmetic Conversion Instructions---------------------------------
 11442 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11444 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11445   predicate(UseSSE==0);
 11446   match(Set dst (RoundFloat src));
 11447   ins_cost(125);
 11448   format %{ "FST_S  $dst,$src\t# F-round" %}
 11449   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11450   ins_pipe( fpu_mem_reg );
 11451 %}
 11453 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11454   predicate(UseSSE<=1);
 11455   match(Set dst (RoundDouble src));
 11456   ins_cost(125);
 11457   format %{ "FST_D  $dst,$src\t# D-round" %}
 11458   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11459   ins_pipe( fpu_mem_reg );
 11460 %}
 11462 // Force rounding to 24-bit precision and 6-bit exponent
 11463 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11464   predicate(UseSSE==0);
 11465   match(Set dst (ConvD2F src));
 11466   format %{ "FST_S  $dst,$src\t# F-round" %}
 11467   expand %{
 11468     roundFloat_mem_reg(dst,src);
 11469   %}
 11470 %}
 11472 // Force rounding to 24-bit precision and 6-bit exponent
 11473 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11474   predicate(UseSSE==1);
 11475   match(Set dst (ConvD2F src));
 11476   effect( KILL cr );
 11477   format %{ "SUB    ESP,4\n\t"
 11478             "FST_S  [ESP],$src\t# F-round\n\t"
 11479             "MOVSS  $dst,[ESP]\n\t"
 11480             "ADD ESP,4" %}
 11481   ins_encode( D2X_encoding(dst, src) );
 11482   ins_pipe( pipe_slow );
 11483 %}
 11485 // Force rounding double precision to single precision
 11486 instruct convXD2X_reg(regX dst, regXD src) %{
 11487   predicate(UseSSE>=2);
 11488   match(Set dst (ConvD2F src));
 11489   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11490   opcode(0xF2, 0x0F, 0x5A);
 11491   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11492   ins_pipe( pipe_slow );
 11493 %}
 11495 instruct convF2D_reg_reg(regD dst, regF src) %{
 11496   predicate(UseSSE==0);
 11497   match(Set dst (ConvF2D src));
 11498   format %{ "FST_S  $dst,$src\t# D-round" %}
 11499   ins_encode( Pop_Reg_Reg_D(dst, src));
 11500   ins_pipe( fpu_reg_reg );
 11501 %}
 11503 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11504   predicate(UseSSE==1);
 11505   match(Set dst (ConvF2D src));
 11506   format %{ "FST_D  $dst,$src\t# D-round" %}
 11507   expand %{
 11508     roundDouble_mem_reg(dst,src);
 11509   %}
 11510 %}
 11512 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11513   predicate(UseSSE==1);
 11514   match(Set dst (ConvF2D src));
 11515   effect( KILL cr );
 11516   format %{ "SUB    ESP,4\n\t"
 11517             "MOVSS  [ESP] $src\n\t"
 11518             "FLD_S  [ESP]\n\t"
 11519             "ADD    ESP,4\n\t"
 11520             "FSTP   $dst\t# D-round" %}
 11521   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11522   ins_pipe( pipe_slow );
 11523 %}
 11525 instruct convX2XD_reg(regXD dst, regX src) %{
 11526   predicate(UseSSE>=2);
 11527   match(Set dst (ConvF2D src));
 11528   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11529   opcode(0xF3, 0x0F, 0x5A);
 11530   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11531   ins_pipe( pipe_slow );
 11532 %}
 11534 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11535 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11536   predicate(UseSSE<=1);
 11537   match(Set dst (ConvD2I src));
 11538   effect( KILL tmp, KILL cr );
 11539   format %{ "FLD    $src\t# Convert double to int \n\t"
 11540             "FLDCW  trunc mode\n\t"
 11541             "SUB    ESP,4\n\t"
 11542             "FISTp  [ESP + #0]\n\t"
 11543             "FLDCW  std/24-bit mode\n\t"
 11544             "POP    EAX\n\t"
 11545             "CMP    EAX,0x80000000\n\t"
 11546             "JNE,s  fast\n\t"
 11547             "FLD_D  $src\n\t"
 11548             "CALL   d2i_wrapper\n"
 11549       "fast:" %}
 11550   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11551   ins_pipe( pipe_slow );
 11552 %}
 11554 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11555 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11556   predicate(UseSSE>=2);
 11557   match(Set dst (ConvD2I src));
 11558   effect( KILL tmp, KILL cr );
 11559   format %{ "CVTTSD2SI $dst, $src\n\t"
 11560             "CMP    $dst,0x80000000\n\t"
 11561             "JNE,s  fast\n\t"
 11562             "SUB    ESP, 8\n\t"
 11563             "MOVSD  [ESP], $src\n\t"
 11564             "FLD_D  [ESP]\n\t"
 11565             "ADD    ESP, 8\n\t"
 11566             "CALL   d2i_wrapper\n"
 11567       "fast:" %}
 11568   opcode(0x1); // double-precision conversion
 11569   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11570   ins_pipe( pipe_slow );
 11571 %}
 11573 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11574   predicate(UseSSE<=1);
 11575   match(Set dst (ConvD2L src));
 11576   effect( KILL cr );
 11577   format %{ "FLD    $src\t# Convert double to long\n\t"
 11578             "FLDCW  trunc mode\n\t"
 11579             "SUB    ESP,8\n\t"
 11580             "FISTp  [ESP + #0]\n\t"
 11581             "FLDCW  std/24-bit mode\n\t"
 11582             "POP    EAX\n\t"
 11583             "POP    EDX\n\t"
 11584             "CMP    EDX,0x80000000\n\t"
 11585             "JNE,s  fast\n\t"
 11586             "TEST   EAX,EAX\n\t"
 11587             "JNE,s  fast\n\t"
 11588             "FLD    $src\n\t"
 11589             "CALL   d2l_wrapper\n"
 11590       "fast:" %}
 11591   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11592   ins_pipe( pipe_slow );
 11593 %}
 11595 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11596 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11597   predicate (UseSSE>=2);
 11598   match(Set dst (ConvD2L src));
 11599   effect( KILL cr );
 11600   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11601             "MOVSD  [ESP],$src\n\t"
 11602             "FLD_D  [ESP]\n\t"
 11603             "FLDCW  trunc mode\n\t"
 11604             "FISTp  [ESP + #0]\n\t"
 11605             "FLDCW  std/24-bit mode\n\t"
 11606             "POP    EAX\n\t"
 11607             "POP    EDX\n\t"
 11608             "CMP    EDX,0x80000000\n\t"
 11609             "JNE,s  fast\n\t"
 11610             "TEST   EAX,EAX\n\t"
 11611             "JNE,s  fast\n\t"
 11612             "SUB    ESP,8\n\t"
 11613             "MOVSD  [ESP],$src\n\t"
 11614             "FLD_D  [ESP]\n\t"
 11615             "CALL   d2l_wrapper\n"
 11616       "fast:" %}
 11617   ins_encode( XD2L_encoding(src) );
 11618   ins_pipe( pipe_slow );
 11619 %}
 11621 // Convert a double to an int.  Java semantics require we do complex
 11622 // manglations in the corner cases.  So we set the rounding mode to
 11623 // 'zero', store the darned double down as an int, and reset the
 11624 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11625 // if we would overflow or converted a NAN; we check for this and
 11626 // and go the slow path if needed.
 11627 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11628   predicate(UseSSE==0);
 11629   match(Set dst (ConvF2I src));
 11630   effect( KILL tmp, KILL cr );
 11631   format %{ "FLD    $src\t# Convert float to int \n\t"
 11632             "FLDCW  trunc mode\n\t"
 11633             "SUB    ESP,4\n\t"
 11634             "FISTp  [ESP + #0]\n\t"
 11635             "FLDCW  std/24-bit mode\n\t"
 11636             "POP    EAX\n\t"
 11637             "CMP    EAX,0x80000000\n\t"
 11638             "JNE,s  fast\n\t"
 11639             "FLD    $src\n\t"
 11640             "CALL   d2i_wrapper\n"
 11641       "fast:" %}
 11642   // D2I_encoding works for F2I
 11643   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11644   ins_pipe( pipe_slow );
 11645 %}
 11647 // Convert a float in xmm to an int reg.
 11648 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11649   predicate(UseSSE>=1);
 11650   match(Set dst (ConvF2I src));
 11651   effect( KILL tmp, KILL cr );
 11652   format %{ "CVTTSS2SI $dst, $src\n\t"
 11653             "CMP    $dst,0x80000000\n\t"
 11654             "JNE,s  fast\n\t"
 11655             "SUB    ESP, 4\n\t"
 11656             "MOVSS  [ESP], $src\n\t"
 11657             "FLD    [ESP]\n\t"
 11658             "ADD    ESP, 4\n\t"
 11659             "CALL   d2i_wrapper\n"
 11660       "fast:" %}
 11661   opcode(0x0); // single-precision conversion
 11662   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11663   ins_pipe( pipe_slow );
 11664 %}
 11666 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11667   predicate(UseSSE==0);
 11668   match(Set dst (ConvF2L src));
 11669   effect( KILL cr );
 11670   format %{ "FLD    $src\t# Convert float to long\n\t"
 11671             "FLDCW  trunc mode\n\t"
 11672             "SUB    ESP,8\n\t"
 11673             "FISTp  [ESP + #0]\n\t"
 11674             "FLDCW  std/24-bit mode\n\t"
 11675             "POP    EAX\n\t"
 11676             "POP    EDX\n\t"
 11677             "CMP    EDX,0x80000000\n\t"
 11678             "JNE,s  fast\n\t"
 11679             "TEST   EAX,EAX\n\t"
 11680             "JNE,s  fast\n\t"
 11681             "FLD    $src\n\t"
 11682             "CALL   d2l_wrapper\n"
 11683       "fast:" %}
 11684   // D2L_encoding works for F2L
 11685   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11686   ins_pipe( pipe_slow );
 11687 %}
 11689 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11690 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11691   predicate (UseSSE>=1);
 11692   match(Set dst (ConvF2L src));
 11693   effect( KILL cr );
 11694   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11695             "MOVSS  [ESP],$src\n\t"
 11696             "FLD_S  [ESP]\n\t"
 11697             "FLDCW  trunc mode\n\t"
 11698             "FISTp  [ESP + #0]\n\t"
 11699             "FLDCW  std/24-bit mode\n\t"
 11700             "POP    EAX\n\t"
 11701             "POP    EDX\n\t"
 11702             "CMP    EDX,0x80000000\n\t"
 11703             "JNE,s  fast\n\t"
 11704             "TEST   EAX,EAX\n\t"
 11705             "JNE,s  fast\n\t"
 11706             "SUB    ESP,4\t# Convert float to long\n\t"
 11707             "MOVSS  [ESP],$src\n\t"
 11708             "FLD_S  [ESP]\n\t"
 11709             "ADD    ESP,4\n\t"
 11710             "CALL   d2l_wrapper\n"
 11711       "fast:" %}
 11712   ins_encode( X2L_encoding(src) );
 11713   ins_pipe( pipe_slow );
 11714 %}
 11716 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11717   predicate( UseSSE<=1 );
 11718   match(Set dst (ConvI2D src));
 11719   format %{ "FILD   $src\n\t"
 11720             "FSTP   $dst" %}
 11721   opcode(0xDB, 0x0);  /* DB /0 */
 11722   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11723   ins_pipe( fpu_reg_mem );
 11724 %}
 11726 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11727   predicate( UseSSE>=2 && !UseXmmI2D );
 11728   match(Set dst (ConvI2D src));
 11729   format %{ "CVTSI2SD $dst,$src" %}
 11730   opcode(0xF2, 0x0F, 0x2A);
 11731   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11732   ins_pipe( pipe_slow );
 11733 %}
 11735 instruct convI2XD_mem(regXD dst, memory mem) %{
 11736   predicate( UseSSE>=2 );
 11737   match(Set dst (ConvI2D (LoadI mem)));
 11738   format %{ "CVTSI2SD $dst,$mem" %}
 11739   opcode(0xF2, 0x0F, 0x2A);
 11740   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11741   ins_pipe( pipe_slow );
 11742 %}
 11744 instruct convXI2XD_reg(regXD dst, eRegI src)
 11745 %{
 11746   predicate( UseSSE>=2 && UseXmmI2D );
 11747   match(Set dst (ConvI2D src));
 11749   format %{ "MOVD  $dst,$src\n\t"
 11750             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11751   ins_encode %{
 11752     __ movdl($dst$$XMMRegister, $src$$Register);
 11753     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11754   %}
 11755   ins_pipe(pipe_slow); // XXX
 11756 %}
 11758 instruct convI2D_mem(regD dst, memory mem) %{
 11759   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11760   match(Set dst (ConvI2D (LoadI mem)));
 11761   format %{ "FILD   $mem\n\t"
 11762             "FSTP   $dst" %}
 11763   opcode(0xDB);      /* DB /0 */
 11764   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11765               Pop_Reg_D(dst));
 11766   ins_pipe( fpu_reg_mem );
 11767 %}
 11769 // Convert a byte to a float; no rounding step needed.
 11770 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11771   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11772   match(Set dst (ConvI2F src));
 11773   format %{ "FILD   $src\n\t"
 11774             "FSTP   $dst" %}
 11776   opcode(0xDB, 0x0);  /* DB /0 */
 11777   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11778   ins_pipe( fpu_reg_mem );
 11779 %}
 11781 // In 24-bit mode, force exponent rounding by storing back out
 11782 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11783   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11784   match(Set dst (ConvI2F src));
 11785   ins_cost(200);
 11786   format %{ "FILD   $src\n\t"
 11787             "FSTP_S $dst" %}
 11788   opcode(0xDB, 0x0);  /* DB /0 */
 11789   ins_encode( Push_Mem_I(src),
 11790               Pop_Mem_F(dst));
 11791   ins_pipe( fpu_mem_mem );
 11792 %}
 11794 // In 24-bit mode, force exponent rounding by storing back out
 11795 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11796   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11797   match(Set dst (ConvI2F (LoadI mem)));
 11798   ins_cost(200);
 11799   format %{ "FILD   $mem\n\t"
 11800             "FSTP_S $dst" %}
 11801   opcode(0xDB);  /* DB /0 */
 11802   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11803               Pop_Mem_F(dst));
 11804   ins_pipe( fpu_mem_mem );
 11805 %}
 11807 // This instruction does not round to 24-bits
 11808 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11809   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11810   match(Set dst (ConvI2F src));
 11811   format %{ "FILD   $src\n\t"
 11812             "FSTP   $dst" %}
 11813   opcode(0xDB, 0x0);  /* DB /0 */
 11814   ins_encode( Push_Mem_I(src),
 11815               Pop_Reg_F(dst));
 11816   ins_pipe( fpu_reg_mem );
 11817 %}
 11819 // This instruction does not round to 24-bits
 11820 instruct convI2F_mem(regF dst, memory mem) %{
 11821   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11822   match(Set dst (ConvI2F (LoadI mem)));
 11823   format %{ "FILD   $mem\n\t"
 11824             "FSTP   $dst" %}
 11825   opcode(0xDB);      /* DB /0 */
 11826   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11827               Pop_Reg_F(dst));
 11828   ins_pipe( fpu_reg_mem );
 11829 %}
 11831 // Convert an int to a float in xmm; no rounding step needed.
 11832 instruct convI2X_reg(regX dst, eRegI src) %{
 11833   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11834   match(Set dst (ConvI2F src));
 11835   format %{ "CVTSI2SS $dst, $src" %}
 11837   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11838   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11839   ins_pipe( pipe_slow );
 11840 %}
 11842  instruct convXI2X_reg(regX dst, eRegI src)
 11843 %{
 11844   predicate( UseSSE>=2 && UseXmmI2F );
 11845   match(Set dst (ConvI2F src));
 11847   format %{ "MOVD  $dst,$src\n\t"
 11848             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11849   ins_encode %{
 11850     __ movdl($dst$$XMMRegister, $src$$Register);
 11851     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11852   %}
 11853   ins_pipe(pipe_slow); // XXX
 11854 %}
 11856 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11857   match(Set dst (ConvI2L src));
 11858   effect(KILL cr);
 11859   ins_cost(375);
 11860   format %{ "MOV    $dst.lo,$src\n\t"
 11861             "MOV    $dst.hi,$src\n\t"
 11862             "SAR    $dst.hi,31" %}
 11863   ins_encode(convert_int_long(dst,src));
 11864   ins_pipe( ialu_reg_reg_long );
 11865 %}
 11867 // Zero-extend convert int to long
 11868 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11869   match(Set dst (AndL (ConvI2L src) mask) );
 11870   effect( KILL flags );
 11871   ins_cost(250);
 11872   format %{ "MOV    $dst.lo,$src\n\t"
 11873             "XOR    $dst.hi,$dst.hi" %}
 11874   opcode(0x33); // XOR
 11875   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11876   ins_pipe( ialu_reg_reg_long );
 11877 %}
 11879 // Zero-extend long
 11880 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11881   match(Set dst (AndL src mask) );
 11882   effect( KILL flags );
 11883   ins_cost(250);
 11884   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11885             "XOR    $dst.hi,$dst.hi\n\t" %}
 11886   opcode(0x33); // XOR
 11887   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11888   ins_pipe( ialu_reg_reg_long );
 11889 %}
 11891 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11892   predicate (UseSSE<=1);
 11893   match(Set dst (ConvL2D src));
 11894   effect( KILL cr );
 11895   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11896             "PUSH   $src.lo\n\t"
 11897             "FILD   ST,[ESP + #0]\n\t"
 11898             "ADD    ESP,8\n\t"
 11899             "FSTP_D $dst\t# D-round" %}
 11900   opcode(0xDF, 0x5);  /* DF /5 */
 11901   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 11902   ins_pipe( pipe_slow );
 11903 %}
 11905 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 11906   predicate (UseSSE>=2);
 11907   match(Set dst (ConvL2D src));
 11908   effect( KILL cr );
 11909   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11910             "PUSH   $src.lo\n\t"
 11911             "FILD_D [ESP]\n\t"
 11912             "FSTP_D [ESP]\n\t"
 11913             "MOVSD  $dst,[ESP]\n\t"
 11914             "ADD    ESP,8" %}
 11915   opcode(0xDF, 0x5);  /* DF /5 */
 11916   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 11917   ins_pipe( pipe_slow );
 11918 %}
 11920 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 11921   predicate (UseSSE>=1);
 11922   match(Set dst (ConvL2F src));
 11923   effect( KILL cr );
 11924   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11925             "PUSH   $src.lo\n\t"
 11926             "FILD_D [ESP]\n\t"
 11927             "FSTP_S [ESP]\n\t"
 11928             "MOVSS  $dst,[ESP]\n\t"
 11929             "ADD    ESP,8" %}
 11930   opcode(0xDF, 0x5);  /* DF /5 */
 11931   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 11932   ins_pipe( pipe_slow );
 11933 %}
 11935 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11936   match(Set dst (ConvL2F src));
 11937   effect( KILL cr );
 11938   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11939             "PUSH   $src.lo\n\t"
 11940             "FILD   ST,[ESP + #0]\n\t"
 11941             "ADD    ESP,8\n\t"
 11942             "FSTP_S $dst\t# F-round" %}
 11943   opcode(0xDF, 0x5);  /* DF /5 */
 11944   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 11945   ins_pipe( pipe_slow );
 11946 %}
 11948 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11949   match(Set dst (ConvL2I src));
 11950   effect( DEF dst, USE src );
 11951   format %{ "MOV    $dst,$src.lo" %}
 11952   ins_encode(enc_CopyL_Lo(dst,src));
 11953   ins_pipe( ialu_reg_reg );
 11954 %}
 11957 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11958   match(Set dst (MoveF2I src));
 11959   effect( DEF dst, USE src );
 11960   ins_cost(100);
 11961   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11962   opcode(0x8B);
 11963   ins_encode( OpcP, RegMem(dst,src));
 11964   ins_pipe( ialu_reg_mem );
 11965 %}
 11967 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 11968   predicate(UseSSE==0);
 11969   match(Set dst (MoveF2I src));
 11970   effect( DEF dst, USE src );
 11972   ins_cost(125);
 11973   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11974   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11975   ins_pipe( fpu_mem_reg );
 11976 %}
 11978 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 11979   predicate(UseSSE>=1);
 11980   match(Set dst (MoveF2I src));
 11981   effect( DEF dst, USE src );
 11983   ins_cost(95);
 11984   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11985   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 11986   ins_pipe( pipe_slow );
 11987 %}
 11989 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 11990   predicate(UseSSE>=2);
 11991   match(Set dst (MoveF2I src));
 11992   effect( DEF dst, USE src );
 11993   ins_cost(85);
 11994   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11995   ins_encode( MovX2I_reg(dst, src));
 11996   ins_pipe( pipe_slow );
 11997 %}
 11999 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12000   match(Set dst (MoveI2F src));
 12001   effect( DEF dst, USE src );
 12003   ins_cost(100);
 12004   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12005   opcode(0x89);
 12006   ins_encode( OpcPRegSS( dst, src ) );
 12007   ins_pipe( ialu_mem_reg );
 12008 %}
 12011 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12012   predicate(UseSSE==0);
 12013   match(Set dst (MoveI2F src));
 12014   effect(DEF dst, USE src);
 12016   ins_cost(125);
 12017   format %{ "FLD_S  $src\n\t"
 12018             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12019   opcode(0xD9);               /* D9 /0, FLD m32real */
 12020   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12021               Pop_Reg_F(dst) );
 12022   ins_pipe( fpu_reg_mem );
 12023 %}
 12025 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12026   predicate(UseSSE>=1);
 12027   match(Set dst (MoveI2F src));
 12028   effect( DEF dst, USE src );
 12030   ins_cost(95);
 12031   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12032   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12033   ins_pipe( pipe_slow );
 12034 %}
 12036 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12037   predicate(UseSSE>=2);
 12038   match(Set dst (MoveI2F src));
 12039   effect( DEF dst, USE src );
 12041   ins_cost(85);
 12042   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12043   ins_encode( MovI2X_reg(dst, src) );
 12044   ins_pipe( pipe_slow );
 12045 %}
 12047 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12048   match(Set dst (MoveD2L src));
 12049   effect(DEF dst, USE src);
 12051   ins_cost(250);
 12052   format %{ "MOV    $dst.lo,$src\n\t"
 12053             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12054   opcode(0x8B, 0x8B);
 12055   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12056   ins_pipe( ialu_mem_long_reg );
 12057 %}
 12059 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12060   predicate(UseSSE<=1);
 12061   match(Set dst (MoveD2L src));
 12062   effect(DEF dst, USE src);
 12064   ins_cost(125);
 12065   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12066   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12067   ins_pipe( fpu_mem_reg );
 12068 %}
 12070 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12071   predicate(UseSSE>=2);
 12072   match(Set dst (MoveD2L src));
 12073   effect(DEF dst, USE src);
 12074   ins_cost(95);
 12076   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12077   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12078   ins_pipe( pipe_slow );
 12079 %}
 12081 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12082   predicate(UseSSE>=2);
 12083   match(Set dst (MoveD2L src));
 12084   effect(DEF dst, USE src, TEMP tmp);
 12085   ins_cost(85);
 12086   format %{ "MOVD   $dst.lo,$src\n\t"
 12087             "PSHUFLW $tmp,$src,0x4E\n\t"
 12088             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12089   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12090   ins_pipe( pipe_slow );
 12091 %}
 12093 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12094   match(Set dst (MoveL2D src));
 12095   effect(DEF dst, USE src);
 12097   ins_cost(200);
 12098   format %{ "MOV    $dst,$src.lo\n\t"
 12099             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12100   opcode(0x89, 0x89);
 12101   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12102   ins_pipe( ialu_mem_long_reg );
 12103 %}
 12106 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12107   predicate(UseSSE<=1);
 12108   match(Set dst (MoveL2D src));
 12109   effect(DEF dst, USE src);
 12110   ins_cost(125);
 12112   format %{ "FLD_D  $src\n\t"
 12113             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12114   opcode(0xDD);               /* DD /0, FLD m64real */
 12115   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12116               Pop_Reg_D(dst) );
 12117   ins_pipe( fpu_reg_mem );
 12118 %}
 12121 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12122   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12123   match(Set dst (MoveL2D src));
 12124   effect(DEF dst, USE src);
 12126   ins_cost(95);
 12127   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12128   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12129   ins_pipe( pipe_slow );
 12130 %}
 12132 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12133   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12134   match(Set dst (MoveL2D src));
 12135   effect(DEF dst, USE src);
 12137   ins_cost(95);
 12138   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12139   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12140   ins_pipe( pipe_slow );
 12141 %}
 12143 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12144   predicate(UseSSE>=2);
 12145   match(Set dst (MoveL2D src));
 12146   effect(TEMP dst, USE src, TEMP tmp);
 12147   ins_cost(85);
 12148   format %{ "MOVD   $dst,$src.lo\n\t"
 12149             "MOVD   $tmp,$src.hi\n\t"
 12150             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12151   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12152   ins_pipe( pipe_slow );
 12153 %}
 12155 // Replicate scalar to packed byte (1 byte) values in xmm
 12156 instruct Repl8B_reg(regXD dst, regXD src) %{
 12157   predicate(UseSSE>=2);
 12158   match(Set dst (Replicate8B src));
 12159   format %{ "MOVDQA  $dst,$src\n\t"
 12160             "PUNPCKLBW $dst,$dst\n\t"
 12161             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12162   ins_encode( pshufd_8x8(dst, src));
 12163   ins_pipe( pipe_slow );
 12164 %}
 12166 // Replicate scalar to packed byte (1 byte) values in xmm
 12167 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12168   predicate(UseSSE>=2);
 12169   match(Set dst (Replicate8B src));
 12170   format %{ "MOVD    $dst,$src\n\t"
 12171             "PUNPCKLBW $dst,$dst\n\t"
 12172             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12173   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12174   ins_pipe( pipe_slow );
 12175 %}
 12177 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12178 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12179   predicate(UseSSE>=2);
 12180   match(Set dst (Replicate8B zero));
 12181   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12182   ins_encode( pxor(dst, dst));
 12183   ins_pipe( fpu_reg_reg );
 12184 %}
 12186 // Replicate scalar to packed shore (2 byte) values in xmm
 12187 instruct Repl4S_reg(regXD dst, regXD src) %{
 12188   predicate(UseSSE>=2);
 12189   match(Set dst (Replicate4S src));
 12190   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12191   ins_encode( pshufd_4x16(dst, src));
 12192   ins_pipe( fpu_reg_reg );
 12193 %}
 12195 // Replicate scalar to packed shore (2 byte) values in xmm
 12196 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12197   predicate(UseSSE>=2);
 12198   match(Set dst (Replicate4S src));
 12199   format %{ "MOVD    $dst,$src\n\t"
 12200             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12201   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12202   ins_pipe( fpu_reg_reg );
 12203 %}
 12205 // Replicate scalar zero to packed short (2 byte) values in xmm
 12206 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12207   predicate(UseSSE>=2);
 12208   match(Set dst (Replicate4S zero));
 12209   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12210   ins_encode( pxor(dst, dst));
 12211   ins_pipe( fpu_reg_reg );
 12212 %}
 12214 // Replicate scalar to packed char (2 byte) values in xmm
 12215 instruct Repl4C_reg(regXD dst, regXD src) %{
 12216   predicate(UseSSE>=2);
 12217   match(Set dst (Replicate4C src));
 12218   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12219   ins_encode( pshufd_4x16(dst, src));
 12220   ins_pipe( fpu_reg_reg );
 12221 %}
 12223 // Replicate scalar to packed char (2 byte) values in xmm
 12224 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12225   predicate(UseSSE>=2);
 12226   match(Set dst (Replicate4C src));
 12227   format %{ "MOVD    $dst,$src\n\t"
 12228             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12229   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12230   ins_pipe( fpu_reg_reg );
 12231 %}
 12233 // Replicate scalar zero to packed char (2 byte) values in xmm
 12234 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12235   predicate(UseSSE>=2);
 12236   match(Set dst (Replicate4C zero));
 12237   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12238   ins_encode( pxor(dst, dst));
 12239   ins_pipe( fpu_reg_reg );
 12240 %}
 12242 // Replicate scalar to packed integer (4 byte) values in xmm
 12243 instruct Repl2I_reg(regXD dst, regXD src) %{
 12244   predicate(UseSSE>=2);
 12245   match(Set dst (Replicate2I src));
 12246   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12247   ins_encode( pshufd(dst, src, 0x00));
 12248   ins_pipe( fpu_reg_reg );
 12249 %}
 12251 // Replicate scalar to packed integer (4 byte) values in xmm
 12252 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12253   predicate(UseSSE>=2);
 12254   match(Set dst (Replicate2I src));
 12255   format %{ "MOVD   $dst,$src\n\t"
 12256             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12257   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12258   ins_pipe( fpu_reg_reg );
 12259 %}
 12261 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12262 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12263   predicate(UseSSE>=2);
 12264   match(Set dst (Replicate2I zero));
 12265   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12266   ins_encode( pxor(dst, dst));
 12267   ins_pipe( fpu_reg_reg );
 12268 %}
 12270 // Replicate scalar to packed single precision floating point values in xmm
 12271 instruct Repl2F_reg(regXD dst, regXD src) %{
 12272   predicate(UseSSE>=2);
 12273   match(Set dst (Replicate2F src));
 12274   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12275   ins_encode( pshufd(dst, src, 0xe0));
 12276   ins_pipe( fpu_reg_reg );
 12277 %}
 12279 // Replicate scalar to packed single precision floating point values in xmm
 12280 instruct Repl2F_regX(regXD dst, regX src) %{
 12281   predicate(UseSSE>=2);
 12282   match(Set dst (Replicate2F src));
 12283   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12284   ins_encode( pshufd(dst, src, 0xe0));
 12285   ins_pipe( fpu_reg_reg );
 12286 %}
 12288 // Replicate scalar to packed single precision floating point values in xmm
 12289 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12290   predicate(UseSSE>=2);
 12291   match(Set dst (Replicate2F zero));
 12292   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12293   ins_encode( pxor(dst, dst));
 12294   ins_pipe( fpu_reg_reg );
 12295 %}
 12297 // =======================================================================
 12298 // fast clearing of an array
 12299 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12300   match(Set dummy (ClearArray cnt base));
 12301   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12302   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12303             "XOR    EAX,EAX\n\t"
 12304             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12305   opcode(0,0x4);
 12306   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12307               OpcRegReg(0x33,EAX,EAX),
 12308               Opcode(0xF3), Opcode(0xAB) );
 12309   ins_pipe( pipe_slow );
 12310 %}
 12312 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12313                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12314   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12315   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12317   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12318   ins_encode %{
 12319     __ string_compare($str1$$Register, $str2$$Register,
 12320                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12321                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12322   %}
 12323   ins_pipe( pipe_slow );
 12324 %}
 12326 // fast string equals
 12327 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12328                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12329   match(Set result (StrEquals (Binary str1 str2) cnt));
 12330   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12332   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12333   ins_encode %{
 12334     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12335                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12336                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12337   %}
 12338   ins_pipe( pipe_slow );
 12339 %}
 12341 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12342                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12343   predicate(UseSSE42Intrinsics);
 12344   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12345   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12347   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12348   ins_encode %{
 12349     __ string_indexof($str1$$Register, $str2$$Register,
 12350                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12351                       $tmp1$$XMMRegister, $tmp2$$Register);
 12352   %}
 12353   ins_pipe( pipe_slow );
 12354 %}
 12356 // fast array equals
 12357 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12358                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12359 %{
 12360   match(Set result (AryEq ary1 ary2));
 12361   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12362   //ins_cost(300);
 12364   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12365   ins_encode %{
 12366     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12367                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12368                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12369   %}
 12370   ins_pipe( pipe_slow );
 12371 %}
 12373 //----------Control Flow Instructions------------------------------------------
 12374 // Signed compare Instructions
 12375 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12376   match(Set cr (CmpI op1 op2));
 12377   effect( DEF cr, USE op1, USE op2 );
 12378   format %{ "CMP    $op1,$op2" %}
 12379   opcode(0x3B);  /* Opcode 3B /r */
 12380   ins_encode( OpcP, RegReg( op1, op2) );
 12381   ins_pipe( ialu_cr_reg_reg );
 12382 %}
 12384 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12385   match(Set cr (CmpI op1 op2));
 12386   effect( DEF cr, USE op1 );
 12387   format %{ "CMP    $op1,$op2" %}
 12388   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12389   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12390   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12391   ins_pipe( ialu_cr_reg_imm );
 12392 %}
 12394 // Cisc-spilled version of cmpI_eReg
 12395 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12396   match(Set cr (CmpI op1 (LoadI op2)));
 12398   format %{ "CMP    $op1,$op2" %}
 12399   ins_cost(500);
 12400   opcode(0x3B);  /* Opcode 3B /r */
 12401   ins_encode( OpcP, RegMem( op1, op2) );
 12402   ins_pipe( ialu_cr_reg_mem );
 12403 %}
 12405 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12406   match(Set cr (CmpI src zero));
 12407   effect( DEF cr, USE src );
 12409   format %{ "TEST   $src,$src" %}
 12410   opcode(0x85);
 12411   ins_encode( OpcP, RegReg( src, src ) );
 12412   ins_pipe( ialu_cr_reg_imm );
 12413 %}
 12415 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12416   match(Set cr (CmpI (AndI src con) zero));
 12418   format %{ "TEST   $src,$con" %}
 12419   opcode(0xF7,0x00);
 12420   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12421   ins_pipe( ialu_cr_reg_imm );
 12422 %}
 12424 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12425   match(Set cr (CmpI (AndI src mem) zero));
 12427   format %{ "TEST   $src,$mem" %}
 12428   opcode(0x85);
 12429   ins_encode( OpcP, RegMem( src, mem ) );
 12430   ins_pipe( ialu_cr_reg_mem );
 12431 %}
 12433 // Unsigned compare Instructions; really, same as signed except they
 12434 // produce an eFlagsRegU instead of eFlagsReg.
 12435 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12436   match(Set cr (CmpU op1 op2));
 12438   format %{ "CMPu   $op1,$op2" %}
 12439   opcode(0x3B);  /* Opcode 3B /r */
 12440   ins_encode( OpcP, RegReg( op1, op2) );
 12441   ins_pipe( ialu_cr_reg_reg );
 12442 %}
 12444 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12445   match(Set cr (CmpU op1 op2));
 12447   format %{ "CMPu   $op1,$op2" %}
 12448   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12449   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12450   ins_pipe( ialu_cr_reg_imm );
 12451 %}
 12453 // // Cisc-spilled version of cmpU_eReg
 12454 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12455   match(Set cr (CmpU op1 (LoadI op2)));
 12457   format %{ "CMPu   $op1,$op2" %}
 12458   ins_cost(500);
 12459   opcode(0x3B);  /* Opcode 3B /r */
 12460   ins_encode( OpcP, RegMem( op1, op2) );
 12461   ins_pipe( ialu_cr_reg_mem );
 12462 %}
 12464 // // Cisc-spilled version of cmpU_eReg
 12465 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12466 //  match(Set cr (CmpU (LoadI op1) op2));
 12467 //
 12468 //  format %{ "CMPu   $op1,$op2" %}
 12469 //  ins_cost(500);
 12470 //  opcode(0x39);  /* Opcode 39 /r */
 12471 //  ins_encode( OpcP, RegMem( op1, op2) );
 12472 //%}
 12474 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12475   match(Set cr (CmpU src zero));
 12477   format %{ "TESTu  $src,$src" %}
 12478   opcode(0x85);
 12479   ins_encode( OpcP, RegReg( src, src ) );
 12480   ins_pipe( ialu_cr_reg_imm );
 12481 %}
 12483 // Unsigned pointer compare Instructions
 12484 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12485   match(Set cr (CmpP op1 op2));
 12487   format %{ "CMPu   $op1,$op2" %}
 12488   opcode(0x3B);  /* Opcode 3B /r */
 12489   ins_encode( OpcP, RegReg( op1, op2) );
 12490   ins_pipe( ialu_cr_reg_reg );
 12491 %}
 12493 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12494   match(Set cr (CmpP op1 op2));
 12496   format %{ "CMPu   $op1,$op2" %}
 12497   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12498   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12499   ins_pipe( ialu_cr_reg_imm );
 12500 %}
 12502 // // Cisc-spilled version of cmpP_eReg
 12503 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12504   match(Set cr (CmpP op1 (LoadP op2)));
 12506   format %{ "CMPu   $op1,$op2" %}
 12507   ins_cost(500);
 12508   opcode(0x3B);  /* Opcode 3B /r */
 12509   ins_encode( OpcP, RegMem( op1, op2) );
 12510   ins_pipe( ialu_cr_reg_mem );
 12511 %}
 12513 // // Cisc-spilled version of cmpP_eReg
 12514 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12515 //  match(Set cr (CmpP (LoadP op1) op2));
 12516 //
 12517 //  format %{ "CMPu   $op1,$op2" %}
 12518 //  ins_cost(500);
 12519 //  opcode(0x39);  /* Opcode 39 /r */
 12520 //  ins_encode( OpcP, RegMem( op1, op2) );
 12521 //%}
 12523 // Compare raw pointer (used in out-of-heap check).
 12524 // Only works because non-oop pointers must be raw pointers
 12525 // and raw pointers have no anti-dependencies.
 12526 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12527   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12528   match(Set cr (CmpP op1 (LoadP op2)));
 12530   format %{ "CMPu   $op1,$op2" %}
 12531   opcode(0x3B);  /* Opcode 3B /r */
 12532   ins_encode( OpcP, RegMem( op1, op2) );
 12533   ins_pipe( ialu_cr_reg_mem );
 12534 %}
 12536 //
 12537 // This will generate a signed flags result. This should be ok
 12538 // since any compare to a zero should be eq/neq.
 12539 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12540   match(Set cr (CmpP src zero));
 12542   format %{ "TEST   $src,$src" %}
 12543   opcode(0x85);
 12544   ins_encode( OpcP, RegReg( src, src ) );
 12545   ins_pipe( ialu_cr_reg_imm );
 12546 %}
 12548 // Cisc-spilled version of testP_reg
 12549 // This will generate a signed flags result. This should be ok
 12550 // since any compare to a zero should be eq/neq.
 12551 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12552   match(Set cr (CmpP (LoadP op) zero));
 12554   format %{ "TEST   $op,0xFFFFFFFF" %}
 12555   ins_cost(500);
 12556   opcode(0xF7);               /* Opcode F7 /0 */
 12557   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12558   ins_pipe( ialu_cr_reg_imm );
 12559 %}
 12561 // Yanked all unsigned pointer compare operations.
 12562 // Pointer compares are done with CmpP which is already unsigned.
 12564 //----------Max and Min--------------------------------------------------------
 12565 // Min Instructions
 12566 ////
 12567 //   *** Min and Max using the conditional move are slower than the
 12568 //   *** branch version on a Pentium III.
 12569 // // Conditional move for min
 12570 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12571 //  effect( USE_DEF op2, USE op1, USE cr );
 12572 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12573 //  opcode(0x4C,0x0F);
 12574 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12575 //  ins_pipe( pipe_cmov_reg );
 12576 //%}
 12577 //
 12578 //// Min Register with Register (P6 version)
 12579 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12580 //  predicate(VM_Version::supports_cmov() );
 12581 //  match(Set op2 (MinI op1 op2));
 12582 //  ins_cost(200);
 12583 //  expand %{
 12584 //    eFlagsReg cr;
 12585 //    compI_eReg(cr,op1,op2);
 12586 //    cmovI_reg_lt(op2,op1,cr);
 12587 //  %}
 12588 //%}
 12590 // Min Register with Register (generic version)
 12591 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12592   match(Set dst (MinI dst src));
 12593   effect(KILL flags);
 12594   ins_cost(300);
 12596   format %{ "MIN    $dst,$src" %}
 12597   opcode(0xCC);
 12598   ins_encode( min_enc(dst,src) );
 12599   ins_pipe( pipe_slow );
 12600 %}
 12602 // Max Register with Register
 12603 //   *** Min and Max using the conditional move are slower than the
 12604 //   *** branch version on a Pentium III.
 12605 // // Conditional move for max
 12606 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12607 //  effect( USE_DEF op2, USE op1, USE cr );
 12608 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12609 //  opcode(0x4F,0x0F);
 12610 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12611 //  ins_pipe( pipe_cmov_reg );
 12612 //%}
 12613 //
 12614 // // Max Register with Register (P6 version)
 12615 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12616 //  predicate(VM_Version::supports_cmov() );
 12617 //  match(Set op2 (MaxI op1 op2));
 12618 //  ins_cost(200);
 12619 //  expand %{
 12620 //    eFlagsReg cr;
 12621 //    compI_eReg(cr,op1,op2);
 12622 //    cmovI_reg_gt(op2,op1,cr);
 12623 //  %}
 12624 //%}
 12626 // Max Register with Register (generic version)
 12627 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12628   match(Set dst (MaxI dst src));
 12629   effect(KILL flags);
 12630   ins_cost(300);
 12632   format %{ "MAX    $dst,$src" %}
 12633   opcode(0xCC);
 12634   ins_encode( max_enc(dst,src) );
 12635   ins_pipe( pipe_slow );
 12636 %}
 12638 // ============================================================================
 12639 // Branch Instructions
 12640 // Jump Table
 12641 instruct jumpXtnd(eRegI switch_val) %{
 12642   match(Jump switch_val);
 12643   ins_cost(350);
 12645   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12647   ins_encode %{
 12648     address table_base  = __ address_table_constant(_index2label);
 12650     // Jump to Address(table_base + switch_reg)
 12651     InternalAddress table(table_base);
 12652     Address index(noreg, $switch_val$$Register, Address::times_1);
 12653     __ jump(ArrayAddress(table, index));
 12654   %}
 12655   ins_pc_relative(1);
 12656   ins_pipe(pipe_jmp);
 12657 %}
 12659 // Jump Direct - Label defines a relative address from JMP+1
 12660 instruct jmpDir(label labl) %{
 12661   match(Goto);
 12662   effect(USE labl);
 12664   ins_cost(300);
 12665   format %{ "JMP    $labl" %}
 12666   size(5);
 12667   opcode(0xE9);
 12668   ins_encode( OpcP, Lbl( labl ) );
 12669   ins_pipe( pipe_jmp );
 12670   ins_pc_relative(1);
 12671 %}
 12673 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12674 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12675   match(If cop cr);
 12676   effect(USE labl);
 12678   ins_cost(300);
 12679   format %{ "J$cop    $labl" %}
 12680   size(6);
 12681   opcode(0x0F, 0x80);
 12682   ins_encode( Jcc( cop, labl) );
 12683   ins_pipe( pipe_jcc );
 12684   ins_pc_relative(1);
 12685 %}
 12687 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12688 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12689   match(CountedLoopEnd cop cr);
 12690   effect(USE labl);
 12692   ins_cost(300);
 12693   format %{ "J$cop    $labl\t# Loop end" %}
 12694   size(6);
 12695   opcode(0x0F, 0x80);
 12696   ins_encode( Jcc( cop, labl) );
 12697   ins_pipe( pipe_jcc );
 12698   ins_pc_relative(1);
 12699 %}
 12701 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12702 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12703   match(CountedLoopEnd cop cmp);
 12704   effect(USE labl);
 12706   ins_cost(300);
 12707   format %{ "J$cop,u  $labl\t# Loop end" %}
 12708   size(6);
 12709   opcode(0x0F, 0x80);
 12710   ins_encode( Jcc( cop, labl) );
 12711   ins_pipe( pipe_jcc );
 12712   ins_pc_relative(1);
 12713 %}
 12715 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12716   match(CountedLoopEnd cop cmp);
 12717   effect(USE labl);
 12719   ins_cost(200);
 12720   format %{ "J$cop,u  $labl\t# Loop end" %}
 12721   size(6);
 12722   opcode(0x0F, 0x80);
 12723   ins_encode( Jcc( cop, labl) );
 12724   ins_pipe( pipe_jcc );
 12725   ins_pc_relative(1);
 12726 %}
 12728 // Jump Direct Conditional - using unsigned comparison
 12729 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12730   match(If cop cmp);
 12731   effect(USE labl);
 12733   ins_cost(300);
 12734   format %{ "J$cop,u  $labl" %}
 12735   size(6);
 12736   opcode(0x0F, 0x80);
 12737   ins_encode(Jcc(cop, labl));
 12738   ins_pipe(pipe_jcc);
 12739   ins_pc_relative(1);
 12740 %}
 12742 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12743   match(If cop cmp);
 12744   effect(USE labl);
 12746   ins_cost(200);
 12747   format %{ "J$cop,u  $labl" %}
 12748   size(6);
 12749   opcode(0x0F, 0x80);
 12750   ins_encode(Jcc(cop, labl));
 12751   ins_pipe(pipe_jcc);
 12752   ins_pc_relative(1);
 12753 %}
 12755 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12756   match(If cop cmp);
 12757   effect(USE labl);
 12759   ins_cost(200);
 12760   format %{ $$template
 12761     if ($cop$$cmpcode == Assembler::notEqual) {
 12762       $$emit$$"JP,u   $labl\n\t"
 12763       $$emit$$"J$cop,u   $labl"
 12764     } else {
 12765       $$emit$$"JP,u   done\n\t"
 12766       $$emit$$"J$cop,u   $labl\n\t"
 12767       $$emit$$"done:"
 12769   %}
 12770   size(12);
 12771   opcode(0x0F, 0x80);
 12772   ins_encode %{
 12773     Label* l = $labl$$label;
 12774     $$$emit8$primary;
 12775     emit_cc(cbuf, $secondary, Assembler::parity);
 12776     int parity_disp = -1;
 12777     bool ok = false;
 12778     if ($cop$$cmpcode == Assembler::notEqual) {
 12779        // the two jumps 6 bytes apart so the jump distances are too
 12780        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12781     } else if ($cop$$cmpcode == Assembler::equal) {
 12782        parity_disp = 6;
 12783        ok = true;
 12784     } else {
 12785        ShouldNotReachHere();
 12787     emit_d32(cbuf, parity_disp);
 12788     $$$emit8$primary;
 12789     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12790     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12791     emit_d32(cbuf, disp);
 12792   %}
 12793   ins_pipe(pipe_jcc);
 12794   ins_pc_relative(1);
 12795 %}
 12797 // ============================================================================
 12798 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12799 // array for an instance of the superklass.  Set a hidden internal cache on a
 12800 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12801 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12802 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12803   match(Set result (PartialSubtypeCheck sub super));
 12804   effect( KILL rcx, KILL cr );
 12806   ins_cost(1100);  // slightly larger than the next version
 12807   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12808             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12809             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12810             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12811             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12812             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12813             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12814      "miss:\t" %}
 12816   opcode(0x1); // Force a XOR of EDI
 12817   ins_encode( enc_PartialSubtypeCheck() );
 12818   ins_pipe( pipe_slow );
 12819 %}
 12821 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12822   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12823   effect( KILL rcx, KILL result );
 12825   ins_cost(1000);
 12826   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12827             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12828             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12829             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12830             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12831             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12832      "miss:\t" %}
 12834   opcode(0x0);  // No need to XOR EDI
 12835   ins_encode( enc_PartialSubtypeCheck() );
 12836   ins_pipe( pipe_slow );
 12837 %}
 12839 // ============================================================================
 12840 // Branch Instructions -- short offset versions
 12841 //
 12842 // These instructions are used to replace jumps of a long offset (the default
 12843 // match) with jumps of a shorter offset.  These instructions are all tagged
 12844 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12845 // match rules in general matching.  Instead, the ADLC generates a conversion
 12846 // method in the MachNode which can be used to do in-place replacement of the
 12847 // long variant with the shorter variant.  The compiler will determine if a
 12848 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12849 // specific code section of the file.
 12851 // Jump Direct - Label defines a relative address from JMP+1
 12852 instruct jmpDir_short(label labl) %{
 12853   match(Goto);
 12854   effect(USE labl);
 12856   ins_cost(300);
 12857   format %{ "JMP,s  $labl" %}
 12858   size(2);
 12859   opcode(0xEB);
 12860   ins_encode( OpcP, LblShort( labl ) );
 12861   ins_pipe( pipe_jmp );
 12862   ins_pc_relative(1);
 12863   ins_short_branch(1);
 12864 %}
 12866 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12867 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12868   match(If cop cr);
 12869   effect(USE labl);
 12871   ins_cost(300);
 12872   format %{ "J$cop,s  $labl" %}
 12873   size(2);
 12874   opcode(0x70);
 12875   ins_encode( JccShort( cop, labl) );
 12876   ins_pipe( pipe_jcc );
 12877   ins_pc_relative(1);
 12878   ins_short_branch(1);
 12879 %}
 12881 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12882 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12883   match(CountedLoopEnd cop cr);
 12884   effect(USE labl);
 12886   ins_cost(300);
 12887   format %{ "J$cop,s  $labl\t# Loop end" %}
 12888   size(2);
 12889   opcode(0x70);
 12890   ins_encode( JccShort( cop, labl) );
 12891   ins_pipe( pipe_jcc );
 12892   ins_pc_relative(1);
 12893   ins_short_branch(1);
 12894 %}
 12896 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12897 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12898   match(CountedLoopEnd cop cmp);
 12899   effect(USE labl);
 12901   ins_cost(300);
 12902   format %{ "J$cop,us $labl\t# Loop end" %}
 12903   size(2);
 12904   opcode(0x70);
 12905   ins_encode( JccShort( cop, labl) );
 12906   ins_pipe( pipe_jcc );
 12907   ins_pc_relative(1);
 12908   ins_short_branch(1);
 12909 %}
 12911 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12912   match(CountedLoopEnd cop cmp);
 12913   effect(USE labl);
 12915   ins_cost(300);
 12916   format %{ "J$cop,us $labl\t# Loop end" %}
 12917   size(2);
 12918   opcode(0x70);
 12919   ins_encode( JccShort( cop, labl) );
 12920   ins_pipe( pipe_jcc );
 12921   ins_pc_relative(1);
 12922   ins_short_branch(1);
 12923 %}
 12925 // Jump Direct Conditional - using unsigned comparison
 12926 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12927   match(If cop cmp);
 12928   effect(USE labl);
 12930   ins_cost(300);
 12931   format %{ "J$cop,us $labl" %}
 12932   size(2);
 12933   opcode(0x70);
 12934   ins_encode( JccShort( cop, labl) );
 12935   ins_pipe( pipe_jcc );
 12936   ins_pc_relative(1);
 12937   ins_short_branch(1);
 12938 %}
 12940 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12941   match(If cop cmp);
 12942   effect(USE labl);
 12944   ins_cost(300);
 12945   format %{ "J$cop,us $labl" %}
 12946   size(2);
 12947   opcode(0x70);
 12948   ins_encode( JccShort( cop, labl) );
 12949   ins_pipe( pipe_jcc );
 12950   ins_pc_relative(1);
 12951   ins_short_branch(1);
 12952 %}
 12954 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12955   match(If cop cmp);
 12956   effect(USE labl);
 12958   ins_cost(300);
 12959   format %{ $$template
 12960     if ($cop$$cmpcode == Assembler::notEqual) {
 12961       $$emit$$"JP,u,s   $labl\n\t"
 12962       $$emit$$"J$cop,u,s   $labl"
 12963     } else {
 12964       $$emit$$"JP,u,s   done\n\t"
 12965       $$emit$$"J$cop,u,s  $labl\n\t"
 12966       $$emit$$"done:"
 12968   %}
 12969   size(4);
 12970   opcode(0x70);
 12971   ins_encode %{
 12972     Label* l = $labl$$label;
 12973     emit_cc(cbuf, $primary, Assembler::parity);
 12974     int parity_disp = -1;
 12975     if ($cop$$cmpcode == Assembler::notEqual) {
 12976       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12977     } else if ($cop$$cmpcode == Assembler::equal) {
 12978       parity_disp = 2;
 12979     } else {
 12980       ShouldNotReachHere();
 12982     emit_d8(cbuf, parity_disp);
 12983     emit_cc(cbuf, $primary, $cop$$cmpcode);
 12984     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12985     emit_d8(cbuf, disp);
 12986     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 12987     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 12988   %}
 12989   ins_pipe(pipe_jcc);
 12990   ins_pc_relative(1);
 12991   ins_short_branch(1);
 12992 %}
 12994 // ============================================================================
 12995 // Long Compare
 12996 //
 12997 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12998 // is tricky.  The flavor of compare used depends on whether we are testing
 12999 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13000 // The GE test is the negated LT test.  The LE test can be had by commuting
 13001 // the operands (yielding a GE test) and then negating; negate again for the
 13002 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13003 // NE test is negated from that.
 13005 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13006 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13007 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13008 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13009 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13010 // foo match ends up with the wrong leaf.  One fix is to not match both
 13011 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13012 // both forms beat the trinary form of long-compare and both are very useful
 13013 // on Intel which has so few registers.
 13015 // Manifest a CmpL result in an integer register.  Very painful.
 13016 // This is the test to avoid.
 13017 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13018   match(Set dst (CmpL3 src1 src2));
 13019   effect( KILL flags );
 13020   ins_cost(1000);
 13021   format %{ "XOR    $dst,$dst\n\t"
 13022             "CMP    $src1.hi,$src2.hi\n\t"
 13023             "JLT,s  m_one\n\t"
 13024             "JGT,s  p_one\n\t"
 13025             "CMP    $src1.lo,$src2.lo\n\t"
 13026             "JB,s   m_one\n\t"
 13027             "JEQ,s  done\n"
 13028     "p_one:\tINC    $dst\n\t"
 13029             "JMP,s  done\n"
 13030     "m_one:\tDEC    $dst\n"
 13031      "done:" %}
 13032   ins_encode %{
 13033     Label p_one, m_one, done;
 13034     __ xorptr($dst$$Register, $dst$$Register);
 13035     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13036     __ jccb(Assembler::less,    m_one);
 13037     __ jccb(Assembler::greater, p_one);
 13038     __ cmpl($src1$$Register, $src2$$Register);
 13039     __ jccb(Assembler::below,   m_one);
 13040     __ jccb(Assembler::equal,   done);
 13041     __ bind(p_one);
 13042     __ incrementl($dst$$Register);
 13043     __ jmpb(done);
 13044     __ bind(m_one);
 13045     __ decrementl($dst$$Register);
 13046     __ bind(done);
 13047   %}
 13048   ins_pipe( pipe_slow );
 13049 %}
 13051 //======
 13052 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13053 // compares.  Can be used for LE or GT compares by reversing arguments.
 13054 // NOT GOOD FOR EQ/NE tests.
 13055 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13056   match( Set flags (CmpL src zero ));
 13057   ins_cost(100);
 13058   format %{ "TEST   $src.hi,$src.hi" %}
 13059   opcode(0x85);
 13060   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13061   ins_pipe( ialu_cr_reg_reg );
 13062 %}
 13064 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13065 // compares.  Can be used for LE or GT compares by reversing arguments.
 13066 // NOT GOOD FOR EQ/NE tests.
 13067 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13068   match( Set flags (CmpL src1 src2 ));
 13069   effect( TEMP tmp );
 13070   ins_cost(300);
 13071   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13072             "MOV    $tmp,$src1.hi\n\t"
 13073             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13074   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13075   ins_pipe( ialu_cr_reg_reg );
 13076 %}
 13078 // Long compares reg < zero/req OR reg >= zero/req.
 13079 // Just a wrapper for a normal branch, plus the predicate test.
 13080 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13081   match(If cmp flags);
 13082   effect(USE labl);
 13083   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13084   expand %{
 13085     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13086   %}
 13087 %}
 13089 // Compare 2 longs and CMOVE longs.
 13090 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13091   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13092   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13093   ins_cost(400);
 13094   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13095             "CMOV$cmp $dst.hi,$src.hi" %}
 13096   opcode(0x0F,0x40);
 13097   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13098   ins_pipe( pipe_cmov_reg_long );
 13099 %}
 13101 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13102   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13103   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13104   ins_cost(500);
 13105   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13106             "CMOV$cmp $dst.hi,$src.hi" %}
 13107   opcode(0x0F,0x40);
 13108   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13109   ins_pipe( pipe_cmov_reg_long );
 13110 %}
 13112 // Compare 2 longs and CMOVE ints.
 13113 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13114   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13115   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13116   ins_cost(200);
 13117   format %{ "CMOV$cmp $dst,$src" %}
 13118   opcode(0x0F,0x40);
 13119   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13120   ins_pipe( pipe_cmov_reg );
 13121 %}
 13123 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13124   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13125   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13126   ins_cost(250);
 13127   format %{ "CMOV$cmp $dst,$src" %}
 13128   opcode(0x0F,0x40);
 13129   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13130   ins_pipe( pipe_cmov_mem );
 13131 %}
 13133 // Compare 2 longs and CMOVE ints.
 13134 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13135   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13136   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13137   ins_cost(200);
 13138   format %{ "CMOV$cmp $dst,$src" %}
 13139   opcode(0x0F,0x40);
 13140   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13141   ins_pipe( pipe_cmov_reg );
 13142 %}
 13144 // Compare 2 longs and CMOVE doubles
 13145 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13146   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13147   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13148   ins_cost(200);
 13149   expand %{
 13150     fcmovD_regS(cmp,flags,dst,src);
 13151   %}
 13152 %}
 13154 // Compare 2 longs and CMOVE doubles
 13155 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13156   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13157   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13158   ins_cost(200);
 13159   expand %{
 13160     fcmovXD_regS(cmp,flags,dst,src);
 13161   %}
 13162 %}
 13164 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13165   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13166   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13167   ins_cost(200);
 13168   expand %{
 13169     fcmovF_regS(cmp,flags,dst,src);
 13170   %}
 13171 %}
 13173 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13174   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13175   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13176   ins_cost(200);
 13177   expand %{
 13178     fcmovX_regS(cmp,flags,dst,src);
 13179   %}
 13180 %}
 13182 //======
 13183 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13184 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13185   match( Set flags (CmpL src zero ));
 13186   effect(TEMP tmp);
 13187   ins_cost(200);
 13188   format %{ "MOV    $tmp,$src.lo\n\t"
 13189             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13190   ins_encode( long_cmp_flags0( src, tmp ) );
 13191   ins_pipe( ialu_reg_reg_long );
 13192 %}
 13194 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13195 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13196   match( Set flags (CmpL src1 src2 ));
 13197   ins_cost(200+300);
 13198   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13199             "JNE,s  skip\n\t"
 13200             "CMP    $src1.hi,$src2.hi\n\t"
 13201      "skip:\t" %}
 13202   ins_encode( long_cmp_flags1( src1, src2 ) );
 13203   ins_pipe( ialu_cr_reg_reg );
 13204 %}
 13206 // Long compare reg == zero/reg OR reg != zero/reg
 13207 // Just a wrapper for a normal branch, plus the predicate test.
 13208 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13209   match(If cmp flags);
 13210   effect(USE labl);
 13211   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13212   expand %{
 13213     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13214   %}
 13215 %}
 13217 // Compare 2 longs and CMOVE longs.
 13218 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13219   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13220   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13221   ins_cost(400);
 13222   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13223             "CMOV$cmp $dst.hi,$src.hi" %}
 13224   opcode(0x0F,0x40);
 13225   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13226   ins_pipe( pipe_cmov_reg_long );
 13227 %}
 13229 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13230   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13231   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13232   ins_cost(500);
 13233   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13234             "CMOV$cmp $dst.hi,$src.hi" %}
 13235   opcode(0x0F,0x40);
 13236   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13237   ins_pipe( pipe_cmov_reg_long );
 13238 %}
 13240 // Compare 2 longs and CMOVE ints.
 13241 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13242   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13243   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13244   ins_cost(200);
 13245   format %{ "CMOV$cmp $dst,$src" %}
 13246   opcode(0x0F,0x40);
 13247   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13248   ins_pipe( pipe_cmov_reg );
 13249 %}
 13251 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13252   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13253   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13254   ins_cost(250);
 13255   format %{ "CMOV$cmp $dst,$src" %}
 13256   opcode(0x0F,0x40);
 13257   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13258   ins_pipe( pipe_cmov_mem );
 13259 %}
 13261 // Compare 2 longs and CMOVE ints.
 13262 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13263   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13264   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13265   ins_cost(200);
 13266   format %{ "CMOV$cmp $dst,$src" %}
 13267   opcode(0x0F,0x40);
 13268   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13269   ins_pipe( pipe_cmov_reg );
 13270 %}
 13272 // Compare 2 longs and CMOVE doubles
 13273 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13274   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13275   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13276   ins_cost(200);
 13277   expand %{
 13278     fcmovD_regS(cmp,flags,dst,src);
 13279   %}
 13280 %}
 13282 // Compare 2 longs and CMOVE doubles
 13283 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13284   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13285   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13286   ins_cost(200);
 13287   expand %{
 13288     fcmovXD_regS(cmp,flags,dst,src);
 13289   %}
 13290 %}
 13292 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13293   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13294   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13295   ins_cost(200);
 13296   expand %{
 13297     fcmovF_regS(cmp,flags,dst,src);
 13298   %}
 13299 %}
 13301 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13302   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13303   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13304   ins_cost(200);
 13305   expand %{
 13306     fcmovX_regS(cmp,flags,dst,src);
 13307   %}
 13308 %}
 13310 //======
 13311 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13312 // Same as cmpL_reg_flags_LEGT except must negate src
 13313 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13314   match( Set flags (CmpL src zero ));
 13315   effect( TEMP tmp );
 13316   ins_cost(300);
 13317   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13318             "CMP    $tmp,$src.lo\n\t"
 13319             "SBB    $tmp,$src.hi\n\t" %}
 13320   ins_encode( long_cmp_flags3(src, tmp) );
 13321   ins_pipe( ialu_reg_reg_long );
 13322 %}
 13324 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13325 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13326 // requires a commuted test to get the same result.
 13327 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13328   match( Set flags (CmpL src1 src2 ));
 13329   effect( TEMP tmp );
 13330   ins_cost(300);
 13331   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13332             "MOV    $tmp,$src2.hi\n\t"
 13333             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13334   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13335   ins_pipe( ialu_cr_reg_reg );
 13336 %}
 13338 // Long compares reg < zero/req OR reg >= zero/req.
 13339 // Just a wrapper for a normal branch, plus the predicate test
 13340 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13341   match(If cmp flags);
 13342   effect(USE labl);
 13343   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13344   ins_cost(300);
 13345   expand %{
 13346     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13347   %}
 13348 %}
 13350 // Compare 2 longs and CMOVE longs.
 13351 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13352   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13353   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13354   ins_cost(400);
 13355   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13356             "CMOV$cmp $dst.hi,$src.hi" %}
 13357   opcode(0x0F,0x40);
 13358   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13359   ins_pipe( pipe_cmov_reg_long );
 13360 %}
 13362 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13363   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13364   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13365   ins_cost(500);
 13366   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13367             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13368   opcode(0x0F,0x40);
 13369   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13370   ins_pipe( pipe_cmov_reg_long );
 13371 %}
 13373 // Compare 2 longs and CMOVE ints.
 13374 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13375   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13376   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13377   ins_cost(200);
 13378   format %{ "CMOV$cmp $dst,$src" %}
 13379   opcode(0x0F,0x40);
 13380   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13381   ins_pipe( pipe_cmov_reg );
 13382 %}
 13384 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13385   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13386   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13387   ins_cost(250);
 13388   format %{ "CMOV$cmp $dst,$src" %}
 13389   opcode(0x0F,0x40);
 13390   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13391   ins_pipe( pipe_cmov_mem );
 13392 %}
 13394 // Compare 2 longs and CMOVE ptrs.
 13395 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13396   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13397   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13398   ins_cost(200);
 13399   format %{ "CMOV$cmp $dst,$src" %}
 13400   opcode(0x0F,0x40);
 13401   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13402   ins_pipe( pipe_cmov_reg );
 13403 %}
 13405 // Compare 2 longs and CMOVE doubles
 13406 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13407   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13408   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13409   ins_cost(200);
 13410   expand %{
 13411     fcmovD_regS(cmp,flags,dst,src);
 13412   %}
 13413 %}
 13415 // Compare 2 longs and CMOVE doubles
 13416 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13417   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13418   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13419   ins_cost(200);
 13420   expand %{
 13421     fcmovXD_regS(cmp,flags,dst,src);
 13422   %}
 13423 %}
 13425 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13426   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13427   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13428   ins_cost(200);
 13429   expand %{
 13430     fcmovF_regS(cmp,flags,dst,src);
 13431   %}
 13432 %}
 13435 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13436   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13437   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13438   ins_cost(200);
 13439   expand %{
 13440     fcmovX_regS(cmp,flags,dst,src);
 13441   %}
 13442 %}
 13445 // ============================================================================
 13446 // Procedure Call/Return Instructions
 13447 // Call Java Static Instruction
 13448 // Note: If this code changes, the corresponding ret_addr_offset() and
 13449 //       compute_padding() functions will have to be adjusted.
 13450 instruct CallStaticJavaDirect(method meth) %{
 13451   match(CallStaticJava);
 13452   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13453   effect(USE meth);
 13455   ins_cost(300);
 13456   format %{ "CALL,static " %}
 13457   opcode(0xE8); /* E8 cd */
 13458   ins_encode( pre_call_FPU,
 13459               Java_Static_Call( meth ),
 13460               call_epilog,
 13461               post_call_FPU );
 13462   ins_pipe( pipe_slow );
 13463   ins_pc_relative(1);
 13464   ins_alignment(4);
 13465 %}
 13467 // Call Java Static Instruction (method handle version)
 13468 // Note: If this code changes, the corresponding ret_addr_offset() and
 13469 //       compute_padding() functions will have to be adjusted.
 13470 instruct CallStaticJavaHandle(method meth, eBPRegP ebp) %{
 13471   match(CallStaticJava);
 13472   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13473   effect(USE meth);
 13474   // EBP is saved by all callees (for interpreter stack correction).
 13475   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13477   ins_cost(300);
 13478   format %{ "CALL,static/MethodHandle " %}
 13479   opcode(0xE8); /* E8 cd */
 13480   ins_encode( pre_call_FPU,
 13481               preserve_SP,
 13482               Java_Static_Call( meth ),
 13483               restore_SP,
 13484               call_epilog,
 13485               post_call_FPU );
 13486   ins_pipe( pipe_slow );
 13487   ins_pc_relative(1);
 13488   ins_alignment(4);
 13489 %}
 13491 // Call Java Dynamic Instruction
 13492 // Note: If this code changes, the corresponding ret_addr_offset() and
 13493 //       compute_padding() functions will have to be adjusted.
 13494 instruct CallDynamicJavaDirect(method meth) %{
 13495   match(CallDynamicJava);
 13496   effect(USE meth);
 13498   ins_cost(300);
 13499   format %{ "MOV    EAX,(oop)-1\n\t"
 13500             "CALL,dynamic" %}
 13501   opcode(0xE8); /* E8 cd */
 13502   ins_encode( pre_call_FPU,
 13503               Java_Dynamic_Call( meth ),
 13504               call_epilog,
 13505               post_call_FPU );
 13506   ins_pipe( pipe_slow );
 13507   ins_pc_relative(1);
 13508   ins_alignment(4);
 13509 %}
 13511 // Call Runtime Instruction
 13512 instruct CallRuntimeDirect(method meth) %{
 13513   match(CallRuntime );
 13514   effect(USE meth);
 13516   ins_cost(300);
 13517   format %{ "CALL,runtime " %}
 13518   opcode(0xE8); /* E8 cd */
 13519   // Use FFREEs to clear entries in float stack
 13520   ins_encode( pre_call_FPU,
 13521               FFree_Float_Stack_All,
 13522               Java_To_Runtime( meth ),
 13523               post_call_FPU );
 13524   ins_pipe( pipe_slow );
 13525   ins_pc_relative(1);
 13526 %}
 13528 // Call runtime without safepoint
 13529 instruct CallLeafDirect(method meth) %{
 13530   match(CallLeaf);
 13531   effect(USE meth);
 13533   ins_cost(300);
 13534   format %{ "CALL_LEAF,runtime " %}
 13535   opcode(0xE8); /* E8 cd */
 13536   ins_encode( pre_call_FPU,
 13537               FFree_Float_Stack_All,
 13538               Java_To_Runtime( meth ),
 13539               Verify_FPU_For_Leaf, post_call_FPU );
 13540   ins_pipe( pipe_slow );
 13541   ins_pc_relative(1);
 13542 %}
 13544 instruct CallLeafNoFPDirect(method meth) %{
 13545   match(CallLeafNoFP);
 13546   effect(USE meth);
 13548   ins_cost(300);
 13549   format %{ "CALL_LEAF_NOFP,runtime " %}
 13550   opcode(0xE8); /* E8 cd */
 13551   ins_encode(Java_To_Runtime(meth));
 13552   ins_pipe( pipe_slow );
 13553   ins_pc_relative(1);
 13554 %}
 13557 // Return Instruction
 13558 // Remove the return address & jump to it.
 13559 instruct Ret() %{
 13560   match(Return);
 13561   format %{ "RET" %}
 13562   opcode(0xC3);
 13563   ins_encode(OpcP);
 13564   ins_pipe( pipe_jmp );
 13565 %}
 13567 // Tail Call; Jump from runtime stub to Java code.
 13568 // Also known as an 'interprocedural jump'.
 13569 // Target of jump will eventually return to caller.
 13570 // TailJump below removes the return address.
 13571 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13572   match(TailCall jump_target method_oop );
 13573   ins_cost(300);
 13574   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13575   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13576   ins_encode( OpcP, RegOpc(jump_target) );
 13577   ins_pipe( pipe_jmp );
 13578 %}
 13581 // Tail Jump; remove the return address; jump to target.
 13582 // TailCall above leaves the return address around.
 13583 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13584   match( TailJump jump_target ex_oop );
 13585   ins_cost(300);
 13586   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13587             "JMP    $jump_target " %}
 13588   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13589   ins_encode( enc_pop_rdx,
 13590               OpcP, RegOpc(jump_target) );
 13591   ins_pipe( pipe_jmp );
 13592 %}
 13594 // Create exception oop: created by stack-crawling runtime code.
 13595 // Created exception is now available to this handler, and is setup
 13596 // just prior to jumping to this handler.  No code emitted.
 13597 instruct CreateException( eAXRegP ex_oop )
 13598 %{
 13599   match(Set ex_oop (CreateEx));
 13601   size(0);
 13602   // use the following format syntax
 13603   format %{ "# exception oop is in EAX; no code emitted" %}
 13604   ins_encode();
 13605   ins_pipe( empty );
 13606 %}
 13609 // Rethrow exception:
 13610 // The exception oop will come in the first argument position.
 13611 // Then JUMP (not call) to the rethrow stub code.
 13612 instruct RethrowException()
 13613 %{
 13614   match(Rethrow);
 13616   // use the following format syntax
 13617   format %{ "JMP    rethrow_stub" %}
 13618   ins_encode(enc_rethrow);
 13619   ins_pipe( pipe_jmp );
 13620 %}
 13622 // inlined locking and unlocking
 13625 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13626   match( Set cr (FastLock object box) );
 13627   effect( TEMP tmp, TEMP scr );
 13628   ins_cost(300);
 13629   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13630   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13631   ins_pipe( pipe_slow );
 13632   ins_pc_relative(1);
 13633 %}
 13635 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13636   match( Set cr (FastUnlock object box) );
 13637   effect( TEMP tmp );
 13638   ins_cost(300);
 13639   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13640   ins_encode( Fast_Unlock(object,box,tmp) );
 13641   ins_pipe( pipe_slow );
 13642   ins_pc_relative(1);
 13643 %}
 13647 // ============================================================================
 13648 // Safepoint Instruction
 13649 instruct safePoint_poll(eFlagsReg cr) %{
 13650   match(SafePoint);
 13651   effect(KILL cr);
 13653   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13654   // On SPARC that might be acceptable as we can generate the address with
 13655   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13656   // putting additional pressure on the index-0 in the D$.  Because of
 13657   // alignment (just like the situation at hand) the lower indices tend
 13658   // to see more traffic.  It'd be better to change the polling address
 13659   // to offset 0 of the last $line in the polling page.
 13661   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13662   ins_cost(125);
 13663   size(6) ;
 13664   ins_encode( Safepoint_Poll() );
 13665   ins_pipe( ialu_reg_mem );
 13666 %}
 13668 //----------PEEPHOLE RULES-----------------------------------------------------
 13669 // These must follow all instruction definitions as they use the names
 13670 // defined in the instructions definitions.
 13671 //
 13672 // peepmatch ( root_instr_name [preceding_instruction]* );
 13673 //
 13674 // peepconstraint %{
 13675 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13676 //  [, ...] );
 13677 // // instruction numbers are zero-based using left to right order in peepmatch
 13678 //
 13679 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13680 // // provide an instruction_number.operand_name for each operand that appears
 13681 // // in the replacement instruction's match rule
 13682 //
 13683 // ---------VM FLAGS---------------------------------------------------------
 13684 //
 13685 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13686 //
 13687 // Each peephole rule is given an identifying number starting with zero and
 13688 // increasing by one in the order seen by the parser.  An individual peephole
 13689 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13690 // on the command-line.
 13691 //
 13692 // ---------CURRENT LIMITATIONS----------------------------------------------
 13693 //
 13694 // Only match adjacent instructions in same basic block
 13695 // Only equality constraints
 13696 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13697 // Only one replacement instruction
 13698 //
 13699 // ---------EXAMPLE----------------------------------------------------------
 13700 //
 13701 // // pertinent parts of existing instructions in architecture description
 13702 // instruct movI(eRegI dst, eRegI src) %{
 13703 //   match(Set dst (CopyI src));
 13704 // %}
 13705 //
 13706 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13707 //   match(Set dst (AddI dst src));
 13708 //   effect(KILL cr);
 13709 // %}
 13710 //
 13711 // // Change (inc mov) to lea
 13712 // peephole %{
 13713 //   // increment preceeded by register-register move
 13714 //   peepmatch ( incI_eReg movI );
 13715 //   // require that the destination register of the increment
 13716 //   // match the destination register of the move
 13717 //   peepconstraint ( 0.dst == 1.dst );
 13718 //   // construct a replacement instruction that sets
 13719 //   // the destination to ( move's source register + one )
 13720 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13721 // %}
 13722 //
 13723 // Implementation no longer uses movX instructions since
 13724 // machine-independent system no longer uses CopyX nodes.
 13725 //
 13726 // peephole %{
 13727 //   peepmatch ( incI_eReg movI );
 13728 //   peepconstraint ( 0.dst == 1.dst );
 13729 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13730 // %}
 13731 //
 13732 // peephole %{
 13733 //   peepmatch ( decI_eReg movI );
 13734 //   peepconstraint ( 0.dst == 1.dst );
 13735 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13736 // %}
 13737 //
 13738 // peephole %{
 13739 //   peepmatch ( addI_eReg_imm movI );
 13740 //   peepconstraint ( 0.dst == 1.dst );
 13741 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13742 // %}
 13743 //
 13744 // peephole %{
 13745 //   peepmatch ( addP_eReg_imm movP );
 13746 //   peepconstraint ( 0.dst == 1.dst );
 13747 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13748 // %}
 13750 // // Change load of spilled value to only a spill
 13751 // instruct storeI(memory mem, eRegI src) %{
 13752 //   match(Set mem (StoreI mem src));
 13753 // %}
 13754 //
 13755 // instruct loadI(eRegI dst, memory mem) %{
 13756 //   match(Set dst (LoadI mem));
 13757 // %}
 13758 //
 13759 peephole %{
 13760   peepmatch ( loadI storeI );
 13761   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13762   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13763 %}
 13765 //----------SMARTSPILL RULES---------------------------------------------------
 13766 // These must follow all instruction definitions as they use the names
 13767 // defined in the instructions definitions.

mercurial