src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 25 Mar 2009 13:10:54 -0700

author
apetrusenko
date
Wed, 25 Mar 2009 13:10:54 -0700
changeset 1112
96b229c54d1e
parent 1063
7bb995fbd3c0
child 1231
29e7d79232b9
permissions
-rw-r--r--

6543938: G1: remove the concept of popularity
Reviewed-by: iveresov, tonyp

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifndef SERIALGC
    27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    28 // can be collected independently.
    30 // NOTE: Although a HeapRegion is a Space, its
    31 // Space::initDirtyCardClosure method must not be called.
    32 // The problem is that the existence of this method breaks
    33 // the independence of barrier sets from remembered sets.
    34 // The solution is to remove this method from the definition
    35 // of a Space.
    37 class CompactibleSpace;
    38 class ContiguousSpace;
    39 class HeapRegionRemSet;
    40 class HeapRegionRemSetIterator;
    41 class HeapRegion;
    43 // A dirty card to oop closure for heap regions. It
    44 // knows how to get the G1 heap and how to use the bitmap
    45 // in the concurrent marker used by G1 to filter remembered
    46 // sets.
    48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    49 public:
    50   // Specification of possible DirtyCardToOopClosure filtering.
    51   enum FilterKind {
    52     NoFilterKind,
    53     IntoCSFilterKind,
    54     OutOfRegionFilterKind
    55   };
    57 protected:
    58   HeapRegion* _hr;
    59   FilterKind _fk;
    60   G1CollectedHeap* _g1;
    62   void walk_mem_region_with_cl(MemRegion mr,
    63                                HeapWord* bottom, HeapWord* top,
    64                                OopClosure* cl);
    66   // We don't specialize this for FilteringClosure; filtering is handled by
    67   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    68   // warning.
    69   void walk_mem_region_with_cl(MemRegion mr,
    70                                HeapWord* bottom, HeapWord* top,
    71                                FilteringClosure* cl) {
    72     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    73                                                        (OopClosure*)cl);
    74   }
    76   // Get the actual top of the area on which the closure will
    77   // operate, given where the top is assumed to be (the end of the
    78   // memory region passed to do_MemRegion) and where the object
    79   // at the top is assumed to start. For example, an object may
    80   // start at the top but actually extend past the assumed top,
    81   // in which case the top becomes the end of the object.
    82   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    83     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
    84   }
    86   // Walk the given memory region from bottom to (actual) top
    87   // looking for objects and applying the oop closure (_cl) to
    88   // them. The base implementation of this treats the area as
    89   // blocks, where a block may or may not be an object. Sub-
    90   // classes should override this to provide more accurate
    91   // or possibly more efficient walking.
    92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
    93     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
    94   }
    96 public:
    97   HeapRegionDCTOC(G1CollectedHeap* g1,
    98                   HeapRegion* hr, OopClosure* cl,
    99                   CardTableModRefBS::PrecisionStyle precision,
   100                   FilterKind fk);
   101 };
   104 // The complicating factor is that BlockOffsetTable diverged
   105 // significantly, and we need functionality that is only in the G1 version.
   106 // So I copied that code, which led to an alternate G1 version of
   107 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   108 // be reconciled, then G1OffsetTableContigSpace could go away.
   110 // The idea behind time stamps is the following. Doing a save_marks on
   111 // all regions at every GC pause is time consuming (if I remember
   112 // well, 10ms or so). So, we would like to do that only for regions
   113 // that are GC alloc regions. To achieve this, we use time
   114 // stamps. For every evacuation pause, G1CollectedHeap generates a
   115 // unique time stamp (essentially a counter that gets
   116 // incremented). Every time we want to call save_marks on a region,
   117 // we set the saved_mark_word to top and also copy the current GC
   118 // time stamp to the time stamp field of the space. Reading the
   119 // saved_mark_word involves checking the time stamp of the
   120 // region. If it is the same as the current GC time stamp, then we
   121 // can safely read the saved_mark_word field, as it is valid. If the
   122 // time stamp of the region is not the same as the current GC time
   123 // stamp, then we instead read top, as the saved_mark_word field is
   124 // invalid. Time stamps (on the regions and also on the
   125 // G1CollectedHeap) are reset at every cleanup (we iterate over
   126 // the regions anyway) and at the end of a Full GC. The current scheme
   127 // that uses sequential unsigned ints will fail only if we have 4b
   128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   130 class G1OffsetTableContigSpace: public ContiguousSpace {
   131   friend class VMStructs;
   132  protected:
   133   G1BlockOffsetArrayContigSpace _offsets;
   134   Mutex _par_alloc_lock;
   135   volatile unsigned _gc_time_stamp;
   137  public:
   138   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   139   // assumed to contain zeros.
   140   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   141                            MemRegion mr, bool is_zeroed = false);
   143   void set_bottom(HeapWord* value);
   144   void set_end(HeapWord* value);
   146   virtual HeapWord* saved_mark_word() const;
   147   virtual void set_saved_mark();
   148   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   151   virtual void clear(bool mangle_space);
   153   HeapWord* block_start(const void* p);
   154   HeapWord* block_start_const(const void* p) const;
   156   // Add offset table update.
   157   virtual HeapWord* allocate(size_t word_size);
   158   HeapWord* par_allocate(size_t word_size);
   160   // MarkSweep support phase3
   161   virtual HeapWord* initialize_threshold();
   162   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   164   virtual void print() const;
   165 };
   167 class HeapRegion: public G1OffsetTableContigSpace {
   168   friend class VMStructs;
   169  private:
   171   enum HumongousType {
   172     NotHumongous = 0,
   173     StartsHumongous,
   174     ContinuesHumongous
   175   };
   177   // The next filter kind that should be used for a "new_dcto_cl" call with
   178   // the "traditional" signature.
   179   HeapRegionDCTOC::FilterKind _next_fk;
   181   // Requires that the region "mr" be dense with objects, and begin and end
   182   // with an object.
   183   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   185   // The remembered set for this region.
   186   // (Might want to make this "inline" later, to avoid some alloc failure
   187   // issues.)
   188   HeapRegionRemSet* _rem_set;
   190   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   192  protected:
   193   // If this region is a member of a HeapRegionSeq, the index in that
   194   // sequence, otherwise -1.
   195   int  _hrs_index;
   197   HumongousType _humongous_type;
   198   // For a humongous region, region in which it starts.
   199   HeapRegion* _humongous_start_region;
   200   // For the start region of a humongous sequence, it's original end().
   201   HeapWord* _orig_end;
   203   // True iff the region is in current collection_set.
   204   bool _in_collection_set;
   206     // True iff the region is on the unclean list, waiting to be zero filled.
   207   bool _is_on_unclean_list;
   209   // True iff the region is on the free list, ready for allocation.
   210   bool _is_on_free_list;
   212   // Is this or has it been an allocation region in the current collection
   213   // pause.
   214   bool _is_gc_alloc_region;
   216   // True iff an attempt to evacuate an object in the region failed.
   217   bool _evacuation_failed;
   219   // A heap region may be a member one of a number of special subsets, each
   220   // represented as linked lists through the field below.  Currently, these
   221   // sets include:
   222   //   The collection set.
   223   //   The set of allocation regions used in a collection pause.
   224   //   Spaces that may contain gray objects.
   225   HeapRegion* _next_in_special_set;
   227   // next region in the young "generation" region set
   228   HeapRegion* _next_young_region;
   230   // For parallel heapRegion traversal.
   231   jint _claimed;
   233   // We use concurrent marking to determine the amount of live data
   234   // in each heap region.
   235   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   236   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   238   // See "sort_index" method.  -1 means is not in the array.
   239   int _sort_index;
   241   // <PREDICTION>
   242   double _gc_efficiency;
   243   // </PREDICTION>
   245   enum YoungType {
   246     NotYoung,                   // a region is not young
   247     ScanOnly,                   // a region is young and scan-only
   248     Young,                      // a region is young
   249     Survivor                    // a region is young and it contains
   250                                 // survivor
   251   };
   253   YoungType _young_type;
   254   int  _young_index_in_cset;
   255   SurvRateGroup* _surv_rate_group;
   256   int  _age_index;
   258   // The start of the unmarked area. The unmarked area extends from this
   259   // word until the top and/or end of the region, and is the part
   260   // of the region for which no marking was done, i.e. objects may
   261   // have been allocated in this part since the last mark phase.
   262   // "prev" is the top at the start of the last completed marking.
   263   // "next" is the top at the start of the in-progress marking (if any.)
   264   HeapWord* _prev_top_at_mark_start;
   265   HeapWord* _next_top_at_mark_start;
   266   // If a collection pause is in progress, this is the top at the start
   267   // of that pause.
   269   // We've counted the marked bytes of objects below here.
   270   HeapWord* _top_at_conc_mark_count;
   272   void init_top_at_mark_start() {
   273     assert(_prev_marked_bytes == 0 &&
   274            _next_marked_bytes == 0,
   275            "Must be called after zero_marked_bytes.");
   276     HeapWord* bot = bottom();
   277     _prev_top_at_mark_start = bot;
   278     _next_top_at_mark_start = bot;
   279     _top_at_conc_mark_count = bot;
   280   }
   282   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
   283   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
   284                         // made it so.
   286   void set_young_type(YoungType new_type) {
   287     //assert(_young_type != new_type, "setting the same type" );
   288     // TODO: add more assertions here
   289     _young_type = new_type;
   290   }
   292  public:
   293   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   294   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   295              MemRegion mr, bool is_zeroed);
   297   enum SomePublicConstants {
   298     // HeapRegions are GrainBytes-aligned
   299     // and have sizes that are multiples of GrainBytes.
   300     LogOfHRGrainBytes = 20,
   301     LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
   302     GrainBytes = 1 << LogOfHRGrainBytes,
   303     GrainWords = 1 <<LogOfHRGrainWords,
   304     MaxAge = 2, NoOfAges = MaxAge+1
   305   };
   307   enum ClaimValues {
   308     InitialClaimValue     = 0,
   309     FinalCountClaimValue  = 1,
   310     NoteEndClaimValue     = 2,
   311     ScrubRemSetClaimValue = 3,
   312     ParVerifyClaimValue   = 4,
   313     RebuildRSClaimValue   = 5
   314   };
   316   // Concurrent refinement requires contiguous heap regions (in which TLABs
   317   // might be allocated) to be zero-filled.  Each region therefore has a
   318   // zero-fill-state.
   319   enum ZeroFillState {
   320     NotZeroFilled,
   321     ZeroFilling,
   322     ZeroFilled,
   323     Allocated
   324   };
   326   // If this region is a member of a HeapRegionSeq, the index in that
   327   // sequence, otherwise -1.
   328   int hrs_index() const { return _hrs_index; }
   329   void set_hrs_index(int index) { _hrs_index = index; }
   331   // The number of bytes marked live in the region in the last marking phase.
   332   size_t marked_bytes()    { return _prev_marked_bytes; }
   333   // The number of bytes counted in the next marking.
   334   size_t next_marked_bytes() { return _next_marked_bytes; }
   335   // The number of bytes live wrt the next marking.
   336   size_t next_live_bytes() {
   337     return (top() - next_top_at_mark_start())
   338       * HeapWordSize
   339       + next_marked_bytes();
   340   }
   342   // A lower bound on the amount of garbage bytes in the region.
   343   size_t garbage_bytes() {
   344     size_t used_at_mark_start_bytes =
   345       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   346     assert(used_at_mark_start_bytes >= marked_bytes(),
   347            "Can't mark more than we have.");
   348     return used_at_mark_start_bytes - marked_bytes();
   349   }
   351   // An upper bound on the number of live bytes in the region.
   352   size_t max_live_bytes() { return used() - garbage_bytes(); }
   354   void add_to_marked_bytes(size_t incr_bytes) {
   355     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   356     guarantee( _next_marked_bytes <= used(), "invariant" );
   357   }
   359   void zero_marked_bytes()      {
   360     _prev_marked_bytes = _next_marked_bytes = 0;
   361   }
   363   bool isHumongous() const { return _humongous_type != NotHumongous; }
   364   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   365   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   366   // For a humongous region, region in which it starts.
   367   HeapRegion* humongous_start_region() const {
   368     return _humongous_start_region;
   369   }
   371   // Causes the current region to represent a humongous object spanning "n"
   372   // regions.
   373   virtual void set_startsHumongous();
   375   // The regions that continue a humongous sequence should be added using
   376   // this method, in increasing address order.
   377   void set_continuesHumongous(HeapRegion* start);
   379   void add_continuingHumongousRegion(HeapRegion* cont);
   381   // If the region has a remembered set, return a pointer to it.
   382   HeapRegionRemSet* rem_set() const {
   383     return _rem_set;
   384   }
   386   // True iff the region is in current collection_set.
   387   bool in_collection_set() const {
   388     return _in_collection_set;
   389   }
   390   void set_in_collection_set(bool b) {
   391     _in_collection_set = b;
   392   }
   393   HeapRegion* next_in_collection_set() {
   394     assert(in_collection_set(), "should only invoke on member of CS.");
   395     assert(_next_in_special_set == NULL ||
   396            _next_in_special_set->in_collection_set(),
   397            "Malformed CS.");
   398     return _next_in_special_set;
   399   }
   400   void set_next_in_collection_set(HeapRegion* r) {
   401     assert(in_collection_set(), "should only invoke on member of CS.");
   402     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   403     _next_in_special_set = r;
   404   }
   406   // True iff it is or has been an allocation region in the current
   407   // collection pause.
   408   bool is_gc_alloc_region() const {
   409     return _is_gc_alloc_region;
   410   }
   411   void set_is_gc_alloc_region(bool b) {
   412     _is_gc_alloc_region = b;
   413   }
   414   HeapRegion* next_gc_alloc_region() {
   415     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   416     assert(_next_in_special_set == NULL ||
   417            _next_in_special_set->is_gc_alloc_region(),
   418            "Malformed CS.");
   419     return _next_in_special_set;
   420   }
   421   void set_next_gc_alloc_region(HeapRegion* r) {
   422     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   423     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   424     _next_in_special_set = r;
   425   }
   427   bool is_on_free_list() {
   428     return _is_on_free_list;
   429   }
   431   void set_on_free_list(bool b) {
   432     _is_on_free_list = b;
   433   }
   435   HeapRegion* next_from_free_list() {
   436     assert(is_on_free_list(),
   437            "Should only invoke on free space.");
   438     assert(_next_in_special_set == NULL ||
   439            _next_in_special_set->is_on_free_list(),
   440            "Malformed Free List.");
   441     return _next_in_special_set;
   442   }
   444   void set_next_on_free_list(HeapRegion* r) {
   445     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
   446     _next_in_special_set = r;
   447   }
   449   bool is_on_unclean_list() {
   450     return _is_on_unclean_list;
   451   }
   453   void set_on_unclean_list(bool b);
   455   HeapRegion* next_from_unclean_list() {
   456     assert(is_on_unclean_list(),
   457            "Should only invoke on unclean space.");
   458     assert(_next_in_special_set == NULL ||
   459            _next_in_special_set->is_on_unclean_list(),
   460            "Malformed unclean List.");
   461     return _next_in_special_set;
   462   }
   464   void set_next_on_unclean_list(HeapRegion* r);
   466   HeapRegion* get_next_young_region() { return _next_young_region; }
   467   void set_next_young_region(HeapRegion* hr) {
   468     _next_young_region = hr;
   469   }
   471   // Allows logical separation between objects allocated before and after.
   472   void save_marks();
   474   // Reset HR stuff to default values.
   475   void hr_clear(bool par, bool clear_space);
   477   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   479   // Ensure that "this" is zero-filled.
   480   void ensure_zero_filled();
   481   // This one requires that the calling thread holds ZF_mon.
   482   void ensure_zero_filled_locked();
   484   // Get the start of the unmarked area in this region.
   485   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   486   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   488   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   489   // allocated in the current region before the last call to "save_mark".
   490   void oop_before_save_marks_iterate(OopClosure* cl);
   492   // This call determines the "filter kind" argument that will be used for
   493   // the next call to "new_dcto_cl" on this region with the "traditional"
   494   // signature (i.e., the call below.)  The default, in the absence of a
   495   // preceding call to this method, is "NoFilterKind", and a call to this
   496   // method is necessary for each such call, or else it reverts to the
   497   // default.
   498   // (This is really ugly, but all other methods I could think of changed a
   499   // lot of main-line code for G1.)
   500   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   501     _next_fk = nfk;
   502   }
   504   DirtyCardToOopClosure*
   505   new_dcto_closure(OopClosure* cl,
   506                    CardTableModRefBS::PrecisionStyle precision,
   507                    HeapRegionDCTOC::FilterKind fk);
   509 #if WHASSUP
   510   DirtyCardToOopClosure*
   511   new_dcto_closure(OopClosure* cl,
   512                    CardTableModRefBS::PrecisionStyle precision,
   513                    HeapWord* boundary) {
   514     assert(boundary == NULL, "This arg doesn't make sense here.");
   515     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   516     _next_fk = HeapRegionDCTOC::NoFilterKind;
   517     return res;
   518   }
   519 #endif
   521   //
   522   // Note the start or end of marking. This tells the heap region
   523   // that the collector is about to start or has finished (concurrently)
   524   // marking the heap.
   525   //
   527   // Note the start of a marking phase. Record the
   528   // start of the unmarked area of the region here.
   529   void note_start_of_marking(bool during_initial_mark) {
   530     init_top_at_conc_mark_count();
   531     _next_marked_bytes = 0;
   532     if (during_initial_mark && is_young() && !is_survivor())
   533       _next_top_at_mark_start = bottom();
   534     else
   535       _next_top_at_mark_start = top();
   536   }
   538   // Note the end of a marking phase. Install the start of
   539   // the unmarked area that was captured at start of marking.
   540   void note_end_of_marking() {
   541     _prev_top_at_mark_start = _next_top_at_mark_start;
   542     _prev_marked_bytes = _next_marked_bytes;
   543     _next_marked_bytes = 0;
   545     guarantee(_prev_marked_bytes <=
   546               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   547               "invariant");
   548   }
   550   // After an evacuation, we need to update _next_top_at_mark_start
   551   // to be the current top.  Note this is only valid if we have only
   552   // ever evacuated into this region.  If we evacuate, allocate, and
   553   // then evacuate we are in deep doodoo.
   554   void note_end_of_copying() {
   555     assert(top() >= _next_top_at_mark_start,
   556            "Increase only");
   557     // Survivor regions will be scanned on the start of concurrent
   558     // marking.
   559     if (!is_survivor()) {
   560       _next_top_at_mark_start = top();
   561     }
   562   }
   564   // Returns "false" iff no object in the region was allocated when the
   565   // last mark phase ended.
   566   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   568   // If "is_marked()" is true, then this is the index of the region in
   569   // an array constructed at the end of marking of the regions in a
   570   // "desirability" order.
   571   int sort_index() {
   572     return _sort_index;
   573   }
   574   void set_sort_index(int i) {
   575     _sort_index = i;
   576   }
   578   void init_top_at_conc_mark_count() {
   579     _top_at_conc_mark_count = bottom();
   580   }
   582   void set_top_at_conc_mark_count(HeapWord *cur) {
   583     assert(bottom() <= cur && cur <= end(), "Sanity.");
   584     _top_at_conc_mark_count = cur;
   585   }
   587   HeapWord* top_at_conc_mark_count() {
   588     return _top_at_conc_mark_count;
   589   }
   591   void reset_during_compaction() {
   592     guarantee( isHumongous() && startsHumongous(),
   593                "should only be called for humongous regions");
   595     zero_marked_bytes();
   596     init_top_at_mark_start();
   597   }
   599   // <PREDICTION>
   600   void calc_gc_efficiency(void);
   601   double gc_efficiency() { return _gc_efficiency;}
   602   // </PREDICTION>
   604   bool is_young() const     { return _young_type != NotYoung; }
   605   bool is_scan_only() const { return _young_type == ScanOnly; }
   606   bool is_survivor() const  { return _young_type == Survivor; }
   608   int  young_index_in_cset() const { return _young_index_in_cset; }
   609   void set_young_index_in_cset(int index) {
   610     assert( (index == -1) || is_young(), "pre-condition" );
   611     _young_index_in_cset = index;
   612   }
   614   int age_in_surv_rate_group() {
   615     assert( _surv_rate_group != NULL, "pre-condition" );
   616     assert( _age_index > -1, "pre-condition" );
   617     return _surv_rate_group->age_in_group(_age_index);
   618   }
   620   void recalculate_age_in_surv_rate_group() {
   621     assert( _surv_rate_group != NULL, "pre-condition" );
   622     assert( _age_index > -1, "pre-condition" );
   623     _age_index = _surv_rate_group->recalculate_age_index(_age_index);
   624   }
   626   void record_surv_words_in_group(size_t words_survived) {
   627     assert( _surv_rate_group != NULL, "pre-condition" );
   628     assert( _age_index > -1, "pre-condition" );
   629     int age_in_group = age_in_surv_rate_group();
   630     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   631   }
   633   int age_in_surv_rate_group_cond() {
   634     if (_surv_rate_group != NULL)
   635       return age_in_surv_rate_group();
   636     else
   637       return -1;
   638   }
   640   SurvRateGroup* surv_rate_group() {
   641     return _surv_rate_group;
   642   }
   644   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   645     assert( surv_rate_group != NULL, "pre-condition" );
   646     assert( _surv_rate_group == NULL, "pre-condition" );
   647     assert( is_young(), "pre-condition" );
   649     _surv_rate_group = surv_rate_group;
   650     _age_index = surv_rate_group->next_age_index();
   651   }
   653   void uninstall_surv_rate_group() {
   654     if (_surv_rate_group != NULL) {
   655       assert( _age_index > -1, "pre-condition" );
   656       assert( is_young(), "pre-condition" );
   658       _surv_rate_group = NULL;
   659       _age_index = -1;
   660     } else {
   661       assert( _age_index == -1, "pre-condition" );
   662     }
   663   }
   665   void set_young() { set_young_type(Young); }
   667   void set_scan_only() { set_young_type(ScanOnly); }
   669   void set_survivor() { set_young_type(Survivor); }
   671   void set_not_young() { set_young_type(NotYoung); }
   673   // Determine if an object has been allocated since the last
   674   // mark performed by the collector. This returns true iff the object
   675   // is within the unmarked area of the region.
   676   bool obj_allocated_since_prev_marking(oop obj) const {
   677     return (HeapWord *) obj >= prev_top_at_mark_start();
   678   }
   679   bool obj_allocated_since_next_marking(oop obj) const {
   680     return (HeapWord *) obj >= next_top_at_mark_start();
   681   }
   683   // For parallel heapRegion traversal.
   684   bool claimHeapRegion(int claimValue);
   685   jint claim_value() { return _claimed; }
   686   // Use this carefully: only when you're sure no one is claiming...
   687   void set_claim_value(int claimValue) { _claimed = claimValue; }
   689   // Returns the "evacuation_failed" property of the region.
   690   bool evacuation_failed() { return _evacuation_failed; }
   692   // Sets the "evacuation_failed" property of the region.
   693   void set_evacuation_failed(bool b) {
   694     _evacuation_failed = b;
   696     if (b) {
   697       init_top_at_conc_mark_count();
   698       _next_marked_bytes = 0;
   699     }
   700   }
   702   // Requires that "mr" be entirely within the region.
   703   // Apply "cl->do_object" to all objects that intersect with "mr".
   704   // If the iteration encounters an unparseable portion of the region,
   705   // or if "cl->abort()" is true after a closure application,
   706   // terminate the iteration and return the address of the start of the
   707   // subregion that isn't done.  (The two can be distinguished by querying
   708   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   709   // completed.
   710   HeapWord*
   711   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   713   HeapWord*
   714   oops_on_card_seq_iterate_careful(MemRegion mr,
   715                                    FilterOutOfRegionClosure* cl);
   717   // The region "mr" is entirely in "this", and starts and ends at block
   718   // boundaries. The caller declares that all the contained blocks are
   719   // coalesced into one.
   720   void declare_filled_region_to_BOT(MemRegion mr) {
   721     _offsets.single_block(mr.start(), mr.end());
   722   }
   724   // A version of block start that is guaranteed to find *some* block
   725   // boundary at or before "p", but does not object iteration, and may
   726   // therefore be used safely when the heap is unparseable.
   727   HeapWord* block_start_careful(const void* p) const {
   728     return _offsets.block_start_careful(p);
   729   }
   731   // Requires that "addr" is within the region.  Returns the start of the
   732   // first ("careful") block that starts at or after "addr", or else the
   733   // "end" of the region if there is no such block.
   734   HeapWord* next_block_start_careful(HeapWord* addr);
   736   // Returns the zero-fill-state of the current region.
   737   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
   738   bool zero_fill_is_allocated() { return _zfs == Allocated; }
   739   Thread* zero_filler() { return _zero_filler; }
   741   // Indicate that the contents of the region are unknown, and therefore
   742   // might require zero-filling.
   743   void set_zero_fill_needed() {
   744     set_zero_fill_state_work(NotZeroFilled);
   745   }
   746   void set_zero_fill_in_progress(Thread* t) {
   747     set_zero_fill_state_work(ZeroFilling);
   748     _zero_filler = t;
   749   }
   750   void set_zero_fill_complete();
   751   void set_zero_fill_allocated() {
   752     set_zero_fill_state_work(Allocated);
   753   }
   755   void set_zero_fill_state_work(ZeroFillState zfs);
   757   // This is called when a full collection shrinks the heap.
   758   // We want to set the heap region to a value which says
   759   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
   760   // that role.
   761   void reset_zero_fill() {
   762     set_zero_fill_state_work(NotZeroFilled);
   763     _zero_filler = NULL;
   764   }
   766 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   767   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   768   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   770   CompactibleSpace* next_compaction_space() const;
   772   virtual void reset_after_compaction();
   774   void print() const;
   775   void print_on(outputStream* st) const;
   777   // Override
   778   virtual void verify(bool allow_dirty) const;
   780 #ifdef DEBUG
   781   HeapWord* allocate(size_t size);
   782 #endif
   783 };
   785 // HeapRegionClosure is used for iterating over regions.
   786 // Terminates the iteration when the "doHeapRegion" method returns "true".
   787 class HeapRegionClosure : public StackObj {
   788   friend class HeapRegionSeq;
   789   friend class G1CollectedHeap;
   791   bool _complete;
   792   void incomplete() { _complete = false; }
   794  public:
   795   HeapRegionClosure(): _complete(true) {}
   797   // Typically called on each region until it returns true.
   798   virtual bool doHeapRegion(HeapRegion* r) = 0;
   800   // True after iteration if the closure was applied to all heap regions
   801   // and returned "false" in all cases.
   802   bool complete() { return _complete; }
   803 };
   805 // A linked lists of heap regions.  It leaves the "next" field
   806 // unspecified; that's up to subtypes.
   807 class RegionList VALUE_OBJ_CLASS_SPEC {
   808 protected:
   809   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
   810   virtual void set_next(HeapRegion* chr,
   811                         HeapRegion* new_next) = 0;
   813   HeapRegion* _hd;
   814   HeapRegion* _tl;
   815   size_t _sz;
   817   // Protected constructor because this type is only meaningful
   818   // when the _get/_set next functions are defined.
   819   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
   820 public:
   821   void reset() {
   822     _hd = NULL;
   823     _tl = NULL;
   824     _sz = 0;
   825   }
   826   HeapRegion* hd() { return _hd; }
   827   HeapRegion* tl() { return _tl; }
   828   size_t sz() { return _sz; }
   829   size_t length();
   831   bool well_formed() {
   832     return
   833       ((hd() == NULL && tl() == NULL && sz() == 0)
   834        || (hd() != NULL && tl() != NULL && sz() > 0))
   835       && (sz() == length());
   836   }
   837   virtual void insert_before_head(HeapRegion* r);
   838   void prepend_list(RegionList* new_list);
   839   virtual HeapRegion* pop();
   840   void dec_sz() { _sz--; }
   841   // Requires that "r" is an element of the list, and is not the tail.
   842   void delete_after(HeapRegion* r);
   843 };
   845 class EmptyNonHRegionList: public RegionList {
   846 protected:
   847   // Protected constructor because this type is only meaningful
   848   // when the _get/_set next functions are defined.
   849   EmptyNonHRegionList() : RegionList() {}
   851 public:
   852   void insert_before_head(HeapRegion* r) {
   853     //    assert(r->is_empty(), "Better be empty");
   854     assert(!r->isHumongous(), "Better not be humongous.");
   855     RegionList::insert_before_head(r);
   856   }
   857   void prepend_list(EmptyNonHRegionList* new_list) {
   858     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
   859     //     "Better be empty");
   860     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
   861            "Better not be humongous.");
   862     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
   863     //     "Better be empty");
   864     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
   865            "Better not be humongous.");
   866     RegionList::prepend_list(new_list);
   867   }
   868 };
   870 class UncleanRegionList: public EmptyNonHRegionList {
   871 public:
   872   HeapRegion* get_next(HeapRegion* hr) {
   873     return hr->next_from_unclean_list();
   874   }
   875   void set_next(HeapRegion* hr, HeapRegion* new_next) {
   876     hr->set_next_on_unclean_list(new_next);
   877   }
   879   UncleanRegionList() : EmptyNonHRegionList() {}
   881   void insert_before_head(HeapRegion* r) {
   882     assert(!r->is_on_free_list(),
   883            "Better not already be on free list");
   884     assert(!r->is_on_unclean_list(),
   885            "Better not already be on unclean list");
   886     r->set_zero_fill_needed();
   887     r->set_on_unclean_list(true);
   888     EmptyNonHRegionList::insert_before_head(r);
   889   }
   890   void prepend_list(UncleanRegionList* new_list) {
   891     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
   892            "Better not already be on free list");
   893     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
   894            "Better already be marked as on unclean list");
   895     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
   896            "Better not already be on free list");
   897     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
   898            "Better already be marked as on unclean list");
   899     EmptyNonHRegionList::prepend_list(new_list);
   900   }
   901   HeapRegion* pop() {
   902     HeapRegion* res = RegionList::pop();
   903     if (res != NULL) res->set_on_unclean_list(false);
   904     return res;
   905   }
   906 };
   908 // Local Variables: ***
   909 // c-indentation-style: gnu ***
   910 // End: ***
   912 #endif // SERIALGC

mercurial