src/share/vm/gc_implementation/g1/heapRegion.hpp

Thu, 12 Mar 2009 18:16:36 -0700

author
trims
date
Thu, 12 Mar 2009 18:16:36 -0700
changeset 1063
7bb995fbd3c0
parent 1014
0fbdb4381b99
parent 1061
87fa6e083d82
child 1112
96b229c54d1e
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifndef SERIALGC
    27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    28 // can be collected independently.
    30 // NOTE: Although a HeapRegion is a Space, its
    31 // Space::initDirtyCardClosure method must not be called.
    32 // The problem is that the existence of this method breaks
    33 // the independence of barrier sets from remembered sets.
    34 // The solution is to remove this method from the definition
    35 // of a Space.
    37 class CompactibleSpace;
    38 class ContiguousSpace;
    39 class HeapRegionRemSet;
    40 class HeapRegionRemSetIterator;
    41 class HeapRegion;
    43 // A dirty card to oop closure for heap regions. It
    44 // knows how to get the G1 heap and how to use the bitmap
    45 // in the concurrent marker used by G1 to filter remembered
    46 // sets.
    48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    49 public:
    50   // Specification of possible DirtyCardToOopClosure filtering.
    51   enum FilterKind {
    52     NoFilterKind,
    53     IntoCSFilterKind,
    54     OutOfRegionFilterKind
    55   };
    57 protected:
    58   HeapRegion* _hr;
    59   FilterKind _fk;
    60   G1CollectedHeap* _g1;
    62   void walk_mem_region_with_cl(MemRegion mr,
    63                                HeapWord* bottom, HeapWord* top,
    64                                OopClosure* cl);
    66   // We don't specialize this for FilteringClosure; filtering is handled by
    67   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    68   // warning.
    69   void walk_mem_region_with_cl(MemRegion mr,
    70                                HeapWord* bottom, HeapWord* top,
    71                                FilteringClosure* cl) {
    72     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    73                                                        (OopClosure*)cl);
    74   }
    76   // Get the actual top of the area on which the closure will
    77   // operate, given where the top is assumed to be (the end of the
    78   // memory region passed to do_MemRegion) and where the object
    79   // at the top is assumed to start. For example, an object may
    80   // start at the top but actually extend past the assumed top,
    81   // in which case the top becomes the end of the object.
    82   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    83     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
    84   }
    86   // Walk the given memory region from bottom to (actual) top
    87   // looking for objects and applying the oop closure (_cl) to
    88   // them. The base implementation of this treats the area as
    89   // blocks, where a block may or may not be an object. Sub-
    90   // classes should override this to provide more accurate
    91   // or possibly more efficient walking.
    92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
    93     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
    94   }
    96 public:
    97   HeapRegionDCTOC(G1CollectedHeap* g1,
    98                   HeapRegion* hr, OopClosure* cl,
    99                   CardTableModRefBS::PrecisionStyle precision,
   100                   FilterKind fk);
   101 };
   104 // The complicating factor is that BlockOffsetTable diverged
   105 // significantly, and we need functionality that is only in the G1 version.
   106 // So I copied that code, which led to an alternate G1 version of
   107 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   108 // be reconciled, then G1OffsetTableContigSpace could go away.
   110 // The idea behind time stamps is the following. Doing a save_marks on
   111 // all regions at every GC pause is time consuming (if I remember
   112 // well, 10ms or so). So, we would like to do that only for regions
   113 // that are GC alloc regions. To achieve this, we use time
   114 // stamps. For every evacuation pause, G1CollectedHeap generates a
   115 // unique time stamp (essentially a counter that gets
   116 // incremented). Every time we want to call save_marks on a region,
   117 // we set the saved_mark_word to top and also copy the current GC
   118 // time stamp to the time stamp field of the space. Reading the
   119 // saved_mark_word involves checking the time stamp of the
   120 // region. If it is the same as the current GC time stamp, then we
   121 // can safely read the saved_mark_word field, as it is valid. If the
   122 // time stamp of the region is not the same as the current GC time
   123 // stamp, then we instead read top, as the saved_mark_word field is
   124 // invalid. Time stamps (on the regions and also on the
   125 // G1CollectedHeap) are reset at every cleanup (we iterate over
   126 // the regions anyway) and at the end of a Full GC. The current scheme
   127 // that uses sequential unsigned ints will fail only if we have 4b
   128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   130 class G1OffsetTableContigSpace: public ContiguousSpace {
   131   friend class VMStructs;
   132  protected:
   133   G1BlockOffsetArrayContigSpace _offsets;
   134   Mutex _par_alloc_lock;
   135   volatile unsigned _gc_time_stamp;
   137  public:
   138   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   139   // assumed to contain zeros.
   140   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   141                            MemRegion mr, bool is_zeroed = false);
   143   void set_bottom(HeapWord* value);
   144   void set_end(HeapWord* value);
   146   virtual HeapWord* saved_mark_word() const;
   147   virtual void set_saved_mark();
   148   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   151   virtual void clear(bool mangle_space);
   153   HeapWord* block_start(const void* p);
   154   HeapWord* block_start_const(const void* p) const;
   156   // Add offset table update.
   157   virtual HeapWord* allocate(size_t word_size);
   158   HeapWord* par_allocate(size_t word_size);
   160   // MarkSweep support phase3
   161   virtual HeapWord* initialize_threshold();
   162   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   164   virtual void print() const;
   165 };
   167 class HeapRegion: public G1OffsetTableContigSpace {
   168   friend class VMStructs;
   169  private:
   171   enum HumongousType {
   172     NotHumongous = 0,
   173     StartsHumongous,
   174     ContinuesHumongous
   175   };
   177   // The next filter kind that should be used for a "new_dcto_cl" call with
   178   // the "traditional" signature.
   179   HeapRegionDCTOC::FilterKind _next_fk;
   181   // Requires that the region "mr" be dense with objects, and begin and end
   182   // with an object.
   183   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   185   // The remembered set for this region.
   186   // (Might want to make this "inline" later, to avoid some alloc failure
   187   // issues.)
   188   HeapRegionRemSet* _rem_set;
   190   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   192  protected:
   193   // If this region is a member of a HeapRegionSeq, the index in that
   194   // sequence, otherwise -1.
   195   int  _hrs_index;
   197   HumongousType _humongous_type;
   198   // For a humongous region, region in which it starts.
   199   HeapRegion* _humongous_start_region;
   200   // For the start region of a humongous sequence, it's original end().
   201   HeapWord* _orig_end;
   203   // True iff the region is in current collection_set.
   204   bool _in_collection_set;
   206     // True iff the region is on the unclean list, waiting to be zero filled.
   207   bool _is_on_unclean_list;
   209   // True iff the region is on the free list, ready for allocation.
   210   bool _is_on_free_list;
   212   // Is this or has it been an allocation region in the current collection
   213   // pause.
   214   bool _is_gc_alloc_region;
   216   // True iff an attempt to evacuate an object in the region failed.
   217   bool _evacuation_failed;
   219   // A heap region may be a member one of a number of special subsets, each
   220   // represented as linked lists through the field below.  Currently, these
   221   // sets include:
   222   //   The collection set.
   223   //   The set of allocation regions used in a collection pause.
   224   //   Spaces that may contain gray objects.
   225   HeapRegion* _next_in_special_set;
   227   // next region in the young "generation" region set
   228   HeapRegion* _next_young_region;
   230   // For parallel heapRegion traversal.
   231   jint _claimed;
   233   // We use concurrent marking to determine the amount of live data
   234   // in each heap region.
   235   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   236   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   238   // See "sort_index" method.  -1 means is not in the array.
   239   int _sort_index;
   241   // Means it has (or at least had) a very large RS, and should not be
   242   // considered for membership in a collection set.
   243   enum PopularityState {
   244     NotPopular,
   245     PopularPending,
   246     Popular
   247   };
   248   PopularityState _popularity;
   250   // <PREDICTION>
   251   double _gc_efficiency;
   252   // </PREDICTION>
   254   enum YoungType {
   255     NotYoung,                   // a region is not young
   256     ScanOnly,                   // a region is young and scan-only
   257     Young,                      // a region is young
   258     Survivor                    // a region is young and it contains
   259                                 // survivor
   260   };
   262   YoungType _young_type;
   263   int  _young_index_in_cset;
   264   SurvRateGroup* _surv_rate_group;
   265   int  _age_index;
   267   // The start of the unmarked area. The unmarked area extends from this
   268   // word until the top and/or end of the region, and is the part
   269   // of the region for which no marking was done, i.e. objects may
   270   // have been allocated in this part since the last mark phase.
   271   // "prev" is the top at the start of the last completed marking.
   272   // "next" is the top at the start of the in-progress marking (if any.)
   273   HeapWord* _prev_top_at_mark_start;
   274   HeapWord* _next_top_at_mark_start;
   275   // If a collection pause is in progress, this is the top at the start
   276   // of that pause.
   278   // We've counted the marked bytes of objects below here.
   279   HeapWord* _top_at_conc_mark_count;
   281   void init_top_at_mark_start() {
   282     assert(_prev_marked_bytes == 0 &&
   283            _next_marked_bytes == 0,
   284            "Must be called after zero_marked_bytes.");
   285     HeapWord* bot = bottom();
   286     _prev_top_at_mark_start = bot;
   287     _next_top_at_mark_start = bot;
   288     _top_at_conc_mark_count = bot;
   289   }
   291   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
   292   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
   293                         // made it so.
   295   void set_young_type(YoungType new_type) {
   296     //assert(_young_type != new_type, "setting the same type" );
   297     // TODO: add more assertions here
   298     _young_type = new_type;
   299   }
   301  public:
   302   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   303   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   304              MemRegion mr, bool is_zeroed);
   306   enum SomePublicConstants {
   307     // HeapRegions are GrainBytes-aligned
   308     // and have sizes that are multiples of GrainBytes.
   309     LogOfHRGrainBytes = 20,
   310     LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
   311     GrainBytes = 1 << LogOfHRGrainBytes,
   312     GrainWords = 1 <<LogOfHRGrainWords,
   313     MaxAge = 2, NoOfAges = MaxAge+1
   314   };
   316   enum ClaimValues {
   317     InitialClaimValue     = 0,
   318     FinalCountClaimValue  = 1,
   319     NoteEndClaimValue     = 2,
   320     ScrubRemSetClaimValue = 3,
   321     ParVerifyClaimValue   = 4,
   322     RebuildRSClaimValue   = 5
   323   };
   325   // Concurrent refinement requires contiguous heap regions (in which TLABs
   326   // might be allocated) to be zero-filled.  Each region therefore has a
   327   // zero-fill-state.
   328   enum ZeroFillState {
   329     NotZeroFilled,
   330     ZeroFilling,
   331     ZeroFilled,
   332     Allocated
   333   };
   335   // If this region is a member of a HeapRegionSeq, the index in that
   336   // sequence, otherwise -1.
   337   int hrs_index() const { return _hrs_index; }
   338   void set_hrs_index(int index) { _hrs_index = index; }
   340   // The number of bytes marked live in the region in the last marking phase.
   341   size_t marked_bytes()    { return _prev_marked_bytes; }
   342   // The number of bytes counted in the next marking.
   343   size_t next_marked_bytes() { return _next_marked_bytes; }
   344   // The number of bytes live wrt the next marking.
   345   size_t next_live_bytes() {
   346     return (top() - next_top_at_mark_start())
   347       * HeapWordSize
   348       + next_marked_bytes();
   349   }
   351   // A lower bound on the amount of garbage bytes in the region.
   352   size_t garbage_bytes() {
   353     size_t used_at_mark_start_bytes =
   354       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   355     assert(used_at_mark_start_bytes >= marked_bytes(),
   356            "Can't mark more than we have.");
   357     return used_at_mark_start_bytes - marked_bytes();
   358   }
   360   // An upper bound on the number of live bytes in the region.
   361   size_t max_live_bytes() { return used() - garbage_bytes(); }
   363   void add_to_marked_bytes(size_t incr_bytes) {
   364     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   365     guarantee( _next_marked_bytes <= used(), "invariant" );
   366   }
   368   void zero_marked_bytes()      {
   369     _prev_marked_bytes = _next_marked_bytes = 0;
   370   }
   372   bool isHumongous() const { return _humongous_type != NotHumongous; }
   373   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   374   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   375   // For a humongous region, region in which it starts.
   376   HeapRegion* humongous_start_region() const {
   377     return _humongous_start_region;
   378   }
   380   // Causes the current region to represent a humongous object spanning "n"
   381   // regions.
   382   virtual void set_startsHumongous();
   384   // The regions that continue a humongous sequence should be added using
   385   // this method, in increasing address order.
   386   void set_continuesHumongous(HeapRegion* start);
   388   void add_continuingHumongousRegion(HeapRegion* cont);
   390   // If the region has a remembered set, return a pointer to it.
   391   HeapRegionRemSet* rem_set() const {
   392     return _rem_set;
   393   }
   395   // True iff the region is in current collection_set.
   396   bool in_collection_set() const {
   397     return _in_collection_set;
   398   }
   399   void set_in_collection_set(bool b) {
   400     _in_collection_set = b;
   401   }
   402   HeapRegion* next_in_collection_set() {
   403     assert(in_collection_set(), "should only invoke on member of CS.");
   404     assert(_next_in_special_set == NULL ||
   405            _next_in_special_set->in_collection_set(),
   406            "Malformed CS.");
   407     return _next_in_special_set;
   408   }
   409   void set_next_in_collection_set(HeapRegion* r) {
   410     assert(in_collection_set(), "should only invoke on member of CS.");
   411     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   412     _next_in_special_set = r;
   413   }
   415   // True iff it is or has been an allocation region in the current
   416   // collection pause.
   417   bool is_gc_alloc_region() const {
   418     return _is_gc_alloc_region;
   419   }
   420   void set_is_gc_alloc_region(bool b) {
   421     _is_gc_alloc_region = b;
   422   }
   423   HeapRegion* next_gc_alloc_region() {
   424     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   425     assert(_next_in_special_set == NULL ||
   426            _next_in_special_set->is_gc_alloc_region(),
   427            "Malformed CS.");
   428     return _next_in_special_set;
   429   }
   430   void set_next_gc_alloc_region(HeapRegion* r) {
   431     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   432     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   433     _next_in_special_set = r;
   434   }
   436   bool is_reserved() {
   437     return popular();
   438   }
   440   bool is_on_free_list() {
   441     return _is_on_free_list;
   442   }
   444   void set_on_free_list(bool b) {
   445     _is_on_free_list = b;
   446   }
   448   HeapRegion* next_from_free_list() {
   449     assert(is_on_free_list(),
   450            "Should only invoke on free space.");
   451     assert(_next_in_special_set == NULL ||
   452            _next_in_special_set->is_on_free_list(),
   453            "Malformed Free List.");
   454     return _next_in_special_set;
   455   }
   457   void set_next_on_free_list(HeapRegion* r) {
   458     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
   459     _next_in_special_set = r;
   460   }
   462   bool is_on_unclean_list() {
   463     return _is_on_unclean_list;
   464   }
   466   void set_on_unclean_list(bool b);
   468   HeapRegion* next_from_unclean_list() {
   469     assert(is_on_unclean_list(),
   470            "Should only invoke on unclean space.");
   471     assert(_next_in_special_set == NULL ||
   472            _next_in_special_set->is_on_unclean_list(),
   473            "Malformed unclean List.");
   474     return _next_in_special_set;
   475   }
   477   void set_next_on_unclean_list(HeapRegion* r);
   479   HeapRegion* get_next_young_region() { return _next_young_region; }
   480   void set_next_young_region(HeapRegion* hr) {
   481     _next_young_region = hr;
   482   }
   484   // Allows logical separation between objects allocated before and after.
   485   void save_marks();
   487   // Reset HR stuff to default values.
   488   void hr_clear(bool par, bool clear_space);
   490   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   492   // Ensure that "this" is zero-filled.
   493   void ensure_zero_filled();
   494   // This one requires that the calling thread holds ZF_mon.
   495   void ensure_zero_filled_locked();
   497   // Get the start of the unmarked area in this region.
   498   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   499   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   501   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   502   // allocated in the current region before the last call to "save_mark".
   503   void oop_before_save_marks_iterate(OopClosure* cl);
   505   // This call determines the "filter kind" argument that will be used for
   506   // the next call to "new_dcto_cl" on this region with the "traditional"
   507   // signature (i.e., the call below.)  The default, in the absence of a
   508   // preceding call to this method, is "NoFilterKind", and a call to this
   509   // method is necessary for each such call, or else it reverts to the
   510   // default.
   511   // (This is really ugly, but all other methods I could think of changed a
   512   // lot of main-line code for G1.)
   513   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   514     _next_fk = nfk;
   515   }
   517   DirtyCardToOopClosure*
   518   new_dcto_closure(OopClosure* cl,
   519                    CardTableModRefBS::PrecisionStyle precision,
   520                    HeapRegionDCTOC::FilterKind fk);
   522 #if WHASSUP
   523   DirtyCardToOopClosure*
   524   new_dcto_closure(OopClosure* cl,
   525                    CardTableModRefBS::PrecisionStyle precision,
   526                    HeapWord* boundary) {
   527     assert(boundary == NULL, "This arg doesn't make sense here.");
   528     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   529     _next_fk = HeapRegionDCTOC::NoFilterKind;
   530     return res;
   531   }
   532 #endif
   534   //
   535   // Note the start or end of marking. This tells the heap region
   536   // that the collector is about to start or has finished (concurrently)
   537   // marking the heap.
   538   //
   540   // Note the start of a marking phase. Record the
   541   // start of the unmarked area of the region here.
   542   void note_start_of_marking(bool during_initial_mark) {
   543     init_top_at_conc_mark_count();
   544     _next_marked_bytes = 0;
   545     if (during_initial_mark && is_young() && !is_survivor())
   546       _next_top_at_mark_start = bottom();
   547     else
   548       _next_top_at_mark_start = top();
   549   }
   551   // Note the end of a marking phase. Install the start of
   552   // the unmarked area that was captured at start of marking.
   553   void note_end_of_marking() {
   554     _prev_top_at_mark_start = _next_top_at_mark_start;
   555     _prev_marked_bytes = _next_marked_bytes;
   556     _next_marked_bytes = 0;
   558     guarantee(_prev_marked_bytes <=
   559               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   560               "invariant");
   561   }
   563   // After an evacuation, we need to update _next_top_at_mark_start
   564   // to be the current top.  Note this is only valid if we have only
   565   // ever evacuated into this region.  If we evacuate, allocate, and
   566   // then evacuate we are in deep doodoo.
   567   void note_end_of_copying() {
   568     assert(top() >= _next_top_at_mark_start,
   569            "Increase only");
   570     // Survivor regions will be scanned on the start of concurrent
   571     // marking.
   572     if (!is_survivor()) {
   573       _next_top_at_mark_start = top();
   574     }
   575   }
   577   // Returns "false" iff no object in the region was allocated when the
   578   // last mark phase ended.
   579   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   581   // If "is_marked()" is true, then this is the index of the region in
   582   // an array constructed at the end of marking of the regions in a
   583   // "desirability" order.
   584   int sort_index() {
   585     return _sort_index;
   586   }
   587   void set_sort_index(int i) {
   588     _sort_index = i;
   589   }
   591   void init_top_at_conc_mark_count() {
   592     _top_at_conc_mark_count = bottom();
   593   }
   595   void set_top_at_conc_mark_count(HeapWord *cur) {
   596     assert(bottom() <= cur && cur <= end(), "Sanity.");
   597     _top_at_conc_mark_count = cur;
   598   }
   600   HeapWord* top_at_conc_mark_count() {
   601     return _top_at_conc_mark_count;
   602   }
   604   void reset_during_compaction() {
   605     guarantee( isHumongous() && startsHumongous(),
   606                "should only be called for humongous regions");
   608     zero_marked_bytes();
   609     init_top_at_mark_start();
   610   }
   612   bool popular() { return _popularity == Popular; }
   613   void set_popular(bool b) {
   614     if (b) {
   615       _popularity = Popular;
   616     } else {
   617       _popularity = NotPopular;
   618     }
   619   }
   620   bool popular_pending() { return _popularity == PopularPending; }
   621   void set_popular_pending(bool b) {
   622     if (b) {
   623       _popularity = PopularPending;
   624     } else {
   625       _popularity = NotPopular;
   626     }
   627   }
   629   // <PREDICTION>
   630   void calc_gc_efficiency(void);
   631   double gc_efficiency() { return _gc_efficiency;}
   632   // </PREDICTION>
   634   bool is_young() const     { return _young_type != NotYoung; }
   635   bool is_scan_only() const { return _young_type == ScanOnly; }
   636   bool is_survivor() const  { return _young_type == Survivor; }
   638   int  young_index_in_cset() const { return _young_index_in_cset; }
   639   void set_young_index_in_cset(int index) {
   640     assert( (index == -1) || is_young(), "pre-condition" );
   641     _young_index_in_cset = index;
   642   }
   644   int age_in_surv_rate_group() {
   645     assert( _surv_rate_group != NULL, "pre-condition" );
   646     assert( _age_index > -1, "pre-condition" );
   647     return _surv_rate_group->age_in_group(_age_index);
   648   }
   650   void recalculate_age_in_surv_rate_group() {
   651     assert( _surv_rate_group != NULL, "pre-condition" );
   652     assert( _age_index > -1, "pre-condition" );
   653     _age_index = _surv_rate_group->recalculate_age_index(_age_index);
   654   }
   656   void record_surv_words_in_group(size_t words_survived) {
   657     assert( _surv_rate_group != NULL, "pre-condition" );
   658     assert( _age_index > -1, "pre-condition" );
   659     int age_in_group = age_in_surv_rate_group();
   660     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   661   }
   663   int age_in_surv_rate_group_cond() {
   664     if (_surv_rate_group != NULL)
   665       return age_in_surv_rate_group();
   666     else
   667       return -1;
   668   }
   670   SurvRateGroup* surv_rate_group() {
   671     return _surv_rate_group;
   672   }
   674   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   675     assert( surv_rate_group != NULL, "pre-condition" );
   676     assert( _surv_rate_group == NULL, "pre-condition" );
   677     assert( is_young(), "pre-condition" );
   679     _surv_rate_group = surv_rate_group;
   680     _age_index = surv_rate_group->next_age_index();
   681   }
   683   void uninstall_surv_rate_group() {
   684     if (_surv_rate_group != NULL) {
   685       assert( _age_index > -1, "pre-condition" );
   686       assert( is_young(), "pre-condition" );
   688       _surv_rate_group = NULL;
   689       _age_index = -1;
   690     } else {
   691       assert( _age_index == -1, "pre-condition" );
   692     }
   693   }
   695   void set_young() { set_young_type(Young); }
   697   void set_scan_only() { set_young_type(ScanOnly); }
   699   void set_survivor() { set_young_type(Survivor); }
   701   void set_not_young() { set_young_type(NotYoung); }
   703   // Determine if an object has been allocated since the last
   704   // mark performed by the collector. This returns true iff the object
   705   // is within the unmarked area of the region.
   706   bool obj_allocated_since_prev_marking(oop obj) const {
   707     return (HeapWord *) obj >= prev_top_at_mark_start();
   708   }
   709   bool obj_allocated_since_next_marking(oop obj) const {
   710     return (HeapWord *) obj >= next_top_at_mark_start();
   711   }
   713   // For parallel heapRegion traversal.
   714   bool claimHeapRegion(int claimValue);
   715   jint claim_value() { return _claimed; }
   716   // Use this carefully: only when you're sure no one is claiming...
   717   void set_claim_value(int claimValue) { _claimed = claimValue; }
   719   // Returns the "evacuation_failed" property of the region.
   720   bool evacuation_failed() { return _evacuation_failed; }
   722   // Sets the "evacuation_failed" property of the region.
   723   void set_evacuation_failed(bool b) {
   724     _evacuation_failed = b;
   726     if (b) {
   727       init_top_at_conc_mark_count();
   728       _next_marked_bytes = 0;
   729     }
   730   }
   732   // Requires that "mr" be entirely within the region.
   733   // Apply "cl->do_object" to all objects that intersect with "mr".
   734   // If the iteration encounters an unparseable portion of the region,
   735   // or if "cl->abort()" is true after a closure application,
   736   // terminate the iteration and return the address of the start of the
   737   // subregion that isn't done.  (The two can be distinguished by querying
   738   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   739   // completed.
   740   HeapWord*
   741   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   743   HeapWord*
   744   oops_on_card_seq_iterate_careful(MemRegion mr,
   745                                    FilterOutOfRegionClosure* cl);
   747   // The region "mr" is entirely in "this", and starts and ends at block
   748   // boundaries. The caller declares that all the contained blocks are
   749   // coalesced into one.
   750   void declare_filled_region_to_BOT(MemRegion mr) {
   751     _offsets.single_block(mr.start(), mr.end());
   752   }
   754   // A version of block start that is guaranteed to find *some* block
   755   // boundary at or before "p", but does not object iteration, and may
   756   // therefore be used safely when the heap is unparseable.
   757   HeapWord* block_start_careful(const void* p) const {
   758     return _offsets.block_start_careful(p);
   759   }
   761   // Requires that "addr" is within the region.  Returns the start of the
   762   // first ("careful") block that starts at or after "addr", or else the
   763   // "end" of the region if there is no such block.
   764   HeapWord* next_block_start_careful(HeapWord* addr);
   766   // Returns the zero-fill-state of the current region.
   767   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
   768   bool zero_fill_is_allocated() { return _zfs == Allocated; }
   769   Thread* zero_filler() { return _zero_filler; }
   771   // Indicate that the contents of the region are unknown, and therefore
   772   // might require zero-filling.
   773   void set_zero_fill_needed() {
   774     set_zero_fill_state_work(NotZeroFilled);
   775   }
   776   void set_zero_fill_in_progress(Thread* t) {
   777     set_zero_fill_state_work(ZeroFilling);
   778     _zero_filler = t;
   779   }
   780   void set_zero_fill_complete();
   781   void set_zero_fill_allocated() {
   782     set_zero_fill_state_work(Allocated);
   783   }
   785   void set_zero_fill_state_work(ZeroFillState zfs);
   787   // This is called when a full collection shrinks the heap.
   788   // We want to set the heap region to a value which says
   789   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
   790   // that role.
   791   void reset_zero_fill() {
   792     set_zero_fill_state_work(NotZeroFilled);
   793     _zero_filler = NULL;
   794   }
   796 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   797   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   798   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   800   CompactibleSpace* next_compaction_space() const;
   802   virtual void reset_after_compaction();
   804   void print() const;
   805   void print_on(outputStream* st) const;
   807   // Override
   808   virtual void verify(bool allow_dirty) const;
   810 #ifdef DEBUG
   811   HeapWord* allocate(size_t size);
   812 #endif
   813 };
   815 // HeapRegionClosure is used for iterating over regions.
   816 // Terminates the iteration when the "doHeapRegion" method returns "true".
   817 class HeapRegionClosure : public StackObj {
   818   friend class HeapRegionSeq;
   819   friend class G1CollectedHeap;
   821   bool _complete;
   822   void incomplete() { _complete = false; }
   824  public:
   825   HeapRegionClosure(): _complete(true) {}
   827   // Typically called on each region until it returns true.
   828   virtual bool doHeapRegion(HeapRegion* r) = 0;
   830   // True after iteration if the closure was applied to all heap regions
   831   // and returned "false" in all cases.
   832   bool complete() { return _complete; }
   833 };
   835 // A linked lists of heap regions.  It leaves the "next" field
   836 // unspecified; that's up to subtypes.
   837 class RegionList VALUE_OBJ_CLASS_SPEC {
   838 protected:
   839   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
   840   virtual void set_next(HeapRegion* chr,
   841                         HeapRegion* new_next) = 0;
   843   HeapRegion* _hd;
   844   HeapRegion* _tl;
   845   size_t _sz;
   847   // Protected constructor because this type is only meaningful
   848   // when the _get/_set next functions are defined.
   849   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
   850 public:
   851   void reset() {
   852     _hd = NULL;
   853     _tl = NULL;
   854     _sz = 0;
   855   }
   856   HeapRegion* hd() { return _hd; }
   857   HeapRegion* tl() { return _tl; }
   858   size_t sz() { return _sz; }
   859   size_t length();
   861   bool well_formed() {
   862     return
   863       ((hd() == NULL && tl() == NULL && sz() == 0)
   864        || (hd() != NULL && tl() != NULL && sz() > 0))
   865       && (sz() == length());
   866   }
   867   virtual void insert_before_head(HeapRegion* r);
   868   void prepend_list(RegionList* new_list);
   869   virtual HeapRegion* pop();
   870   void dec_sz() { _sz--; }
   871   // Requires that "r" is an element of the list, and is not the tail.
   872   void delete_after(HeapRegion* r);
   873 };
   875 class EmptyNonHRegionList: public RegionList {
   876 protected:
   877   // Protected constructor because this type is only meaningful
   878   // when the _get/_set next functions are defined.
   879   EmptyNonHRegionList() : RegionList() {}
   881 public:
   882   void insert_before_head(HeapRegion* r) {
   883     //    assert(r->is_empty(), "Better be empty");
   884     assert(!r->isHumongous(), "Better not be humongous.");
   885     RegionList::insert_before_head(r);
   886   }
   887   void prepend_list(EmptyNonHRegionList* new_list) {
   888     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
   889     //     "Better be empty");
   890     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
   891            "Better not be humongous.");
   892     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
   893     //     "Better be empty");
   894     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
   895            "Better not be humongous.");
   896     RegionList::prepend_list(new_list);
   897   }
   898 };
   900 class UncleanRegionList: public EmptyNonHRegionList {
   901 public:
   902   HeapRegion* get_next(HeapRegion* hr) {
   903     return hr->next_from_unclean_list();
   904   }
   905   void set_next(HeapRegion* hr, HeapRegion* new_next) {
   906     hr->set_next_on_unclean_list(new_next);
   907   }
   909   UncleanRegionList() : EmptyNonHRegionList() {}
   911   void insert_before_head(HeapRegion* r) {
   912     assert(!r->is_on_free_list(),
   913            "Better not already be on free list");
   914     assert(!r->is_on_unclean_list(),
   915            "Better not already be on unclean list");
   916     r->set_zero_fill_needed();
   917     r->set_on_unclean_list(true);
   918     EmptyNonHRegionList::insert_before_head(r);
   919   }
   920   void prepend_list(UncleanRegionList* new_list) {
   921     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
   922            "Better not already be on free list");
   923     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
   924            "Better already be marked as on unclean list");
   925     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
   926            "Better not already be on free list");
   927     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
   928            "Better already be marked as on unclean list");
   929     EmptyNonHRegionList::prepend_list(new_list);
   930   }
   931   HeapRegion* pop() {
   932     HeapRegion* res = RegionList::pop();
   933     if (res != NULL) res->set_on_unclean_list(false);
   934     return res;
   935   }
   936 };
   938 // Local Variables: ***
   939 // c-indentation-style: gnu ***
   940 // End: ***
   942 #endif // SERIALGC

mercurial