src/share/vm/gc_implementation/g1/heapRegion.hpp

Mon, 24 Mar 2014 15:30:36 +0100

author
tschatzl
date
Mon, 24 Mar 2014 15:30:36 +0100
changeset 6404
96b1c2e06e25
parent 5701
40136aa2cdb1
child 6422
8ee855b4e667
permissions
-rw-r--r--

8027295: Free CSet takes ~50% of young pause time
Summary: Improve fast card cache iteration and avoid taking locks when freeing the collection set.
Reviewed-by: brutisso

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    35 #include "utilities/macros.hpp"
    37 #if INCLUDE_ALL_GCS
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class CompactibleSpace;
    50 class ContiguousSpace;
    51 class HeapRegionRemSet;
    52 class HeapRegionRemSetIterator;
    53 class HeapRegion;
    54 class HeapRegionSetBase;
    55 class nmethod;
    57 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    58 #define HR_FORMAT_PARAMS(_hr_) \
    59                 (_hr_)->hrs_index(), \
    60                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    61                 (_hr_)->startsHumongous() ? "HS" : \
    62                 (_hr_)->continuesHumongous() ? "HC" : \
    63                 !(_hr_)->is_empty() ? "O" : "F", \
    64                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    66 // sentinel value for hrs_index
    67 #define G1_NULL_HRS_INDEX ((uint) -1)
    69 // A dirty card to oop closure for heap regions. It
    70 // knows how to get the G1 heap and how to use the bitmap
    71 // in the concurrent marker used by G1 to filter remembered
    72 // sets.
    74 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    75 public:
    76   // Specification of possible DirtyCardToOopClosure filtering.
    77   enum FilterKind {
    78     NoFilterKind,
    79     IntoCSFilterKind,
    80     OutOfRegionFilterKind
    81   };
    83 protected:
    84   HeapRegion* _hr;
    85   FilterKind _fk;
    86   G1CollectedHeap* _g1;
    88   void walk_mem_region_with_cl(MemRegion mr,
    89                                HeapWord* bottom, HeapWord* top,
    90                                ExtendedOopClosure* cl);
    92   // We don't specialize this for FilteringClosure; filtering is handled by
    93   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    94   // warning.
    95   void walk_mem_region_with_cl(MemRegion mr,
    96                                HeapWord* bottom, HeapWord* top,
    97                                FilteringClosure* cl) {
    98     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    99                                              (ExtendedOopClosure*)cl);
   100   }
   102   // Get the actual top of the area on which the closure will
   103   // operate, given where the top is assumed to be (the end of the
   104   // memory region passed to do_MemRegion) and where the object
   105   // at the top is assumed to start. For example, an object may
   106   // start at the top but actually extend past the assumed top,
   107   // in which case the top becomes the end of the object.
   108   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   109     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   110   }
   112   // Walk the given memory region from bottom to (actual) top
   113   // looking for objects and applying the oop closure (_cl) to
   114   // them. The base implementation of this treats the area as
   115   // blocks, where a block may or may not be an object. Sub-
   116   // classes should override this to provide more accurate
   117   // or possibly more efficient walking.
   118   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   119     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   120   }
   122 public:
   123   HeapRegionDCTOC(G1CollectedHeap* g1,
   124                   HeapRegion* hr, ExtendedOopClosure* cl,
   125                   CardTableModRefBS::PrecisionStyle precision,
   126                   FilterKind fk);
   127 };
   129 // The complicating factor is that BlockOffsetTable diverged
   130 // significantly, and we need functionality that is only in the G1 version.
   131 // So I copied that code, which led to an alternate G1 version of
   132 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   133 // be reconciled, then G1OffsetTableContigSpace could go away.
   135 // The idea behind time stamps is the following. Doing a save_marks on
   136 // all regions at every GC pause is time consuming (if I remember
   137 // well, 10ms or so). So, we would like to do that only for regions
   138 // that are GC alloc regions. To achieve this, we use time
   139 // stamps. For every evacuation pause, G1CollectedHeap generates a
   140 // unique time stamp (essentially a counter that gets
   141 // incremented). Every time we want to call save_marks on a region,
   142 // we set the saved_mark_word to top and also copy the current GC
   143 // time stamp to the time stamp field of the space. Reading the
   144 // saved_mark_word involves checking the time stamp of the
   145 // region. If it is the same as the current GC time stamp, then we
   146 // can safely read the saved_mark_word field, as it is valid. If the
   147 // time stamp of the region is not the same as the current GC time
   148 // stamp, then we instead read top, as the saved_mark_word field is
   149 // invalid. Time stamps (on the regions and also on the
   150 // G1CollectedHeap) are reset at every cleanup (we iterate over
   151 // the regions anyway) and at the end of a Full GC. The current scheme
   152 // that uses sequential unsigned ints will fail only if we have 4b
   153 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   155 class G1OffsetTableContigSpace: public ContiguousSpace {
   156   friend class VMStructs;
   157  protected:
   158   G1BlockOffsetArrayContigSpace _offsets;
   159   Mutex _par_alloc_lock;
   160   volatile unsigned _gc_time_stamp;
   161   // When we need to retire an allocation region, while other threads
   162   // are also concurrently trying to allocate into it, we typically
   163   // allocate a dummy object at the end of the region to ensure that
   164   // no more allocations can take place in it. However, sometimes we
   165   // want to know where the end of the last "real" object we allocated
   166   // into the region was and this is what this keeps track.
   167   HeapWord* _pre_dummy_top;
   169  public:
   170   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   171                            MemRegion mr);
   173   void set_bottom(HeapWord* value);
   174   void set_end(HeapWord* value);
   176   virtual HeapWord* saved_mark_word() const;
   177   virtual void set_saved_mark();
   178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   181   // See the comment above in the declaration of _pre_dummy_top for an
   182   // explanation of what it is.
   183   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   184     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   185     _pre_dummy_top = pre_dummy_top;
   186   }
   187   HeapWord* pre_dummy_top() {
   188     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   189   }
   190   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   192   virtual void clear(bool mangle_space);
   194   HeapWord* block_start(const void* p);
   195   HeapWord* block_start_const(const void* p) const;
   197   // Add offset table update.
   198   virtual HeapWord* allocate(size_t word_size);
   199   HeapWord* par_allocate(size_t word_size);
   201   // MarkSweep support phase3
   202   virtual HeapWord* initialize_threshold();
   203   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   205   virtual void print() const;
   207   void reset_bot() {
   208     _offsets.zero_bottom_entry();
   209     _offsets.initialize_threshold();
   210   }
   212   void update_bot_for_object(HeapWord* start, size_t word_size) {
   213     _offsets.alloc_block(start, word_size);
   214   }
   216   void print_bot_on(outputStream* out) {
   217     _offsets.print_on(out);
   218   }
   219 };
   221 class HeapRegion: public G1OffsetTableContigSpace {
   222   friend class VMStructs;
   223  private:
   225   enum HumongousType {
   226     NotHumongous = 0,
   227     StartsHumongous,
   228     ContinuesHumongous
   229   };
   231   // Requires that the region "mr" be dense with objects, and begin and end
   232   // with an object.
   233   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   235   // The remembered set for this region.
   236   // (Might want to make this "inline" later, to avoid some alloc failure
   237   // issues.)
   238   HeapRegionRemSet* _rem_set;
   240   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   242  protected:
   243   // The index of this region in the heap region sequence.
   244   uint  _hrs_index;
   246   HumongousType _humongous_type;
   247   // For a humongous region, region in which it starts.
   248   HeapRegion* _humongous_start_region;
   249   // For the start region of a humongous sequence, it's original end().
   250   HeapWord* _orig_end;
   252   // True iff the region is in current collection_set.
   253   bool _in_collection_set;
   255   // True iff an attempt to evacuate an object in the region failed.
   256   bool _evacuation_failed;
   258   // A heap region may be a member one of a number of special subsets, each
   259   // represented as linked lists through the field below.  Currently, these
   260   // sets include:
   261   //   The collection set.
   262   //   The set of allocation regions used in a collection pause.
   263   //   Spaces that may contain gray objects.
   264   HeapRegion* _next_in_special_set;
   266   // next region in the young "generation" region set
   267   HeapRegion* _next_young_region;
   269   // Next region whose cards need cleaning
   270   HeapRegion* _next_dirty_cards_region;
   272   // Fields used by the HeapRegionSetBase class and subclasses.
   273   HeapRegion* _next;
   274 #ifdef ASSERT
   275   HeapRegionSetBase* _containing_set;
   276 #endif // ASSERT
   277   bool _pending_removal;
   279   // For parallel heapRegion traversal.
   280   jint _claimed;
   282   // We use concurrent marking to determine the amount of live data
   283   // in each heap region.
   284   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   285   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   287   // The calculated GC efficiency of the region.
   288   double _gc_efficiency;
   290   enum YoungType {
   291     NotYoung,                   // a region is not young
   292     Young,                      // a region is young
   293     Survivor                    // a region is young and it contains survivors
   294   };
   296   volatile YoungType _young_type;
   297   int  _young_index_in_cset;
   298   SurvRateGroup* _surv_rate_group;
   299   int  _age_index;
   301   // The start of the unmarked area. The unmarked area extends from this
   302   // word until the top and/or end of the region, and is the part
   303   // of the region for which no marking was done, i.e. objects may
   304   // have been allocated in this part since the last mark phase.
   305   // "prev" is the top at the start of the last completed marking.
   306   // "next" is the top at the start of the in-progress marking (if any.)
   307   HeapWord* _prev_top_at_mark_start;
   308   HeapWord* _next_top_at_mark_start;
   309   // If a collection pause is in progress, this is the top at the start
   310   // of that pause.
   312   void init_top_at_mark_start() {
   313     assert(_prev_marked_bytes == 0 &&
   314            _next_marked_bytes == 0,
   315            "Must be called after zero_marked_bytes.");
   316     HeapWord* bot = bottom();
   317     _prev_top_at_mark_start = bot;
   318     _next_top_at_mark_start = bot;
   319   }
   321   void set_young_type(YoungType new_type) {
   322     //assert(_young_type != new_type, "setting the same type" );
   323     // TODO: add more assertions here
   324     _young_type = new_type;
   325   }
   327   // Cached attributes used in the collection set policy information
   329   // The RSet length that was added to the total value
   330   // for the collection set.
   331   size_t _recorded_rs_length;
   333   // The predicted elapsed time that was added to total value
   334   // for the collection set.
   335   double _predicted_elapsed_time_ms;
   337   // The predicted number of bytes to copy that was added to
   338   // the total value for the collection set.
   339   size_t _predicted_bytes_to_copy;
   341  public:
   342   HeapRegion(uint hrs_index,
   343              G1BlockOffsetSharedArray* sharedOffsetArray,
   344              MemRegion mr);
   346   static int    LogOfHRGrainBytes;
   347   static int    LogOfHRGrainWords;
   349   static size_t GrainBytes;
   350   static size_t GrainWords;
   351   static size_t CardsPerRegion;
   353   static size_t align_up_to_region_byte_size(size_t sz) {
   354     return (sz + (size_t) GrainBytes - 1) &
   355                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   356   }
   358   static size_t max_region_size();
   360   // It sets up the heap region size (GrainBytes / GrainWords), as
   361   // well as other related fields that are based on the heap region
   362   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   363   // CardsPerRegion). All those fields are considered constant
   364   // throughout the JVM's execution, therefore they should only be set
   365   // up once during initialization time.
   366   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   368   enum ClaimValues {
   369     InitialClaimValue          = 0,
   370     FinalCountClaimValue       = 1,
   371     NoteEndClaimValue          = 2,
   372     ScrubRemSetClaimValue      = 3,
   373     ParVerifyClaimValue        = 4,
   374     RebuildRSClaimValue        = 5,
   375     ParEvacFailureClaimValue   = 6,
   376     AggregateCountClaimValue   = 7,
   377     VerifyCountClaimValue      = 8,
   378     ParMarkRootClaimValue      = 9
   379   };
   381   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   382     assert(is_young(), "we can only skip BOT updates on young regions");
   383     return ContiguousSpace::par_allocate(word_size);
   384   }
   385   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   386     assert(is_young(), "we can only skip BOT updates on young regions");
   387     return ContiguousSpace::allocate(word_size);
   388   }
   390   // If this region is a member of a HeapRegionSeq, the index in that
   391   // sequence, otherwise -1.
   392   uint hrs_index() const { return _hrs_index; }
   394   // The number of bytes marked live in the region in the last marking phase.
   395   size_t marked_bytes()    { return _prev_marked_bytes; }
   396   size_t live_bytes() {
   397     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   398   }
   400   // The number of bytes counted in the next marking.
   401   size_t next_marked_bytes() { return _next_marked_bytes; }
   402   // The number of bytes live wrt the next marking.
   403   size_t next_live_bytes() {
   404     return
   405       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   406   }
   408   // A lower bound on the amount of garbage bytes in the region.
   409   size_t garbage_bytes() {
   410     size_t used_at_mark_start_bytes =
   411       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   412     assert(used_at_mark_start_bytes >= marked_bytes(),
   413            "Can't mark more than we have.");
   414     return used_at_mark_start_bytes - marked_bytes();
   415   }
   417   // Return the amount of bytes we'll reclaim if we collect this
   418   // region. This includes not only the known garbage bytes in the
   419   // region but also any unallocated space in it, i.e., [top, end),
   420   // since it will also be reclaimed if we collect the region.
   421   size_t reclaimable_bytes() {
   422     size_t known_live_bytes = live_bytes();
   423     assert(known_live_bytes <= capacity(), "sanity");
   424     return capacity() - known_live_bytes;
   425   }
   427   // An upper bound on the number of live bytes in the region.
   428   size_t max_live_bytes() { return used() - garbage_bytes(); }
   430   void add_to_marked_bytes(size_t incr_bytes) {
   431     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   432     assert(_next_marked_bytes <= used(), "invariant" );
   433   }
   435   void zero_marked_bytes()      {
   436     _prev_marked_bytes = _next_marked_bytes = 0;
   437   }
   439   bool isHumongous() const { return _humongous_type != NotHumongous; }
   440   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   441   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   442   // For a humongous region, region in which it starts.
   443   HeapRegion* humongous_start_region() const {
   444     return _humongous_start_region;
   445   }
   447   // Return the number of distinct regions that are covered by this region:
   448   // 1 if the region is not humongous, >= 1 if the region is humongous.
   449   uint region_num() const {
   450     if (!isHumongous()) {
   451       return 1U;
   452     } else {
   453       assert(startsHumongous(), "doesn't make sense on HC regions");
   454       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   455       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   456     }
   457   }
   459   // Return the index + 1 of the last HC regions that's associated
   460   // with this HS region.
   461   uint last_hc_index() const {
   462     assert(startsHumongous(), "don't call this otherwise");
   463     return hrs_index() + region_num();
   464   }
   466   // Same as Space::is_in_reserved, but will use the original size of the region.
   467   // The original size is different only for start humongous regions. They get
   468   // their _end set up to be the end of the last continues region of the
   469   // corresponding humongous object.
   470   bool is_in_reserved_raw(const void* p) const {
   471     return _bottom <= p && p < _orig_end;
   472   }
   474   // Makes the current region be a "starts humongous" region, i.e.,
   475   // the first region in a series of one or more contiguous regions
   476   // that will contain a single "humongous" object. The two parameters
   477   // are as follows:
   478   //
   479   // new_top : The new value of the top field of this region which
   480   // points to the end of the humongous object that's being
   481   // allocated. If there is more than one region in the series, top
   482   // will lie beyond this region's original end field and on the last
   483   // region in the series.
   484   //
   485   // new_end : The new value of the end field of this region which
   486   // points to the end of the last region in the series. If there is
   487   // one region in the series (namely: this one) end will be the same
   488   // as the original end of this region.
   489   //
   490   // Updating top and end as described above makes this region look as
   491   // if it spans the entire space taken up by all the regions in the
   492   // series and an single allocation moved its top to new_top. This
   493   // ensures that the space (capacity / allocated) taken up by all
   494   // humongous regions can be calculated by just looking at the
   495   // "starts humongous" regions and by ignoring the "continues
   496   // humongous" regions.
   497   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   499   // Makes the current region be a "continues humongous'
   500   // region. first_hr is the "start humongous" region of the series
   501   // which this region will be part of.
   502   void set_continuesHumongous(HeapRegion* first_hr);
   504   // Unsets the humongous-related fields on the region.
   505   void set_notHumongous();
   507   // If the region has a remembered set, return a pointer to it.
   508   HeapRegionRemSet* rem_set() const {
   509     return _rem_set;
   510   }
   512   // True iff the region is in current collection_set.
   513   bool in_collection_set() const {
   514     return _in_collection_set;
   515   }
   516   void set_in_collection_set(bool b) {
   517     _in_collection_set = b;
   518   }
   519   HeapRegion* next_in_collection_set() {
   520     assert(in_collection_set(), "should only invoke on member of CS.");
   521     assert(_next_in_special_set == NULL ||
   522            _next_in_special_set->in_collection_set(),
   523            "Malformed CS.");
   524     return _next_in_special_set;
   525   }
   526   void set_next_in_collection_set(HeapRegion* r) {
   527     assert(in_collection_set(), "should only invoke on member of CS.");
   528     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   529     _next_in_special_set = r;
   530   }
   532   // Methods used by the HeapRegionSetBase class and subclasses.
   534   // Getter and setter for the next field used to link regions into
   535   // linked lists.
   536   HeapRegion* next()              { return _next; }
   538   void set_next(HeapRegion* next) { _next = next; }
   540   // Every region added to a set is tagged with a reference to that
   541   // set. This is used for doing consistency checking to make sure that
   542   // the contents of a set are as they should be and it's only
   543   // available in non-product builds.
   544 #ifdef ASSERT
   545   void set_containing_set(HeapRegionSetBase* containing_set) {
   546     assert((containing_set == NULL && _containing_set != NULL) ||
   547            (containing_set != NULL && _containing_set == NULL),
   548            err_msg("containing_set: "PTR_FORMAT" "
   549                    "_containing_set: "PTR_FORMAT,
   550                    containing_set, _containing_set));
   552     _containing_set = containing_set;
   553   }
   555   HeapRegionSetBase* containing_set() { return _containing_set; }
   556 #else // ASSERT
   557   void set_containing_set(HeapRegionSetBase* containing_set) { }
   559   // containing_set() is only used in asserts so there's no reason
   560   // to provide a dummy version of it.
   561 #endif // ASSERT
   563   // If we want to remove regions from a list in bulk we can simply tag
   564   // them with the pending_removal tag and call the
   565   // remove_all_pending() method on the list.
   567   bool pending_removal() { return _pending_removal; }
   569   void set_pending_removal(bool pending_removal) {
   570     if (pending_removal) {
   571       assert(!_pending_removal && containing_set() != NULL,
   572              "can only set pending removal to true if it's false and "
   573              "the region belongs to a region set");
   574     } else {
   575       assert( _pending_removal && containing_set() == NULL,
   576               "can only set pending removal to false if it's true and "
   577               "the region does not belong to a region set");
   578     }
   580     _pending_removal = pending_removal;
   581   }
   583   HeapRegion* get_next_young_region() { return _next_young_region; }
   584   void set_next_young_region(HeapRegion* hr) {
   585     _next_young_region = hr;
   586   }
   588   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   589   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   590   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   591   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   593   HeapWord* orig_end() { return _orig_end; }
   595   // Allows logical separation between objects allocated before and after.
   596   void save_marks();
   598   // Reset HR stuff to default values.
   599   void hr_clear(bool par, bool clear_space, bool locked = false);
   600   void par_clear();
   602   // Get the start of the unmarked area in this region.
   603   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   604   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   606   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   607   // allocated in the current region before the last call to "save_mark".
   608   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   610   // Note the start or end of marking. This tells the heap region
   611   // that the collector is about to start or has finished (concurrently)
   612   // marking the heap.
   614   // Notify the region that concurrent marking is starting. Initialize
   615   // all fields related to the next marking info.
   616   inline void note_start_of_marking();
   618   // Notify the region that concurrent marking has finished. Copy the
   619   // (now finalized) next marking info fields into the prev marking
   620   // info fields.
   621   inline void note_end_of_marking();
   623   // Notify the region that it will be used as to-space during a GC
   624   // and we are about to start copying objects into it.
   625   inline void note_start_of_copying(bool during_initial_mark);
   627   // Notify the region that it ceases being to-space during a GC and
   628   // we will not copy objects into it any more.
   629   inline void note_end_of_copying(bool during_initial_mark);
   631   // Notify the region that we are about to start processing
   632   // self-forwarded objects during evac failure handling.
   633   void note_self_forwarding_removal_start(bool during_initial_mark,
   634                                           bool during_conc_mark);
   636   // Notify the region that we have finished processing self-forwarded
   637   // objects during evac failure handling.
   638   void note_self_forwarding_removal_end(bool during_initial_mark,
   639                                         bool during_conc_mark,
   640                                         size_t marked_bytes);
   642   // Returns "false" iff no object in the region was allocated when the
   643   // last mark phase ended.
   644   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   646   void reset_during_compaction() {
   647     assert(isHumongous() && startsHumongous(),
   648            "should only be called for starts humongous regions");
   650     zero_marked_bytes();
   651     init_top_at_mark_start();
   652   }
   654   void calc_gc_efficiency(void);
   655   double gc_efficiency() { return _gc_efficiency;}
   657   bool is_young() const     { return _young_type != NotYoung; }
   658   bool is_survivor() const  { return _young_type == Survivor; }
   660   int  young_index_in_cset() const { return _young_index_in_cset; }
   661   void set_young_index_in_cset(int index) {
   662     assert( (index == -1) || is_young(), "pre-condition" );
   663     _young_index_in_cset = index;
   664   }
   666   int age_in_surv_rate_group() {
   667     assert( _surv_rate_group != NULL, "pre-condition" );
   668     assert( _age_index > -1, "pre-condition" );
   669     return _surv_rate_group->age_in_group(_age_index);
   670   }
   672   void record_surv_words_in_group(size_t words_survived) {
   673     assert( _surv_rate_group != NULL, "pre-condition" );
   674     assert( _age_index > -1, "pre-condition" );
   675     int age_in_group = age_in_surv_rate_group();
   676     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   677   }
   679   int age_in_surv_rate_group_cond() {
   680     if (_surv_rate_group != NULL)
   681       return age_in_surv_rate_group();
   682     else
   683       return -1;
   684   }
   686   SurvRateGroup* surv_rate_group() {
   687     return _surv_rate_group;
   688   }
   690   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   691     assert( surv_rate_group != NULL, "pre-condition" );
   692     assert( _surv_rate_group == NULL, "pre-condition" );
   693     assert( is_young(), "pre-condition" );
   695     _surv_rate_group = surv_rate_group;
   696     _age_index = surv_rate_group->next_age_index();
   697   }
   699   void uninstall_surv_rate_group() {
   700     if (_surv_rate_group != NULL) {
   701       assert( _age_index > -1, "pre-condition" );
   702       assert( is_young(), "pre-condition" );
   704       _surv_rate_group = NULL;
   705       _age_index = -1;
   706     } else {
   707       assert( _age_index == -1, "pre-condition" );
   708     }
   709   }
   711   void set_young() { set_young_type(Young); }
   713   void set_survivor() { set_young_type(Survivor); }
   715   void set_not_young() { set_young_type(NotYoung); }
   717   // Determine if an object has been allocated since the last
   718   // mark performed by the collector. This returns true iff the object
   719   // is within the unmarked area of the region.
   720   bool obj_allocated_since_prev_marking(oop obj) const {
   721     return (HeapWord *) obj >= prev_top_at_mark_start();
   722   }
   723   bool obj_allocated_since_next_marking(oop obj) const {
   724     return (HeapWord *) obj >= next_top_at_mark_start();
   725   }
   727   // For parallel heapRegion traversal.
   728   bool claimHeapRegion(int claimValue);
   729   jint claim_value() { return _claimed; }
   730   // Use this carefully: only when you're sure no one is claiming...
   731   void set_claim_value(int claimValue) { _claimed = claimValue; }
   733   // Returns the "evacuation_failed" property of the region.
   734   bool evacuation_failed() { return _evacuation_failed; }
   736   // Sets the "evacuation_failed" property of the region.
   737   void set_evacuation_failed(bool b) {
   738     _evacuation_failed = b;
   740     if (b) {
   741       _next_marked_bytes = 0;
   742     }
   743   }
   745   // Requires that "mr" be entirely within the region.
   746   // Apply "cl->do_object" to all objects that intersect with "mr".
   747   // If the iteration encounters an unparseable portion of the region,
   748   // or if "cl->abort()" is true after a closure application,
   749   // terminate the iteration and return the address of the start of the
   750   // subregion that isn't done.  (The two can be distinguished by querying
   751   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   752   // completed.
   753   HeapWord*
   754   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   756   // filter_young: if true and the region is a young region then we
   757   // skip the iteration.
   758   // card_ptr: if not NULL, and we decide that the card is not young
   759   // and we iterate over it, we'll clean the card before we start the
   760   // iteration.
   761   HeapWord*
   762   oops_on_card_seq_iterate_careful(MemRegion mr,
   763                                    FilterOutOfRegionClosure* cl,
   764                                    bool filter_young,
   765                                    jbyte* card_ptr);
   767   // A version of block start that is guaranteed to find *some* block
   768   // boundary at or before "p", but does not object iteration, and may
   769   // therefore be used safely when the heap is unparseable.
   770   HeapWord* block_start_careful(const void* p) const {
   771     return _offsets.block_start_careful(p);
   772   }
   774   // Requires that "addr" is within the region.  Returns the start of the
   775   // first ("careful") block that starts at or after "addr", or else the
   776   // "end" of the region if there is no such block.
   777   HeapWord* next_block_start_careful(HeapWord* addr);
   779   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   780   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   781   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   783   void set_recorded_rs_length(size_t rs_length) {
   784     _recorded_rs_length = rs_length;
   785   }
   787   void set_predicted_elapsed_time_ms(double ms) {
   788     _predicted_elapsed_time_ms = ms;
   789   }
   791   void set_predicted_bytes_to_copy(size_t bytes) {
   792     _predicted_bytes_to_copy = bytes;
   793   }
   795 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   796   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   797   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   799   virtual CompactibleSpace* next_compaction_space() const;
   801   virtual void reset_after_compaction();
   803   // Routines for managing a list of code roots (attached to the
   804   // this region's RSet) that point into this heap region.
   805   void add_strong_code_root(nmethod* nm);
   806   void remove_strong_code_root(nmethod* nm);
   808   // During a collection, migrate the successfully evacuated
   809   // strong code roots that referenced into this region to the
   810   // new regions that they now point into. Unsuccessfully
   811   // evacuated code roots are not migrated.
   812   void migrate_strong_code_roots();
   814   // Applies blk->do_code_blob() to each of the entries in
   815   // the strong code roots list for this region
   816   void strong_code_roots_do(CodeBlobClosure* blk) const;
   818   // Verify that the entries on the strong code root list for this
   819   // region are live and include at least one pointer into this region.
   820   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   822   void print() const;
   823   void print_on(outputStream* st) const;
   825   // vo == UsePrevMarking  -> use "prev" marking information,
   826   // vo == UseNextMarking -> use "next" marking information
   827   // vo == UseMarkWord    -> use the mark word in the object header
   828   //
   829   // NOTE: Only the "prev" marking information is guaranteed to be
   830   // consistent most of the time, so most calls to this should use
   831   // vo == UsePrevMarking.
   832   // Currently, there is only one case where this is called with
   833   // vo == UseNextMarking, which is to verify the "next" marking
   834   // information at the end of remark.
   835   // Currently there is only one place where this is called with
   836   // vo == UseMarkWord, which is to verify the marking during a
   837   // full GC.
   838   void verify(VerifyOption vo, bool *failures) const;
   840   // Override; it uses the "prev" marking information
   841   virtual void verify() const;
   842 };
   844 // HeapRegionClosure is used for iterating over regions.
   845 // Terminates the iteration when the "doHeapRegion" method returns "true".
   846 class HeapRegionClosure : public StackObj {
   847   friend class HeapRegionSeq;
   848   friend class G1CollectedHeap;
   850   bool _complete;
   851   void incomplete() { _complete = false; }
   853  public:
   854   HeapRegionClosure(): _complete(true) {}
   856   // Typically called on each region until it returns true.
   857   virtual bool doHeapRegion(HeapRegion* r) = 0;
   859   // True after iteration if the closure was applied to all heap regions
   860   // and returned "false" in all cases.
   861   bool complete() { return _complete; }
   862 };
   864 #endif // INCLUDE_ALL_GCS
   866 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial