src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 11 Sep 2013 16:25:02 +0200

author
tschatzl
date
Wed, 11 Sep 2013 16:25:02 +0200
changeset 5701
40136aa2cdb1
parent 5646
84683e78e713
child 6404
96b1c2e06e25
permissions
-rw-r--r--

8010722: assert: failed: heap size is too big for compressed oops
Summary: Use conservative assumptions of required alignment for the various garbage collector components into account when determining the maximum heap size that supports compressed oops. Using this conservative value avoids several circular dependencies in the calculation.
Reviewed-by: stefank, dholmes

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    35 #include "utilities/macros.hpp"
    37 #if INCLUDE_ALL_GCS
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class CompactibleSpace;
    50 class ContiguousSpace;
    51 class HeapRegionRemSet;
    52 class HeapRegionRemSetIterator;
    53 class HeapRegion;
    54 class HeapRegionSetBase;
    55 class nmethod;
    57 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    58 #define HR_FORMAT_PARAMS(_hr_) \
    59                 (_hr_)->hrs_index(), \
    60                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    61                 (_hr_)->startsHumongous() ? "HS" : \
    62                 (_hr_)->continuesHumongous() ? "HC" : \
    63                 !(_hr_)->is_empty() ? "O" : "F", \
    64                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    66 // sentinel value for hrs_index
    67 #define G1_NULL_HRS_INDEX ((uint) -1)
    69 // A dirty card to oop closure for heap regions. It
    70 // knows how to get the G1 heap and how to use the bitmap
    71 // in the concurrent marker used by G1 to filter remembered
    72 // sets.
    74 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    75 public:
    76   // Specification of possible DirtyCardToOopClosure filtering.
    77   enum FilterKind {
    78     NoFilterKind,
    79     IntoCSFilterKind,
    80     OutOfRegionFilterKind
    81   };
    83 protected:
    84   HeapRegion* _hr;
    85   FilterKind _fk;
    86   G1CollectedHeap* _g1;
    88   void walk_mem_region_with_cl(MemRegion mr,
    89                                HeapWord* bottom, HeapWord* top,
    90                                ExtendedOopClosure* cl);
    92   // We don't specialize this for FilteringClosure; filtering is handled by
    93   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    94   // warning.
    95   void walk_mem_region_with_cl(MemRegion mr,
    96                                HeapWord* bottom, HeapWord* top,
    97                                FilteringClosure* cl) {
    98     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    99                                              (ExtendedOopClosure*)cl);
   100   }
   102   // Get the actual top of the area on which the closure will
   103   // operate, given where the top is assumed to be (the end of the
   104   // memory region passed to do_MemRegion) and where the object
   105   // at the top is assumed to start. For example, an object may
   106   // start at the top but actually extend past the assumed top,
   107   // in which case the top becomes the end of the object.
   108   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   109     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   110   }
   112   // Walk the given memory region from bottom to (actual) top
   113   // looking for objects and applying the oop closure (_cl) to
   114   // them. The base implementation of this treats the area as
   115   // blocks, where a block may or may not be an object. Sub-
   116   // classes should override this to provide more accurate
   117   // or possibly more efficient walking.
   118   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   119     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   120   }
   122 public:
   123   HeapRegionDCTOC(G1CollectedHeap* g1,
   124                   HeapRegion* hr, ExtendedOopClosure* cl,
   125                   CardTableModRefBS::PrecisionStyle precision,
   126                   FilterKind fk);
   127 };
   129 // The complicating factor is that BlockOffsetTable diverged
   130 // significantly, and we need functionality that is only in the G1 version.
   131 // So I copied that code, which led to an alternate G1 version of
   132 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   133 // be reconciled, then G1OffsetTableContigSpace could go away.
   135 // The idea behind time stamps is the following. Doing a save_marks on
   136 // all regions at every GC pause is time consuming (if I remember
   137 // well, 10ms or so). So, we would like to do that only for regions
   138 // that are GC alloc regions. To achieve this, we use time
   139 // stamps. For every evacuation pause, G1CollectedHeap generates a
   140 // unique time stamp (essentially a counter that gets
   141 // incremented). Every time we want to call save_marks on a region,
   142 // we set the saved_mark_word to top and also copy the current GC
   143 // time stamp to the time stamp field of the space. Reading the
   144 // saved_mark_word involves checking the time stamp of the
   145 // region. If it is the same as the current GC time stamp, then we
   146 // can safely read the saved_mark_word field, as it is valid. If the
   147 // time stamp of the region is not the same as the current GC time
   148 // stamp, then we instead read top, as the saved_mark_word field is
   149 // invalid. Time stamps (on the regions and also on the
   150 // G1CollectedHeap) are reset at every cleanup (we iterate over
   151 // the regions anyway) and at the end of a Full GC. The current scheme
   152 // that uses sequential unsigned ints will fail only if we have 4b
   153 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   155 class G1OffsetTableContigSpace: public ContiguousSpace {
   156   friend class VMStructs;
   157  protected:
   158   G1BlockOffsetArrayContigSpace _offsets;
   159   Mutex _par_alloc_lock;
   160   volatile unsigned _gc_time_stamp;
   161   // When we need to retire an allocation region, while other threads
   162   // are also concurrently trying to allocate into it, we typically
   163   // allocate a dummy object at the end of the region to ensure that
   164   // no more allocations can take place in it. However, sometimes we
   165   // want to know where the end of the last "real" object we allocated
   166   // into the region was and this is what this keeps track.
   167   HeapWord* _pre_dummy_top;
   169  public:
   170   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   171                            MemRegion mr);
   173   void set_bottom(HeapWord* value);
   174   void set_end(HeapWord* value);
   176   virtual HeapWord* saved_mark_word() const;
   177   virtual void set_saved_mark();
   178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   181   // See the comment above in the declaration of _pre_dummy_top for an
   182   // explanation of what it is.
   183   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   184     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   185     _pre_dummy_top = pre_dummy_top;
   186   }
   187   HeapWord* pre_dummy_top() {
   188     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   189   }
   190   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   192   virtual void clear(bool mangle_space);
   194   HeapWord* block_start(const void* p);
   195   HeapWord* block_start_const(const void* p) const;
   197   // Add offset table update.
   198   virtual HeapWord* allocate(size_t word_size);
   199   HeapWord* par_allocate(size_t word_size);
   201   // MarkSweep support phase3
   202   virtual HeapWord* initialize_threshold();
   203   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   205   virtual void print() const;
   207   void reset_bot() {
   208     _offsets.zero_bottom_entry();
   209     _offsets.initialize_threshold();
   210   }
   212   void update_bot_for_object(HeapWord* start, size_t word_size) {
   213     _offsets.alloc_block(start, word_size);
   214   }
   216   void print_bot_on(outputStream* out) {
   217     _offsets.print_on(out);
   218   }
   219 };
   221 class HeapRegion: public G1OffsetTableContigSpace {
   222   friend class VMStructs;
   223  private:
   225   enum HumongousType {
   226     NotHumongous = 0,
   227     StartsHumongous,
   228     ContinuesHumongous
   229   };
   231   // Requires that the region "mr" be dense with objects, and begin and end
   232   // with an object.
   233   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   235   // The remembered set for this region.
   236   // (Might want to make this "inline" later, to avoid some alloc failure
   237   // issues.)
   238   HeapRegionRemSet* _rem_set;
   240   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   242  protected:
   243   // The index of this region in the heap region sequence.
   244   uint  _hrs_index;
   246   HumongousType _humongous_type;
   247   // For a humongous region, region in which it starts.
   248   HeapRegion* _humongous_start_region;
   249   // For the start region of a humongous sequence, it's original end().
   250   HeapWord* _orig_end;
   252   // True iff the region is in current collection_set.
   253   bool _in_collection_set;
   255   // True iff an attempt to evacuate an object in the region failed.
   256   bool _evacuation_failed;
   258   // A heap region may be a member one of a number of special subsets, each
   259   // represented as linked lists through the field below.  Currently, these
   260   // sets include:
   261   //   The collection set.
   262   //   The set of allocation regions used in a collection pause.
   263   //   Spaces that may contain gray objects.
   264   HeapRegion* _next_in_special_set;
   266   // next region in the young "generation" region set
   267   HeapRegion* _next_young_region;
   269   // Next region whose cards need cleaning
   270   HeapRegion* _next_dirty_cards_region;
   272   // Fields used by the HeapRegionSetBase class and subclasses.
   273   HeapRegion* _next;
   274 #ifdef ASSERT
   275   HeapRegionSetBase* _containing_set;
   276 #endif // ASSERT
   277   bool _pending_removal;
   279   // For parallel heapRegion traversal.
   280   jint _claimed;
   282   // We use concurrent marking to determine the amount of live data
   283   // in each heap region.
   284   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   285   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   287   // The calculated GC efficiency of the region.
   288   double _gc_efficiency;
   290   enum YoungType {
   291     NotYoung,                   // a region is not young
   292     Young,                      // a region is young
   293     Survivor                    // a region is young and it contains survivors
   294   };
   296   volatile YoungType _young_type;
   297   int  _young_index_in_cset;
   298   SurvRateGroup* _surv_rate_group;
   299   int  _age_index;
   301   // The start of the unmarked area. The unmarked area extends from this
   302   // word until the top and/or end of the region, and is the part
   303   // of the region for which no marking was done, i.e. objects may
   304   // have been allocated in this part since the last mark phase.
   305   // "prev" is the top at the start of the last completed marking.
   306   // "next" is the top at the start of the in-progress marking (if any.)
   307   HeapWord* _prev_top_at_mark_start;
   308   HeapWord* _next_top_at_mark_start;
   309   // If a collection pause is in progress, this is the top at the start
   310   // of that pause.
   312   void init_top_at_mark_start() {
   313     assert(_prev_marked_bytes == 0 &&
   314            _next_marked_bytes == 0,
   315            "Must be called after zero_marked_bytes.");
   316     HeapWord* bot = bottom();
   317     _prev_top_at_mark_start = bot;
   318     _next_top_at_mark_start = bot;
   319   }
   321   void set_young_type(YoungType new_type) {
   322     //assert(_young_type != new_type, "setting the same type" );
   323     // TODO: add more assertions here
   324     _young_type = new_type;
   325   }
   327   // Cached attributes used in the collection set policy information
   329   // The RSet length that was added to the total value
   330   // for the collection set.
   331   size_t _recorded_rs_length;
   333   // The predicted elapsed time that was added to total value
   334   // for the collection set.
   335   double _predicted_elapsed_time_ms;
   337   // The predicted number of bytes to copy that was added to
   338   // the total value for the collection set.
   339   size_t _predicted_bytes_to_copy;
   341  public:
   342   HeapRegion(uint hrs_index,
   343              G1BlockOffsetSharedArray* sharedOffsetArray,
   344              MemRegion mr);
   346   static int    LogOfHRGrainBytes;
   347   static int    LogOfHRGrainWords;
   349   static size_t GrainBytes;
   350   static size_t GrainWords;
   351   static size_t CardsPerRegion;
   353   static size_t align_up_to_region_byte_size(size_t sz) {
   354     return (sz + (size_t) GrainBytes - 1) &
   355                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   356   }
   358   static size_t max_region_size();
   360   // It sets up the heap region size (GrainBytes / GrainWords), as
   361   // well as other related fields that are based on the heap region
   362   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   363   // CardsPerRegion). All those fields are considered constant
   364   // throughout the JVM's execution, therefore they should only be set
   365   // up once during initialization time.
   366   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   368   enum ClaimValues {
   369     InitialClaimValue          = 0,
   370     FinalCountClaimValue       = 1,
   371     NoteEndClaimValue          = 2,
   372     ScrubRemSetClaimValue      = 3,
   373     ParVerifyClaimValue        = 4,
   374     RebuildRSClaimValue        = 5,
   375     ParEvacFailureClaimValue   = 6,
   376     AggregateCountClaimValue   = 7,
   377     VerifyCountClaimValue      = 8,
   378     ParMarkRootClaimValue      = 9
   379   };
   381   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   382     assert(is_young(), "we can only skip BOT updates on young regions");
   383     return ContiguousSpace::par_allocate(word_size);
   384   }
   385   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   386     assert(is_young(), "we can only skip BOT updates on young regions");
   387     return ContiguousSpace::allocate(word_size);
   388   }
   390   // If this region is a member of a HeapRegionSeq, the index in that
   391   // sequence, otherwise -1.
   392   uint hrs_index() const { return _hrs_index; }
   394   // The number of bytes marked live in the region in the last marking phase.
   395   size_t marked_bytes()    { return _prev_marked_bytes; }
   396   size_t live_bytes() {
   397     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   398   }
   400   // The number of bytes counted in the next marking.
   401   size_t next_marked_bytes() { return _next_marked_bytes; }
   402   // The number of bytes live wrt the next marking.
   403   size_t next_live_bytes() {
   404     return
   405       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   406   }
   408   // A lower bound on the amount of garbage bytes in the region.
   409   size_t garbage_bytes() {
   410     size_t used_at_mark_start_bytes =
   411       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   412     assert(used_at_mark_start_bytes >= marked_bytes(),
   413            "Can't mark more than we have.");
   414     return used_at_mark_start_bytes - marked_bytes();
   415   }
   417   // Return the amount of bytes we'll reclaim if we collect this
   418   // region. This includes not only the known garbage bytes in the
   419   // region but also any unallocated space in it, i.e., [top, end),
   420   // since it will also be reclaimed if we collect the region.
   421   size_t reclaimable_bytes() {
   422     size_t known_live_bytes = live_bytes();
   423     assert(known_live_bytes <= capacity(), "sanity");
   424     return capacity() - known_live_bytes;
   425   }
   427   // An upper bound on the number of live bytes in the region.
   428   size_t max_live_bytes() { return used() - garbage_bytes(); }
   430   void add_to_marked_bytes(size_t incr_bytes) {
   431     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   432     assert(_next_marked_bytes <= used(), "invariant" );
   433   }
   435   void zero_marked_bytes()      {
   436     _prev_marked_bytes = _next_marked_bytes = 0;
   437   }
   439   bool isHumongous() const { return _humongous_type != NotHumongous; }
   440   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   441   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   442   // For a humongous region, region in which it starts.
   443   HeapRegion* humongous_start_region() const {
   444     return _humongous_start_region;
   445   }
   447   // Return the number of distinct regions that are covered by this region:
   448   // 1 if the region is not humongous, >= 1 if the region is humongous.
   449   uint region_num() const {
   450     if (!isHumongous()) {
   451       return 1U;
   452     } else {
   453       assert(startsHumongous(), "doesn't make sense on HC regions");
   454       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   455       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   456     }
   457   }
   459   // Return the index + 1 of the last HC regions that's associated
   460   // with this HS region.
   461   uint last_hc_index() const {
   462     assert(startsHumongous(), "don't call this otherwise");
   463     return hrs_index() + region_num();
   464   }
   466   // Same as Space::is_in_reserved, but will use the original size of the region.
   467   // The original size is different only for start humongous regions. They get
   468   // their _end set up to be the end of the last continues region of the
   469   // corresponding humongous object.
   470   bool is_in_reserved_raw(const void* p) const {
   471     return _bottom <= p && p < _orig_end;
   472   }
   474   // Makes the current region be a "starts humongous" region, i.e.,
   475   // the first region in a series of one or more contiguous regions
   476   // that will contain a single "humongous" object. The two parameters
   477   // are as follows:
   478   //
   479   // new_top : The new value of the top field of this region which
   480   // points to the end of the humongous object that's being
   481   // allocated. If there is more than one region in the series, top
   482   // will lie beyond this region's original end field and on the last
   483   // region in the series.
   484   //
   485   // new_end : The new value of the end field of this region which
   486   // points to the end of the last region in the series. If there is
   487   // one region in the series (namely: this one) end will be the same
   488   // as the original end of this region.
   489   //
   490   // Updating top and end as described above makes this region look as
   491   // if it spans the entire space taken up by all the regions in the
   492   // series and an single allocation moved its top to new_top. This
   493   // ensures that the space (capacity / allocated) taken up by all
   494   // humongous regions can be calculated by just looking at the
   495   // "starts humongous" regions and by ignoring the "continues
   496   // humongous" regions.
   497   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   499   // Makes the current region be a "continues humongous'
   500   // region. first_hr is the "start humongous" region of the series
   501   // which this region will be part of.
   502   void set_continuesHumongous(HeapRegion* first_hr);
   504   // Unsets the humongous-related fields on the region.
   505   void set_notHumongous();
   507   // If the region has a remembered set, return a pointer to it.
   508   HeapRegionRemSet* rem_set() const {
   509     return _rem_set;
   510   }
   512   // True iff the region is in current collection_set.
   513   bool in_collection_set() const {
   514     return _in_collection_set;
   515   }
   516   void set_in_collection_set(bool b) {
   517     _in_collection_set = b;
   518   }
   519   HeapRegion* next_in_collection_set() {
   520     assert(in_collection_set(), "should only invoke on member of CS.");
   521     assert(_next_in_special_set == NULL ||
   522            _next_in_special_set->in_collection_set(),
   523            "Malformed CS.");
   524     return _next_in_special_set;
   525   }
   526   void set_next_in_collection_set(HeapRegion* r) {
   527     assert(in_collection_set(), "should only invoke on member of CS.");
   528     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   529     _next_in_special_set = r;
   530   }
   532   // Methods used by the HeapRegionSetBase class and subclasses.
   534   // Getter and setter for the next field used to link regions into
   535   // linked lists.
   536   HeapRegion* next()              { return _next; }
   538   void set_next(HeapRegion* next) { _next = next; }
   540   // Every region added to a set is tagged with a reference to that
   541   // set. This is used for doing consistency checking to make sure that
   542   // the contents of a set are as they should be and it's only
   543   // available in non-product builds.
   544 #ifdef ASSERT
   545   void set_containing_set(HeapRegionSetBase* containing_set) {
   546     assert((containing_set == NULL && _containing_set != NULL) ||
   547            (containing_set != NULL && _containing_set == NULL),
   548            err_msg("containing_set: "PTR_FORMAT" "
   549                    "_containing_set: "PTR_FORMAT,
   550                    containing_set, _containing_set));
   552     _containing_set = containing_set;
   553   }
   555   HeapRegionSetBase* containing_set() { return _containing_set; }
   556 #else // ASSERT
   557   void set_containing_set(HeapRegionSetBase* containing_set) { }
   559   // containing_set() is only used in asserts so there's no reason
   560   // to provide a dummy version of it.
   561 #endif // ASSERT
   563   // If we want to remove regions from a list in bulk we can simply tag
   564   // them with the pending_removal tag and call the
   565   // remove_all_pending() method on the list.
   567   bool pending_removal() { return _pending_removal; }
   569   void set_pending_removal(bool pending_removal) {
   570     if (pending_removal) {
   571       assert(!_pending_removal && containing_set() != NULL,
   572              "can only set pending removal to true if it's false and "
   573              "the region belongs to a region set");
   574     } else {
   575       assert( _pending_removal && containing_set() == NULL,
   576               "can only set pending removal to false if it's true and "
   577               "the region does not belong to a region set");
   578     }
   580     _pending_removal = pending_removal;
   581   }
   583   HeapRegion* get_next_young_region() { return _next_young_region; }
   584   void set_next_young_region(HeapRegion* hr) {
   585     _next_young_region = hr;
   586   }
   588   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   589   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   590   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   591   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   593   HeapWord* orig_end() { return _orig_end; }
   595   // Allows logical separation between objects allocated before and after.
   596   void save_marks();
   598   // Reset HR stuff to default values.
   599   void hr_clear(bool par, bool clear_space);
   600   void par_clear();
   602   // Get the start of the unmarked area in this region.
   603   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   604   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   606   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   607   // allocated in the current region before the last call to "save_mark".
   608   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   610   // Note the start or end of marking. This tells the heap region
   611   // that the collector is about to start or has finished (concurrently)
   612   // marking the heap.
   614   // Notify the region that concurrent marking is starting. Initialize
   615   // all fields related to the next marking info.
   616   inline void note_start_of_marking();
   618   // Notify the region that concurrent marking has finished. Copy the
   619   // (now finalized) next marking info fields into the prev marking
   620   // info fields.
   621   inline void note_end_of_marking();
   623   // Notify the region that it will be used as to-space during a GC
   624   // and we are about to start copying objects into it.
   625   inline void note_start_of_copying(bool during_initial_mark);
   627   // Notify the region that it ceases being to-space during a GC and
   628   // we will not copy objects into it any more.
   629   inline void note_end_of_copying(bool during_initial_mark);
   631   // Notify the region that we are about to start processing
   632   // self-forwarded objects during evac failure handling.
   633   void note_self_forwarding_removal_start(bool during_initial_mark,
   634                                           bool during_conc_mark);
   636   // Notify the region that we have finished processing self-forwarded
   637   // objects during evac failure handling.
   638   void note_self_forwarding_removal_end(bool during_initial_mark,
   639                                         bool during_conc_mark,
   640                                         size_t marked_bytes);
   642   // Returns "false" iff no object in the region was allocated when the
   643   // last mark phase ended.
   644   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   646   void reset_during_compaction() {
   647     assert(isHumongous() && startsHumongous(),
   648            "should only be called for starts humongous regions");
   650     zero_marked_bytes();
   651     init_top_at_mark_start();
   652   }
   654   void calc_gc_efficiency(void);
   655   double gc_efficiency() { return _gc_efficiency;}
   657   bool is_young() const     { return _young_type != NotYoung; }
   658   bool is_survivor() const  { return _young_type == Survivor; }
   660   int  young_index_in_cset() const { return _young_index_in_cset; }
   661   void set_young_index_in_cset(int index) {
   662     assert( (index == -1) || is_young(), "pre-condition" );
   663     _young_index_in_cset = index;
   664   }
   666   int age_in_surv_rate_group() {
   667     assert( _surv_rate_group != NULL, "pre-condition" );
   668     assert( _age_index > -1, "pre-condition" );
   669     return _surv_rate_group->age_in_group(_age_index);
   670   }
   672   void record_surv_words_in_group(size_t words_survived) {
   673     assert( _surv_rate_group != NULL, "pre-condition" );
   674     assert( _age_index > -1, "pre-condition" );
   675     int age_in_group = age_in_surv_rate_group();
   676     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   677   }
   679   int age_in_surv_rate_group_cond() {
   680     if (_surv_rate_group != NULL)
   681       return age_in_surv_rate_group();
   682     else
   683       return -1;
   684   }
   686   SurvRateGroup* surv_rate_group() {
   687     return _surv_rate_group;
   688   }
   690   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   691     assert( surv_rate_group != NULL, "pre-condition" );
   692     assert( _surv_rate_group == NULL, "pre-condition" );
   693     assert( is_young(), "pre-condition" );
   695     _surv_rate_group = surv_rate_group;
   696     _age_index = surv_rate_group->next_age_index();
   697   }
   699   void uninstall_surv_rate_group() {
   700     if (_surv_rate_group != NULL) {
   701       assert( _age_index > -1, "pre-condition" );
   702       assert( is_young(), "pre-condition" );
   704       _surv_rate_group = NULL;
   705       _age_index = -1;
   706     } else {
   707       assert( _age_index == -1, "pre-condition" );
   708     }
   709   }
   711   void set_young() { set_young_type(Young); }
   713   void set_survivor() { set_young_type(Survivor); }
   715   void set_not_young() { set_young_type(NotYoung); }
   717   // Determine if an object has been allocated since the last
   718   // mark performed by the collector. This returns true iff the object
   719   // is within the unmarked area of the region.
   720   bool obj_allocated_since_prev_marking(oop obj) const {
   721     return (HeapWord *) obj >= prev_top_at_mark_start();
   722   }
   723   bool obj_allocated_since_next_marking(oop obj) const {
   724     return (HeapWord *) obj >= next_top_at_mark_start();
   725   }
   727   // For parallel heapRegion traversal.
   728   bool claimHeapRegion(int claimValue);
   729   jint claim_value() { return _claimed; }
   730   // Use this carefully: only when you're sure no one is claiming...
   731   void set_claim_value(int claimValue) { _claimed = claimValue; }
   733   // Returns the "evacuation_failed" property of the region.
   734   bool evacuation_failed() { return _evacuation_failed; }
   736   // Sets the "evacuation_failed" property of the region.
   737   void set_evacuation_failed(bool b) {
   738     _evacuation_failed = b;
   740     if (b) {
   741       _next_marked_bytes = 0;
   742     }
   743   }
   745   // Requires that "mr" be entirely within the region.
   746   // Apply "cl->do_object" to all objects that intersect with "mr".
   747   // If the iteration encounters an unparseable portion of the region,
   748   // or if "cl->abort()" is true after a closure application,
   749   // terminate the iteration and return the address of the start of the
   750   // subregion that isn't done.  (The two can be distinguished by querying
   751   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   752   // completed.
   753   HeapWord*
   754   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   756   // filter_young: if true and the region is a young region then we
   757   // skip the iteration.
   758   // card_ptr: if not NULL, and we decide that the card is not young
   759   // and we iterate over it, we'll clean the card before we start the
   760   // iteration.
   761   HeapWord*
   762   oops_on_card_seq_iterate_careful(MemRegion mr,
   763                                    FilterOutOfRegionClosure* cl,
   764                                    bool filter_young,
   765                                    jbyte* card_ptr);
   767   // A version of block start that is guaranteed to find *some* block
   768   // boundary at or before "p", but does not object iteration, and may
   769   // therefore be used safely when the heap is unparseable.
   770   HeapWord* block_start_careful(const void* p) const {
   771     return _offsets.block_start_careful(p);
   772   }
   774   // Requires that "addr" is within the region.  Returns the start of the
   775   // first ("careful") block that starts at or after "addr", or else the
   776   // "end" of the region if there is no such block.
   777   HeapWord* next_block_start_careful(HeapWord* addr);
   779   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   780   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   781   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   783   void set_recorded_rs_length(size_t rs_length) {
   784     _recorded_rs_length = rs_length;
   785   }
   787   void set_predicted_elapsed_time_ms(double ms) {
   788     _predicted_elapsed_time_ms = ms;
   789   }
   791   void set_predicted_bytes_to_copy(size_t bytes) {
   792     _predicted_bytes_to_copy = bytes;
   793   }
   795 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   796   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   797   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   799   virtual CompactibleSpace* next_compaction_space() const;
   801   virtual void reset_after_compaction();
   803   // Routines for managing a list of code roots (attached to the
   804   // this region's RSet) that point into this heap region.
   805   void add_strong_code_root(nmethod* nm);
   806   void remove_strong_code_root(nmethod* nm);
   808   // During a collection, migrate the successfully evacuated
   809   // strong code roots that referenced into this region to the
   810   // new regions that they now point into. Unsuccessfully
   811   // evacuated code roots are not migrated.
   812   void migrate_strong_code_roots();
   814   // Applies blk->do_code_blob() to each of the entries in
   815   // the strong code roots list for this region
   816   void strong_code_roots_do(CodeBlobClosure* blk) const;
   818   // Verify that the entries on the strong code root list for this
   819   // region are live and include at least one pointer into this region.
   820   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   822   void print() const;
   823   void print_on(outputStream* st) const;
   825   // vo == UsePrevMarking  -> use "prev" marking information,
   826   // vo == UseNextMarking -> use "next" marking information
   827   // vo == UseMarkWord    -> use the mark word in the object header
   828   //
   829   // NOTE: Only the "prev" marking information is guaranteed to be
   830   // consistent most of the time, so most calls to this should use
   831   // vo == UsePrevMarking.
   832   // Currently, there is only one case where this is called with
   833   // vo == UseNextMarking, which is to verify the "next" marking
   834   // information at the end of remark.
   835   // Currently there is only one place where this is called with
   836   // vo == UseMarkWord, which is to verify the marking during a
   837   // full GC.
   838   void verify(VerifyOption vo, bool *failures) const;
   840   // Override; it uses the "prev" marking information
   841   virtual void verify() const;
   842 };
   844 // HeapRegionClosure is used for iterating over regions.
   845 // Terminates the iteration when the "doHeapRegion" method returns "true".
   846 class HeapRegionClosure : public StackObj {
   847   friend class HeapRegionSeq;
   848   friend class G1CollectedHeap;
   850   bool _complete;
   851   void incomplete() { _complete = false; }
   853  public:
   854   HeapRegionClosure(): _complete(true) {}
   856   // Typically called on each region until it returns true.
   857   virtual bool doHeapRegion(HeapRegion* r) = 0;
   859   // True after iteration if the closure was applied to all heap regions
   860   // and returned "false" in all cases.
   861   bool complete() { return _complete; }
   862 };
   864 #endif // INCLUDE_ALL_GCS
   866 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial