src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Mon, 16 Jan 2012 22:10:05 +0100

author
brutisso
date
Mon, 16 Jan 2012 22:10:05 +0100
changeset 3456
9509c20bba28
parent 3416
2ace1c4ee8da
child 3461
6a78aa6ac1ff
permissions
-rw-r--r--

6976060: G1: humongous object allocations should initiate marking cycles when necessary
Reviewed-by: tonyp, johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "runtime/arguments.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "utilities/debug.hpp"
    39 // Different defaults for different number of GC threads
    40 // They were chosen by running GCOld and SPECjbb on debris with different
    41 //   numbers of GC threads and choosing them based on the results
    43 // all the same
    44 static double rs_length_diff_defaults[] = {
    45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    46 };
    48 static double cost_per_card_ms_defaults[] = {
    49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    50 };
    52 // all the same
    53 static double young_cards_per_entry_ratio_defaults[] = {
    54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    55 };
    57 static double cost_per_entry_ms_defaults[] = {
    58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    59 };
    61 static double cost_per_byte_ms_defaults[] = {
    62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    63 };
    65 // these should be pretty consistent
    66 static double constant_other_time_ms_defaults[] = {
    67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    68 };
    71 static double young_other_cost_per_region_ms_defaults[] = {
    72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    73 };
    75 static double non_young_other_cost_per_region_ms_defaults[] = {
    76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    77 };
    79 // Help class for avoiding interleaved logging
    80 class LineBuffer: public StackObj {
    82 private:
    83   static const int BUFFER_LEN = 1024;
    84   static const int INDENT_CHARS = 3;
    85   char _buffer[BUFFER_LEN];
    86   int _indent_level;
    87   int _cur;
    89   void vappend(const char* format, va_list ap) {
    90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    91     if (res != -1) {
    92       _cur += res;
    93     } else {
    94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    95       _buffer[BUFFER_LEN -1] = 0;
    96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    97     }
    98   }
   100 public:
   101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   103       _buffer[_cur] = ' ';
   104     }
   105   }
   107 #ifndef PRODUCT
   108   ~LineBuffer() {
   109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   110   }
   111 #endif
   113   void append(const char* format, ...) {
   114     va_list ap;
   115     va_start(ap, format);
   116     vappend(format, ap);
   117     va_end(ap);
   118   }
   120   void append_and_print_cr(const char* format, ...) {
   121     va_list ap;
   122     va_start(ap, format);
   123     vappend(format, ap);
   124     va_end(ap);
   125     gclog_or_tty->print_cr("%s", _buffer);
   126     _cur = _indent_level * INDENT_CHARS;
   127   }
   128 };
   130 G1CollectorPolicy::G1CollectorPolicy() :
   131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   132                         ? ParallelGCThreads : 1),
   134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   135   _all_pause_times_ms(new NumberSeq()),
   136   _stop_world_start(0.0),
   137   _all_stop_world_times_ms(new NumberSeq()),
   138   _all_yield_times_ms(new NumberSeq()),
   140   _summary(new Summary()),
   142   _cur_clear_ct_time_ms(0.0),
   143   _mark_closure_time_ms(0.0),
   145   _cur_ref_proc_time_ms(0.0),
   146   _cur_ref_enq_time_ms(0.0),
   148 #ifndef PRODUCT
   149   _min_clear_cc_time_ms(-1.0),
   150   _max_clear_cc_time_ms(-1.0),
   151   _cur_clear_cc_time_ms(0.0),
   152   _cum_clear_cc_time_ms(0.0),
   153   _num_cc_clears(0L),
   154 #endif
   156   _aux_num(10),
   157   _all_aux_times_ms(new NumberSeq[_aux_num]),
   158   _cur_aux_start_times_ms(new double[_aux_num]),
   159   _cur_aux_times_ms(new double[_aux_num]),
   160   _cur_aux_times_set(new bool[_aux_num]),
   162   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   163   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   165   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   166   _prev_collection_pause_end_ms(0.0),
   167   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   168   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   172   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   173   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _non_young_other_cost_per_region_ms_seq(
   179                                          new TruncatedSeq(TruncatedSeqLength)),
   181   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   182   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   184   _pause_time_target_ms((double) MaxGCPauseMillis),
   186   _gcs_are_young(true),
   187   _young_pause_num(0),
   188   _mixed_pause_num(0),
   190   _during_marking(false),
   191   _in_marking_window(false),
   192   _in_marking_window_im(false),
   194   _known_garbage_ratio(0.0),
   195   _known_garbage_bytes(0),
   197   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   199   _recent_prev_end_times_for_all_gcs_sec(
   200                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   202   _recent_avg_pause_time_ratio(0.0),
   204   _all_full_gc_times_ms(new NumberSeq()),
   206   _initiate_conc_mark_if_possible(false),
   207   _during_initial_mark_pause(false),
   208   _should_revert_to_young_gcs(false),
   209   _last_young_gc(false),
   210   _last_gc_was_young(false),
   212   _eden_bytes_before_gc(0),
   213   _survivor_bytes_before_gc(0),
   214   _capacity_before_gc(0),
   216   _eden_cset_region_length(0),
   217   _survivor_cset_region_length(0),
   218   _old_cset_region_length(0),
   220   _collection_set(NULL),
   221   _collection_set_bytes_used_before(0),
   223   // Incremental CSet attributes
   224   _inc_cset_build_state(Inactive),
   225   _inc_cset_head(NULL),
   226   _inc_cset_tail(NULL),
   227   _inc_cset_bytes_used_before(0),
   228   _inc_cset_max_finger(NULL),
   229   _inc_cset_recorded_rs_lengths(0),
   230   _inc_cset_recorded_rs_lengths_diffs(0),
   231   _inc_cset_predicted_elapsed_time_ms(0.0),
   232   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   234 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   235 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   236 #endif // _MSC_VER
   238   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   239                                                  G1YoungSurvRateNumRegionsSummary)),
   240   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   241                                               G1YoungSurvRateNumRegionsSummary)),
   242   // add here any more surv rate groups
   243   _recorded_survivor_regions(0),
   244   _recorded_survivor_head(NULL),
   245   _recorded_survivor_tail(NULL),
   246   _survivors_age_table(true),
   248   _gc_overhead_perc(0.0) {
   250   // Set up the region size and associated fields. Given that the
   251   // policy is created before the heap, we have to set this up here,
   252   // so it's done as soon as possible.
   253   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   254   HeapRegionRemSet::setup_remset_size();
   256   G1ErgoVerbose::initialize();
   257   if (PrintAdaptiveSizePolicy) {
   258     // Currently, we only use a single switch for all the heuristics.
   259     G1ErgoVerbose::set_enabled(true);
   260     // Given that we don't currently have a verboseness level
   261     // parameter, we'll hardcode this to high. This can be easily
   262     // changed in the future.
   263     G1ErgoVerbose::set_level(ErgoHigh);
   264   } else {
   265     G1ErgoVerbose::set_enabled(false);
   266   }
   268   // Verify PLAB sizes
   269   const size_t region_size = HeapRegion::GrainWords;
   270   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   271     char buffer[128];
   272     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   273                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   274     vm_exit_during_initialization(buffer);
   275   }
   277   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   278   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   280   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   281   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   282   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
   284   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   285   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   287   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   289   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   291   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   292   _par_last_termination_attempts = new double[_parallel_gc_threads];
   293   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   294   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   295   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   297   // start conservatively
   298   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   300   int index;
   301   if (ParallelGCThreads == 0)
   302     index = 0;
   303   else if (ParallelGCThreads > 8)
   304     index = 7;
   305   else
   306     index = ParallelGCThreads - 1;
   308   _pending_card_diff_seq->add(0.0);
   309   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   310   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   311   _young_cards_per_entry_ratio_seq->add(
   312                                   young_cards_per_entry_ratio_defaults[index]);
   313   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   314   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   315   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   316   _young_other_cost_per_region_ms_seq->add(
   317                                young_other_cost_per_region_ms_defaults[index]);
   318   _non_young_other_cost_per_region_ms_seq->add(
   319                            non_young_other_cost_per_region_ms_defaults[index]);
   321   // Below, we might need to calculate the pause time target based on
   322   // the pause interval. When we do so we are going to give G1 maximum
   323   // flexibility and allow it to do pauses when it needs to. So, we'll
   324   // arrange that the pause interval to be pause time target + 1 to
   325   // ensure that a) the pause time target is maximized with respect to
   326   // the pause interval and b) we maintain the invariant that pause
   327   // time target < pause interval. If the user does not want this
   328   // maximum flexibility, they will have to set the pause interval
   329   // explicitly.
   331   // First make sure that, if either parameter is set, its value is
   332   // reasonable.
   333   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   334     if (MaxGCPauseMillis < 1) {
   335       vm_exit_during_initialization("MaxGCPauseMillis should be "
   336                                     "greater than 0");
   337     }
   338   }
   339   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   340     if (GCPauseIntervalMillis < 1) {
   341       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   342                                     "greater than 0");
   343     }
   344   }
   346   // Then, if the pause time target parameter was not set, set it to
   347   // the default value.
   348   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   349     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   350       // The default pause time target in G1 is 200ms
   351       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   352     } else {
   353       // We do not allow the pause interval to be set without the
   354       // pause time target
   355       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   356                                     "without setting MaxGCPauseMillis");
   357     }
   358   }
   360   // Then, if the interval parameter was not set, set it according to
   361   // the pause time target (this will also deal with the case when the
   362   // pause time target is the default value).
   363   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   364     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   365   }
   367   // Finally, make sure that the two parameters are consistent.
   368   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   369     char buffer[256];
   370     jio_snprintf(buffer, 256,
   371                  "MaxGCPauseMillis (%u) should be less than "
   372                  "GCPauseIntervalMillis (%u)",
   373                  MaxGCPauseMillis, GCPauseIntervalMillis);
   374     vm_exit_during_initialization(buffer);
   375   }
   377   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   378   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   379   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   380   _sigma = (double) G1ConfidencePercent / 100.0;
   382   // start conservatively (around 50ms is about right)
   383   _concurrent_mark_remark_times_ms->add(0.05);
   384   _concurrent_mark_cleanup_times_ms->add(0.20);
   385   _tenuring_threshold = MaxTenuringThreshold;
   386   // _max_survivor_regions will be calculated by
   387   // update_young_list_target_length() during initialization.
   388   _max_survivor_regions = 0;
   390   assert(GCTimeRatio > 0,
   391          "we should have set it to a default value set_g1_gc_flags() "
   392          "if a user set it to 0");
   393   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   395   uintx reserve_perc = G1ReservePercent;
   396   // Put an artificial ceiling on this so that it's not set to a silly value.
   397   if (reserve_perc > 50) {
   398     reserve_perc = 50;
   399     warning("G1ReservePercent is set to a value that is too large, "
   400             "it's been updated to %u", reserve_perc);
   401   }
   402   _reserve_factor = (double) reserve_perc / 100.0;
   403   // This will be set when the heap is expanded
   404   // for the first time during initialization.
   405   _reserve_regions = 0;
   407   initialize_all();
   408   _collectionSetChooser = new CollectionSetChooser();
   409   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   410 }
   412 void G1CollectorPolicy::initialize_flags() {
   413   set_min_alignment(HeapRegion::GrainBytes);
   414   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   415   if (SurvivorRatio < 1) {
   416     vm_exit_during_initialization("Invalid survivor ratio specified");
   417   }
   418   CollectorPolicy::initialize_flags();
   419 }
   421 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   422   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
   423   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
   424   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
   426   if (FLAG_IS_CMDLINE(NewRatio)) {
   427     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   428       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   429     } else {
   430       _sizer_kind = SizerNewRatio;
   431       _adaptive_size = false;
   432       return;
   433     }
   434   }
   436   if (FLAG_IS_CMDLINE(NewSize)) {
   437      _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
   438     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   439       _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   440       _sizer_kind = SizerMaxAndNewSize;
   441       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   442     } else {
   443       _sizer_kind = SizerNewSizeOnly;
   444     }
   445   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   446     _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   447     _sizer_kind = SizerMaxNewSizeOnly;
   448   }
   449 }
   451 size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) {
   452   size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
   453   return MAX2((size_t)1, default_value);
   454 }
   456 size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) {
   457   size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
   458   return MAX2((size_t)1, default_value);
   459 }
   461 void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
   462   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   464   switch (_sizer_kind) {
   465     case SizerDefaults:
   466       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   467       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   468       break;
   469     case SizerNewSizeOnly:
   470       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   471       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   472       break;
   473     case SizerMaxNewSizeOnly:
   474       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   475       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   476       break;
   477     case SizerMaxAndNewSize:
   478       // Do nothing. Values set on the command line, don't update them at runtime.
   479       break;
   480     case SizerNewRatio:
   481       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   482       _max_desired_young_length = _min_desired_young_length;
   483       break;
   484     default:
   485       ShouldNotReachHere();
   486   }
   488   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   489 }
   491 void G1CollectorPolicy::init() {
   492   // Set aside an initial future to_space.
   493   _g1 = G1CollectedHeap::heap();
   495   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   497   initialize_gc_policy_counters();
   499   if (adaptive_young_list_length()) {
   500     _young_list_fixed_length = 0;
   501   } else {
   502     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   503   }
   504   _free_regions_at_end_of_collection = _g1->free_regions();
   505   update_young_list_target_length();
   506   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   508   // We may immediately start allocating regions and placing them on the
   509   // collection set list. Initialize the per-collection set info
   510   start_incremental_cset_building();
   511 }
   513 // Create the jstat counters for the policy.
   514 void G1CollectorPolicy::initialize_gc_policy_counters() {
   515   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   516 }
   518 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
   519                                          double base_time_ms,
   520                                          size_t base_free_regions,
   521                                          double target_pause_time_ms) {
   522   if (young_length >= base_free_regions) {
   523     // end condition 1: not enough space for the young regions
   524     return false;
   525   }
   527   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
   528   size_t bytes_to_copy =
   529                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   530   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   531   double young_other_time_ms = predict_young_other_time_ms(young_length);
   532   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   533   if (pause_time_ms > target_pause_time_ms) {
   534     // end condition 2: prediction is over the target pause time
   535     return false;
   536   }
   538   size_t free_bytes =
   539                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
   540   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   541     // end condition 3: out-of-space (conservatively!)
   542     return false;
   543   }
   545   // success!
   546   return true;
   547 }
   549 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
   550   // re-calculate the necessary reserve
   551   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   552   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   553   // smaller than 1.0) we'll get 1.
   554   _reserve_regions = (size_t) ceil(reserve_regions_d);
   556   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   557 }
   559 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
   560                                                      size_t base_min_length) {
   561   size_t desired_min_length = 0;
   562   if (adaptive_young_list_length()) {
   563     if (_alloc_rate_ms_seq->num() > 3) {
   564       double now_sec = os::elapsedTime();
   565       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   566       double alloc_rate_ms = predict_alloc_rate_ms();
   567       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
   568     } else {
   569       // otherwise we don't have enough info to make the prediction
   570     }
   571   }
   572   desired_min_length += base_min_length;
   573   // make sure we don't go below any user-defined minimum bound
   574   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   575 }
   577 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
   578   // Here, we might want to also take into account any additional
   579   // constraints (i.e., user-defined minimum bound). Currently, we
   580   // effectively don't set this bound.
   581   return _young_gen_sizer->max_desired_young_length();
   582 }
   584 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   585   if (rs_lengths == (size_t) -1) {
   586     // if it's set to the default value (-1), we should predict it;
   587     // otherwise, use the given value.
   588     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   589   }
   591   // Calculate the absolute and desired min bounds.
   593   // This is how many young regions we already have (currently: the survivors).
   594   size_t base_min_length = recorded_survivor_regions();
   595   // This is the absolute minimum young length, which ensures that we
   596   // can allocate one eden region in the worst-case.
   597   size_t absolute_min_length = base_min_length + 1;
   598   size_t desired_min_length =
   599                      calculate_young_list_desired_min_length(base_min_length);
   600   if (desired_min_length < absolute_min_length) {
   601     desired_min_length = absolute_min_length;
   602   }
   604   // Calculate the absolute and desired max bounds.
   606   // We will try our best not to "eat" into the reserve.
   607   size_t absolute_max_length = 0;
   608   if (_free_regions_at_end_of_collection > _reserve_regions) {
   609     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   610   }
   611   size_t desired_max_length = calculate_young_list_desired_max_length();
   612   if (desired_max_length > absolute_max_length) {
   613     desired_max_length = absolute_max_length;
   614   }
   616   size_t young_list_target_length = 0;
   617   if (adaptive_young_list_length()) {
   618     if (gcs_are_young()) {
   619       young_list_target_length =
   620                         calculate_young_list_target_length(rs_lengths,
   621                                                            base_min_length,
   622                                                            desired_min_length,
   623                                                            desired_max_length);
   624       _rs_lengths_prediction = rs_lengths;
   625     } else {
   626       // Don't calculate anything and let the code below bound it to
   627       // the desired_min_length, i.e., do the next GC as soon as
   628       // possible to maximize how many old regions we can add to it.
   629     }
   630   } else {
   631     if (gcs_are_young()) {
   632       young_list_target_length = _young_list_fixed_length;
   633     } else {
   634       // A bit arbitrary: during mixed GCs we allocate half
   635       // the young regions to try to add old regions to the CSet.
   636       young_list_target_length = _young_list_fixed_length / 2;
   637       // We choose to accept that we might go under the desired min
   638       // length given that we intentionally ask for a smaller young gen.
   639       desired_min_length = absolute_min_length;
   640     }
   641   }
   643   // Make sure we don't go over the desired max length, nor under the
   644   // desired min length. In case they clash, desired_min_length wins
   645   // which is why that test is second.
   646   if (young_list_target_length > desired_max_length) {
   647     young_list_target_length = desired_max_length;
   648   }
   649   if (young_list_target_length < desired_min_length) {
   650     young_list_target_length = desired_min_length;
   651   }
   653   assert(young_list_target_length > recorded_survivor_regions(),
   654          "we should be able to allocate at least one eden region");
   655   assert(young_list_target_length >= absolute_min_length, "post-condition");
   656   _young_list_target_length = young_list_target_length;
   658   update_max_gc_locker_expansion();
   659 }
   661 size_t
   662 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   663                                                    size_t base_min_length,
   664                                                    size_t desired_min_length,
   665                                                    size_t desired_max_length) {
   666   assert(adaptive_young_list_length(), "pre-condition");
   667   assert(gcs_are_young(), "only call this for young GCs");
   669   // In case some edge-condition makes the desired max length too small...
   670   if (desired_max_length <= desired_min_length) {
   671     return desired_min_length;
   672   }
   674   // We'll adjust min_young_length and max_young_length not to include
   675   // the already allocated young regions (i.e., so they reflect the
   676   // min and max eden regions we'll allocate). The base_min_length
   677   // will be reflected in the predictions by the
   678   // survivor_regions_evac_time prediction.
   679   assert(desired_min_length > base_min_length, "invariant");
   680   size_t min_young_length = desired_min_length - base_min_length;
   681   assert(desired_max_length > base_min_length, "invariant");
   682   size_t max_young_length = desired_max_length - base_min_length;
   684   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   685   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   686   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   687   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   688   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   689   double base_time_ms =
   690     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   691     survivor_regions_evac_time;
   692   size_t available_free_regions = _free_regions_at_end_of_collection;
   693   size_t base_free_regions = 0;
   694   if (available_free_regions > _reserve_regions) {
   695     base_free_regions = available_free_regions - _reserve_regions;
   696   }
   698   // Here, we will make sure that the shortest young length that
   699   // makes sense fits within the target pause time.
   701   if (predict_will_fit(min_young_length, base_time_ms,
   702                        base_free_regions, target_pause_time_ms)) {
   703     // The shortest young length will fit into the target pause time;
   704     // we'll now check whether the absolute maximum number of young
   705     // regions will fit in the target pause time. If not, we'll do
   706     // a binary search between min_young_length and max_young_length.
   707     if (predict_will_fit(max_young_length, base_time_ms,
   708                          base_free_regions, target_pause_time_ms)) {
   709       // The maximum young length will fit into the target pause time.
   710       // We are done so set min young length to the maximum length (as
   711       // the result is assumed to be returned in min_young_length).
   712       min_young_length = max_young_length;
   713     } else {
   714       // The maximum possible number of young regions will not fit within
   715       // the target pause time so we'll search for the optimal
   716       // length. The loop invariants are:
   717       //
   718       // min_young_length < max_young_length
   719       // min_young_length is known to fit into the target pause time
   720       // max_young_length is known not to fit into the target pause time
   721       //
   722       // Going into the loop we know the above hold as we've just
   723       // checked them. Every time around the loop we check whether
   724       // the middle value between min_young_length and
   725       // max_young_length fits into the target pause time. If it
   726       // does, it becomes the new min. If it doesn't, it becomes
   727       // the new max. This way we maintain the loop invariants.
   729       assert(min_young_length < max_young_length, "invariant");
   730       size_t diff = (max_young_length - min_young_length) / 2;
   731       while (diff > 0) {
   732         size_t young_length = min_young_length + diff;
   733         if (predict_will_fit(young_length, base_time_ms,
   734                              base_free_regions, target_pause_time_ms)) {
   735           min_young_length = young_length;
   736         } else {
   737           max_young_length = young_length;
   738         }
   739         assert(min_young_length <  max_young_length, "invariant");
   740         diff = (max_young_length - min_young_length) / 2;
   741       }
   742       // The results is min_young_length which, according to the
   743       // loop invariants, should fit within the target pause time.
   745       // These are the post-conditions of the binary search above:
   746       assert(min_young_length < max_young_length,
   747              "otherwise we should have discovered that max_young_length "
   748              "fits into the pause target and not done the binary search");
   749       assert(predict_will_fit(min_young_length, base_time_ms,
   750                               base_free_regions, target_pause_time_ms),
   751              "min_young_length, the result of the binary search, should "
   752              "fit into the pause target");
   753       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   754                                base_free_regions, target_pause_time_ms),
   755              "min_young_length, the result of the binary search, should be "
   756              "optimal, so no larger length should fit into the pause target");
   757     }
   758   } else {
   759     // Even the minimum length doesn't fit into the pause time
   760     // target, return it as the result nevertheless.
   761   }
   762   return base_min_length + min_young_length;
   763 }
   765 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   766   double survivor_regions_evac_time = 0.0;
   767   for (HeapRegion * r = _recorded_survivor_head;
   768        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   769        r = r->get_next_young_region()) {
   770     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   771   }
   772   return survivor_regions_evac_time;
   773 }
   775 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   776   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   778   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   779   if (rs_lengths > _rs_lengths_prediction) {
   780     // add 10% to avoid having to recalculate often
   781     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   782     update_young_list_target_length(rs_lengths_prediction);
   783   }
   784 }
   788 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   789                                                bool is_tlab,
   790                                                bool* gc_overhead_limit_was_exceeded) {
   791   guarantee(false, "Not using this policy feature yet.");
   792   return NULL;
   793 }
   795 // This method controls how a collector handles one or more
   796 // of its generations being fully allocated.
   797 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   798                                                        bool is_tlab) {
   799   guarantee(false, "Not using this policy feature yet.");
   800   return NULL;
   801 }
   804 #ifndef PRODUCT
   805 bool G1CollectorPolicy::verify_young_ages() {
   806   HeapRegion* head = _g1->young_list()->first_region();
   807   return
   808     verify_young_ages(head, _short_lived_surv_rate_group);
   809   // also call verify_young_ages on any additional surv rate groups
   810 }
   812 bool
   813 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   814                                      SurvRateGroup *surv_rate_group) {
   815   guarantee( surv_rate_group != NULL, "pre-condition" );
   817   const char* name = surv_rate_group->name();
   818   bool ret = true;
   819   int prev_age = -1;
   821   for (HeapRegion* curr = head;
   822        curr != NULL;
   823        curr = curr->get_next_young_region()) {
   824     SurvRateGroup* group = curr->surv_rate_group();
   825     if (group == NULL && !curr->is_survivor()) {
   826       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   827       ret = false;
   828     }
   830     if (surv_rate_group == group) {
   831       int age = curr->age_in_surv_rate_group();
   833       if (age < 0) {
   834         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   835         ret = false;
   836       }
   838       if (age <= prev_age) {
   839         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   840                                "(%d, %d)", name, age, prev_age);
   841         ret = false;
   842       }
   843       prev_age = age;
   844     }
   845   }
   847   return ret;
   848 }
   849 #endif // PRODUCT
   851 void G1CollectorPolicy::record_full_collection_start() {
   852   _cur_collection_start_sec = os::elapsedTime();
   853   // Release the future to-space so that it is available for compaction into.
   854   _g1->set_full_collection();
   855 }
   857 void G1CollectorPolicy::record_full_collection_end() {
   858   // Consider this like a collection pause for the purposes of allocation
   859   // since last pause.
   860   double end_sec = os::elapsedTime();
   861   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   862   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   864   _all_full_gc_times_ms->add(full_gc_time_ms);
   866   update_recent_gc_times(end_sec, full_gc_time_ms);
   868   _g1->clear_full_collection();
   870   // "Nuke" the heuristics that control the young/mixed GC
   871   // transitions and make sure we start with young GCs after the Full GC.
   872   set_gcs_are_young(true);
   873   _last_young_gc = false;
   874   _should_revert_to_young_gcs = false;
   875   clear_initiate_conc_mark_if_possible();
   876   clear_during_initial_mark_pause();
   877   _known_garbage_bytes = 0;
   878   _known_garbage_ratio = 0.0;
   879   _in_marking_window = false;
   880   _in_marking_window_im = false;
   882   _short_lived_surv_rate_group->start_adding_regions();
   883   // also call this on any additional surv rate groups
   885   record_survivor_regions(0, NULL, NULL);
   887   _free_regions_at_end_of_collection = _g1->free_regions();
   888   // Reset survivors SurvRateGroup.
   889   _survivor_surv_rate_group->reset();
   890   update_young_list_target_length();
   891   _collectionSetChooser->updateAfterFullCollection();
   892 }
   894 void G1CollectorPolicy::record_stop_world_start() {
   895   _stop_world_start = os::elapsedTime();
   896 }
   898 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   899                                                       size_t start_used) {
   900   if (PrintGCDetails) {
   901     gclog_or_tty->stamp(PrintGCTimeStamps);
   902     gclog_or_tty->print("[GC pause");
   903     gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
   904   }
   906   if (!during_initial_mark_pause()) {
   907     // We only need to do this here as the policy will only be applied
   908     // to the GC we're about to start. so, no point is calculating this
   909     // every time we calculate / recalculate the target young length.
   910     update_survivors_policy();
   911   } else {
   912     // The marking phase has a "we only copy implicitly live
   913     // objects during marking" invariant. The easiest way to ensure it
   914     // holds is not to allocate any survivor regions and tenure all
   915     // objects. In the future we might change this and handle survivor
   916     // regions specially during marking.
   917     tenure_all_objects();
   918   }
   920   assert(_g1->used() == _g1->recalculate_used(),
   921          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   922                  _g1->used(), _g1->recalculate_used()));
   924   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   925   _all_stop_world_times_ms->add(s_w_t_ms);
   926   _stop_world_start = 0.0;
   928   _cur_collection_start_sec = start_time_sec;
   929   _cur_collection_pause_used_at_start_bytes = start_used;
   930   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   931   _pending_cards = _g1->pending_card_num();
   932   _max_pending_cards = _g1->max_pending_card_num();
   934   _bytes_in_collection_set_before_gc = 0;
   935   _bytes_copied_during_gc = 0;
   937   YoungList* young_list = _g1->young_list();
   938   _eden_bytes_before_gc = young_list->eden_used_bytes();
   939   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   940   _capacity_before_gc = _g1->capacity();
   942 #ifdef DEBUG
   943   // initialise these to something well known so that we can spot
   944   // if they are not set properly
   946   for (int i = 0; i < _parallel_gc_threads; ++i) {
   947     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   948     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   949     _par_last_satb_filtering_times_ms[i] = -1234.0;
   950     _par_last_update_rs_times_ms[i] = -1234.0;
   951     _par_last_update_rs_processed_buffers[i] = -1234.0;
   952     _par_last_scan_rs_times_ms[i] = -1234.0;
   953     _par_last_obj_copy_times_ms[i] = -1234.0;
   954     _par_last_termination_times_ms[i] = -1234.0;
   955     _par_last_termination_attempts[i] = -1234.0;
   956     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   957     _par_last_gc_worker_times_ms[i] = -1234.0;
   958     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   959   }
   960 #endif
   962   for (int i = 0; i < _aux_num; ++i) {
   963     _cur_aux_times_ms[i] = 0.0;
   964     _cur_aux_times_set[i] = false;
   965   }
   967   // This is initialized to zero here and is set during
   968   // the evacuation pause if marking is in progress.
   969   _cur_satb_drain_time_ms = 0.0;
   971   _last_gc_was_young = false;
   973   // do that for any other surv rate groups
   974   _short_lived_surv_rate_group->stop_adding_regions();
   975   _survivors_age_table.clear();
   977   assert( verify_young_ages(), "region age verification" );
   978 }
   980 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   981                                                    mark_init_elapsed_time_ms) {
   982   _during_marking = true;
   983   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   984   clear_during_initial_mark_pause();
   985   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   986 }
   988 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   989   _mark_remark_start_sec = os::elapsedTime();
   990   _during_marking = false;
   991 }
   993 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   994   double end_time_sec = os::elapsedTime();
   995   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   996   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   997   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   998   _prev_collection_pause_end_ms += elapsed_time_ms;
  1000   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
  1003 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  1004   _mark_cleanup_start_sec = os::elapsedTime();
  1007 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  1008   _should_revert_to_young_gcs = false;
  1009   _last_young_gc = true;
  1010   _in_marking_window = false;
  1013 void G1CollectorPolicy::record_concurrent_pause() {
  1014   if (_stop_world_start > 0.0) {
  1015     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1016     _all_yield_times_ms->add(yield_ms);
  1020 void G1CollectorPolicy::record_concurrent_pause_end() {
  1023 template<class T>
  1024 T sum_of(T* sum_arr, int start, int n, int N) {
  1025   T sum = (T)0;
  1026   for (int i = 0; i < n; i++) {
  1027     int j = (start + i) % N;
  1028     sum += sum_arr[j];
  1030   return sum;
  1033 void G1CollectorPolicy::print_par_stats(int level,
  1034                                         const char* str,
  1035                                         double* data) {
  1036   double min = data[0], max = data[0];
  1037   double total = 0.0;
  1038   LineBuffer buf(level);
  1039   buf.append("[%s (ms):", str);
  1040   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1041     double val = data[i];
  1042     if (val < min)
  1043       min = val;
  1044     if (val > max)
  1045       max = val;
  1046     total += val;
  1047     buf.append("  %3.1lf", val);
  1049   buf.append_and_print_cr("");
  1050   double avg = total / (double) no_of_gc_threads();
  1051   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1052     avg, min, max, max - min);
  1055 void G1CollectorPolicy::print_par_sizes(int level,
  1056                                         const char* str,
  1057                                         double* data) {
  1058   double min = data[0], max = data[0];
  1059   double total = 0.0;
  1060   LineBuffer buf(level);
  1061   buf.append("[%s :", str);
  1062   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1063     double val = data[i];
  1064     if (val < min)
  1065       min = val;
  1066     if (val > max)
  1067       max = val;
  1068     total += val;
  1069     buf.append(" %d", (int) val);
  1071   buf.append_and_print_cr("");
  1072   double avg = total / (double) no_of_gc_threads();
  1073   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1074     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1077 void G1CollectorPolicy::print_stats(int level,
  1078                                     const char* str,
  1079                                     double value) {
  1080   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1083 void G1CollectorPolicy::print_stats(int level,
  1084                                     const char* str,
  1085                                     int value) {
  1086   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1089 double G1CollectorPolicy::avg_value(double* data) {
  1090   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1091     double ret = 0.0;
  1092     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1093       ret += data[i];
  1095     return ret / (double) no_of_gc_threads();
  1096   } else {
  1097     return data[0];
  1101 double G1CollectorPolicy::max_value(double* data) {
  1102   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1103     double ret = data[0];
  1104     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1105       if (data[i] > ret) {
  1106         ret = data[i];
  1109     return ret;
  1110   } else {
  1111     return data[0];
  1115 double G1CollectorPolicy::sum_of_values(double* data) {
  1116   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1117     double sum = 0.0;
  1118     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1119       sum += data[i];
  1121     return sum;
  1122   } else {
  1123     return data[0];
  1127 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1128   double ret = data1[0] + data2[0];
  1130   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1131     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1132       double data = data1[i] + data2[i];
  1133       if (data > ret) {
  1134         ret = data;
  1138   return ret;
  1141 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source) {
  1142   if (_g1->mark_in_progress()) {
  1143     return false;
  1146   size_t marking_initiating_used_threshold =
  1147     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1148   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
  1150   if (cur_used_bytes > marking_initiating_used_threshold) {
  1151     if (gcs_are_young()) {
  1152       ergo_verbose4(ErgoConcCycles,
  1153         "request concurrent cycle initiation",
  1154         ergo_format_reason("occupancy higher than threshold")
  1155         ergo_format_byte("occupancy")
  1156         ergo_format_byte_perc("threshold")
  1157         ergo_format_str("source"),
  1158         cur_used_bytes,
  1159         marking_initiating_used_threshold,
  1160         (double) InitiatingHeapOccupancyPercent,
  1161         source);
  1162       return true;
  1163     } else {
  1164       ergo_verbose4(ErgoConcCycles,
  1165         "do not request concurrent cycle initiation",
  1166         ergo_format_reason("still doing mixed collections")
  1167         ergo_format_byte("occupancy")
  1168         ergo_format_byte_perc("threshold")
  1169         ergo_format_str("source"),
  1170         cur_used_bytes,
  1171         marking_initiating_used_threshold,
  1172         (double) InitiatingHeapOccupancyPercent,
  1173         source);
  1177   return false;
  1180 // Anything below that is considered to be zero
  1181 #define MIN_TIMER_GRANULARITY 0.0000001
  1183 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1184   double end_time_sec = os::elapsedTime();
  1185   double elapsed_ms = _last_pause_time_ms;
  1186   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1187   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1188          "otherwise, the subtraction below does not make sense");
  1189   size_t rs_size =
  1190             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1191   size_t cur_used_bytes = _g1->used();
  1192   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1193   bool last_pause_included_initial_mark = false;
  1194   bool update_stats = !_g1->evacuation_failed();
  1195   set_no_of_gc_threads(no_of_gc_threads);
  1197 #ifndef PRODUCT
  1198   if (G1YoungSurvRateVerbose) {
  1199     gclog_or_tty->print_cr("");
  1200     _short_lived_surv_rate_group->print();
  1201     // do that for any other surv rate groups too
  1203 #endif // PRODUCT
  1205   last_pause_included_initial_mark = during_initial_mark_pause();
  1206   if (last_pause_included_initial_mark) {
  1207     record_concurrent_mark_init_end(0.0);
  1210   if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
  1211     // Note: this might have already been set, if during the last
  1212     // pause we decided to start a cycle but at the beginning of
  1213     // this pause we decided to postpone it. That's OK.
  1214     set_initiate_conc_mark_if_possible();
  1217   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1218                           end_time_sec, false);
  1220   // This assert is exempted when we're doing parallel collection pauses,
  1221   // because the fragmentation caused by the parallel GC allocation buffers
  1222   // can lead to more memory being used during collection than was used
  1223   // before. Best leave this out until the fragmentation problem is fixed.
  1224   // Pauses in which evacuation failed can also lead to negative
  1225   // collections, since no space is reclaimed from a region containing an
  1226   // object whose evacuation failed.
  1227   // Further, we're now always doing parallel collection.  But I'm still
  1228   // leaving this here as a placeholder for a more precise assertion later.
  1229   // (DLD, 10/05.)
  1230   assert((true || parallel) // Always using GC LABs now.
  1231          || _g1->evacuation_failed()
  1232          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1233          "Negative collection");
  1235   size_t freed_bytes =
  1236     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1237   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1239   double survival_fraction =
  1240     (double)surviving_bytes/
  1241     (double)_collection_set_bytes_used_before;
  1243   // These values are used to update the summary information that is
  1244   // displayed when TraceGen0Time is enabled, and are output as part
  1245   // of the PrintGCDetails output, in the non-parallel case.
  1247   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1248   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
  1249   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1250   double update_rs_processed_buffers =
  1251     sum_of_values(_par_last_update_rs_processed_buffers);
  1252   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1253   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1254   double termination_time = avg_value(_par_last_termination_times_ms);
  1256   double known_time = ext_root_scan_time +
  1257                       satb_filtering_time +
  1258                       update_rs_time +
  1259                       scan_rs_time +
  1260                       obj_copy_time;
  1262   double other_time_ms = elapsed_ms;
  1264   // Subtract the SATB drain time. It's initialized to zero at the
  1265   // start of the pause and is updated during the pause if marking
  1266   // is in progress.
  1267   other_time_ms -= _cur_satb_drain_time_ms;
  1269   if (parallel) {
  1270     other_time_ms -= _cur_collection_par_time_ms;
  1271   } else {
  1272     other_time_ms -= known_time;
  1275   // Subtract the time taken to clean the card table from the
  1276   // current value of "other time"
  1277   other_time_ms -= _cur_clear_ct_time_ms;
  1279   // Subtract the time spent completing marking in the collection
  1280   // set. Note if marking is not in progress during the pause
  1281   // the value of _mark_closure_time_ms will be zero.
  1282   other_time_ms -= _mark_closure_time_ms;
  1284   // TraceGen0Time and TraceGen1Time summary info updating.
  1285   _all_pause_times_ms->add(elapsed_ms);
  1287   if (update_stats) {
  1288     _summary->record_total_time_ms(elapsed_ms);
  1289     _summary->record_other_time_ms(other_time_ms);
  1291     MainBodySummary* body_summary = _summary->main_body_summary();
  1292     assert(body_summary != NULL, "should not be null!");
  1294     // This will be non-zero iff marking is currently in progress (i.e.
  1295     // _g1->mark_in_progress() == true) and the currrent pause was not
  1296     // an initial mark pause. Since the body_summary items are NumberSeqs,
  1297     // however, they have to be consistent and updated in lock-step with
  1298     // each other. Therefore we unconditionally record the SATB drain
  1299     // time - even if it's zero.
  1300     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1302     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1303     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
  1304     body_summary->record_update_rs_time_ms(update_rs_time);
  1305     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1306     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1308     if (parallel) {
  1309       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1310       body_summary->record_termination_time_ms(termination_time);
  1312       double parallel_known_time = known_time + termination_time;
  1313       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1314       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1317     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1318     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1320     // We exempt parallel collection from this check because Alloc Buffer
  1321     // fragmentation can produce negative collections.  Same with evac
  1322     // failure.
  1323     // Further, we're now always doing parallel collection.  But I'm still
  1324     // leaving this here as a placeholder for a more precise assertion later.
  1325     // (DLD, 10/05.
  1326     assert((true || parallel)
  1327            || _g1->evacuation_failed()
  1328            || surviving_bytes <= _collection_set_bytes_used_before,
  1329            "Or else negative collection!");
  1331     // this is where we update the allocation rate of the application
  1332     double app_time_ms =
  1333       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1334     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1335       // This usually happens due to the timer not having the required
  1336       // granularity. Some Linuxes are the usual culprits.
  1337       // We'll just set it to something (arbitrarily) small.
  1338       app_time_ms = 1.0;
  1340     // We maintain the invariant that all objects allocated by mutator
  1341     // threads will be allocated out of eden regions. So, we can use
  1342     // the eden region number allocated since the previous GC to
  1343     // calculate the application's allocate rate. The only exception
  1344     // to that is humongous objects that are allocated separately. But
  1345     // given that humongous object allocations do not really affect
  1346     // either the pause's duration nor when the next pause will take
  1347     // place we can safely ignore them here.
  1348     size_t regions_allocated = eden_cset_region_length();
  1349     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1350     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1352     double interval_ms =
  1353       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1354     update_recent_gc_times(end_time_sec, elapsed_ms);
  1355     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1356     if (recent_avg_pause_time_ratio() < 0.0 ||
  1357         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1358 #ifndef PRODUCT
  1359       // Dump info to allow post-facto debugging
  1360       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1361       gclog_or_tty->print_cr("-------------------------------------------");
  1362       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1363       _recent_gc_times_ms->dump();
  1364       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1365       _recent_prev_end_times_for_all_gcs_sec->dump();
  1366       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1367                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1368       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1369       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1370 #endif  // !PRODUCT
  1371       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1372       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1373       if (_recent_avg_pause_time_ratio < 0.0) {
  1374         _recent_avg_pause_time_ratio = 0.0;
  1375       } else {
  1376         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1377         _recent_avg_pause_time_ratio = 1.0;
  1382   for (int i = 0; i < _aux_num; ++i) {
  1383     if (_cur_aux_times_set[i]) {
  1384       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1388   // PrintGCDetails output
  1389   if (PrintGCDetails) {
  1390     bool print_marking_info =
  1391       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1393     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1394                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1395                            elapsed_ms / 1000.0);
  1397     if (parallel) {
  1398       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1399       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1400       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1401       if (print_marking_info) {
  1402         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
  1404       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1405       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1406       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1407       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1408       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1409       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1410       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1412       for (int i = 0; i < _parallel_gc_threads; i++) {
  1413         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1415         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1416                                    _par_last_satb_filtering_times_ms[i] +
  1417                                    _par_last_update_rs_times_ms[i] +
  1418                                    _par_last_scan_rs_times_ms[i] +
  1419                                    _par_last_obj_copy_times_ms[i] +
  1420                                    _par_last_termination_times_ms[i];
  1422         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
  1424       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
  1425       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1426     } else {
  1427       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1428       if (print_marking_info) {
  1429         print_stats(1, "SATB Filtering", satb_filtering_time);
  1431       print_stats(1, "Update RS", update_rs_time);
  1432       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1433       print_stats(1, "Scan RS", scan_rs_time);
  1434       print_stats(1, "Object Copying", obj_copy_time);
  1436     if (print_marking_info) {
  1437       print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
  1439     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1440 #ifndef PRODUCT
  1441     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1442     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1443     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1444     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1445     if (_num_cc_clears > 0) {
  1446       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1448 #endif
  1449     print_stats(1, "Other", other_time_ms);
  1450     print_stats(2, "Choose CSet",
  1451                    (_recorded_young_cset_choice_time_ms +
  1452                     _recorded_non_young_cset_choice_time_ms));
  1453     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1454     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1455     print_stats(2, "Free CSet",
  1456                    (_recorded_young_free_cset_time_ms +
  1457                     _recorded_non_young_free_cset_time_ms));
  1459     for (int i = 0; i < _aux_num; ++i) {
  1460       if (_cur_aux_times_set[i]) {
  1461         char buffer[96];
  1462         sprintf(buffer, "Aux%d", i);
  1463         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1468   // Update the efficiency-since-mark vars.
  1469   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1470   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1471     // This usually happens due to the timer not having the required
  1472     // granularity. Some Linuxes are the usual culprits.
  1473     // We'll just set it to something (arbitrarily) small.
  1474     proc_ms = 1.0;
  1476   double cur_efficiency = (double) freed_bytes / proc_ms;
  1478   bool new_in_marking_window = _in_marking_window;
  1479   bool new_in_marking_window_im = false;
  1480   if (during_initial_mark_pause()) {
  1481     new_in_marking_window = true;
  1482     new_in_marking_window_im = true;
  1485   if (_last_young_gc) {
  1486     if (!last_pause_included_initial_mark) {
  1487       ergo_verbose2(ErgoMixedGCs,
  1488                     "start mixed GCs",
  1489                     ergo_format_byte_perc("known garbage"),
  1490                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1491       set_gcs_are_young(false);
  1492     } else {
  1493       ergo_verbose0(ErgoMixedGCs,
  1494                     "do not start mixed GCs",
  1495                     ergo_format_reason("concurrent cycle is about to start"));
  1497     _last_young_gc = false;
  1500   if (!_last_gc_was_young) {
  1501     if (_should_revert_to_young_gcs) {
  1502       ergo_verbose2(ErgoMixedGCs,
  1503                     "end mixed GCs",
  1504                     ergo_format_reason("mixed GCs end requested")
  1505                     ergo_format_byte_perc("known garbage"),
  1506                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1507       set_gcs_are_young(true);
  1508     } else if (_known_garbage_ratio < 0.05) {
  1509       ergo_verbose3(ErgoMixedGCs,
  1510                "end mixed GCs",
  1511                ergo_format_reason("known garbage percent lower than threshold")
  1512                ergo_format_byte_perc("known garbage")
  1513                ergo_format_perc("threshold"),
  1514                _known_garbage_bytes, _known_garbage_ratio * 100.0,
  1515                0.05 * 100.0);
  1516       set_gcs_are_young(true);
  1517     } else if (adaptive_young_list_length() &&
  1518               (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
  1519       ergo_verbose5(ErgoMixedGCs,
  1520                     "end mixed GCs",
  1521                     ergo_format_reason("current GC efficiency lower than "
  1522                                        "predicted young GC efficiency")
  1523                     ergo_format_double("GC efficiency factor")
  1524                     ergo_format_double("current GC efficiency")
  1525                     ergo_format_double("predicted young GC efficiency")
  1526                     ergo_format_byte_perc("known garbage"),
  1527                     get_gc_eff_factor(), cur_efficiency,
  1528                     predict_young_gc_eff(),
  1529                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1530       set_gcs_are_young(true);
  1533   _should_revert_to_young_gcs = false;
  1535   if (_last_gc_was_young && !_during_marking) {
  1536     _young_gc_eff_seq->add(cur_efficiency);
  1539   _short_lived_surv_rate_group->start_adding_regions();
  1540   // do that for any other surv rate groupsx
  1542   if (update_stats) {
  1543     double pause_time_ms = elapsed_ms;
  1545     size_t diff = 0;
  1546     if (_max_pending_cards >= _pending_cards)
  1547       diff = _max_pending_cards - _pending_cards;
  1548     _pending_card_diff_seq->add((double) diff);
  1550     double cost_per_card_ms = 0.0;
  1551     if (_pending_cards > 0) {
  1552       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1553       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1556     size_t cards_scanned = _g1->cards_scanned();
  1558     double cost_per_entry_ms = 0.0;
  1559     if (cards_scanned > 10) {
  1560       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1561       if (_last_gc_was_young) {
  1562         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1563       } else {
  1564         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1568     if (_max_rs_lengths > 0) {
  1569       double cards_per_entry_ratio =
  1570         (double) cards_scanned / (double) _max_rs_lengths;
  1571       if (_last_gc_was_young) {
  1572         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1573       } else {
  1574         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1578     // This is defensive. For a while _max_rs_lengths could get
  1579     // smaller than _recorded_rs_lengths which was causing
  1580     // rs_length_diff to get very large and mess up the RSet length
  1581     // predictions. The reason was unsafe concurrent updates to the
  1582     // _inc_cset_recorded_rs_lengths field which the code below guards
  1583     // against (see CR 7118202). This bug has now been fixed (see CR
  1584     // 7119027). However, I'm still worried that
  1585     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1586     // inaccurate. The concurrent refinement thread calculates an
  1587     // RSet's length concurrently with other CR threads updating it
  1588     // which might cause it to calculate the length incorrectly (if,
  1589     // say, it's in mid-coarsening). So I'll leave in the defensive
  1590     // conditional below just in case.
  1591     size_t rs_length_diff = 0;
  1592     if (_max_rs_lengths > _recorded_rs_lengths) {
  1593       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1595     _rs_length_diff_seq->add((double) rs_length_diff);
  1597     size_t copied_bytes = surviving_bytes;
  1598     double cost_per_byte_ms = 0.0;
  1599     if (copied_bytes > 0) {
  1600       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1601       if (_in_marking_window) {
  1602         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1603       } else {
  1604         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1608     double all_other_time_ms = pause_time_ms -
  1609       (update_rs_time + scan_rs_time + obj_copy_time +
  1610        _mark_closure_time_ms + termination_time);
  1612     double young_other_time_ms = 0.0;
  1613     if (young_cset_region_length() > 0) {
  1614       young_other_time_ms =
  1615         _recorded_young_cset_choice_time_ms +
  1616         _recorded_young_free_cset_time_ms;
  1617       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1618                                           (double) young_cset_region_length());
  1620     double non_young_other_time_ms = 0.0;
  1621     if (old_cset_region_length() > 0) {
  1622       non_young_other_time_ms =
  1623         _recorded_non_young_cset_choice_time_ms +
  1624         _recorded_non_young_free_cset_time_ms;
  1626       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1627                                             (double) old_cset_region_length());
  1630     double constant_other_time_ms = all_other_time_ms -
  1631       (young_other_time_ms + non_young_other_time_ms);
  1632     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1634     double survival_ratio = 0.0;
  1635     if (_bytes_in_collection_set_before_gc > 0) {
  1636       survival_ratio = (double) _bytes_copied_during_gc /
  1637                                    (double) _bytes_in_collection_set_before_gc;
  1640     _pending_cards_seq->add((double) _pending_cards);
  1641     _rs_lengths_seq->add((double) _max_rs_lengths);
  1643     double expensive_region_limit_ms =
  1644       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1645     if (expensive_region_limit_ms < 0.0) {
  1646       // this means that the other time was predicted to be longer than
  1647       // than the max pause time
  1648       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1650     _expensive_region_limit_ms = expensive_region_limit_ms;
  1653   _in_marking_window = new_in_marking_window;
  1654   _in_marking_window_im = new_in_marking_window_im;
  1655   _free_regions_at_end_of_collection = _g1->free_regions();
  1656   update_young_list_target_length();
  1658   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1659   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1660   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1662   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  1665 #define EXT_SIZE_FORMAT "%d%s"
  1666 #define EXT_SIZE_PARAMS(bytes)                                  \
  1667   byte_size_in_proper_unit((bytes)),                            \
  1668   proper_unit_for_byte_size((bytes))
  1670 void G1CollectorPolicy::print_heap_transition() {
  1671   if (PrintGCDetails) {
  1672     YoungList* young_list = _g1->young_list();
  1673     size_t eden_bytes = young_list->eden_used_bytes();
  1674     size_t survivor_bytes = young_list->survivor_used_bytes();
  1675     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1676     size_t used = _g1->used();
  1677     size_t capacity = _g1->capacity();
  1678     size_t eden_capacity =
  1679       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1681     gclog_or_tty->print_cr(
  1682       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1683       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1684       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1685       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1686       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1687       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1688       EXT_SIZE_PARAMS(eden_bytes),
  1689       EXT_SIZE_PARAMS(eden_capacity),
  1690       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1691       EXT_SIZE_PARAMS(survivor_bytes),
  1692       EXT_SIZE_PARAMS(used_before_gc),
  1693       EXT_SIZE_PARAMS(_capacity_before_gc),
  1694       EXT_SIZE_PARAMS(used),
  1695       EXT_SIZE_PARAMS(capacity));
  1697     _prev_eden_capacity = eden_capacity;
  1698   } else if (PrintGC) {
  1699     _g1->print_size_transition(gclog_or_tty,
  1700                                _cur_collection_pause_used_at_start_bytes,
  1701                                _g1->used(), _g1->capacity());
  1705 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1706                                                      double update_rs_processed_buffers,
  1707                                                      double goal_ms) {
  1708   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1709   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1711   if (G1UseAdaptiveConcRefinement) {
  1712     const int k_gy = 3, k_gr = 6;
  1713     const double inc_k = 1.1, dec_k = 0.9;
  1715     int g = cg1r->green_zone();
  1716     if (update_rs_time > goal_ms) {
  1717       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1718     } else {
  1719       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1720         g = (int)MAX2(g * inc_k, g + 1.0);
  1723     // Change the refinement threads params
  1724     cg1r->set_green_zone(g);
  1725     cg1r->set_yellow_zone(g * k_gy);
  1726     cg1r->set_red_zone(g * k_gr);
  1727     cg1r->reinitialize_threads();
  1729     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1730     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1731                                     cg1r->yellow_zone());
  1732     // Change the barrier params
  1733     dcqs.set_process_completed_threshold(processing_threshold);
  1734     dcqs.set_max_completed_queue(cg1r->red_zone());
  1737   int curr_queue_size = dcqs.completed_buffers_num();
  1738   if (curr_queue_size >= cg1r->yellow_zone()) {
  1739     dcqs.set_completed_queue_padding(curr_queue_size);
  1740   } else {
  1741     dcqs.set_completed_queue_padding(0);
  1743   dcqs.notify_if_necessary();
  1746 double
  1747 G1CollectorPolicy::
  1748 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1749   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1751   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1752   size_t young_num = g1h->young_list()->length();
  1753   if (young_num == 0)
  1754     return 0.0;
  1756   young_num += adjustment;
  1757   size_t pending_cards = predict_pending_cards();
  1758   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1759                       predict_rs_length_diff();
  1760   size_t card_num;
  1761   if (gcs_are_young()) {
  1762     card_num = predict_young_card_num(rs_lengths);
  1763   } else {
  1764     card_num = predict_non_young_card_num(rs_lengths);
  1766   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1767   double accum_yg_surv_rate =
  1768     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1770   size_t bytes_to_copy =
  1771     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1773   return
  1774     predict_rs_update_time_ms(pending_cards) +
  1775     predict_rs_scan_time_ms(card_num) +
  1776     predict_object_copy_time_ms(bytes_to_copy) +
  1777     predict_young_other_time_ms(young_num) +
  1778     predict_constant_other_time_ms();
  1781 double
  1782 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1783   size_t rs_length = predict_rs_length_diff();
  1784   size_t card_num;
  1785   if (gcs_are_young()) {
  1786     card_num = predict_young_card_num(rs_length);
  1787   } else {
  1788     card_num = predict_non_young_card_num(rs_length);
  1790   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1793 double
  1794 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1795                                                 size_t scanned_cards) {
  1796   return
  1797     predict_rs_update_time_ms(pending_cards) +
  1798     predict_rs_scan_time_ms(scanned_cards) +
  1799     predict_constant_other_time_ms();
  1802 double
  1803 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1804                                                   bool young) {
  1805   size_t rs_length = hr->rem_set()->occupied();
  1806   size_t card_num;
  1807   if (gcs_are_young()) {
  1808     card_num = predict_young_card_num(rs_length);
  1809   } else {
  1810     card_num = predict_non_young_card_num(rs_length);
  1812   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1814   double region_elapsed_time_ms =
  1815     predict_rs_scan_time_ms(card_num) +
  1816     predict_object_copy_time_ms(bytes_to_copy);
  1818   if (young)
  1819     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1820   else
  1821     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1823   return region_elapsed_time_ms;
  1826 size_t
  1827 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1828   size_t bytes_to_copy;
  1829   if (hr->is_marked())
  1830     bytes_to_copy = hr->max_live_bytes();
  1831   else {
  1832     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1833                "invariant" );
  1834     int age = hr->age_in_surv_rate_group();
  1835     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1836     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1839   return bytes_to_copy;
  1842 void
  1843 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
  1844                                           size_t survivor_cset_region_length) {
  1845   _eden_cset_region_length     = eden_cset_region_length;
  1846   _survivor_cset_region_length = survivor_cset_region_length;
  1847   _old_cset_region_length      = 0;
  1850 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1851   _recorded_rs_lengths = rs_lengths;
  1854 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1855                                                            predicted_time_ms) {
  1856   // I don't think we need to do this when in young GC mode since
  1857   // marking will be initiated next time we hit the soft limit anyway...
  1858   if (predicted_time_ms > _expensive_region_limit_ms) {
  1859     ergo_verbose2(ErgoMixedGCs,
  1860               "request mixed GCs end",
  1861               ergo_format_reason("predicted region time higher than threshold")
  1862               ergo_format_ms("predicted region time")
  1863               ergo_format_ms("threshold"),
  1864               predicted_time_ms, _expensive_region_limit_ms);
  1865     // no point in doing another mixed GC
  1866     _should_revert_to_young_gcs = true;
  1870 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1871                                                double elapsed_ms) {
  1872   _recent_gc_times_ms->add(elapsed_ms);
  1873   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1874   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1877 size_t G1CollectorPolicy::expansion_amount() {
  1878   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1879   double threshold = _gc_overhead_perc;
  1880   if (recent_gc_overhead > threshold) {
  1881     // We will double the existing space, or take
  1882     // G1ExpandByPercentOfAvailable % of the available expansion
  1883     // space, whichever is smaller, bounded below by a minimum
  1884     // expansion (unless that's all that's left.)
  1885     const size_t min_expand_bytes = 1*M;
  1886     size_t reserved_bytes = _g1->max_capacity();
  1887     size_t committed_bytes = _g1->capacity();
  1888     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1889     size_t expand_bytes;
  1890     size_t expand_bytes_via_pct =
  1891       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1892     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1893     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1894     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1896     ergo_verbose5(ErgoHeapSizing,
  1897                   "attempt heap expansion",
  1898                   ergo_format_reason("recent GC overhead higher than "
  1899                                      "threshold after GC")
  1900                   ergo_format_perc("recent GC overhead")
  1901                   ergo_format_perc("threshold")
  1902                   ergo_format_byte("uncommitted")
  1903                   ergo_format_byte_perc("calculated expansion amount"),
  1904                   recent_gc_overhead, threshold,
  1905                   uncommitted_bytes,
  1906                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1908     return expand_bytes;
  1909   } else {
  1910     return 0;
  1914 class CountCSClosure: public HeapRegionClosure {
  1915   G1CollectorPolicy* _g1_policy;
  1916 public:
  1917   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1918     _g1_policy(g1_policy) {}
  1919   bool doHeapRegion(HeapRegion* r) {
  1920     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1921     return false;
  1923 };
  1925 void G1CollectorPolicy::count_CS_bytes_used() {
  1926   CountCSClosure cs_closure(this);
  1927   _g1->collection_set_iterate(&cs_closure);
  1930 void G1CollectorPolicy::print_summary(int level,
  1931                                       const char* str,
  1932                                       NumberSeq* seq) const {
  1933   double sum = seq->sum();
  1934   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1935                 str, sum / 1000.0, seq->avg());
  1938 void G1CollectorPolicy::print_summary_sd(int level,
  1939                                          const char* str,
  1940                                          NumberSeq* seq) const {
  1941   print_summary(level, str, seq);
  1942   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1943                 seq->num(), seq->sd(), seq->maximum());
  1946 void G1CollectorPolicy::check_other_times(int level,
  1947                                         NumberSeq* other_times_ms,
  1948                                         NumberSeq* calc_other_times_ms) const {
  1949   bool should_print = false;
  1950   LineBuffer buf(level + 2);
  1952   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1953                         fabs(calc_other_times_ms->sum()));
  1954   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1955                         fabs(calc_other_times_ms->sum()));
  1956   double sum_ratio = max_sum / min_sum;
  1957   if (sum_ratio > 1.1) {
  1958     should_print = true;
  1959     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1962   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1963                         fabs(calc_other_times_ms->avg()));
  1964   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1965                         fabs(calc_other_times_ms->avg()));
  1966   double avg_ratio = max_avg / min_avg;
  1967   if (avg_ratio > 1.1) {
  1968     should_print = true;
  1969     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1972   if (other_times_ms->sum() < -0.01) {
  1973     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1976   if (other_times_ms->avg() < -0.01) {
  1977     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1980   if (calc_other_times_ms->sum() < -0.01) {
  1981     should_print = true;
  1982     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1985   if (calc_other_times_ms->avg() < -0.01) {
  1986     should_print = true;
  1987     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1990   if (should_print)
  1991     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1994 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1995   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1996   MainBodySummary*    body_summary = summary->main_body_summary();
  1997   if (summary->get_total_seq()->num() > 0) {
  1998     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1999     if (body_summary != NULL) {
  2000       if (parallel) {
  2001         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  2002         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  2003         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
  2004         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  2005         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  2006         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  2007         print_summary(2, "Termination", body_summary->get_termination_seq());
  2008         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  2010           NumberSeq* other_parts[] = {
  2011             body_summary->get_ext_root_scan_seq(),
  2012             body_summary->get_satb_filtering_seq(),
  2013             body_summary->get_update_rs_seq(),
  2014             body_summary->get_scan_rs_seq(),
  2015             body_summary->get_obj_copy_seq(),
  2016             body_summary->get_termination_seq()
  2017           };
  2018           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2019                                         6, other_parts);
  2020           check_other_times(2, body_summary->get_parallel_other_seq(),
  2021                             &calc_other_times_ms);
  2023       } else {
  2024         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  2025         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
  2026         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2027         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2028         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2031     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2032     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2033     print_summary(1, "Other", summary->get_other_seq());
  2035       if (body_summary != NULL) {
  2036         NumberSeq calc_other_times_ms;
  2037         if (parallel) {
  2038           // parallel
  2039           NumberSeq* other_parts[] = {
  2040             body_summary->get_satb_drain_seq(),
  2041             body_summary->get_parallel_seq(),
  2042             body_summary->get_clear_ct_seq()
  2043           };
  2044           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2045                                                 3, other_parts);
  2046         } else {
  2047           // serial
  2048           NumberSeq* other_parts[] = {
  2049             body_summary->get_satb_drain_seq(),
  2050             body_summary->get_update_rs_seq(),
  2051             body_summary->get_ext_root_scan_seq(),
  2052             body_summary->get_satb_filtering_seq(),
  2053             body_summary->get_scan_rs_seq(),
  2054             body_summary->get_obj_copy_seq()
  2055           };
  2056           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2057                                                 6, other_parts);
  2059         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2062   } else {
  2063     LineBuffer(1).append_and_print_cr("none");
  2065   LineBuffer(0).append_and_print_cr("");
  2068 void G1CollectorPolicy::print_tracing_info() const {
  2069   if (TraceGen0Time) {
  2070     gclog_or_tty->print_cr("ALL PAUSES");
  2071     print_summary_sd(0, "Total", _all_pause_times_ms);
  2072     gclog_or_tty->print_cr("");
  2073     gclog_or_tty->print_cr("");
  2074     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2075     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2076     gclog_or_tty->print_cr("");
  2078     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2079     print_summary(_summary);
  2081     gclog_or_tty->print_cr("MISC");
  2082     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2083     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2084     for (int i = 0; i < _aux_num; ++i) {
  2085       if (_all_aux_times_ms[i].num() > 0) {
  2086         char buffer[96];
  2087         sprintf(buffer, "Aux%d", i);
  2088         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2092   if (TraceGen1Time) {
  2093     if (_all_full_gc_times_ms->num() > 0) {
  2094       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2095                  _all_full_gc_times_ms->num(),
  2096                  _all_full_gc_times_ms->sum() / 1000.0);
  2097       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2098       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2099                     _all_full_gc_times_ms->sd(),
  2100                     _all_full_gc_times_ms->maximum());
  2105 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2106 #ifndef PRODUCT
  2107   _short_lived_surv_rate_group->print_surv_rate_summary();
  2108   // add this call for any other surv rate groups
  2109 #endif // PRODUCT
  2112 #ifndef PRODUCT
  2113 // for debugging, bit of a hack...
  2114 static char*
  2115 region_num_to_mbs(int length) {
  2116   static char buffer[64];
  2117   double bytes = (double) (length * HeapRegion::GrainBytes);
  2118   double mbs = bytes / (double) (1024 * 1024);
  2119   sprintf(buffer, "%7.2lfMB", mbs);
  2120   return buffer;
  2122 #endif // PRODUCT
  2124 size_t G1CollectorPolicy::max_regions(int purpose) {
  2125   switch (purpose) {
  2126     case GCAllocForSurvived:
  2127       return _max_survivor_regions;
  2128     case GCAllocForTenured:
  2129       return REGIONS_UNLIMITED;
  2130     default:
  2131       ShouldNotReachHere();
  2132       return REGIONS_UNLIMITED;
  2133   };
  2136 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2137   size_t expansion_region_num = 0;
  2138   if (GCLockerEdenExpansionPercent > 0) {
  2139     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2140     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2141     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2142     // less than 1.0) we'll get 1.
  2143     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2144   } else {
  2145     assert(expansion_region_num == 0, "sanity");
  2147   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2148   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2151 // Calculates survivor space parameters.
  2152 void G1CollectorPolicy::update_survivors_policy() {
  2153   double max_survivor_regions_d =
  2154                  (double) _young_list_target_length / (double) SurvivorRatio;
  2155   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2156   // smaller than 1.0) we'll get 1.
  2157   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
  2159   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2160         HeapRegion::GrainWords * _max_survivor_regions);
  2163 #ifndef PRODUCT
  2164 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2165   CollectionSetChooser* _chooser;
  2166 public:
  2167   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2168     _chooser(chooser) {}
  2170   bool doHeapRegion(HeapRegion* r) {
  2171     if (!r->continuesHumongous()) {
  2172       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2174     return false;
  2176 };
  2178 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
  2179   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2180   _g1->heap_region_iterate(&cl);
  2181   return true;
  2183 #endif
  2185 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2186                                                      GCCause::Cause gc_cause) {
  2187   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2188   if (!during_cycle) {
  2189     ergo_verbose1(ErgoConcCycles,
  2190                   "request concurrent cycle initiation",
  2191                   ergo_format_reason("requested by GC cause")
  2192                   ergo_format_str("GC cause"),
  2193                   GCCause::to_string(gc_cause));
  2194     set_initiate_conc_mark_if_possible();
  2195     return true;
  2196   } else {
  2197     ergo_verbose1(ErgoConcCycles,
  2198                   "do not request concurrent cycle initiation",
  2199                   ergo_format_reason("concurrent cycle already in progress")
  2200                   ergo_format_str("GC cause"),
  2201                   GCCause::to_string(gc_cause));
  2202     return false;
  2206 void
  2207 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2208   // We are about to decide on whether this pause will be an
  2209   // initial-mark pause.
  2211   // First, during_initial_mark_pause() should not be already set. We
  2212   // will set it here if we have to. However, it should be cleared by
  2213   // the end of the pause (it's only set for the duration of an
  2214   // initial-mark pause).
  2215   assert(!during_initial_mark_pause(), "pre-condition");
  2217   if (initiate_conc_mark_if_possible()) {
  2218     // We had noticed on a previous pause that the heap occupancy has
  2219     // gone over the initiating threshold and we should start a
  2220     // concurrent marking cycle. So we might initiate one.
  2222     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2223     if (!during_cycle) {
  2224       // The concurrent marking thread is not "during a cycle", i.e.,
  2225       // it has completed the last one. So we can go ahead and
  2226       // initiate a new cycle.
  2228       set_during_initial_mark_pause();
  2229       // We do not allow mixed GCs during marking.
  2230       if (!gcs_are_young()) {
  2231         set_gcs_are_young(true);
  2232         ergo_verbose0(ErgoMixedGCs,
  2233                       "end mixed GCs",
  2234                       ergo_format_reason("concurrent cycle is about to start"));
  2237       // And we can now clear initiate_conc_mark_if_possible() as
  2238       // we've already acted on it.
  2239       clear_initiate_conc_mark_if_possible();
  2241       ergo_verbose0(ErgoConcCycles,
  2242                   "initiate concurrent cycle",
  2243                   ergo_format_reason("concurrent cycle initiation requested"));
  2244     } else {
  2245       // The concurrent marking thread is still finishing up the
  2246       // previous cycle. If we start one right now the two cycles
  2247       // overlap. In particular, the concurrent marking thread might
  2248       // be in the process of clearing the next marking bitmap (which
  2249       // we will use for the next cycle if we start one). Starting a
  2250       // cycle now will be bad given that parts of the marking
  2251       // information might get cleared by the marking thread. And we
  2252       // cannot wait for the marking thread to finish the cycle as it
  2253       // periodically yields while clearing the next marking bitmap
  2254       // and, if it's in a yield point, it's waiting for us to
  2255       // finish. So, at this point we will not start a cycle and we'll
  2256       // let the concurrent marking thread complete the last one.
  2257       ergo_verbose0(ErgoConcCycles,
  2258                     "do not initiate concurrent cycle",
  2259                     ergo_format_reason("concurrent cycle already in progress"));
  2264 class KnownGarbageClosure: public HeapRegionClosure {
  2265   CollectionSetChooser* _hrSorted;
  2267 public:
  2268   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2269     _hrSorted(hrSorted)
  2270   {}
  2272   bool doHeapRegion(HeapRegion* r) {
  2273     // We only include humongous regions in collection
  2274     // sets when concurrent mark shows that their contained object is
  2275     // unreachable.
  2277     // Do we have any marking information for this region?
  2278     if (r->is_marked()) {
  2279       // We don't include humongous regions in collection
  2280       // sets because we collect them immediately at the end of a marking
  2281       // cycle.  We also don't include young regions because we *must*
  2282       // include them in the next collection pause.
  2283       if (!r->isHumongous() && !r->is_young()) {
  2284         _hrSorted->addMarkedHeapRegion(r);
  2287     return false;
  2289 };
  2291 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2292   CollectionSetChooser* _hrSorted;
  2293   jint _marked_regions_added;
  2294   jint _chunk_size;
  2295   jint _cur_chunk_idx;
  2296   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2297   int _worker;
  2298   int _invokes;
  2300   void get_new_chunk() {
  2301     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2302     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2304   void add_region(HeapRegion* r) {
  2305     if (_cur_chunk_idx == _cur_chunk_end) {
  2306       get_new_chunk();
  2308     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2309     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2310     _marked_regions_added++;
  2311     _cur_chunk_idx++;
  2314 public:
  2315   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2316                            jint chunk_size,
  2317                            int worker) :
  2318     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2319     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2320     _invokes(0)
  2321   {}
  2323   bool doHeapRegion(HeapRegion* r) {
  2324     // We only include humongous regions in collection
  2325     // sets when concurrent mark shows that their contained object is
  2326     // unreachable.
  2327     _invokes++;
  2329     // Do we have any marking information for this region?
  2330     if (r->is_marked()) {
  2331       // We don't include humongous regions in collection
  2332       // sets because we collect them immediately at the end of a marking
  2333       // cycle.
  2334       // We also do not include young regions in collection sets
  2335       if (!r->isHumongous() && !r->is_young()) {
  2336         add_region(r);
  2339     return false;
  2341   jint marked_regions_added() { return _marked_regions_added; }
  2342   int invokes() { return _invokes; }
  2343 };
  2345 class ParKnownGarbageTask: public AbstractGangTask {
  2346   CollectionSetChooser* _hrSorted;
  2347   jint _chunk_size;
  2348   G1CollectedHeap* _g1;
  2349 public:
  2350   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2351     AbstractGangTask("ParKnownGarbageTask"),
  2352     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2353     _g1(G1CollectedHeap::heap())
  2354   {}
  2356   void work(uint worker_id) {
  2357     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
  2358                                                _chunk_size,
  2359                                                worker_id);
  2360     // Back to zero for the claim value.
  2361     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  2362                                          _g1->workers()->active_workers(),
  2363                                          HeapRegion::InitialClaimValue);
  2364     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2365     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2366     if (G1PrintParCleanupStats) {
  2367       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2368                  worker_id, parKnownGarbageCl.invokes(), regions_added);
  2371 };
  2373 void
  2374 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2375   double start_sec;
  2376   if (G1PrintParCleanupStats) {
  2377     start_sec = os::elapsedTime();
  2380   _collectionSetChooser->clearMarkedHeapRegions();
  2381   double clear_marked_end_sec;
  2382   if (G1PrintParCleanupStats) {
  2383     clear_marked_end_sec = os::elapsedTime();
  2384     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
  2385                            (clear_marked_end_sec - start_sec) * 1000.0);
  2388   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2389     const size_t OverpartitionFactor = 4;
  2390     size_t WorkUnit;
  2391     // The use of MinChunkSize = 8 in the original code
  2392     // causes some assertion failures when the total number of
  2393     // region is less than 8.  The code here tries to fix that.
  2394     // Should the original code also be fixed?
  2395     if (no_of_gc_threads > 0) {
  2396       const size_t MinWorkUnit =
  2397         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
  2398       WorkUnit =
  2399         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
  2400              MinWorkUnit);
  2401     } else {
  2402       assert(no_of_gc_threads > 0,
  2403         "The active gc workers should be greater than 0");
  2404       // In a product build do something reasonable to avoid a crash.
  2405       const size_t MinWorkUnit =
  2406         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
  2407       WorkUnit =
  2408         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2409              MinWorkUnit);
  2411     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2412                                                              WorkUnit);
  2413     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2414                                             (int) WorkUnit);
  2415     _g1->workers()->run_task(&parKnownGarbageTask);
  2417     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2418            "sanity check");
  2419   } else {
  2420     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2421     _g1->heap_region_iterate(&knownGarbagecl);
  2423   double known_garbage_end_sec;
  2424   if (G1PrintParCleanupStats) {
  2425     known_garbage_end_sec = os::elapsedTime();
  2426     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2427                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
  2430   _collectionSetChooser->sortMarkedHeapRegions();
  2431   double end_sec = os::elapsedTime();
  2432   if (G1PrintParCleanupStats) {
  2433     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2434                            (end_sec - known_garbage_end_sec) * 1000.0);
  2437   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2438   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2439   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2440   _prev_collection_pause_end_ms += elapsed_time_ms;
  2441   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2444 // Add the heap region at the head of the non-incremental collection set
  2445 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2446   assert(_inc_cset_build_state == Active, "Precondition");
  2447   assert(!hr->is_young(), "non-incremental add of young region");
  2449   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2450   hr->set_in_collection_set(true);
  2451   hr->set_next_in_collection_set(_collection_set);
  2452   _collection_set = hr;
  2453   _collection_set_bytes_used_before += hr->used();
  2454   _g1->register_region_with_in_cset_fast_test(hr);
  2455   size_t rs_length = hr->rem_set()->occupied();
  2456   _recorded_rs_lengths += rs_length;
  2457   _old_cset_region_length += 1;
  2460 // Initialize the per-collection-set information
  2461 void G1CollectorPolicy::start_incremental_cset_building() {
  2462   assert(_inc_cset_build_state == Inactive, "Precondition");
  2464   _inc_cset_head = NULL;
  2465   _inc_cset_tail = NULL;
  2466   _inc_cset_bytes_used_before = 0;
  2468   _inc_cset_max_finger = 0;
  2469   _inc_cset_recorded_rs_lengths = 0;
  2470   _inc_cset_recorded_rs_lengths_diffs = 0;
  2471   _inc_cset_predicted_elapsed_time_ms = 0.0;
  2472   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2473   _inc_cset_build_state = Active;
  2476 void G1CollectorPolicy::finalize_incremental_cset_building() {
  2477   assert(_inc_cset_build_state == Active, "Precondition");
  2478   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2480   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  2481   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  2482   // that adds a new region to the CSet. Further updates by the
  2483   // concurrent refinement thread that samples the young RSet lengths
  2484   // are accumulated in the *_diffs fields. Here we add the diffs to
  2485   // the "main" fields.
  2487   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  2488     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  2489   } else {
  2490     // This is defensive. The diff should in theory be always positive
  2491     // as RSets can only grow between GCs. However, given that we
  2492     // sample their size concurrently with other threads updating them
  2493     // it's possible that we might get the wrong size back, which
  2494     // could make the calculations somewhat inaccurate.
  2495     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  2496     if (_inc_cset_recorded_rs_lengths >= diffs) {
  2497       _inc_cset_recorded_rs_lengths -= diffs;
  2498     } else {
  2499       _inc_cset_recorded_rs_lengths = 0;
  2502   _inc_cset_predicted_elapsed_time_ms +=
  2503                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  2505   _inc_cset_recorded_rs_lengths_diffs = 0;
  2506   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2509 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2510   // This routine is used when:
  2511   // * adding survivor regions to the incremental cset at the end of an
  2512   //   evacuation pause,
  2513   // * adding the current allocation region to the incremental cset
  2514   //   when it is retired, and
  2515   // * updating existing policy information for a region in the
  2516   //   incremental cset via young list RSet sampling.
  2517   // Therefore this routine may be called at a safepoint by the
  2518   // VM thread, or in-between safepoints by mutator threads (when
  2519   // retiring the current allocation region) or a concurrent
  2520   // refine thread (RSet sampling).
  2522   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2523   size_t used_bytes = hr->used();
  2524   _inc_cset_recorded_rs_lengths += rs_length;
  2525   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2526   _inc_cset_bytes_used_before += used_bytes;
  2528   // Cache the values we have added to the aggregated informtion
  2529   // in the heap region in case we have to remove this region from
  2530   // the incremental collection set, or it is updated by the
  2531   // rset sampling code
  2532   hr->set_recorded_rs_length(rs_length);
  2533   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2536 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  2537                                                      size_t new_rs_length) {
  2538   // Update the CSet information that is dependent on the new RS length
  2539   assert(hr->is_young(), "Precondition");
  2540   assert(!SafepointSynchronize::is_at_safepoint(),
  2541                                                "should not be at a safepoint");
  2543   // We could have updated _inc_cset_recorded_rs_lengths and
  2544   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  2545   // that atomically, as this code is executed by a concurrent
  2546   // refinement thread, potentially concurrently with a mutator thread
  2547   // allocating a new region and also updating the same fields. To
  2548   // avoid the atomic operations we accumulate these updates on two
  2549   // separate fields (*_diffs) and we'll just add them to the "main"
  2550   // fields at the start of a GC.
  2552   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  2553   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  2554   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  2556   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2557   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2558   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  2559   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  2561   hr->set_recorded_rs_length(new_rs_length);
  2562   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  2565 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2566   assert(hr->is_young(), "invariant");
  2567   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2568   assert(_inc_cset_build_state == Active, "Precondition");
  2570   // We need to clear and set the cached recorded/cached collection set
  2571   // information in the heap region here (before the region gets added
  2572   // to the collection set). An individual heap region's cached values
  2573   // are calculated, aggregated with the policy collection set info,
  2574   // and cached in the heap region here (initially) and (subsequently)
  2575   // by the Young List sampling code.
  2577   size_t rs_length = hr->rem_set()->occupied();
  2578   add_to_incremental_cset_info(hr, rs_length);
  2580   HeapWord* hr_end = hr->end();
  2581   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2583   assert(!hr->in_collection_set(), "invariant");
  2584   hr->set_in_collection_set(true);
  2585   assert( hr->next_in_collection_set() == NULL, "invariant");
  2587   _g1->register_region_with_in_cset_fast_test(hr);
  2590 // Add the region at the RHS of the incremental cset
  2591 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2592   // We should only ever be appending survivors at the end of a pause
  2593   assert( hr->is_survivor(), "Logic");
  2595   // Do the 'common' stuff
  2596   add_region_to_incremental_cset_common(hr);
  2598   // Now add the region at the right hand side
  2599   if (_inc_cset_tail == NULL) {
  2600     assert(_inc_cset_head == NULL, "invariant");
  2601     _inc_cset_head = hr;
  2602   } else {
  2603     _inc_cset_tail->set_next_in_collection_set(hr);
  2605   _inc_cset_tail = hr;
  2608 // Add the region to the LHS of the incremental cset
  2609 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2610   // Survivors should be added to the RHS at the end of a pause
  2611   assert(!hr->is_survivor(), "Logic");
  2613   // Do the 'common' stuff
  2614   add_region_to_incremental_cset_common(hr);
  2616   // Add the region at the left hand side
  2617   hr->set_next_in_collection_set(_inc_cset_head);
  2618   if (_inc_cset_head == NULL) {
  2619     assert(_inc_cset_tail == NULL, "Invariant");
  2620     _inc_cset_tail = hr;
  2622   _inc_cset_head = hr;
  2625 #ifndef PRODUCT
  2626 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2627   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2629   st->print_cr("\nCollection_set:");
  2630   HeapRegion* csr = list_head;
  2631   while (csr != NULL) {
  2632     HeapRegion* next = csr->next_in_collection_set();
  2633     assert(csr->in_collection_set(), "bad CS");
  2634     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2635                  "age: %4d, y: %d, surv: %d",
  2636                         csr->bottom(), csr->end(),
  2637                         csr->top(),
  2638                         csr->prev_top_at_mark_start(),
  2639                         csr->next_top_at_mark_start(),
  2640                         csr->top_at_conc_mark_count(),
  2641                         csr->age_in_surv_rate_group_cond(),
  2642                         csr->is_young(),
  2643                         csr->is_survivor());
  2644     csr = next;
  2647 #endif // !PRODUCT
  2649 void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
  2650   // Set this here - in case we're not doing young collections.
  2651   double non_young_start_time_sec = os::elapsedTime();
  2653   YoungList* young_list = _g1->young_list();
  2654   finalize_incremental_cset_building();
  2656   guarantee(target_pause_time_ms > 0.0,
  2657             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2658                     target_pause_time_ms));
  2659   guarantee(_collection_set == NULL, "Precondition");
  2661   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2662   double predicted_pause_time_ms = base_time_ms;
  2664   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2666   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2667                 "start choosing CSet",
  2668                 ergo_format_ms("predicted base time")
  2669                 ergo_format_ms("remaining time")
  2670                 ergo_format_ms("target pause time"),
  2671                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2673   // the 10% and 50% values are arbitrary...
  2674   double threshold = 0.10 * target_pause_time_ms;
  2675   if (time_remaining_ms < threshold) {
  2676     double prev_time_remaining_ms = time_remaining_ms;
  2677     time_remaining_ms = 0.50 * target_pause_time_ms;
  2678     ergo_verbose3(ErgoCSetConstruction,
  2679                   "adjust remaining time",
  2680                   ergo_format_reason("remaining time lower than threshold")
  2681                   ergo_format_ms("remaining time")
  2682                   ergo_format_ms("threshold")
  2683                   ergo_format_ms("adjusted remaining time"),
  2684                   prev_time_remaining_ms, threshold, time_remaining_ms);
  2687   size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
  2689   HeapRegion* hr;
  2690   double young_start_time_sec = os::elapsedTime();
  2692   _collection_set_bytes_used_before = 0;
  2693   _last_gc_was_young = gcs_are_young() ? true : false;
  2695   if (_last_gc_was_young) {
  2696     ++_young_pause_num;
  2697   } else {
  2698     ++_mixed_pause_num;
  2701   // The young list is laid with the survivor regions from the previous
  2702   // pause are appended to the RHS of the young list, i.e.
  2703   //   [Newly Young Regions ++ Survivors from last pause].
  2705   size_t survivor_region_length = young_list->survivor_length();
  2706   size_t eden_region_length = young_list->length() - survivor_region_length;
  2707   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2708   hr = young_list->first_survivor_region();
  2709   while (hr != NULL) {
  2710     assert(hr->is_survivor(), "badly formed young list");
  2711     hr->set_young();
  2712     hr = hr->get_next_young_region();
  2715   // Clear the fields that point to the survivor list - they are all young now.
  2716   young_list->clear_survivors();
  2718   _collection_set = _inc_cset_head;
  2719   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2720   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2721   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2723   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2724                 "add young regions to CSet",
  2725                 ergo_format_region("eden")
  2726                 ergo_format_region("survivors")
  2727                 ergo_format_ms("predicted young region time"),
  2728                 eden_region_length, survivor_region_length,
  2729                 _inc_cset_predicted_elapsed_time_ms);
  2731   // The number of recorded young regions is the incremental
  2732   // collection set's current size
  2733   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2735   double young_end_time_sec = os::elapsedTime();
  2736   _recorded_young_cset_choice_time_ms =
  2737     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2739   // We are doing young collections so reset this.
  2740   non_young_start_time_sec = young_end_time_sec;
  2742   if (!gcs_are_young()) {
  2743     bool should_continue = true;
  2744     NumberSeq seq;
  2745     double avg_prediction = 100000000000000000.0; // something very large
  2747     double prev_predicted_pause_time_ms = predicted_pause_time_ms;
  2748     do {
  2749       // Note that add_old_region_to_cset() increments the
  2750       // _old_cset_region_length field and cset_region_length() returns the
  2751       // sum of _eden_cset_region_length, _survivor_cset_region_length, and
  2752       // _old_cset_region_length. So, as old regions are added to the
  2753       // CSet, _old_cset_region_length will be incremented and
  2754       // cset_region_length(), which is used below, will always reflect
  2755       // the the total number of regions added up to this point to the CSet.
  2757       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2758                                                       avg_prediction);
  2759       if (hr != NULL) {
  2760         _g1->old_set_remove(hr);
  2761         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2762         time_remaining_ms -= predicted_time_ms;
  2763         predicted_pause_time_ms += predicted_time_ms;
  2764         add_old_region_to_cset(hr);
  2765         seq.add(predicted_time_ms);
  2766         avg_prediction = seq.avg() + seq.sd();
  2769       should_continue = true;
  2770       if (hr == NULL) {
  2771         // No need for an ergo verbose message here,
  2772         // getNextMarkRegion() does this when it returns NULL.
  2773         should_continue = false;
  2774       } else {
  2775         if (adaptive_young_list_length()) {
  2776           if (time_remaining_ms < 0.0) {
  2777             ergo_verbose1(ErgoCSetConstruction,
  2778                           "stop adding old regions to CSet",
  2779                           ergo_format_reason("remaining time is lower than 0")
  2780                           ergo_format_ms("remaining time"),
  2781                           time_remaining_ms);
  2782             should_continue = false;
  2784         } else {
  2785           if (cset_region_length() >= _young_list_fixed_length) {
  2786             ergo_verbose2(ErgoCSetConstruction,
  2787                           "stop adding old regions to CSet",
  2788                           ergo_format_reason("CSet length reached target")
  2789                           ergo_format_region("CSet")
  2790                           ergo_format_region("young target"),
  2791                           cset_region_length(), _young_list_fixed_length);
  2792             should_continue = false;
  2796     } while (should_continue);
  2798     if (!adaptive_young_list_length() &&
  2799         cset_region_length() < _young_list_fixed_length) {
  2800       ergo_verbose2(ErgoCSetConstruction,
  2801                     "request mixed GCs end",
  2802                     ergo_format_reason("CSet length lower than target")
  2803                     ergo_format_region("CSet")
  2804                     ergo_format_region("young target"),
  2805                     cset_region_length(), _young_list_fixed_length);
  2806       _should_revert_to_young_gcs  = true;
  2809     ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
  2810                   "add old regions to CSet",
  2811                   ergo_format_region("old")
  2812                   ergo_format_ms("predicted old region time"),
  2813                   old_cset_region_length(),
  2814                   predicted_pause_time_ms - prev_predicted_pause_time_ms);
  2817   stop_incremental_cset_building();
  2819   count_CS_bytes_used();
  2821   ergo_verbose5(ErgoCSetConstruction,
  2822                 "finish choosing CSet",
  2823                 ergo_format_region("eden")
  2824                 ergo_format_region("survivors")
  2825                 ergo_format_region("old")
  2826                 ergo_format_ms("predicted pause time")
  2827                 ergo_format_ms("target pause time"),
  2828                 eden_region_length, survivor_region_length,
  2829                 old_cset_region_length(),
  2830                 predicted_pause_time_ms, target_pause_time_ms);
  2832   double non_young_end_time_sec = os::elapsedTime();
  2833   _recorded_non_young_cset_choice_time_ms =
  2834     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial