src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Tue, 10 Jan 2012 18:58:13 -0500

author
tonyp
date
Tue, 10 Jan 2012 18:58:13 -0500
changeset 3416
2ace1c4ee8da
parent 3358
1cbe7978b021
child 3456
9509c20bba28
permissions
-rw-r--r--

6888336: G1: avoid explicitly marking and pushing objects in survivor spaces
Summary: This change simplifies the interaction between GC and concurrent marking. By disabling survivor spaces during the initial-mark pause we don't need to propagate marks of objects we copy during each GC (since we never need to copy an explicitly marked object).
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "runtime/arguments.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "utilities/debug.hpp"
    39 // Different defaults for different number of GC threads
    40 // They were chosen by running GCOld and SPECjbb on debris with different
    41 //   numbers of GC threads and choosing them based on the results
    43 // all the same
    44 static double rs_length_diff_defaults[] = {
    45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    46 };
    48 static double cost_per_card_ms_defaults[] = {
    49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    50 };
    52 // all the same
    53 static double young_cards_per_entry_ratio_defaults[] = {
    54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    55 };
    57 static double cost_per_entry_ms_defaults[] = {
    58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    59 };
    61 static double cost_per_byte_ms_defaults[] = {
    62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    63 };
    65 // these should be pretty consistent
    66 static double constant_other_time_ms_defaults[] = {
    67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    68 };
    71 static double young_other_cost_per_region_ms_defaults[] = {
    72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    73 };
    75 static double non_young_other_cost_per_region_ms_defaults[] = {
    76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    77 };
    79 // Help class for avoiding interleaved logging
    80 class LineBuffer: public StackObj {
    82 private:
    83   static const int BUFFER_LEN = 1024;
    84   static const int INDENT_CHARS = 3;
    85   char _buffer[BUFFER_LEN];
    86   int _indent_level;
    87   int _cur;
    89   void vappend(const char* format, va_list ap) {
    90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    91     if (res != -1) {
    92       _cur += res;
    93     } else {
    94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    95       _buffer[BUFFER_LEN -1] = 0;
    96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    97     }
    98   }
   100 public:
   101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   103       _buffer[_cur] = ' ';
   104     }
   105   }
   107 #ifndef PRODUCT
   108   ~LineBuffer() {
   109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   110   }
   111 #endif
   113   void append(const char* format, ...) {
   114     va_list ap;
   115     va_start(ap, format);
   116     vappend(format, ap);
   117     va_end(ap);
   118   }
   120   void append_and_print_cr(const char* format, ...) {
   121     va_list ap;
   122     va_start(ap, format);
   123     vappend(format, ap);
   124     va_end(ap);
   125     gclog_or_tty->print_cr("%s", _buffer);
   126     _cur = _indent_level * INDENT_CHARS;
   127   }
   128 };
   130 G1CollectorPolicy::G1CollectorPolicy() :
   131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   132                         ? ParallelGCThreads : 1),
   134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   135   _all_pause_times_ms(new NumberSeq()),
   136   _stop_world_start(0.0),
   137   _all_stop_world_times_ms(new NumberSeq()),
   138   _all_yield_times_ms(new NumberSeq()),
   140   _summary(new Summary()),
   142   _cur_clear_ct_time_ms(0.0),
   143   _mark_closure_time_ms(0.0),
   145   _cur_ref_proc_time_ms(0.0),
   146   _cur_ref_enq_time_ms(0.0),
   148 #ifndef PRODUCT
   149   _min_clear_cc_time_ms(-1.0),
   150   _max_clear_cc_time_ms(-1.0),
   151   _cur_clear_cc_time_ms(0.0),
   152   _cum_clear_cc_time_ms(0.0),
   153   _num_cc_clears(0L),
   154 #endif
   156   _aux_num(10),
   157   _all_aux_times_ms(new NumberSeq[_aux_num]),
   158   _cur_aux_start_times_ms(new double[_aux_num]),
   159   _cur_aux_times_ms(new double[_aux_num]),
   160   _cur_aux_times_set(new bool[_aux_num]),
   162   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   163   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   165   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   166   _prev_collection_pause_end_ms(0.0),
   167   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   168   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   172   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   173   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _non_young_other_cost_per_region_ms_seq(
   179                                          new TruncatedSeq(TruncatedSeqLength)),
   181   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   182   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   184   _pause_time_target_ms((double) MaxGCPauseMillis),
   186   _gcs_are_young(true),
   187   _young_pause_num(0),
   188   _mixed_pause_num(0),
   190   _during_marking(false),
   191   _in_marking_window(false),
   192   _in_marking_window_im(false),
   194   _known_garbage_ratio(0.0),
   195   _known_garbage_bytes(0),
   197   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   199   _recent_prev_end_times_for_all_gcs_sec(
   200                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   202   _recent_avg_pause_time_ratio(0.0),
   204   _all_full_gc_times_ms(new NumberSeq()),
   206   _initiate_conc_mark_if_possible(false),
   207   _during_initial_mark_pause(false),
   208   _should_revert_to_young_gcs(false),
   209   _last_young_gc(false),
   210   _last_gc_was_young(false),
   212   _eden_bytes_before_gc(0),
   213   _survivor_bytes_before_gc(0),
   214   _capacity_before_gc(0),
   216   _prev_collection_pause_used_at_end_bytes(0),
   218   _eden_cset_region_length(0),
   219   _survivor_cset_region_length(0),
   220   _old_cset_region_length(0),
   222   _collection_set(NULL),
   223   _collection_set_bytes_used_before(0),
   225   // Incremental CSet attributes
   226   _inc_cset_build_state(Inactive),
   227   _inc_cset_head(NULL),
   228   _inc_cset_tail(NULL),
   229   _inc_cset_bytes_used_before(0),
   230   _inc_cset_max_finger(NULL),
   231   _inc_cset_recorded_rs_lengths(0),
   232   _inc_cset_recorded_rs_lengths_diffs(0),
   233   _inc_cset_predicted_elapsed_time_ms(0.0),
   234   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   236 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   237 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   238 #endif // _MSC_VER
   240   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   241                                                  G1YoungSurvRateNumRegionsSummary)),
   242   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   243                                               G1YoungSurvRateNumRegionsSummary)),
   244   // add here any more surv rate groups
   245   _recorded_survivor_regions(0),
   246   _recorded_survivor_head(NULL),
   247   _recorded_survivor_tail(NULL),
   248   _survivors_age_table(true),
   250   _gc_overhead_perc(0.0) {
   252   // Set up the region size and associated fields. Given that the
   253   // policy is created before the heap, we have to set this up here,
   254   // so it's done as soon as possible.
   255   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   256   HeapRegionRemSet::setup_remset_size();
   258   G1ErgoVerbose::initialize();
   259   if (PrintAdaptiveSizePolicy) {
   260     // Currently, we only use a single switch for all the heuristics.
   261     G1ErgoVerbose::set_enabled(true);
   262     // Given that we don't currently have a verboseness level
   263     // parameter, we'll hardcode this to high. This can be easily
   264     // changed in the future.
   265     G1ErgoVerbose::set_level(ErgoHigh);
   266   } else {
   267     G1ErgoVerbose::set_enabled(false);
   268   }
   270   // Verify PLAB sizes
   271   const size_t region_size = HeapRegion::GrainWords;
   272   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   273     char buffer[128];
   274     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   275                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   276     vm_exit_during_initialization(buffer);
   277   }
   279   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   280   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   282   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   283   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   284   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
   286   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   287   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   289   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   291   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   293   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   294   _par_last_termination_attempts = new double[_parallel_gc_threads];
   295   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   296   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   297   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   299   // start conservatively
   300   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   302   int index;
   303   if (ParallelGCThreads == 0)
   304     index = 0;
   305   else if (ParallelGCThreads > 8)
   306     index = 7;
   307   else
   308     index = ParallelGCThreads - 1;
   310   _pending_card_diff_seq->add(0.0);
   311   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   312   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   313   _young_cards_per_entry_ratio_seq->add(
   314                                   young_cards_per_entry_ratio_defaults[index]);
   315   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   316   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   317   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   318   _young_other_cost_per_region_ms_seq->add(
   319                                young_other_cost_per_region_ms_defaults[index]);
   320   _non_young_other_cost_per_region_ms_seq->add(
   321                            non_young_other_cost_per_region_ms_defaults[index]);
   323   // Below, we might need to calculate the pause time target based on
   324   // the pause interval. When we do so we are going to give G1 maximum
   325   // flexibility and allow it to do pauses when it needs to. So, we'll
   326   // arrange that the pause interval to be pause time target + 1 to
   327   // ensure that a) the pause time target is maximized with respect to
   328   // the pause interval and b) we maintain the invariant that pause
   329   // time target < pause interval. If the user does not want this
   330   // maximum flexibility, they will have to set the pause interval
   331   // explicitly.
   333   // First make sure that, if either parameter is set, its value is
   334   // reasonable.
   335   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   336     if (MaxGCPauseMillis < 1) {
   337       vm_exit_during_initialization("MaxGCPauseMillis should be "
   338                                     "greater than 0");
   339     }
   340   }
   341   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   342     if (GCPauseIntervalMillis < 1) {
   343       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   344                                     "greater than 0");
   345     }
   346   }
   348   // Then, if the pause time target parameter was not set, set it to
   349   // the default value.
   350   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   351     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   352       // The default pause time target in G1 is 200ms
   353       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   354     } else {
   355       // We do not allow the pause interval to be set without the
   356       // pause time target
   357       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   358                                     "without setting MaxGCPauseMillis");
   359     }
   360   }
   362   // Then, if the interval parameter was not set, set it according to
   363   // the pause time target (this will also deal with the case when the
   364   // pause time target is the default value).
   365   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   366     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   367   }
   369   // Finally, make sure that the two parameters are consistent.
   370   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   371     char buffer[256];
   372     jio_snprintf(buffer, 256,
   373                  "MaxGCPauseMillis (%u) should be less than "
   374                  "GCPauseIntervalMillis (%u)",
   375                  MaxGCPauseMillis, GCPauseIntervalMillis);
   376     vm_exit_during_initialization(buffer);
   377   }
   379   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   380   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   381   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   382   _sigma = (double) G1ConfidencePercent / 100.0;
   384   // start conservatively (around 50ms is about right)
   385   _concurrent_mark_remark_times_ms->add(0.05);
   386   _concurrent_mark_cleanup_times_ms->add(0.20);
   387   _tenuring_threshold = MaxTenuringThreshold;
   388   // _max_survivor_regions will be calculated by
   389   // update_young_list_target_length() during initialization.
   390   _max_survivor_regions = 0;
   392   assert(GCTimeRatio > 0,
   393          "we should have set it to a default value set_g1_gc_flags() "
   394          "if a user set it to 0");
   395   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   397   uintx reserve_perc = G1ReservePercent;
   398   // Put an artificial ceiling on this so that it's not set to a silly value.
   399   if (reserve_perc > 50) {
   400     reserve_perc = 50;
   401     warning("G1ReservePercent is set to a value that is too large, "
   402             "it's been updated to %u", reserve_perc);
   403   }
   404   _reserve_factor = (double) reserve_perc / 100.0;
   405   // This will be set when the heap is expanded
   406   // for the first time during initialization.
   407   _reserve_regions = 0;
   409   initialize_all();
   410   _collectionSetChooser = new CollectionSetChooser();
   411   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   412 }
   414 void G1CollectorPolicy::initialize_flags() {
   415   set_min_alignment(HeapRegion::GrainBytes);
   416   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   417   if (SurvivorRatio < 1) {
   418     vm_exit_during_initialization("Invalid survivor ratio specified");
   419   }
   420   CollectorPolicy::initialize_flags();
   421 }
   423 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   424   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
   425   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
   426   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
   428   if (FLAG_IS_CMDLINE(NewRatio)) {
   429     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   430       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   431     } else {
   432       _sizer_kind = SizerNewRatio;
   433       _adaptive_size = false;
   434       return;
   435     }
   436   }
   438   if (FLAG_IS_CMDLINE(NewSize)) {
   439      _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
   440     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   441       _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   442       _sizer_kind = SizerMaxAndNewSize;
   443       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   444     } else {
   445       _sizer_kind = SizerNewSizeOnly;
   446     }
   447   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   448     _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   449     _sizer_kind = SizerMaxNewSizeOnly;
   450   }
   451 }
   453 size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) {
   454   size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
   455   return MAX2((size_t)1, default_value);
   456 }
   458 size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) {
   459   size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
   460   return MAX2((size_t)1, default_value);
   461 }
   463 void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
   464   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   466   switch (_sizer_kind) {
   467     case SizerDefaults:
   468       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   469       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   470       break;
   471     case SizerNewSizeOnly:
   472       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   473       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   474       break;
   475     case SizerMaxNewSizeOnly:
   476       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   477       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   478       break;
   479     case SizerMaxAndNewSize:
   480       // Do nothing. Values set on the command line, don't update them at runtime.
   481       break;
   482     case SizerNewRatio:
   483       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   484       _max_desired_young_length = _min_desired_young_length;
   485       break;
   486     default:
   487       ShouldNotReachHere();
   488   }
   490   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   491 }
   493 void G1CollectorPolicy::init() {
   494   // Set aside an initial future to_space.
   495   _g1 = G1CollectedHeap::heap();
   497   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   499   initialize_gc_policy_counters();
   501   if (adaptive_young_list_length()) {
   502     _young_list_fixed_length = 0;
   503   } else {
   504     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   505   }
   506   _free_regions_at_end_of_collection = _g1->free_regions();
   507   update_young_list_target_length();
   508   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   510   // We may immediately start allocating regions and placing them on the
   511   // collection set list. Initialize the per-collection set info
   512   start_incremental_cset_building();
   513 }
   515 // Create the jstat counters for the policy.
   516 void G1CollectorPolicy::initialize_gc_policy_counters() {
   517   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   518 }
   520 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
   521                                          double base_time_ms,
   522                                          size_t base_free_regions,
   523                                          double target_pause_time_ms) {
   524   if (young_length >= base_free_regions) {
   525     // end condition 1: not enough space for the young regions
   526     return false;
   527   }
   529   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
   530   size_t bytes_to_copy =
   531                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   532   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   533   double young_other_time_ms = predict_young_other_time_ms(young_length);
   534   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   535   if (pause_time_ms > target_pause_time_ms) {
   536     // end condition 2: prediction is over the target pause time
   537     return false;
   538   }
   540   size_t free_bytes =
   541                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
   542   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   543     // end condition 3: out-of-space (conservatively!)
   544     return false;
   545   }
   547   // success!
   548   return true;
   549 }
   551 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
   552   // re-calculate the necessary reserve
   553   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   554   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   555   // smaller than 1.0) we'll get 1.
   556   _reserve_regions = (size_t) ceil(reserve_regions_d);
   558   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   559 }
   561 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
   562                                                      size_t base_min_length) {
   563   size_t desired_min_length = 0;
   564   if (adaptive_young_list_length()) {
   565     if (_alloc_rate_ms_seq->num() > 3) {
   566       double now_sec = os::elapsedTime();
   567       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   568       double alloc_rate_ms = predict_alloc_rate_ms();
   569       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
   570     } else {
   571       // otherwise we don't have enough info to make the prediction
   572     }
   573   }
   574   desired_min_length += base_min_length;
   575   // make sure we don't go below any user-defined minimum bound
   576   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   577 }
   579 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
   580   // Here, we might want to also take into account any additional
   581   // constraints (i.e., user-defined minimum bound). Currently, we
   582   // effectively don't set this bound.
   583   return _young_gen_sizer->max_desired_young_length();
   584 }
   586 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   587   if (rs_lengths == (size_t) -1) {
   588     // if it's set to the default value (-1), we should predict it;
   589     // otherwise, use the given value.
   590     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   591   }
   593   // Calculate the absolute and desired min bounds.
   595   // This is how many young regions we already have (currently: the survivors).
   596   size_t base_min_length = recorded_survivor_regions();
   597   // This is the absolute minimum young length, which ensures that we
   598   // can allocate one eden region in the worst-case.
   599   size_t absolute_min_length = base_min_length + 1;
   600   size_t desired_min_length =
   601                      calculate_young_list_desired_min_length(base_min_length);
   602   if (desired_min_length < absolute_min_length) {
   603     desired_min_length = absolute_min_length;
   604   }
   606   // Calculate the absolute and desired max bounds.
   608   // We will try our best not to "eat" into the reserve.
   609   size_t absolute_max_length = 0;
   610   if (_free_regions_at_end_of_collection > _reserve_regions) {
   611     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   612   }
   613   size_t desired_max_length = calculate_young_list_desired_max_length();
   614   if (desired_max_length > absolute_max_length) {
   615     desired_max_length = absolute_max_length;
   616   }
   618   size_t young_list_target_length = 0;
   619   if (adaptive_young_list_length()) {
   620     if (gcs_are_young()) {
   621       young_list_target_length =
   622                         calculate_young_list_target_length(rs_lengths,
   623                                                            base_min_length,
   624                                                            desired_min_length,
   625                                                            desired_max_length);
   626       _rs_lengths_prediction = rs_lengths;
   627     } else {
   628       // Don't calculate anything and let the code below bound it to
   629       // the desired_min_length, i.e., do the next GC as soon as
   630       // possible to maximize how many old regions we can add to it.
   631     }
   632   } else {
   633     if (gcs_are_young()) {
   634       young_list_target_length = _young_list_fixed_length;
   635     } else {
   636       // A bit arbitrary: during mixed GCs we allocate half
   637       // the young regions to try to add old regions to the CSet.
   638       young_list_target_length = _young_list_fixed_length / 2;
   639       // We choose to accept that we might go under the desired min
   640       // length given that we intentionally ask for a smaller young gen.
   641       desired_min_length = absolute_min_length;
   642     }
   643   }
   645   // Make sure we don't go over the desired max length, nor under the
   646   // desired min length. In case they clash, desired_min_length wins
   647   // which is why that test is second.
   648   if (young_list_target_length > desired_max_length) {
   649     young_list_target_length = desired_max_length;
   650   }
   651   if (young_list_target_length < desired_min_length) {
   652     young_list_target_length = desired_min_length;
   653   }
   655   assert(young_list_target_length > recorded_survivor_regions(),
   656          "we should be able to allocate at least one eden region");
   657   assert(young_list_target_length >= absolute_min_length, "post-condition");
   658   _young_list_target_length = young_list_target_length;
   660   update_max_gc_locker_expansion();
   661 }
   663 size_t
   664 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   665                                                    size_t base_min_length,
   666                                                    size_t desired_min_length,
   667                                                    size_t desired_max_length) {
   668   assert(adaptive_young_list_length(), "pre-condition");
   669   assert(gcs_are_young(), "only call this for young GCs");
   671   // In case some edge-condition makes the desired max length too small...
   672   if (desired_max_length <= desired_min_length) {
   673     return desired_min_length;
   674   }
   676   // We'll adjust min_young_length and max_young_length not to include
   677   // the already allocated young regions (i.e., so they reflect the
   678   // min and max eden regions we'll allocate). The base_min_length
   679   // will be reflected in the predictions by the
   680   // survivor_regions_evac_time prediction.
   681   assert(desired_min_length > base_min_length, "invariant");
   682   size_t min_young_length = desired_min_length - base_min_length;
   683   assert(desired_max_length > base_min_length, "invariant");
   684   size_t max_young_length = desired_max_length - base_min_length;
   686   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   687   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   688   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   689   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   690   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   691   double base_time_ms =
   692     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   693     survivor_regions_evac_time;
   694   size_t available_free_regions = _free_regions_at_end_of_collection;
   695   size_t base_free_regions = 0;
   696   if (available_free_regions > _reserve_regions) {
   697     base_free_regions = available_free_regions - _reserve_regions;
   698   }
   700   // Here, we will make sure that the shortest young length that
   701   // makes sense fits within the target pause time.
   703   if (predict_will_fit(min_young_length, base_time_ms,
   704                        base_free_regions, target_pause_time_ms)) {
   705     // The shortest young length will fit into the target pause time;
   706     // we'll now check whether the absolute maximum number of young
   707     // regions will fit in the target pause time. If not, we'll do
   708     // a binary search between min_young_length and max_young_length.
   709     if (predict_will_fit(max_young_length, base_time_ms,
   710                          base_free_regions, target_pause_time_ms)) {
   711       // The maximum young length will fit into the target pause time.
   712       // We are done so set min young length to the maximum length (as
   713       // the result is assumed to be returned in min_young_length).
   714       min_young_length = max_young_length;
   715     } else {
   716       // The maximum possible number of young regions will not fit within
   717       // the target pause time so we'll search for the optimal
   718       // length. The loop invariants are:
   719       //
   720       // min_young_length < max_young_length
   721       // min_young_length is known to fit into the target pause time
   722       // max_young_length is known not to fit into the target pause time
   723       //
   724       // Going into the loop we know the above hold as we've just
   725       // checked them. Every time around the loop we check whether
   726       // the middle value between min_young_length and
   727       // max_young_length fits into the target pause time. If it
   728       // does, it becomes the new min. If it doesn't, it becomes
   729       // the new max. This way we maintain the loop invariants.
   731       assert(min_young_length < max_young_length, "invariant");
   732       size_t diff = (max_young_length - min_young_length) / 2;
   733       while (diff > 0) {
   734         size_t young_length = min_young_length + diff;
   735         if (predict_will_fit(young_length, base_time_ms,
   736                              base_free_regions, target_pause_time_ms)) {
   737           min_young_length = young_length;
   738         } else {
   739           max_young_length = young_length;
   740         }
   741         assert(min_young_length <  max_young_length, "invariant");
   742         diff = (max_young_length - min_young_length) / 2;
   743       }
   744       // The results is min_young_length which, according to the
   745       // loop invariants, should fit within the target pause time.
   747       // These are the post-conditions of the binary search above:
   748       assert(min_young_length < max_young_length,
   749              "otherwise we should have discovered that max_young_length "
   750              "fits into the pause target and not done the binary search");
   751       assert(predict_will_fit(min_young_length, base_time_ms,
   752                               base_free_regions, target_pause_time_ms),
   753              "min_young_length, the result of the binary search, should "
   754              "fit into the pause target");
   755       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   756                                base_free_regions, target_pause_time_ms),
   757              "min_young_length, the result of the binary search, should be "
   758              "optimal, so no larger length should fit into the pause target");
   759     }
   760   } else {
   761     // Even the minimum length doesn't fit into the pause time
   762     // target, return it as the result nevertheless.
   763   }
   764   return base_min_length + min_young_length;
   765 }
   767 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   768   double survivor_regions_evac_time = 0.0;
   769   for (HeapRegion * r = _recorded_survivor_head;
   770        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   771        r = r->get_next_young_region()) {
   772     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   773   }
   774   return survivor_regions_evac_time;
   775 }
   777 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   778   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   780   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   781   if (rs_lengths > _rs_lengths_prediction) {
   782     // add 10% to avoid having to recalculate often
   783     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   784     update_young_list_target_length(rs_lengths_prediction);
   785   }
   786 }
   790 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   791                                                bool is_tlab,
   792                                                bool* gc_overhead_limit_was_exceeded) {
   793   guarantee(false, "Not using this policy feature yet.");
   794   return NULL;
   795 }
   797 // This method controls how a collector handles one or more
   798 // of its generations being fully allocated.
   799 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   800                                                        bool is_tlab) {
   801   guarantee(false, "Not using this policy feature yet.");
   802   return NULL;
   803 }
   806 #ifndef PRODUCT
   807 bool G1CollectorPolicy::verify_young_ages() {
   808   HeapRegion* head = _g1->young_list()->first_region();
   809   return
   810     verify_young_ages(head, _short_lived_surv_rate_group);
   811   // also call verify_young_ages on any additional surv rate groups
   812 }
   814 bool
   815 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   816                                      SurvRateGroup *surv_rate_group) {
   817   guarantee( surv_rate_group != NULL, "pre-condition" );
   819   const char* name = surv_rate_group->name();
   820   bool ret = true;
   821   int prev_age = -1;
   823   for (HeapRegion* curr = head;
   824        curr != NULL;
   825        curr = curr->get_next_young_region()) {
   826     SurvRateGroup* group = curr->surv_rate_group();
   827     if (group == NULL && !curr->is_survivor()) {
   828       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   829       ret = false;
   830     }
   832     if (surv_rate_group == group) {
   833       int age = curr->age_in_surv_rate_group();
   835       if (age < 0) {
   836         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   837         ret = false;
   838       }
   840       if (age <= prev_age) {
   841         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   842                                "(%d, %d)", name, age, prev_age);
   843         ret = false;
   844       }
   845       prev_age = age;
   846     }
   847   }
   849   return ret;
   850 }
   851 #endif // PRODUCT
   853 void G1CollectorPolicy::record_full_collection_start() {
   854   _cur_collection_start_sec = os::elapsedTime();
   855   // Release the future to-space so that it is available for compaction into.
   856   _g1->set_full_collection();
   857 }
   859 void G1CollectorPolicy::record_full_collection_end() {
   860   // Consider this like a collection pause for the purposes of allocation
   861   // since last pause.
   862   double end_sec = os::elapsedTime();
   863   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   864   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   866   _all_full_gc_times_ms->add(full_gc_time_ms);
   868   update_recent_gc_times(end_sec, full_gc_time_ms);
   870   _g1->clear_full_collection();
   872   // "Nuke" the heuristics that control the young/mixed GC
   873   // transitions and make sure we start with young GCs after the Full GC.
   874   set_gcs_are_young(true);
   875   _last_young_gc = false;
   876   _should_revert_to_young_gcs = false;
   877   clear_initiate_conc_mark_if_possible();
   878   clear_during_initial_mark_pause();
   879   _known_garbage_bytes = 0;
   880   _known_garbage_ratio = 0.0;
   881   _in_marking_window = false;
   882   _in_marking_window_im = false;
   884   _short_lived_surv_rate_group->start_adding_regions();
   885   // also call this on any additional surv rate groups
   887   record_survivor_regions(0, NULL, NULL);
   889   _free_regions_at_end_of_collection = _g1->free_regions();
   890   // Reset survivors SurvRateGroup.
   891   _survivor_surv_rate_group->reset();
   892   update_young_list_target_length();
   893   _collectionSetChooser->updateAfterFullCollection();
   894 }
   896 void G1CollectorPolicy::record_stop_world_start() {
   897   _stop_world_start = os::elapsedTime();
   898 }
   900 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   901                                                       size_t start_used) {
   902   if (PrintGCDetails) {
   903     gclog_or_tty->stamp(PrintGCTimeStamps);
   904     gclog_or_tty->print("[GC pause");
   905     gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
   906   }
   908   if (!during_initial_mark_pause()) {
   909     // We only need to do this here as the policy will only be applied
   910     // to the GC we're about to start. so, no point is calculating this
   911     // every time we calculate / recalculate the target young length.
   912     update_survivors_policy();
   913   } else {
   914     // The marking phase has a "we only copy implicitly live
   915     // objects during marking" invariant. The easiest way to ensure it
   916     // holds is not to allocate any survivor regions and tenure all
   917     // objects. In the future we might change this and handle survivor
   918     // regions specially during marking.
   919     tenure_all_objects();
   920   }
   922   assert(_g1->used() == _g1->recalculate_used(),
   923          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   924                  _g1->used(), _g1->recalculate_used()));
   926   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   927   _all_stop_world_times_ms->add(s_w_t_ms);
   928   _stop_world_start = 0.0;
   930   _cur_collection_start_sec = start_time_sec;
   931   _cur_collection_pause_used_at_start_bytes = start_used;
   932   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   933   _pending_cards = _g1->pending_card_num();
   934   _max_pending_cards = _g1->max_pending_card_num();
   936   _bytes_in_collection_set_before_gc = 0;
   937   _bytes_copied_during_gc = 0;
   939   YoungList* young_list = _g1->young_list();
   940   _eden_bytes_before_gc = young_list->eden_used_bytes();
   941   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   942   _capacity_before_gc = _g1->capacity();
   944 #ifdef DEBUG
   945   // initialise these to something well known so that we can spot
   946   // if they are not set properly
   948   for (int i = 0; i < _parallel_gc_threads; ++i) {
   949     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   950     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   951     _par_last_satb_filtering_times_ms[i] = -1234.0;
   952     _par_last_update_rs_times_ms[i] = -1234.0;
   953     _par_last_update_rs_processed_buffers[i] = -1234.0;
   954     _par_last_scan_rs_times_ms[i] = -1234.0;
   955     _par_last_obj_copy_times_ms[i] = -1234.0;
   956     _par_last_termination_times_ms[i] = -1234.0;
   957     _par_last_termination_attempts[i] = -1234.0;
   958     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   959     _par_last_gc_worker_times_ms[i] = -1234.0;
   960     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   961   }
   962 #endif
   964   for (int i = 0; i < _aux_num; ++i) {
   965     _cur_aux_times_ms[i] = 0.0;
   966     _cur_aux_times_set[i] = false;
   967   }
   969   // This is initialized to zero here and is set during
   970   // the evacuation pause if marking is in progress.
   971   _cur_satb_drain_time_ms = 0.0;
   973   _last_gc_was_young = false;
   975   // do that for any other surv rate groups
   976   _short_lived_surv_rate_group->stop_adding_regions();
   977   _survivors_age_table.clear();
   979   assert( verify_young_ages(), "region age verification" );
   980 }
   982 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   983                                                    mark_init_elapsed_time_ms) {
   984   _during_marking = true;
   985   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   986   clear_during_initial_mark_pause();
   987   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   988 }
   990 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   991   _mark_remark_start_sec = os::elapsedTime();
   992   _during_marking = false;
   993 }
   995 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   996   double end_time_sec = os::elapsedTime();
   997   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   998   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   999   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1000   _prev_collection_pause_end_ms += elapsed_time_ms;
  1002   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
  1005 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  1006   _mark_cleanup_start_sec = os::elapsedTime();
  1009 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  1010   _should_revert_to_young_gcs = false;
  1011   _last_young_gc = true;
  1012   _in_marking_window = false;
  1015 void G1CollectorPolicy::record_concurrent_pause() {
  1016   if (_stop_world_start > 0.0) {
  1017     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1018     _all_yield_times_ms->add(yield_ms);
  1022 void G1CollectorPolicy::record_concurrent_pause_end() {
  1025 template<class T>
  1026 T sum_of(T* sum_arr, int start, int n, int N) {
  1027   T sum = (T)0;
  1028   for (int i = 0; i < n; i++) {
  1029     int j = (start + i) % N;
  1030     sum += sum_arr[j];
  1032   return sum;
  1035 void G1CollectorPolicy::print_par_stats(int level,
  1036                                         const char* str,
  1037                                         double* data) {
  1038   double min = data[0], max = data[0];
  1039   double total = 0.0;
  1040   LineBuffer buf(level);
  1041   buf.append("[%s (ms):", str);
  1042   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1043     double val = data[i];
  1044     if (val < min)
  1045       min = val;
  1046     if (val > max)
  1047       max = val;
  1048     total += val;
  1049     buf.append("  %3.1lf", val);
  1051   buf.append_and_print_cr("");
  1052   double avg = total / (double) no_of_gc_threads();
  1053   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1054     avg, min, max, max - min);
  1057 void G1CollectorPolicy::print_par_sizes(int level,
  1058                                         const char* str,
  1059                                         double* data) {
  1060   double min = data[0], max = data[0];
  1061   double total = 0.0;
  1062   LineBuffer buf(level);
  1063   buf.append("[%s :", str);
  1064   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1065     double val = data[i];
  1066     if (val < min)
  1067       min = val;
  1068     if (val > max)
  1069       max = val;
  1070     total += val;
  1071     buf.append(" %d", (int) val);
  1073   buf.append_and_print_cr("");
  1074   double avg = total / (double) no_of_gc_threads();
  1075   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1076     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1079 void G1CollectorPolicy::print_stats(int level,
  1080                                     const char* str,
  1081                                     double value) {
  1082   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1085 void G1CollectorPolicy::print_stats(int level,
  1086                                     const char* str,
  1087                                     int value) {
  1088   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1091 double G1CollectorPolicy::avg_value(double* data) {
  1092   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1093     double ret = 0.0;
  1094     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1095       ret += data[i];
  1097     return ret / (double) no_of_gc_threads();
  1098   } else {
  1099     return data[0];
  1103 double G1CollectorPolicy::max_value(double* data) {
  1104   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1105     double ret = data[0];
  1106     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1107       if (data[i] > ret) {
  1108         ret = data[i];
  1111     return ret;
  1112   } else {
  1113     return data[0];
  1117 double G1CollectorPolicy::sum_of_values(double* data) {
  1118   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1119     double sum = 0.0;
  1120     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1121       sum += data[i];
  1123     return sum;
  1124   } else {
  1125     return data[0];
  1129 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1130   double ret = data1[0] + data2[0];
  1132   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1133     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1134       double data = data1[i] + data2[i];
  1135       if (data > ret) {
  1136         ret = data;
  1140   return ret;
  1143 // Anything below that is considered to be zero
  1144 #define MIN_TIMER_GRANULARITY 0.0000001
  1146 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1147   double end_time_sec = os::elapsedTime();
  1148   double elapsed_ms = _last_pause_time_ms;
  1149   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1150   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1151          "otherwise, the subtraction below does not make sense");
  1152   size_t rs_size =
  1153             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1154   size_t cur_used_bytes = _g1->used();
  1155   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1156   bool last_pause_included_initial_mark = false;
  1157   bool update_stats = !_g1->evacuation_failed();
  1158   set_no_of_gc_threads(no_of_gc_threads);
  1160 #ifndef PRODUCT
  1161   if (G1YoungSurvRateVerbose) {
  1162     gclog_or_tty->print_cr("");
  1163     _short_lived_surv_rate_group->print();
  1164     // do that for any other surv rate groups too
  1166 #endif // PRODUCT
  1168   last_pause_included_initial_mark = during_initial_mark_pause();
  1169   if (last_pause_included_initial_mark)
  1170     record_concurrent_mark_init_end(0.0);
  1172   size_t marking_initiating_used_threshold =
  1173     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1175   if (!_g1->mark_in_progress() && !_last_young_gc) {
  1176     assert(!last_pause_included_initial_mark, "invariant");
  1177     if (cur_used_bytes > marking_initiating_used_threshold) {
  1178       if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1179         assert(!during_initial_mark_pause(), "we should not see this here");
  1181         ergo_verbose3(ErgoConcCycles,
  1182                       "request concurrent cycle initiation",
  1183                       ergo_format_reason("occupancy higher than threshold")
  1184                       ergo_format_byte("occupancy")
  1185                       ergo_format_byte_perc("threshold"),
  1186                       cur_used_bytes,
  1187                       marking_initiating_used_threshold,
  1188                       (double) InitiatingHeapOccupancyPercent);
  1190         // Note: this might have already been set, if during the last
  1191         // pause we decided to start a cycle but at the beginning of
  1192         // this pause we decided to postpone it. That's OK.
  1193         set_initiate_conc_mark_if_possible();
  1194       } else {
  1195         ergo_verbose2(ErgoConcCycles,
  1196                   "do not request concurrent cycle initiation",
  1197                   ergo_format_reason("occupancy lower than previous occupancy")
  1198                   ergo_format_byte("occupancy")
  1199                   ergo_format_byte("previous occupancy"),
  1200                   cur_used_bytes,
  1201                   _prev_collection_pause_used_at_end_bytes);
  1206   _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1208   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1209                           end_time_sec, false);
  1211   // This assert is exempted when we're doing parallel collection pauses,
  1212   // because the fragmentation caused by the parallel GC allocation buffers
  1213   // can lead to more memory being used during collection than was used
  1214   // before. Best leave this out until the fragmentation problem is fixed.
  1215   // Pauses in which evacuation failed can also lead to negative
  1216   // collections, since no space is reclaimed from a region containing an
  1217   // object whose evacuation failed.
  1218   // Further, we're now always doing parallel collection.  But I'm still
  1219   // leaving this here as a placeholder for a more precise assertion later.
  1220   // (DLD, 10/05.)
  1221   assert((true || parallel) // Always using GC LABs now.
  1222          || _g1->evacuation_failed()
  1223          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1224          "Negative collection");
  1226   size_t freed_bytes =
  1227     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1228   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1230   double survival_fraction =
  1231     (double)surviving_bytes/
  1232     (double)_collection_set_bytes_used_before;
  1234   // These values are used to update the summary information that is
  1235   // displayed when TraceGen0Time is enabled, and are output as part
  1236   // of the PrintGCDetails output, in the non-parallel case.
  1238   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1239   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
  1240   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1241   double update_rs_processed_buffers =
  1242     sum_of_values(_par_last_update_rs_processed_buffers);
  1243   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1244   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1245   double termination_time = avg_value(_par_last_termination_times_ms);
  1247   double known_time = ext_root_scan_time +
  1248                       satb_filtering_time +
  1249                       update_rs_time +
  1250                       scan_rs_time +
  1251                       obj_copy_time;
  1253   double other_time_ms = elapsed_ms;
  1255   // Subtract the SATB drain time. It's initialized to zero at the
  1256   // start of the pause and is updated during the pause if marking
  1257   // is in progress.
  1258   other_time_ms -= _cur_satb_drain_time_ms;
  1260   if (parallel) {
  1261     other_time_ms -= _cur_collection_par_time_ms;
  1262   } else {
  1263     other_time_ms -= known_time;
  1266   // Subtract the time taken to clean the card table from the
  1267   // current value of "other time"
  1268   other_time_ms -= _cur_clear_ct_time_ms;
  1270   // Subtract the time spent completing marking in the collection
  1271   // set. Note if marking is not in progress during the pause
  1272   // the value of _mark_closure_time_ms will be zero.
  1273   other_time_ms -= _mark_closure_time_ms;
  1275   // TraceGen0Time and TraceGen1Time summary info updating.
  1276   _all_pause_times_ms->add(elapsed_ms);
  1278   if (update_stats) {
  1279     _summary->record_total_time_ms(elapsed_ms);
  1280     _summary->record_other_time_ms(other_time_ms);
  1282     MainBodySummary* body_summary = _summary->main_body_summary();
  1283     assert(body_summary != NULL, "should not be null!");
  1285     // This will be non-zero iff marking is currently in progress (i.e.
  1286     // _g1->mark_in_progress() == true) and the currrent pause was not
  1287     // an initial mark pause. Since the body_summary items are NumberSeqs,
  1288     // however, they have to be consistent and updated in lock-step with
  1289     // each other. Therefore we unconditionally record the SATB drain
  1290     // time - even if it's zero.
  1291     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1293     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1294     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
  1295     body_summary->record_update_rs_time_ms(update_rs_time);
  1296     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1297     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1299     if (parallel) {
  1300       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1301       body_summary->record_termination_time_ms(termination_time);
  1303       double parallel_known_time = known_time + termination_time;
  1304       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1305       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1308     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1309     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1311     // We exempt parallel collection from this check because Alloc Buffer
  1312     // fragmentation can produce negative collections.  Same with evac
  1313     // failure.
  1314     // Further, we're now always doing parallel collection.  But I'm still
  1315     // leaving this here as a placeholder for a more precise assertion later.
  1316     // (DLD, 10/05.
  1317     assert((true || parallel)
  1318            || _g1->evacuation_failed()
  1319            || surviving_bytes <= _collection_set_bytes_used_before,
  1320            "Or else negative collection!");
  1322     // this is where we update the allocation rate of the application
  1323     double app_time_ms =
  1324       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1325     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1326       // This usually happens due to the timer not having the required
  1327       // granularity. Some Linuxes are the usual culprits.
  1328       // We'll just set it to something (arbitrarily) small.
  1329       app_time_ms = 1.0;
  1331     // We maintain the invariant that all objects allocated by mutator
  1332     // threads will be allocated out of eden regions. So, we can use
  1333     // the eden region number allocated since the previous GC to
  1334     // calculate the application's allocate rate. The only exception
  1335     // to that is humongous objects that are allocated separately. But
  1336     // given that humongous object allocations do not really affect
  1337     // either the pause's duration nor when the next pause will take
  1338     // place we can safely ignore them here.
  1339     size_t regions_allocated = eden_cset_region_length();
  1340     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1341     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1343     double interval_ms =
  1344       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1345     update_recent_gc_times(end_time_sec, elapsed_ms);
  1346     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1347     if (recent_avg_pause_time_ratio() < 0.0 ||
  1348         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1349 #ifndef PRODUCT
  1350       // Dump info to allow post-facto debugging
  1351       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1352       gclog_or_tty->print_cr("-------------------------------------------");
  1353       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1354       _recent_gc_times_ms->dump();
  1355       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1356       _recent_prev_end_times_for_all_gcs_sec->dump();
  1357       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1358                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1359       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1360       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1361 #endif  // !PRODUCT
  1362       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1363       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1364       if (_recent_avg_pause_time_ratio < 0.0) {
  1365         _recent_avg_pause_time_ratio = 0.0;
  1366       } else {
  1367         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1368         _recent_avg_pause_time_ratio = 1.0;
  1373   for (int i = 0; i < _aux_num; ++i) {
  1374     if (_cur_aux_times_set[i]) {
  1375       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1379   // PrintGCDetails output
  1380   if (PrintGCDetails) {
  1381     bool print_marking_info =
  1382       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1384     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1385                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1386                            elapsed_ms / 1000.0);
  1388     if (parallel) {
  1389       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1390       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1391       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1392       if (print_marking_info) {
  1393         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
  1395       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1396       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1397       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1398       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1399       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1400       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1401       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1403       for (int i = 0; i < _parallel_gc_threads; i++) {
  1404         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1406         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1407                                    _par_last_satb_filtering_times_ms[i] +
  1408                                    _par_last_update_rs_times_ms[i] +
  1409                                    _par_last_scan_rs_times_ms[i] +
  1410                                    _par_last_obj_copy_times_ms[i] +
  1411                                    _par_last_termination_times_ms[i];
  1413         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
  1415       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
  1416       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1417     } else {
  1418       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1419       if (print_marking_info) {
  1420         print_stats(1, "SATB Filtering", satb_filtering_time);
  1422       print_stats(1, "Update RS", update_rs_time);
  1423       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1424       print_stats(1, "Scan RS", scan_rs_time);
  1425       print_stats(1, "Object Copying", obj_copy_time);
  1427     if (print_marking_info) {
  1428       print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
  1430     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1431 #ifndef PRODUCT
  1432     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1433     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1434     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1435     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1436     if (_num_cc_clears > 0) {
  1437       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1439 #endif
  1440     print_stats(1, "Other", other_time_ms);
  1441     print_stats(2, "Choose CSet",
  1442                    (_recorded_young_cset_choice_time_ms +
  1443                     _recorded_non_young_cset_choice_time_ms));
  1444     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1445     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1446     print_stats(2, "Free CSet",
  1447                    (_recorded_young_free_cset_time_ms +
  1448                     _recorded_non_young_free_cset_time_ms));
  1450     for (int i = 0; i < _aux_num; ++i) {
  1451       if (_cur_aux_times_set[i]) {
  1452         char buffer[96];
  1453         sprintf(buffer, "Aux%d", i);
  1454         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1459   // Update the efficiency-since-mark vars.
  1460   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1461   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1462     // This usually happens due to the timer not having the required
  1463     // granularity. Some Linuxes are the usual culprits.
  1464     // We'll just set it to something (arbitrarily) small.
  1465     proc_ms = 1.0;
  1467   double cur_efficiency = (double) freed_bytes / proc_ms;
  1469   bool new_in_marking_window = _in_marking_window;
  1470   bool new_in_marking_window_im = false;
  1471   if (during_initial_mark_pause()) {
  1472     new_in_marking_window = true;
  1473     new_in_marking_window_im = true;
  1476   if (_last_young_gc) {
  1477     if (!last_pause_included_initial_mark) {
  1478       ergo_verbose2(ErgoMixedGCs,
  1479                     "start mixed GCs",
  1480                     ergo_format_byte_perc("known garbage"),
  1481                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1482       set_gcs_are_young(false);
  1483     } else {
  1484       ergo_verbose0(ErgoMixedGCs,
  1485                     "do not start mixed GCs",
  1486                     ergo_format_reason("concurrent cycle is about to start"));
  1488     _last_young_gc = false;
  1491   if (!_last_gc_was_young) {
  1492     if (_should_revert_to_young_gcs) {
  1493       ergo_verbose2(ErgoMixedGCs,
  1494                     "end mixed GCs",
  1495                     ergo_format_reason("mixed GCs end requested")
  1496                     ergo_format_byte_perc("known garbage"),
  1497                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1498       set_gcs_are_young(true);
  1499     } else if (_known_garbage_ratio < 0.05) {
  1500       ergo_verbose3(ErgoMixedGCs,
  1501                "end mixed GCs",
  1502                ergo_format_reason("known garbage percent lower than threshold")
  1503                ergo_format_byte_perc("known garbage")
  1504                ergo_format_perc("threshold"),
  1505                _known_garbage_bytes, _known_garbage_ratio * 100.0,
  1506                0.05 * 100.0);
  1507       set_gcs_are_young(true);
  1508     } else if (adaptive_young_list_length() &&
  1509               (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
  1510       ergo_verbose5(ErgoMixedGCs,
  1511                     "end mixed GCs",
  1512                     ergo_format_reason("current GC efficiency lower than "
  1513                                        "predicted young GC efficiency")
  1514                     ergo_format_double("GC efficiency factor")
  1515                     ergo_format_double("current GC efficiency")
  1516                     ergo_format_double("predicted young GC efficiency")
  1517                     ergo_format_byte_perc("known garbage"),
  1518                     get_gc_eff_factor(), cur_efficiency,
  1519                     predict_young_gc_eff(),
  1520                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1521       set_gcs_are_young(true);
  1524   _should_revert_to_young_gcs = false;
  1526   if (_last_gc_was_young && !_during_marking) {
  1527     _young_gc_eff_seq->add(cur_efficiency);
  1530   _short_lived_surv_rate_group->start_adding_regions();
  1531   // do that for any other surv rate groupsx
  1533   if (update_stats) {
  1534     double pause_time_ms = elapsed_ms;
  1536     size_t diff = 0;
  1537     if (_max_pending_cards >= _pending_cards)
  1538       diff = _max_pending_cards - _pending_cards;
  1539     _pending_card_diff_seq->add((double) diff);
  1541     double cost_per_card_ms = 0.0;
  1542     if (_pending_cards > 0) {
  1543       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1544       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1547     size_t cards_scanned = _g1->cards_scanned();
  1549     double cost_per_entry_ms = 0.0;
  1550     if (cards_scanned > 10) {
  1551       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1552       if (_last_gc_was_young) {
  1553         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1554       } else {
  1555         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1559     if (_max_rs_lengths > 0) {
  1560       double cards_per_entry_ratio =
  1561         (double) cards_scanned / (double) _max_rs_lengths;
  1562       if (_last_gc_was_young) {
  1563         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1564       } else {
  1565         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1569     // This is defensive. For a while _max_rs_lengths could get
  1570     // smaller than _recorded_rs_lengths which was causing
  1571     // rs_length_diff to get very large and mess up the RSet length
  1572     // predictions. The reason was unsafe concurrent updates to the
  1573     // _inc_cset_recorded_rs_lengths field which the code below guards
  1574     // against (see CR 7118202). This bug has now been fixed (see CR
  1575     // 7119027). However, I'm still worried that
  1576     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1577     // inaccurate. The concurrent refinement thread calculates an
  1578     // RSet's length concurrently with other CR threads updating it
  1579     // which might cause it to calculate the length incorrectly (if,
  1580     // say, it's in mid-coarsening). So I'll leave in the defensive
  1581     // conditional below just in case.
  1582     size_t rs_length_diff = 0;
  1583     if (_max_rs_lengths > _recorded_rs_lengths) {
  1584       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1586     _rs_length_diff_seq->add((double) rs_length_diff);
  1588     size_t copied_bytes = surviving_bytes;
  1589     double cost_per_byte_ms = 0.0;
  1590     if (copied_bytes > 0) {
  1591       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1592       if (_in_marking_window) {
  1593         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1594       } else {
  1595         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1599     double all_other_time_ms = pause_time_ms -
  1600       (update_rs_time + scan_rs_time + obj_copy_time +
  1601        _mark_closure_time_ms + termination_time);
  1603     double young_other_time_ms = 0.0;
  1604     if (young_cset_region_length() > 0) {
  1605       young_other_time_ms =
  1606         _recorded_young_cset_choice_time_ms +
  1607         _recorded_young_free_cset_time_ms;
  1608       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1609                                           (double) young_cset_region_length());
  1611     double non_young_other_time_ms = 0.0;
  1612     if (old_cset_region_length() > 0) {
  1613       non_young_other_time_ms =
  1614         _recorded_non_young_cset_choice_time_ms +
  1615         _recorded_non_young_free_cset_time_ms;
  1617       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1618                                             (double) old_cset_region_length());
  1621     double constant_other_time_ms = all_other_time_ms -
  1622       (young_other_time_ms + non_young_other_time_ms);
  1623     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1625     double survival_ratio = 0.0;
  1626     if (_bytes_in_collection_set_before_gc > 0) {
  1627       survival_ratio = (double) _bytes_copied_during_gc /
  1628                                    (double) _bytes_in_collection_set_before_gc;
  1631     _pending_cards_seq->add((double) _pending_cards);
  1632     _rs_lengths_seq->add((double) _max_rs_lengths);
  1634     double expensive_region_limit_ms =
  1635       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1636     if (expensive_region_limit_ms < 0.0) {
  1637       // this means that the other time was predicted to be longer than
  1638       // than the max pause time
  1639       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1641     _expensive_region_limit_ms = expensive_region_limit_ms;
  1644   _in_marking_window = new_in_marking_window;
  1645   _in_marking_window_im = new_in_marking_window_im;
  1646   _free_regions_at_end_of_collection = _g1->free_regions();
  1647   update_young_list_target_length();
  1649   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1650   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1651   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1653   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  1656 #define EXT_SIZE_FORMAT "%d%s"
  1657 #define EXT_SIZE_PARAMS(bytes)                                  \
  1658   byte_size_in_proper_unit((bytes)),                            \
  1659   proper_unit_for_byte_size((bytes))
  1661 void G1CollectorPolicy::print_heap_transition() {
  1662   if (PrintGCDetails) {
  1663     YoungList* young_list = _g1->young_list();
  1664     size_t eden_bytes = young_list->eden_used_bytes();
  1665     size_t survivor_bytes = young_list->survivor_used_bytes();
  1666     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1667     size_t used = _g1->used();
  1668     size_t capacity = _g1->capacity();
  1669     size_t eden_capacity =
  1670       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1672     gclog_or_tty->print_cr(
  1673       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1674       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1675       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1676       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1677       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1678       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1679       EXT_SIZE_PARAMS(eden_bytes),
  1680       EXT_SIZE_PARAMS(eden_capacity),
  1681       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1682       EXT_SIZE_PARAMS(survivor_bytes),
  1683       EXT_SIZE_PARAMS(used_before_gc),
  1684       EXT_SIZE_PARAMS(_capacity_before_gc),
  1685       EXT_SIZE_PARAMS(used),
  1686       EXT_SIZE_PARAMS(capacity));
  1688     _prev_eden_capacity = eden_capacity;
  1689   } else if (PrintGC) {
  1690     _g1->print_size_transition(gclog_or_tty,
  1691                                _cur_collection_pause_used_at_start_bytes,
  1692                                _g1->used(), _g1->capacity());
  1696 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1697                                                      double update_rs_processed_buffers,
  1698                                                      double goal_ms) {
  1699   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1700   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1702   if (G1UseAdaptiveConcRefinement) {
  1703     const int k_gy = 3, k_gr = 6;
  1704     const double inc_k = 1.1, dec_k = 0.9;
  1706     int g = cg1r->green_zone();
  1707     if (update_rs_time > goal_ms) {
  1708       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1709     } else {
  1710       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1711         g = (int)MAX2(g * inc_k, g + 1.0);
  1714     // Change the refinement threads params
  1715     cg1r->set_green_zone(g);
  1716     cg1r->set_yellow_zone(g * k_gy);
  1717     cg1r->set_red_zone(g * k_gr);
  1718     cg1r->reinitialize_threads();
  1720     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1721     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1722                                     cg1r->yellow_zone());
  1723     // Change the barrier params
  1724     dcqs.set_process_completed_threshold(processing_threshold);
  1725     dcqs.set_max_completed_queue(cg1r->red_zone());
  1728   int curr_queue_size = dcqs.completed_buffers_num();
  1729   if (curr_queue_size >= cg1r->yellow_zone()) {
  1730     dcqs.set_completed_queue_padding(curr_queue_size);
  1731   } else {
  1732     dcqs.set_completed_queue_padding(0);
  1734   dcqs.notify_if_necessary();
  1737 double
  1738 G1CollectorPolicy::
  1739 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1740   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1742   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1743   size_t young_num = g1h->young_list()->length();
  1744   if (young_num == 0)
  1745     return 0.0;
  1747   young_num += adjustment;
  1748   size_t pending_cards = predict_pending_cards();
  1749   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1750                       predict_rs_length_diff();
  1751   size_t card_num;
  1752   if (gcs_are_young()) {
  1753     card_num = predict_young_card_num(rs_lengths);
  1754   } else {
  1755     card_num = predict_non_young_card_num(rs_lengths);
  1757   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1758   double accum_yg_surv_rate =
  1759     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1761   size_t bytes_to_copy =
  1762     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1764   return
  1765     predict_rs_update_time_ms(pending_cards) +
  1766     predict_rs_scan_time_ms(card_num) +
  1767     predict_object_copy_time_ms(bytes_to_copy) +
  1768     predict_young_other_time_ms(young_num) +
  1769     predict_constant_other_time_ms();
  1772 double
  1773 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1774   size_t rs_length = predict_rs_length_diff();
  1775   size_t card_num;
  1776   if (gcs_are_young()) {
  1777     card_num = predict_young_card_num(rs_length);
  1778   } else {
  1779     card_num = predict_non_young_card_num(rs_length);
  1781   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1784 double
  1785 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1786                                                 size_t scanned_cards) {
  1787   return
  1788     predict_rs_update_time_ms(pending_cards) +
  1789     predict_rs_scan_time_ms(scanned_cards) +
  1790     predict_constant_other_time_ms();
  1793 double
  1794 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1795                                                   bool young) {
  1796   size_t rs_length = hr->rem_set()->occupied();
  1797   size_t card_num;
  1798   if (gcs_are_young()) {
  1799     card_num = predict_young_card_num(rs_length);
  1800   } else {
  1801     card_num = predict_non_young_card_num(rs_length);
  1803   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1805   double region_elapsed_time_ms =
  1806     predict_rs_scan_time_ms(card_num) +
  1807     predict_object_copy_time_ms(bytes_to_copy);
  1809   if (young)
  1810     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1811   else
  1812     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1814   return region_elapsed_time_ms;
  1817 size_t
  1818 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1819   size_t bytes_to_copy;
  1820   if (hr->is_marked())
  1821     bytes_to_copy = hr->max_live_bytes();
  1822   else {
  1823     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1824                "invariant" );
  1825     int age = hr->age_in_surv_rate_group();
  1826     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1827     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1830   return bytes_to_copy;
  1833 void
  1834 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
  1835                                           size_t survivor_cset_region_length) {
  1836   _eden_cset_region_length     = eden_cset_region_length;
  1837   _survivor_cset_region_length = survivor_cset_region_length;
  1838   _old_cset_region_length      = 0;
  1841 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1842   _recorded_rs_lengths = rs_lengths;
  1845 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1846                                                            predicted_time_ms) {
  1847   // I don't think we need to do this when in young GC mode since
  1848   // marking will be initiated next time we hit the soft limit anyway...
  1849   if (predicted_time_ms > _expensive_region_limit_ms) {
  1850     ergo_verbose2(ErgoMixedGCs,
  1851               "request mixed GCs end",
  1852               ergo_format_reason("predicted region time higher than threshold")
  1853               ergo_format_ms("predicted region time")
  1854               ergo_format_ms("threshold"),
  1855               predicted_time_ms, _expensive_region_limit_ms);
  1856     // no point in doing another mixed GC
  1857     _should_revert_to_young_gcs = true;
  1861 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1862                                                double elapsed_ms) {
  1863   _recent_gc_times_ms->add(elapsed_ms);
  1864   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1865   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1868 size_t G1CollectorPolicy::expansion_amount() {
  1869   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1870   double threshold = _gc_overhead_perc;
  1871   if (recent_gc_overhead > threshold) {
  1872     // We will double the existing space, or take
  1873     // G1ExpandByPercentOfAvailable % of the available expansion
  1874     // space, whichever is smaller, bounded below by a minimum
  1875     // expansion (unless that's all that's left.)
  1876     const size_t min_expand_bytes = 1*M;
  1877     size_t reserved_bytes = _g1->max_capacity();
  1878     size_t committed_bytes = _g1->capacity();
  1879     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1880     size_t expand_bytes;
  1881     size_t expand_bytes_via_pct =
  1882       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1883     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1884     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1885     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1887     ergo_verbose5(ErgoHeapSizing,
  1888                   "attempt heap expansion",
  1889                   ergo_format_reason("recent GC overhead higher than "
  1890                                      "threshold after GC")
  1891                   ergo_format_perc("recent GC overhead")
  1892                   ergo_format_perc("threshold")
  1893                   ergo_format_byte("uncommitted")
  1894                   ergo_format_byte_perc("calculated expansion amount"),
  1895                   recent_gc_overhead, threshold,
  1896                   uncommitted_bytes,
  1897                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1899     return expand_bytes;
  1900   } else {
  1901     return 0;
  1905 class CountCSClosure: public HeapRegionClosure {
  1906   G1CollectorPolicy* _g1_policy;
  1907 public:
  1908   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1909     _g1_policy(g1_policy) {}
  1910   bool doHeapRegion(HeapRegion* r) {
  1911     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1912     return false;
  1914 };
  1916 void G1CollectorPolicy::count_CS_bytes_used() {
  1917   CountCSClosure cs_closure(this);
  1918   _g1->collection_set_iterate(&cs_closure);
  1921 void G1CollectorPolicy::print_summary(int level,
  1922                                       const char* str,
  1923                                       NumberSeq* seq) const {
  1924   double sum = seq->sum();
  1925   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1926                 str, sum / 1000.0, seq->avg());
  1929 void G1CollectorPolicy::print_summary_sd(int level,
  1930                                          const char* str,
  1931                                          NumberSeq* seq) const {
  1932   print_summary(level, str, seq);
  1933   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1934                 seq->num(), seq->sd(), seq->maximum());
  1937 void G1CollectorPolicy::check_other_times(int level,
  1938                                         NumberSeq* other_times_ms,
  1939                                         NumberSeq* calc_other_times_ms) const {
  1940   bool should_print = false;
  1941   LineBuffer buf(level + 2);
  1943   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1944                         fabs(calc_other_times_ms->sum()));
  1945   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1946                         fabs(calc_other_times_ms->sum()));
  1947   double sum_ratio = max_sum / min_sum;
  1948   if (sum_ratio > 1.1) {
  1949     should_print = true;
  1950     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1953   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1954                         fabs(calc_other_times_ms->avg()));
  1955   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1956                         fabs(calc_other_times_ms->avg()));
  1957   double avg_ratio = max_avg / min_avg;
  1958   if (avg_ratio > 1.1) {
  1959     should_print = true;
  1960     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1963   if (other_times_ms->sum() < -0.01) {
  1964     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1967   if (other_times_ms->avg() < -0.01) {
  1968     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1971   if (calc_other_times_ms->sum() < -0.01) {
  1972     should_print = true;
  1973     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1976   if (calc_other_times_ms->avg() < -0.01) {
  1977     should_print = true;
  1978     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1981   if (should_print)
  1982     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1985 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1986   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1987   MainBodySummary*    body_summary = summary->main_body_summary();
  1988   if (summary->get_total_seq()->num() > 0) {
  1989     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1990     if (body_summary != NULL) {
  1991       if (parallel) {
  1992         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  1993         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1994         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1995         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  1996         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  1997         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  1998         print_summary(2, "Termination", body_summary->get_termination_seq());
  1999         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  2001           NumberSeq* other_parts[] = {
  2002             body_summary->get_ext_root_scan_seq(),
  2003             body_summary->get_satb_filtering_seq(),
  2004             body_summary->get_update_rs_seq(),
  2005             body_summary->get_scan_rs_seq(),
  2006             body_summary->get_obj_copy_seq(),
  2007             body_summary->get_termination_seq()
  2008           };
  2009           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2010                                         6, other_parts);
  2011           check_other_times(2, body_summary->get_parallel_other_seq(),
  2012                             &calc_other_times_ms);
  2014       } else {
  2015         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  2016         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
  2017         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2018         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2019         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2022     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2023     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2024     print_summary(1, "Other", summary->get_other_seq());
  2026       if (body_summary != NULL) {
  2027         NumberSeq calc_other_times_ms;
  2028         if (parallel) {
  2029           // parallel
  2030           NumberSeq* other_parts[] = {
  2031             body_summary->get_satb_drain_seq(),
  2032             body_summary->get_parallel_seq(),
  2033             body_summary->get_clear_ct_seq()
  2034           };
  2035           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2036                                                 3, other_parts);
  2037         } else {
  2038           // serial
  2039           NumberSeq* other_parts[] = {
  2040             body_summary->get_satb_drain_seq(),
  2041             body_summary->get_update_rs_seq(),
  2042             body_summary->get_ext_root_scan_seq(),
  2043             body_summary->get_satb_filtering_seq(),
  2044             body_summary->get_scan_rs_seq(),
  2045             body_summary->get_obj_copy_seq()
  2046           };
  2047           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2048                                                 6, other_parts);
  2050         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2053   } else {
  2054     LineBuffer(1).append_and_print_cr("none");
  2056   LineBuffer(0).append_and_print_cr("");
  2059 void G1CollectorPolicy::print_tracing_info() const {
  2060   if (TraceGen0Time) {
  2061     gclog_or_tty->print_cr("ALL PAUSES");
  2062     print_summary_sd(0, "Total", _all_pause_times_ms);
  2063     gclog_or_tty->print_cr("");
  2064     gclog_or_tty->print_cr("");
  2065     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2066     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2067     gclog_or_tty->print_cr("");
  2069     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2070     print_summary(_summary);
  2072     gclog_or_tty->print_cr("MISC");
  2073     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2074     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2075     for (int i = 0; i < _aux_num; ++i) {
  2076       if (_all_aux_times_ms[i].num() > 0) {
  2077         char buffer[96];
  2078         sprintf(buffer, "Aux%d", i);
  2079         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2083   if (TraceGen1Time) {
  2084     if (_all_full_gc_times_ms->num() > 0) {
  2085       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2086                  _all_full_gc_times_ms->num(),
  2087                  _all_full_gc_times_ms->sum() / 1000.0);
  2088       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2089       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2090                     _all_full_gc_times_ms->sd(),
  2091                     _all_full_gc_times_ms->maximum());
  2096 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2097 #ifndef PRODUCT
  2098   _short_lived_surv_rate_group->print_surv_rate_summary();
  2099   // add this call for any other surv rate groups
  2100 #endif // PRODUCT
  2103 #ifndef PRODUCT
  2104 // for debugging, bit of a hack...
  2105 static char*
  2106 region_num_to_mbs(int length) {
  2107   static char buffer[64];
  2108   double bytes = (double) (length * HeapRegion::GrainBytes);
  2109   double mbs = bytes / (double) (1024 * 1024);
  2110   sprintf(buffer, "%7.2lfMB", mbs);
  2111   return buffer;
  2113 #endif // PRODUCT
  2115 size_t G1CollectorPolicy::max_regions(int purpose) {
  2116   switch (purpose) {
  2117     case GCAllocForSurvived:
  2118       return _max_survivor_regions;
  2119     case GCAllocForTenured:
  2120       return REGIONS_UNLIMITED;
  2121     default:
  2122       ShouldNotReachHere();
  2123       return REGIONS_UNLIMITED;
  2124   };
  2127 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2128   size_t expansion_region_num = 0;
  2129   if (GCLockerEdenExpansionPercent > 0) {
  2130     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2131     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2132     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2133     // less than 1.0) we'll get 1.
  2134     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2135   } else {
  2136     assert(expansion_region_num == 0, "sanity");
  2138   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2139   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2142 // Calculates survivor space parameters.
  2143 void G1CollectorPolicy::update_survivors_policy() {
  2144   double max_survivor_regions_d =
  2145                  (double) _young_list_target_length / (double) SurvivorRatio;
  2146   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2147   // smaller than 1.0) we'll get 1.
  2148   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
  2150   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2151         HeapRegion::GrainWords * _max_survivor_regions);
  2154 #ifndef PRODUCT
  2155 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2156   CollectionSetChooser* _chooser;
  2157 public:
  2158   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2159     _chooser(chooser) {}
  2161   bool doHeapRegion(HeapRegion* r) {
  2162     if (!r->continuesHumongous()) {
  2163       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2165     return false;
  2167 };
  2169 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
  2170   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2171   _g1->heap_region_iterate(&cl);
  2172   return true;
  2174 #endif
  2176 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2177                                                      GCCause::Cause gc_cause) {
  2178   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2179   if (!during_cycle) {
  2180     ergo_verbose1(ErgoConcCycles,
  2181                   "request concurrent cycle initiation",
  2182                   ergo_format_reason("requested by GC cause")
  2183                   ergo_format_str("GC cause"),
  2184                   GCCause::to_string(gc_cause));
  2185     set_initiate_conc_mark_if_possible();
  2186     return true;
  2187   } else {
  2188     ergo_verbose1(ErgoConcCycles,
  2189                   "do not request concurrent cycle initiation",
  2190                   ergo_format_reason("concurrent cycle already in progress")
  2191                   ergo_format_str("GC cause"),
  2192                   GCCause::to_string(gc_cause));
  2193     return false;
  2197 void
  2198 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2199   // We are about to decide on whether this pause will be an
  2200   // initial-mark pause.
  2202   // First, during_initial_mark_pause() should not be already set. We
  2203   // will set it here if we have to. However, it should be cleared by
  2204   // the end of the pause (it's only set for the duration of an
  2205   // initial-mark pause).
  2206   assert(!during_initial_mark_pause(), "pre-condition");
  2208   if (initiate_conc_mark_if_possible()) {
  2209     // We had noticed on a previous pause that the heap occupancy has
  2210     // gone over the initiating threshold and we should start a
  2211     // concurrent marking cycle. So we might initiate one.
  2213     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2214     if (!during_cycle) {
  2215       // The concurrent marking thread is not "during a cycle", i.e.,
  2216       // it has completed the last one. So we can go ahead and
  2217       // initiate a new cycle.
  2219       set_during_initial_mark_pause();
  2220       // We do not allow mixed GCs during marking.
  2221       if (!gcs_are_young()) {
  2222         set_gcs_are_young(true);
  2223         ergo_verbose0(ErgoMixedGCs,
  2224                       "end mixed GCs",
  2225                       ergo_format_reason("concurrent cycle is about to start"));
  2228       // And we can now clear initiate_conc_mark_if_possible() as
  2229       // we've already acted on it.
  2230       clear_initiate_conc_mark_if_possible();
  2232       ergo_verbose0(ErgoConcCycles,
  2233                   "initiate concurrent cycle",
  2234                   ergo_format_reason("concurrent cycle initiation requested"));
  2235     } else {
  2236       // The concurrent marking thread is still finishing up the
  2237       // previous cycle. If we start one right now the two cycles
  2238       // overlap. In particular, the concurrent marking thread might
  2239       // be in the process of clearing the next marking bitmap (which
  2240       // we will use for the next cycle if we start one). Starting a
  2241       // cycle now will be bad given that parts of the marking
  2242       // information might get cleared by the marking thread. And we
  2243       // cannot wait for the marking thread to finish the cycle as it
  2244       // periodically yields while clearing the next marking bitmap
  2245       // and, if it's in a yield point, it's waiting for us to
  2246       // finish. So, at this point we will not start a cycle and we'll
  2247       // let the concurrent marking thread complete the last one.
  2248       ergo_verbose0(ErgoConcCycles,
  2249                     "do not initiate concurrent cycle",
  2250                     ergo_format_reason("concurrent cycle already in progress"));
  2255 class KnownGarbageClosure: public HeapRegionClosure {
  2256   CollectionSetChooser* _hrSorted;
  2258 public:
  2259   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2260     _hrSorted(hrSorted)
  2261   {}
  2263   bool doHeapRegion(HeapRegion* r) {
  2264     // We only include humongous regions in collection
  2265     // sets when concurrent mark shows that their contained object is
  2266     // unreachable.
  2268     // Do we have any marking information for this region?
  2269     if (r->is_marked()) {
  2270       // We don't include humongous regions in collection
  2271       // sets because we collect them immediately at the end of a marking
  2272       // cycle.  We also don't include young regions because we *must*
  2273       // include them in the next collection pause.
  2274       if (!r->isHumongous() && !r->is_young()) {
  2275         _hrSorted->addMarkedHeapRegion(r);
  2278     return false;
  2280 };
  2282 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2283   CollectionSetChooser* _hrSorted;
  2284   jint _marked_regions_added;
  2285   jint _chunk_size;
  2286   jint _cur_chunk_idx;
  2287   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2288   int _worker;
  2289   int _invokes;
  2291   void get_new_chunk() {
  2292     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2293     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2295   void add_region(HeapRegion* r) {
  2296     if (_cur_chunk_idx == _cur_chunk_end) {
  2297       get_new_chunk();
  2299     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2300     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2301     _marked_regions_added++;
  2302     _cur_chunk_idx++;
  2305 public:
  2306   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2307                            jint chunk_size,
  2308                            int worker) :
  2309     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2310     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2311     _invokes(0)
  2312   {}
  2314   bool doHeapRegion(HeapRegion* r) {
  2315     // We only include humongous regions in collection
  2316     // sets when concurrent mark shows that their contained object is
  2317     // unreachable.
  2318     _invokes++;
  2320     // Do we have any marking information for this region?
  2321     if (r->is_marked()) {
  2322       // We don't include humongous regions in collection
  2323       // sets because we collect them immediately at the end of a marking
  2324       // cycle.
  2325       // We also do not include young regions in collection sets
  2326       if (!r->isHumongous() && !r->is_young()) {
  2327         add_region(r);
  2330     return false;
  2332   jint marked_regions_added() { return _marked_regions_added; }
  2333   int invokes() { return _invokes; }
  2334 };
  2336 class ParKnownGarbageTask: public AbstractGangTask {
  2337   CollectionSetChooser* _hrSorted;
  2338   jint _chunk_size;
  2339   G1CollectedHeap* _g1;
  2340 public:
  2341   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2342     AbstractGangTask("ParKnownGarbageTask"),
  2343     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2344     _g1(G1CollectedHeap::heap())
  2345   {}
  2347   void work(uint worker_id) {
  2348     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
  2349                                                _chunk_size,
  2350                                                worker_id);
  2351     // Back to zero for the claim value.
  2352     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  2353                                          _g1->workers()->active_workers(),
  2354                                          HeapRegion::InitialClaimValue);
  2355     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2356     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2357     if (G1PrintParCleanupStats) {
  2358       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2359                  worker_id, parKnownGarbageCl.invokes(), regions_added);
  2362 };
  2364 void
  2365 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2366   double start_sec;
  2367   if (G1PrintParCleanupStats) {
  2368     start_sec = os::elapsedTime();
  2371   _collectionSetChooser->clearMarkedHeapRegions();
  2372   double clear_marked_end_sec;
  2373   if (G1PrintParCleanupStats) {
  2374     clear_marked_end_sec = os::elapsedTime();
  2375     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
  2376                            (clear_marked_end_sec - start_sec) * 1000.0);
  2379   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2380     const size_t OverpartitionFactor = 4;
  2381     size_t WorkUnit;
  2382     // The use of MinChunkSize = 8 in the original code
  2383     // causes some assertion failures when the total number of
  2384     // region is less than 8.  The code here tries to fix that.
  2385     // Should the original code also be fixed?
  2386     if (no_of_gc_threads > 0) {
  2387       const size_t MinWorkUnit =
  2388         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
  2389       WorkUnit =
  2390         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
  2391              MinWorkUnit);
  2392     } else {
  2393       assert(no_of_gc_threads > 0,
  2394         "The active gc workers should be greater than 0");
  2395       // In a product build do something reasonable to avoid a crash.
  2396       const size_t MinWorkUnit =
  2397         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
  2398       WorkUnit =
  2399         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2400              MinWorkUnit);
  2402     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2403                                                              WorkUnit);
  2404     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2405                                             (int) WorkUnit);
  2406     _g1->workers()->run_task(&parKnownGarbageTask);
  2408     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2409            "sanity check");
  2410   } else {
  2411     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2412     _g1->heap_region_iterate(&knownGarbagecl);
  2414   double known_garbage_end_sec;
  2415   if (G1PrintParCleanupStats) {
  2416     known_garbage_end_sec = os::elapsedTime();
  2417     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2418                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
  2421   _collectionSetChooser->sortMarkedHeapRegions();
  2422   double end_sec = os::elapsedTime();
  2423   if (G1PrintParCleanupStats) {
  2424     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2425                            (end_sec - known_garbage_end_sec) * 1000.0);
  2428   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2429   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2430   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2431   _prev_collection_pause_end_ms += elapsed_time_ms;
  2432   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2435 // Add the heap region at the head of the non-incremental collection set
  2436 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2437   assert(_inc_cset_build_state == Active, "Precondition");
  2438   assert(!hr->is_young(), "non-incremental add of young region");
  2440   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2441   hr->set_in_collection_set(true);
  2442   hr->set_next_in_collection_set(_collection_set);
  2443   _collection_set = hr;
  2444   _collection_set_bytes_used_before += hr->used();
  2445   _g1->register_region_with_in_cset_fast_test(hr);
  2446   size_t rs_length = hr->rem_set()->occupied();
  2447   _recorded_rs_lengths += rs_length;
  2448   _old_cset_region_length += 1;
  2451 // Initialize the per-collection-set information
  2452 void G1CollectorPolicy::start_incremental_cset_building() {
  2453   assert(_inc_cset_build_state == Inactive, "Precondition");
  2455   _inc_cset_head = NULL;
  2456   _inc_cset_tail = NULL;
  2457   _inc_cset_bytes_used_before = 0;
  2459   _inc_cset_max_finger = 0;
  2460   _inc_cset_recorded_rs_lengths = 0;
  2461   _inc_cset_recorded_rs_lengths_diffs = 0;
  2462   _inc_cset_predicted_elapsed_time_ms = 0.0;
  2463   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2464   _inc_cset_build_state = Active;
  2467 void G1CollectorPolicy::finalize_incremental_cset_building() {
  2468   assert(_inc_cset_build_state == Active, "Precondition");
  2469   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2471   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  2472   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  2473   // that adds a new region to the CSet. Further updates by the
  2474   // concurrent refinement thread that samples the young RSet lengths
  2475   // are accumulated in the *_diffs fields. Here we add the diffs to
  2476   // the "main" fields.
  2478   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  2479     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  2480   } else {
  2481     // This is defensive. The diff should in theory be always positive
  2482     // as RSets can only grow between GCs. However, given that we
  2483     // sample their size concurrently with other threads updating them
  2484     // it's possible that we might get the wrong size back, which
  2485     // could make the calculations somewhat inaccurate.
  2486     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  2487     if (_inc_cset_recorded_rs_lengths >= diffs) {
  2488       _inc_cset_recorded_rs_lengths -= diffs;
  2489     } else {
  2490       _inc_cset_recorded_rs_lengths = 0;
  2493   _inc_cset_predicted_elapsed_time_ms +=
  2494                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  2496   _inc_cset_recorded_rs_lengths_diffs = 0;
  2497   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2500 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2501   // This routine is used when:
  2502   // * adding survivor regions to the incremental cset at the end of an
  2503   //   evacuation pause,
  2504   // * adding the current allocation region to the incremental cset
  2505   //   when it is retired, and
  2506   // * updating existing policy information for a region in the
  2507   //   incremental cset via young list RSet sampling.
  2508   // Therefore this routine may be called at a safepoint by the
  2509   // VM thread, or in-between safepoints by mutator threads (when
  2510   // retiring the current allocation region) or a concurrent
  2511   // refine thread (RSet sampling).
  2513   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2514   size_t used_bytes = hr->used();
  2515   _inc_cset_recorded_rs_lengths += rs_length;
  2516   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2517   _inc_cset_bytes_used_before += used_bytes;
  2519   // Cache the values we have added to the aggregated informtion
  2520   // in the heap region in case we have to remove this region from
  2521   // the incremental collection set, or it is updated by the
  2522   // rset sampling code
  2523   hr->set_recorded_rs_length(rs_length);
  2524   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2527 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  2528                                                      size_t new_rs_length) {
  2529   // Update the CSet information that is dependent on the new RS length
  2530   assert(hr->is_young(), "Precondition");
  2531   assert(!SafepointSynchronize::is_at_safepoint(),
  2532                                                "should not be at a safepoint");
  2534   // We could have updated _inc_cset_recorded_rs_lengths and
  2535   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  2536   // that atomically, as this code is executed by a concurrent
  2537   // refinement thread, potentially concurrently with a mutator thread
  2538   // allocating a new region and also updating the same fields. To
  2539   // avoid the atomic operations we accumulate these updates on two
  2540   // separate fields (*_diffs) and we'll just add them to the "main"
  2541   // fields at the start of a GC.
  2543   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  2544   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  2545   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  2547   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2548   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2549   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  2550   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  2552   hr->set_recorded_rs_length(new_rs_length);
  2553   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  2556 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2557   assert(hr->is_young(), "invariant");
  2558   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2559   assert(_inc_cset_build_state == Active, "Precondition");
  2561   // We need to clear and set the cached recorded/cached collection set
  2562   // information in the heap region here (before the region gets added
  2563   // to the collection set). An individual heap region's cached values
  2564   // are calculated, aggregated with the policy collection set info,
  2565   // and cached in the heap region here (initially) and (subsequently)
  2566   // by the Young List sampling code.
  2568   size_t rs_length = hr->rem_set()->occupied();
  2569   add_to_incremental_cset_info(hr, rs_length);
  2571   HeapWord* hr_end = hr->end();
  2572   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2574   assert(!hr->in_collection_set(), "invariant");
  2575   hr->set_in_collection_set(true);
  2576   assert( hr->next_in_collection_set() == NULL, "invariant");
  2578   _g1->register_region_with_in_cset_fast_test(hr);
  2581 // Add the region at the RHS of the incremental cset
  2582 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2583   // We should only ever be appending survivors at the end of a pause
  2584   assert( hr->is_survivor(), "Logic");
  2586   // Do the 'common' stuff
  2587   add_region_to_incremental_cset_common(hr);
  2589   // Now add the region at the right hand side
  2590   if (_inc_cset_tail == NULL) {
  2591     assert(_inc_cset_head == NULL, "invariant");
  2592     _inc_cset_head = hr;
  2593   } else {
  2594     _inc_cset_tail->set_next_in_collection_set(hr);
  2596   _inc_cset_tail = hr;
  2599 // Add the region to the LHS of the incremental cset
  2600 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2601   // Survivors should be added to the RHS at the end of a pause
  2602   assert(!hr->is_survivor(), "Logic");
  2604   // Do the 'common' stuff
  2605   add_region_to_incremental_cset_common(hr);
  2607   // Add the region at the left hand side
  2608   hr->set_next_in_collection_set(_inc_cset_head);
  2609   if (_inc_cset_head == NULL) {
  2610     assert(_inc_cset_tail == NULL, "Invariant");
  2611     _inc_cset_tail = hr;
  2613   _inc_cset_head = hr;
  2616 #ifndef PRODUCT
  2617 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2618   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2620   st->print_cr("\nCollection_set:");
  2621   HeapRegion* csr = list_head;
  2622   while (csr != NULL) {
  2623     HeapRegion* next = csr->next_in_collection_set();
  2624     assert(csr->in_collection_set(), "bad CS");
  2625     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2626                  "age: %4d, y: %d, surv: %d",
  2627                         csr->bottom(), csr->end(),
  2628                         csr->top(),
  2629                         csr->prev_top_at_mark_start(),
  2630                         csr->next_top_at_mark_start(),
  2631                         csr->top_at_conc_mark_count(),
  2632                         csr->age_in_surv_rate_group_cond(),
  2633                         csr->is_young(),
  2634                         csr->is_survivor());
  2635     csr = next;
  2638 #endif // !PRODUCT
  2640 void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
  2641   // Set this here - in case we're not doing young collections.
  2642   double non_young_start_time_sec = os::elapsedTime();
  2644   YoungList* young_list = _g1->young_list();
  2645   finalize_incremental_cset_building();
  2647   guarantee(target_pause_time_ms > 0.0,
  2648             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2649                     target_pause_time_ms));
  2650   guarantee(_collection_set == NULL, "Precondition");
  2652   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2653   double predicted_pause_time_ms = base_time_ms;
  2655   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2657   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2658                 "start choosing CSet",
  2659                 ergo_format_ms("predicted base time")
  2660                 ergo_format_ms("remaining time")
  2661                 ergo_format_ms("target pause time"),
  2662                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2664   // the 10% and 50% values are arbitrary...
  2665   double threshold = 0.10 * target_pause_time_ms;
  2666   if (time_remaining_ms < threshold) {
  2667     double prev_time_remaining_ms = time_remaining_ms;
  2668     time_remaining_ms = 0.50 * target_pause_time_ms;
  2669     ergo_verbose3(ErgoCSetConstruction,
  2670                   "adjust remaining time",
  2671                   ergo_format_reason("remaining time lower than threshold")
  2672                   ergo_format_ms("remaining time")
  2673                   ergo_format_ms("threshold")
  2674                   ergo_format_ms("adjusted remaining time"),
  2675                   prev_time_remaining_ms, threshold, time_remaining_ms);
  2678   size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
  2680   HeapRegion* hr;
  2681   double young_start_time_sec = os::elapsedTime();
  2683   _collection_set_bytes_used_before = 0;
  2684   _last_gc_was_young = gcs_are_young() ? true : false;
  2686   if (_last_gc_was_young) {
  2687     ++_young_pause_num;
  2688   } else {
  2689     ++_mixed_pause_num;
  2692   // The young list is laid with the survivor regions from the previous
  2693   // pause are appended to the RHS of the young list, i.e.
  2694   //   [Newly Young Regions ++ Survivors from last pause].
  2696   size_t survivor_region_length = young_list->survivor_length();
  2697   size_t eden_region_length = young_list->length() - survivor_region_length;
  2698   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2699   hr = young_list->first_survivor_region();
  2700   while (hr != NULL) {
  2701     assert(hr->is_survivor(), "badly formed young list");
  2702     hr->set_young();
  2703     hr = hr->get_next_young_region();
  2706   // Clear the fields that point to the survivor list - they are all young now.
  2707   young_list->clear_survivors();
  2709   _collection_set = _inc_cset_head;
  2710   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2711   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2712   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2714   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2715                 "add young regions to CSet",
  2716                 ergo_format_region("eden")
  2717                 ergo_format_region("survivors")
  2718                 ergo_format_ms("predicted young region time"),
  2719                 eden_region_length, survivor_region_length,
  2720                 _inc_cset_predicted_elapsed_time_ms);
  2722   // The number of recorded young regions is the incremental
  2723   // collection set's current size
  2724   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2726   double young_end_time_sec = os::elapsedTime();
  2727   _recorded_young_cset_choice_time_ms =
  2728     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2730   // We are doing young collections so reset this.
  2731   non_young_start_time_sec = young_end_time_sec;
  2733   if (!gcs_are_young()) {
  2734     bool should_continue = true;
  2735     NumberSeq seq;
  2736     double avg_prediction = 100000000000000000.0; // something very large
  2738     double prev_predicted_pause_time_ms = predicted_pause_time_ms;
  2739     do {
  2740       // Note that add_old_region_to_cset() increments the
  2741       // _old_cset_region_length field and cset_region_length() returns the
  2742       // sum of _eden_cset_region_length, _survivor_cset_region_length, and
  2743       // _old_cset_region_length. So, as old regions are added to the
  2744       // CSet, _old_cset_region_length will be incremented and
  2745       // cset_region_length(), which is used below, will always reflect
  2746       // the the total number of regions added up to this point to the CSet.
  2748       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2749                                                       avg_prediction);
  2750       if (hr != NULL) {
  2751         _g1->old_set_remove(hr);
  2752         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2753         time_remaining_ms -= predicted_time_ms;
  2754         predicted_pause_time_ms += predicted_time_ms;
  2755         add_old_region_to_cset(hr);
  2756         seq.add(predicted_time_ms);
  2757         avg_prediction = seq.avg() + seq.sd();
  2760       should_continue = true;
  2761       if (hr == NULL) {
  2762         // No need for an ergo verbose message here,
  2763         // getNextMarkRegion() does this when it returns NULL.
  2764         should_continue = false;
  2765       } else {
  2766         if (adaptive_young_list_length()) {
  2767           if (time_remaining_ms < 0.0) {
  2768             ergo_verbose1(ErgoCSetConstruction,
  2769                           "stop adding old regions to CSet",
  2770                           ergo_format_reason("remaining time is lower than 0")
  2771                           ergo_format_ms("remaining time"),
  2772                           time_remaining_ms);
  2773             should_continue = false;
  2775         } else {
  2776           if (cset_region_length() >= _young_list_fixed_length) {
  2777             ergo_verbose2(ErgoCSetConstruction,
  2778                           "stop adding old regions to CSet",
  2779                           ergo_format_reason("CSet length reached target")
  2780                           ergo_format_region("CSet")
  2781                           ergo_format_region("young target"),
  2782                           cset_region_length(), _young_list_fixed_length);
  2783             should_continue = false;
  2787     } while (should_continue);
  2789     if (!adaptive_young_list_length() &&
  2790         cset_region_length() < _young_list_fixed_length) {
  2791       ergo_verbose2(ErgoCSetConstruction,
  2792                     "request mixed GCs end",
  2793                     ergo_format_reason("CSet length lower than target")
  2794                     ergo_format_region("CSet")
  2795                     ergo_format_region("young target"),
  2796                     cset_region_length(), _young_list_fixed_length);
  2797       _should_revert_to_young_gcs  = true;
  2800     ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
  2801                   "add old regions to CSet",
  2802                   ergo_format_region("old")
  2803                   ergo_format_ms("predicted old region time"),
  2804                   old_cset_region_length(),
  2805                   predicted_pause_time_ms - prev_predicted_pause_time_ms);
  2808   stop_incremental_cset_building();
  2810   count_CS_bytes_used();
  2812   ergo_verbose5(ErgoCSetConstruction,
  2813                 "finish choosing CSet",
  2814                 ergo_format_region("eden")
  2815                 ergo_format_region("survivors")
  2816                 ergo_format_region("old")
  2817                 ergo_format_ms("predicted pause time")
  2818                 ergo_format_ms("target pause time"),
  2819                 eden_region_length, survivor_region_length,
  2820                 old_cset_region_length(),
  2821                 predicted_pause_time_ms, target_pause_time_ms);
  2823   double non_young_end_time_sec = os::elapsedTime();
  2824   _recorded_non_young_cset_choice_time_ms =
  2825     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial