src/share/vm/utilities/globalDefinitions.hpp

Wed, 11 Jan 2012 17:34:02 -0500

author
phh
date
Wed, 11 Jan 2012 17:34:02 -0500
changeset 3427
94ec88ca68e2
parent 3339
e7dead7e90af
child 3762
3a22b77e755a
permissions
-rw-r--r--

7115199: Add event tracing hooks and Java Flight Recorder infrastructure
Summary: Added a nop tracing infrastructure, JFR makefile changes and other infrastructure used only by JFR.
Reviewed-by: acorn, sspitsyn
Contributed-by: markus.gronlund@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    42 #include "utilities/macros.hpp"
    44 // This file holds all globally used constants & types, class (forward)
    45 // declarations and a few frequently used utility functions.
    47 //----------------------------------------------------------------------------------------------------
    48 // Constants
    50 const int LogBytesPerShort   = 1;
    51 const int LogBytesPerInt     = 2;
    52 #ifdef _LP64
    53 const int LogBytesPerWord    = 3;
    54 #else
    55 const int LogBytesPerWord    = 2;
    56 #endif
    57 const int LogBytesPerLong    = 3;
    59 const int BytesPerShort      = 1 << LogBytesPerShort;
    60 const int BytesPerInt        = 1 << LogBytesPerInt;
    61 const int BytesPerWord       = 1 << LogBytesPerWord;
    62 const int BytesPerLong       = 1 << LogBytesPerLong;
    64 const int LogBitsPerByte     = 3;
    65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    70 const int BitsPerByte        = 1 << LogBitsPerByte;
    71 const int BitsPerShort       = 1 << LogBitsPerShort;
    72 const int BitsPerInt         = 1 << LogBitsPerInt;
    73 const int BitsPerWord        = 1 << LogBitsPerWord;
    74 const int BitsPerLong        = 1 << LogBitsPerLong;
    76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    79 const int WordsPerLong       = 2;       // Number of stack entries for longs
    81 const int oopSize            = sizeof(char*); // Full-width oop
    82 extern int heapOopSize;                       // Oop within a java object
    83 const int wordSize           = sizeof(char*);
    84 const int longSize           = sizeof(jlong);
    85 const int jintSize           = sizeof(jint);
    86 const int size_tSize         = sizeof(size_t);
    88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    90 extern int LogBytesPerHeapOop;                // Oop within a java object
    91 extern int LogBitsPerHeapOop;
    92 extern int BytesPerHeapOop;
    93 extern int BitsPerHeapOop;
    95 // Oop encoding heap max
    96 extern uint64_t OopEncodingHeapMax;
    98 const int BitsPerJavaInteger = 32;
    99 const int BitsPerJavaLong    = 64;
   100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   102 // Size of a char[] needed to represent a jint as a string in decimal.
   103 const int jintAsStringSize = 12;
   105 // In fact this should be
   106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   107 // see os::set_memory_serialize_page()
   108 #ifdef _LP64
   109 const int SerializePageShiftCount = 4;
   110 #else
   111 const int SerializePageShiftCount = 3;
   112 #endif
   114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   115 // pointer into the heap.  We require that object sizes be measured in
   116 // units of heap words, so that that
   117 //   HeapWord* hw;
   118 //   hw += oop(hw)->foo();
   119 // works, where foo is a method (like size or scavenge) that returns the
   120 // object size.
   121 class HeapWord {
   122   friend class VMStructs;
   123  private:
   124   char* i;
   125 #ifndef PRODUCT
   126  public:
   127   char* value() { return i; }
   128 #endif
   129 };
   131 // HeapWordSize must be 2^LogHeapWordSize.
   132 const int HeapWordSize        = sizeof(HeapWord);
   133 #ifdef _LP64
   134 const int LogHeapWordSize     = 3;
   135 #else
   136 const int LogHeapWordSize     = 2;
   137 #endif
   138 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   139 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   141 // The larger HeapWordSize for 64bit requires larger heaps
   142 // for the same application running in 64bit.  See bug 4967770.
   143 // The minimum alignment to a heap word size is done.  Other
   144 // parts of the memory system may required additional alignment
   145 // and are responsible for those alignments.
   146 #ifdef _LP64
   147 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   148 #else
   149 #define ScaleForWordSize(x) (x)
   150 #endif
   152 // The minimum number of native machine words necessary to contain "byte_size"
   153 // bytes.
   154 inline size_t heap_word_size(size_t byte_size) {
   155   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   156 }
   159 const size_t K                  = 1024;
   160 const size_t M                  = K*K;
   161 const size_t G                  = M*K;
   162 const size_t HWperKB            = K / sizeof(HeapWord);
   164 const size_t LOG_K              = 10;
   165 const size_t LOG_M              = 2 * LOG_K;
   166 const size_t LOG_G              = 2 * LOG_M;
   168 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   169 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   171 // Constants for converting from a base unit to milli-base units.  For
   172 // example from seconds to milliseconds and microseconds
   174 const int MILLIUNITS    = 1000;         // milli units per base unit
   175 const int MICROUNITS    = 1000000;      // micro units per base unit
   176 const int NANOUNITS     = 1000000000;   // nano units per base unit
   178 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   179 const jint  NANOSECS_PER_MILLISEC = 1000000;
   181 inline const char* proper_unit_for_byte_size(size_t s) {
   182   if (s >= 10*M) {
   183     return "M";
   184   } else if (s >= 10*K) {
   185     return "K";
   186   } else {
   187     return "B";
   188   }
   189 }
   191 inline size_t byte_size_in_proper_unit(size_t s) {
   192   if (s >= 10*M) {
   193     return s/M;
   194   } else if (s >= 10*K) {
   195     return s/K;
   196   } else {
   197     return s;
   198   }
   199 }
   202 //----------------------------------------------------------------------------------------------------
   203 // VM type definitions
   205 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   206 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   208 typedef intptr_t  intx;
   209 typedef uintptr_t uintx;
   211 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   212 const intx  max_intx  = (uintx)min_intx - 1;
   213 const uintx max_uintx = (uintx)-1;
   215 // Table of values:
   216 //      sizeof intx         4               8
   217 // min_intx             0x80000000      0x8000000000000000
   218 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   219 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   221 typedef unsigned int uint;   NEEDS_CLEANUP
   224 //----------------------------------------------------------------------------------------------------
   225 // Java type definitions
   227 // All kinds of 'plain' byte addresses
   228 typedef   signed char s_char;
   229 typedef unsigned char u_char;
   230 typedef u_char*       address;
   231 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   232                                     // except for some implementations of a C++
   233                                     // linkage pointer to function. Should never
   234                                     // need one of those to be placed in this
   235                                     // type anyway.
   237 //  Utility functions to "portably" (?) bit twiddle pointers
   238 //  Where portable means keep ANSI C++ compilers quiet
   240 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   241 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   243 //  Utility functions to "portably" make cast to/from function pointers.
   245 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   246 inline address_word  castable_address(address x)              { return address_word(x) ; }
   247 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   249 // Pointer subtraction.
   250 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   251 // the range we might need to find differences from one end of the heap
   252 // to the other.
   253 // A typical use might be:
   254 //     if (pointer_delta(end(), top()) >= size) {
   255 //       // enough room for an object of size
   256 //       ...
   257 // and then additions like
   258 //       ... top() + size ...
   259 // are safe because we know that top() is at least size below end().
   260 inline size_t pointer_delta(const void* left,
   261                             const void* right,
   262                             size_t element_size) {
   263   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   264 }
   265 // A version specialized for HeapWord*'s.
   266 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   267   return pointer_delta(left, right, sizeof(HeapWord));
   268 }
   270 //
   271 // ANSI C++ does not allow casting from one pointer type to a function pointer
   272 // directly without at best a warning. This macro accomplishes it silently
   273 // In every case that is present at this point the value be cast is a pointer
   274 // to a C linkage function. In somecase the type used for the cast reflects
   275 // that linkage and a picky compiler would not complain. In other cases because
   276 // there is no convenient place to place a typedef with extern C linkage (i.e
   277 // a platform dependent header file) it doesn't. At this point no compiler seems
   278 // picky enough to catch these instances (which are few). It is possible that
   279 // using templates could fix these for all cases. This use of templates is likely
   280 // so far from the middle of the road that it is likely to be problematic in
   281 // many C++ compilers.
   282 //
   283 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   284 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   286 // Unsigned byte types for os and stream.hpp
   288 // Unsigned one, two, four and eigth byte quantities used for describing
   289 // the .class file format. See JVM book chapter 4.
   291 typedef jubyte  u1;
   292 typedef jushort u2;
   293 typedef juint   u4;
   294 typedef julong  u8;
   296 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   297 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   298 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   299 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   301 typedef jbyte  s1;
   302 typedef jshort s2;
   303 typedef jint   s4;
   304 typedef jlong  s8;
   306 //----------------------------------------------------------------------------------------------------
   307 // JVM spec restrictions
   309 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   312 //----------------------------------------------------------------------------------------------------
   313 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   314 //
   315 // Determines whether on-the-fly class replacement and frame popping are enabled.
   317 #define HOTSWAP
   319 //----------------------------------------------------------------------------------------------------
   320 // Object alignment, in units of HeapWords.
   321 //
   322 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   323 // reference fields can be naturally aligned.
   325 extern int MinObjAlignment;
   326 extern int MinObjAlignmentInBytes;
   327 extern int MinObjAlignmentInBytesMask;
   329 extern int LogMinObjAlignment;
   330 extern int LogMinObjAlignmentInBytes;
   332 // Machine dependent stuff
   334 #ifdef TARGET_ARCH_x86
   335 # include "globalDefinitions_x86.hpp"
   336 #endif
   337 #ifdef TARGET_ARCH_sparc
   338 # include "globalDefinitions_sparc.hpp"
   339 #endif
   340 #ifdef TARGET_ARCH_zero
   341 # include "globalDefinitions_zero.hpp"
   342 #endif
   343 #ifdef TARGET_ARCH_arm
   344 # include "globalDefinitions_arm.hpp"
   345 #endif
   346 #ifdef TARGET_ARCH_ppc
   347 # include "globalDefinitions_ppc.hpp"
   348 #endif
   351 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   352 // Note: this value must be a power of 2
   354 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   356 // Signed variants of alignment helpers.  There are two versions of each, a macro
   357 // for use in places like enum definitions that require compile-time constant
   358 // expressions and a function for all other places so as to get type checking.
   360 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   362 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   363   return align_size_up_(size, alignment);
   364 }
   366 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   368 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   369   return align_size_down_(size, alignment);
   370 }
   372 // Align objects by rounding up their size, in HeapWord units.
   374 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   376 inline intptr_t align_object_size(intptr_t size) {
   377   return align_size_up(size, MinObjAlignment);
   378 }
   380 inline bool is_object_aligned(intptr_t addr) {
   381   return addr == align_object_size(addr);
   382 }
   384 // Pad out certain offsets to jlong alignment, in HeapWord units.
   386 inline intptr_t align_object_offset(intptr_t offset) {
   387   return align_size_up(offset, HeapWordsPerLong);
   388 }
   390 // The expected size in bytes of a cache line, used to pad data structures.
   391 #define DEFAULT_CACHE_LINE_SIZE 64
   393 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
   394 // expected cache line size (a power of two).  The first addend avoids sharing
   395 // when the start address is not a multiple of alignment; the second maintains
   396 // alignment of starting addresses that happen to be a multiple.
   397 #define PADDING_SIZE(type, alignment)                           \
   398   ((alignment) + align_size_up_(sizeof(type), alignment))
   400 // Templates to create a subclass padded to avoid cache line sharing.  These are
   401 // effective only when applied to derived-most (leaf) classes.
   403 // When no args are passed to the base ctor.
   404 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   405 class Padded: public T {
   406 private:
   407   char _pad_buf_[PADDING_SIZE(T, alignment)];
   408 };
   410 // When either 0 or 1 args may be passed to the base ctor.
   411 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   412 class Padded01: public T {
   413 public:
   414   Padded01(): T() { }
   415   Padded01(Arg1T arg1): T(arg1) { }
   416 private:
   417   char _pad_buf_[PADDING_SIZE(T, alignment)];
   418 };
   420 //----------------------------------------------------------------------------------------------------
   421 // Utility macros for compilers
   422 // used to silence compiler warnings
   424 #define Unused_Variable(var) var
   427 //----------------------------------------------------------------------------------------------------
   428 // Miscellaneous
   430 // 6302670 Eliminate Hotspot __fabsf dependency
   431 // All fabs() callers should call this function instead, which will implicitly
   432 // convert the operand to double, avoiding a dependency on __fabsf which
   433 // doesn't exist in early versions of Solaris 8.
   434 inline double fabsd(double value) {
   435   return fabs(value);
   436 }
   438 inline jint low (jlong value)                    { return jint(value); }
   439 inline jint high(jlong value)                    { return jint(value >> 32); }
   441 // the fancy casts are a hopefully portable way
   442 // to do unsigned 32 to 64 bit type conversion
   443 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   444                                                    *value |= (jlong)(julong)(juint)low; }
   446 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   447                                                    *value |= (jlong)high       << 32; }
   449 inline jlong jlong_from(jint h, jint l) {
   450   jlong result = 0; // initialization to avoid warning
   451   set_high(&result, h);
   452   set_low(&result,  l);
   453   return result;
   454 }
   456 union jlong_accessor {
   457   jint  words[2];
   458   jlong long_value;
   459 };
   461 void basic_types_init(); // cannot define here; uses assert
   464 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   465 enum BasicType {
   466   T_BOOLEAN  =  4,
   467   T_CHAR     =  5,
   468   T_FLOAT    =  6,
   469   T_DOUBLE   =  7,
   470   T_BYTE     =  8,
   471   T_SHORT    =  9,
   472   T_INT      = 10,
   473   T_LONG     = 11,
   474   T_OBJECT   = 12,
   475   T_ARRAY    = 13,
   476   T_VOID     = 14,
   477   T_ADDRESS  = 15,
   478   T_NARROWOOP= 16,
   479   T_CONFLICT = 17, // for stack value type with conflicting contents
   480   T_ILLEGAL  = 99
   481 };
   483 inline bool is_java_primitive(BasicType t) {
   484   return T_BOOLEAN <= t && t <= T_LONG;
   485 }
   487 inline bool is_subword_type(BasicType t) {
   488   // these guys are processed exactly like T_INT in calling sequences:
   489   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   490 }
   492 inline bool is_signed_subword_type(BasicType t) {
   493   return (t == T_BYTE || t == T_SHORT);
   494 }
   496 // Convert a char from a classfile signature to a BasicType
   497 inline BasicType char2type(char c) {
   498   switch( c ) {
   499   case 'B': return T_BYTE;
   500   case 'C': return T_CHAR;
   501   case 'D': return T_DOUBLE;
   502   case 'F': return T_FLOAT;
   503   case 'I': return T_INT;
   504   case 'J': return T_LONG;
   505   case 'S': return T_SHORT;
   506   case 'Z': return T_BOOLEAN;
   507   case 'V': return T_VOID;
   508   case 'L': return T_OBJECT;
   509   case '[': return T_ARRAY;
   510   }
   511   return T_ILLEGAL;
   512 }
   514 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   515 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   516 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   517 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   518 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   519 extern BasicType name2type(const char* name);
   521 // Auxilary math routines
   522 // least common multiple
   523 extern size_t lcm(size_t a, size_t b);
   526 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   527 enum BasicTypeSize {
   528   T_BOOLEAN_size = 1,
   529   T_CHAR_size    = 1,
   530   T_FLOAT_size   = 1,
   531   T_DOUBLE_size  = 2,
   532   T_BYTE_size    = 1,
   533   T_SHORT_size   = 1,
   534   T_INT_size     = 1,
   535   T_LONG_size    = 2,
   536   T_OBJECT_size  = 1,
   537   T_ARRAY_size   = 1,
   538   T_NARROWOOP_size = 1,
   539   T_VOID_size    = 0
   540 };
   543 // maps a BasicType to its instance field storage type:
   544 // all sub-word integral types are widened to T_INT
   545 extern BasicType type2field[T_CONFLICT+1];
   546 extern BasicType type2wfield[T_CONFLICT+1];
   549 // size in bytes
   550 enum ArrayElementSize {
   551   T_BOOLEAN_aelem_bytes = 1,
   552   T_CHAR_aelem_bytes    = 2,
   553   T_FLOAT_aelem_bytes   = 4,
   554   T_DOUBLE_aelem_bytes  = 8,
   555   T_BYTE_aelem_bytes    = 1,
   556   T_SHORT_aelem_bytes   = 2,
   557   T_INT_aelem_bytes     = 4,
   558   T_LONG_aelem_bytes    = 8,
   559 #ifdef _LP64
   560   T_OBJECT_aelem_bytes  = 8,
   561   T_ARRAY_aelem_bytes   = 8,
   562 #else
   563   T_OBJECT_aelem_bytes  = 4,
   564   T_ARRAY_aelem_bytes   = 4,
   565 #endif
   566   T_NARROWOOP_aelem_bytes = 4,
   567   T_VOID_aelem_bytes    = 0
   568 };
   570 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   571 #ifdef ASSERT
   572 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   573 #else
   574 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   575 #endif
   578 // JavaValue serves as a container for arbitrary Java values.
   580 class JavaValue {
   582  public:
   583   typedef union JavaCallValue {
   584     jfloat   f;
   585     jdouble  d;
   586     jint     i;
   587     jlong    l;
   588     jobject  h;
   589   } JavaCallValue;
   591  private:
   592   BasicType _type;
   593   JavaCallValue _value;
   595  public:
   596   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   598   JavaValue(jfloat value) {
   599     _type    = T_FLOAT;
   600     _value.f = value;
   601   }
   603   JavaValue(jdouble value) {
   604     _type    = T_DOUBLE;
   605     _value.d = value;
   606   }
   608  jfloat get_jfloat() const { return _value.f; }
   609  jdouble get_jdouble() const { return _value.d; }
   610  jint get_jint() const { return _value.i; }
   611  jlong get_jlong() const { return _value.l; }
   612  jobject get_jobject() const { return _value.h; }
   613  JavaCallValue* get_value_addr() { return &_value; }
   614  BasicType get_type() const { return _type; }
   616  void set_jfloat(jfloat f) { _value.f = f;}
   617  void set_jdouble(jdouble d) { _value.d = d;}
   618  void set_jint(jint i) { _value.i = i;}
   619  void set_jlong(jlong l) { _value.l = l;}
   620  void set_jobject(jobject h) { _value.h = h;}
   621  void set_type(BasicType t) { _type = t; }
   623  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   624  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   625  jchar get_jchar() const { return (jchar) (_value.i);}
   626  jshort get_jshort() const { return (jshort) (_value.i);}
   628 };
   631 #define STACK_BIAS      0
   632 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   633 // in order to extend the reach of the stack pointer.
   634 #if defined(SPARC) && defined(_LP64)
   635 #undef STACK_BIAS
   636 #define STACK_BIAS      0x7ff
   637 #endif
   640 // TosState describes the top-of-stack state before and after the execution of
   641 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   642 // registers. The TosState corresponds to the 'machine represention' of this cached
   643 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   644 // as well as a 5th state in case the top-of-stack value is actually on the top
   645 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   646 // state when it comes to machine representation but is used separately for (oop)
   647 // type specific operations (e.g. verification code).
   649 enum TosState {         // describes the tos cache contents
   650   btos = 0,             // byte, bool tos cached
   651   ctos = 1,             // char tos cached
   652   stos = 2,             // short tos cached
   653   itos = 3,             // int tos cached
   654   ltos = 4,             // long tos cached
   655   ftos = 5,             // float tos cached
   656   dtos = 6,             // double tos cached
   657   atos = 7,             // object cached
   658   vtos = 8,             // tos not cached
   659   number_of_states,
   660   ilgl                  // illegal state: should not occur
   661 };
   664 inline TosState as_TosState(BasicType type) {
   665   switch (type) {
   666     case T_BYTE   : return btos;
   667     case T_BOOLEAN: return btos; // FIXME: Add ztos
   668     case T_CHAR   : return ctos;
   669     case T_SHORT  : return stos;
   670     case T_INT    : return itos;
   671     case T_LONG   : return ltos;
   672     case T_FLOAT  : return ftos;
   673     case T_DOUBLE : return dtos;
   674     case T_VOID   : return vtos;
   675     case T_ARRAY  : // fall through
   676     case T_OBJECT : return atos;
   677   }
   678   return ilgl;
   679 }
   681 inline BasicType as_BasicType(TosState state) {
   682   switch (state) {
   683     //case ztos: return T_BOOLEAN;//FIXME
   684     case btos : return T_BYTE;
   685     case ctos : return T_CHAR;
   686     case stos : return T_SHORT;
   687     case itos : return T_INT;
   688     case ltos : return T_LONG;
   689     case ftos : return T_FLOAT;
   690     case dtos : return T_DOUBLE;
   691     case atos : return T_OBJECT;
   692     case vtos : return T_VOID;
   693   }
   694   return T_ILLEGAL;
   695 }
   698 // Helper function to convert BasicType info into TosState
   699 // Note: Cannot define here as it uses global constant at the time being.
   700 TosState as_TosState(BasicType type);
   703 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   705 enum ReferenceType {
   706  REF_NONE,      // Regular class
   707  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   708  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   709  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   710  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   711  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   712 };
   715 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   716 // information is needed by the safepoint code.
   717 //
   718 // There are 4 essential states:
   719 //
   720 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   721 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   722 //  _thread_in_vm       : Executing in the vm
   723 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   724 //
   725 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   726 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   727 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   728 //
   729 // Given a state, the xxx_trans state can always be found by adding 1.
   730 //
   731 enum JavaThreadState {
   732   _thread_uninitialized     =  0, // should never happen (missing initialization)
   733   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   734   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   735   _thread_in_native         =  4, // running in native code
   736   _thread_in_native_trans   =  5, // corresponding transition state
   737   _thread_in_vm             =  6, // running in VM
   738   _thread_in_vm_trans       =  7, // corresponding transition state
   739   _thread_in_Java           =  8, // running in Java or in stub code
   740   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   741   _thread_blocked           = 10, // blocked in vm
   742   _thread_blocked_trans     = 11, // corresponding transition state
   743   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   744 };
   747 // Handy constants for deciding which compiler mode to use.
   748 enum MethodCompilation {
   749   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   750   InvalidOSREntryBci = -2
   751 };
   753 // Enumeration to distinguish tiers of compilation
   754 enum CompLevel {
   755   CompLevel_any               = -1,
   756   CompLevel_all               = -1,
   757   CompLevel_none              = 0,         // Interpreter
   758   CompLevel_simple            = 1,         // C1
   759   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   760   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   761   CompLevel_full_optimization = 4,         // C2 or Shark
   763 #if defined(COMPILER2) || defined(SHARK)
   764   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   765 #elif defined(COMPILER1)
   766   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   767 #else
   768   CompLevel_highest_tier      = CompLevel_none,
   769 #endif
   771 #if defined(TIERED)
   772   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   773 #elif defined(COMPILER1)
   774   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   775 #elif defined(COMPILER2) || defined(SHARK)
   776   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   777 #else
   778   CompLevel_initial_compile   = CompLevel_none
   779 #endif
   780 };
   782 inline bool is_c1_compile(int comp_level) {
   783   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   784 }
   786 inline bool is_c2_compile(int comp_level) {
   787   return comp_level == CompLevel_full_optimization;
   788 }
   790 inline bool is_highest_tier_compile(int comp_level) {
   791   return comp_level == CompLevel_highest_tier;
   792 }
   794 //----------------------------------------------------------------------------------------------------
   795 // 'Forward' declarations of frequently used classes
   796 // (in order to reduce interface dependencies & reduce
   797 // number of unnecessary compilations after changes)
   799 class symbolTable;
   800 class ClassFileStream;
   802 class Event;
   804 class Thread;
   805 class  VMThread;
   806 class  JavaThread;
   807 class Threads;
   809 class VM_Operation;
   810 class VMOperationQueue;
   812 class CodeBlob;
   813 class  nmethod;
   814 class  OSRAdapter;
   815 class  I2CAdapter;
   816 class  C2IAdapter;
   817 class CompiledIC;
   818 class relocInfo;
   819 class ScopeDesc;
   820 class PcDesc;
   822 class Recompiler;
   823 class Recompilee;
   824 class RecompilationPolicy;
   825 class RFrame;
   826 class  CompiledRFrame;
   827 class  InterpretedRFrame;
   829 class frame;
   831 class vframe;
   832 class   javaVFrame;
   833 class     interpretedVFrame;
   834 class     compiledVFrame;
   835 class     deoptimizedVFrame;
   836 class   externalVFrame;
   837 class     entryVFrame;
   839 class RegisterMap;
   841 class Mutex;
   842 class Monitor;
   843 class BasicLock;
   844 class BasicObjectLock;
   846 class PeriodicTask;
   848 class JavaCallWrapper;
   850 class   oopDesc;
   852 class NativeCall;
   854 class zone;
   856 class StubQueue;
   858 class outputStream;
   860 class ResourceArea;
   862 class DebugInformationRecorder;
   863 class ScopeValue;
   864 class CompressedStream;
   865 class   DebugInfoReadStream;
   866 class   DebugInfoWriteStream;
   867 class LocationValue;
   868 class ConstantValue;
   869 class IllegalValue;
   871 class PrivilegedElement;
   872 class MonitorArray;
   874 class MonitorInfo;
   876 class OffsetClosure;
   877 class OopMapCache;
   878 class InterpreterOopMap;
   879 class OopMapCacheEntry;
   880 class OSThread;
   882 typedef int (*OSThreadStartFunc)(void*);
   884 class Space;
   886 class JavaValue;
   887 class methodHandle;
   888 class JavaCallArguments;
   890 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   892 extern void basic_fatal(const char* msg);
   895 //----------------------------------------------------------------------------------------------------
   896 // Special constants for debugging
   898 const jint     badInt           = -3;                       // generic "bad int" value
   899 const long     badAddressVal    = -2;                       // generic "bad address" value
   900 const long     badOopVal        = -1;                       // generic "bad oop" value
   901 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   902 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   903 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   904 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   905 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   906 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   907 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   908 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   909 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   912 // (These must be implemented as #defines because C++ compilers are
   913 // not obligated to inline non-integral constants!)
   914 #define       badAddress        ((address)::badAddressVal)
   915 #define       badOop            ((oop)::badOopVal)
   916 #define       badHeapWord       (::badHeapWordVal)
   917 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   919 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
   920 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
   922 //----------------------------------------------------------------------------------------------------
   923 // Utility functions for bitfield manipulations
   925 const intptr_t AllBits    = ~0; // all bits set in a word
   926 const intptr_t NoBits     =  0; // no bits set in a word
   927 const jlong    NoLongBits =  0; // no bits set in a long
   928 const intptr_t OneBit     =  1; // only right_most bit set in a word
   930 // get a word with the n.th or the right-most or left-most n bits set
   931 // (note: #define used only so that they can be used in enum constant definitions)
   932 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   933 #define right_n_bits(n)   (nth_bit(n) - 1)
   934 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   936 // bit-operations using a mask m
   937 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   938 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   939 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   940 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   941 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   943 // bit-operations using the n.th bit
   944 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   945 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   946 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   948 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   949 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   950   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   951 }
   954 //----------------------------------------------------------------------------------------------------
   955 // Utility functions for integers
   957 // Avoid use of global min/max macros which may cause unwanted double
   958 // evaluation of arguments.
   959 #ifdef max
   960 #undef max
   961 #endif
   963 #ifdef min
   964 #undef min
   965 #endif
   967 #define max(a,b) Do_not_use_max_use_MAX2_instead
   968 #define min(a,b) Do_not_use_min_use_MIN2_instead
   970 // It is necessary to use templates here. Having normal overloaded
   971 // functions does not work because it is necessary to provide both 32-
   972 // and 64-bit overloaded functions, which does not work, and having
   973 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   974 // will be even more error-prone than macros.
   975 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   976 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   977 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   978 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   979 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   980 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   982 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   984 // true if x is a power of 2, false otherwise
   985 inline bool is_power_of_2(intptr_t x) {
   986   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   987 }
   989 // long version of is_power_of_2
   990 inline bool is_power_of_2_long(jlong x) {
   991   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   992 }
   994 //* largest i such that 2^i <= x
   995 //  A negative value of 'x' will return '31'
   996 inline int log2_intptr(intptr_t x) {
   997   int i = -1;
   998   uintptr_t p =  1;
   999   while (p != 0 && p <= (uintptr_t)x) {
  1000     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1001     i++; p *= 2;
  1003   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1004   // (if p = 0 then overflow occurred and i = 31)
  1005   return i;
  1008 //* largest i such that 2^i <= x
  1009 //  A negative value of 'x' will return '63'
  1010 inline int log2_long(jlong x) {
  1011   int i = -1;
  1012   julong p =  1;
  1013   while (p != 0 && p <= (julong)x) {
  1014     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1015     i++; p *= 2;
  1017   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1018   // (if p = 0 then overflow occurred and i = 63)
  1019   return i;
  1022 //* the argument must be exactly a power of 2
  1023 inline int exact_log2(intptr_t x) {
  1024   #ifdef ASSERT
  1025     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1026   #endif
  1027   return log2_intptr(x);
  1030 //* the argument must be exactly a power of 2
  1031 inline int exact_log2_long(jlong x) {
  1032   #ifdef ASSERT
  1033     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1034   #endif
  1035   return log2_long(x);
  1039 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1040 inline intptr_t round_to(intptr_t x, uintx s) {
  1041   #ifdef ASSERT
  1042     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1043   #endif
  1044   const uintx m = s - 1;
  1045   return mask_bits(x + m, ~m);
  1048 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1049 inline intptr_t round_down(intptr_t x, uintx s) {
  1050   #ifdef ASSERT
  1051     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1052   #endif
  1053   const uintx m = s - 1;
  1054   return mask_bits(x, ~m);
  1058 inline bool is_odd (intx x) { return x & 1;      }
  1059 inline bool is_even(intx x) { return !is_odd(x); }
  1061 // "to" should be greater than "from."
  1062 inline intx byte_size(void* from, void* to) {
  1063   return (address)to - (address)from;
  1066 //----------------------------------------------------------------------------------------------------
  1067 // Avoid non-portable casts with these routines (DEPRECATED)
  1069 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1070 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1072 // Given sequence of four bytes, build into a 32-bit word
  1073 // following the conventions used in class files.
  1074 // On the 386, this could be realized with a simple address cast.
  1075 //
  1077 // This routine takes eight bytes:
  1078 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1079   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1080        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1081        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1082        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1083        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1084        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1085        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1086        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1089 // This routine takes four bytes:
  1090 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1091   return  (( u4(c1) << 24 )  &  0xff000000)
  1092        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1093        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1094        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1097 // And this one works if the four bytes are contiguous in memory:
  1098 inline u4 build_u4_from( u1* p ) {
  1099   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1102 // Ditto for two-byte ints:
  1103 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1104   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1105           |  (( u2(c2) <<  0 )  &  0x00ff));
  1108 // And this one works if the two bytes are contiguous in memory:
  1109 inline u2 build_u2_from( u1* p ) {
  1110   return  build_u2_from( p[0], p[1] );
  1113 // Ditto for floats:
  1114 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1115   u4 u = build_u4_from( c1, c2, c3, c4 );
  1116   return  *(jfloat*)&u;
  1119 inline jfloat build_float_from( u1* p ) {
  1120   u4 u = build_u4_from( p );
  1121   return  *(jfloat*)&u;
  1125 // now (64-bit) longs
  1127 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1128   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1129        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1130        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1131        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1132        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1133        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1134        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1135        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1138 inline jlong build_long_from( u1* p ) {
  1139   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1143 // Doubles, too!
  1144 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1145   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1146   return  *(jdouble*)&u;
  1149 inline jdouble build_double_from( u1* p ) {
  1150   jlong u = build_long_from( p );
  1151   return  *(jdouble*)&u;
  1155 // Portable routines to go the other way:
  1157 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1158   c1 = u1(x >> 8);
  1159   c2 = u1(x);
  1162 inline void explode_short_to( u2 x, u1* p ) {
  1163   explode_short_to( x, p[0], p[1]);
  1166 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1167   c1 = u1(x >> 24);
  1168   c2 = u1(x >> 16);
  1169   c3 = u1(x >>  8);
  1170   c4 = u1(x);
  1173 inline void explode_int_to( u4 x, u1* p ) {
  1174   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1178 // Pack and extract shorts to/from ints:
  1180 inline int extract_low_short_from_int(jint x) {
  1181   return x & 0xffff;
  1184 inline int extract_high_short_from_int(jint x) {
  1185   return (x >> 16) & 0xffff;
  1188 inline int build_int_from_shorts( jushort low, jushort high ) {
  1189   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1192 // Printf-style formatters for fixed- and variable-width types as pointers and
  1193 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1194 // doesn't provide appropriate definitions, they should be provided in
  1195 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1197 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1199 // Format 32-bit quantities.
  1200 #define INT32_FORMAT           "%" PRId32
  1201 #define UINT32_FORMAT          "%" PRIu32
  1202 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1203 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1205 #define PTR32_FORMAT           "0x%08" PRIx32
  1207 // Format 64-bit quantities.
  1208 #define INT64_FORMAT           "%" PRId64
  1209 #define UINT64_FORMAT          "%" PRIu64
  1210 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1211 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1213 #define PTR64_FORMAT           "0x%016" PRIx64
  1215 // Format pointers which change size between 32- and 64-bit.
  1216 #ifdef  _LP64
  1217 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1218 #define PTR_FORMAT    "0x%016" PRIxPTR
  1219 #else   // !_LP64
  1220 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1221 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1222 #endif  // _LP64
  1224 #define SSIZE_FORMAT          "%" PRIdPTR
  1225 #define SIZE_FORMAT           "%" PRIuPTR
  1226 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
  1227 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
  1229 #define INTX_FORMAT           "%" PRIdPTR
  1230 #define UINTX_FORMAT          "%" PRIuPTR
  1231 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1232 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1235 // Enable zap-a-lot if in debug version.
  1237 # ifdef ASSERT
  1238 # ifdef COMPILER2
  1239 #   define ENABLE_ZAP_DEAD_LOCALS
  1240 #endif /* COMPILER2 */
  1241 # endif /* ASSERT */
  1243 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1245 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial