src/cpu/x86/vm/assembler_x86.cpp

Fri, 08 Feb 2013 15:07:17 -0800

author
kvn
date
Fri, 08 Feb 2013 15:07:17 -0800
changeset 4583
91a23b11d8dc
parent 4543
8391fdd36e1f
child 4889
cc32ccaaf47f
permissions
-rw-r--r--

8007708: compiler/6855215 assert(VM_Version::supports_sse4_2())
Summary: Added missing UseSSE42 check. Also added missing avx2 assert for vpermq instruction.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    55 // Implementation of AddressLiteral
    57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    58   _is_lval = false;
    59   _target = target;
    60   switch (rtype) {
    61   case relocInfo::oop_type:
    62   case relocInfo::metadata_type:
    63     // Oops are a special case. Normally they would be their own section
    64     // but in cases like icBuffer they are literals in the code stream that
    65     // we don't have a section for. We use none so that we get a literal address
    66     // which is always patchable.
    67     break;
    68   case relocInfo::external_word_type:
    69     _rspec = external_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::internal_word_type:
    72     _rspec = internal_word_Relocation::spec(target);
    73     break;
    74   case relocInfo::opt_virtual_call_type:
    75     _rspec = opt_virtual_call_Relocation::spec();
    76     break;
    77   case relocInfo::static_call_type:
    78     _rspec = static_call_Relocation::spec();
    79     break;
    80   case relocInfo::runtime_call_type:
    81     _rspec = runtime_call_Relocation::spec();
    82     break;
    83   case relocInfo::poll_type:
    84   case relocInfo::poll_return_type:
    85     _rspec = Relocation::spec_simple(rtype);
    86     break;
    87   case relocInfo::none:
    88     break;
    89   default:
    90     ShouldNotReachHere();
    91     break;
    92   }
    93 }
    95 // Implementation of Address
    97 #ifdef _LP64
    99 Address Address::make_array(ArrayAddress adr) {
   100   // Not implementable on 64bit machines
   101   // Should have been handled higher up the call chain.
   102   ShouldNotReachHere();
   103   return Address();
   104 }
   106 // exceedingly dangerous constructor
   107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   108   _base  = noreg;
   109   _index = noreg;
   110   _scale = no_scale;
   111   _disp  = disp;
   112   switch (rtype) {
   113     case relocInfo::external_word_type:
   114       _rspec = external_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::internal_word_type:
   117       _rspec = internal_word_Relocation::spec(loc);
   118       break;
   119     case relocInfo::runtime_call_type:
   120       // HMM
   121       _rspec = runtime_call_Relocation::spec();
   122       break;
   123     case relocInfo::poll_type:
   124     case relocInfo::poll_return_type:
   125       _rspec = Relocation::spec_simple(rtype);
   126       break;
   127     case relocInfo::none:
   128       break;
   129     default:
   130       ShouldNotReachHere();
   131   }
   132 }
   133 #else // LP64
   135 Address Address::make_array(ArrayAddress adr) {
   136   AddressLiteral base = adr.base();
   137   Address index = adr.index();
   138   assert(index._disp == 0, "must not have disp"); // maybe it can?
   139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   140   array._rspec = base._rspec;
   141   return array;
   142 }
   144 // exceedingly dangerous constructor
   145 Address::Address(address loc, RelocationHolder spec) {
   146   _base  = noreg;
   147   _index = noreg;
   148   _scale = no_scale;
   149   _disp  = (intptr_t) loc;
   150   _rspec = spec;
   151 }
   153 #endif // _LP64
   157 // Convert the raw encoding form into the form expected by the constructor for
   158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   159 // that to noreg for the Address constructor.
   160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   161   RelocationHolder rspec;
   162   if (disp_reloc != relocInfo::none) {
   163     rspec = Relocation::spec_simple(disp_reloc);
   164   }
   165   bool valid_index = index != rsp->encoding();
   166   if (valid_index) {
   167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   168     madr._rspec = rspec;
   169     return madr;
   170   } else {
   171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   172     madr._rspec = rspec;
   173     return madr;
   174   }
   175 }
   177 // Implementation of Assembler
   179 int AbstractAssembler::code_fill_byte() {
   180   return (u_char)'\xF4'; // hlt
   181 }
   183 // make this go away someday
   184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   185   if (rtype == relocInfo::none)
   186         emit_int32(data);
   187   else  emit_data(data, Relocation::spec_simple(rtype), format);
   188 }
   190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   191   assert(imm_operand == 0, "default format must be immediate in this file");
   192   assert(inst_mark() != NULL, "must be inside InstructionMark");
   193   if (rspec.type() !=  relocInfo::none) {
   194     #ifdef ASSERT
   195       check_relocation(rspec, format);
   196     #endif
   197     // Do not use AbstractAssembler::relocate, which is not intended for
   198     // embedded words.  Instead, relocate to the enclosing instruction.
   200     // hack. call32 is too wide for mask so use disp32
   201     if (format == call32_operand)
   202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   203     else
   204       code_section()->relocate(inst_mark(), rspec, format);
   205   }
   206   emit_int32(data);
   207 }
   209 static int encode(Register r) {
   210   int enc = r->encoding();
   211   if (enc >= 8) {
   212     enc -= 8;
   213   }
   214   return enc;
   215 }
   217 static int encode(XMMRegister r) {
   218   int enc = r->encoding();
   219   if (enc >= 8) {
   220     enc -= 8;
   221   }
   222   return enc;
   223 }
   225 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   226   assert(dst->has_byte_register(), "must have byte register");
   227   assert(isByte(op1) && isByte(op2), "wrong opcode");
   228   assert(isByte(imm8), "not a byte");
   229   assert((op1 & 0x01) == 0, "should be 8bit operation");
   230   emit_int8(op1);
   231   emit_int8(op2 | encode(dst));
   232   emit_int8(imm8);
   233 }
   236 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   237   assert(isByte(op1) && isByte(op2), "wrong opcode");
   238   assert((op1 & 0x01) == 1, "should be 32bit operation");
   239   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   240   if (is8bit(imm32)) {
   241     emit_int8(op1 | 0x02); // set sign bit
   242     emit_int8(op2 | encode(dst));
   243     emit_int8(imm32 & 0xFF);
   244   } else {
   245     emit_int8(op1);
   246     emit_int8(op2 | encode(dst));
   247     emit_int32(imm32);
   248   }
   249 }
   251 // Force generation of a 4 byte immediate value even if it fits into 8bit
   252 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   253   assert(isByte(op1) && isByte(op2), "wrong opcode");
   254   assert((op1 & 0x01) == 1, "should be 32bit operation");
   255   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   256   emit_int8(op1);
   257   emit_int8(op2 | encode(dst));
   258   emit_int32(imm32);
   259 }
   261 // immediate-to-memory forms
   262 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   263   assert((op1 & 0x01) == 1, "should be 32bit operation");
   264   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   265   if (is8bit(imm32)) {
   266     emit_int8(op1 | 0x02); // set sign bit
   267     emit_operand(rm, adr, 1);
   268     emit_int8(imm32 & 0xFF);
   269   } else {
   270     emit_int8(op1);
   271     emit_operand(rm, adr, 4);
   272     emit_int32(imm32);
   273   }
   274 }
   277 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   278   assert(isByte(op1) && isByte(op2), "wrong opcode");
   279   emit_int8(op1);
   280   emit_int8(op2 | encode(dst) << 3 | encode(src));
   281 }
   284 void Assembler::emit_operand(Register reg, Register base, Register index,
   285                              Address::ScaleFactor scale, int disp,
   286                              RelocationHolder const& rspec,
   287                              int rip_relative_correction) {
   288   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   290   // Encode the registers as needed in the fields they are used in
   292   int regenc = encode(reg) << 3;
   293   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   294   int baseenc = base->is_valid() ? encode(base) : 0;
   296   if (base->is_valid()) {
   297     if (index->is_valid()) {
   298       assert(scale != Address::no_scale, "inconsistent address");
   299       // [base + index*scale + disp]
   300       if (disp == 0 && rtype == relocInfo::none  &&
   301           base != rbp LP64_ONLY(&& base != r13)) {
   302         // [base + index*scale]
   303         // [00 reg 100][ss index base]
   304         assert(index != rsp, "illegal addressing mode");
   305         emit_int8(0x04 | regenc);
   306         emit_int8(scale << 6 | indexenc | baseenc);
   307       } else if (is8bit(disp) && rtype == relocInfo::none) {
   308         // [base + index*scale + imm8]
   309         // [01 reg 100][ss index base] imm8
   310         assert(index != rsp, "illegal addressing mode");
   311         emit_int8(0x44 | regenc);
   312         emit_int8(scale << 6 | indexenc | baseenc);
   313         emit_int8(disp & 0xFF);
   314       } else {
   315         // [base + index*scale + disp32]
   316         // [10 reg 100][ss index base] disp32
   317         assert(index != rsp, "illegal addressing mode");
   318         emit_int8(0x84 | regenc);
   319         emit_int8(scale << 6 | indexenc | baseenc);
   320         emit_data(disp, rspec, disp32_operand);
   321       }
   322     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   323       // [rsp + disp]
   324       if (disp == 0 && rtype == relocInfo::none) {
   325         // [rsp]
   326         // [00 reg 100][00 100 100]
   327         emit_int8(0x04 | regenc);
   328         emit_int8(0x24);
   329       } else if (is8bit(disp) && rtype == relocInfo::none) {
   330         // [rsp + imm8]
   331         // [01 reg 100][00 100 100] disp8
   332         emit_int8(0x44 | regenc);
   333         emit_int8(0x24);
   334         emit_int8(disp & 0xFF);
   335       } else {
   336         // [rsp + imm32]
   337         // [10 reg 100][00 100 100] disp32
   338         emit_int8(0x84 | regenc);
   339         emit_int8(0x24);
   340         emit_data(disp, rspec, disp32_operand);
   341       }
   342     } else {
   343       // [base + disp]
   344       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   345       if (disp == 0 && rtype == relocInfo::none &&
   346           base != rbp LP64_ONLY(&& base != r13)) {
   347         // [base]
   348         // [00 reg base]
   349         emit_int8(0x00 | regenc | baseenc);
   350       } else if (is8bit(disp) && rtype == relocInfo::none) {
   351         // [base + disp8]
   352         // [01 reg base] disp8
   353         emit_int8(0x40 | regenc | baseenc);
   354         emit_int8(disp & 0xFF);
   355       } else {
   356         // [base + disp32]
   357         // [10 reg base] disp32
   358         emit_int8(0x80 | regenc | baseenc);
   359         emit_data(disp, rspec, disp32_operand);
   360       }
   361     }
   362   } else {
   363     if (index->is_valid()) {
   364       assert(scale != Address::no_scale, "inconsistent address");
   365       // [index*scale + disp]
   366       // [00 reg 100][ss index 101] disp32
   367       assert(index != rsp, "illegal addressing mode");
   368       emit_int8(0x04 | regenc);
   369       emit_int8(scale << 6 | indexenc | 0x05);
   370       emit_data(disp, rspec, disp32_operand);
   371     } else if (rtype != relocInfo::none ) {
   372       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   373       // [00 000 101] disp32
   375       emit_int8(0x05 | regenc);
   376       // Note that the RIP-rel. correction applies to the generated
   377       // disp field, but _not_ to the target address in the rspec.
   379       // disp was created by converting the target address minus the pc
   380       // at the start of the instruction. That needs more correction here.
   381       // intptr_t disp = target - next_ip;
   382       assert(inst_mark() != NULL, "must be inside InstructionMark");
   383       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   384       int64_t adjusted = disp;
   385       // Do rip-rel adjustment for 64bit
   386       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   387       assert(is_simm32(adjusted),
   388              "must be 32bit offset (RIP relative address)");
   389       emit_data((int32_t) adjusted, rspec, disp32_operand);
   391     } else {
   392       // 32bit never did this, did everything as the rip-rel/disp code above
   393       // [disp] ABSOLUTE
   394       // [00 reg 100][00 100 101] disp32
   395       emit_int8(0x04 | regenc);
   396       emit_int8(0x25);
   397       emit_data(disp, rspec, disp32_operand);
   398     }
   399   }
   400 }
   402 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   403                              Address::ScaleFactor scale, int disp,
   404                              RelocationHolder const& rspec) {
   405   emit_operand((Register)reg, base, index, scale, disp, rspec);
   406 }
   408 // Secret local extension to Assembler::WhichOperand:
   409 #define end_pc_operand (_WhichOperand_limit)
   411 address Assembler::locate_operand(address inst, WhichOperand which) {
   412   // Decode the given instruction, and return the address of
   413   // an embedded 32-bit operand word.
   415   // If "which" is disp32_operand, selects the displacement portion
   416   // of an effective address specifier.
   417   // If "which" is imm64_operand, selects the trailing immediate constant.
   418   // If "which" is call32_operand, selects the displacement of a call or jump.
   419   // Caller is responsible for ensuring that there is such an operand,
   420   // and that it is 32/64 bits wide.
   422   // If "which" is end_pc_operand, find the end of the instruction.
   424   address ip = inst;
   425   bool is_64bit = false;
   427   debug_only(bool has_disp32 = false);
   428   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   430   again_after_prefix:
   431   switch (0xFF & *ip++) {
   433   // These convenience macros generate groups of "case" labels for the switch.
   434 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   435 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   436              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   437 #define REP16(x) REP8((x)+0): \
   438               case REP8((x)+8)
   440   case CS_segment:
   441   case SS_segment:
   442   case DS_segment:
   443   case ES_segment:
   444   case FS_segment:
   445   case GS_segment:
   446     // Seems dubious
   447     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   448     assert(ip == inst+1, "only one prefix allowed");
   449     goto again_after_prefix;
   451   case 0x67:
   452   case REX:
   453   case REX_B:
   454   case REX_X:
   455   case REX_XB:
   456   case REX_R:
   457   case REX_RB:
   458   case REX_RX:
   459   case REX_RXB:
   460     NOT_LP64(assert(false, "64bit prefixes"));
   461     goto again_after_prefix;
   463   case REX_W:
   464   case REX_WB:
   465   case REX_WX:
   466   case REX_WXB:
   467   case REX_WR:
   468   case REX_WRB:
   469   case REX_WRX:
   470   case REX_WRXB:
   471     NOT_LP64(assert(false, "64bit prefixes"));
   472     is_64bit = true;
   473     goto again_after_prefix;
   475   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   476   case 0x88: // movb a, r
   477   case 0x89: // movl a, r
   478   case 0x8A: // movb r, a
   479   case 0x8B: // movl r, a
   480   case 0x8F: // popl a
   481     debug_only(has_disp32 = true);
   482     break;
   484   case 0x68: // pushq #32
   485     if (which == end_pc_operand) {
   486       return ip + 4;
   487     }
   488     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   489     return ip;                  // not produced by emit_operand
   491   case 0x66: // movw ... (size prefix)
   492     again_after_size_prefix2:
   493     switch (0xFF & *ip++) {
   494     case REX:
   495     case REX_B:
   496     case REX_X:
   497     case REX_XB:
   498     case REX_R:
   499     case REX_RB:
   500     case REX_RX:
   501     case REX_RXB:
   502     case REX_W:
   503     case REX_WB:
   504     case REX_WX:
   505     case REX_WXB:
   506     case REX_WR:
   507     case REX_WRB:
   508     case REX_WRX:
   509     case REX_WRXB:
   510       NOT_LP64(assert(false, "64bit prefix found"));
   511       goto again_after_size_prefix2;
   512     case 0x8B: // movw r, a
   513     case 0x89: // movw a, r
   514       debug_only(has_disp32 = true);
   515       break;
   516     case 0xC7: // movw a, #16
   517       debug_only(has_disp32 = true);
   518       tail_size = 2;  // the imm16
   519       break;
   520     case 0x0F: // several SSE/SSE2 variants
   521       ip--;    // reparse the 0x0F
   522       goto again_after_prefix;
   523     default:
   524       ShouldNotReachHere();
   525     }
   526     break;
   528   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   529     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   530     // these asserts are somewhat nonsensical
   531 #ifndef _LP64
   532     assert(which == imm_operand || which == disp32_operand,
   533            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   534 #else
   535     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   536            which == narrow_oop_operand && !is_64bit,
   537            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   538 #endif // _LP64
   539     return ip;
   541   case 0x69: // imul r, a, #32
   542   case 0xC7: // movl a, #32(oop?)
   543     tail_size = 4;
   544     debug_only(has_disp32 = true); // has both kinds of operands!
   545     break;
   547   case 0x0F: // movx..., etc.
   548     switch (0xFF & *ip++) {
   549     case 0x3A: // pcmpestri
   550       tail_size = 1;
   551     case 0x38: // ptest, pmovzxbw
   552       ip++; // skip opcode
   553       debug_only(has_disp32 = true); // has both kinds of operands!
   554       break;
   556     case 0x70: // pshufd r, r/a, #8
   557       debug_only(has_disp32 = true); // has both kinds of operands!
   558     case 0x73: // psrldq r, #8
   559       tail_size = 1;
   560       break;
   562     case 0x12: // movlps
   563     case 0x28: // movaps
   564     case 0x2E: // ucomiss
   565     case 0x2F: // comiss
   566     case 0x54: // andps
   567     case 0x55: // andnps
   568     case 0x56: // orps
   569     case 0x57: // xorps
   570     case 0x6E: // movd
   571     case 0x7E: // movd
   572     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   573       debug_only(has_disp32 = true);
   574       break;
   576     case 0xAD: // shrd r, a, %cl
   577     case 0xAF: // imul r, a
   578     case 0xBE: // movsbl r, a (movsxb)
   579     case 0xBF: // movswl r, a (movsxw)
   580     case 0xB6: // movzbl r, a (movzxb)
   581     case 0xB7: // movzwl r, a (movzxw)
   582     case REP16(0x40): // cmovl cc, r, a
   583     case 0xB0: // cmpxchgb
   584     case 0xB1: // cmpxchg
   585     case 0xC1: // xaddl
   586     case 0xC7: // cmpxchg8
   587     case REP16(0x90): // setcc a
   588       debug_only(has_disp32 = true);
   589       // fall out of the switch to decode the address
   590       break;
   592     case 0xC4: // pinsrw r, a, #8
   593       debug_only(has_disp32 = true);
   594     case 0xC5: // pextrw r, r, #8
   595       tail_size = 1;  // the imm8
   596       break;
   598     case 0xAC: // shrd r, a, #8
   599       debug_only(has_disp32 = true);
   600       tail_size = 1;  // the imm8
   601       break;
   603     case REP16(0x80): // jcc rdisp32
   604       if (which == end_pc_operand)  return ip + 4;
   605       assert(which == call32_operand, "jcc has no disp32 or imm");
   606       return ip;
   607     default:
   608       ShouldNotReachHere();
   609     }
   610     break;
   612   case 0x81: // addl a, #32; addl r, #32
   613     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   614     // on 32bit in the case of cmpl, the imm might be an oop
   615     tail_size = 4;
   616     debug_only(has_disp32 = true); // has both kinds of operands!
   617     break;
   619   case 0x83: // addl a, #8; addl r, #8
   620     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   621     debug_only(has_disp32 = true); // has both kinds of operands!
   622     tail_size = 1;
   623     break;
   625   case 0x9B:
   626     switch (0xFF & *ip++) {
   627     case 0xD9: // fnstcw a
   628       debug_only(has_disp32 = true);
   629       break;
   630     default:
   631       ShouldNotReachHere();
   632     }
   633     break;
   635   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   636   case REP4(0x10): // adc...
   637   case REP4(0x20): // and...
   638   case REP4(0x30): // xor...
   639   case REP4(0x08): // or...
   640   case REP4(0x18): // sbb...
   641   case REP4(0x28): // sub...
   642   case 0xF7: // mull a
   643   case 0x8D: // lea r, a
   644   case 0x87: // xchg r, a
   645   case REP4(0x38): // cmp...
   646   case 0x85: // test r, a
   647     debug_only(has_disp32 = true); // has both kinds of operands!
   648     break;
   650   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   651   case 0xC6: // movb a, #8
   652   case 0x80: // cmpb a, #8
   653   case 0x6B: // imul r, a, #8
   654     debug_only(has_disp32 = true); // has both kinds of operands!
   655     tail_size = 1; // the imm8
   656     break;
   658   case 0xC4: // VEX_3bytes
   659   case 0xC5: // VEX_2bytes
   660     assert((UseAVX > 0), "shouldn't have VEX prefix");
   661     assert(ip == inst+1, "no prefixes allowed");
   662     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   663     // but they have prefix 0x0F and processed when 0x0F processed above.
   664     //
   665     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   666     // instructions (these instructions are not supported in 64-bit mode).
   667     // To distinguish them bits [7:6] are set in the VEX second byte since
   668     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   669     // those VEX bits REX and vvvv bits are inverted.
   670     //
   671     // Fortunately C2 doesn't generate these instructions so we don't need
   672     // to check for them in product version.
   674     // Check second byte
   675     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   677     // First byte
   678     if ((0xFF & *inst) == VEX_3bytes) {
   679       ip++; // third byte
   680       is_64bit = ((VEX_W & *ip) == VEX_W);
   681     }
   682     ip++; // opcode
   683     // To find the end of instruction (which == end_pc_operand).
   684     switch (0xFF & *ip) {
   685     case 0x61: // pcmpestri r, r/a, #8
   686     case 0x70: // pshufd r, r/a, #8
   687     case 0x73: // psrldq r, #8
   688       tail_size = 1;  // the imm8
   689       break;
   690     default:
   691       break;
   692     }
   693     ip++; // skip opcode
   694     debug_only(has_disp32 = true); // has both kinds of operands!
   695     break;
   697   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   698   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   699   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   700   case 0xDD: // fld_d a; fst_d a; fstp_d a
   701   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   702   case 0xDF: // fild_d a; fistp_d a
   703   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   704   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   705   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   706     debug_only(has_disp32 = true);
   707     break;
   709   case 0xE8: // call rdisp32
   710   case 0xE9: // jmp  rdisp32
   711     if (which == end_pc_operand)  return ip + 4;
   712     assert(which == call32_operand, "call has no disp32 or imm");
   713     return ip;
   715   case 0xF0:                    // Lock
   716     assert(os::is_MP(), "only on MP");
   717     goto again_after_prefix;
   719   case 0xF3:                    // For SSE
   720   case 0xF2:                    // For SSE2
   721     switch (0xFF & *ip++) {
   722     case REX:
   723     case REX_B:
   724     case REX_X:
   725     case REX_XB:
   726     case REX_R:
   727     case REX_RB:
   728     case REX_RX:
   729     case REX_RXB:
   730     case REX_W:
   731     case REX_WB:
   732     case REX_WX:
   733     case REX_WXB:
   734     case REX_WR:
   735     case REX_WRB:
   736     case REX_WRX:
   737     case REX_WRXB:
   738       NOT_LP64(assert(false, "found 64bit prefix"));
   739       ip++;
   740     default:
   741       ip++;
   742     }
   743     debug_only(has_disp32 = true); // has both kinds of operands!
   744     break;
   746   default:
   747     ShouldNotReachHere();
   749 #undef REP8
   750 #undef REP16
   751   }
   753   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   754 #ifdef _LP64
   755   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   756 #else
   757   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   758   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   759 #endif // LP64
   760   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   762   // parse the output of emit_operand
   763   int op2 = 0xFF & *ip++;
   764   int base = op2 & 0x07;
   765   int op3 = -1;
   766   const int b100 = 4;
   767   const int b101 = 5;
   768   if (base == b100 && (op2 >> 6) != 3) {
   769     op3 = 0xFF & *ip++;
   770     base = op3 & 0x07;   // refetch the base
   771   }
   772   // now ip points at the disp (if any)
   774   switch (op2 >> 6) {
   775   case 0:
   776     // [00 reg  100][ss index base]
   777     // [00 reg  100][00   100  esp]
   778     // [00 reg base]
   779     // [00 reg  100][ss index  101][disp32]
   780     // [00 reg  101]               [disp32]
   782     if (base == b101) {
   783       if (which == disp32_operand)
   784         return ip;              // caller wants the disp32
   785       ip += 4;                  // skip the disp32
   786     }
   787     break;
   789   case 1:
   790     // [01 reg  100][ss index base][disp8]
   791     // [01 reg  100][00   100  esp][disp8]
   792     // [01 reg base]               [disp8]
   793     ip += 1;                    // skip the disp8
   794     break;
   796   case 2:
   797     // [10 reg  100][ss index base][disp32]
   798     // [10 reg  100][00   100  esp][disp32]
   799     // [10 reg base]               [disp32]
   800     if (which == disp32_operand)
   801       return ip;                // caller wants the disp32
   802     ip += 4;                    // skip the disp32
   803     break;
   805   case 3:
   806     // [11 reg base]  (not a memory addressing mode)
   807     break;
   808   }
   810   if (which == end_pc_operand) {
   811     return ip + tail_size;
   812   }
   814 #ifdef _LP64
   815   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   816 #else
   817   assert(which == imm_operand, "instruction has only an imm field");
   818 #endif // LP64
   819   return ip;
   820 }
   822 address Assembler::locate_next_instruction(address inst) {
   823   // Secretly share code with locate_operand:
   824   return locate_operand(inst, end_pc_operand);
   825 }
   828 #ifdef ASSERT
   829 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   830   address inst = inst_mark();
   831   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   832   address opnd;
   834   Relocation* r = rspec.reloc();
   835   if (r->type() == relocInfo::none) {
   836     return;
   837   } else if (r->is_call() || format == call32_operand) {
   838     // assert(format == imm32_operand, "cannot specify a nonzero format");
   839     opnd = locate_operand(inst, call32_operand);
   840   } else if (r->is_data()) {
   841     assert(format == imm_operand || format == disp32_operand
   842            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   843     opnd = locate_operand(inst, (WhichOperand)format);
   844   } else {
   845     assert(format == imm_operand, "cannot specify a format");
   846     return;
   847   }
   848   assert(opnd == pc(), "must put operand where relocs can find it");
   849 }
   850 #endif // ASSERT
   852 void Assembler::emit_operand32(Register reg, Address adr) {
   853   assert(reg->encoding() < 8, "no extended registers");
   854   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   855   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   856                adr._rspec);
   857 }
   859 void Assembler::emit_operand(Register reg, Address adr,
   860                              int rip_relative_correction) {
   861   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   862                adr._rspec,
   863                rip_relative_correction);
   864 }
   866 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   867   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   868                adr._rspec);
   869 }
   871 // MMX operations
   872 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   873   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   874   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   875 }
   877 // work around gcc (3.2.1-7a) bug
   878 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   879   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   880   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   881 }
   884 void Assembler::emit_farith(int b1, int b2, int i) {
   885   assert(isByte(b1) && isByte(b2), "wrong opcode");
   886   assert(0 <= i &&  i < 8, "illegal stack offset");
   887   emit_int8(b1);
   888   emit_int8(b2 + i);
   889 }
   892 // Now the Assembler instructions (identical for 32/64 bits)
   894 void Assembler::adcl(Address dst, int32_t imm32) {
   895   InstructionMark im(this);
   896   prefix(dst);
   897   emit_arith_operand(0x81, rdx, dst, imm32);
   898 }
   900 void Assembler::adcl(Address dst, Register src) {
   901   InstructionMark im(this);
   902   prefix(dst, src);
   903   emit_int8(0x11);
   904   emit_operand(src, dst);
   905 }
   907 void Assembler::adcl(Register dst, int32_t imm32) {
   908   prefix(dst);
   909   emit_arith(0x81, 0xD0, dst, imm32);
   910 }
   912 void Assembler::adcl(Register dst, Address src) {
   913   InstructionMark im(this);
   914   prefix(src, dst);
   915   emit_int8(0x13);
   916   emit_operand(dst, src);
   917 }
   919 void Assembler::adcl(Register dst, Register src) {
   920   (void) prefix_and_encode(dst->encoding(), src->encoding());
   921   emit_arith(0x13, 0xC0, dst, src);
   922 }
   924 void Assembler::addl(Address dst, int32_t imm32) {
   925   InstructionMark im(this);
   926   prefix(dst);
   927   emit_arith_operand(0x81, rax, dst, imm32);
   928 }
   930 void Assembler::addl(Address dst, Register src) {
   931   InstructionMark im(this);
   932   prefix(dst, src);
   933   emit_int8(0x01);
   934   emit_operand(src, dst);
   935 }
   937 void Assembler::addl(Register dst, int32_t imm32) {
   938   prefix(dst);
   939   emit_arith(0x81, 0xC0, dst, imm32);
   940 }
   942 void Assembler::addl(Register dst, Address src) {
   943   InstructionMark im(this);
   944   prefix(src, dst);
   945   emit_int8(0x03);
   946   emit_operand(dst, src);
   947 }
   949 void Assembler::addl(Register dst, Register src) {
   950   (void) prefix_and_encode(dst->encoding(), src->encoding());
   951   emit_arith(0x03, 0xC0, dst, src);
   952 }
   954 void Assembler::addr_nop_4() {
   955   assert(UseAddressNop, "no CPU support");
   956   // 4 bytes: NOP DWORD PTR [EAX+0]
   957   emit_int8(0x0F);
   958   emit_int8(0x1F);
   959   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   960   emit_int8(0);    // 8-bits offset (1 byte)
   961 }
   963 void Assembler::addr_nop_5() {
   964   assert(UseAddressNop, "no CPU support");
   965   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   966   emit_int8(0x0F);
   967   emit_int8(0x1F);
   968   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   969   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   970   emit_int8(0);    // 8-bits offset (1 byte)
   971 }
   973 void Assembler::addr_nop_7() {
   974   assert(UseAddressNop, "no CPU support");
   975   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   976   emit_int8(0x0F);
   977   emit_int8(0x1F);
   978   emit_int8((unsigned char)0x80);
   979                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   980   emit_int32(0);   // 32-bits offset (4 bytes)
   981 }
   983 void Assembler::addr_nop_8() {
   984   assert(UseAddressNop, "no CPU support");
   985   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   986   emit_int8(0x0F);
   987   emit_int8(0x1F);
   988   emit_int8((unsigned char)0x84);
   989                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   990   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   991   emit_int32(0);   // 32-bits offset (4 bytes)
   992 }
   994 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   995   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   996   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   997 }
   999 void Assembler::addsd(XMMRegister dst, Address src) {
  1000   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1001   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
  1004 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1005   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1006   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1009 void Assembler::addss(XMMRegister dst, Address src) {
  1010   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1011   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1014 void Assembler::aesdec(XMMRegister dst, Address src) {
  1015   assert(VM_Version::supports_aes(), "");
  1016   InstructionMark im(this);
  1017   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1018   emit_int8((unsigned char)0xDE);
  1019   emit_operand(dst, src);
  1022 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1023   assert(VM_Version::supports_aes(), "");
  1024   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1025   emit_int8((unsigned char)0xDE);
  1026   emit_int8(0xC0 | encode);
  1029 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1030   assert(VM_Version::supports_aes(), "");
  1031   InstructionMark im(this);
  1032   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1033   emit_int8((unsigned char)0xDF);
  1034   emit_operand(dst, src);
  1037 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1038   assert(VM_Version::supports_aes(), "");
  1039   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1040   emit_int8((unsigned char)0xDF);
  1041   emit_int8((unsigned char)(0xC0 | encode));
  1044 void Assembler::aesenc(XMMRegister dst, Address src) {
  1045   assert(VM_Version::supports_aes(), "");
  1046   InstructionMark im(this);
  1047   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1048   emit_int8((unsigned char)0xDC);
  1049   emit_operand(dst, src);
  1052 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1053   assert(VM_Version::supports_aes(), "");
  1054   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1055   emit_int8((unsigned char)0xDC);
  1056   emit_int8(0xC0 | encode);
  1059 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1060   assert(VM_Version::supports_aes(), "");
  1061   InstructionMark im(this);
  1062   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1063   emit_int8((unsigned char)0xDD);
  1064   emit_operand(dst, src);
  1067 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1068   assert(VM_Version::supports_aes(), "");
  1069   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1070   emit_int8((unsigned char)0xDD);
  1071   emit_int8((unsigned char)(0xC0 | encode));
  1075 void Assembler::andl(Address dst, int32_t imm32) {
  1076   InstructionMark im(this);
  1077   prefix(dst);
  1078   emit_int8((unsigned char)0x81);
  1079   emit_operand(rsp, dst, 4);
  1080   emit_int32(imm32);
  1083 void Assembler::andl(Register dst, int32_t imm32) {
  1084   prefix(dst);
  1085   emit_arith(0x81, 0xE0, dst, imm32);
  1088 void Assembler::andl(Register dst, Address src) {
  1089   InstructionMark im(this);
  1090   prefix(src, dst);
  1091   emit_int8(0x23);
  1092   emit_operand(dst, src);
  1095 void Assembler::andl(Register dst, Register src) {
  1096   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1097   emit_arith(0x23, 0xC0, dst, src);
  1100 void Assembler::bsfl(Register dst, Register src) {
  1101   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1102   emit_int8(0x0F);
  1103   emit_int8((unsigned char)0xBC);
  1104   emit_int8((unsigned char)(0xC0 | encode));
  1107 void Assembler::bsrl(Register dst, Register src) {
  1108   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1109   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1110   emit_int8(0x0F);
  1111   emit_int8((unsigned char)0xBD);
  1112   emit_int8((unsigned char)(0xC0 | encode));
  1115 void Assembler::bswapl(Register reg) { // bswap
  1116   int encode = prefix_and_encode(reg->encoding());
  1117   emit_int8(0x0F);
  1118   emit_int8((unsigned char)(0xC8 | encode));
  1121 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1122   // suspect disp32 is always good
  1123   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1125   if (L.is_bound()) {
  1126     const int long_size = 5;
  1127     int offs = (int)( target(L) - pc() );
  1128     assert(offs <= 0, "assembler error");
  1129     InstructionMark im(this);
  1130     // 1110 1000 #32-bit disp
  1131     emit_int8((unsigned char)0xE8);
  1132     emit_data(offs - long_size, rtype, operand);
  1133   } else {
  1134     InstructionMark im(this);
  1135     // 1110 1000 #32-bit disp
  1136     L.add_patch_at(code(), locator());
  1138     emit_int8((unsigned char)0xE8);
  1139     emit_data(int(0), rtype, operand);
  1143 void Assembler::call(Register dst) {
  1144   int encode = prefix_and_encode(dst->encoding());
  1145   emit_int8((unsigned char)0xFF);
  1146   emit_int8((unsigned char)(0xD0 | encode));
  1150 void Assembler::call(Address adr) {
  1151   InstructionMark im(this);
  1152   prefix(adr);
  1153   emit_int8((unsigned char)0xFF);
  1154   emit_operand(rdx, adr);
  1157 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1158   assert(entry != NULL, "call most probably wrong");
  1159   InstructionMark im(this);
  1160   emit_int8((unsigned char)0xE8);
  1161   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1162   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1163   // Technically, should use call32_operand, but this format is
  1164   // implied by the fact that we're emitting a call instruction.
  1166   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1167   emit_data((int) disp, rspec, operand);
  1170 void Assembler::cdql() {
  1171   emit_int8((unsigned char)0x99);
  1174 void Assembler::cld() {
  1175   emit_int8((unsigned char)0xFC);
  1178 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1179   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1180   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1181   emit_int8(0x0F);
  1182   emit_int8(0x40 | cc);
  1183   emit_int8((unsigned char)(0xC0 | encode));
  1187 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1188   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1189   prefix(src, dst);
  1190   emit_int8(0x0F);
  1191   emit_int8(0x40 | cc);
  1192   emit_operand(dst, src);
  1195 void Assembler::cmpb(Address dst, int imm8) {
  1196   InstructionMark im(this);
  1197   prefix(dst);
  1198   emit_int8((unsigned char)0x80);
  1199   emit_operand(rdi, dst, 1);
  1200   emit_int8(imm8);
  1203 void Assembler::cmpl(Address dst, int32_t imm32) {
  1204   InstructionMark im(this);
  1205   prefix(dst);
  1206   emit_int8((unsigned char)0x81);
  1207   emit_operand(rdi, dst, 4);
  1208   emit_int32(imm32);
  1211 void Assembler::cmpl(Register dst, int32_t imm32) {
  1212   prefix(dst);
  1213   emit_arith(0x81, 0xF8, dst, imm32);
  1216 void Assembler::cmpl(Register dst, Register src) {
  1217   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1218   emit_arith(0x3B, 0xC0, dst, src);
  1222 void Assembler::cmpl(Register dst, Address  src) {
  1223   InstructionMark im(this);
  1224   prefix(src, dst);
  1225   emit_int8((unsigned char)0x3B);
  1226   emit_operand(dst, src);
  1229 void Assembler::cmpw(Address dst, int imm16) {
  1230   InstructionMark im(this);
  1231   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1232   emit_int8(0x66);
  1233   emit_int8((unsigned char)0x81);
  1234   emit_operand(rdi, dst, 2);
  1235   emit_int16(imm16);
  1238 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1239 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1240 // The ZF is set if the compared values were equal, and cleared otherwise.
  1241 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1242   InstructionMark im(this);
  1243   prefix(adr, reg);
  1244   emit_int8(0x0F);
  1245   emit_int8((unsigned char)0xB1);
  1246   emit_operand(reg, adr);
  1249 void Assembler::comisd(XMMRegister dst, Address src) {
  1250   // NOTE: dbx seems to decode this as comiss even though the
  1251   // 0x66 is there. Strangly ucomisd comes out correct
  1252   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1253   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1256 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1258   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1261 void Assembler::comiss(XMMRegister dst, Address src) {
  1262   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1263   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1266 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1267   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1268   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1271 void Assembler::cpuid() {
  1272   emit_int8(0x0F);
  1273   emit_int8((unsigned char)0xA2);
  1276 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1277   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1278   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1281 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1282   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1283   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1286 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1287   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1288   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1291 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1292   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1293   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1296 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1297   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1298   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1299   emit_int8(0x2A);
  1300   emit_int8((unsigned char)(0xC0 | encode));
  1303 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1305   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1308 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1309   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1310   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1311   emit_int8(0x2A);
  1312   emit_int8((unsigned char)(0xC0 | encode));
  1315 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1316   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1317   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1320 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1322   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1325 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1326   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1327   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1331 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1332   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1333   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1334   emit_int8(0x2C);
  1335   emit_int8((unsigned char)(0xC0 | encode));
  1338 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1339   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1340   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1341   emit_int8(0x2C);
  1342   emit_int8((unsigned char)(0xC0 | encode));
  1345 void Assembler::decl(Address dst) {
  1346   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1347   InstructionMark im(this);
  1348   prefix(dst);
  1349   emit_int8((unsigned char)0xFF);
  1350   emit_operand(rcx, dst);
  1353 void Assembler::divsd(XMMRegister dst, Address src) {
  1354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1355   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1358 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1360   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1363 void Assembler::divss(XMMRegister dst, Address src) {
  1364   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1365   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1368 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1369   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1370   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1373 void Assembler::emms() {
  1374   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1375   emit_int8(0x0F);
  1376   emit_int8(0x77);
  1379 void Assembler::hlt() {
  1380   emit_int8((unsigned char)0xF4);
  1383 void Assembler::idivl(Register src) {
  1384   int encode = prefix_and_encode(src->encoding());
  1385   emit_int8((unsigned char)0xF7);
  1386   emit_int8((unsigned char)(0xF8 | encode));
  1389 void Assembler::divl(Register src) { // Unsigned
  1390   int encode = prefix_and_encode(src->encoding());
  1391   emit_int8((unsigned char)0xF7);
  1392   emit_int8((unsigned char)(0xF0 | encode));
  1395 void Assembler::imull(Register dst, Register src) {
  1396   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1397   emit_int8(0x0F);
  1398   emit_int8((unsigned char)0xAF);
  1399   emit_int8((unsigned char)(0xC0 | encode));
  1403 void Assembler::imull(Register dst, Register src, int value) {
  1404   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1405   if (is8bit(value)) {
  1406     emit_int8(0x6B);
  1407     emit_int8((unsigned char)(0xC0 | encode));
  1408     emit_int8(value & 0xFF);
  1409   } else {
  1410     emit_int8(0x69);
  1411     emit_int8((unsigned char)(0xC0 | encode));
  1412     emit_int32(value);
  1416 void Assembler::incl(Address dst) {
  1417   // Don't use it directly. Use MacroAssembler::increment() instead.
  1418   InstructionMark im(this);
  1419   prefix(dst);
  1420   emit_int8((unsigned char)0xFF);
  1421   emit_operand(rax, dst);
  1424 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1425   InstructionMark im(this);
  1426   assert((0 <= cc) && (cc < 16), "illegal cc");
  1427   if (L.is_bound()) {
  1428     address dst = target(L);
  1429     assert(dst != NULL, "jcc most probably wrong");
  1431     const int short_size = 2;
  1432     const int long_size = 6;
  1433     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1434     if (maybe_short && is8bit(offs - short_size)) {
  1435       // 0111 tttn #8-bit disp
  1436       emit_int8(0x70 | cc);
  1437       emit_int8((offs - short_size) & 0xFF);
  1438     } else {
  1439       // 0000 1111 1000 tttn #32-bit disp
  1440       assert(is_simm32(offs - long_size),
  1441              "must be 32bit offset (call4)");
  1442       emit_int8(0x0F);
  1443       emit_int8((unsigned char)(0x80 | cc));
  1444       emit_int32(offs - long_size);
  1446   } else {
  1447     // Note: could eliminate cond. jumps to this jump if condition
  1448     //       is the same however, seems to be rather unlikely case.
  1449     // Note: use jccb() if label to be bound is very close to get
  1450     //       an 8-bit displacement
  1451     L.add_patch_at(code(), locator());
  1452     emit_int8(0x0F);
  1453     emit_int8((unsigned char)(0x80 | cc));
  1454     emit_int32(0);
  1458 void Assembler::jccb(Condition cc, Label& L) {
  1459   if (L.is_bound()) {
  1460     const int short_size = 2;
  1461     address entry = target(L);
  1462 #ifdef ASSERT
  1463     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1464     intptr_t delta = short_branch_delta();
  1465     if (delta != 0) {
  1466       dist += (dist < 0 ? (-delta) :delta);
  1468     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1469 #endif
  1470     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1471     // 0111 tttn #8-bit disp
  1472     emit_int8(0x70 | cc);
  1473     emit_int8((offs - short_size) & 0xFF);
  1474   } else {
  1475     InstructionMark im(this);
  1476     L.add_patch_at(code(), locator());
  1477     emit_int8(0x70 | cc);
  1478     emit_int8(0);
  1482 void Assembler::jmp(Address adr) {
  1483   InstructionMark im(this);
  1484   prefix(adr);
  1485   emit_int8((unsigned char)0xFF);
  1486   emit_operand(rsp, adr);
  1489 void Assembler::jmp(Label& L, bool maybe_short) {
  1490   if (L.is_bound()) {
  1491     address entry = target(L);
  1492     assert(entry != NULL, "jmp most probably wrong");
  1493     InstructionMark im(this);
  1494     const int short_size = 2;
  1495     const int long_size = 5;
  1496     intptr_t offs = entry - pc();
  1497     if (maybe_short && is8bit(offs - short_size)) {
  1498       emit_int8((unsigned char)0xEB);
  1499       emit_int8((offs - short_size) & 0xFF);
  1500     } else {
  1501       emit_int8((unsigned char)0xE9);
  1502       emit_int32(offs - long_size);
  1504   } else {
  1505     // By default, forward jumps are always 32-bit displacements, since
  1506     // we can't yet know where the label will be bound.  If you're sure that
  1507     // the forward jump will not run beyond 256 bytes, use jmpb to
  1508     // force an 8-bit displacement.
  1509     InstructionMark im(this);
  1510     L.add_patch_at(code(), locator());
  1511     emit_int8((unsigned char)0xE9);
  1512     emit_int32(0);
  1516 void Assembler::jmp(Register entry) {
  1517   int encode = prefix_and_encode(entry->encoding());
  1518   emit_int8((unsigned char)0xFF);
  1519   emit_int8((unsigned char)(0xE0 | encode));
  1522 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1523   InstructionMark im(this);
  1524   emit_int8((unsigned char)0xE9);
  1525   assert(dest != NULL, "must have a target");
  1526   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1527   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1528   emit_data(disp, rspec.reloc(), call32_operand);
  1531 void Assembler::jmpb(Label& L) {
  1532   if (L.is_bound()) {
  1533     const int short_size = 2;
  1534     address entry = target(L);
  1535     assert(entry != NULL, "jmp most probably wrong");
  1536 #ifdef ASSERT
  1537     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1538     intptr_t delta = short_branch_delta();
  1539     if (delta != 0) {
  1540       dist += (dist < 0 ? (-delta) :delta);
  1542     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1543 #endif
  1544     intptr_t offs = entry - pc();
  1545     emit_int8((unsigned char)0xEB);
  1546     emit_int8((offs - short_size) & 0xFF);
  1547   } else {
  1548     InstructionMark im(this);
  1549     L.add_patch_at(code(), locator());
  1550     emit_int8((unsigned char)0xEB);
  1551     emit_int8(0);
  1555 void Assembler::ldmxcsr( Address src) {
  1556   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1557   InstructionMark im(this);
  1558   prefix(src);
  1559   emit_int8(0x0F);
  1560   emit_int8((unsigned char)0xAE);
  1561   emit_operand(as_Register(2), src);
  1564 void Assembler::leal(Register dst, Address src) {
  1565   InstructionMark im(this);
  1566 #ifdef _LP64
  1567   emit_int8(0x67); // addr32
  1568   prefix(src, dst);
  1569 #endif // LP64
  1570   emit_int8((unsigned char)0x8D);
  1571   emit_operand(dst, src);
  1574 void Assembler::lfence() {
  1575   emit_int8(0x0F);
  1576   emit_int8((unsigned char)0xAE);
  1577   emit_int8((unsigned char)0xE8);
  1580 void Assembler::lock() {
  1581   emit_int8((unsigned char)0xF0);
  1584 void Assembler::lzcntl(Register dst, Register src) {
  1585   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1586   emit_int8((unsigned char)0xF3);
  1587   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1588   emit_int8(0x0F);
  1589   emit_int8((unsigned char)0xBD);
  1590   emit_int8((unsigned char)(0xC0 | encode));
  1593 // Emit mfence instruction
  1594 void Assembler::mfence() {
  1595   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1596   emit_int8(0x0F);
  1597   emit_int8((unsigned char)0xAE);
  1598   emit_int8((unsigned char)0xF0);
  1601 void Assembler::mov(Register dst, Register src) {
  1602   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1605 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1606   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1607   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1610 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1611   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1612   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1615 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1617   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1618   emit_int8(0x16);
  1619   emit_int8((unsigned char)(0xC0 | encode));
  1622 void Assembler::movb(Register dst, Address src) {
  1623   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1624   InstructionMark im(this);
  1625   prefix(src, dst, true);
  1626   emit_int8((unsigned char)0x8A);
  1627   emit_operand(dst, src);
  1631 void Assembler::movb(Address dst, int imm8) {
  1632   InstructionMark im(this);
  1633    prefix(dst);
  1634   emit_int8((unsigned char)0xC6);
  1635   emit_operand(rax, dst, 1);
  1636   emit_int8(imm8);
  1640 void Assembler::movb(Address dst, Register src) {
  1641   assert(src->has_byte_register(), "must have byte register");
  1642   InstructionMark im(this);
  1643   prefix(dst, src, true);
  1644   emit_int8((unsigned char)0x88);
  1645   emit_operand(src, dst);
  1648 void Assembler::movdl(XMMRegister dst, Register src) {
  1649   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1650   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1651   emit_int8(0x6E);
  1652   emit_int8((unsigned char)(0xC0 | encode));
  1655 void Assembler::movdl(Register dst, XMMRegister src) {
  1656   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1657   // swap src/dst to get correct prefix
  1658   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1659   emit_int8(0x7E);
  1660   emit_int8((unsigned char)(0xC0 | encode));
  1663 void Assembler::movdl(XMMRegister dst, Address src) {
  1664   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1665   InstructionMark im(this);
  1666   simd_prefix(dst, src, VEX_SIMD_66);
  1667   emit_int8(0x6E);
  1668   emit_operand(dst, src);
  1671 void Assembler::movdl(Address dst, XMMRegister src) {
  1672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1673   InstructionMark im(this);
  1674   simd_prefix(dst, src, VEX_SIMD_66);
  1675   emit_int8(0x7E);
  1676   emit_operand(src, dst);
  1679 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1680   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1681   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1684 void Assembler::movdqu(XMMRegister dst, Address src) {
  1685   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1686   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1689 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1691   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1694 void Assembler::movdqu(Address dst, XMMRegister src) {
  1695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1696   InstructionMark im(this);
  1697   simd_prefix(dst, src, VEX_SIMD_F3);
  1698   emit_int8(0x7F);
  1699   emit_operand(src, dst);
  1702 // Move Unaligned 256bit Vector
  1703 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1704   assert(UseAVX, "");
  1705   bool vector256 = true;
  1706   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1707   emit_int8(0x6F);
  1708   emit_int8((unsigned char)(0xC0 | encode));
  1711 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1712   assert(UseAVX, "");
  1713   InstructionMark im(this);
  1714   bool vector256 = true;
  1715   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1716   emit_int8(0x6F);
  1717   emit_operand(dst, src);
  1720 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1721   assert(UseAVX, "");
  1722   InstructionMark im(this);
  1723   bool vector256 = true;
  1724   // swap src<->dst for encoding
  1725   assert(src != xnoreg, "sanity");
  1726   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1727   emit_int8(0x7F);
  1728   emit_operand(src, dst);
  1731 // Uses zero extension on 64bit
  1733 void Assembler::movl(Register dst, int32_t imm32) {
  1734   int encode = prefix_and_encode(dst->encoding());
  1735   emit_int8((unsigned char)(0xB8 | encode));
  1736   emit_int32(imm32);
  1739 void Assembler::movl(Register dst, Register src) {
  1740   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1741   emit_int8((unsigned char)0x8B);
  1742   emit_int8((unsigned char)(0xC0 | encode));
  1745 void Assembler::movl(Register dst, Address src) {
  1746   InstructionMark im(this);
  1747   prefix(src, dst);
  1748   emit_int8((unsigned char)0x8B);
  1749   emit_operand(dst, src);
  1752 void Assembler::movl(Address dst, int32_t imm32) {
  1753   InstructionMark im(this);
  1754   prefix(dst);
  1755   emit_int8((unsigned char)0xC7);
  1756   emit_operand(rax, dst, 4);
  1757   emit_int32(imm32);
  1760 void Assembler::movl(Address dst, Register src) {
  1761   InstructionMark im(this);
  1762   prefix(dst, src);
  1763   emit_int8((unsigned char)0x89);
  1764   emit_operand(src, dst);
  1767 // New cpus require to use movsd and movss to avoid partial register stall
  1768 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1769 // The selection is done in MacroAssembler::movdbl() and movflt().
  1770 void Assembler::movlpd(XMMRegister dst, Address src) {
  1771   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1772   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1775 void Assembler::movq( MMXRegister dst, Address src ) {
  1776   assert( VM_Version::supports_mmx(), "" );
  1777   emit_int8(0x0F);
  1778   emit_int8(0x6F);
  1779   emit_operand(dst, src);
  1782 void Assembler::movq( Address dst, MMXRegister src ) {
  1783   assert( VM_Version::supports_mmx(), "" );
  1784   emit_int8(0x0F);
  1785   emit_int8(0x7F);
  1786   // workaround gcc (3.2.1-7a) bug
  1787   // In that version of gcc with only an emit_operand(MMX, Address)
  1788   // gcc will tail jump and try and reverse the parameters completely
  1789   // obliterating dst in the process. By having a version available
  1790   // that doesn't need to swap the args at the tail jump the bug is
  1791   // avoided.
  1792   emit_operand(dst, src);
  1795 void Assembler::movq(XMMRegister dst, Address src) {
  1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1797   InstructionMark im(this);
  1798   simd_prefix(dst, src, VEX_SIMD_F3);
  1799   emit_int8(0x7E);
  1800   emit_operand(dst, src);
  1803 void Assembler::movq(Address dst, XMMRegister src) {
  1804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1805   InstructionMark im(this);
  1806   simd_prefix(dst, src, VEX_SIMD_66);
  1807   emit_int8((unsigned char)0xD6);
  1808   emit_operand(src, dst);
  1811 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1812   InstructionMark im(this);
  1813   prefix(src, dst);
  1814   emit_int8(0x0F);
  1815   emit_int8((unsigned char)0xBE);
  1816   emit_operand(dst, src);
  1819 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1820   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1821   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1822   emit_int8(0x0F);
  1823   emit_int8((unsigned char)0xBE);
  1824   emit_int8((unsigned char)(0xC0 | encode));
  1827 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1829   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1832 void Assembler::movsd(XMMRegister dst, Address src) {
  1833   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1834   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1837 void Assembler::movsd(Address dst, XMMRegister src) {
  1838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1839   InstructionMark im(this);
  1840   simd_prefix(dst, src, VEX_SIMD_F2);
  1841   emit_int8(0x11);
  1842   emit_operand(src, dst);
  1845 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1847   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1850 void Assembler::movss(XMMRegister dst, Address src) {
  1851   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1852   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1855 void Assembler::movss(Address dst, XMMRegister src) {
  1856   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1857   InstructionMark im(this);
  1858   simd_prefix(dst, src, VEX_SIMD_F3);
  1859   emit_int8(0x11);
  1860   emit_operand(src, dst);
  1863 void Assembler::movswl(Register dst, Address src) { // movsxw
  1864   InstructionMark im(this);
  1865   prefix(src, dst);
  1866   emit_int8(0x0F);
  1867   emit_int8((unsigned char)0xBF);
  1868   emit_operand(dst, src);
  1871 void Assembler::movswl(Register dst, Register src) { // movsxw
  1872   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1873   emit_int8(0x0F);
  1874   emit_int8((unsigned char)0xBF);
  1875   emit_int8((unsigned char)(0xC0 | encode));
  1878 void Assembler::movw(Address dst, int imm16) {
  1879   InstructionMark im(this);
  1881   emit_int8(0x66); // switch to 16-bit mode
  1882   prefix(dst);
  1883   emit_int8((unsigned char)0xC7);
  1884   emit_operand(rax, dst, 2);
  1885   emit_int16(imm16);
  1888 void Assembler::movw(Register dst, Address src) {
  1889   InstructionMark im(this);
  1890   emit_int8(0x66);
  1891   prefix(src, dst);
  1892   emit_int8((unsigned char)0x8B);
  1893   emit_operand(dst, src);
  1896 void Assembler::movw(Address dst, Register src) {
  1897   InstructionMark im(this);
  1898   emit_int8(0x66);
  1899   prefix(dst, src);
  1900   emit_int8((unsigned char)0x89);
  1901   emit_operand(src, dst);
  1904 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1905   InstructionMark im(this);
  1906   prefix(src, dst);
  1907   emit_int8(0x0F);
  1908   emit_int8((unsigned char)0xB6);
  1909   emit_operand(dst, src);
  1912 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1913   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1914   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1915   emit_int8(0x0F);
  1916   emit_int8((unsigned char)0xB6);
  1917   emit_int8(0xC0 | encode);
  1920 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1921   InstructionMark im(this);
  1922   prefix(src, dst);
  1923   emit_int8(0x0F);
  1924   emit_int8((unsigned char)0xB7);
  1925   emit_operand(dst, src);
  1928 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1929   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1930   emit_int8(0x0F);
  1931   emit_int8((unsigned char)0xB7);
  1932   emit_int8(0xC0 | encode);
  1935 void Assembler::mull(Address src) {
  1936   InstructionMark im(this);
  1937   prefix(src);
  1938   emit_int8((unsigned char)0xF7);
  1939   emit_operand(rsp, src);
  1942 void Assembler::mull(Register src) {
  1943   int encode = prefix_and_encode(src->encoding());
  1944   emit_int8((unsigned char)0xF7);
  1945   emit_int8((unsigned char)(0xE0 | encode));
  1948 void Assembler::mulsd(XMMRegister dst, Address src) {
  1949   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1950   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1953 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1954   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1955   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1958 void Assembler::mulss(XMMRegister dst, Address src) {
  1959   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1960   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1963 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1964   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1965   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1968 void Assembler::negl(Register dst) {
  1969   int encode = prefix_and_encode(dst->encoding());
  1970   emit_int8((unsigned char)0xF7);
  1971   emit_int8((unsigned char)(0xD8 | encode));
  1974 void Assembler::nop(int i) {
  1975 #ifdef ASSERT
  1976   assert(i > 0, " ");
  1977   // The fancy nops aren't currently recognized by debuggers making it a
  1978   // pain to disassemble code while debugging. If asserts are on clearly
  1979   // speed is not an issue so simply use the single byte traditional nop
  1980   // to do alignment.
  1982   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
  1983   return;
  1985 #endif // ASSERT
  1987   if (UseAddressNop && VM_Version::is_intel()) {
  1988     //
  1989     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1990     //  1: 0x90
  1991     //  2: 0x66 0x90
  1992     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1993     //  4: 0x0F 0x1F 0x40 0x00
  1994     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1995     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1996     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1997     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1998     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1999     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2000     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2002     // The rest coding is Intel specific - don't use consecutive address nops
  2004     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2005     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2006     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2007     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2009     while(i >= 15) {
  2010       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2011       i -= 15;
  2012       emit_int8(0x66);   // size prefix
  2013       emit_int8(0x66);   // size prefix
  2014       emit_int8(0x66);   // size prefix
  2015       addr_nop_8();
  2016       emit_int8(0x66);   // size prefix
  2017       emit_int8(0x66);   // size prefix
  2018       emit_int8(0x66);   // size prefix
  2019       emit_int8((unsigned char)0x90);
  2020                          // nop
  2022     switch (i) {
  2023       case 14:
  2024         emit_int8(0x66); // size prefix
  2025       case 13:
  2026         emit_int8(0x66); // size prefix
  2027       case 12:
  2028         addr_nop_8();
  2029         emit_int8(0x66); // size prefix
  2030         emit_int8(0x66); // size prefix
  2031         emit_int8(0x66); // size prefix
  2032         emit_int8((unsigned char)0x90);
  2033                          // nop
  2034         break;
  2035       case 11:
  2036         emit_int8(0x66); // size prefix
  2037       case 10:
  2038         emit_int8(0x66); // size prefix
  2039       case 9:
  2040         emit_int8(0x66); // size prefix
  2041       case 8:
  2042         addr_nop_8();
  2043         break;
  2044       case 7:
  2045         addr_nop_7();
  2046         break;
  2047       case 6:
  2048         emit_int8(0x66); // size prefix
  2049       case 5:
  2050         addr_nop_5();
  2051         break;
  2052       case 4:
  2053         addr_nop_4();
  2054         break;
  2055       case 3:
  2056         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2057         emit_int8(0x66); // size prefix
  2058       case 2:
  2059         emit_int8(0x66); // size prefix
  2060       case 1:
  2061         emit_int8((unsigned char)0x90);
  2062                          // nop
  2063         break;
  2064       default:
  2065         assert(i == 0, " ");
  2067     return;
  2069   if (UseAddressNop && VM_Version::is_amd()) {
  2070     //
  2071     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2072     //  1: 0x90
  2073     //  2: 0x66 0x90
  2074     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2075     //  4: 0x0F 0x1F 0x40 0x00
  2076     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2077     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2078     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2079     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2080     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2081     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2082     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2084     // The rest coding is AMD specific - use consecutive address nops
  2086     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2087     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2088     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2089     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2090     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2091     //     Size prefixes (0x66) are added for larger sizes
  2093     while(i >= 22) {
  2094       i -= 11;
  2095       emit_int8(0x66); // size prefix
  2096       emit_int8(0x66); // size prefix
  2097       emit_int8(0x66); // size prefix
  2098       addr_nop_8();
  2100     // Generate first nop for size between 21-12
  2101     switch (i) {
  2102       case 21:
  2103         i -= 1;
  2104         emit_int8(0x66); // size prefix
  2105       case 20:
  2106       case 19:
  2107         i -= 1;
  2108         emit_int8(0x66); // size prefix
  2109       case 18:
  2110       case 17:
  2111         i -= 1;
  2112         emit_int8(0x66); // size prefix
  2113       case 16:
  2114       case 15:
  2115         i -= 8;
  2116         addr_nop_8();
  2117         break;
  2118       case 14:
  2119       case 13:
  2120         i -= 7;
  2121         addr_nop_7();
  2122         break;
  2123       case 12:
  2124         i -= 6;
  2125         emit_int8(0x66); // size prefix
  2126         addr_nop_5();
  2127         break;
  2128       default:
  2129         assert(i < 12, " ");
  2132     // Generate second nop for size between 11-1
  2133     switch (i) {
  2134       case 11:
  2135         emit_int8(0x66); // size prefix
  2136       case 10:
  2137         emit_int8(0x66); // size prefix
  2138       case 9:
  2139         emit_int8(0x66); // size prefix
  2140       case 8:
  2141         addr_nop_8();
  2142         break;
  2143       case 7:
  2144         addr_nop_7();
  2145         break;
  2146       case 6:
  2147         emit_int8(0x66); // size prefix
  2148       case 5:
  2149         addr_nop_5();
  2150         break;
  2151       case 4:
  2152         addr_nop_4();
  2153         break;
  2154       case 3:
  2155         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2156         emit_int8(0x66); // size prefix
  2157       case 2:
  2158         emit_int8(0x66); // size prefix
  2159       case 1:
  2160         emit_int8((unsigned char)0x90);
  2161                          // nop
  2162         break;
  2163       default:
  2164         assert(i == 0, " ");
  2166     return;
  2169   // Using nops with size prefixes "0x66 0x90".
  2170   // From AMD Optimization Guide:
  2171   //  1: 0x90
  2172   //  2: 0x66 0x90
  2173   //  3: 0x66 0x66 0x90
  2174   //  4: 0x66 0x66 0x66 0x90
  2175   //  5: 0x66 0x66 0x90 0x66 0x90
  2176   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2177   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2178   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2179   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2180   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2181   //
  2182   while(i > 12) {
  2183     i -= 4;
  2184     emit_int8(0x66); // size prefix
  2185     emit_int8(0x66);
  2186     emit_int8(0x66);
  2187     emit_int8((unsigned char)0x90);
  2188                      // nop
  2190   // 1 - 12 nops
  2191   if(i > 8) {
  2192     if(i > 9) {
  2193       i -= 1;
  2194       emit_int8(0x66);
  2196     i -= 3;
  2197     emit_int8(0x66);
  2198     emit_int8(0x66);
  2199     emit_int8((unsigned char)0x90);
  2201   // 1 - 8 nops
  2202   if(i > 4) {
  2203     if(i > 6) {
  2204       i -= 1;
  2205       emit_int8(0x66);
  2207     i -= 3;
  2208     emit_int8(0x66);
  2209     emit_int8(0x66);
  2210     emit_int8((unsigned char)0x90);
  2212   switch (i) {
  2213     case 4:
  2214       emit_int8(0x66);
  2215     case 3:
  2216       emit_int8(0x66);
  2217     case 2:
  2218       emit_int8(0x66);
  2219     case 1:
  2220       emit_int8((unsigned char)0x90);
  2221       break;
  2222     default:
  2223       assert(i == 0, " ");
  2227 void Assembler::notl(Register dst) {
  2228   int encode = prefix_and_encode(dst->encoding());
  2229   emit_int8((unsigned char)0xF7);
  2230   emit_int8((unsigned char)(0xD0 | encode));
  2233 void Assembler::orl(Address dst, int32_t imm32) {
  2234   InstructionMark im(this);
  2235   prefix(dst);
  2236   emit_arith_operand(0x81, rcx, dst, imm32);
  2239 void Assembler::orl(Register dst, int32_t imm32) {
  2240   prefix(dst);
  2241   emit_arith(0x81, 0xC8, dst, imm32);
  2244 void Assembler::orl(Register dst, Address src) {
  2245   InstructionMark im(this);
  2246   prefix(src, dst);
  2247   emit_int8(0x0B);
  2248   emit_operand(dst, src);
  2251 void Assembler::orl(Register dst, Register src) {
  2252   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2253   emit_arith(0x0B, 0xC0, dst, src);
  2256 void Assembler::packuswb(XMMRegister dst, Address src) {
  2257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2258   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2259   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2262 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2264   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2267 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2268   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  2269   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
  2272 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
  2273   assert(VM_Version::supports_avx2(), "");
  2274   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  2275   emit_int8(0x00);
  2276   emit_int8(0xC0 | encode);
  2277   emit_int8(imm8);
  2280 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2281   assert(VM_Version::supports_sse4_2(), "");
  2282   InstructionMark im(this);
  2283   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2284   emit_int8(0x61);
  2285   emit_operand(dst, src);
  2286   emit_int8(imm8);
  2289 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2290   assert(VM_Version::supports_sse4_2(), "");
  2291   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2292   emit_int8(0x61);
  2293   emit_int8((unsigned char)(0xC0 | encode));
  2294   emit_int8(imm8);
  2297 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2298   assert(VM_Version::supports_sse4_1(), "");
  2299   InstructionMark im(this);
  2300   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2301   emit_int8(0x30);
  2302   emit_operand(dst, src);
  2305 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2306   assert(VM_Version::supports_sse4_1(), "");
  2307   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2308   emit_int8(0x30);
  2309   emit_int8((unsigned char)(0xC0 | encode));
  2312 // generic
  2313 void Assembler::pop(Register dst) {
  2314   int encode = prefix_and_encode(dst->encoding());
  2315   emit_int8(0x58 | encode);
  2318 void Assembler::popcntl(Register dst, Address src) {
  2319   assert(VM_Version::supports_popcnt(), "must support");
  2320   InstructionMark im(this);
  2321   emit_int8((unsigned char)0xF3);
  2322   prefix(src, dst);
  2323   emit_int8(0x0F);
  2324   emit_int8((unsigned char)0xB8);
  2325   emit_operand(dst, src);
  2328 void Assembler::popcntl(Register dst, Register src) {
  2329   assert(VM_Version::supports_popcnt(), "must support");
  2330   emit_int8((unsigned char)0xF3);
  2331   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2332   emit_int8(0x0F);
  2333   emit_int8((unsigned char)0xB8);
  2334   emit_int8((unsigned char)(0xC0 | encode));
  2337 void Assembler::popf() {
  2338   emit_int8((unsigned char)0x9D);
  2341 #ifndef _LP64 // no 32bit push/pop on amd64
  2342 void Assembler::popl(Address dst) {
  2343   // NOTE: this will adjust stack by 8byte on 64bits
  2344   InstructionMark im(this);
  2345   prefix(dst);
  2346   emit_int8((unsigned char)0x8F);
  2347   emit_operand(rax, dst);
  2349 #endif
  2351 void Assembler::prefetch_prefix(Address src) {
  2352   prefix(src);
  2353   emit_int8(0x0F);
  2356 void Assembler::prefetchnta(Address src) {
  2357   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2358   InstructionMark im(this);
  2359   prefetch_prefix(src);
  2360   emit_int8(0x18);
  2361   emit_operand(rax, src); // 0, src
  2364 void Assembler::prefetchr(Address src) {
  2365   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2366   InstructionMark im(this);
  2367   prefetch_prefix(src);
  2368   emit_int8(0x0D);
  2369   emit_operand(rax, src); // 0, src
  2372 void Assembler::prefetcht0(Address src) {
  2373   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2374   InstructionMark im(this);
  2375   prefetch_prefix(src);
  2376   emit_int8(0x18);
  2377   emit_operand(rcx, src); // 1, src
  2380 void Assembler::prefetcht1(Address src) {
  2381   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2382   InstructionMark im(this);
  2383   prefetch_prefix(src);
  2384   emit_int8(0x18);
  2385   emit_operand(rdx, src); // 2, src
  2388 void Assembler::prefetcht2(Address src) {
  2389   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2390   InstructionMark im(this);
  2391   prefetch_prefix(src);
  2392   emit_int8(0x18);
  2393   emit_operand(rbx, src); // 3, src
  2396 void Assembler::prefetchw(Address src) {
  2397   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2398   InstructionMark im(this);
  2399   prefetch_prefix(src);
  2400   emit_int8(0x0D);
  2401   emit_operand(rcx, src); // 1, src
  2404 void Assembler::prefix(Prefix p) {
  2405   emit_int8(p);
  2408 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2409   assert(VM_Version::supports_ssse3(), "");
  2410   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2411   emit_int8(0x00);
  2412   emit_int8((unsigned char)(0xC0 | encode));
  2415 void Assembler::pshufb(XMMRegister dst, Address src) {
  2416   assert(VM_Version::supports_ssse3(), "");
  2417   InstructionMark im(this);
  2418   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2419   emit_int8(0x00);
  2420   emit_operand(dst, src);
  2423 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2424   assert(isByte(mode), "invalid value");
  2425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2426   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2427   emit_int8(mode & 0xFF);
  2431 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2432   assert(isByte(mode), "invalid value");
  2433   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2434   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2435   InstructionMark im(this);
  2436   simd_prefix(dst, src, VEX_SIMD_66);
  2437   emit_int8(0x70);
  2438   emit_operand(dst, src);
  2439   emit_int8(mode & 0xFF);
  2442 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2443   assert(isByte(mode), "invalid value");
  2444   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2445   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2446   emit_int8(mode & 0xFF);
  2449 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2450   assert(isByte(mode), "invalid value");
  2451   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2452   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2453   InstructionMark im(this);
  2454   simd_prefix(dst, src, VEX_SIMD_F2);
  2455   emit_int8(0x70);
  2456   emit_operand(dst, src);
  2457   emit_int8(mode & 0xFF);
  2460 void Assembler::psrldq(XMMRegister dst, int shift) {
  2461   // Shift 128 bit value in xmm register by number of bytes.
  2462   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2463   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2464   emit_int8(0x73);
  2465   emit_int8((unsigned char)(0xC0 | encode));
  2466   emit_int8(shift);
  2469 void Assembler::ptest(XMMRegister dst, Address src) {
  2470   assert(VM_Version::supports_sse4_1(), "");
  2471   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2472   InstructionMark im(this);
  2473   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2474   emit_int8(0x17);
  2475   emit_operand(dst, src);
  2478 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2479   assert(VM_Version::supports_sse4_1(), "");
  2480   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2481   emit_int8(0x17);
  2482   emit_int8((unsigned char)(0xC0 | encode));
  2485 void Assembler::vptest(XMMRegister dst, Address src) {
  2486   assert(VM_Version::supports_avx(), "");
  2487   InstructionMark im(this);
  2488   bool vector256 = true;
  2489   assert(dst != xnoreg, "sanity");
  2490   int dst_enc = dst->encoding();
  2491   // swap src<->dst for encoding
  2492   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  2493   emit_int8(0x17);
  2494   emit_operand(dst, src);
  2497 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  2498   assert(VM_Version::supports_avx(), "");
  2499   bool vector256 = true;
  2500   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  2501   emit_int8(0x17);
  2502   emit_int8((unsigned char)(0xC0 | encode));
  2505 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2507   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2508   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2511 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2513   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2516 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2517   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2518   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2519   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2522 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2523   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2524   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2527 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2528   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2529   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2532 void Assembler::push(int32_t imm32) {
  2533   // in 64bits we push 64bits onto the stack but only
  2534   // take a 32bit immediate
  2535   emit_int8(0x68);
  2536   emit_int32(imm32);
  2539 void Assembler::push(Register src) {
  2540   int encode = prefix_and_encode(src->encoding());
  2542   emit_int8(0x50 | encode);
  2545 void Assembler::pushf() {
  2546   emit_int8((unsigned char)0x9C);
  2549 #ifndef _LP64 // no 32bit push/pop on amd64
  2550 void Assembler::pushl(Address src) {
  2551   // Note this will push 64bit on 64bit
  2552   InstructionMark im(this);
  2553   prefix(src);
  2554   emit_int8((unsigned char)0xFF);
  2555   emit_operand(rsi, src);
  2557 #endif
  2559 void Assembler::rcll(Register dst, int imm8) {
  2560   assert(isShiftCount(imm8), "illegal shift count");
  2561   int encode = prefix_and_encode(dst->encoding());
  2562   if (imm8 == 1) {
  2563     emit_int8((unsigned char)0xD1);
  2564     emit_int8((unsigned char)(0xD0 | encode));
  2565   } else {
  2566     emit_int8((unsigned char)0xC1);
  2567     emit_int8((unsigned char)0xD0 | encode);
  2568     emit_int8(imm8);
  2572 // copies data from [esi] to [edi] using rcx pointer sized words
  2573 // generic
  2574 void Assembler::rep_mov() {
  2575   emit_int8((unsigned char)0xF3);
  2576   // MOVSQ
  2577   LP64_ONLY(prefix(REX_W));
  2578   emit_int8((unsigned char)0xA5);
  2581 // sets rcx bytes with rax, value at [edi]
  2582 void Assembler::rep_stosb() {
  2583   emit_int8((unsigned char)0xF3); // REP
  2584   LP64_ONLY(prefix(REX_W));
  2585   emit_int8((unsigned char)0xAA); // STOSB
  2588 // sets rcx pointer sized words with rax, value at [edi]
  2589 // generic
  2590 void Assembler::rep_stos() {
  2591   emit_int8((unsigned char)0xF3); // REP
  2592   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
  2593   emit_int8((unsigned char)0xAB);
  2596 // scans rcx pointer sized words at [edi] for occurance of rax,
  2597 // generic
  2598 void Assembler::repne_scan() { // repne_scan
  2599   emit_int8((unsigned char)0xF2);
  2600   // SCASQ
  2601   LP64_ONLY(prefix(REX_W));
  2602   emit_int8((unsigned char)0xAF);
  2605 #ifdef _LP64
  2606 // scans rcx 4 byte words at [edi] for occurance of rax,
  2607 // generic
  2608 void Assembler::repne_scanl() { // repne_scan
  2609   emit_int8((unsigned char)0xF2);
  2610   // SCASL
  2611   emit_int8((unsigned char)0xAF);
  2613 #endif
  2615 void Assembler::ret(int imm16) {
  2616   if (imm16 == 0) {
  2617     emit_int8((unsigned char)0xC3);
  2618   } else {
  2619     emit_int8((unsigned char)0xC2);
  2620     emit_int16(imm16);
  2624 void Assembler::sahf() {
  2625 #ifdef _LP64
  2626   // Not supported in 64bit mode
  2627   ShouldNotReachHere();
  2628 #endif
  2629   emit_int8((unsigned char)0x9E);
  2632 void Assembler::sarl(Register dst, int imm8) {
  2633   int encode = prefix_and_encode(dst->encoding());
  2634   assert(isShiftCount(imm8), "illegal shift count");
  2635   if (imm8 == 1) {
  2636     emit_int8((unsigned char)0xD1);
  2637     emit_int8((unsigned char)(0xF8 | encode));
  2638   } else {
  2639     emit_int8((unsigned char)0xC1);
  2640     emit_int8((unsigned char)(0xF8 | encode));
  2641     emit_int8(imm8);
  2645 void Assembler::sarl(Register dst) {
  2646   int encode = prefix_and_encode(dst->encoding());
  2647   emit_int8((unsigned char)0xD3);
  2648   emit_int8((unsigned char)(0xF8 | encode));
  2651 void Assembler::sbbl(Address dst, int32_t imm32) {
  2652   InstructionMark im(this);
  2653   prefix(dst);
  2654   emit_arith_operand(0x81, rbx, dst, imm32);
  2657 void Assembler::sbbl(Register dst, int32_t imm32) {
  2658   prefix(dst);
  2659   emit_arith(0x81, 0xD8, dst, imm32);
  2663 void Assembler::sbbl(Register dst, Address src) {
  2664   InstructionMark im(this);
  2665   prefix(src, dst);
  2666   emit_int8(0x1B);
  2667   emit_operand(dst, src);
  2670 void Assembler::sbbl(Register dst, Register src) {
  2671   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2672   emit_arith(0x1B, 0xC0, dst, src);
  2675 void Assembler::setb(Condition cc, Register dst) {
  2676   assert(0 <= cc && cc < 16, "illegal cc");
  2677   int encode = prefix_and_encode(dst->encoding(), true);
  2678   emit_int8(0x0F);
  2679   emit_int8((unsigned char)0x90 | cc);
  2680   emit_int8((unsigned char)(0xC0 | encode));
  2683 void Assembler::shll(Register dst, int imm8) {
  2684   assert(isShiftCount(imm8), "illegal shift count");
  2685   int encode = prefix_and_encode(dst->encoding());
  2686   if (imm8 == 1 ) {
  2687     emit_int8((unsigned char)0xD1);
  2688     emit_int8((unsigned char)(0xE0 | encode));
  2689   } else {
  2690     emit_int8((unsigned char)0xC1);
  2691     emit_int8((unsigned char)(0xE0 | encode));
  2692     emit_int8(imm8);
  2696 void Assembler::shll(Register dst) {
  2697   int encode = prefix_and_encode(dst->encoding());
  2698   emit_int8((unsigned char)0xD3);
  2699   emit_int8((unsigned char)(0xE0 | encode));
  2702 void Assembler::shrl(Register dst, int imm8) {
  2703   assert(isShiftCount(imm8), "illegal shift count");
  2704   int encode = prefix_and_encode(dst->encoding());
  2705   emit_int8((unsigned char)0xC1);
  2706   emit_int8((unsigned char)(0xE8 | encode));
  2707   emit_int8(imm8);
  2710 void Assembler::shrl(Register dst) {
  2711   int encode = prefix_and_encode(dst->encoding());
  2712   emit_int8((unsigned char)0xD3);
  2713   emit_int8((unsigned char)(0xE8 | encode));
  2716 // copies a single word from [esi] to [edi]
  2717 void Assembler::smovl() {
  2718   emit_int8((unsigned char)0xA5);
  2721 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2723   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2726 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2728   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2731 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2732   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2733   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2736 void Assembler::std() {
  2737   emit_int8((unsigned char)0xFD);
  2740 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2741   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2742   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2745 void Assembler::stmxcsr( Address dst) {
  2746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2747   InstructionMark im(this);
  2748   prefix(dst);
  2749   emit_int8(0x0F);
  2750   emit_int8((unsigned char)0xAE);
  2751   emit_operand(as_Register(3), dst);
  2754 void Assembler::subl(Address dst, int32_t imm32) {
  2755   InstructionMark im(this);
  2756   prefix(dst);
  2757   emit_arith_operand(0x81, rbp, dst, imm32);
  2760 void Assembler::subl(Address dst, Register src) {
  2761   InstructionMark im(this);
  2762   prefix(dst, src);
  2763   emit_int8(0x29);
  2764   emit_operand(src, dst);
  2767 void Assembler::subl(Register dst, int32_t imm32) {
  2768   prefix(dst);
  2769   emit_arith(0x81, 0xE8, dst, imm32);
  2772 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2773 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2774   prefix(dst);
  2775   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2778 void Assembler::subl(Register dst, Address src) {
  2779   InstructionMark im(this);
  2780   prefix(src, dst);
  2781   emit_int8(0x2B);
  2782   emit_operand(dst, src);
  2785 void Assembler::subl(Register dst, Register src) {
  2786   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2787   emit_arith(0x2B, 0xC0, dst, src);
  2790 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2791   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2792   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2795 void Assembler::subsd(XMMRegister dst, Address src) {
  2796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2797   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2800 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2801   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2802   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2805 void Assembler::subss(XMMRegister dst, Address src) {
  2806   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2807   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2810 void Assembler::testb(Register dst, int imm8) {
  2811   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2812   (void) prefix_and_encode(dst->encoding(), true);
  2813   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2816 void Assembler::testl(Register dst, int32_t imm32) {
  2817   // not using emit_arith because test
  2818   // doesn't support sign-extension of
  2819   // 8bit operands
  2820   int encode = dst->encoding();
  2821   if (encode == 0) {
  2822     emit_int8((unsigned char)0xA9);
  2823   } else {
  2824     encode = prefix_and_encode(encode);
  2825     emit_int8((unsigned char)0xF7);
  2826     emit_int8((unsigned char)(0xC0 | encode));
  2828   emit_int32(imm32);
  2831 void Assembler::testl(Register dst, Register src) {
  2832   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2833   emit_arith(0x85, 0xC0, dst, src);
  2836 void Assembler::testl(Register dst, Address  src) {
  2837   InstructionMark im(this);
  2838   prefix(src, dst);
  2839   emit_int8((unsigned char)0x85);
  2840   emit_operand(dst, src);
  2843 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2844   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2845   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2848 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2850   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2853 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2854   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2855   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2858 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2859   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2860   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2864 void Assembler::xaddl(Address dst, Register src) {
  2865   InstructionMark im(this);
  2866   prefix(dst, src);
  2867   emit_int8(0x0F);
  2868   emit_int8((unsigned char)0xC1);
  2869   emit_operand(src, dst);
  2872 void Assembler::xchgl(Register dst, Address src) { // xchg
  2873   InstructionMark im(this);
  2874   prefix(src, dst);
  2875   emit_int8((unsigned char)0x87);
  2876   emit_operand(dst, src);
  2879 void Assembler::xchgl(Register dst, Register src) {
  2880   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2881   emit_int8((unsigned char)0x87);
  2882   emit_int8((unsigned char)(0xC0 | encode));
  2885 void Assembler::xgetbv() {
  2886   emit_int8(0x0F);
  2887   emit_int8(0x01);
  2888   emit_int8((unsigned char)0xD0);
  2891 void Assembler::xorl(Register dst, int32_t imm32) {
  2892   prefix(dst);
  2893   emit_arith(0x81, 0xF0, dst, imm32);
  2896 void Assembler::xorl(Register dst, Address src) {
  2897   InstructionMark im(this);
  2898   prefix(src, dst);
  2899   emit_int8(0x33);
  2900   emit_operand(dst, src);
  2903 void Assembler::xorl(Register dst, Register src) {
  2904   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2905   emit_arith(0x33, 0xC0, dst, src);
  2909 // AVX 3-operands scalar float-point arithmetic instructions
  2911 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2912   assert(VM_Version::supports_avx(), "");
  2913   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2916 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2917   assert(VM_Version::supports_avx(), "");
  2918   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2921 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2922   assert(VM_Version::supports_avx(), "");
  2923   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2926 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2927   assert(VM_Version::supports_avx(), "");
  2928   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2931 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2932   assert(VM_Version::supports_avx(), "");
  2933   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2936 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2937   assert(VM_Version::supports_avx(), "");
  2938   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2941 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2942   assert(VM_Version::supports_avx(), "");
  2943   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2946 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2947   assert(VM_Version::supports_avx(), "");
  2948   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2951 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2952   assert(VM_Version::supports_avx(), "");
  2953   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2956 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2957   assert(VM_Version::supports_avx(), "");
  2958   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2961 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2962   assert(VM_Version::supports_avx(), "");
  2963   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2966 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2967   assert(VM_Version::supports_avx(), "");
  2968   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2971 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2972   assert(VM_Version::supports_avx(), "");
  2973   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2976 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2977   assert(VM_Version::supports_avx(), "");
  2978   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2981 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2982   assert(VM_Version::supports_avx(), "");
  2983   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2986 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2987   assert(VM_Version::supports_avx(), "");
  2988   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2991 //====================VECTOR ARITHMETIC=====================================
  2993 // Float-point vector arithmetic
  2995 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2996   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2997   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  3000 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  3001   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3002   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  3005 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3006   assert(VM_Version::supports_avx(), "");
  3007   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3010 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3011   assert(VM_Version::supports_avx(), "");
  3012   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3015 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3016   assert(VM_Version::supports_avx(), "");
  3017   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3020 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3021   assert(VM_Version::supports_avx(), "");
  3022   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3025 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  3026   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3027   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  3030 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  3031   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3032   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  3035 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3036   assert(VM_Version::supports_avx(), "");
  3037   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3040 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3041   assert(VM_Version::supports_avx(), "");
  3042   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3045 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3046   assert(VM_Version::supports_avx(), "");
  3047   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3050 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3051   assert(VM_Version::supports_avx(), "");
  3052   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3055 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3056   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3057   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3060 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3061   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3062   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3065 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3066   assert(VM_Version::supports_avx(), "");
  3067   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3070 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3071   assert(VM_Version::supports_avx(), "");
  3072   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3075 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3076   assert(VM_Version::supports_avx(), "");
  3077   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3080 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3081   assert(VM_Version::supports_avx(), "");
  3082   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3085 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3086   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3087   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3090 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3091   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3092   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3095 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3096   assert(VM_Version::supports_avx(), "");
  3097   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3100 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3101   assert(VM_Version::supports_avx(), "");
  3102   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3105 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3106   assert(VM_Version::supports_avx(), "");
  3107   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3110 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3111   assert(VM_Version::supports_avx(), "");
  3112   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3115 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3116   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3117   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3120 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3121   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3122   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3125 void Assembler::andps(XMMRegister dst, Address src) {
  3126   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3127   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3130 void Assembler::andpd(XMMRegister dst, Address src) {
  3131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3132   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3135 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3136   assert(VM_Version::supports_avx(), "");
  3137   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3140 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3141   assert(VM_Version::supports_avx(), "");
  3142   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3145 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3146   assert(VM_Version::supports_avx(), "");
  3147   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3150 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3151   assert(VM_Version::supports_avx(), "");
  3152   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3155 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3156   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3157   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3160 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3161   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3162   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3165 void Assembler::xorpd(XMMRegister dst, Address src) {
  3166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3167   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3170 void Assembler::xorps(XMMRegister dst, Address src) {
  3171   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3172   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3175 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3176   assert(VM_Version::supports_avx(), "");
  3177   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3180 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3181   assert(VM_Version::supports_avx(), "");
  3182   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3185 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3186   assert(VM_Version::supports_avx(), "");
  3187   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3190 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3191   assert(VM_Version::supports_avx(), "");
  3192   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3196 // Integer vector arithmetic
  3197 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3199   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3202 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3203   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3204   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3207 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3208   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3209   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3212 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3214   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3217 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3218   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3219   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3222 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3223   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3224   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3227 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3228   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3229   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3232 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3233   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3234   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3237 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3238   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3239   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3242 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3243   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3244   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3247 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3248   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3249   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3252 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3253   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3254   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3257 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3258   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3259   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3262 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3264   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3267 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3269   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3272 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3273   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3274   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3277 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3278   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3279   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3282 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3283   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3284   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3287 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3288   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3289   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3292 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3293   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3294   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3297 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3298   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3299   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3302 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3303   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3304   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3307 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3308   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3309   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3312 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3313   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3314   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3317 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3319   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3322 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3323   assert(VM_Version::supports_sse4_1(), "");
  3324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3325   emit_int8(0x40);
  3326   emit_int8((unsigned char)(0xC0 | encode));
  3329 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3330   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3331   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3334 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3335   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3336   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3337   emit_int8(0x40);
  3338   emit_int8((unsigned char)(0xC0 | encode));
  3341 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3342   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3343   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3346 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3347   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3348   InstructionMark im(this);
  3349   int dst_enc = dst->encoding();
  3350   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3351   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3352   emit_int8(0x40);
  3353   emit_operand(dst, src);
  3356 // Shift packed integers left by specified number of bits.
  3357 void Assembler::psllw(XMMRegister dst, int shift) {
  3358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3359   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3360   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3361   emit_int8(0x71);
  3362   emit_int8((unsigned char)(0xC0 | encode));
  3363   emit_int8(shift & 0xFF);
  3366 void Assembler::pslld(XMMRegister dst, int shift) {
  3367   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3368   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3369   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3370   emit_int8(0x72);
  3371   emit_int8((unsigned char)(0xC0 | encode));
  3372   emit_int8(shift & 0xFF);
  3375 void Assembler::psllq(XMMRegister dst, int shift) {
  3376   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3377   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3378   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3379   emit_int8(0x73);
  3380   emit_int8((unsigned char)(0xC0 | encode));
  3381   emit_int8(shift & 0xFF);
  3384 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3385   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3386   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3389 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3391   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3394 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3395   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3396   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3399 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3400   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3401   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3402   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3403   emit_int8(shift & 0xFF);
  3406 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3407   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3408   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3409   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3410   emit_int8(shift & 0xFF);
  3413 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3414   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3415   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3416   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3417   emit_int8(shift & 0xFF);
  3420 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3421   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3422   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3425 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3426   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3427   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3430 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3431   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3432   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3435 // Shift packed integers logically right by specified number of bits.
  3436 void Assembler::psrlw(XMMRegister dst, int shift) {
  3437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3438   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3439   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3440   emit_int8(0x71);
  3441   emit_int8((unsigned char)(0xC0 | encode));
  3442   emit_int8(shift & 0xFF);
  3445 void Assembler::psrld(XMMRegister dst, int shift) {
  3446   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3447   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3448   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3449   emit_int8(0x72);
  3450   emit_int8((unsigned char)(0xC0 | encode));
  3451   emit_int8(shift & 0xFF);
  3454 void Assembler::psrlq(XMMRegister dst, int shift) {
  3455   // Do not confuse it with psrldq SSE2 instruction which
  3456   // shifts 128 bit value in xmm register by number of bytes.
  3457   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3458   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3459   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3460   emit_int8(0x73);
  3461   emit_int8((unsigned char)(0xC0 | encode));
  3462   emit_int8(shift & 0xFF);
  3465 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3467   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3470 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3471   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3472   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3475 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3476   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3477   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3480 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3481   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3482   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3483   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3484   emit_int8(shift & 0xFF);
  3487 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3488   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3489   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3490   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3491   emit_int8(shift & 0xFF);
  3494 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3495   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3496   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3497   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3498   emit_int8(shift & 0xFF);
  3501 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3502   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3503   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3506 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3507   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3508   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3511 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3512   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3513   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3516 // Shift packed integers arithmetically right by specified number of bits.
  3517 void Assembler::psraw(XMMRegister dst, int shift) {
  3518   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3519   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3520   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3521   emit_int8(0x71);
  3522   emit_int8((unsigned char)(0xC0 | encode));
  3523   emit_int8(shift & 0xFF);
  3526 void Assembler::psrad(XMMRegister dst, int shift) {
  3527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3528   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3529   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3530   emit_int8(0x72);
  3531   emit_int8((unsigned char)(0xC0 | encode));
  3532   emit_int8(shift & 0xFF);
  3535 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3537   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3540 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3542   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3545 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3546   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3547   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3548   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3549   emit_int8(shift & 0xFF);
  3552 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3553   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3554   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3555   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3556   emit_int8(shift & 0xFF);
  3559 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3560   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3561   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3564 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3565   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3566   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3570 // AND packed integers
  3571 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3572   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3573   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3576 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3577   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3578   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3581 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3582   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3583   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3586 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3587   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3588   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3591 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3592   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3593   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3596 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3597   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3598   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3601 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3602   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3603   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3606 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3607   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3608   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3611 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3612   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3613   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3617 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3618   assert(VM_Version::supports_avx(), "");
  3619   bool vector256 = true;
  3620   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3621   emit_int8(0x18);
  3622   emit_int8((unsigned char)(0xC0 | encode));
  3623   // 0x00 - insert into lower 128 bits
  3624   // 0x01 - insert into upper 128 bits
  3625   emit_int8(0x01);
  3628 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3629   assert(VM_Version::supports_avx(), "");
  3630   InstructionMark im(this);
  3631   bool vector256 = true;
  3632   assert(dst != xnoreg, "sanity");
  3633   int dst_enc = dst->encoding();
  3634   // swap src<->dst for encoding
  3635   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3636   emit_int8(0x18);
  3637   emit_operand(dst, src);
  3638   // 0x01 - insert into upper 128 bits
  3639   emit_int8(0x01);
  3642 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3643   assert(VM_Version::supports_avx(), "");
  3644   InstructionMark im(this);
  3645   bool vector256 = true;
  3646   assert(src != xnoreg, "sanity");
  3647   int src_enc = src->encoding();
  3648   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3649   emit_int8(0x19);
  3650   emit_operand(src, dst);
  3651   // 0x01 - extract from upper 128 bits
  3652   emit_int8(0x01);
  3655 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3656   assert(VM_Version::supports_avx2(), "");
  3657   bool vector256 = true;
  3658   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3659   emit_int8(0x38);
  3660   emit_int8((unsigned char)(0xC0 | encode));
  3661   // 0x00 - insert into lower 128 bits
  3662   // 0x01 - insert into upper 128 bits
  3663   emit_int8(0x01);
  3666 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3667   assert(VM_Version::supports_avx2(), "");
  3668   InstructionMark im(this);
  3669   bool vector256 = true;
  3670   assert(dst != xnoreg, "sanity");
  3671   int dst_enc = dst->encoding();
  3672   // swap src<->dst for encoding
  3673   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3674   emit_int8(0x38);
  3675   emit_operand(dst, src);
  3676   // 0x01 - insert into upper 128 bits
  3677   emit_int8(0x01);
  3680 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3681   assert(VM_Version::supports_avx2(), "");
  3682   InstructionMark im(this);
  3683   bool vector256 = true;
  3684   assert(src != xnoreg, "sanity");
  3685   int src_enc = src->encoding();
  3686   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3687   emit_int8(0x39);
  3688   emit_operand(src, dst);
  3689   // 0x01 - extract from upper 128 bits
  3690   emit_int8(0x01);
  3693 // duplicate 4-bytes integer data from src into 8 locations in dest
  3694 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  3695   assert(VM_Version::supports_avx2(), "");
  3696   bool vector256 = true;
  3697   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3698   emit_int8(0x58);
  3699   emit_int8((unsigned char)(0xC0 | encode));
  3702 void Assembler::vzeroupper() {
  3703   assert(VM_Version::supports_avx(), "");
  3704   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3705   emit_int8(0x77);
  3709 #ifndef _LP64
  3710 // 32bit only pieces of the assembler
  3712 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3713   // NO PREFIX AS NEVER 64BIT
  3714   InstructionMark im(this);
  3715   emit_int8((unsigned char)0x81);
  3716   emit_int8((unsigned char)(0xF8 | src1->encoding()));
  3717   emit_data(imm32, rspec, 0);
  3720 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3721   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3722   InstructionMark im(this);
  3723   emit_int8((unsigned char)0x81);
  3724   emit_operand(rdi, src1);
  3725   emit_data(imm32, rspec, 0);
  3728 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3729 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3730 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3731 void Assembler::cmpxchg8(Address adr) {
  3732   InstructionMark im(this);
  3733   emit_int8(0x0F);
  3734   emit_int8((unsigned char)0xC7);
  3735   emit_operand(rcx, adr);
  3738 void Assembler::decl(Register dst) {
  3739   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3740  emit_int8(0x48 | dst->encoding());
  3743 #endif // _LP64
  3745 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3747 void Assembler::fabs() {
  3748   emit_int8((unsigned char)0xD9);
  3749   emit_int8((unsigned char)0xE1);
  3752 void Assembler::fadd(int i) {
  3753   emit_farith(0xD8, 0xC0, i);
  3756 void Assembler::fadd_d(Address src) {
  3757   InstructionMark im(this);
  3758   emit_int8((unsigned char)0xDC);
  3759   emit_operand32(rax, src);
  3762 void Assembler::fadd_s(Address src) {
  3763   InstructionMark im(this);
  3764   emit_int8((unsigned char)0xD8);
  3765   emit_operand32(rax, src);
  3768 void Assembler::fadda(int i) {
  3769   emit_farith(0xDC, 0xC0, i);
  3772 void Assembler::faddp(int i) {
  3773   emit_farith(0xDE, 0xC0, i);
  3776 void Assembler::fchs() {
  3777   emit_int8((unsigned char)0xD9);
  3778   emit_int8((unsigned char)0xE0);
  3781 void Assembler::fcom(int i) {
  3782   emit_farith(0xD8, 0xD0, i);
  3785 void Assembler::fcomp(int i) {
  3786   emit_farith(0xD8, 0xD8, i);
  3789 void Assembler::fcomp_d(Address src) {
  3790   InstructionMark im(this);
  3791   emit_int8((unsigned char)0xDC);
  3792   emit_operand32(rbx, src);
  3795 void Assembler::fcomp_s(Address src) {
  3796   InstructionMark im(this);
  3797   emit_int8((unsigned char)0xD8);
  3798   emit_operand32(rbx, src);
  3801 void Assembler::fcompp() {
  3802   emit_int8((unsigned char)0xDE);
  3803   emit_int8((unsigned char)0xD9);
  3806 void Assembler::fcos() {
  3807   emit_int8((unsigned char)0xD9);
  3808   emit_int8((unsigned char)0xFF);
  3811 void Assembler::fdecstp() {
  3812   emit_int8((unsigned char)0xD9);
  3813   emit_int8((unsigned char)0xF6);
  3816 void Assembler::fdiv(int i) {
  3817   emit_farith(0xD8, 0xF0, i);
  3820 void Assembler::fdiv_d(Address src) {
  3821   InstructionMark im(this);
  3822   emit_int8((unsigned char)0xDC);
  3823   emit_operand32(rsi, src);
  3826 void Assembler::fdiv_s(Address src) {
  3827   InstructionMark im(this);
  3828   emit_int8((unsigned char)0xD8);
  3829   emit_operand32(rsi, src);
  3832 void Assembler::fdiva(int i) {
  3833   emit_farith(0xDC, 0xF8, i);
  3836 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3837 //       is erroneous for some of the floating-point instructions below.
  3839 void Assembler::fdivp(int i) {
  3840   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3843 void Assembler::fdivr(int i) {
  3844   emit_farith(0xD8, 0xF8, i);
  3847 void Assembler::fdivr_d(Address src) {
  3848   InstructionMark im(this);
  3849   emit_int8((unsigned char)0xDC);
  3850   emit_operand32(rdi, src);
  3853 void Assembler::fdivr_s(Address src) {
  3854   InstructionMark im(this);
  3855   emit_int8((unsigned char)0xD8);
  3856   emit_operand32(rdi, src);
  3859 void Assembler::fdivra(int i) {
  3860   emit_farith(0xDC, 0xF0, i);
  3863 void Assembler::fdivrp(int i) {
  3864   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3867 void Assembler::ffree(int i) {
  3868   emit_farith(0xDD, 0xC0, i);
  3871 void Assembler::fild_d(Address adr) {
  3872   InstructionMark im(this);
  3873   emit_int8((unsigned char)0xDF);
  3874   emit_operand32(rbp, adr);
  3877 void Assembler::fild_s(Address adr) {
  3878   InstructionMark im(this);
  3879   emit_int8((unsigned char)0xDB);
  3880   emit_operand32(rax, adr);
  3883 void Assembler::fincstp() {
  3884   emit_int8((unsigned char)0xD9);
  3885   emit_int8((unsigned char)0xF7);
  3888 void Assembler::finit() {
  3889   emit_int8((unsigned char)0x9B);
  3890   emit_int8((unsigned char)0xDB);
  3891   emit_int8((unsigned char)0xE3);
  3894 void Assembler::fist_s(Address adr) {
  3895   InstructionMark im(this);
  3896   emit_int8((unsigned char)0xDB);
  3897   emit_operand32(rdx, adr);
  3900 void Assembler::fistp_d(Address adr) {
  3901   InstructionMark im(this);
  3902   emit_int8((unsigned char)0xDF);
  3903   emit_operand32(rdi, adr);
  3906 void Assembler::fistp_s(Address adr) {
  3907   InstructionMark im(this);
  3908   emit_int8((unsigned char)0xDB);
  3909   emit_operand32(rbx, adr);
  3912 void Assembler::fld1() {
  3913   emit_int8((unsigned char)0xD9);
  3914   emit_int8((unsigned char)0xE8);
  3917 void Assembler::fld_d(Address adr) {
  3918   InstructionMark im(this);
  3919   emit_int8((unsigned char)0xDD);
  3920   emit_operand32(rax, adr);
  3923 void Assembler::fld_s(Address adr) {
  3924   InstructionMark im(this);
  3925   emit_int8((unsigned char)0xD9);
  3926   emit_operand32(rax, adr);
  3930 void Assembler::fld_s(int index) {
  3931   emit_farith(0xD9, 0xC0, index);
  3934 void Assembler::fld_x(Address adr) {
  3935   InstructionMark im(this);
  3936   emit_int8((unsigned char)0xDB);
  3937   emit_operand32(rbp, adr);
  3940 void Assembler::fldcw(Address src) {
  3941   InstructionMark im(this);
  3942   emit_int8((unsigned char)0xD9);
  3943   emit_operand32(rbp, src);
  3946 void Assembler::fldenv(Address src) {
  3947   InstructionMark im(this);
  3948   emit_int8((unsigned char)0xD9);
  3949   emit_operand32(rsp, src);
  3952 void Assembler::fldlg2() {
  3953   emit_int8((unsigned char)0xD9);
  3954   emit_int8((unsigned char)0xEC);
  3957 void Assembler::fldln2() {
  3958   emit_int8((unsigned char)0xD9);
  3959   emit_int8((unsigned char)0xED);
  3962 void Assembler::fldz() {
  3963   emit_int8((unsigned char)0xD9);
  3964   emit_int8((unsigned char)0xEE);
  3967 void Assembler::flog() {
  3968   fldln2();
  3969   fxch();
  3970   fyl2x();
  3973 void Assembler::flog10() {
  3974   fldlg2();
  3975   fxch();
  3976   fyl2x();
  3979 void Assembler::fmul(int i) {
  3980   emit_farith(0xD8, 0xC8, i);
  3983 void Assembler::fmul_d(Address src) {
  3984   InstructionMark im(this);
  3985   emit_int8((unsigned char)0xDC);
  3986   emit_operand32(rcx, src);
  3989 void Assembler::fmul_s(Address src) {
  3990   InstructionMark im(this);
  3991   emit_int8((unsigned char)0xD8);
  3992   emit_operand32(rcx, src);
  3995 void Assembler::fmula(int i) {
  3996   emit_farith(0xDC, 0xC8, i);
  3999 void Assembler::fmulp(int i) {
  4000   emit_farith(0xDE, 0xC8, i);
  4003 void Assembler::fnsave(Address dst) {
  4004   InstructionMark im(this);
  4005   emit_int8((unsigned char)0xDD);
  4006   emit_operand32(rsi, dst);
  4009 void Assembler::fnstcw(Address src) {
  4010   InstructionMark im(this);
  4011   emit_int8((unsigned char)0x9B);
  4012   emit_int8((unsigned char)0xD9);
  4013   emit_operand32(rdi, src);
  4016 void Assembler::fnstsw_ax() {
  4017   emit_int8((unsigned char)0xDF);
  4018   emit_int8((unsigned char)0xE0);
  4021 void Assembler::fprem() {
  4022   emit_int8((unsigned char)0xD9);
  4023   emit_int8((unsigned char)0xF8);
  4026 void Assembler::fprem1() {
  4027   emit_int8((unsigned char)0xD9);
  4028   emit_int8((unsigned char)0xF5);
  4031 void Assembler::frstor(Address src) {
  4032   InstructionMark im(this);
  4033   emit_int8((unsigned char)0xDD);
  4034   emit_operand32(rsp, src);
  4037 void Assembler::fsin() {
  4038   emit_int8((unsigned char)0xD9);
  4039   emit_int8((unsigned char)0xFE);
  4042 void Assembler::fsqrt() {
  4043   emit_int8((unsigned char)0xD9);
  4044   emit_int8((unsigned char)0xFA);
  4047 void Assembler::fst_d(Address adr) {
  4048   InstructionMark im(this);
  4049   emit_int8((unsigned char)0xDD);
  4050   emit_operand32(rdx, adr);
  4053 void Assembler::fst_s(Address adr) {
  4054   InstructionMark im(this);
  4055   emit_int8((unsigned char)0xD9);
  4056   emit_operand32(rdx, adr);
  4059 void Assembler::fstp_d(Address adr) {
  4060   InstructionMark im(this);
  4061   emit_int8((unsigned char)0xDD);
  4062   emit_operand32(rbx, adr);
  4065 void Assembler::fstp_d(int index) {
  4066   emit_farith(0xDD, 0xD8, index);
  4069 void Assembler::fstp_s(Address adr) {
  4070   InstructionMark im(this);
  4071   emit_int8((unsigned char)0xD9);
  4072   emit_operand32(rbx, adr);
  4075 void Assembler::fstp_x(Address adr) {
  4076   InstructionMark im(this);
  4077   emit_int8((unsigned char)0xDB);
  4078   emit_operand32(rdi, adr);
  4081 void Assembler::fsub(int i) {
  4082   emit_farith(0xD8, 0xE0, i);
  4085 void Assembler::fsub_d(Address src) {
  4086   InstructionMark im(this);
  4087   emit_int8((unsigned char)0xDC);
  4088   emit_operand32(rsp, src);
  4091 void Assembler::fsub_s(Address src) {
  4092   InstructionMark im(this);
  4093   emit_int8((unsigned char)0xD8);
  4094   emit_operand32(rsp, src);
  4097 void Assembler::fsuba(int i) {
  4098   emit_farith(0xDC, 0xE8, i);
  4101 void Assembler::fsubp(int i) {
  4102   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4105 void Assembler::fsubr(int i) {
  4106   emit_farith(0xD8, 0xE8, i);
  4109 void Assembler::fsubr_d(Address src) {
  4110   InstructionMark im(this);
  4111   emit_int8((unsigned char)0xDC);
  4112   emit_operand32(rbp, src);
  4115 void Assembler::fsubr_s(Address src) {
  4116   InstructionMark im(this);
  4117   emit_int8((unsigned char)0xD8);
  4118   emit_operand32(rbp, src);
  4121 void Assembler::fsubra(int i) {
  4122   emit_farith(0xDC, 0xE0, i);
  4125 void Assembler::fsubrp(int i) {
  4126   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4129 void Assembler::ftan() {
  4130   emit_int8((unsigned char)0xD9);
  4131   emit_int8((unsigned char)0xF2);
  4132   emit_int8((unsigned char)0xDD);
  4133   emit_int8((unsigned char)0xD8);
  4136 void Assembler::ftst() {
  4137   emit_int8((unsigned char)0xD9);
  4138   emit_int8((unsigned char)0xE4);
  4141 void Assembler::fucomi(int i) {
  4142   // make sure the instruction is supported (introduced for P6, together with cmov)
  4143   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4144   emit_farith(0xDB, 0xE8, i);
  4147 void Assembler::fucomip(int i) {
  4148   // make sure the instruction is supported (introduced for P6, together with cmov)
  4149   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4150   emit_farith(0xDF, 0xE8, i);
  4153 void Assembler::fwait() {
  4154   emit_int8((unsigned char)0x9B);
  4157 void Assembler::fxch(int i) {
  4158   emit_farith(0xD9, 0xC8, i);
  4161 void Assembler::fyl2x() {
  4162   emit_int8((unsigned char)0xD9);
  4163   emit_int8((unsigned char)0xF1);
  4166 void Assembler::frndint() {
  4167   emit_int8((unsigned char)0xD9);
  4168   emit_int8((unsigned char)0xFC);
  4171 void Assembler::f2xm1() {
  4172   emit_int8((unsigned char)0xD9);
  4173   emit_int8((unsigned char)0xF0);
  4176 void Assembler::fldl2e() {
  4177   emit_int8((unsigned char)0xD9);
  4178   emit_int8((unsigned char)0xEA);
  4181 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4182 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4183 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4184 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4186 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4187 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4188   if (pre > 0) {
  4189     emit_int8(simd_pre[pre]);
  4191   if (rex_w) {
  4192     prefixq(adr, xreg);
  4193   } else {
  4194     prefix(adr, xreg);
  4196   if (opc > 0) {
  4197     emit_int8(0x0F);
  4198     int opc2 = simd_opc[opc];
  4199     if (opc2 > 0) {
  4200       emit_int8(opc2);
  4205 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4206   if (pre > 0) {
  4207     emit_int8(simd_pre[pre]);
  4209   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4210                           prefix_and_encode(dst_enc, src_enc);
  4211   if (opc > 0) {
  4212     emit_int8(0x0F);
  4213     int opc2 = simd_opc[opc];
  4214     if (opc2 > 0) {
  4215       emit_int8(opc2);
  4218   return encode;
  4222 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4223   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4224     prefix(VEX_3bytes);
  4226     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4227     byte1 = (~byte1) & 0xE0;
  4228     byte1 |= opc;
  4229     emit_int8(byte1);
  4231     int byte2 = ((~nds_enc) & 0xf) << 3;
  4232     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4233     emit_int8(byte2);
  4234   } else {
  4235     prefix(VEX_2bytes);
  4237     int byte1 = vex_r ? VEX_R : 0;
  4238     byte1 = (~byte1) & 0x80;
  4239     byte1 |= ((~nds_enc) & 0xf) << 3;
  4240     byte1 |= (vector256 ? 4 : 0) | pre;
  4241     emit_int8(byte1);
  4245 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4246   bool vex_r = (xreg_enc >= 8);
  4247   bool vex_b = adr.base_needs_rex();
  4248   bool vex_x = adr.index_needs_rex();
  4249   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4252 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4253   bool vex_r = (dst_enc >= 8);
  4254   bool vex_b = (src_enc >= 8);
  4255   bool vex_x = false;
  4256   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4257   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4261 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4262   if (UseAVX > 0) {
  4263     int xreg_enc = xreg->encoding();
  4264     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4265     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4266   } else {
  4267     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4268     rex_prefix(adr, xreg, pre, opc, rex_w);
  4272 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4273   int dst_enc = dst->encoding();
  4274   int src_enc = src->encoding();
  4275   if (UseAVX > 0) {
  4276     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4277     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4278   } else {
  4279     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4280     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4284 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4285   InstructionMark im(this);
  4286   simd_prefix(dst, dst, src, pre);
  4287   emit_int8(opcode);
  4288   emit_operand(dst, src);
  4291 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4292   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4293   emit_int8(opcode);
  4294   emit_int8((unsigned char)(0xC0 | encode));
  4297 // Versions with no second source register (non-destructive source).
  4298 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4299   InstructionMark im(this);
  4300   simd_prefix(dst, xnoreg, src, pre);
  4301   emit_int8(opcode);
  4302   emit_operand(dst, src);
  4305 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4306   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4307   emit_int8(opcode);
  4308   emit_int8((unsigned char)(0xC0 | encode));
  4311 // 3-operands AVX instructions
  4312 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4313                                Address src, VexSimdPrefix pre, bool vector256) {
  4314   InstructionMark im(this);
  4315   vex_prefix(dst, nds, src, pre, vector256);
  4316   emit_int8(opcode);
  4317   emit_operand(dst, src);
  4320 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4321                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4322   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4323   emit_int8(opcode);
  4324   emit_int8((unsigned char)(0xC0 | encode));
  4327 #ifndef _LP64
  4329 void Assembler::incl(Register dst) {
  4330   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4331   emit_int8(0x40 | dst->encoding());
  4334 void Assembler::lea(Register dst, Address src) {
  4335   leal(dst, src);
  4338 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4339   InstructionMark im(this);
  4340   emit_int8((unsigned char)0xC7);
  4341   emit_operand(rax, dst);
  4342   emit_data((int)imm32, rspec, 0);
  4345 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4346   InstructionMark im(this);
  4347   int encode = prefix_and_encode(dst->encoding());
  4348   emit_int8((unsigned char)(0xB8 | encode));
  4349   emit_data((int)imm32, rspec, 0);
  4352 void Assembler::popa() { // 32bit
  4353   emit_int8(0x61);
  4356 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4357   InstructionMark im(this);
  4358   emit_int8(0x68);
  4359   emit_data(imm32, rspec, 0);
  4362 void Assembler::pusha() { // 32bit
  4363   emit_int8(0x60);
  4366 void Assembler::set_byte_if_not_zero(Register dst) {
  4367   emit_int8(0x0F);
  4368   emit_int8((unsigned char)0x95);
  4369   emit_int8((unsigned char)(0xE0 | dst->encoding()));
  4372 void Assembler::shldl(Register dst, Register src) {
  4373   emit_int8(0x0F);
  4374   emit_int8((unsigned char)0xA5);
  4375   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4378 void Assembler::shrdl(Register dst, Register src) {
  4379   emit_int8(0x0F);
  4380   emit_int8((unsigned char)0xAD);
  4381   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4384 #else // LP64
  4386 void Assembler::set_byte_if_not_zero(Register dst) {
  4387   int enc = prefix_and_encode(dst->encoding(), true);
  4388   emit_int8(0x0F);
  4389   emit_int8((unsigned char)0x95);
  4390   emit_int8((unsigned char)(0xE0 | enc));
  4393 // 64bit only pieces of the assembler
  4394 // This should only be used by 64bit instructions that can use rip-relative
  4395 // it cannot be used by instructions that want an immediate value.
  4397 bool Assembler::reachable(AddressLiteral adr) {
  4398   int64_t disp;
  4399   // None will force a 64bit literal to the code stream. Likely a placeholder
  4400   // for something that will be patched later and we need to certain it will
  4401   // always be reachable.
  4402   if (adr.reloc() == relocInfo::none) {
  4403     return false;
  4405   if (adr.reloc() == relocInfo::internal_word_type) {
  4406     // This should be rip relative and easily reachable.
  4407     return true;
  4409   if (adr.reloc() == relocInfo::virtual_call_type ||
  4410       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4411       adr.reloc() == relocInfo::static_call_type ||
  4412       adr.reloc() == relocInfo::static_stub_type ) {
  4413     // This should be rip relative within the code cache and easily
  4414     // reachable until we get huge code caches. (At which point
  4415     // ic code is going to have issues).
  4416     return true;
  4418   if (adr.reloc() != relocInfo::external_word_type &&
  4419       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4420       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4421       adr.reloc() != relocInfo::runtime_call_type ) {
  4422     return false;
  4425   // Stress the correction code
  4426   if (ForceUnreachable) {
  4427     // Must be runtimecall reloc, see if it is in the codecache
  4428     // Flipping stuff in the codecache to be unreachable causes issues
  4429     // with things like inline caches where the additional instructions
  4430     // are not handled.
  4431     if (CodeCache::find_blob(adr._target) == NULL) {
  4432       return false;
  4435   // For external_word_type/runtime_call_type if it is reachable from where we
  4436   // are now (possibly a temp buffer) and where we might end up
  4437   // anywhere in the codeCache then we are always reachable.
  4438   // This would have to change if we ever save/restore shared code
  4439   // to be more pessimistic.
  4440   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4441   if (!is_simm32(disp)) return false;
  4442   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4443   if (!is_simm32(disp)) return false;
  4445   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4447   // Because rip relative is a disp + address_of_next_instruction and we
  4448   // don't know the value of address_of_next_instruction we apply a fudge factor
  4449   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4450   // We don't have to fudge the checks above here because they are already worst case.
  4452   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4453   // + 4 because better safe than sorry.
  4454   const int fudge = 12 + 4;
  4455   if (disp < 0) {
  4456     disp -= fudge;
  4457   } else {
  4458     disp += fudge;
  4460   return is_simm32(disp);
  4463 // Check if the polling page is not reachable from the code cache using rip-relative
  4464 // addressing.
  4465 bool Assembler::is_polling_page_far() {
  4466   intptr_t addr = (intptr_t)os::get_polling_page();
  4467   return ForceUnreachable ||
  4468          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4469          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4472 void Assembler::emit_data64(jlong data,
  4473                             relocInfo::relocType rtype,
  4474                             int format) {
  4475   if (rtype == relocInfo::none) {
  4476     emit_int64(data);
  4477   } else {
  4478     emit_data64(data, Relocation::spec_simple(rtype), format);
  4482 void Assembler::emit_data64(jlong data,
  4483                             RelocationHolder const& rspec,
  4484                             int format) {
  4485   assert(imm_operand == 0, "default format must be immediate in this file");
  4486   assert(imm_operand == format, "must be immediate");
  4487   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4488   // Do not use AbstractAssembler::relocate, which is not intended for
  4489   // embedded words.  Instead, relocate to the enclosing instruction.
  4490   code_section()->relocate(inst_mark(), rspec, format);
  4491 #ifdef ASSERT
  4492   check_relocation(rspec, format);
  4493 #endif
  4494   emit_int64(data);
  4497 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4498   if (reg_enc >= 8) {
  4499     prefix(REX_B);
  4500     reg_enc -= 8;
  4501   } else if (byteinst && reg_enc >= 4) {
  4502     prefix(REX);
  4504   return reg_enc;
  4507 int Assembler::prefixq_and_encode(int reg_enc) {
  4508   if (reg_enc < 8) {
  4509     prefix(REX_W);
  4510   } else {
  4511     prefix(REX_WB);
  4512     reg_enc -= 8;
  4514   return reg_enc;
  4517 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4518   if (dst_enc < 8) {
  4519     if (src_enc >= 8) {
  4520       prefix(REX_B);
  4521       src_enc -= 8;
  4522     } else if (byteinst && src_enc >= 4) {
  4523       prefix(REX);
  4525   } else {
  4526     if (src_enc < 8) {
  4527       prefix(REX_R);
  4528     } else {
  4529       prefix(REX_RB);
  4530       src_enc -= 8;
  4532     dst_enc -= 8;
  4534   return dst_enc << 3 | src_enc;
  4537 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4538   if (dst_enc < 8) {
  4539     if (src_enc < 8) {
  4540       prefix(REX_W);
  4541     } else {
  4542       prefix(REX_WB);
  4543       src_enc -= 8;
  4545   } else {
  4546     if (src_enc < 8) {
  4547       prefix(REX_WR);
  4548     } else {
  4549       prefix(REX_WRB);
  4550       src_enc -= 8;
  4552     dst_enc -= 8;
  4554   return dst_enc << 3 | src_enc;
  4557 void Assembler::prefix(Register reg) {
  4558   if (reg->encoding() >= 8) {
  4559     prefix(REX_B);
  4563 void Assembler::prefix(Address adr) {
  4564   if (adr.base_needs_rex()) {
  4565     if (adr.index_needs_rex()) {
  4566       prefix(REX_XB);
  4567     } else {
  4568       prefix(REX_B);
  4570   } else {
  4571     if (adr.index_needs_rex()) {
  4572       prefix(REX_X);
  4577 void Assembler::prefixq(Address adr) {
  4578   if (adr.base_needs_rex()) {
  4579     if (adr.index_needs_rex()) {
  4580       prefix(REX_WXB);
  4581     } else {
  4582       prefix(REX_WB);
  4584   } else {
  4585     if (adr.index_needs_rex()) {
  4586       prefix(REX_WX);
  4587     } else {
  4588       prefix(REX_W);
  4594 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4595   if (reg->encoding() < 8) {
  4596     if (adr.base_needs_rex()) {
  4597       if (adr.index_needs_rex()) {
  4598         prefix(REX_XB);
  4599       } else {
  4600         prefix(REX_B);
  4602     } else {
  4603       if (adr.index_needs_rex()) {
  4604         prefix(REX_X);
  4605       } else if (byteinst && reg->encoding() >= 4 ) {
  4606         prefix(REX);
  4609   } else {
  4610     if (adr.base_needs_rex()) {
  4611       if (adr.index_needs_rex()) {
  4612         prefix(REX_RXB);
  4613       } else {
  4614         prefix(REX_RB);
  4616     } else {
  4617       if (adr.index_needs_rex()) {
  4618         prefix(REX_RX);
  4619       } else {
  4620         prefix(REX_R);
  4626 void Assembler::prefixq(Address adr, Register src) {
  4627   if (src->encoding() < 8) {
  4628     if (adr.base_needs_rex()) {
  4629       if (adr.index_needs_rex()) {
  4630         prefix(REX_WXB);
  4631       } else {
  4632         prefix(REX_WB);
  4634     } else {
  4635       if (adr.index_needs_rex()) {
  4636         prefix(REX_WX);
  4637       } else {
  4638         prefix(REX_W);
  4641   } else {
  4642     if (adr.base_needs_rex()) {
  4643       if (adr.index_needs_rex()) {
  4644         prefix(REX_WRXB);
  4645       } else {
  4646         prefix(REX_WRB);
  4648     } else {
  4649       if (adr.index_needs_rex()) {
  4650         prefix(REX_WRX);
  4651       } else {
  4652         prefix(REX_WR);
  4658 void Assembler::prefix(Address adr, XMMRegister reg) {
  4659   if (reg->encoding() < 8) {
  4660     if (adr.base_needs_rex()) {
  4661       if (adr.index_needs_rex()) {
  4662         prefix(REX_XB);
  4663       } else {
  4664         prefix(REX_B);
  4666     } else {
  4667       if (adr.index_needs_rex()) {
  4668         prefix(REX_X);
  4671   } else {
  4672     if (adr.base_needs_rex()) {
  4673       if (adr.index_needs_rex()) {
  4674         prefix(REX_RXB);
  4675       } else {
  4676         prefix(REX_RB);
  4678     } else {
  4679       if (adr.index_needs_rex()) {
  4680         prefix(REX_RX);
  4681       } else {
  4682         prefix(REX_R);
  4688 void Assembler::prefixq(Address adr, XMMRegister src) {
  4689   if (src->encoding() < 8) {
  4690     if (adr.base_needs_rex()) {
  4691       if (adr.index_needs_rex()) {
  4692         prefix(REX_WXB);
  4693       } else {
  4694         prefix(REX_WB);
  4696     } else {
  4697       if (adr.index_needs_rex()) {
  4698         prefix(REX_WX);
  4699       } else {
  4700         prefix(REX_W);
  4703   } else {
  4704     if (adr.base_needs_rex()) {
  4705       if (adr.index_needs_rex()) {
  4706         prefix(REX_WRXB);
  4707       } else {
  4708         prefix(REX_WRB);
  4710     } else {
  4711       if (adr.index_needs_rex()) {
  4712         prefix(REX_WRX);
  4713       } else {
  4714         prefix(REX_WR);
  4720 void Assembler::adcq(Register dst, int32_t imm32) {
  4721   (void) prefixq_and_encode(dst->encoding());
  4722   emit_arith(0x81, 0xD0, dst, imm32);
  4725 void Assembler::adcq(Register dst, Address src) {
  4726   InstructionMark im(this);
  4727   prefixq(src, dst);
  4728   emit_int8(0x13);
  4729   emit_operand(dst, src);
  4732 void Assembler::adcq(Register dst, Register src) {
  4733   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4734   emit_arith(0x13, 0xC0, dst, src);
  4737 void Assembler::addq(Address dst, int32_t imm32) {
  4738   InstructionMark im(this);
  4739   prefixq(dst);
  4740   emit_arith_operand(0x81, rax, dst,imm32);
  4743 void Assembler::addq(Address dst, Register src) {
  4744   InstructionMark im(this);
  4745   prefixq(dst, src);
  4746   emit_int8(0x01);
  4747   emit_operand(src, dst);
  4750 void Assembler::addq(Register dst, int32_t imm32) {
  4751   (void) prefixq_and_encode(dst->encoding());
  4752   emit_arith(0x81, 0xC0, dst, imm32);
  4755 void Assembler::addq(Register dst, Address src) {
  4756   InstructionMark im(this);
  4757   prefixq(src, dst);
  4758   emit_int8(0x03);
  4759   emit_operand(dst, src);
  4762 void Assembler::addq(Register dst, Register src) {
  4763   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4764   emit_arith(0x03, 0xC0, dst, src);
  4767 void Assembler::andq(Address dst, int32_t imm32) {
  4768   InstructionMark im(this);
  4769   prefixq(dst);
  4770   emit_int8((unsigned char)0x81);
  4771   emit_operand(rsp, dst, 4);
  4772   emit_int32(imm32);
  4775 void Assembler::andq(Register dst, int32_t imm32) {
  4776   (void) prefixq_and_encode(dst->encoding());
  4777   emit_arith(0x81, 0xE0, dst, imm32);
  4780 void Assembler::andq(Register dst, Address src) {
  4781   InstructionMark im(this);
  4782   prefixq(src, dst);
  4783   emit_int8(0x23);
  4784   emit_operand(dst, src);
  4787 void Assembler::andq(Register dst, Register src) {
  4788   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4789   emit_arith(0x23, 0xC0, dst, src);
  4792 void Assembler::bsfq(Register dst, Register src) {
  4793   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4794   emit_int8(0x0F);
  4795   emit_int8((unsigned char)0xBC);
  4796   emit_int8((unsigned char)(0xC0 | encode));
  4799 void Assembler::bsrq(Register dst, Register src) {
  4800   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4801   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4802   emit_int8(0x0F);
  4803   emit_int8((unsigned char)0xBD);
  4804   emit_int8((unsigned char)(0xC0 | encode));
  4807 void Assembler::bswapq(Register reg) {
  4808   int encode = prefixq_and_encode(reg->encoding());
  4809   emit_int8(0x0F);
  4810   emit_int8((unsigned char)(0xC8 | encode));
  4813 void Assembler::cdqq() {
  4814   prefix(REX_W);
  4815   emit_int8((unsigned char)0x99);
  4818 void Assembler::clflush(Address adr) {
  4819   prefix(adr);
  4820   emit_int8(0x0F);
  4821   emit_int8((unsigned char)0xAE);
  4822   emit_operand(rdi, adr);
  4825 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4826   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4827   emit_int8(0x0F);
  4828   emit_int8(0x40 | cc);
  4829   emit_int8((unsigned char)(0xC0 | encode));
  4832 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4833   InstructionMark im(this);
  4834   prefixq(src, dst);
  4835   emit_int8(0x0F);
  4836   emit_int8(0x40 | cc);
  4837   emit_operand(dst, src);
  4840 void Assembler::cmpq(Address dst, int32_t imm32) {
  4841   InstructionMark im(this);
  4842   prefixq(dst);
  4843   emit_int8((unsigned char)0x81);
  4844   emit_operand(rdi, dst, 4);
  4845   emit_int32(imm32);
  4848 void Assembler::cmpq(Register dst, int32_t imm32) {
  4849   (void) prefixq_and_encode(dst->encoding());
  4850   emit_arith(0x81, 0xF8, dst, imm32);
  4853 void Assembler::cmpq(Address dst, Register src) {
  4854   InstructionMark im(this);
  4855   prefixq(dst, src);
  4856   emit_int8(0x3B);
  4857   emit_operand(src, dst);
  4860 void Assembler::cmpq(Register dst, Register src) {
  4861   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4862   emit_arith(0x3B, 0xC0, dst, src);
  4865 void Assembler::cmpq(Register dst, Address  src) {
  4866   InstructionMark im(this);
  4867   prefixq(src, dst);
  4868   emit_int8(0x3B);
  4869   emit_operand(dst, src);
  4872 void Assembler::cmpxchgq(Register reg, Address adr) {
  4873   InstructionMark im(this);
  4874   prefixq(adr, reg);
  4875   emit_int8(0x0F);
  4876   emit_int8((unsigned char)0xB1);
  4877   emit_operand(reg, adr);
  4880 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4881   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4882   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4883   emit_int8(0x2A);
  4884   emit_int8((unsigned char)(0xC0 | encode));
  4887 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4888   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4889   InstructionMark im(this);
  4890   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4891   emit_int8(0x2A);
  4892   emit_operand(dst, src);
  4895 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4896   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4897   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4898   emit_int8(0x2A);
  4899   emit_int8((unsigned char)(0xC0 | encode));
  4902 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4903   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4904   InstructionMark im(this);
  4905   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4906   emit_int8(0x2A);
  4907   emit_operand(dst, src);
  4910 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4911   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4912   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4913   emit_int8(0x2C);
  4914   emit_int8((unsigned char)(0xC0 | encode));
  4917 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4918   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4919   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4920   emit_int8(0x2C);
  4921   emit_int8((unsigned char)(0xC0 | encode));
  4924 void Assembler::decl(Register dst) {
  4925   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4926   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4927   int encode = prefix_and_encode(dst->encoding());
  4928   emit_int8((unsigned char)0xFF);
  4929   emit_int8((unsigned char)(0xC8 | encode));
  4932 void Assembler::decq(Register dst) {
  4933   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4934   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4935   int encode = prefixq_and_encode(dst->encoding());
  4936   emit_int8((unsigned char)0xFF);
  4937   emit_int8(0xC8 | encode);
  4940 void Assembler::decq(Address dst) {
  4941   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4942   InstructionMark im(this);
  4943   prefixq(dst);
  4944   emit_int8((unsigned char)0xFF);
  4945   emit_operand(rcx, dst);
  4948 void Assembler::fxrstor(Address src) {
  4949   prefixq(src);
  4950   emit_int8(0x0F);
  4951   emit_int8((unsigned char)0xAE);
  4952   emit_operand(as_Register(1), src);
  4955 void Assembler::fxsave(Address dst) {
  4956   prefixq(dst);
  4957   emit_int8(0x0F);
  4958   emit_int8((unsigned char)0xAE);
  4959   emit_operand(as_Register(0), dst);
  4962 void Assembler::idivq(Register src) {
  4963   int encode = prefixq_and_encode(src->encoding());
  4964   emit_int8((unsigned char)0xF7);
  4965   emit_int8((unsigned char)(0xF8 | encode));
  4968 void Assembler::imulq(Register dst, Register src) {
  4969   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4970   emit_int8(0x0F);
  4971   emit_int8((unsigned char)0xAF);
  4972   emit_int8((unsigned char)(0xC0 | encode));
  4975 void Assembler::imulq(Register dst, Register src, int value) {
  4976   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4977   if (is8bit(value)) {
  4978     emit_int8(0x6B);
  4979     emit_int8((unsigned char)(0xC0 | encode));
  4980     emit_int8(value & 0xFF);
  4981   } else {
  4982     emit_int8(0x69);
  4983     emit_int8((unsigned char)(0xC0 | encode));
  4984     emit_int32(value);
  4988 void Assembler::incl(Register dst) {
  4989   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4990   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4991   int encode = prefix_and_encode(dst->encoding());
  4992   emit_int8((unsigned char)0xFF);
  4993   emit_int8((unsigned char)(0xC0 | encode));
  4996 void Assembler::incq(Register dst) {
  4997   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4998   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4999   int encode = prefixq_and_encode(dst->encoding());
  5000   emit_int8((unsigned char)0xFF);
  5001   emit_int8((unsigned char)(0xC0 | encode));
  5004 void Assembler::incq(Address dst) {
  5005   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5006   InstructionMark im(this);
  5007   prefixq(dst);
  5008   emit_int8((unsigned char)0xFF);
  5009   emit_operand(rax, dst);
  5012 void Assembler::lea(Register dst, Address src) {
  5013   leaq(dst, src);
  5016 void Assembler::leaq(Register dst, Address src) {
  5017   InstructionMark im(this);
  5018   prefixq(src, dst);
  5019   emit_int8((unsigned char)0x8D);
  5020   emit_operand(dst, src);
  5023 void Assembler::mov64(Register dst, int64_t imm64) {
  5024   InstructionMark im(this);
  5025   int encode = prefixq_and_encode(dst->encoding());
  5026   emit_int8((unsigned char)(0xB8 | encode));
  5027   emit_int64(imm64);
  5030 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  5031   InstructionMark im(this);
  5032   int encode = prefixq_and_encode(dst->encoding());
  5033   emit_int8(0xB8 | encode);
  5034   emit_data64(imm64, rspec);
  5037 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  5038   InstructionMark im(this);
  5039   int encode = prefix_and_encode(dst->encoding());
  5040   emit_int8((unsigned char)(0xB8 | encode));
  5041   emit_data((int)imm32, rspec, narrow_oop_operand);
  5044 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  5045   InstructionMark im(this);
  5046   prefix(dst);
  5047   emit_int8((unsigned char)0xC7);
  5048   emit_operand(rax, dst, 4);
  5049   emit_data((int)imm32, rspec, narrow_oop_operand);
  5052 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  5053   InstructionMark im(this);
  5054   int encode = prefix_and_encode(src1->encoding());
  5055   emit_int8((unsigned char)0x81);
  5056   emit_int8((unsigned char)(0xF8 | encode));
  5057   emit_data((int)imm32, rspec, narrow_oop_operand);
  5060 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5061   InstructionMark im(this);
  5062   prefix(src1);
  5063   emit_int8((unsigned char)0x81);
  5064   emit_operand(rax, src1, 4);
  5065   emit_data((int)imm32, rspec, narrow_oop_operand);
  5068 void Assembler::lzcntq(Register dst, Register src) {
  5069   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5070   emit_int8((unsigned char)0xF3);
  5071   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5072   emit_int8(0x0F);
  5073   emit_int8((unsigned char)0xBD);
  5074   emit_int8((unsigned char)(0xC0 | encode));
  5077 void Assembler::movdq(XMMRegister dst, Register src) {
  5078   // table D-1 says MMX/SSE2
  5079   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5080   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5081   emit_int8(0x6E);
  5082   emit_int8((unsigned char)(0xC0 | encode));
  5085 void Assembler::movdq(Register dst, XMMRegister src) {
  5086   // table D-1 says MMX/SSE2
  5087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5088   // swap src/dst to get correct prefix
  5089   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5090   emit_int8(0x7E);
  5091   emit_int8((unsigned char)(0xC0 | encode));
  5094 void Assembler::movq(Register dst, Register src) {
  5095   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5096   emit_int8((unsigned char)0x8B);
  5097   emit_int8((unsigned char)(0xC0 | encode));
  5100 void Assembler::movq(Register dst, Address src) {
  5101   InstructionMark im(this);
  5102   prefixq(src, dst);
  5103   emit_int8((unsigned char)0x8B);
  5104   emit_operand(dst, src);
  5107 void Assembler::movq(Address dst, Register src) {
  5108   InstructionMark im(this);
  5109   prefixq(dst, src);
  5110   emit_int8((unsigned char)0x89);
  5111   emit_operand(src, dst);
  5114 void Assembler::movsbq(Register dst, Address src) {
  5115   InstructionMark im(this);
  5116   prefixq(src, dst);
  5117   emit_int8(0x0F);
  5118   emit_int8((unsigned char)0xBE);
  5119   emit_operand(dst, src);
  5122 void Assembler::movsbq(Register dst, Register src) {
  5123   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5124   emit_int8(0x0F);
  5125   emit_int8((unsigned char)0xBE);
  5126   emit_int8((unsigned char)(0xC0 | encode));
  5129 void Assembler::movslq(Register dst, int32_t imm32) {
  5130   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5131   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5132   // as a result we shouldn't use until tested at runtime...
  5133   ShouldNotReachHere();
  5134   InstructionMark im(this);
  5135   int encode = prefixq_and_encode(dst->encoding());
  5136   emit_int8((unsigned char)(0xC7 | encode));
  5137   emit_int32(imm32);
  5140 void Assembler::movslq(Address dst, int32_t imm32) {
  5141   assert(is_simm32(imm32), "lost bits");
  5142   InstructionMark im(this);
  5143   prefixq(dst);
  5144   emit_int8((unsigned char)0xC7);
  5145   emit_operand(rax, dst, 4);
  5146   emit_int32(imm32);
  5149 void Assembler::movslq(Register dst, Address src) {
  5150   InstructionMark im(this);
  5151   prefixq(src, dst);
  5152   emit_int8(0x63);
  5153   emit_operand(dst, src);
  5156 void Assembler::movslq(Register dst, Register src) {
  5157   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5158   emit_int8(0x63);
  5159   emit_int8((unsigned char)(0xC0 | encode));
  5162 void Assembler::movswq(Register dst, Address src) {
  5163   InstructionMark im(this);
  5164   prefixq(src, dst);
  5165   emit_int8(0x0F);
  5166   emit_int8((unsigned char)0xBF);
  5167   emit_operand(dst, src);
  5170 void Assembler::movswq(Register dst, Register src) {
  5171   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5172   emit_int8((unsigned char)0x0F);
  5173   emit_int8((unsigned char)0xBF);
  5174   emit_int8((unsigned char)(0xC0 | encode));
  5177 void Assembler::movzbq(Register dst, Address src) {
  5178   InstructionMark im(this);
  5179   prefixq(src, dst);
  5180   emit_int8((unsigned char)0x0F);
  5181   emit_int8((unsigned char)0xB6);
  5182   emit_operand(dst, src);
  5185 void Assembler::movzbq(Register dst, Register src) {
  5186   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5187   emit_int8(0x0F);
  5188   emit_int8((unsigned char)0xB6);
  5189   emit_int8(0xC0 | encode);
  5192 void Assembler::movzwq(Register dst, Address src) {
  5193   InstructionMark im(this);
  5194   prefixq(src, dst);
  5195   emit_int8((unsigned char)0x0F);
  5196   emit_int8((unsigned char)0xB7);
  5197   emit_operand(dst, src);
  5200 void Assembler::movzwq(Register dst, Register src) {
  5201   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5202   emit_int8((unsigned char)0x0F);
  5203   emit_int8((unsigned char)0xB7);
  5204   emit_int8((unsigned char)(0xC0 | encode));
  5207 void Assembler::negq(Register dst) {
  5208   int encode = prefixq_and_encode(dst->encoding());
  5209   emit_int8((unsigned char)0xF7);
  5210   emit_int8((unsigned char)(0xD8 | encode));
  5213 void Assembler::notq(Register dst) {
  5214   int encode = prefixq_and_encode(dst->encoding());
  5215   emit_int8((unsigned char)0xF7);
  5216   emit_int8((unsigned char)(0xD0 | encode));
  5219 void Assembler::orq(Address dst, int32_t imm32) {
  5220   InstructionMark im(this);
  5221   prefixq(dst);
  5222   emit_int8((unsigned char)0x81);
  5223   emit_operand(rcx, dst, 4);
  5224   emit_int32(imm32);
  5227 void Assembler::orq(Register dst, int32_t imm32) {
  5228   (void) prefixq_and_encode(dst->encoding());
  5229   emit_arith(0x81, 0xC8, dst, imm32);
  5232 void Assembler::orq(Register dst, Address src) {
  5233   InstructionMark im(this);
  5234   prefixq(src, dst);
  5235   emit_int8(0x0B);
  5236   emit_operand(dst, src);
  5239 void Assembler::orq(Register dst, Register src) {
  5240   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5241   emit_arith(0x0B, 0xC0, dst, src);
  5244 void Assembler::popa() { // 64bit
  5245   movq(r15, Address(rsp, 0));
  5246   movq(r14, Address(rsp, wordSize));
  5247   movq(r13, Address(rsp, 2 * wordSize));
  5248   movq(r12, Address(rsp, 3 * wordSize));
  5249   movq(r11, Address(rsp, 4 * wordSize));
  5250   movq(r10, Address(rsp, 5 * wordSize));
  5251   movq(r9,  Address(rsp, 6 * wordSize));
  5252   movq(r8,  Address(rsp, 7 * wordSize));
  5253   movq(rdi, Address(rsp, 8 * wordSize));
  5254   movq(rsi, Address(rsp, 9 * wordSize));
  5255   movq(rbp, Address(rsp, 10 * wordSize));
  5256   // skip rsp
  5257   movq(rbx, Address(rsp, 12 * wordSize));
  5258   movq(rdx, Address(rsp, 13 * wordSize));
  5259   movq(rcx, Address(rsp, 14 * wordSize));
  5260   movq(rax, Address(rsp, 15 * wordSize));
  5262   addq(rsp, 16 * wordSize);
  5265 void Assembler::popcntq(Register dst, Address src) {
  5266   assert(VM_Version::supports_popcnt(), "must support");
  5267   InstructionMark im(this);
  5268   emit_int8((unsigned char)0xF3);
  5269   prefixq(src, dst);
  5270   emit_int8((unsigned char)0x0F);
  5271   emit_int8((unsigned char)0xB8);
  5272   emit_operand(dst, src);
  5275 void Assembler::popcntq(Register dst, Register src) {
  5276   assert(VM_Version::supports_popcnt(), "must support");
  5277   emit_int8((unsigned char)0xF3);
  5278   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5279   emit_int8((unsigned char)0x0F);
  5280   emit_int8((unsigned char)0xB8);
  5281   emit_int8((unsigned char)(0xC0 | encode));
  5284 void Assembler::popq(Address dst) {
  5285   InstructionMark im(this);
  5286   prefixq(dst);
  5287   emit_int8((unsigned char)0x8F);
  5288   emit_operand(rax, dst);
  5291 void Assembler::pusha() { // 64bit
  5292   // we have to store original rsp.  ABI says that 128 bytes
  5293   // below rsp are local scratch.
  5294   movq(Address(rsp, -5 * wordSize), rsp);
  5296   subq(rsp, 16 * wordSize);
  5298   movq(Address(rsp, 15 * wordSize), rax);
  5299   movq(Address(rsp, 14 * wordSize), rcx);
  5300   movq(Address(rsp, 13 * wordSize), rdx);
  5301   movq(Address(rsp, 12 * wordSize), rbx);
  5302   // skip rsp
  5303   movq(Address(rsp, 10 * wordSize), rbp);
  5304   movq(Address(rsp, 9 * wordSize), rsi);
  5305   movq(Address(rsp, 8 * wordSize), rdi);
  5306   movq(Address(rsp, 7 * wordSize), r8);
  5307   movq(Address(rsp, 6 * wordSize), r9);
  5308   movq(Address(rsp, 5 * wordSize), r10);
  5309   movq(Address(rsp, 4 * wordSize), r11);
  5310   movq(Address(rsp, 3 * wordSize), r12);
  5311   movq(Address(rsp, 2 * wordSize), r13);
  5312   movq(Address(rsp, wordSize), r14);
  5313   movq(Address(rsp, 0), r15);
  5316 void Assembler::pushq(Address src) {
  5317   InstructionMark im(this);
  5318   prefixq(src);
  5319   emit_int8((unsigned char)0xFF);
  5320   emit_operand(rsi, src);
  5323 void Assembler::rclq(Register dst, int imm8) {
  5324   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5325   int encode = prefixq_and_encode(dst->encoding());
  5326   if (imm8 == 1) {
  5327     emit_int8((unsigned char)0xD1);
  5328     emit_int8((unsigned char)(0xD0 | encode));
  5329   } else {
  5330     emit_int8((unsigned char)0xC1);
  5331     emit_int8((unsigned char)(0xD0 | encode));
  5332     emit_int8(imm8);
  5335 void Assembler::sarq(Register dst, int imm8) {
  5336   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5337   int encode = prefixq_and_encode(dst->encoding());
  5338   if (imm8 == 1) {
  5339     emit_int8((unsigned char)0xD1);
  5340     emit_int8((unsigned char)(0xF8 | encode));
  5341   } else {
  5342     emit_int8((unsigned char)0xC1);
  5343     emit_int8((unsigned char)(0xF8 | encode));
  5344     emit_int8(imm8);
  5348 void Assembler::sarq(Register dst) {
  5349   int encode = prefixq_and_encode(dst->encoding());
  5350   emit_int8((unsigned char)0xD3);
  5351   emit_int8((unsigned char)(0xF8 | encode));
  5354 void Assembler::sbbq(Address dst, int32_t imm32) {
  5355   InstructionMark im(this);
  5356   prefixq(dst);
  5357   emit_arith_operand(0x81, rbx, dst, imm32);
  5360 void Assembler::sbbq(Register dst, int32_t imm32) {
  5361   (void) prefixq_and_encode(dst->encoding());
  5362   emit_arith(0x81, 0xD8, dst, imm32);
  5365 void Assembler::sbbq(Register dst, Address src) {
  5366   InstructionMark im(this);
  5367   prefixq(src, dst);
  5368   emit_int8(0x1B);
  5369   emit_operand(dst, src);
  5372 void Assembler::sbbq(Register dst, Register src) {
  5373   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5374   emit_arith(0x1B, 0xC0, dst, src);
  5377 void Assembler::shlq(Register dst, int imm8) {
  5378   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5379   int encode = prefixq_and_encode(dst->encoding());
  5380   if (imm8 == 1) {
  5381     emit_int8((unsigned char)0xD1);
  5382     emit_int8((unsigned char)(0xE0 | encode));
  5383   } else {
  5384     emit_int8((unsigned char)0xC1);
  5385     emit_int8((unsigned char)(0xE0 | encode));
  5386     emit_int8(imm8);
  5390 void Assembler::shlq(Register dst) {
  5391   int encode = prefixq_and_encode(dst->encoding());
  5392   emit_int8((unsigned char)0xD3);
  5393   emit_int8((unsigned char)(0xE0 | encode));
  5396 void Assembler::shrq(Register dst, int imm8) {
  5397   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5398   int encode = prefixq_and_encode(dst->encoding());
  5399   emit_int8((unsigned char)0xC1);
  5400   emit_int8((unsigned char)(0xE8 | encode));
  5401   emit_int8(imm8);
  5404 void Assembler::shrq(Register dst) {
  5405   int encode = prefixq_and_encode(dst->encoding());
  5406   emit_int8((unsigned char)0xD3);
  5407   emit_int8(0xE8 | encode);
  5410 void Assembler::subq(Address dst, int32_t imm32) {
  5411   InstructionMark im(this);
  5412   prefixq(dst);
  5413   emit_arith_operand(0x81, rbp, dst, imm32);
  5416 void Assembler::subq(Address dst, Register src) {
  5417   InstructionMark im(this);
  5418   prefixq(dst, src);
  5419   emit_int8(0x29);
  5420   emit_operand(src, dst);
  5423 void Assembler::subq(Register dst, int32_t imm32) {
  5424   (void) prefixq_and_encode(dst->encoding());
  5425   emit_arith(0x81, 0xE8, dst, imm32);
  5428 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5429 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5430   (void) prefixq_and_encode(dst->encoding());
  5431   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5434 void Assembler::subq(Register dst, Address src) {
  5435   InstructionMark im(this);
  5436   prefixq(src, dst);
  5437   emit_int8(0x2B);
  5438   emit_operand(dst, src);
  5441 void Assembler::subq(Register dst, Register src) {
  5442   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5443   emit_arith(0x2B, 0xC0, dst, src);
  5446 void Assembler::testq(Register dst, int32_t imm32) {
  5447   // not using emit_arith because test
  5448   // doesn't support sign-extension of
  5449   // 8bit operands
  5450   int encode = dst->encoding();
  5451   if (encode == 0) {
  5452     prefix(REX_W);
  5453     emit_int8((unsigned char)0xA9);
  5454   } else {
  5455     encode = prefixq_and_encode(encode);
  5456     emit_int8((unsigned char)0xF7);
  5457     emit_int8((unsigned char)(0xC0 | encode));
  5459   emit_int32(imm32);
  5462 void Assembler::testq(Register dst, Register src) {
  5463   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5464   emit_arith(0x85, 0xC0, dst, src);
  5467 void Assembler::xaddq(Address dst, Register src) {
  5468   InstructionMark im(this);
  5469   prefixq(dst, src);
  5470   emit_int8(0x0F);
  5471   emit_int8((unsigned char)0xC1);
  5472   emit_operand(src, dst);
  5475 void Assembler::xchgq(Register dst, Address src) {
  5476   InstructionMark im(this);
  5477   prefixq(src, dst);
  5478   emit_int8((unsigned char)0x87);
  5479   emit_operand(dst, src);
  5482 void Assembler::xchgq(Register dst, Register src) {
  5483   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5484   emit_int8((unsigned char)0x87);
  5485   emit_int8((unsigned char)(0xc0 | encode));
  5488 void Assembler::xorq(Register dst, Register src) {
  5489   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5490   emit_arith(0x33, 0xC0, dst, src);
  5493 void Assembler::xorq(Register dst, Address src) {
  5494   InstructionMark im(this);
  5495   prefixq(src, dst);
  5496   emit_int8(0x33);
  5497   emit_operand(dst, src);
  5500 #endif // !LP64

mercurial