src/cpu/x86/vm/vm_version_x86.cpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3587
0368109684cb
child 3929
2c368ea3e844
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "runtime/java.hpp"
    29 #include "runtime/stubCodeGenerator.hpp"
    30 #include "vm_version_x86.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    40 #ifdef TARGET_OS_FAMILY_bsd
    41 # include "os_bsd.inline.hpp"
    42 #endif
    45 int VM_Version::_cpu;
    46 int VM_Version::_model;
    47 int VM_Version::_stepping;
    48 int VM_Version::_cpuFeatures;
    49 const char*           VM_Version::_features_str = "";
    50 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    52 static BufferBlob* stub_blob;
    53 static const int stub_size = 550;
    55 extern "C" {
    56   typedef void (*getPsrInfo_stub_t)(void*);
    57 }
    58 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    61 class VM_Version_StubGenerator: public StubCodeGenerator {
    62  public:
    64   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    66   address generate_getPsrInfo() {
    67     // Flags to test CPU type.
    68     const uint32_t HS_EFL_AC           = 0x40000;
    69     const uint32_t HS_EFL_ID           = 0x200000;
    70     // Values for when we don't have a CPUID instruction.
    71     const int      CPU_FAMILY_SHIFT = 8;
    72     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    73     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    75     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    76     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    78     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    79 #   define __ _masm->
    81     address start = __ pc();
    83     //
    84     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    85     //
    86     // LP64: rcx and rdx are first and second argument registers on windows
    88     __ push(rbp);
    89 #ifdef _LP64
    90     __ mov(rbp, c_rarg0); // cpuid_info address
    91 #else
    92     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    93 #endif
    94     __ push(rbx);
    95     __ push(rsi);
    96     __ pushf();          // preserve rbx, and flags
    97     __ pop(rax);
    98     __ push(rax);
    99     __ mov(rcx, rax);
   100     //
   101     // if we are unable to change the AC flag, we have a 386
   102     //
   103     __ xorl(rax, HS_EFL_AC);
   104     __ push(rax);
   105     __ popf();
   106     __ pushf();
   107     __ pop(rax);
   108     __ cmpptr(rax, rcx);
   109     __ jccb(Assembler::notEqual, detect_486);
   111     __ movl(rax, CPU_FAMILY_386);
   112     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   113     __ jmp(done);
   115     //
   116     // If we are unable to change the ID flag, we have a 486 which does
   117     // not support the "cpuid" instruction.
   118     //
   119     __ bind(detect_486);
   120     __ mov(rax, rcx);
   121     __ xorl(rax, HS_EFL_ID);
   122     __ push(rax);
   123     __ popf();
   124     __ pushf();
   125     __ pop(rax);
   126     __ cmpptr(rcx, rax);
   127     __ jccb(Assembler::notEqual, detect_586);
   129     __ bind(cpu486);
   130     __ movl(rax, CPU_FAMILY_486);
   131     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   132     __ jmp(done);
   134     //
   135     // At this point, we have a chip which supports the "cpuid" instruction
   136     //
   137     __ bind(detect_586);
   138     __ xorl(rax, rax);
   139     __ cpuid();
   140     __ orl(rax, rax);
   141     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   142                                         // value of at least 1, we give up and
   143                                         // assume a 486
   144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   145     __ movl(Address(rsi, 0), rax);
   146     __ movl(Address(rsi, 4), rbx);
   147     __ movl(Address(rsi, 8), rcx);
   148     __ movl(Address(rsi,12), rdx);
   150     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   151     __ jccb(Assembler::belowEqual, std_cpuid4);
   153     //
   154     // cpuid(0xB) Processor Topology
   155     //
   156     __ movl(rax, 0xb);
   157     __ xorl(rcx, rcx);   // Threads level
   158     __ cpuid();
   160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   161     __ movl(Address(rsi, 0), rax);
   162     __ movl(Address(rsi, 4), rbx);
   163     __ movl(Address(rsi, 8), rcx);
   164     __ movl(Address(rsi,12), rdx);
   166     __ movl(rax, 0xb);
   167     __ movl(rcx, 1);     // Cores level
   168     __ cpuid();
   169     __ push(rax);
   170     __ andl(rax, 0x1f);  // Determine if valid topology level
   171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   172     __ andl(rax, 0xffff);
   173     __ pop(rax);
   174     __ jccb(Assembler::equal, std_cpuid4);
   176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   177     __ movl(Address(rsi, 0), rax);
   178     __ movl(Address(rsi, 4), rbx);
   179     __ movl(Address(rsi, 8), rcx);
   180     __ movl(Address(rsi,12), rdx);
   182     __ movl(rax, 0xb);
   183     __ movl(rcx, 2);     // Packages level
   184     __ cpuid();
   185     __ push(rax);
   186     __ andl(rax, 0x1f);  // Determine if valid topology level
   187     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   188     __ andl(rax, 0xffff);
   189     __ pop(rax);
   190     __ jccb(Assembler::equal, std_cpuid4);
   192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   193     __ movl(Address(rsi, 0), rax);
   194     __ movl(Address(rsi, 4), rbx);
   195     __ movl(Address(rsi, 8), rcx);
   196     __ movl(Address(rsi,12), rdx);
   198     //
   199     // cpuid(0x4) Deterministic cache params
   200     //
   201     __ bind(std_cpuid4);
   202     __ movl(rax, 4);
   203     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   204     __ jccb(Assembler::greater, std_cpuid1);
   206     __ xorl(rcx, rcx);   // L1 cache
   207     __ cpuid();
   208     __ push(rax);
   209     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   210     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   211     __ pop(rax);
   212     __ jccb(Assembler::equal, std_cpuid1);
   214     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   215     __ movl(Address(rsi, 0), rax);
   216     __ movl(Address(rsi, 4), rbx);
   217     __ movl(Address(rsi, 8), rcx);
   218     __ movl(Address(rsi,12), rdx);
   220     //
   221     // Standard cpuid(0x1)
   222     //
   223     __ bind(std_cpuid1);
   224     __ movl(rax, 1);
   225     __ cpuid();
   226     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   227     __ movl(Address(rsi, 0), rax);
   228     __ movl(Address(rsi, 4), rbx);
   229     __ movl(Address(rsi, 8), rcx);
   230     __ movl(Address(rsi,12), rdx);
   232     //
   233     // Check if OS has enabled XGETBV instruction to access XCR0
   234     // (OSXSAVE feature flag) and CPU supports AVX
   235     //
   236     __ andl(rcx, 0x18000000);
   237     __ cmpl(rcx, 0x18000000);
   238     __ jccb(Assembler::notEqual, sef_cpuid);
   240     //
   241     // XCR0, XFEATURE_ENABLED_MASK register
   242     //
   243     __ xorl(rcx, rcx);   // zero for XCR0 register
   244     __ xgetbv();
   245     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   246     __ movl(Address(rsi, 0), rax);
   247     __ movl(Address(rsi, 4), rdx);
   249     //
   250     // cpuid(0x7) Structured Extended Features
   251     //
   252     __ bind(sef_cpuid);
   253     __ movl(rax, 7);
   254     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   255     __ jccb(Assembler::greater, ext_cpuid);
   257     __ xorl(rcx, rcx);
   258     __ cpuid();
   259     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   260     __ movl(Address(rsi, 0), rax);
   261     __ movl(Address(rsi, 4), rbx);
   263     //
   264     // Extended cpuid(0x80000000)
   265     //
   266     __ bind(ext_cpuid);
   267     __ movl(rax, 0x80000000);
   268     __ cpuid();
   269     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   270     __ jcc(Assembler::belowEqual, done);
   271     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   272     __ jccb(Assembler::belowEqual, ext_cpuid1);
   273     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   274     __ jccb(Assembler::belowEqual, ext_cpuid5);
   275     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   276     __ jccb(Assembler::belowEqual, ext_cpuid7);
   277     //
   278     // Extended cpuid(0x80000008)
   279     //
   280     __ movl(rax, 0x80000008);
   281     __ cpuid();
   282     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   283     __ movl(Address(rsi, 0), rax);
   284     __ movl(Address(rsi, 4), rbx);
   285     __ movl(Address(rsi, 8), rcx);
   286     __ movl(Address(rsi,12), rdx);
   288     //
   289     // Extended cpuid(0x80000007)
   290     //
   291     __ bind(ext_cpuid7);
   292     __ movl(rax, 0x80000007);
   293     __ cpuid();
   294     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   295     __ movl(Address(rsi, 0), rax);
   296     __ movl(Address(rsi, 4), rbx);
   297     __ movl(Address(rsi, 8), rcx);
   298     __ movl(Address(rsi,12), rdx);
   300     //
   301     // Extended cpuid(0x80000005)
   302     //
   303     __ bind(ext_cpuid5);
   304     __ movl(rax, 0x80000005);
   305     __ cpuid();
   306     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   307     __ movl(Address(rsi, 0), rax);
   308     __ movl(Address(rsi, 4), rbx);
   309     __ movl(Address(rsi, 8), rcx);
   310     __ movl(Address(rsi,12), rdx);
   312     //
   313     // Extended cpuid(0x80000001)
   314     //
   315     __ bind(ext_cpuid1);
   316     __ movl(rax, 0x80000001);
   317     __ cpuid();
   318     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   319     __ movl(Address(rsi, 0), rax);
   320     __ movl(Address(rsi, 4), rbx);
   321     __ movl(Address(rsi, 8), rcx);
   322     __ movl(Address(rsi,12), rdx);
   324     //
   325     // return
   326     //
   327     __ bind(done);
   328     __ popf();
   329     __ pop(rsi);
   330     __ pop(rbx);
   331     __ pop(rbp);
   332     __ ret(0);
   334 #   undef __
   336     return start;
   337   };
   338 };
   341 void VM_Version::get_processor_features() {
   343   _cpu = 4; // 486 by default
   344   _model = 0;
   345   _stepping = 0;
   346   _cpuFeatures = 0;
   347   _logical_processors_per_package = 1;
   349   if (!Use486InstrsOnly) {
   350     // Get raw processor info
   351     getPsrInfo_stub(&_cpuid_info);
   352     assert_is_initialized();
   353     _cpu = extended_cpu_family();
   354     _model = extended_cpu_model();
   355     _stepping = cpu_stepping();
   357     if (cpu_family() > 4) { // it supports CPUID
   358       _cpuFeatures = feature_flags();
   359       // Logical processors are only available on P4s and above,
   360       // and only if hyperthreading is available.
   361       _logical_processors_per_package = logical_processor_count();
   362     }
   363   }
   365   _supports_cx8 = supports_cmpxchg8();
   367 #ifdef _LP64
   368   // OS should support SSE for x64 and hardware should support at least SSE2.
   369   if (!VM_Version::supports_sse2()) {
   370     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   371   }
   372   // in 64 bit the use of SSE2 is the minimum
   373   if (UseSSE < 2) UseSSE = 2;
   374 #endif
   376 #ifdef AMD64
   377   // flush_icache_stub have to be generated first.
   378   // That is why Icache line size is hard coded in ICache class,
   379   // see icache_x86.hpp. It is also the reason why we can't use
   380   // clflush instruction in 32-bit VM since it could be running
   381   // on CPU which does not support it.
   382   //
   383   // The only thing we can do is to verify that flushed
   384   // ICache::line_size has correct value.
   385   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   386   // clflush_size is size in quadwords (8 bytes).
   387   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   388 #endif
   390   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   391   if (!os::supports_sse())
   392     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   394   if (UseSSE < 4) {
   395     _cpuFeatures &= ~CPU_SSE4_1;
   396     _cpuFeatures &= ~CPU_SSE4_2;
   397   }
   399   if (UseSSE < 3) {
   400     _cpuFeatures &= ~CPU_SSE3;
   401     _cpuFeatures &= ~CPU_SSSE3;
   402     _cpuFeatures &= ~CPU_SSE4A;
   403   }
   405   if (UseSSE < 2)
   406     _cpuFeatures &= ~CPU_SSE2;
   408   if (UseSSE < 1)
   409     _cpuFeatures &= ~CPU_SSE;
   411   if (UseAVX < 2)
   412     _cpuFeatures &= ~CPU_AVX2;
   414   if (UseAVX < 1)
   415     _cpuFeatures &= ~CPU_AVX;
   417   if (logical_processors_per_package() == 1) {
   418     // HT processor could be installed on a system which doesn't support HT.
   419     _cpuFeatures &= ~CPU_HT;
   420   }
   422   char buf[256];
   423   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   424                cores_per_cpu(), threads_per_core(),
   425                cpu_family(), _model, _stepping,
   426                (supports_cmov() ? ", cmov" : ""),
   427                (supports_cmpxchg8() ? ", cx8" : ""),
   428                (supports_fxsr() ? ", fxsr" : ""),
   429                (supports_mmx()  ? ", mmx"  : ""),
   430                (supports_sse()  ? ", sse"  : ""),
   431                (supports_sse2() ? ", sse2" : ""),
   432                (supports_sse3() ? ", sse3" : ""),
   433                (supports_ssse3()? ", ssse3": ""),
   434                (supports_sse4_1() ? ", sse4.1" : ""),
   435                (supports_sse4_2() ? ", sse4.2" : ""),
   436                (supports_popcnt() ? ", popcnt" : ""),
   437                (supports_avx()    ? ", avx" : ""),
   438                (supports_avx2()   ? ", avx2" : ""),
   439                (supports_mmx_ext() ? ", mmxext" : ""),
   440                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   441                (supports_lzcnt()   ? ", lzcnt": ""),
   442                (supports_sse4a()   ? ", sse4a": ""),
   443                (supports_ht() ? ", ht": ""),
   444                (supports_tsc() ? ", tsc": ""),
   445                (supports_tscinv_bit() ? ", tscinvbit": ""),
   446                (supports_tscinv() ? ", tscinv": ""));
   447   _features_str = strdup(buf);
   449   // UseSSE is set to the smaller of what hardware supports and what
   450   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   451   // older Pentiums which do not support it.
   452   if (UseSSE > 4) UseSSE=4;
   453   if (UseSSE < 0) UseSSE=0;
   454   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   455     UseSSE = MIN2((intx)3,UseSSE);
   456   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   457     UseSSE = MIN2((intx)2,UseSSE);
   458   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   459     UseSSE = MIN2((intx)1,UseSSE);
   460   if (!supports_sse ()) // Drop to 0 if no SSE  support
   461     UseSSE = 0;
   463   if (UseAVX > 2) UseAVX=2;
   464   if (UseAVX < 0) UseAVX=0;
   465   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   466     UseAVX = MIN2((intx)1,UseAVX);
   467   if (!supports_avx ()) // Drop to 0 if no AVX  support
   468     UseAVX = 0;
   470 #ifdef COMPILER2
   471   if (UseFPUForSpilling) {
   472     if (UseSSE < 2) {
   473       // Only supported with SSE2+
   474       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   475     }
   476   }
   477   if (MaxVectorSize > 0) {
   478     if (!is_power_of_2(MaxVectorSize)) {
   479       warning("MaxVectorSize must be a power of 2");
   480       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   481     }
   482     if (MaxVectorSize > 32) {
   483       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   484     }
   485     if (MaxVectorSize > 16 && UseAVX == 0) {
   486       // Only supported with AVX+
   487       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   488     }
   489     if (UseSSE < 2) {
   490       // Only supported with SSE2+
   491       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   492     }
   493   }
   494 #endif
   496   // On new cpus instructions which update whole XMM register should be used
   497   // to prevent partial register stall due to dependencies on high half.
   498   //
   499   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   500   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   501   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   502   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   504   if( is_amd() ) { // AMD cpus specific settings
   505     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   506       // Use it on new AMD cpus starting from Opteron.
   507       UseAddressNop = true;
   508     }
   509     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   510       // Use it on new AMD cpus starting from Opteron.
   511       UseNewLongLShift = true;
   512     }
   513     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   514       if( supports_sse4a() ) {
   515         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   516       } else {
   517         UseXmmLoadAndClearUpper = false;
   518       }
   519     }
   520     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   521       if( supports_sse4a() ) {
   522         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   523       } else {
   524         UseXmmRegToRegMoveAll = false;
   525       }
   526     }
   527     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   528       if( supports_sse4a() ) {
   529         UseXmmI2F = true;
   530       } else {
   531         UseXmmI2F = false;
   532       }
   533     }
   534     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   535       if( supports_sse4a() ) {
   536         UseXmmI2D = true;
   537       } else {
   538         UseXmmI2D = false;
   539       }
   540     }
   541     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   542       if( supports_sse4_2() && UseSSE >= 4 ) {
   543         UseSSE42Intrinsics = true;
   544       }
   545     }
   547     // Use count leading zeros count instruction if available.
   548     if (supports_lzcnt()) {
   549       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   550         UseCountLeadingZerosInstruction = true;
   551       }
   552     }
   554     // some defaults for AMD family 15h
   555     if ( cpu_family() == 0x15 ) {
   556       // On family 15h processors default is no sw prefetch
   557       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   558         AllocatePrefetchStyle = 0;
   559       }
   560       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   561       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   562         AllocatePrefetchInstr = 3;
   563       }
   564       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   565       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   566         UseXMMForArrayCopy = true;
   567       }
   568       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   569         UseUnalignedLoadStores = true;
   570       }
   571     }
   573 #ifdef COMPILER2
   574     if (MaxVectorSize > 16) {
   575       // Limit vectors size to 16 bytes on current AMD cpus.
   576       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   577     }
   578 #endif // COMPILER2
   579   }
   581   if( is_intel() ) { // Intel cpus specific settings
   582     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   583       UseStoreImmI16 = false; // don't use it on Intel cpus
   584     }
   585     if( cpu_family() == 6 || cpu_family() == 15 ) {
   586       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   587         // Use it on all Intel cpus starting from PentiumPro
   588         UseAddressNop = true;
   589       }
   590     }
   591     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   592       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   593     }
   594     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   595       if( supports_sse3() ) {
   596         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   597       } else {
   598         UseXmmRegToRegMoveAll = false;
   599       }
   600     }
   601     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   602 #ifdef COMPILER2
   603       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   604         // For new Intel cpus do the next optimization:
   605         // don't align the beginning of a loop if there are enough instructions
   606         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   607         // in current fetch line (OptoLoopAlignment) or the padding
   608         // is big (> MaxLoopPad).
   609         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   610         // generated NOP instructions. 11 is the largest size of one
   611         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   612         MaxLoopPad = 11;
   613       }
   614 #endif // COMPILER2
   615       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   616         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   617       }
   618       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   619         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   620           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   621         }
   622       }
   623       if( supports_sse4_2() && UseSSE >= 4 ) {
   624         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   625           UseSSE42Intrinsics = true;
   626         }
   627       }
   628     }
   629   }
   631   // Use population count instruction if available.
   632   if (supports_popcnt()) {
   633     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   634       UsePopCountInstruction = true;
   635     }
   636   } else if (UsePopCountInstruction) {
   637     warning("POPCNT instruction is not available on this CPU");
   638     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   639   }
   641   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   642   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   644   // set valid Prefetch instruction
   645   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   646   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   647   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   648   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   650   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   651   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   652   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   653   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   655   // Allocation prefetch settings
   656   intx cache_line_size = prefetch_data_size();
   657   if( cache_line_size > AllocatePrefetchStepSize )
   658     AllocatePrefetchStepSize = cache_line_size;
   660   assert(AllocatePrefetchLines > 0, "invalid value");
   661   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   662     AllocatePrefetchLines = 3;
   663   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   664   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   665     AllocateInstancePrefetchLines = 1;
   667   AllocatePrefetchDistance = allocate_prefetch_distance();
   668   AllocatePrefetchStyle    = allocate_prefetch_style();
   670   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   671     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   672 #ifdef _LP64
   673       AllocatePrefetchDistance = 384;
   674 #else
   675       AllocatePrefetchDistance = 320;
   676 #endif
   677     }
   678     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   679       AllocatePrefetchDistance = 192;
   680       AllocatePrefetchLines = 4;
   681 #ifdef COMPILER2
   682       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   683         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   684       }
   685 #endif
   686     }
   687   }
   688   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   690 #ifdef _LP64
   691   // Prefetch settings
   692   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   693   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   694   PrefetchFieldsAhead         = prefetch_fields_ahead();
   695 #endif
   697 #ifndef PRODUCT
   698   if (PrintMiscellaneous && Verbose) {
   699     tty->print_cr("Logical CPUs per core: %u",
   700                   logical_processors_per_package());
   701     tty->print("UseSSE=%d",UseSSE);
   702     if (UseAVX > 0) {
   703       tty->print("  UseAVX=%d",UseAVX);
   704     }
   705     tty->cr();
   706     tty->print("Allocation");
   707     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   708       tty->print_cr(": no prefetching");
   709     } else {
   710       tty->print(" prefetching: ");
   711       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   712         tty->print("PREFETCHW");
   713       } else if (UseSSE >= 1) {
   714         if (AllocatePrefetchInstr == 0) {
   715           tty->print("PREFETCHNTA");
   716         } else if (AllocatePrefetchInstr == 1) {
   717           tty->print("PREFETCHT0");
   718         } else if (AllocatePrefetchInstr == 2) {
   719           tty->print("PREFETCHT2");
   720         } else if (AllocatePrefetchInstr == 3) {
   721           tty->print("PREFETCHW");
   722         }
   723       }
   724       if (AllocatePrefetchLines > 1) {
   725         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   726       } else {
   727         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
   728       }
   729     }
   731     if (PrefetchCopyIntervalInBytes > 0) {
   732       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   733     }
   734     if (PrefetchScanIntervalInBytes > 0) {
   735       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   736     }
   737     if (PrefetchFieldsAhead > 0) {
   738       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   739     }
   740   }
   741 #endif // !PRODUCT
   742 }
   744 void VM_Version::initialize() {
   745   ResourceMark rm;
   746   // Making this stub must be FIRST use of assembler
   748   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   749   if (stub_blob == NULL) {
   750     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   751   }
   752   CodeBuffer c(stub_blob);
   753   VM_Version_StubGenerator g(&c);
   754   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   755                                    g.generate_getPsrInfo());
   757   get_processor_features();
   758 }

mercurial