src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Sun, 04 May 2008 03:29:31 -0700

author
iveresov
date
Sun, 04 May 2008 03:29:31 -0700
changeset 577
8bd1e4487c18
parent 548
ba764ed4b6f2
parent 575
3febac328d82
child 631
d1605aabd0a1
child 645
05712c37c828
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psParallelCompact.cpp.incl"
    28 #include <math.h>
    30 // All sizes are in HeapWords.
    31 const size_t ParallelCompactData::Log2ChunkSize  = 9; // 512 words
    32 const size_t ParallelCompactData::ChunkSize      = (size_t)1 << Log2ChunkSize;
    33 const size_t ParallelCompactData::ChunkSizeBytes = ChunkSize << LogHeapWordSize;
    34 const size_t ParallelCompactData::ChunkSizeOffsetMask = ChunkSize - 1;
    35 const size_t ParallelCompactData::ChunkAddrOffsetMask = ChunkSizeBytes - 1;
    36 const size_t ParallelCompactData::ChunkAddrMask  = ~ChunkAddrOffsetMask;
    38 // 32-bit:  128 words covers 4 bitmap words
    39 // 64-bit:  128 words covers 2 bitmap words
    40 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
    41 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
    42 const size_t ParallelCompactData::BlockOffsetMask = BlockSize - 1;
    43 const size_t ParallelCompactData::BlockMask       = ~BlockOffsetMask;
    45 const size_t ParallelCompactData::BlocksPerChunk = ChunkSize / BlockSize;
    47 const ParallelCompactData::ChunkData::chunk_sz_t
    48 ParallelCompactData::ChunkData::dc_shift = 27;
    50 const ParallelCompactData::ChunkData::chunk_sz_t
    51 ParallelCompactData::ChunkData::dc_mask = ~0U << dc_shift;
    53 const ParallelCompactData::ChunkData::chunk_sz_t
    54 ParallelCompactData::ChunkData::dc_one = 0x1U << dc_shift;
    56 const ParallelCompactData::ChunkData::chunk_sz_t
    57 ParallelCompactData::ChunkData::los_mask = ~dc_mask;
    59 const ParallelCompactData::ChunkData::chunk_sz_t
    60 ParallelCompactData::ChunkData::dc_claimed = 0x8U << dc_shift;
    62 const ParallelCompactData::ChunkData::chunk_sz_t
    63 ParallelCompactData::ChunkData::dc_completed = 0xcU << dc_shift;
    65 #ifdef ASSERT
    66 short   ParallelCompactData::BlockData::_cur_phase = 0;
    67 #endif
    69 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    70 bool      PSParallelCompact::_print_phases = false;
    72 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    73 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
    75 double PSParallelCompact::_dwl_mean;
    76 double PSParallelCompact::_dwl_std_dev;
    77 double PSParallelCompact::_dwl_first_term;
    78 double PSParallelCompact::_dwl_adjustment;
    79 #ifdef  ASSERT
    80 bool   PSParallelCompact::_dwl_initialized = false;
    81 #endif  // #ifdef ASSERT
    83 #ifdef VALIDATE_MARK_SWEEP
    84 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
    85 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
    86 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
    87 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
    88 size_t                  PSParallelCompact::_live_oops_index = 0;
    89 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
    90 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
    91 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
    92 bool                    PSParallelCompact::_pointer_tracking = false;
    93 bool                    PSParallelCompact::_root_tracking = true;
    95 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
    96 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
    97 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
    98 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
    99 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
   100 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
   101 #endif
   103 // XXX beg - verification code; only works while we also mark in object headers
   104 static void
   105 verify_mark_bitmap(ParMarkBitMap& _mark_bitmap)
   106 {
   107   ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
   109   PSPermGen* perm_gen = heap->perm_gen();
   110   PSOldGen* old_gen = heap->old_gen();
   111   PSYoungGen* young_gen = heap->young_gen();
   113   MutableSpace* perm_space = perm_gen->object_space();
   114   MutableSpace* old_space = old_gen->object_space();
   115   MutableSpace* eden_space = young_gen->eden_space();
   116   MutableSpace* from_space = young_gen->from_space();
   117   MutableSpace* to_space = young_gen->to_space();
   119   // 'from_space' here is the survivor space at the lower address.
   120   if (to_space->bottom() < from_space->bottom()) {
   121     from_space = to_space;
   122     to_space = young_gen->from_space();
   123   }
   125   HeapWord* boundaries[12];
   126   unsigned int bidx = 0;
   127   const unsigned int bidx_max = sizeof(boundaries) / sizeof(boundaries[0]);
   129   boundaries[0] = perm_space->bottom();
   130   boundaries[1] = perm_space->top();
   131   boundaries[2] = old_space->bottom();
   132   boundaries[3] = old_space->top();
   133   boundaries[4] = eden_space->bottom();
   134   boundaries[5] = eden_space->top();
   135   boundaries[6] = from_space->bottom();
   136   boundaries[7] = from_space->top();
   137   boundaries[8] = to_space->bottom();
   138   boundaries[9] = to_space->top();
   139   boundaries[10] = to_space->end();
   140   boundaries[11] = to_space->end();
   142   BitMap::idx_t beg_bit = 0;
   143   BitMap::idx_t end_bit;
   144   BitMap::idx_t tmp_bit;
   145   const BitMap::idx_t last_bit = _mark_bitmap.size();
   146   do {
   147     HeapWord* addr = _mark_bitmap.bit_to_addr(beg_bit);
   148     if (_mark_bitmap.is_marked(beg_bit)) {
   149       oop obj = (oop)addr;
   150       assert(obj->is_gc_marked(), "obj header is not marked");
   151       end_bit = _mark_bitmap.find_obj_end(beg_bit, last_bit);
   152       const size_t size = _mark_bitmap.obj_size(beg_bit, end_bit);
   153       assert(size == (size_t)obj->size(), "end bit wrong?");
   154       beg_bit = _mark_bitmap.find_obj_beg(beg_bit + 1, last_bit);
   155       assert(beg_bit > end_bit, "bit set in middle of an obj");
   156     } else {
   157       if (addr >= boundaries[bidx] && addr < boundaries[bidx + 1]) {
   158         // a dead object in the current space.
   159         oop obj = (oop)addr;
   160         end_bit = _mark_bitmap.addr_to_bit(addr + obj->size());
   161         assert(!obj->is_gc_marked(), "obj marked in header, not in bitmap");
   162         tmp_bit = beg_bit + 1;
   163         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
   164         assert(beg_bit == end_bit, "beg bit set in unmarked obj");
   165         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
   166         assert(beg_bit == end_bit, "end bit set in unmarked obj");
   167       } else if (addr < boundaries[bidx + 2]) {
   168         // addr is between top in the current space and bottom in the next.
   169         end_bit = beg_bit + pointer_delta(boundaries[bidx + 2], addr);
   170         tmp_bit = beg_bit;
   171         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
   172         assert(beg_bit == end_bit, "beg bit set above top");
   173         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
   174         assert(beg_bit == end_bit, "end bit set above top");
   175         bidx += 2;
   176       } else if (bidx < bidx_max - 2) {
   177         bidx += 2; // ???
   178       } else {
   179         tmp_bit = beg_bit;
   180         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, last_bit);
   181         assert(beg_bit == last_bit, "beg bit set outside heap");
   182         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, last_bit);
   183         assert(beg_bit == last_bit, "end bit set outside heap");
   184       }
   185     }
   186   } while (beg_bit < last_bit);
   187 }
   188 // XXX end - verification code; only works while we also mark in object headers
   190 #ifndef PRODUCT
   191 const char* PSParallelCompact::space_names[] = {
   192   "perm", "old ", "eden", "from", "to  "
   193 };
   195 void PSParallelCompact::print_chunk_ranges()
   196 {
   197   tty->print_cr("space  bottom     top        end        new_top");
   198   tty->print_cr("------ ---------- ---------- ---------- ----------");
   200   for (unsigned int id = 0; id < last_space_id; ++id) {
   201     const MutableSpace* space = _space_info[id].space();
   202     tty->print_cr("%u %s "
   203                   SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " "
   204                   SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " ",
   205                   id, space_names[id],
   206                   summary_data().addr_to_chunk_idx(space->bottom()),
   207                   summary_data().addr_to_chunk_idx(space->top()),
   208                   summary_data().addr_to_chunk_idx(space->end()),
   209                   summary_data().addr_to_chunk_idx(_space_info[id].new_top()));
   210   }
   211 }
   213 void
   214 print_generic_summary_chunk(size_t i, const ParallelCompactData::ChunkData* c)
   215 {
   216 #define CHUNK_IDX_FORMAT        SIZE_FORMAT_W("7")
   217 #define CHUNK_DATA_FORMAT       SIZE_FORMAT_W("5")
   219   ParallelCompactData& sd = PSParallelCompact::summary_data();
   220   size_t dci = c->destination() ? sd.addr_to_chunk_idx(c->destination()) : 0;
   221   tty->print_cr(CHUNK_IDX_FORMAT " " PTR_FORMAT " "
   222                 CHUNK_IDX_FORMAT " " PTR_FORMAT " "
   223                 CHUNK_DATA_FORMAT " " CHUNK_DATA_FORMAT " "
   224                 CHUNK_DATA_FORMAT " " CHUNK_IDX_FORMAT " %d",
   225                 i, c->data_location(), dci, c->destination(),
   226                 c->partial_obj_size(), c->live_obj_size(),
   227                 c->data_size(), c->source_chunk(), c->destination_count());
   229 #undef  CHUNK_IDX_FORMAT
   230 #undef  CHUNK_DATA_FORMAT
   231 }
   233 void
   234 print_generic_summary_data(ParallelCompactData& summary_data,
   235                            HeapWord* const beg_addr,
   236                            HeapWord* const end_addr)
   237 {
   238   size_t total_words = 0;
   239   size_t i = summary_data.addr_to_chunk_idx(beg_addr);
   240   const size_t last = summary_data.addr_to_chunk_idx(end_addr);
   241   HeapWord* pdest = 0;
   243   while (i <= last) {
   244     ParallelCompactData::ChunkData* c = summary_data.chunk(i);
   245     if (c->data_size() != 0 || c->destination() != pdest) {
   246       print_generic_summary_chunk(i, c);
   247       total_words += c->data_size();
   248       pdest = c->destination();
   249     }
   250     ++i;
   251   }
   253   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   254 }
   256 void
   257 print_generic_summary_data(ParallelCompactData& summary_data,
   258                            SpaceInfo* space_info)
   259 {
   260   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   261     const MutableSpace* space = space_info[id].space();
   262     print_generic_summary_data(summary_data, space->bottom(),
   263                                MAX2(space->top(), space_info[id].new_top()));
   264   }
   265 }
   267 void
   268 print_initial_summary_chunk(size_t i,
   269                             const ParallelCompactData::ChunkData* c,
   270                             bool newline = true)
   271 {
   272   tty->print(SIZE_FORMAT_W("5") " " PTR_FORMAT " "
   273              SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " "
   274              SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " %d",
   275              i, c->destination(),
   276              c->partial_obj_size(), c->live_obj_size(),
   277              c->data_size(), c->source_chunk(), c->destination_count());
   278   if (newline) tty->cr();
   279 }
   281 void
   282 print_initial_summary_data(ParallelCompactData& summary_data,
   283                            const MutableSpace* space) {
   284   if (space->top() == space->bottom()) {
   285     return;
   286   }
   288   const size_t chunk_size = ParallelCompactData::ChunkSize;
   289   HeapWord* const top_aligned_up = summary_data.chunk_align_up(space->top());
   290   const size_t end_chunk = summary_data.addr_to_chunk_idx(top_aligned_up);
   291   const ParallelCompactData::ChunkData* c = summary_data.chunk(end_chunk - 1);
   292   HeapWord* end_addr = c->destination() + c->data_size();
   293   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   295   // Print (and count) the full chunks at the beginning of the space.
   296   size_t full_chunk_count = 0;
   297   size_t i = summary_data.addr_to_chunk_idx(space->bottom());
   298   while (i < end_chunk && summary_data.chunk(i)->data_size() == chunk_size) {
   299     print_initial_summary_chunk(i, summary_data.chunk(i));
   300     ++full_chunk_count;
   301     ++i;
   302   }
   304   size_t live_to_right = live_in_space - full_chunk_count * chunk_size;
   306   double max_reclaimed_ratio = 0.0;
   307   size_t max_reclaimed_ratio_chunk = 0;
   308   size_t max_dead_to_right = 0;
   309   size_t max_live_to_right = 0;
   311   // Print the 'reclaimed ratio' for chunks while there is something live in the
   312   // chunk or to the right of it.  The remaining chunks are empty (and
   313   // uninteresting), and computing the ratio will result in division by 0.
   314   while (i < end_chunk && live_to_right > 0) {
   315     c = summary_data.chunk(i);
   316     HeapWord* const chunk_addr = summary_data.chunk_to_addr(i);
   317     const size_t used_to_right = pointer_delta(space->top(), chunk_addr);
   318     const size_t dead_to_right = used_to_right - live_to_right;
   319     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   321     if (reclaimed_ratio > max_reclaimed_ratio) {
   322             max_reclaimed_ratio = reclaimed_ratio;
   323             max_reclaimed_ratio_chunk = i;
   324             max_dead_to_right = dead_to_right;
   325             max_live_to_right = live_to_right;
   326     }
   328     print_initial_summary_chunk(i, c, false);
   329     tty->print_cr(" %12.10f " SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10"),
   330                   reclaimed_ratio, dead_to_right, live_to_right);
   332     live_to_right -= c->data_size();
   333     ++i;
   334   }
   336   // Any remaining chunks are empty.  Print one more if there is one.
   337   if (i < end_chunk) {
   338     print_initial_summary_chunk(i, summary_data.chunk(i));
   339   }
   341   tty->print_cr("max:  " SIZE_FORMAT_W("4") " d2r=" SIZE_FORMAT_W("10") " "
   342                 "l2r=" SIZE_FORMAT_W("10") " max_ratio=%14.12f",
   343                 max_reclaimed_ratio_chunk, max_dead_to_right,
   344                 max_live_to_right, max_reclaimed_ratio);
   345 }
   347 void
   348 print_initial_summary_data(ParallelCompactData& summary_data,
   349                            SpaceInfo* space_info) {
   350   unsigned int id = PSParallelCompact::perm_space_id;
   351   const MutableSpace* space;
   352   do {
   353     space = space_info[id].space();
   354     print_initial_summary_data(summary_data, space);
   355   } while (++id < PSParallelCompact::eden_space_id);
   357   do {
   358     space = space_info[id].space();
   359     print_generic_summary_data(summary_data, space->bottom(), space->top());
   360   } while (++id < PSParallelCompact::last_space_id);
   361 }
   362 #endif  // #ifndef PRODUCT
   364 #ifdef  ASSERT
   365 size_t add_obj_count;
   366 size_t add_obj_size;
   367 size_t mark_bitmap_count;
   368 size_t mark_bitmap_size;
   369 #endif  // #ifdef ASSERT
   371 ParallelCompactData::ParallelCompactData()
   372 {
   373   _region_start = 0;
   375   _chunk_vspace = 0;
   376   _chunk_data = 0;
   377   _chunk_count = 0;
   379   _block_vspace = 0;
   380   _block_data = 0;
   381   _block_count = 0;
   382 }
   384 bool ParallelCompactData::initialize(MemRegion covered_region)
   385 {
   386   _region_start = covered_region.start();
   387   const size_t region_size = covered_region.word_size();
   388   DEBUG_ONLY(_region_end = _region_start + region_size;)
   390   assert(chunk_align_down(_region_start) == _region_start,
   391          "region start not aligned");
   392   assert((region_size & ChunkSizeOffsetMask) == 0,
   393          "region size not a multiple of ChunkSize");
   395   bool result = initialize_chunk_data(region_size);
   397   // Initialize the block data if it will be used for updating pointers, or if
   398   // this is a debug build.
   399   if (!UseParallelOldGCChunkPointerCalc || trueInDebug) {
   400     result = result && initialize_block_data(region_size);
   401   }
   403   return result;
   404 }
   406 PSVirtualSpace*
   407 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   408 {
   409   const size_t raw_bytes = count * element_size;
   410   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   411   const size_t granularity = os::vm_allocation_granularity();
   412   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   414   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   415     MAX2(page_sz, granularity);
   416   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   417   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   418                        rs.size());
   419   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   420   if (vspace != 0) {
   421     if (vspace->expand_by(bytes)) {
   422       return vspace;
   423     }
   424     delete vspace;
   425   }
   427   return 0;
   428 }
   430 bool ParallelCompactData::initialize_chunk_data(size_t region_size)
   431 {
   432   const size_t count = (region_size + ChunkSizeOffsetMask) >> Log2ChunkSize;
   433   _chunk_vspace = create_vspace(count, sizeof(ChunkData));
   434   if (_chunk_vspace != 0) {
   435     _chunk_data = (ChunkData*)_chunk_vspace->reserved_low_addr();
   436     _chunk_count = count;
   437     return true;
   438   }
   439   return false;
   440 }
   442 bool ParallelCompactData::initialize_block_data(size_t region_size)
   443 {
   444   const size_t count = (region_size + BlockOffsetMask) >> Log2BlockSize;
   445   _block_vspace = create_vspace(count, sizeof(BlockData));
   446   if (_block_vspace != 0) {
   447     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
   448     _block_count = count;
   449     return true;
   450   }
   451   return false;
   452 }
   454 void ParallelCompactData::clear()
   455 {
   456   if (_block_data) {
   457     memset(_block_data, 0, _block_vspace->committed_size());
   458   }
   459   memset(_chunk_data, 0, _chunk_vspace->committed_size());
   460 }
   462 void ParallelCompactData::clear_range(size_t beg_chunk, size_t end_chunk) {
   463   assert(beg_chunk <= _chunk_count, "beg_chunk out of range");
   464   assert(end_chunk <= _chunk_count, "end_chunk out of range");
   465   assert(ChunkSize % BlockSize == 0, "ChunkSize not a multiple of BlockSize");
   467   const size_t chunk_cnt = end_chunk - beg_chunk;
   469   if (_block_data) {
   470     const size_t blocks_per_chunk = ChunkSize / BlockSize;
   471     const size_t beg_block = beg_chunk * blocks_per_chunk;
   472     const size_t block_cnt = chunk_cnt * blocks_per_chunk;
   473     memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
   474   }
   475   memset(_chunk_data + beg_chunk, 0, chunk_cnt * sizeof(ChunkData));
   476 }
   478 HeapWord* ParallelCompactData::partial_obj_end(size_t chunk_idx) const
   479 {
   480   const ChunkData* cur_cp = chunk(chunk_idx);
   481   const ChunkData* const end_cp = chunk(chunk_count() - 1);
   483   HeapWord* result = chunk_to_addr(chunk_idx);
   484   if (cur_cp < end_cp) {
   485     do {
   486       result += cur_cp->partial_obj_size();
   487     } while (cur_cp->partial_obj_size() == ChunkSize && ++cur_cp < end_cp);
   488   }
   489   return result;
   490 }
   492 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   493 {
   494   const size_t obj_ofs = pointer_delta(addr, _region_start);
   495   const size_t beg_chunk = obj_ofs >> Log2ChunkSize;
   496   const size_t end_chunk = (obj_ofs + len - 1) >> Log2ChunkSize;
   498   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   499   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   501   if (beg_chunk == end_chunk) {
   502     // All in one chunk.
   503     _chunk_data[beg_chunk].add_live_obj(len);
   504     return;
   505   }
   507   // First chunk.
   508   const size_t beg_ofs = chunk_offset(addr);
   509   _chunk_data[beg_chunk].add_live_obj(ChunkSize - beg_ofs);
   511   klassOop klass = ((oop)addr)->klass();
   512   // Middle chunks--completely spanned by this object.
   513   for (size_t chunk = beg_chunk + 1; chunk < end_chunk; ++chunk) {
   514     _chunk_data[chunk].set_partial_obj_size(ChunkSize);
   515     _chunk_data[chunk].set_partial_obj_addr(addr);
   516   }
   518   // Last chunk.
   519   const size_t end_ofs = chunk_offset(addr + len - 1);
   520   _chunk_data[end_chunk].set_partial_obj_size(end_ofs + 1);
   521   _chunk_data[end_chunk].set_partial_obj_addr(addr);
   522 }
   524 void
   525 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   526 {
   527   assert(chunk_offset(beg) == 0, "not ChunkSize aligned");
   528   assert(chunk_offset(end) == 0, "not ChunkSize aligned");
   530   size_t cur_chunk = addr_to_chunk_idx(beg);
   531   const size_t end_chunk = addr_to_chunk_idx(end);
   532   HeapWord* addr = beg;
   533   while (cur_chunk < end_chunk) {
   534     _chunk_data[cur_chunk].set_destination(addr);
   535     _chunk_data[cur_chunk].set_destination_count(0);
   536     _chunk_data[cur_chunk].set_source_chunk(cur_chunk);
   537     _chunk_data[cur_chunk].set_data_location(addr);
   539     // Update live_obj_size so the chunk appears completely full.
   540     size_t live_size = ChunkSize - _chunk_data[cur_chunk].partial_obj_size();
   541     _chunk_data[cur_chunk].set_live_obj_size(live_size);
   543     ++cur_chunk;
   544     addr += ChunkSize;
   545   }
   546 }
   548 bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
   549                                     HeapWord* source_beg, HeapWord* source_end,
   550                                     HeapWord** target_next,
   551                                     HeapWord** source_next) {
   552   // This is too strict.
   553   // assert(chunk_offset(source_beg) == 0, "not ChunkSize aligned");
   555   if (TraceParallelOldGCSummaryPhase) {
   556     tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
   557                   "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
   558                   "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
   559                   target_beg, target_end,
   560                   source_beg, source_end,
   561                   target_next != 0 ? *target_next : (HeapWord*) 0,
   562                   source_next != 0 ? *source_next : (HeapWord*) 0);
   563   }
   565   size_t cur_chunk = addr_to_chunk_idx(source_beg);
   566   const size_t end_chunk = addr_to_chunk_idx(chunk_align_up(source_end));
   568   HeapWord *dest_addr = target_beg;
   569   while (cur_chunk < end_chunk) {
   570     size_t words = _chunk_data[cur_chunk].data_size();
   572 #if     1
   573     assert(pointer_delta(target_end, dest_addr) >= words,
   574            "source region does not fit into target region");
   575 #else
   576     // XXX - need some work on the corner cases here.  If the chunk does not
   577     // fit, then must either make sure any partial_obj from the chunk fits, or
   578     // 'undo' the initial part of the partial_obj that is in the previous chunk.
   579     if (dest_addr + words >= target_end) {
   580       // Let the caller know where to continue.
   581       *target_next = dest_addr;
   582       *source_next = chunk_to_addr(cur_chunk);
   583       return false;
   584     }
   585 #endif  // #if 1
   587     _chunk_data[cur_chunk].set_destination(dest_addr);
   589     // Set the destination_count for cur_chunk, and if necessary, update
   590     // source_chunk for a destination chunk.  The source_chunk field is updated
   591     // if cur_chunk is the first (left-most) chunk to be copied to a destination
   592     // chunk.
   593     //
   594     // The destination_count calculation is a bit subtle.  A chunk that has data
   595     // that compacts into itself does not count itself as a destination.  This
   596     // maintains the invariant that a zero count means the chunk is available
   597     // and can be claimed and then filled.
   598     if (words > 0) {
   599       HeapWord* const last_addr = dest_addr + words - 1;
   600       const size_t dest_chunk_1 = addr_to_chunk_idx(dest_addr);
   601       const size_t dest_chunk_2 = addr_to_chunk_idx(last_addr);
   602 #if     0
   603       // Initially assume that the destination chunks will be the same and
   604       // adjust the value below if necessary.  Under this assumption, if
   605       // cur_chunk == dest_chunk_2, then cur_chunk will be compacted completely
   606       // into itself.
   607       uint destination_count = cur_chunk == dest_chunk_2 ? 0 : 1;
   608       if (dest_chunk_1 != dest_chunk_2) {
   609         // Destination chunks differ; adjust destination_count.
   610         destination_count += 1;
   611         // Data from cur_chunk will be copied to the start of dest_chunk_2.
   612         _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
   613       } else if (chunk_offset(dest_addr) == 0) {
   614         // Data from cur_chunk will be copied to the start of the destination
   615         // chunk.
   616         _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
   617       }
   618 #else
   619       // Initially assume that the destination chunks will be different and
   620       // adjust the value below if necessary.  Under this assumption, if
   621       // cur_chunk == dest_chunk2, then cur_chunk will be compacted partially
   622       // into dest_chunk_1 and partially into itself.
   623       uint destination_count = cur_chunk == dest_chunk_2 ? 1 : 2;
   624       if (dest_chunk_1 != dest_chunk_2) {
   625         // Data from cur_chunk will be copied to the start of dest_chunk_2.
   626         _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
   627       } else {
   628         // Destination chunks are the same; adjust destination_count.
   629         destination_count -= 1;
   630         if (chunk_offset(dest_addr) == 0) {
   631           // Data from cur_chunk will be copied to the start of the destination
   632           // chunk.
   633           _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
   634         }
   635       }
   636 #endif  // #if 0
   638       _chunk_data[cur_chunk].set_destination_count(destination_count);
   639       _chunk_data[cur_chunk].set_data_location(chunk_to_addr(cur_chunk));
   640       dest_addr += words;
   641     }
   643     ++cur_chunk;
   644   }
   646   *target_next = dest_addr;
   647   return true;
   648 }
   650 bool ParallelCompactData::partial_obj_ends_in_block(size_t block_index) {
   651   HeapWord* block_addr = block_to_addr(block_index);
   652   HeapWord* block_end_addr = block_addr + BlockSize;
   653   size_t chunk_index = addr_to_chunk_idx(block_addr);
   654   HeapWord* partial_obj_end_addr = partial_obj_end(chunk_index);
   656   // An object that ends at the end of the block, ends
   657   // in the block (the last word of the object is to
   658   // the left of the end).
   659   if ((block_addr < partial_obj_end_addr) &&
   660       (partial_obj_end_addr <= block_end_addr)) {
   661     return true;
   662   }
   664   return false;
   665 }
   667 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   668   HeapWord* result = NULL;
   669   if (UseParallelOldGCChunkPointerCalc) {
   670     result = chunk_calc_new_pointer(addr);
   671   } else {
   672     result = block_calc_new_pointer(addr);
   673   }
   674   return result;
   675 }
   677 // This method is overly complicated (expensive) to be called
   678 // for every reference.
   679 // Try to restructure this so that a NULL is returned if
   680 // the object is dead.  But don't wast the cycles to explicitly check
   681 // that it is dead since only live objects should be passed in.
   683 HeapWord* ParallelCompactData::chunk_calc_new_pointer(HeapWord* addr) {
   684   assert(addr != NULL, "Should detect NULL oop earlier");
   685   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   686 #ifdef ASSERT
   687   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   688     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   689   }
   690 #endif
   691   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   693   // Chunk covering the object.
   694   size_t chunk_index = addr_to_chunk_idx(addr);
   695   const ChunkData* const chunk_ptr = chunk(chunk_index);
   696   HeapWord* const chunk_addr = chunk_align_down(addr);
   698   assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
   699   assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
   701   HeapWord* result = chunk_ptr->destination();
   703   // If all the data in the chunk is live, then the new location of the object
   704   // can be calculated from the destination of the chunk plus the offset of the
   705   // object in the chunk.
   706   if (chunk_ptr->data_size() == ChunkSize) {
   707     result += pointer_delta(addr, chunk_addr);
   708     return result;
   709   }
   711   // The new location of the object is
   712   //    chunk destination +
   713   //    size of the partial object extending onto the chunk +
   714   //    sizes of the live objects in the Chunk that are to the left of addr
   715   const size_t partial_obj_size = chunk_ptr->partial_obj_size();
   716   HeapWord* const search_start = chunk_addr + partial_obj_size;
   718   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   719   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   721   result += partial_obj_size + live_to_left;
   722   assert(result <= addr, "object cannot move to the right");
   723   return result;
   724 }
   726 HeapWord* ParallelCompactData::block_calc_new_pointer(HeapWord* addr) {
   727   assert(addr != NULL, "Should detect NULL oop earlier");
   728   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   729 #ifdef ASSERT
   730   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   731     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   732   }
   733 #endif
   734   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   736   // Chunk covering the object.
   737   size_t chunk_index = addr_to_chunk_idx(addr);
   738   const ChunkData* const chunk_ptr = chunk(chunk_index);
   739   HeapWord* const chunk_addr = chunk_align_down(addr);
   741   assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
   742   assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
   744   HeapWord* result = chunk_ptr->destination();
   746   // If all the data in the chunk is live, then the new location of the object
   747   // can be calculated from the destination of the chunk plus the offset of the
   748   // object in the chunk.
   749   if (chunk_ptr->data_size() == ChunkSize) {
   750     result += pointer_delta(addr, chunk_addr);
   751     return result;
   752   }
   754   // The new location of the object is
   755   //    chunk destination +
   756   //    block offset +
   757   //    sizes of the live objects in the Block that are to the left of addr
   758   const size_t block_offset = addr_to_block_ptr(addr)->offset();
   759   HeapWord* const search_start = chunk_addr + block_offset;
   761   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   762   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   764   result += block_offset + live_to_left;
   765   assert(result <= addr, "object cannot move to the right");
   766   assert(result == chunk_calc_new_pointer(addr), "Should match");
   767   return result;
   768 }
   770 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
   771   klassOop updated_klass;
   772   if (PSParallelCompact::should_update_klass(old_klass)) {
   773     updated_klass = (klassOop) calc_new_pointer(old_klass);
   774   } else {
   775     updated_klass = old_klass;
   776   }
   778   return updated_klass;
   779 }
   781 #ifdef  ASSERT
   782 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   783 {
   784   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   785   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   786   for (const size_t* p = beg; p < end; ++p) {
   787     assert(*p == 0, "not zero");
   788   }
   789 }
   791 void ParallelCompactData::verify_clear()
   792 {
   793   verify_clear(_chunk_vspace);
   794   verify_clear(_block_vspace);
   795 }
   796 #endif  // #ifdef ASSERT
   798 #ifdef NOT_PRODUCT
   799 ParallelCompactData::ChunkData* debug_chunk(size_t chunk_index) {
   800   ParallelCompactData& sd = PSParallelCompact::summary_data();
   801   return sd.chunk(chunk_index);
   802 }
   803 #endif
   805 elapsedTimer        PSParallelCompact::_accumulated_time;
   806 unsigned int        PSParallelCompact::_total_invocations = 0;
   807 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   808 jlong               PSParallelCompact::_time_of_last_gc = 0;
   809 CollectorCounters*  PSParallelCompact::_counters = NULL;
   810 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   811 ParallelCompactData PSParallelCompact::_summary_data;
   813 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   815 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   816 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   818 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   819 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   821 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   822 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   824 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   825 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   827 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
   829 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
   830 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   832 void PSParallelCompact::post_initialize() {
   833   ParallelScavengeHeap* heap = gc_heap();
   834   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   836   MemRegion mr = heap->reserved_region();
   837   _ref_processor = ReferenceProcessor::create_ref_processor(
   838     mr,                         // span
   839     true,                       // atomic_discovery
   840     true,                       // mt_discovery
   841     &_is_alive_closure,
   842     ParallelGCThreads,
   843     ParallelRefProcEnabled);
   844   _counters = new CollectorCounters("PSParallelCompact", 1);
   846   // Initialize static fields in ParCompactionManager.
   847   ParCompactionManager::initialize(mark_bitmap());
   848 }
   850 bool PSParallelCompact::initialize() {
   851   ParallelScavengeHeap* heap = gc_heap();
   852   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   853   MemRegion mr = heap->reserved_region();
   855   // Was the old gen get allocated successfully?
   856   if (!heap->old_gen()->is_allocated()) {
   857     return false;
   858   }
   860   initialize_space_info();
   861   initialize_dead_wood_limiter();
   863   if (!_mark_bitmap.initialize(mr)) {
   864     vm_shutdown_during_initialization("Unable to allocate bit map for "
   865       "parallel garbage collection for the requested heap size.");
   866     return false;
   867   }
   869   if (!_summary_data.initialize(mr)) {
   870     vm_shutdown_during_initialization("Unable to allocate tables for "
   871       "parallel garbage collection for the requested heap size.");
   872     return false;
   873   }
   875   return true;
   876 }
   878 void PSParallelCompact::initialize_space_info()
   879 {
   880   memset(&_space_info, 0, sizeof(_space_info));
   882   ParallelScavengeHeap* heap = gc_heap();
   883   PSYoungGen* young_gen = heap->young_gen();
   884   MutableSpace* perm_space = heap->perm_gen()->object_space();
   886   _space_info[perm_space_id].set_space(perm_space);
   887   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   888   _space_info[eden_space_id].set_space(young_gen->eden_space());
   889   _space_info[from_space_id].set_space(young_gen->from_space());
   890   _space_info[to_space_id].set_space(young_gen->to_space());
   892   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
   893   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   895   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
   896   if (TraceParallelOldGCDensePrefix) {
   897     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
   898                   _space_info[perm_space_id].min_dense_prefix());
   899   }
   900 }
   902 void PSParallelCompact::initialize_dead_wood_limiter()
   903 {
   904   const size_t max = 100;
   905   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   906   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   907   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   908   DEBUG_ONLY(_dwl_initialized = true;)
   909   _dwl_adjustment = normal_distribution(1.0);
   910 }
   912 // Simple class for storing info about the heap at the start of GC, to be used
   913 // after GC for comparison/printing.
   914 class PreGCValues {
   915 public:
   916   PreGCValues() { }
   917   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   919   void fill(ParallelScavengeHeap* heap) {
   920     _heap_used      = heap->used();
   921     _young_gen_used = heap->young_gen()->used_in_bytes();
   922     _old_gen_used   = heap->old_gen()->used_in_bytes();
   923     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
   924   };
   926   size_t heap_used() const      { return _heap_used; }
   927   size_t young_gen_used() const { return _young_gen_used; }
   928   size_t old_gen_used() const   { return _old_gen_used; }
   929   size_t perm_gen_used() const  { return _perm_gen_used; }
   931 private:
   932   size_t _heap_used;
   933   size_t _young_gen_used;
   934   size_t _old_gen_used;
   935   size_t _perm_gen_used;
   936 };
   938 void
   939 PSParallelCompact::clear_data_covering_space(SpaceId id)
   940 {
   941   // At this point, top is the value before GC, new_top() is the value that will
   942   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   943   // should be marked above top.  The summary data is cleared to the larger of
   944   // top & new_top.
   945   MutableSpace* const space = _space_info[id].space();
   946   HeapWord* const bot = space->bottom();
   947   HeapWord* const top = space->top();
   948   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   950   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   951   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   952   _mark_bitmap.clear_range(beg_bit, end_bit);
   954   const size_t beg_chunk = _summary_data.addr_to_chunk_idx(bot);
   955   const size_t end_chunk =
   956     _summary_data.addr_to_chunk_idx(_summary_data.chunk_align_up(max_top));
   957   _summary_data.clear_range(beg_chunk, end_chunk);
   958 }
   960 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   961 {
   962   // Update the from & to space pointers in space_info, since they are swapped
   963   // at each young gen gc.  Do the update unconditionally (even though a
   964   // promotion failure does not swap spaces) because an unknown number of minor
   965   // collections will have swapped the spaces an unknown number of times.
   966   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   967   ParallelScavengeHeap* heap = gc_heap();
   968   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   969   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   971   pre_gc_values->fill(heap);
   973   ParCompactionManager::reset();
   974   NOT_PRODUCT(_mark_bitmap.reset_counters());
   975   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   976   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   978   // Increment the invocation count
   979   heap->increment_total_collections(true);
   981   // We need to track unique mark sweep invocations as well.
   982   _total_invocations++;
   984   if (PrintHeapAtGC) {
   985     Universe::print_heap_before_gc();
   986   }
   988   // Fill in TLABs
   989   heap->accumulate_statistics_all_tlabs();
   990   heap->ensure_parsability(true);  // retire TLABs
   992   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   993     HandleMark hm;  // Discard invalid handles created during verification
   994     gclog_or_tty->print(" VerifyBeforeGC:");
   995     Universe::verify(true);
   996   }
   998   // Verify object start arrays
   999   if (VerifyObjectStartArray &&
  1000       VerifyBeforeGC) {
  1001     heap->old_gen()->verify_object_start_array();
  1002     heap->perm_gen()->verify_object_start_array();
  1005   DEBUG_ONLY(mark_bitmap()->verify_clear();)
  1006   DEBUG_ONLY(summary_data().verify_clear();)
  1009 void PSParallelCompact::post_compact()
  1011   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
  1013   // Clear the marking bitmap and summary data and update top() in each space.
  1014   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  1015     clear_data_covering_space(SpaceId(id));
  1016     _space_info[id].space()->set_top(_space_info[id].new_top());
  1019   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1020   MutableSpace* const from_space = _space_info[from_space_id].space();
  1021   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1023   ParallelScavengeHeap* heap = gc_heap();
  1024   bool eden_empty = eden_space->is_empty();
  1025   if (!eden_empty) {
  1026     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1027                                             heap->young_gen(), heap->old_gen());
  1030   // Update heap occupancy information which is used as input to the soft ref
  1031   // clearing policy at the next gc.
  1032   Universe::update_heap_info_at_gc();
  1034   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1035     to_space->is_empty();
  1037   BarrierSet* bs = heap->barrier_set();
  1038   if (bs->is_a(BarrierSet::ModRef)) {
  1039     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1040     MemRegion old_mr = heap->old_gen()->reserved();
  1041     MemRegion perm_mr = heap->perm_gen()->reserved();
  1042     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
  1044     if (young_gen_empty) {
  1045       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
  1046     } else {
  1047       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
  1051   Threads::gc_epilogue();
  1052   CodeCache::gc_epilogue();
  1054   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1056   ref_processor()->enqueue_discovered_references(NULL);
  1058   // Update time of last GC
  1059   reset_millis_since_last_gc();
  1062 HeapWord*
  1063 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1064                                                     bool maximum_compaction)
  1066   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1067   const ParallelCompactData& sd = summary_data();
  1069   const MutableSpace* const space = _space_info[id].space();
  1070   HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  1071   const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(space->bottom());
  1072   const ChunkData* const end_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  1074   // Skip full chunks at the beginning of the space--they are necessarily part
  1075   // of the dense prefix.
  1076   size_t full_count = 0;
  1077   const ChunkData* cp;
  1078   for (cp = beg_cp; cp < end_cp && cp->data_size() == chunk_size; ++cp) {
  1079     ++full_count;
  1082   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1083   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1084   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1085   if (maximum_compaction || cp == end_cp || interval_ended) {
  1086     _maximum_compaction_gc_num = total_invocations();
  1087     return sd.chunk_to_addr(cp);
  1090   HeapWord* const new_top = _space_info[id].new_top();
  1091   const size_t space_live = pointer_delta(new_top, space->bottom());
  1092   const size_t space_used = space->used_in_words();
  1093   const size_t space_capacity = space->capacity_in_words();
  1095   const double cur_density = double(space_live) / space_capacity;
  1096   const double deadwood_density =
  1097     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1098   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1100   if (TraceParallelOldGCDensePrefix) {
  1101     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1102                   cur_density, deadwood_density, deadwood_goal);
  1103     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1104                   "space_cap=" SIZE_FORMAT,
  1105                   space_live, space_used,
  1106                   space_capacity);
  1109   // XXX - Use binary search?
  1110   HeapWord* dense_prefix = sd.chunk_to_addr(cp);
  1111   const ChunkData* full_cp = cp;
  1112   const ChunkData* const top_cp = sd.addr_to_chunk_ptr(space->top() - 1);
  1113   while (cp < end_cp) {
  1114     HeapWord* chunk_destination = cp->destination();
  1115     const size_t cur_deadwood = pointer_delta(dense_prefix, chunk_destination);
  1116     if (TraceParallelOldGCDensePrefix && Verbose) {
  1117       tty->print_cr("c#=" SIZE_FORMAT_W("04") " dst=" PTR_FORMAT " "
  1118                     "dp=" SIZE_FORMAT_W("08") " " "cdw=" SIZE_FORMAT_W("08"),
  1119                     sd.chunk(cp), chunk_destination,
  1120                     dense_prefix, cur_deadwood);
  1123     if (cur_deadwood >= deadwood_goal) {
  1124       // Found the chunk that has the correct amount of deadwood to the left.
  1125       // This typically occurs after crossing a fairly sparse set of chunks, so
  1126       // iterate backwards over those sparse chunks, looking for the chunk that
  1127       // has the lowest density of live objects 'to the right.'
  1128       size_t space_to_left = sd.chunk(cp) * chunk_size;
  1129       size_t live_to_left = space_to_left - cur_deadwood;
  1130       size_t space_to_right = space_capacity - space_to_left;
  1131       size_t live_to_right = space_live - live_to_left;
  1132       double density_to_right = double(live_to_right) / space_to_right;
  1133       while (cp > full_cp) {
  1134         --cp;
  1135         const size_t prev_chunk_live_to_right = live_to_right - cp->data_size();
  1136         const size_t prev_chunk_space_to_right = space_to_right + chunk_size;
  1137         double prev_chunk_density_to_right =
  1138           double(prev_chunk_live_to_right) / prev_chunk_space_to_right;
  1139         if (density_to_right <= prev_chunk_density_to_right) {
  1140           return dense_prefix;
  1142         if (TraceParallelOldGCDensePrefix && Verbose) {
  1143           tty->print_cr("backing up from c=" SIZE_FORMAT_W("4") " d2r=%10.8f "
  1144                         "pc_d2r=%10.8f", sd.chunk(cp), density_to_right,
  1145                         prev_chunk_density_to_right);
  1147         dense_prefix -= chunk_size;
  1148         live_to_right = prev_chunk_live_to_right;
  1149         space_to_right = prev_chunk_space_to_right;
  1150         density_to_right = prev_chunk_density_to_right;
  1152       return dense_prefix;
  1155     dense_prefix += chunk_size;
  1156     ++cp;
  1159   return dense_prefix;
  1162 #ifndef PRODUCT
  1163 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1164                                                  const SpaceId id,
  1165                                                  const bool maximum_compaction,
  1166                                                  HeapWord* const addr)
  1168   const size_t chunk_idx = summary_data().addr_to_chunk_idx(addr);
  1169   ChunkData* const cp = summary_data().chunk(chunk_idx);
  1170   const MutableSpace* const space = _space_info[id].space();
  1171   HeapWord* const new_top = _space_info[id].new_top();
  1173   const size_t space_live = pointer_delta(new_top, space->bottom());
  1174   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1175   const size_t space_cap = space->capacity_in_words();
  1176   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1177   const size_t live_to_right = new_top - cp->destination();
  1178   const size_t dead_to_right = space->top() - addr - live_to_right;
  1180   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W("05") " "
  1181                 "spl=" SIZE_FORMAT " "
  1182                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1183                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1184                 " ratio=%10.8f",
  1185                 algorithm, addr, chunk_idx,
  1186                 space_live,
  1187                 dead_to_left, dead_to_left_pct,
  1188                 dead_to_right, live_to_right,
  1189                 double(dead_to_right) / live_to_right);
  1191 #endif  // #ifndef PRODUCT
  1193 // Return a fraction indicating how much of the generation can be treated as
  1194 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1195 // based on the density of live objects in the generation to determine a limit,
  1196 // which is then adjusted so the return value is min_percent when the density is
  1197 // 1.
  1198 //
  1199 // The following table shows some return values for a different values of the
  1200 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1201 // min_percent is 1.
  1202 //
  1203 //                          fraction allowed as dead wood
  1204 //         -----------------------------------------------------------------
  1205 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1206 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1207 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1208 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1209 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1210 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1211 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1212 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1213 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1214 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1215 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1216 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1217 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1218 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1219 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1220 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1221 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1222 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1223 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1224 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1225 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1226 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1227 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1229 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1231   assert(_dwl_initialized, "uninitialized");
  1233   // The raw limit is the value of the normal distribution at x = density.
  1234   const double raw_limit = normal_distribution(density);
  1236   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1237   //
  1238   // First subtract the adjustment value (which is simply the precomputed value
  1239   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1240   // Then add the minimum value, so the minimum is returned when the density is
  1241   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1242   const double min = double(min_percent) / 100.0;
  1243   const double limit = raw_limit - _dwl_adjustment + min;
  1244   return MAX2(limit, 0.0);
  1247 ParallelCompactData::ChunkData*
  1248 PSParallelCompact::first_dead_space_chunk(const ChunkData* beg,
  1249                                           const ChunkData* end)
  1251   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1252   ParallelCompactData& sd = summary_data();
  1253   size_t left = sd.chunk(beg);
  1254   size_t right = end > beg ? sd.chunk(end) - 1 : left;
  1256   // Binary search.
  1257   while (left < right) {
  1258     // Equivalent to (left + right) / 2, but does not overflow.
  1259     const size_t middle = left + (right - left) / 2;
  1260     ChunkData* const middle_ptr = sd.chunk(middle);
  1261     HeapWord* const dest = middle_ptr->destination();
  1262     HeapWord* const addr = sd.chunk_to_addr(middle);
  1263     assert(dest != NULL, "sanity");
  1264     assert(dest <= addr, "must move left");
  1266     if (middle > left && dest < addr) {
  1267       right = middle - 1;
  1268     } else if (middle < right && middle_ptr->data_size() == chunk_size) {
  1269       left = middle + 1;
  1270     } else {
  1271       return middle_ptr;
  1274   return sd.chunk(left);
  1277 ParallelCompactData::ChunkData*
  1278 PSParallelCompact::dead_wood_limit_chunk(const ChunkData* beg,
  1279                                          const ChunkData* end,
  1280                                          size_t dead_words)
  1282   ParallelCompactData& sd = summary_data();
  1283   size_t left = sd.chunk(beg);
  1284   size_t right = end > beg ? sd.chunk(end) - 1 : left;
  1286   // Binary search.
  1287   while (left < right) {
  1288     // Equivalent to (left + right) / 2, but does not overflow.
  1289     const size_t middle = left + (right - left) / 2;
  1290     ChunkData* const middle_ptr = sd.chunk(middle);
  1291     HeapWord* const dest = middle_ptr->destination();
  1292     HeapWord* const addr = sd.chunk_to_addr(middle);
  1293     assert(dest != NULL, "sanity");
  1294     assert(dest <= addr, "must move left");
  1296     const size_t dead_to_left = pointer_delta(addr, dest);
  1297     if (middle > left && dead_to_left > dead_words) {
  1298       right = middle - 1;
  1299     } else if (middle < right && dead_to_left < dead_words) {
  1300       left = middle + 1;
  1301     } else {
  1302       return middle_ptr;
  1305   return sd.chunk(left);
  1308 // The result is valid during the summary phase, after the initial summarization
  1309 // of each space into itself, and before final summarization.
  1310 inline double
  1311 PSParallelCompact::reclaimed_ratio(const ChunkData* const cp,
  1312                                    HeapWord* const bottom,
  1313                                    HeapWord* const top,
  1314                                    HeapWord* const new_top)
  1316   ParallelCompactData& sd = summary_data();
  1318   assert(cp != NULL, "sanity");
  1319   assert(bottom != NULL, "sanity");
  1320   assert(top != NULL, "sanity");
  1321   assert(new_top != NULL, "sanity");
  1322   assert(top >= new_top, "summary data problem?");
  1323   assert(new_top > bottom, "space is empty; should not be here");
  1324   assert(new_top >= cp->destination(), "sanity");
  1325   assert(top >= sd.chunk_to_addr(cp), "sanity");
  1327   HeapWord* const destination = cp->destination();
  1328   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1329   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1330   const size_t compacted_region_used = pointer_delta(top, sd.chunk_to_addr(cp));
  1331   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1333   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1334   return double(reclaimable) / divisor;
  1337 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1338 // compacted region.  The address is always on a chunk boundary.
  1339 //
  1340 // Completely full chunks at the left are skipped, since no compaction can occur
  1341 // in those chunks.  Then the maximum amount of dead wood to allow is computed,
  1342 // based on the density (amount live / capacity) of the generation; the chunk
  1343 // with approximately that amount of dead space to the left is identified as the
  1344 // limit chunk.  Chunks between the last completely full chunk and the limit
  1345 // chunk are scanned and the one that has the best (maximum) reclaimed_ratio()
  1346 // is selected.
  1347 HeapWord*
  1348 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1349                                         bool maximum_compaction)
  1351   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1352   const ParallelCompactData& sd = summary_data();
  1354   const MutableSpace* const space = _space_info[id].space();
  1355   HeapWord* const top = space->top();
  1356   HeapWord* const top_aligned_up = sd.chunk_align_up(top);
  1357   HeapWord* const new_top = _space_info[id].new_top();
  1358   HeapWord* const new_top_aligned_up = sd.chunk_align_up(new_top);
  1359   HeapWord* const bottom = space->bottom();
  1360   const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(bottom);
  1361   const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  1362   const ChunkData* const new_top_cp = sd.addr_to_chunk_ptr(new_top_aligned_up);
  1364   // Skip full chunks at the beginning of the space--they are necessarily part
  1365   // of the dense prefix.
  1366   const ChunkData* const full_cp = first_dead_space_chunk(beg_cp, new_top_cp);
  1367   assert(full_cp->destination() == sd.chunk_to_addr(full_cp) ||
  1368          space->is_empty(), "no dead space allowed to the left");
  1369   assert(full_cp->data_size() < chunk_size || full_cp == new_top_cp - 1,
  1370          "chunk must have dead space");
  1372   // The gc number is saved whenever a maximum compaction is done, and used to
  1373   // determine when the maximum compaction interval has expired.  This avoids
  1374   // successive max compactions for different reasons.
  1375   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1376   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1377   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1378     total_invocations() == HeapFirstMaximumCompactionCount;
  1379   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1380     _maximum_compaction_gc_num = total_invocations();
  1381     return sd.chunk_to_addr(full_cp);
  1384   const size_t space_live = pointer_delta(new_top, bottom);
  1385   const size_t space_used = space->used_in_words();
  1386   const size_t space_capacity = space->capacity_in_words();
  1388   const double density = double(space_live) / double(space_capacity);
  1389   const size_t min_percent_free =
  1390           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  1391   const double limiter = dead_wood_limiter(density, min_percent_free);
  1392   const size_t dead_wood_max = space_used - space_live;
  1393   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1394                                       dead_wood_max);
  1396   if (TraceParallelOldGCDensePrefix) {
  1397     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1398                   "space_cap=" SIZE_FORMAT,
  1399                   space_live, space_used,
  1400                   space_capacity);
  1401     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1402                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1403                   density, min_percent_free, limiter,
  1404                   dead_wood_max, dead_wood_limit);
  1407   // Locate the chunk with the desired amount of dead space to the left.
  1408   const ChunkData* const limit_cp =
  1409     dead_wood_limit_chunk(full_cp, top_cp, dead_wood_limit);
  1411   // Scan from the first chunk with dead space to the limit chunk and find the
  1412   // one with the best (largest) reclaimed ratio.
  1413   double best_ratio = 0.0;
  1414   const ChunkData* best_cp = full_cp;
  1415   for (const ChunkData* cp = full_cp; cp < limit_cp; ++cp) {
  1416     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1417     if (tmp_ratio > best_ratio) {
  1418       best_cp = cp;
  1419       best_ratio = tmp_ratio;
  1423 #if     0
  1424   // Something to consider:  if the chunk with the best ratio is 'close to' the
  1425   // first chunk w/free space, choose the first chunk with free space
  1426   // ("first-free").  The first-free chunk is usually near the start of the
  1427   // heap, which means we are copying most of the heap already, so copy a bit
  1428   // more to get complete compaction.
  1429   if (pointer_delta(best_cp, full_cp, sizeof(ChunkData)) < 4) {
  1430     _maximum_compaction_gc_num = total_invocations();
  1431     best_cp = full_cp;
  1433 #endif  // #if 0
  1435   return sd.chunk_to_addr(best_cp);
  1438 void PSParallelCompact::summarize_spaces_quick()
  1440   for (unsigned int i = 0; i < last_space_id; ++i) {
  1441     const MutableSpace* space = _space_info[i].space();
  1442     bool result = _summary_data.summarize(space->bottom(), space->end(),
  1443                                           space->bottom(), space->top(),
  1444                                           _space_info[i].new_top_addr());
  1445     assert(result, "should never fail");
  1446     _space_info[i].set_dense_prefix(space->bottom());
  1450 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1452   HeapWord* const dense_prefix_end = dense_prefix(id);
  1453   const ChunkData* chunk = _summary_data.addr_to_chunk_ptr(dense_prefix_end);
  1454   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1455   if (dead_space_crosses_boundary(chunk, dense_prefix_bit)) {
  1456     // Only enough dead space is filled so that any remaining dead space to the
  1457     // left is larger than the minimum filler object.  (The remainder is filled
  1458     // during the copy/update phase.)
  1459     //
  1460     // The size of the dead space to the right of the boundary is not a
  1461     // concern, since compaction will be able to use whatever space is
  1462     // available.
  1463     //
  1464     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1465     // surrounds the space to be filled with an object.
  1466     //
  1467     // In the 32-bit VM, each bit represents two 32-bit words:
  1468     //                              +---+
  1469     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1470     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1471     //                              +---+
  1472     //
  1473     // In the 64-bit VM, each bit represents one 64-bit word:
  1474     //                              +------------+
  1475     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1476     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1477     //                              +------------+
  1478     //                          +-------+
  1479     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1480     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1481     //                          +-------+
  1482     //                      +-----------+
  1483     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1484     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1485     //                      +-----------+
  1486     //                          +-------+
  1487     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1488     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1489     //                          +-------+
  1491     // Initially assume case a, c or e will apply.
  1492     size_t obj_len = (size_t)oopDesc::header_size();
  1493     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1495 #ifdef  _LP64
  1496     if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1497       // Case b above.
  1498       obj_beg = dense_prefix_end - 1;
  1499     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1500                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1501       // Case d above.
  1502       obj_beg = dense_prefix_end - 3;
  1503       obj_len = 3;
  1505 #endif  // #ifdef _LP64
  1507     MemRegion region(obj_beg, obj_len);
  1508     SharedHeap::fill_region_with_object(region);
  1509     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1510     _summary_data.add_obj(obj_beg, obj_len);
  1511     assert(start_array(id) != NULL, "sanity");
  1512     start_array(id)->allocate_block(obj_beg);
  1516 void
  1517 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1519   assert(id < last_space_id, "id out of range");
  1521   const MutableSpace* space = _space_info[id].space();
  1522   HeapWord** new_top_addr = _space_info[id].new_top_addr();
  1524   HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1525   _space_info[id].set_dense_prefix(dense_prefix_end);
  1527 #ifndef PRODUCT
  1528   if (TraceParallelOldGCDensePrefix) {
  1529     print_dense_prefix_stats("ratio", id, maximum_compaction, dense_prefix_end);
  1530     HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1531     print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1533 #endif  // #ifndef PRODUCT
  1535   // If dead space crosses the dense prefix boundary, it is (at least partially)
  1536   // filled with a dummy object, marked live and added to the summary data.
  1537   // This simplifies the copy/update phase and must be done before the final
  1538   // locations of objects are determined, to prevent leaving a fragment of dead
  1539   // space that is too small to fill with an object.
  1540   if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1541     fill_dense_prefix_end(id);
  1544   // Compute the destination of each Chunk, and thus each object.
  1545   _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1546   _summary_data.summarize(dense_prefix_end, space->end(),
  1547                           dense_prefix_end, space->top(),
  1548                           new_top_addr);
  1550   if (TraceParallelOldGCSummaryPhase) {
  1551     const size_t chunk_size = ParallelCompactData::ChunkSize;
  1552     const size_t dp_chunk = _summary_data.addr_to_chunk_idx(dense_prefix_end);
  1553     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1554     const HeapWord* nt_aligned_up = _summary_data.chunk_align_up(*new_top_addr);
  1555     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1556     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1557                   "dp_chunk=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1558                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1559                   id, space->capacity_in_words(), dense_prefix_end,
  1560                   dp_chunk, dp_words / chunk_size,
  1561                   cr_words / chunk_size, *new_top_addr);
  1565 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1566                                       bool maximum_compaction)
  1568   EventMark m("2 summarize");
  1569   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1570   // trace("2");
  1572 #ifdef  ASSERT
  1573   if (VerifyParallelOldWithMarkSweep  &&
  1574       (PSParallelCompact::total_invocations() %
  1575          VerifyParallelOldWithMarkSweepInterval) == 0) {
  1576     verify_mark_bitmap(_mark_bitmap);
  1578   if (TraceParallelOldGCMarkingPhase) {
  1579     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1580                   "add_obj_bytes=" SIZE_FORMAT,
  1581                   add_obj_count, add_obj_size * HeapWordSize);
  1582     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1583                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1584                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1586 #endif  // #ifdef ASSERT
  1588   // Quick summarization of each space into itself, to see how much is live.
  1589   summarize_spaces_quick();
  1591   if (TraceParallelOldGCSummaryPhase) {
  1592     tty->print_cr("summary_phase:  after summarizing each space to self");
  1593     Universe::print();
  1594     NOT_PRODUCT(print_chunk_ranges());
  1595     if (Verbose) {
  1596       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1600   // The amount of live data that will end up in old space (assuming it fits).
  1601   size_t old_space_total_live = 0;
  1602   unsigned int id;
  1603   for (id = old_space_id; id < last_space_id; ++id) {
  1604     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1605                                           _space_info[id].space()->bottom());
  1608   const MutableSpace* old_space = _space_info[old_space_id].space();
  1609   if (old_space_total_live > old_space->capacity_in_words()) {
  1610     // XXX - should also try to expand
  1611     maximum_compaction = true;
  1612   } else if (!UseParallelOldGCDensePrefix) {
  1613     maximum_compaction = true;
  1616   // Permanent and Old generations.
  1617   summarize_space(perm_space_id, maximum_compaction);
  1618   summarize_space(old_space_id, maximum_compaction);
  1620   // Summarize the remaining spaces (those in the young gen) into old space.  If
  1621   // the live data from a space doesn't fit, the existing summarization is left
  1622   // intact, so the data is compacted down within the space itself.
  1623   HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
  1624   HeapWord* const target_space_end = old_space->end();
  1625   for (id = eden_space_id; id < last_space_id; ++id) {
  1626     const MutableSpace* space = _space_info[id].space();
  1627     const size_t live = pointer_delta(_space_info[id].new_top(),
  1628                                       space->bottom());
  1629     const size_t available = pointer_delta(target_space_end, *new_top_addr);
  1630     if (live <= available) {
  1631       // All the live data will fit.
  1632       if (TraceParallelOldGCSummaryPhase) {
  1633         tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
  1634                       id, *new_top_addr);
  1636       _summary_data.summarize(*new_top_addr, target_space_end,
  1637                               space->bottom(), space->top(),
  1638                               new_top_addr);
  1640       // Reset the new_top value for the space.
  1641       _space_info[id].set_new_top(space->bottom());
  1643       // Clear the source_chunk field for each chunk in the space.
  1644       ChunkData* beg_chunk = _summary_data.addr_to_chunk_ptr(space->bottom());
  1645       ChunkData* end_chunk = _summary_data.addr_to_chunk_ptr(space->top() - 1);
  1646       while (beg_chunk <= end_chunk) {
  1647         beg_chunk->set_source_chunk(0);
  1648         ++beg_chunk;
  1653   // Fill in the block data after any changes to the chunks have
  1654   // been made.
  1655 #ifdef  ASSERT
  1656   summarize_blocks(cm, perm_space_id);
  1657   summarize_blocks(cm, old_space_id);
  1658 #else
  1659   if (!UseParallelOldGCChunkPointerCalc) {
  1660     summarize_blocks(cm, perm_space_id);
  1661     summarize_blocks(cm, old_space_id);
  1663 #endif
  1665   if (TraceParallelOldGCSummaryPhase) {
  1666     tty->print_cr("summary_phase:  after final summarization");
  1667     Universe::print();
  1668     NOT_PRODUCT(print_chunk_ranges());
  1669     if (Verbose) {
  1670       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1675 // Fill in the BlockData.
  1676 // Iterate over the spaces and within each space iterate over
  1677 // the chunks and fill in the BlockData for each chunk.
  1679 void PSParallelCompact::summarize_blocks(ParCompactionManager* cm,
  1680                                          SpaceId first_compaction_space_id) {
  1681 #if     0
  1682   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(1);)
  1683   for (SpaceId cur_space_id = first_compaction_space_id;
  1684        cur_space_id != last_space_id;
  1685        cur_space_id = next_compaction_space_id(cur_space_id)) {
  1686     // Iterate over the chunks in the space
  1687     size_t start_chunk_index =
  1688       _summary_data.addr_to_chunk_idx(space(cur_space_id)->bottom());
  1689     BitBlockUpdateClosure bbu(mark_bitmap(),
  1690                               cm,
  1691                               start_chunk_index);
  1692     // Iterate over blocks.
  1693     for (size_t chunk_index =  start_chunk_index;
  1694          chunk_index < _summary_data.chunk_count() &&
  1695          _summary_data.chunk_to_addr(chunk_index) < space(cur_space_id)->top();
  1696          chunk_index++) {
  1698       // Reset the closure for the new chunk.  Note that the closure
  1699       // maintains some data that does not get reset for each chunk
  1700       // so a new instance of the closure is no appropriate.
  1701       bbu.reset_chunk(chunk_index);
  1703       // Start the iteration with the first live object.  This
  1704       // may return the end of the chunk.  That is acceptable since
  1705       // it will properly limit the iterations.
  1706       ParMarkBitMap::idx_t left_offset = mark_bitmap()->addr_to_bit(
  1707         _summary_data.first_live_or_end_in_chunk(chunk_index));
  1709       // End the iteration at the end of the chunk.
  1710       HeapWord* chunk_addr = _summary_data.chunk_to_addr(chunk_index);
  1711       HeapWord* chunk_end = chunk_addr + ParallelCompactData::ChunkSize;
  1712       ParMarkBitMap::idx_t right_offset =
  1713         mark_bitmap()->addr_to_bit(chunk_end);
  1715       // Blocks that have not objects starting in them can be
  1716       // skipped because their data will never be used.
  1717       if (left_offset < right_offset) {
  1719         // Iterate through the objects in the chunk.
  1720         ParMarkBitMap::idx_t last_offset =
  1721           mark_bitmap()->pair_iterate(&bbu, left_offset, right_offset);
  1723         // If last_offset is less than right_offset, then the iterations
  1724         // terminated while it was looking for an end bit.  "last_offset"
  1725         // is then the offset for the last start bit.  In this situation
  1726         // the "offset" field for the next block to the right (_cur_block + 1)
  1727         // will not have been update although there may be live data
  1728         // to the left of the chunk.
  1730         size_t cur_block_plus_1 = bbu.cur_block() + 1;
  1731         HeapWord* cur_block_plus_1_addr =
  1732         _summary_data.block_to_addr(bbu.cur_block()) +
  1733         ParallelCompactData::BlockSize;
  1734         HeapWord* last_offset_addr = mark_bitmap()->bit_to_addr(last_offset);
  1735  #if 1  // This code works.  The else doesn't but should.  Why does it?
  1736         // The current block (cur_block()) has already been updated.
  1737         // The last block that may need to be updated is either the
  1738         // next block (current block + 1) or the block where the
  1739         // last object starts (which can be greater than the
  1740         // next block if there were no objects found in intervening
  1741         // blocks).
  1742         size_t last_block =
  1743           MAX2(bbu.cur_block() + 1,
  1744                _summary_data.addr_to_block_idx(last_offset_addr));
  1745  #else
  1746         // The current block has already been updated.  The only block
  1747         // that remains to be updated is the block where the last
  1748         // object in the chunk starts.
  1749         size_t last_block = _summary_data.addr_to_block_idx(last_offset_addr);
  1750  #endif
  1751         assert_bit_is_start(last_offset);
  1752         assert((last_block == _summary_data.block_count()) ||
  1753              (_summary_data.block(last_block)->raw_offset() == 0),
  1754           "Should not have been set");
  1755         // Is the last block still in the current chunk?  If still
  1756         // in this chunk, update the last block (the counting that
  1757         // included the current block is meant for the offset of the last
  1758         // block).  If not in this chunk, do nothing.  Should not
  1759         // update a block in the next chunk.
  1760         if (ParallelCompactData::chunk_contains_block(bbu.chunk_index(),
  1761                                                       last_block)) {
  1762           if (last_offset < right_offset) {
  1763             // The last object started in this chunk but ends beyond
  1764             // this chunk.  Update the block for this last object.
  1765             assert(mark_bitmap()->is_marked(last_offset), "Should be marked");
  1766             // No end bit was found.  The closure takes care of
  1767             // the cases where
  1768             //   an objects crosses over into the next block
  1769             //   an objects starts and ends in the next block
  1770             // It does not handle the case where an object is
  1771             // the first object in a later block and extends
  1772             // past the end of the chunk (i.e., the closure
  1773             // only handles complete objects that are in the range
  1774             // it is given).  That object is handed back here
  1775             // for any special consideration necessary.
  1776             //
  1777             // Is the first bit in the last block a start or end bit?
  1778             //
  1779             // If the partial object ends in the last block L,
  1780             // then the 1st bit in L may be an end bit.
  1781             //
  1782             // Else does the last object start in a block after the current
  1783             // block? A block AA will already have been updated if an
  1784             // object ends in the next block AA+1.  An object found to end in
  1785             // the AA+1 is the trigger that updates AA.  Objects are being
  1786             // counted in the current block for updaing a following
  1787             // block.  An object may start in later block
  1788             // block but may extend beyond the last block in the chunk.
  1789             // Updates are only done when the end of an object has been
  1790             // found. If the last object (covered by block L) starts
  1791             // beyond the current block, then no object ends in L (otherwise
  1792             // L would be the current block).  So the first bit in L is
  1793             // a start bit.
  1794             //
  1795             // Else the last objects start in the current block and ends
  1796             // beyond the chunk.  The current block has already been
  1797             // updated and there is no later block (with an object
  1798             // starting in it) that needs to be updated.
  1799             //
  1800             if (_summary_data.partial_obj_ends_in_block(last_block)) {
  1801               _summary_data.block(last_block)->set_end_bit_offset(
  1802                 bbu.live_data_left());
  1803             } else if (last_offset_addr >= cur_block_plus_1_addr) {
  1804               //   The start of the object is on a later block
  1805               // (to the right of the current block and there are no
  1806               // complete live objects to the left of this last object
  1807               // within the chunk.
  1808               //   The first bit in the block is for the start of the
  1809               // last object.
  1810               _summary_data.block(last_block)->set_start_bit_offset(
  1811                 bbu.live_data_left());
  1812             } else {
  1813               //   The start of the last object was found in
  1814               // the current chunk (which has already
  1815               // been updated).
  1816               assert(bbu.cur_block() ==
  1817                       _summary_data.addr_to_block_idx(last_offset_addr),
  1818                 "Should be a block already processed");
  1820 #ifdef ASSERT
  1821             // Is there enough block information to find this object?
  1822             // The destination of the chunk has not been set so the
  1823             // values returned by calc_new_pointer() and
  1824             // block_calc_new_pointer() will only be
  1825             // offsets.  But they should agree.
  1826             HeapWord* moved_obj_with_chunks =
  1827               _summary_data.chunk_calc_new_pointer(last_offset_addr);
  1828             HeapWord* moved_obj_with_blocks =
  1829               _summary_data.calc_new_pointer(last_offset_addr);
  1830             assert(moved_obj_with_chunks == moved_obj_with_blocks,
  1831               "Block calculation is wrong");
  1832 #endif
  1833           } else if (last_block < _summary_data.block_count()) {
  1834             // Iterations ended looking for a start bit (but
  1835             // did not run off the end of the block table).
  1836             _summary_data.block(last_block)->set_start_bit_offset(
  1837               bbu.live_data_left());
  1840 #ifdef ASSERT
  1841         // Is there enough block information to find this object?
  1842           HeapWord* left_offset_addr = mark_bitmap()->bit_to_addr(left_offset);
  1843         HeapWord* moved_obj_with_chunks =
  1844           _summary_data.calc_new_pointer(left_offset_addr);
  1845         HeapWord* moved_obj_with_blocks =
  1846           _summary_data.calc_new_pointer(left_offset_addr);
  1847           assert(moved_obj_with_chunks == moved_obj_with_blocks,
  1848           "Block calculation is wrong");
  1849 #endif
  1851         // Is there another block after the end of this chunk?
  1852 #ifdef ASSERT
  1853         if (last_block < _summary_data.block_count()) {
  1854         // No object may have been found in a block.  If that
  1855         // block is at the end of the chunk, the iteration will
  1856         // terminate without incrementing the current block so
  1857         // that the current block is not the last block in the
  1858         // chunk.  That situation precludes asserting that the
  1859         // current block is the last block in the chunk.  Assert
  1860         // the lesser condition that the current block does not
  1861         // exceed the chunk.
  1862           assert(_summary_data.block_to_addr(last_block) <=
  1863                (_summary_data.chunk_to_addr(chunk_index) +
  1864                  ParallelCompactData::ChunkSize),
  1865               "Chunk and block inconsistency");
  1866           assert(last_offset <= right_offset, "Iteration over ran end");
  1868 #endif
  1870 #ifdef ASSERT
  1871       if (PrintGCDetails && Verbose) {
  1872         if (_summary_data.chunk(chunk_index)->partial_obj_size() == 1) {
  1873           size_t first_block =
  1874             chunk_index / ParallelCompactData::BlocksPerChunk;
  1875           gclog_or_tty->print_cr("first_block " PTR_FORMAT
  1876             " _offset " PTR_FORMAT
  1877             "_first_is_start_bit %d",
  1878             first_block,
  1879             _summary_data.block(first_block)->raw_offset(),
  1880             _summary_data.block(first_block)->first_is_start_bit());
  1883 #endif
  1886   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(16);)
  1887 #endif  // #if 0
  1890 // This method should contain all heap-specific policy for invoking a full
  1891 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1892 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1893 // before full gc, or any other specialized behavior, it needs to be added here.
  1894 //
  1895 // Note that this method should only be called from the vm_thread while at a
  1896 // safepoint.
  1897 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1898   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1899   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1900          "should be in vm thread");
  1901   ParallelScavengeHeap* heap = gc_heap();
  1902   GCCause::Cause gc_cause = heap->gc_cause();
  1903   assert(!heap->is_gc_active(), "not reentrant");
  1905   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1907   // Before each allocation/collection attempt, find out from the
  1908   // policy object if GCs are, on the whole, taking too long. If so,
  1909   // bail out without attempting a collection.  The exceptions are
  1910   // for explicitly requested GC's.
  1911   if (!policy->gc_time_limit_exceeded() ||
  1912       GCCause::is_user_requested_gc(gc_cause) ||
  1913       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1914     IsGCActiveMark mark;
  1916     if (ScavengeBeforeFullGC) {
  1917       PSScavenge::invoke_no_policy();
  1920     PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  1924 bool ParallelCompactData::chunk_contains(size_t chunk_index, HeapWord* addr) {
  1925   size_t addr_chunk_index = addr_to_chunk_idx(addr);
  1926   return chunk_index == addr_chunk_index;
  1929 bool ParallelCompactData::chunk_contains_block(size_t chunk_index,
  1930                                                size_t block_index) {
  1931   size_t first_block_in_chunk = chunk_index * BlocksPerChunk;
  1932   size_t last_block_in_chunk = (chunk_index + 1) * BlocksPerChunk - 1;
  1934   return (first_block_in_chunk <= block_index) &&
  1935          (block_index <= last_block_in_chunk);
  1938 // This method contains no policy. You should probably
  1939 // be calling invoke() instead.
  1940 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1941   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1942   assert(ref_processor() != NULL, "Sanity");
  1944   if (GC_locker::check_active_before_gc()) {
  1945     return;
  1948   TimeStamp marking_start;
  1949   TimeStamp compaction_start;
  1950   TimeStamp collection_exit;
  1952   // "serial_CM" is needed until the parallel implementation
  1953   // of the move and update is done.
  1954   ParCompactionManager* serial_CM = new ParCompactionManager();
  1955   // Don't initialize more than once.
  1956   // serial_CM->initialize(&summary_data(), mark_bitmap());
  1958   ParallelScavengeHeap* heap = gc_heap();
  1959   GCCause::Cause gc_cause = heap->gc_cause();
  1960   PSYoungGen* young_gen = heap->young_gen();
  1961   PSOldGen* old_gen = heap->old_gen();
  1962   PSPermGen* perm_gen = heap->perm_gen();
  1963   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1965   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  1967   // Make sure data structures are sane, make the heap parsable, and do other
  1968   // miscellaneous bookkeeping.
  1969   PreGCValues pre_gc_values;
  1970   pre_compact(&pre_gc_values);
  1972   // Place after pre_compact() where the number of invocations is incremented.
  1973   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  1976     ResourceMark rm;
  1977     HandleMark hm;
  1979     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
  1981     // This is useful for debugging but don't change the output the
  1982     // the customer sees.
  1983     const char* gc_cause_str = "Full GC";
  1984     if (is_system_gc && PrintGCDetails) {
  1985       gc_cause_str = "Full GC (System)";
  1987     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1988     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1989     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
  1990     TraceCollectorStats tcs(counters());
  1991     TraceMemoryManagerStats tms(true /* Full GC */);
  1993     if (TraceGen1Time) accumulated_time()->start();
  1995     // Let the size policy know we're starting
  1996     size_policy->major_collection_begin();
  1998     // When collecting the permanent generation methodOops may be moving,
  1999     // so we either have to flush all bcp data or convert it into bci.
  2000     CodeCache::gc_prologue();
  2001     Threads::gc_prologue();
  2003     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2004     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2006     ref_processor()->enable_discovery();
  2008     bool marked_for_unloading = false;
  2010     marking_start.update();
  2011     marking_phase(serial_CM, maximum_heap_compaction);
  2013 #ifndef PRODUCT
  2014     if (TraceParallelOldGCMarkingPhase) {
  2015       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2016         "cas_by_another %d",
  2017         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2018         mark_bitmap()->cas_by_another());
  2020 #endif  // #ifndef PRODUCT
  2022 #ifdef ASSERT
  2023     if (VerifyParallelOldWithMarkSweep &&
  2024         (PSParallelCompact::total_invocations() %
  2025            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2026       gclog_or_tty->print_cr("Verify marking with mark_sweep_phase1()");
  2027       if (PrintGCDetails && Verbose) {
  2028         gclog_or_tty->print_cr("mark_sweep_phase1:");
  2030       // Clear the discovered lists so that discovered objects
  2031       // don't look like they have been discovered twice.
  2032       ref_processor()->clear_discovered_references();
  2034       PSMarkSweep::allocate_stacks();
  2035       MemRegion mr = Universe::heap()->reserved_region();
  2036       PSMarkSweep::ref_processor()->enable_discovery();
  2037       PSMarkSweep::mark_sweep_phase1(maximum_heap_compaction);
  2039 #endif
  2041     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
  2042     summary_phase(serial_CM, maximum_heap_compaction || max_on_system_gc);
  2044 #ifdef ASSERT
  2045     if (VerifyParallelOldWithMarkSweep &&
  2046         (PSParallelCompact::total_invocations() %
  2047            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2048       if (PrintGCDetails && Verbose) {
  2049         gclog_or_tty->print_cr("mark_sweep_phase2:");
  2051       PSMarkSweep::mark_sweep_phase2();
  2053 #endif
  2055     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2056     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2058     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2059     // needed by the compaction for filling holes in the dense prefix.
  2060     adjust_roots();
  2062 #ifdef ASSERT
  2063     if (VerifyParallelOldWithMarkSweep &&
  2064         (PSParallelCompact::total_invocations() %
  2065            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2066       // Do a separate verify phase so that the verify
  2067       // code can use the the forwarding pointers to
  2068       // check the new pointer calculation.  The restore_marks()
  2069       // has to be done before the real compact.
  2070       serial_CM->set_action(ParCompactionManager::VerifyUpdate);
  2071       compact_perm(serial_CM);
  2072       compact_serial(serial_CM);
  2073       serial_CM->set_action(ParCompactionManager::ResetObjects);
  2074       compact_perm(serial_CM);
  2075       compact_serial(serial_CM);
  2076       serial_CM->set_action(ParCompactionManager::UpdateAndCopy);
  2078       // For debugging only
  2079       PSMarkSweep::restore_marks();
  2080       PSMarkSweep::deallocate_stacks();
  2082 #endif
  2084     compaction_start.update();
  2085     // Does the perm gen always have to be done serially because
  2086     // klasses are used in the update of an object?
  2087     compact_perm(serial_CM);
  2089     if (UseParallelOldGCCompacting) {
  2090       compact();
  2091     } else {
  2092       compact_serial(serial_CM);
  2095     delete serial_CM;
  2097     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2098     // done before resizing.
  2099     post_compact();
  2101     // Let the size policy know we're done
  2102     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2104     if (UseAdaptiveSizePolicy) {
  2105       if (PrintAdaptiveSizePolicy) {
  2106         gclog_or_tty->print("AdaptiveSizeStart: ");
  2107         gclog_or_tty->stamp();
  2108         gclog_or_tty->print_cr(" collection: %d ",
  2109                        heap->total_collections());
  2110         if (Verbose) {
  2111           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
  2112             " perm_gen_capacity: %d ",
  2113             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
  2114             perm_gen->capacity_in_bytes());
  2118       // Don't check if the size_policy is ready here.  Let
  2119       // the size_policy check that internally.
  2120       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2121           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2122             UseAdaptiveSizePolicyWithSystemGC)) {
  2123         // Calculate optimal free space amounts
  2124         assert(young_gen->max_size() >
  2125           young_gen->from_space()->capacity_in_bytes() +
  2126           young_gen->to_space()->capacity_in_bytes(),
  2127           "Sizes of space in young gen are out-of-bounds");
  2128         size_t max_eden_size = young_gen->max_size() -
  2129           young_gen->from_space()->capacity_in_bytes() -
  2130           young_gen->to_space()->capacity_in_bytes();
  2131         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
  2132                                  young_gen->eden_space()->used_in_bytes(),
  2133                                  old_gen->used_in_bytes(),
  2134                                  perm_gen->used_in_bytes(),
  2135                                  young_gen->eden_space()->capacity_in_bytes(),
  2136                                  old_gen->max_gen_size(),
  2137                                  max_eden_size,
  2138                                  true /* full gc*/,
  2139                                  gc_cause);
  2141         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
  2143         // Don't resize the young generation at an major collection.  A
  2144         // desired young generation size may have been calculated but
  2145         // resizing the young generation complicates the code because the
  2146         // resizing of the old generation may have moved the boundary
  2147         // between the young generation and the old generation.  Let the
  2148         // young generation resizing happen at the minor collections.
  2150       if (PrintAdaptiveSizePolicy) {
  2151         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2152                        heap->total_collections());
  2156     if (UsePerfData) {
  2157       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2158       counters->update_counters();
  2159       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2160       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2163     heap->resize_all_tlabs();
  2165     // We collected the perm gen, so we'll resize it here.
  2166     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
  2168     if (TraceGen1Time) accumulated_time()->stop();
  2170     if (PrintGC) {
  2171       if (PrintGCDetails) {
  2172         // No GC timestamp here.  This is after GC so it would be confusing.
  2173         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2174         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2175         heap->print_heap_change(pre_gc_values.heap_used());
  2176         // Print perm gen last (print_heap_change() excludes the perm gen).
  2177         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
  2178       } else {
  2179         heap->print_heap_change(pre_gc_values.heap_used());
  2183     // Track memory usage and detect low memory
  2184     MemoryService::track_memory_usage();
  2185     heap->update_counters();
  2187     if (PrintGCDetails) {
  2188       if (size_policy->print_gc_time_limit_would_be_exceeded()) {
  2189         if (size_policy->gc_time_limit_exceeded()) {
  2190           gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
  2191             "of %d%%", GCTimeLimit);
  2192         } else {
  2193           gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
  2194             "of %d%%", GCTimeLimit);
  2197       size_policy->set_print_gc_time_limit_would_be_exceeded(false);
  2201   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2202     HandleMark hm;  // Discard invalid handles created during verification
  2203     gclog_or_tty->print(" VerifyAfterGC:");
  2204     Universe::verify(false);
  2207   // Re-verify object start arrays
  2208   if (VerifyObjectStartArray &&
  2209       VerifyAfterGC) {
  2210     old_gen->verify_object_start_array();
  2211     perm_gen->verify_object_start_array();
  2214   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2216   collection_exit.update();
  2218   if (PrintHeapAtGC) {
  2219     Universe::print_heap_after_gc();
  2221   if (PrintGCTaskTimeStamps) {
  2222     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2223                            INT64_FORMAT,
  2224                            marking_start.ticks(), compaction_start.ticks(),
  2225                            collection_exit.ticks());
  2226     gc_task_manager()->print_task_time_stamps();
  2230 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2231                                              PSYoungGen* young_gen,
  2232                                              PSOldGen* old_gen) {
  2233   MutableSpace* const eden_space = young_gen->eden_space();
  2234   assert(!eden_space->is_empty(), "eden must be non-empty");
  2235   assert(young_gen->virtual_space()->alignment() ==
  2236          old_gen->virtual_space()->alignment(), "alignments do not match");
  2238   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2239     return false;
  2242   // Both generations must be completely committed.
  2243   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2244     return false;
  2246   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2247     return false;
  2250   // Figure out how much to take from eden.  Include the average amount promoted
  2251   // in the total; otherwise the next young gen GC will simply bail out to a
  2252   // full GC.
  2253   const size_t alignment = old_gen->virtual_space()->alignment();
  2254   const size_t eden_used = eden_space->used_in_bytes();
  2255   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2256   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2257   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2259   if (absorb_size >= eden_capacity) {
  2260     return false; // Must leave some space in eden.
  2263   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2264   if (new_young_size < young_gen->min_gen_size()) {
  2265     return false; // Respect young gen minimum size.
  2268   if (TraceAdaptiveGCBoundary && Verbose) {
  2269     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2270                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2271                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2272                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2273                         absorb_size / K,
  2274                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2275                         young_gen->from_space()->used_in_bytes() / K,
  2276                         young_gen->to_space()->used_in_bytes() / K,
  2277                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2280   // Fill the unused part of the old gen.
  2281   MutableSpace* const old_space = old_gen->object_space();
  2282   MemRegion old_gen_unused(old_space->top(), old_space->end());
  2283   if (!old_gen_unused.is_empty()) {
  2284     SharedHeap::fill_region_with_object(old_gen_unused);
  2287   // Take the live data from eden and set both top and end in the old gen to
  2288   // eden top.  (Need to set end because reset_after_change() mangles the region
  2289   // from end to virtual_space->high() in debug builds).
  2290   HeapWord* const new_top = eden_space->top();
  2291   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2292                                         absorb_size);
  2293   young_gen->reset_after_change();
  2294   old_space->set_top(new_top);
  2295   old_space->set_end(new_top);
  2296   old_gen->reset_after_change();
  2298   // Update the object start array for the filler object and the data from eden.
  2299   ObjectStartArray* const start_array = old_gen->start_array();
  2300   HeapWord* const start = old_gen_unused.start();
  2301   for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
  2302     start_array->allocate_block(addr);
  2305   // Could update the promoted average here, but it is not typically updated at
  2306   // full GCs and the value to use is unclear.  Something like
  2307   //
  2308   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2310   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2311   return true;
  2314 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2315   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2316     "shouldn't return NULL");
  2317   return ParallelScavengeHeap::gc_task_manager();
  2320 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2321                                       bool maximum_heap_compaction) {
  2322   // Recursively traverse all live objects and mark them
  2323   EventMark m("1 mark object");
  2324   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2326   ParallelScavengeHeap* heap = gc_heap();
  2327   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2328   TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  2329   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2331   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2332   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2335     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2337     GCTaskQueue* q = GCTaskQueue::create();
  2339     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2340     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2341     // We scan the thread roots in parallel
  2342     Threads::create_thread_roots_marking_tasks(q);
  2343     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2344     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2345     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2346     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2347     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2348     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
  2350     if (parallel_gc_threads > 1) {
  2351       for (uint j = 0; j < parallel_gc_threads; j++) {
  2352         q->enqueue(new StealMarkingTask(&terminator));
  2356     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2357     q->enqueue(fin);
  2359     gc_task_manager()->add_list(q);
  2361     fin->wait_for();
  2363     // We have to release the barrier tasks!
  2364     WaitForBarrierGCTask::destroy(fin);
  2367   // Process reference objects found during marking
  2369     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2370     ReferencePolicy *soft_ref_policy;
  2371     if (maximum_heap_compaction) {
  2372       soft_ref_policy = new AlwaysClearPolicy();
  2373     } else {
  2374 #ifdef COMPILER2
  2375       soft_ref_policy = new LRUMaxHeapPolicy();
  2376 #else
  2377       soft_ref_policy = new LRUCurrentHeapPolicy();
  2378 #endif // COMPILER2
  2380     assert(soft_ref_policy != NULL, "No soft reference policy");
  2381     if (ref_processor()->processing_is_mt()) {
  2382       RefProcTaskExecutor task_executor;
  2383       ref_processor()->process_discovered_references(
  2384         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  2385         &follow_stack_closure, &task_executor);
  2386     } else {
  2387       ref_processor()->process_discovered_references(
  2388         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  2389         &follow_stack_closure, NULL);
  2393   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2394   // Follow system dictionary roots and unload classes.
  2395   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2397   // Follow code cache roots.
  2398   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  2399                           purged_class);
  2400   follow_stack(cm); // Flush marking stack.
  2402   // Update subklass/sibling/implementor links of live klasses
  2403   // revisit_klass_stack is used in follow_weak_klass_links().
  2404   follow_weak_klass_links(cm);
  2406   // Visit symbol and interned string tables and delete unmarked oops
  2407   SymbolTable::unlink(is_alive_closure());
  2408   StringTable::unlink(is_alive_closure());
  2410   assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  2411   assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
  2414 // This should be moved to the shared markSweep code!
  2415 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2416 public:
  2417   void do_object(oop p) { ShouldNotReachHere(); }
  2418   bool do_object_b(oop p) { return true; }
  2419 };
  2420 static PSAlwaysTrueClosure always_true;
  2422 void PSParallelCompact::adjust_roots() {
  2423   // Adjust the pointers to reflect the new locations
  2424   EventMark m("3 adjust roots");
  2425   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2427   // General strong roots.
  2428   Universe::oops_do(adjust_root_pointer_closure());
  2429   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  2430   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2431   Threads::oops_do(adjust_root_pointer_closure());
  2432   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2433   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2434   Management::oops_do(adjust_root_pointer_closure());
  2435   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2436   // SO_AllClasses
  2437   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2438   vmSymbols::oops_do(adjust_root_pointer_closure());
  2440   // Now adjust pointers in remaining weak roots.  (All of which should
  2441   // have been cleared if they pointed to non-surviving objects.)
  2442   // Global (weak) JNI handles
  2443   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2445   CodeCache::oops_do(adjust_pointer_closure());
  2446   SymbolTable::oops_do(adjust_root_pointer_closure());
  2447   StringTable::oops_do(adjust_root_pointer_closure());
  2448   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2449   // Roots were visited so references into the young gen in roots
  2450   // may have been scanned.  Process them also.
  2451   // Should the reference processor have a span that excludes
  2452   // young gen objects?
  2453   PSScavenge::reference_processor()->weak_oops_do(
  2454                                               adjust_root_pointer_closure());
  2457 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  2458   EventMark m("4 compact perm");
  2459   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  2460   // trace("4");
  2462   gc_heap()->perm_gen()->start_array()->reset();
  2463   move_and_update(cm, perm_space_id);
  2466 void PSParallelCompact::enqueue_chunk_draining_tasks(GCTaskQueue* q,
  2467                                                      uint parallel_gc_threads) {
  2468   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2470   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  2471   for (unsigned int j = 0; j < task_count; j++) {
  2472     q->enqueue(new DrainStacksCompactionTask());
  2475   // Find all chunks that are available (can be filled immediately) and
  2476   // distribute them to the thread stacks.  The iteration is done in reverse
  2477   // order (high to low) so the chunks will be removed in ascending order.
  2479   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2481   size_t fillable_chunks = 0;   // A count for diagnostic purposes.
  2482   unsigned int which = 0;       // The worker thread number.
  2484   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
  2485     SpaceInfo* const space_info = _space_info + id;
  2486     MutableSpace* const space = space_info->space();
  2487     HeapWord* const new_top = space_info->new_top();
  2489     const size_t beg_chunk = sd.addr_to_chunk_idx(space_info->dense_prefix());
  2490     const size_t end_chunk = sd.addr_to_chunk_idx(sd.chunk_align_up(new_top));
  2491     assert(end_chunk > 0, "perm gen cannot be empty");
  2493     for (size_t cur = end_chunk - 1; cur >= beg_chunk; --cur) {
  2494       if (sd.chunk(cur)->claim_unsafe()) {
  2495         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
  2496         cm->save_for_processing(cur);
  2498         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2499           const size_t count_mod_8 = fillable_chunks & 7;
  2500           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2501           gclog_or_tty->print(" " SIZE_FORMAT_W("7"), cur);
  2502           if (count_mod_8 == 7) gclog_or_tty->cr();
  2505         NOT_PRODUCT(++fillable_chunks;)
  2507         // Assign chunks to threads in round-robin fashion.
  2508         if (++which == task_count) {
  2509           which = 0;
  2515   if (TraceParallelOldGCCompactionPhase) {
  2516     if (Verbose && (fillable_chunks & 7) != 0) gclog_or_tty->cr();
  2517     gclog_or_tty->print_cr("%u initially fillable chunks", fillable_chunks);
  2521 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2523 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2524                                                     uint parallel_gc_threads) {
  2525   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2527   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2529   // Iterate over all the spaces adding tasks for updating
  2530   // chunks in the dense prefix.  Assume that 1 gc thread
  2531   // will work on opening the gaps and the remaining gc threads
  2532   // will work on the dense prefix.
  2533   SpaceId space_id = old_space_id;
  2534   while (space_id != last_space_id) {
  2535     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2536     const MutableSpace* const space = _space_info[space_id].space();
  2538     if (dense_prefix_end == space->bottom()) {
  2539       // There is no dense prefix for this space.
  2540       space_id = next_compaction_space_id(space_id);
  2541       continue;
  2544     // The dense prefix is before this chunk.
  2545     size_t chunk_index_end_dense_prefix =
  2546         sd.addr_to_chunk_idx(dense_prefix_end);
  2547     ChunkData* const dense_prefix_cp = sd.chunk(chunk_index_end_dense_prefix);
  2548     assert(dense_prefix_end == space->end() ||
  2549            dense_prefix_cp->available() ||
  2550            dense_prefix_cp->claimed(),
  2551            "The chunk after the dense prefix should always be ready to fill");
  2553     size_t chunk_index_start = sd.addr_to_chunk_idx(space->bottom());
  2555     // Is there dense prefix work?
  2556     size_t total_dense_prefix_chunks =
  2557       chunk_index_end_dense_prefix - chunk_index_start;
  2558     // How many chunks of the dense prefix should be given to
  2559     // each thread?
  2560     if (total_dense_prefix_chunks > 0) {
  2561       uint tasks_for_dense_prefix = 1;
  2562       if (UseParallelDensePrefixUpdate) {
  2563         if (total_dense_prefix_chunks <=
  2564             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2565           // Don't over partition.  This assumes that
  2566           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2567           // so there are not many chunks to process.
  2568           tasks_for_dense_prefix = parallel_gc_threads;
  2569         } else {
  2570           // Over partition
  2571           tasks_for_dense_prefix = parallel_gc_threads *
  2572             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2575       size_t chunks_per_thread = total_dense_prefix_chunks /
  2576         tasks_for_dense_prefix;
  2577       // Give each thread at least 1 chunk.
  2578       if (chunks_per_thread == 0) {
  2579         chunks_per_thread = 1;
  2582       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2583         if (chunk_index_start >= chunk_index_end_dense_prefix) {
  2584           break;
  2586         // chunk_index_end is not processed
  2587         size_t chunk_index_end = MIN2(chunk_index_start + chunks_per_thread,
  2588                                       chunk_index_end_dense_prefix);
  2589         q->enqueue(new UpdateDensePrefixTask(
  2590                                  space_id,
  2591                                  chunk_index_start,
  2592                                  chunk_index_end));
  2593         chunk_index_start = chunk_index_end;
  2596     // This gets any part of the dense prefix that did not
  2597     // fit evenly.
  2598     if (chunk_index_start < chunk_index_end_dense_prefix) {
  2599       q->enqueue(new UpdateDensePrefixTask(
  2600                                  space_id,
  2601                                  chunk_index_start,
  2602                                  chunk_index_end_dense_prefix));
  2604     space_id = next_compaction_space_id(space_id);
  2605   }  // End tasks for dense prefix
  2608 void PSParallelCompact::enqueue_chunk_stealing_tasks(
  2609                                      GCTaskQueue* q,
  2610                                      ParallelTaskTerminator* terminator_ptr,
  2611                                      uint parallel_gc_threads) {
  2612   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2614   // Once a thread has drained it's stack, it should try to steal chunks from
  2615   // other threads.
  2616   if (parallel_gc_threads > 1) {
  2617     for (uint j = 0; j < parallel_gc_threads; j++) {
  2618       q->enqueue(new StealChunkCompactionTask(terminator_ptr));
  2623 void PSParallelCompact::compact() {
  2624   EventMark m("5 compact");
  2625   // trace("5");
  2626   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2628   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2629   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2630   PSOldGen* old_gen = heap->old_gen();
  2631   old_gen->start_array()->reset();
  2632   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2633   TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  2634   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2636   GCTaskQueue* q = GCTaskQueue::create();
  2637   enqueue_chunk_draining_tasks(q, parallel_gc_threads);
  2638   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
  2639   enqueue_chunk_stealing_tasks(q, &terminator, parallel_gc_threads);
  2642     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2644     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2645     q->enqueue(fin);
  2647     gc_task_manager()->add_list(q);
  2649     fin->wait_for();
  2651     // We have to release the barrier tasks!
  2652     WaitForBarrierGCTask::destroy(fin);
  2654 #ifdef  ASSERT
  2655     // Verify that all chunks have been processed before the deferred updates.
  2656     // Note that perm_space_id is skipped; this type of verification is not
  2657     // valid until the perm gen is compacted by chunks.
  2658     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2659       verify_complete(SpaceId(id));
  2661 #endif
  2665     // Update the deferred objects, if any.  Any compaction manager can be used.
  2666     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2667     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2668     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2669       update_deferred_objects(cm, SpaceId(id));
  2674 #ifdef  ASSERT
  2675 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2676   // All Chunks between space bottom() to new_top() should be marked as filled
  2677   // and all Chunks between new_top() and top() should be available (i.e.,
  2678   // should have been emptied).
  2679   ParallelCompactData& sd = summary_data();
  2680   SpaceInfo si = _space_info[space_id];
  2681   HeapWord* new_top_addr = sd.chunk_align_up(si.new_top());
  2682   HeapWord* old_top_addr = sd.chunk_align_up(si.space()->top());
  2683   const size_t beg_chunk = sd.addr_to_chunk_idx(si.space()->bottom());
  2684   const size_t new_top_chunk = sd.addr_to_chunk_idx(new_top_addr);
  2685   const size_t old_top_chunk = sd.addr_to_chunk_idx(old_top_addr);
  2687   bool issued_a_warning = false;
  2689   size_t cur_chunk;
  2690   for (cur_chunk = beg_chunk; cur_chunk < new_top_chunk; ++cur_chunk) {
  2691     const ChunkData* const c = sd.chunk(cur_chunk);
  2692     if (!c->completed()) {
  2693       warning("chunk " SIZE_FORMAT " not filled:  "
  2694               "destination_count=" SIZE_FORMAT,
  2695               cur_chunk, c->destination_count());
  2696       issued_a_warning = true;
  2700   for (cur_chunk = new_top_chunk; cur_chunk < old_top_chunk; ++cur_chunk) {
  2701     const ChunkData* const c = sd.chunk(cur_chunk);
  2702     if (!c->available()) {
  2703       warning("chunk " SIZE_FORMAT " not empty:   "
  2704               "destination_count=" SIZE_FORMAT,
  2705               cur_chunk, c->destination_count());
  2706       issued_a_warning = true;
  2710   if (issued_a_warning) {
  2711     print_chunk_ranges();
  2714 #endif  // #ifdef ASSERT
  2716 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  2717   EventMark m("5 compact serial");
  2718   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
  2720   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2721   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2723   PSYoungGen* young_gen = heap->young_gen();
  2724   PSOldGen* old_gen = heap->old_gen();
  2726   old_gen->start_array()->reset();
  2727   old_gen->move_and_update(cm);
  2728   young_gen->move_and_update(cm);
  2732 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  2733   while(!cm->overflow_stack()->is_empty()) {
  2734     oop obj = cm->overflow_stack()->pop();
  2735     obj->follow_contents(cm);
  2738   oop obj;
  2739   // obj is a reference!!!
  2740   while (cm->marking_stack()->pop_local(obj)) {
  2741     // It would be nice to assert about the type of objects we might
  2742     // pop, but they can come from anywhere, unfortunately.
  2743     obj->follow_contents(cm);
  2747 void
  2748 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  2749   // All klasses on the revisit stack are marked at this point.
  2750   // Update and follow all subklass, sibling and implementor links.
  2751   for (uint i = 0; i < ParallelGCThreads+1; i++) {
  2752     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2753     KeepAliveClosure keep_alive_closure(cm);
  2754     for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
  2755       cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
  2756         is_alive_closure(),
  2757         &keep_alive_closure);
  2759     follow_stack(cm);
  2763 void
  2764 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  2765   cm->revisit_klass_stack()->push(k);
  2768 #ifdef VALIDATE_MARK_SWEEP
  2770 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
  2771   if (!ValidateMarkSweep)
  2772     return;
  2774   if (!isroot) {
  2775     if (_pointer_tracking) {
  2776       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2777       _adjusted_pointers->remove(p);
  2779   } else {
  2780     ptrdiff_t index = _root_refs_stack->find(p);
  2781     if (index != -1) {
  2782       int l = _root_refs_stack->length();
  2783       if (l > 0 && l - 1 != index) {
  2784         void* last = _root_refs_stack->pop();
  2785         assert(last != p, "should be different");
  2786         _root_refs_stack->at_put(index, last);
  2787       } else {
  2788         _root_refs_stack->remove(p);
  2795 void PSParallelCompact::check_adjust_pointer(void* p) {
  2796   _adjusted_pointers->push(p);
  2800 class AdjusterTracker: public OopClosure {
  2801  public:
  2802   AdjusterTracker() {};
  2803   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  2804   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2805 };
  2808 void PSParallelCompact::track_interior_pointers(oop obj) {
  2809   if (ValidateMarkSweep) {
  2810     _adjusted_pointers->clear();
  2811     _pointer_tracking = true;
  2813     AdjusterTracker checker;
  2814     obj->oop_iterate(&checker);
  2819 void PSParallelCompact::check_interior_pointers() {
  2820   if (ValidateMarkSweep) {
  2821     _pointer_tracking = false;
  2822     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2827 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  2828   if (ValidateMarkSweep) {
  2829     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2830     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  2835 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2836   if (ValidateMarkSweep) {
  2837     _live_oops->push(p);
  2838     _live_oops_size->push(size);
  2839     _live_oops_index++;
  2843 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2844   if (ValidateMarkSweep) {
  2845     oop obj = _live_oops->at((int)_live_oops_index);
  2846     guarantee(obj == p, "should be the same object");
  2847     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2848     _live_oops_index++;
  2852 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2853                                   HeapWord* compaction_top) {
  2854   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2855          "should be moved to forwarded location");
  2856   if (ValidateMarkSweep) {
  2857     PSParallelCompact::validate_live_oop(oop(q), size);
  2858     _live_oops_moved_to->push(oop(compaction_top));
  2860   if (RecordMarkSweepCompaction) {
  2861     _cur_gc_live_oops->push(q);
  2862     _cur_gc_live_oops_moved_to->push(compaction_top);
  2863     _cur_gc_live_oops_size->push(size);
  2868 void PSParallelCompact::compaction_complete() {
  2869   if (RecordMarkSweepCompaction) {
  2870     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2871     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2872     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2874     _cur_gc_live_oops           = _last_gc_live_oops;
  2875     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2876     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2877     _last_gc_live_oops          = _tmp_live_oops;
  2878     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2879     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2884 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2885   if (!RecordMarkSweepCompaction) {
  2886     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2887     return;
  2890   if (_last_gc_live_oops == NULL) {
  2891     tty->print_cr("No compaction information gathered yet");
  2892     return;
  2895   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2896     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2897     size_t    sz      = _last_gc_live_oops_size->at(i);
  2898     if (old_oop <= q && q < (old_oop + sz)) {
  2899       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2900       size_t offset = (q - old_oop);
  2901       tty->print_cr("Address " PTR_FORMAT, q);
  2902       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2903       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2904       return;
  2908   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2910 #endif //VALIDATE_MARK_SWEEP
  2912 // Update interior oops in the ranges of chunks [beg_chunk, end_chunk).
  2913 void
  2914 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2915                                                        SpaceId space_id,
  2916                                                        size_t beg_chunk,
  2917                                                        size_t end_chunk) {
  2918   ParallelCompactData& sd = summary_data();
  2919   ParMarkBitMap* const mbm = mark_bitmap();
  2921   HeapWord* beg_addr = sd.chunk_to_addr(beg_chunk);
  2922   HeapWord* const end_addr = sd.chunk_to_addr(end_chunk);
  2923   assert(beg_chunk <= end_chunk, "bad chunk range");
  2924   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2926 #ifdef  ASSERT
  2927   // Claim the chunks to avoid triggering an assert when they are marked as
  2928   // filled.
  2929   for (size_t claim_chunk = beg_chunk; claim_chunk < end_chunk; ++claim_chunk) {
  2930     assert(sd.chunk(claim_chunk)->claim_unsafe(), "claim() failed");
  2932 #endif  // #ifdef ASSERT
  2934   if (beg_addr != space(space_id)->bottom()) {
  2935     // Find the first live object or block of dead space that *starts* in this
  2936     // range of chunks.  If a partial object crosses onto the chunk, skip it; it
  2937     // will be marked for 'deferred update' when the object head is processed.
  2938     // If dead space crosses onto the chunk, it is also skipped; it will be
  2939     // filled when the prior chunk is processed.  If neither of those apply, the
  2940     // first word in the chunk is the start of a live object or dead space.
  2941     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2942     const ChunkData* const cp = sd.chunk(beg_chunk);
  2943     if (cp->partial_obj_size() != 0) {
  2944       beg_addr = sd.partial_obj_end(beg_chunk);
  2945     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2946       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2950   if (beg_addr < end_addr) {
  2951     // A live object or block of dead space starts in this range of Chunks.
  2952      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2954     // Create closures and iterate.
  2955     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2956     FillClosure fill_closure(cm, space_id);
  2957     ParMarkBitMap::IterationStatus status;
  2958     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2959                           dense_prefix_end);
  2960     if (status == ParMarkBitMap::incomplete) {
  2961       update_closure.do_addr(update_closure.source());
  2965   // Mark the chunks as filled.
  2966   ChunkData* const beg_cp = sd.chunk(beg_chunk);
  2967   ChunkData* const end_cp = sd.chunk(end_chunk);
  2968   for (ChunkData* cp = beg_cp; cp < end_cp; ++cp) {
  2969     cp->set_completed();
  2973 // Return the SpaceId for the space containing addr.  If addr is not in the
  2974 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2975 // in the heap and asserts such.
  2976 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2977   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2979   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  2980     if (_space_info[id].space()->contains(addr)) {
  2981       return SpaceId(id);
  2985   assert(false, "no space contains the addr");
  2986   return last_space_id;
  2989 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2990                                                 SpaceId id) {
  2991   assert(id < last_space_id, "bad space id");
  2993   ParallelCompactData& sd = summary_data();
  2994   const SpaceInfo* const space_info = _space_info + id;
  2995   ObjectStartArray* const start_array = space_info->start_array();
  2997   const MutableSpace* const space = space_info->space();
  2998   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2999   HeapWord* const beg_addr = space_info->dense_prefix();
  3000   HeapWord* const end_addr = sd.chunk_align_up(space_info->new_top());
  3002   const ChunkData* const beg_chunk = sd.addr_to_chunk_ptr(beg_addr);
  3003   const ChunkData* const end_chunk = sd.addr_to_chunk_ptr(end_addr);
  3004   const ChunkData* cur_chunk;
  3005   for (cur_chunk = beg_chunk; cur_chunk < end_chunk; ++cur_chunk) {
  3006     HeapWord* const addr = cur_chunk->deferred_obj_addr();
  3007     if (addr != NULL) {
  3008       if (start_array != NULL) {
  3009         start_array->allocate_block(addr);
  3011       oop(addr)->update_contents(cm);
  3012       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  3017 // Skip over count live words starting from beg, and return the address of the
  3018 // next live word.  Unless marked, the word corresponding to beg is assumed to
  3019 // be dead.  Callers must either ensure beg does not correspond to the middle of
  3020 // an object, or account for those live words in some other way.  Callers must
  3021 // also ensure that there are enough live words in the range [beg, end) to skip.
  3022 HeapWord*
  3023 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  3025   assert(count > 0, "sanity");
  3027   ParMarkBitMap* m = mark_bitmap();
  3028   idx_t bits_to_skip = m->words_to_bits(count);
  3029   idx_t cur_beg = m->addr_to_bit(beg);
  3030   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  3032   do {
  3033     cur_beg = m->find_obj_beg(cur_beg, search_end);
  3034     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  3035     const size_t obj_bits = cur_end - cur_beg + 1;
  3036     if (obj_bits > bits_to_skip) {
  3037       return m->bit_to_addr(cur_beg + bits_to_skip);
  3039     bits_to_skip -= obj_bits;
  3040     cur_beg = cur_end + 1;
  3041   } while (bits_to_skip > 0);
  3043   // Skipping the desired number of words landed just past the end of an object.
  3044   // Find the start of the next object.
  3045   cur_beg = m->find_obj_beg(cur_beg, search_end);
  3046   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  3047   return m->bit_to_addr(cur_beg);
  3050 HeapWord*
  3051 PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  3052                                  size_t src_chunk_idx)
  3054   ParMarkBitMap* const bitmap = mark_bitmap();
  3055   const ParallelCompactData& sd = summary_data();
  3056   const size_t ChunkSize = ParallelCompactData::ChunkSize;
  3058   assert(sd.is_chunk_aligned(dest_addr), "not aligned");
  3060   const ChunkData* const src_chunk_ptr = sd.chunk(src_chunk_idx);
  3061   const size_t partial_obj_size = src_chunk_ptr->partial_obj_size();
  3062   HeapWord* const src_chunk_destination = src_chunk_ptr->destination();
  3064   assert(dest_addr >= src_chunk_destination, "wrong src chunk");
  3065   assert(src_chunk_ptr->data_size() > 0, "src chunk cannot be empty");
  3067   HeapWord* const src_chunk_beg = sd.chunk_to_addr(src_chunk_idx);
  3068   HeapWord* const src_chunk_end = src_chunk_beg + ChunkSize;
  3070   HeapWord* addr = src_chunk_beg;
  3071   if (dest_addr == src_chunk_destination) {
  3072     // Return the first live word in the source chunk.
  3073     if (partial_obj_size == 0) {
  3074       addr = bitmap->find_obj_beg(addr, src_chunk_end);
  3075       assert(addr < src_chunk_end, "no objects start in src chunk");
  3077     return addr;
  3080   // Must skip some live data.
  3081   size_t words_to_skip = dest_addr - src_chunk_destination;
  3082   assert(src_chunk_ptr->data_size() > words_to_skip, "wrong src chunk");
  3084   if (partial_obj_size >= words_to_skip) {
  3085     // All the live words to skip are part of the partial object.
  3086     addr += words_to_skip;
  3087     if (partial_obj_size == words_to_skip) {
  3088       // Find the first live word past the partial object.
  3089       addr = bitmap->find_obj_beg(addr, src_chunk_end);
  3090       assert(addr < src_chunk_end, "wrong src chunk");
  3092     return addr;
  3095   // Skip over the partial object (if any).
  3096   if (partial_obj_size != 0) {
  3097     words_to_skip -= partial_obj_size;
  3098     addr += partial_obj_size;
  3101   // Skip over live words due to objects that start in the chunk.
  3102   addr = skip_live_words(addr, src_chunk_end, words_to_skip);
  3103   assert(addr < src_chunk_end, "wrong src chunk");
  3104   return addr;
  3107 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  3108                                                      size_t beg_chunk,
  3109                                                      HeapWord* end_addr)
  3111   ParallelCompactData& sd = summary_data();
  3112   ChunkData* const beg = sd.chunk(beg_chunk);
  3113   HeapWord* const end_addr_aligned_up = sd.chunk_align_up(end_addr);
  3114   ChunkData* const end = sd.addr_to_chunk_ptr(end_addr_aligned_up);
  3115   size_t cur_idx = beg_chunk;
  3116   for (ChunkData* cur = beg; cur < end; ++cur, ++cur_idx) {
  3117     assert(cur->data_size() > 0, "chunk must have live data");
  3118     cur->decrement_destination_count();
  3119     if (cur_idx <= cur->source_chunk() && cur->available() && cur->claim()) {
  3120       cm->save_for_processing(cur_idx);
  3125 size_t PSParallelCompact::next_src_chunk(MoveAndUpdateClosure& closure,
  3126                                          SpaceId& src_space_id,
  3127                                          HeapWord*& src_space_top,
  3128                                          HeapWord* end_addr)
  3130   typedef ParallelCompactData::ChunkData ChunkData;
  3132   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3133   const size_t chunk_size = ParallelCompactData::ChunkSize;
  3135   size_t src_chunk_idx = 0;
  3137   // Skip empty chunks (if any) up to the top of the space.
  3138   HeapWord* const src_aligned_up = sd.chunk_align_up(end_addr);
  3139   ChunkData* src_chunk_ptr = sd.addr_to_chunk_ptr(src_aligned_up);
  3140   HeapWord* const top_aligned_up = sd.chunk_align_up(src_space_top);
  3141   const ChunkData* const top_chunk_ptr = sd.addr_to_chunk_ptr(top_aligned_up);
  3142   while (src_chunk_ptr < top_chunk_ptr && src_chunk_ptr->data_size() == 0) {
  3143     ++src_chunk_ptr;
  3146   if (src_chunk_ptr < top_chunk_ptr) {
  3147     // The next source chunk is in the current space.  Update src_chunk_idx and
  3148     // the source address to match src_chunk_ptr.
  3149     src_chunk_idx = sd.chunk(src_chunk_ptr);
  3150     HeapWord* const src_chunk_addr = sd.chunk_to_addr(src_chunk_idx);
  3151     if (src_chunk_addr > closure.source()) {
  3152       closure.set_source(src_chunk_addr);
  3154     return src_chunk_idx;
  3157   // Switch to a new source space and find the first non-empty chunk.
  3158   unsigned int space_id = src_space_id + 1;
  3159   assert(space_id < last_space_id, "not enough spaces");
  3161   HeapWord* const destination = closure.destination();
  3163   do {
  3164     MutableSpace* space = _space_info[space_id].space();
  3165     HeapWord* const bottom = space->bottom();
  3166     const ChunkData* const bottom_cp = sd.addr_to_chunk_ptr(bottom);
  3168     // Iterate over the spaces that do not compact into themselves.
  3169     if (bottom_cp->destination() != bottom) {
  3170       HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  3171       const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  3173       for (const ChunkData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3174         if (src_cp->live_obj_size() > 0) {
  3175           // Found it.
  3176           assert(src_cp->destination() == destination,
  3177                  "first live obj in the space must match the destination");
  3178           assert(src_cp->partial_obj_size() == 0,
  3179                  "a space cannot begin with a partial obj");
  3181           src_space_id = SpaceId(space_id);
  3182           src_space_top = space->top();
  3183           const size_t src_chunk_idx = sd.chunk(src_cp);
  3184           closure.set_source(sd.chunk_to_addr(src_chunk_idx));
  3185           return src_chunk_idx;
  3186         } else {
  3187           assert(src_cp->data_size() == 0, "sanity");
  3191   } while (++space_id < last_space_id);
  3193   assert(false, "no source chunk was found");
  3194   return 0;
  3197 void PSParallelCompact::fill_chunk(ParCompactionManager* cm, size_t chunk_idx)
  3199   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3200   const size_t ChunkSize = ParallelCompactData::ChunkSize;
  3201   ParMarkBitMap* const bitmap = mark_bitmap();
  3202   ParallelCompactData& sd = summary_data();
  3203   ChunkData* const chunk_ptr = sd.chunk(chunk_idx);
  3205   // Get the items needed to construct the closure.
  3206   HeapWord* dest_addr = sd.chunk_to_addr(chunk_idx);
  3207   SpaceId dest_space_id = space_id(dest_addr);
  3208   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3209   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3210   assert(dest_addr < new_top, "sanity");
  3211   const size_t words = MIN2(pointer_delta(new_top, dest_addr), ChunkSize);
  3213   // Get the source chunk and related info.
  3214   size_t src_chunk_idx = chunk_ptr->source_chunk();
  3215   SpaceId src_space_id = space_id(sd.chunk_to_addr(src_chunk_idx));
  3216   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3218   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3219   closure.set_source(first_src_addr(dest_addr, src_chunk_idx));
  3221   // Adjust src_chunk_idx to prepare for decrementing destination counts (the
  3222   // destination count is not decremented when a chunk is copied to itself).
  3223   if (src_chunk_idx == chunk_idx) {
  3224     src_chunk_idx += 1;
  3227   if (bitmap->is_unmarked(closure.source())) {
  3228     // The first source word is in the middle of an object; copy the remainder
  3229     // of the object or as much as will fit.  The fact that pointer updates were
  3230     // deferred will be noted when the object header is processed.
  3231     HeapWord* const old_src_addr = closure.source();
  3232     closure.copy_partial_obj();
  3233     if (closure.is_full()) {
  3234       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3235       chunk_ptr->set_deferred_obj_addr(NULL);
  3236       chunk_ptr->set_completed();
  3237       return;
  3240     HeapWord* const end_addr = sd.chunk_align_down(closure.source());
  3241     if (sd.chunk_align_down(old_src_addr) != end_addr) {
  3242       // The partial object was copied from more than one source chunk.
  3243       decrement_destination_counts(cm, src_chunk_idx, end_addr);
  3245       // Move to the next source chunk, possibly switching spaces as well.  All
  3246       // args except end_addr may be modified.
  3247       src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
  3248                                      end_addr);
  3252   do {
  3253     HeapWord* const cur_addr = closure.source();
  3254     HeapWord* const end_addr = MIN2(sd.chunk_align_up(cur_addr + 1),
  3255                                     src_space_top);
  3256     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3258     if (status == ParMarkBitMap::incomplete) {
  3259       // The last obj that starts in the source chunk does not end in the chunk.
  3260       assert(closure.source() < end_addr, "sanity")
  3261       HeapWord* const obj_beg = closure.source();
  3262       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3263                                        src_space_top);
  3264       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3265       if (obj_end < range_end) {
  3266         // The end was found; the entire object will fit.
  3267         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3268         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3269       } else {
  3270         // The end was not found; the object will not fit.
  3271         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3272         status = ParMarkBitMap::would_overflow;
  3276     if (status == ParMarkBitMap::would_overflow) {
  3277       // The last object did not fit.  Note that interior oop updates were
  3278       // deferred, then copy enough of the object to fill the chunk.
  3279       chunk_ptr->set_deferred_obj_addr(closure.destination());
  3280       status = closure.copy_until_full(); // copies from closure.source()
  3282       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3283       chunk_ptr->set_completed();
  3284       return;
  3287     if (status == ParMarkBitMap::full) {
  3288       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3289       chunk_ptr->set_deferred_obj_addr(NULL);
  3290       chunk_ptr->set_completed();
  3291       return;
  3294     decrement_destination_counts(cm, src_chunk_idx, end_addr);
  3296     // Move to the next source chunk, possibly switching spaces as well.  All
  3297     // args except end_addr may be modified.
  3298     src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
  3299                                    end_addr);
  3300   } while (true);
  3303 void
  3304 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3305   const MutableSpace* sp = space(space_id);
  3306   if (sp->is_empty()) {
  3307     return;
  3310   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3311   ParMarkBitMap* const bitmap = mark_bitmap();
  3312   HeapWord* const dp_addr = dense_prefix(space_id);
  3313   HeapWord* beg_addr = sp->bottom();
  3314   HeapWord* end_addr = sp->top();
  3316 #ifdef ASSERT
  3317   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3318   if (cm->should_verify_only()) {
  3319     VerifyUpdateClosure verify_update(cm, sp);
  3320     bitmap->iterate(&verify_update, beg_addr, end_addr);
  3321     return;
  3324   if (cm->should_reset_only()) {
  3325     ResetObjectsClosure reset_objects(cm);
  3326     bitmap->iterate(&reset_objects, beg_addr, end_addr);
  3327     return;
  3329 #endif
  3331   const size_t beg_chunk = sd.addr_to_chunk_idx(beg_addr);
  3332   const size_t dp_chunk = sd.addr_to_chunk_idx(dp_addr);
  3333   if (beg_chunk < dp_chunk) {
  3334     update_and_deadwood_in_dense_prefix(cm, space_id, beg_chunk, dp_chunk);
  3337   // The destination of the first live object that starts in the chunk is one
  3338   // past the end of the partial object entering the chunk (if any).
  3339   HeapWord* const dest_addr = sd.partial_obj_end(dp_chunk);
  3340   HeapWord* const new_top = _space_info[space_id].new_top();
  3341   assert(new_top >= dest_addr, "bad new_top value");
  3342   const size_t words = pointer_delta(new_top, dest_addr);
  3344   if (words > 0) {
  3345     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3346     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3348     ParMarkBitMap::IterationStatus status;
  3349     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3350     assert(status == ParMarkBitMap::full, "iteration not complete");
  3351     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3352            "live objects skipped because closure is full");
  3356 jlong PSParallelCompact::millis_since_last_gc() {
  3357   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  3358   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3359   if (ret_val < 0) {
  3360     NOT_PRODUCT(warning("time warp: %d", ret_val);)
  3361     return 0;
  3363   return ret_val;
  3366 void PSParallelCompact::reset_millis_since_last_gc() {
  3367   _time_of_last_gc = os::javaTimeMillis();
  3370 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3372   if (source() != destination()) {
  3373     assert(source() > destination(), "must copy to the left");
  3374     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3376   update_state(words_remaining());
  3377   assert(is_full(), "sanity");
  3378   return ParMarkBitMap::full;
  3381 void MoveAndUpdateClosure::copy_partial_obj()
  3383   size_t words = words_remaining();
  3385   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3386   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3387   if (end_addr < range_end) {
  3388     words = bitmap()->obj_size(source(), end_addr);
  3391   // This test is necessary; if omitted, the pointer updates to a partial object
  3392   // that crosses the dense prefix boundary could be overwritten.
  3393   if (source() != destination()) {
  3394     assert(source() > destination(), "must copy to the left");
  3395     Copy::aligned_conjoint_words(source(), destination(), words);
  3397   update_state(words);
  3400 ParMarkBitMapClosure::IterationStatus
  3401 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3402   assert(destination() != NULL, "sanity");
  3403   assert(bitmap()->obj_size(addr) == words, "bad size");
  3405   _source = addr;
  3406   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3407          destination(), "wrong destination");
  3409   if (words > words_remaining()) {
  3410     return ParMarkBitMap::would_overflow;
  3413   // The start_array must be updated even if the object is not moving.
  3414   if (_start_array != NULL) {
  3415     _start_array->allocate_block(destination());
  3418   if (destination() != source()) {
  3419     assert(destination() < source(), "must copy to the left");
  3420     Copy::aligned_conjoint_words(source(), destination(), words);
  3423   oop moved_oop = (oop) destination();
  3424   moved_oop->update_contents(compaction_manager());
  3425   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3427   update_state(words);
  3428   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3429   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3432 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3433                                      ParCompactionManager* cm,
  3434                                      PSParallelCompact::SpaceId space_id) :
  3435   ParMarkBitMapClosure(mbm, cm),
  3436   _space_id(space_id),
  3437   _start_array(PSParallelCompact::start_array(space_id))
  3441 // Updates the references in the object to their new values.
  3442 ParMarkBitMapClosure::IterationStatus
  3443 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3444   do_addr(addr);
  3445   return ParMarkBitMap::incomplete;
  3448 BitBlockUpdateClosure::BitBlockUpdateClosure(ParMarkBitMap* mbm,
  3449                         ParCompactionManager* cm,
  3450                         size_t chunk_index) :
  3451                         ParMarkBitMapClosure(mbm, cm),
  3452                         _live_data_left(0),
  3453                         _cur_block(0) {
  3454   _chunk_start =
  3455     PSParallelCompact::summary_data().chunk_to_addr(chunk_index);
  3456   _chunk_end =
  3457     PSParallelCompact::summary_data().chunk_to_addr(chunk_index) +
  3458                  ParallelCompactData::ChunkSize;
  3459   _chunk_index = chunk_index;
  3460   _cur_block =
  3461     PSParallelCompact::summary_data().addr_to_block_idx(_chunk_start);
  3464 bool BitBlockUpdateClosure::chunk_contains_cur_block() {
  3465   return ParallelCompactData::chunk_contains_block(_chunk_index, _cur_block);
  3468 void BitBlockUpdateClosure::reset_chunk(size_t chunk_index) {
  3469   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(7);)
  3470   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3471   _chunk_index = chunk_index;
  3472   _live_data_left = 0;
  3473   _chunk_start = sd.chunk_to_addr(chunk_index);
  3474   _chunk_end = sd.chunk_to_addr(chunk_index) + ParallelCompactData::ChunkSize;
  3476   // The first block in this chunk
  3477   size_t first_block =  sd.addr_to_block_idx(_chunk_start);
  3478   size_t partial_live_size = sd.chunk(chunk_index)->partial_obj_size();
  3480   // Set the offset to 0. By definition it should have that value
  3481   // but it may have been written while processing an earlier chunk.
  3482   if (partial_live_size == 0) {
  3483     // No live object extends onto the chunk.  The first bit
  3484     // in the bit map for the first chunk must be a start bit.
  3485     // Although there may not be any marked bits, it is safe
  3486     // to set it as a start bit.
  3487     sd.block(first_block)->set_start_bit_offset(0);
  3488     sd.block(first_block)->set_first_is_start_bit(true);
  3489   } else if (sd.partial_obj_ends_in_block(first_block)) {
  3490     sd.block(first_block)->set_end_bit_offset(0);
  3491     sd.block(first_block)->set_first_is_start_bit(false);
  3492   } else {
  3493     // The partial object extends beyond the first block.
  3494     // There is no object starting in the first block
  3495     // so the offset and bit parity are not needed.
  3496     // Set the the bit parity to start bit so assertions
  3497     // work when not bit is found.
  3498     sd.block(first_block)->set_end_bit_offset(0);
  3499     sd.block(first_block)->set_first_is_start_bit(false);
  3501   _cur_block = first_block;
  3502 #ifdef ASSERT
  3503   if (sd.block(first_block)->first_is_start_bit()) {
  3504     assert(!sd.partial_obj_ends_in_block(first_block),
  3505       "Partial object cannot end in first block");
  3508   if (PrintGCDetails && Verbose) {
  3509     if (partial_live_size == 1) {
  3510     gclog_or_tty->print_cr("first_block " PTR_FORMAT
  3511       " _offset " PTR_FORMAT
  3512       " _first_is_start_bit %d",
  3513       first_block,
  3514       sd.block(first_block)->raw_offset(),
  3515       sd.block(first_block)->first_is_start_bit());
  3518 #endif
  3519   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(17);)
  3522 // This method is called when a object has been found (both beginning
  3523 // and end of the object) in the range of iteration.  This method is
  3524 // calculating the words of live data to the left of a block.  That live
  3525 // data includes any object starting to the left of the block (i.e.,
  3526 // the live-data-to-the-left of block AAA will include the full size
  3527 // of any object entering AAA).
  3529 ParMarkBitMapClosure::IterationStatus
  3530 BitBlockUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3531   // add the size to the block data.
  3532   HeapWord* obj = addr;
  3533   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3535   assert(bitmap()->obj_size(obj) == words, "bad size");
  3536   assert(_chunk_start <= obj, "object is not in chunk");
  3537   assert(obj + words <= _chunk_end, "object is not in chunk");
  3539   // Update the live data to the left
  3540   size_t prev_live_data_left = _live_data_left;
  3541   _live_data_left = _live_data_left + words;
  3543   // Is this object in the current block.
  3544   size_t block_of_obj = sd.addr_to_block_idx(obj);
  3545   size_t block_of_obj_last = sd.addr_to_block_idx(obj + words - 1);
  3546   HeapWord* block_of_obj_last_addr = sd.block_to_addr(block_of_obj_last);
  3547   if (_cur_block < block_of_obj) {
  3549     //
  3550     // No object crossed the block boundary and this object was found
  3551     // on the other side of the block boundary.  Update the offset for
  3552     // the new block with the data size that does not include this object.
  3553     //
  3554     // The first bit in block_of_obj is a start bit except in the
  3555     // case where the partial object for the chunk extends into
  3556     // this block.
  3557     if (sd.partial_obj_ends_in_block(block_of_obj)) {
  3558       sd.block(block_of_obj)->set_end_bit_offset(prev_live_data_left);
  3559     } else {
  3560       sd.block(block_of_obj)->set_start_bit_offset(prev_live_data_left);
  3563     // Does this object pass beyond the its block?
  3564     if (block_of_obj < block_of_obj_last) {
  3565       // Object crosses block boundary.  Two blocks need to be udpated:
  3566       //        the current block where the object started
  3567       //        the block where the object ends
  3568       //
  3569       // The offset for blocks with no objects starting in them
  3570       // (e.g., blocks between _cur_block and  block_of_obj_last)
  3571       // should not be needed.
  3572       // Note that block_of_obj_last may be in another chunk.  If so,
  3573       // it should be overwritten later.  This is a problem (writting
  3574       // into a block in a later chunk) for parallel execution.
  3575       assert(obj < block_of_obj_last_addr,
  3576         "Object should start in previous block");
  3578       // obj is crossing into block_of_obj_last so the first bit
  3579       // is and end bit.
  3580       sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
  3582       _cur_block = block_of_obj_last;
  3583     } else {
  3584       // _first_is_start_bit has already been set correctly
  3585       // in the if-then-else above so don't reset it here.
  3586       _cur_block = block_of_obj;
  3588   } else {
  3589     // The current block only changes if the object extends beyound
  3590     // the block it starts in.
  3591     //
  3592     // The object starts in the current block.
  3593     // Does this object pass beyond the end of it?
  3594     if (block_of_obj < block_of_obj_last) {
  3595       // Object crosses block boundary.
  3596       // See note above on possible blocks between block_of_obj and
  3597       // block_of_obj_last
  3598       assert(obj < block_of_obj_last_addr,
  3599         "Object should start in previous block");
  3601       sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
  3603       _cur_block = block_of_obj_last;
  3607   // Return incomplete if there are more blocks to be done.
  3608   if (chunk_contains_cur_block()) {
  3609     return ParMarkBitMap::incomplete;
  3611   return ParMarkBitMap::complete;
  3614 // Verify the new location using the forwarding pointer
  3615 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
  3616 // to the initial value.
  3617 ParMarkBitMapClosure::IterationStatus
  3618 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3619   // The second arg (words) is not used.
  3620   oop obj = (oop) addr;
  3621   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  3622   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  3623   if (forwarding_ptr == NULL) {
  3624     // The object is dead or not moving.
  3625     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
  3626            "Object liveness is wrong.");
  3627     return ParMarkBitMap::incomplete;
  3629   assert(UseParallelOldGCDensePrefix ||
  3630          (HeapMaximumCompactionInterval > 1) ||
  3631          (MarkSweepAlwaysCompactCount > 1) ||
  3632          (forwarding_ptr == new_pointer),
  3633     "Calculation of new location is incorrect");
  3634   return ParMarkBitMap::incomplete;
  3637 // Reset objects modified for debug checking.
  3638 ParMarkBitMapClosure::IterationStatus
  3639 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  3640   // The second arg (words) is not used.
  3641   oop obj = (oop) addr;
  3642   obj->init_mark();
  3643   return ParMarkBitMap::incomplete;
  3646 // Prepare for compaction.  This method is executed once
  3647 // (i.e., by a single thread) before compaction.
  3648 // Save the updated location of the intArrayKlassObj for
  3649 // filling holes in the dense prefix.
  3650 void PSParallelCompact::compact_prologue() {
  3651   _updated_int_array_klass_obj = (klassOop)
  3652     summary_data().calc_new_pointer(Universe::intArrayKlassObj());
  3655 // The initial implementation of this method created a field
  3656 // _next_compaction_space_id in SpaceInfo and initialized
  3657 // that field in SpaceInfo::initialize_space_info().  That
  3658 // required that _next_compaction_space_id be declared a
  3659 // SpaceId in SpaceInfo and that would have required that
  3660 // either SpaceId be declared in a separate class or that
  3661 // it be declared in SpaceInfo.  It didn't seem consistent
  3662 // to declare it in SpaceInfo (didn't really fit logically).
  3663 // Alternatively, defining a separate class to define SpaceId
  3664 // seem excessive.  This implementation is simple and localizes
  3665 // the knowledge.
  3667 PSParallelCompact::SpaceId
  3668 PSParallelCompact::next_compaction_space_id(SpaceId id) {
  3669   assert(id < last_space_id, "id out of range");
  3670   switch (id) {
  3671     case perm_space_id :
  3672       return last_space_id;
  3673     case old_space_id :
  3674       return eden_space_id;
  3675     case eden_space_id :
  3676       return from_space_id;
  3677     case from_space_id :
  3678       return to_space_id;
  3679     case to_space_id :
  3680       return last_space_id;
  3681     default:
  3682       assert(false, "Bad space id");
  3683       return last_space_id;
  3687 // Here temporarily for debugging
  3688 #ifdef ASSERT
  3689   size_t ParallelCompactData::block_idx(BlockData* block) {
  3690     size_t index = pointer_delta(block,
  3691       PSParallelCompact::summary_data()._block_data, sizeof(BlockData));
  3692     return index;
  3694 #endif

mercurial