src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Wed, 16 Apr 2008 12:58:03 +0400

author
apetrusenko
date
Wed, 16 Apr 2008 12:58:03 +0400
changeset 575
3febac328d82
parent 574
c0492d52d55b
parent 514
82db0859acbe
child 577
8bd1e4487c18
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psParallelCompact.cpp.incl"
    28 #include <math.h>
    30 // All sizes are in HeapWords.
    31 const size_t ParallelCompactData::Log2ChunkSize  = 9; // 512 words
    32 const size_t ParallelCompactData::ChunkSize      = (size_t)1 << Log2ChunkSize;
    33 const size_t ParallelCompactData::ChunkSizeBytes = ChunkSize << LogHeapWordSize;
    34 const size_t ParallelCompactData::ChunkSizeOffsetMask = ChunkSize - 1;
    35 const size_t ParallelCompactData::ChunkAddrOffsetMask = ChunkSizeBytes - 1;
    36 const size_t ParallelCompactData::ChunkAddrMask  = ~ChunkAddrOffsetMask;
    38 // 32-bit:  128 words covers 4 bitmap words
    39 // 64-bit:  128 words covers 2 bitmap words
    40 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
    41 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
    42 const size_t ParallelCompactData::BlockOffsetMask = BlockSize - 1;
    43 const size_t ParallelCompactData::BlockMask       = ~BlockOffsetMask;
    45 const size_t ParallelCompactData::BlocksPerChunk = ChunkSize / BlockSize;
    47 const ParallelCompactData::ChunkData::chunk_sz_t
    48 ParallelCompactData::ChunkData::dc_shift = 27;
    50 const ParallelCompactData::ChunkData::chunk_sz_t
    51 ParallelCompactData::ChunkData::dc_mask = ~0U << dc_shift;
    53 const ParallelCompactData::ChunkData::chunk_sz_t
    54 ParallelCompactData::ChunkData::dc_one = 0x1U << dc_shift;
    56 const ParallelCompactData::ChunkData::chunk_sz_t
    57 ParallelCompactData::ChunkData::los_mask = ~dc_mask;
    59 const ParallelCompactData::ChunkData::chunk_sz_t
    60 ParallelCompactData::ChunkData::dc_claimed = 0x8U << dc_shift;
    62 const ParallelCompactData::ChunkData::chunk_sz_t
    63 ParallelCompactData::ChunkData::dc_completed = 0xcU << dc_shift;
    65 #ifdef ASSERT
    66 short   ParallelCompactData::BlockData::_cur_phase = 0;
    67 #endif
    69 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    70 bool      PSParallelCompact::_print_phases = false;
    72 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    73 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
    75 double PSParallelCompact::_dwl_mean;
    76 double PSParallelCompact::_dwl_std_dev;
    77 double PSParallelCompact::_dwl_first_term;
    78 double PSParallelCompact::_dwl_adjustment;
    79 #ifdef  ASSERT
    80 bool   PSParallelCompact::_dwl_initialized = false;
    81 #endif  // #ifdef ASSERT
    83 #ifdef VALIDATE_MARK_SWEEP
    84 GrowableArray<oop*>*    PSParallelCompact::_root_refs_stack = NULL;
    85 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
    86 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
    87 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
    88 size_t                  PSParallelCompact::_live_oops_index = 0;
    89 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
    90 GrowableArray<oop*>*    PSParallelCompact::_other_refs_stack = NULL;
    91 GrowableArray<oop*>*    PSParallelCompact::_adjusted_pointers = NULL;
    92 bool                    PSParallelCompact::_pointer_tracking = false;
    93 bool                    PSParallelCompact::_root_tracking = true;
    95 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
    96 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
    97 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
    98 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
    99 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
   100 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
   101 #endif
   103 // XXX beg - verification code; only works while we also mark in object headers
   104 static void
   105 verify_mark_bitmap(ParMarkBitMap& _mark_bitmap)
   106 {
   107   ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
   109   PSPermGen* perm_gen = heap->perm_gen();
   110   PSOldGen* old_gen = heap->old_gen();
   111   PSYoungGen* young_gen = heap->young_gen();
   113   MutableSpace* perm_space = perm_gen->object_space();
   114   MutableSpace* old_space = old_gen->object_space();
   115   MutableSpace* eden_space = young_gen->eden_space();
   116   MutableSpace* from_space = young_gen->from_space();
   117   MutableSpace* to_space = young_gen->to_space();
   119   // 'from_space' here is the survivor space at the lower address.
   120   if (to_space->bottom() < from_space->bottom()) {
   121     from_space = to_space;
   122     to_space = young_gen->from_space();
   123   }
   125   HeapWord* boundaries[12];
   126   unsigned int bidx = 0;
   127   const unsigned int bidx_max = sizeof(boundaries) / sizeof(boundaries[0]);
   129   boundaries[0] = perm_space->bottom();
   130   boundaries[1] = perm_space->top();
   131   boundaries[2] = old_space->bottom();
   132   boundaries[3] = old_space->top();
   133   boundaries[4] = eden_space->bottom();
   134   boundaries[5] = eden_space->top();
   135   boundaries[6] = from_space->bottom();
   136   boundaries[7] = from_space->top();
   137   boundaries[8] = to_space->bottom();
   138   boundaries[9] = to_space->top();
   139   boundaries[10] = to_space->end();
   140   boundaries[11] = to_space->end();
   142   BitMap::idx_t beg_bit = 0;
   143   BitMap::idx_t end_bit;
   144   BitMap::idx_t tmp_bit;
   145   const BitMap::idx_t last_bit = _mark_bitmap.size();
   146   do {
   147     HeapWord* addr = _mark_bitmap.bit_to_addr(beg_bit);
   148     if (_mark_bitmap.is_marked(beg_bit)) {
   149       oop obj = (oop)addr;
   150       assert(obj->is_gc_marked(), "obj header is not marked");
   151       end_bit = _mark_bitmap.find_obj_end(beg_bit, last_bit);
   152       const size_t size = _mark_bitmap.obj_size(beg_bit, end_bit);
   153       assert(size == (size_t)obj->size(), "end bit wrong?");
   154       beg_bit = _mark_bitmap.find_obj_beg(beg_bit + 1, last_bit);
   155       assert(beg_bit > end_bit, "bit set in middle of an obj");
   156     } else {
   157       if (addr >= boundaries[bidx] && addr < boundaries[bidx + 1]) {
   158         // a dead object in the current space.
   159         oop obj = (oop)addr;
   160         end_bit = _mark_bitmap.addr_to_bit(addr + obj->size());
   161         assert(!obj->is_gc_marked(), "obj marked in header, not in bitmap");
   162         tmp_bit = beg_bit + 1;
   163         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
   164         assert(beg_bit == end_bit, "beg bit set in unmarked obj");
   165         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
   166         assert(beg_bit == end_bit, "end bit set in unmarked obj");
   167       } else if (addr < boundaries[bidx + 2]) {
   168         // addr is between top in the current space and bottom in the next.
   169         end_bit = beg_bit + pointer_delta(boundaries[bidx + 2], addr);
   170         tmp_bit = beg_bit;
   171         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
   172         assert(beg_bit == end_bit, "beg bit set above top");
   173         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
   174         assert(beg_bit == end_bit, "end bit set above top");
   175         bidx += 2;
   176       } else if (bidx < bidx_max - 2) {
   177         bidx += 2; // ???
   178       } else {
   179         tmp_bit = beg_bit;
   180         beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, last_bit);
   181         assert(beg_bit == last_bit, "beg bit set outside heap");
   182         beg_bit = _mark_bitmap.find_obj_end(tmp_bit, last_bit);
   183         assert(beg_bit == last_bit, "end bit set outside heap");
   184       }
   185     }
   186   } while (beg_bit < last_bit);
   187 }
   188 // XXX end - verification code; only works while we also mark in object headers
   190 #ifndef PRODUCT
   191 const char* PSParallelCompact::space_names[] = {
   192   "perm", "old ", "eden", "from", "to  "
   193 };
   195 void PSParallelCompact::print_chunk_ranges()
   196 {
   197   tty->print_cr("space  bottom     top        end        new_top");
   198   tty->print_cr("------ ---------- ---------- ---------- ----------");
   200   for (unsigned int id = 0; id < last_space_id; ++id) {
   201     const MutableSpace* space = _space_info[id].space();
   202     tty->print_cr("%u %s "
   203                   SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " "
   204                   SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " ",
   205                   id, space_names[id],
   206                   summary_data().addr_to_chunk_idx(space->bottom()),
   207                   summary_data().addr_to_chunk_idx(space->top()),
   208                   summary_data().addr_to_chunk_idx(space->end()),
   209                   summary_data().addr_to_chunk_idx(_space_info[id].new_top()));
   210   }
   211 }
   213 void
   214 print_generic_summary_chunk(size_t i, const ParallelCompactData::ChunkData* c)
   215 {
   216 #define CHUNK_IDX_FORMAT        SIZE_FORMAT_W("7")
   217 #define CHUNK_DATA_FORMAT       SIZE_FORMAT_W("5")
   219   ParallelCompactData& sd = PSParallelCompact::summary_data();
   220   size_t dci = c->destination() ? sd.addr_to_chunk_idx(c->destination()) : 0;
   221   tty->print_cr(CHUNK_IDX_FORMAT " " PTR_FORMAT " "
   222                 CHUNK_IDX_FORMAT " " PTR_FORMAT " "
   223                 CHUNK_DATA_FORMAT " " CHUNK_DATA_FORMAT " "
   224                 CHUNK_DATA_FORMAT " " CHUNK_IDX_FORMAT " %d",
   225                 i, c->data_location(), dci, c->destination(),
   226                 c->partial_obj_size(), c->live_obj_size(),
   227                 c->data_size(), c->source_chunk(), c->destination_count());
   229 #undef  CHUNK_IDX_FORMAT
   230 #undef  CHUNK_DATA_FORMAT
   231 }
   233 void
   234 print_generic_summary_data(ParallelCompactData& summary_data,
   235                            HeapWord* const beg_addr,
   236                            HeapWord* const end_addr)
   237 {
   238   size_t total_words = 0;
   239   size_t i = summary_data.addr_to_chunk_idx(beg_addr);
   240   const size_t last = summary_data.addr_to_chunk_idx(end_addr);
   241   HeapWord* pdest = 0;
   243   while (i <= last) {
   244     ParallelCompactData::ChunkData* c = summary_data.chunk(i);
   245     if (c->data_size() != 0 || c->destination() != pdest) {
   246       print_generic_summary_chunk(i, c);
   247       total_words += c->data_size();
   248       pdest = c->destination();
   249     }
   250     ++i;
   251   }
   253   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   254 }
   256 void
   257 print_generic_summary_data(ParallelCompactData& summary_data,
   258                            SpaceInfo* space_info)
   259 {
   260   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   261     const MutableSpace* space = space_info[id].space();
   262     print_generic_summary_data(summary_data, space->bottom(),
   263                                MAX2(space->top(), space_info[id].new_top()));
   264   }
   265 }
   267 void
   268 print_initial_summary_chunk(size_t i,
   269                             const ParallelCompactData::ChunkData* c,
   270                             bool newline = true)
   271 {
   272   tty->print(SIZE_FORMAT_W("5") " " PTR_FORMAT " "
   273              SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " "
   274              SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " %d",
   275              i, c->destination(),
   276              c->partial_obj_size(), c->live_obj_size(),
   277              c->data_size(), c->source_chunk(), c->destination_count());
   278   if (newline) tty->cr();
   279 }
   281 void
   282 print_initial_summary_data(ParallelCompactData& summary_data,
   283                            const MutableSpace* space) {
   284   if (space->top() == space->bottom()) {
   285     return;
   286   }
   288   const size_t chunk_size = ParallelCompactData::ChunkSize;
   289   HeapWord* const top_aligned_up = summary_data.chunk_align_up(space->top());
   290   const size_t end_chunk = summary_data.addr_to_chunk_idx(top_aligned_up);
   291   const ParallelCompactData::ChunkData* c = summary_data.chunk(end_chunk - 1);
   292   HeapWord* end_addr = c->destination() + c->data_size();
   293   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   295   // Print (and count) the full chunks at the beginning of the space.
   296   size_t full_chunk_count = 0;
   297   size_t i = summary_data.addr_to_chunk_idx(space->bottom());
   298   while (i < end_chunk && summary_data.chunk(i)->data_size() == chunk_size) {
   299     print_initial_summary_chunk(i, summary_data.chunk(i));
   300     ++full_chunk_count;
   301     ++i;
   302   }
   304   size_t live_to_right = live_in_space - full_chunk_count * chunk_size;
   306   double max_reclaimed_ratio = 0.0;
   307   size_t max_reclaimed_ratio_chunk = 0;
   308   size_t max_dead_to_right = 0;
   309   size_t max_live_to_right = 0;
   311   // Print the 'reclaimed ratio' for chunks while there is something live in the
   312   // chunk or to the right of it.  The remaining chunks are empty (and
   313   // uninteresting), and computing the ratio will result in division by 0.
   314   while (i < end_chunk && live_to_right > 0) {
   315     c = summary_data.chunk(i);
   316     HeapWord* const chunk_addr = summary_data.chunk_to_addr(i);
   317     const size_t used_to_right = pointer_delta(space->top(), chunk_addr);
   318     const size_t dead_to_right = used_to_right - live_to_right;
   319     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   321     if (reclaimed_ratio > max_reclaimed_ratio) {
   322             max_reclaimed_ratio = reclaimed_ratio;
   323             max_reclaimed_ratio_chunk = i;
   324             max_dead_to_right = dead_to_right;
   325             max_live_to_right = live_to_right;
   326     }
   328     print_initial_summary_chunk(i, c, false);
   329     tty->print_cr(" %12.10f " SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10"),
   330                   reclaimed_ratio, dead_to_right, live_to_right);
   332     live_to_right -= c->data_size();
   333     ++i;
   334   }
   336   // Any remaining chunks are empty.  Print one more if there is one.
   337   if (i < end_chunk) {
   338     print_initial_summary_chunk(i, summary_data.chunk(i));
   339   }
   341   tty->print_cr("max:  " SIZE_FORMAT_W("4") " d2r=" SIZE_FORMAT_W("10") " "
   342                 "l2r=" SIZE_FORMAT_W("10") " max_ratio=%14.12f",
   343                 max_reclaimed_ratio_chunk, max_dead_to_right,
   344                 max_live_to_right, max_reclaimed_ratio);
   345 }
   347 void
   348 print_initial_summary_data(ParallelCompactData& summary_data,
   349                            SpaceInfo* space_info) {
   350   unsigned int id = PSParallelCompact::perm_space_id;
   351   const MutableSpace* space;
   352   do {
   353     space = space_info[id].space();
   354     print_initial_summary_data(summary_data, space);
   355   } while (++id < PSParallelCompact::eden_space_id);
   357   do {
   358     space = space_info[id].space();
   359     print_generic_summary_data(summary_data, space->bottom(), space->top());
   360   } while (++id < PSParallelCompact::last_space_id);
   361 }
   362 #endif  // #ifndef PRODUCT
   364 #ifdef  ASSERT
   365 size_t add_obj_count;
   366 size_t add_obj_size;
   367 size_t mark_bitmap_count;
   368 size_t mark_bitmap_size;
   369 #endif  // #ifdef ASSERT
   371 ParallelCompactData::ParallelCompactData()
   372 {
   373   _region_start = 0;
   375   _chunk_vspace = 0;
   376   _chunk_data = 0;
   377   _chunk_count = 0;
   379   _block_vspace = 0;
   380   _block_data = 0;
   381   _block_count = 0;
   382 }
   384 bool ParallelCompactData::initialize(MemRegion covered_region)
   385 {
   386   _region_start = covered_region.start();
   387   const size_t region_size = covered_region.word_size();
   388   DEBUG_ONLY(_region_end = _region_start + region_size;)
   390   assert(chunk_align_down(_region_start) == _region_start,
   391          "region start not aligned");
   392   assert((region_size & ChunkSizeOffsetMask) == 0,
   393          "region size not a multiple of ChunkSize");
   395   bool result = initialize_chunk_data(region_size);
   397   // Initialize the block data if it will be used for updating pointers, or if
   398   // this is a debug build.
   399   if (!UseParallelOldGCChunkPointerCalc || trueInDebug) {
   400     result = result && initialize_block_data(region_size);
   401   }
   403   return result;
   404 }
   406 PSVirtualSpace*
   407 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   408 {
   409   const size_t raw_bytes = count * element_size;
   410   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   411   const size_t granularity = os::vm_allocation_granularity();
   412   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   414   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   415     MAX2(page_sz, granularity);
   416   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   417   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   418                        rs.size());
   419   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   420   if (vspace != 0) {
   421     if (vspace->expand_by(bytes)) {
   422       return vspace;
   423     }
   424     delete vspace;
   425   }
   427   return 0;
   428 }
   430 bool ParallelCompactData::initialize_chunk_data(size_t region_size)
   431 {
   432   const size_t count = (region_size + ChunkSizeOffsetMask) >> Log2ChunkSize;
   433   _chunk_vspace = create_vspace(count, sizeof(ChunkData));
   434   if (_chunk_vspace != 0) {
   435     _chunk_data = (ChunkData*)_chunk_vspace->reserved_low_addr();
   436     _chunk_count = count;
   437     return true;
   438   }
   439   return false;
   440 }
   442 bool ParallelCompactData::initialize_block_data(size_t region_size)
   443 {
   444   const size_t count = (region_size + BlockOffsetMask) >> Log2BlockSize;
   445   _block_vspace = create_vspace(count, sizeof(BlockData));
   446   if (_block_vspace != 0) {
   447     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
   448     _block_count = count;
   449     return true;
   450   }
   451   return false;
   452 }
   454 void ParallelCompactData::clear()
   455 {
   456   if (_block_data) {
   457     memset(_block_data, 0, _block_vspace->committed_size());
   458   }
   459   memset(_chunk_data, 0, _chunk_vspace->committed_size());
   460 }
   462 void ParallelCompactData::clear_range(size_t beg_chunk, size_t end_chunk) {
   463   assert(beg_chunk <= _chunk_count, "beg_chunk out of range");
   464   assert(end_chunk <= _chunk_count, "end_chunk out of range");
   465   assert(ChunkSize % BlockSize == 0, "ChunkSize not a multiple of BlockSize");
   467   const size_t chunk_cnt = end_chunk - beg_chunk;
   469   if (_block_data) {
   470     const size_t blocks_per_chunk = ChunkSize / BlockSize;
   471     const size_t beg_block = beg_chunk * blocks_per_chunk;
   472     const size_t block_cnt = chunk_cnt * blocks_per_chunk;
   473     memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
   474   }
   475   memset(_chunk_data + beg_chunk, 0, chunk_cnt * sizeof(ChunkData));
   476 }
   478 HeapWord* ParallelCompactData::partial_obj_end(size_t chunk_idx) const
   479 {
   480   const ChunkData* cur_cp = chunk(chunk_idx);
   481   const ChunkData* const end_cp = chunk(chunk_count() - 1);
   483   HeapWord* result = chunk_to_addr(chunk_idx);
   484   if (cur_cp < end_cp) {
   485     do {
   486       result += cur_cp->partial_obj_size();
   487     } while (cur_cp->partial_obj_size() == ChunkSize && ++cur_cp < end_cp);
   488   }
   489   return result;
   490 }
   492 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   493 {
   494   const size_t obj_ofs = pointer_delta(addr, _region_start);
   495   const size_t beg_chunk = obj_ofs >> Log2ChunkSize;
   496   const size_t end_chunk = (obj_ofs + len - 1) >> Log2ChunkSize;
   498   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   499   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   501   if (beg_chunk == end_chunk) {
   502     // All in one chunk.
   503     _chunk_data[beg_chunk].add_live_obj(len);
   504     return;
   505   }
   507   // First chunk.
   508   const size_t beg_ofs = chunk_offset(addr);
   509   _chunk_data[beg_chunk].add_live_obj(ChunkSize - beg_ofs);
   511   klassOop klass = ((oop)addr)->klass();
   512   // Middle chunks--completely spanned by this object.
   513   for (size_t chunk = beg_chunk + 1; chunk < end_chunk; ++chunk) {
   514     _chunk_data[chunk].set_partial_obj_size(ChunkSize);
   515     _chunk_data[chunk].set_partial_obj_addr(addr);
   516   }
   518   // Last chunk.
   519   const size_t end_ofs = chunk_offset(addr + len - 1);
   520   _chunk_data[end_chunk].set_partial_obj_size(end_ofs + 1);
   521   _chunk_data[end_chunk].set_partial_obj_addr(addr);
   522 }
   524 void
   525 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   526 {
   527   assert(chunk_offset(beg) == 0, "not ChunkSize aligned");
   528   assert(chunk_offset(end) == 0, "not ChunkSize aligned");
   530   size_t cur_chunk = addr_to_chunk_idx(beg);
   531   const size_t end_chunk = addr_to_chunk_idx(end);
   532   HeapWord* addr = beg;
   533   while (cur_chunk < end_chunk) {
   534     _chunk_data[cur_chunk].set_destination(addr);
   535     _chunk_data[cur_chunk].set_destination_count(0);
   536     _chunk_data[cur_chunk].set_source_chunk(cur_chunk);
   537     _chunk_data[cur_chunk].set_data_location(addr);
   539     // Update live_obj_size so the chunk appears completely full.
   540     size_t live_size = ChunkSize - _chunk_data[cur_chunk].partial_obj_size();
   541     _chunk_data[cur_chunk].set_live_obj_size(live_size);
   543     ++cur_chunk;
   544     addr += ChunkSize;
   545   }
   546 }
   548 bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
   549                                     HeapWord* source_beg, HeapWord* source_end,
   550                                     HeapWord** target_next,
   551                                     HeapWord** source_next) {
   552   // This is too strict.
   553   // assert(chunk_offset(source_beg) == 0, "not ChunkSize aligned");
   555   if (TraceParallelOldGCSummaryPhase) {
   556     tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
   557                   "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
   558                   "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
   559                   target_beg, target_end,
   560                   source_beg, source_end,
   561                   target_next != 0 ? *target_next : (HeapWord*) 0,
   562                   source_next != 0 ? *source_next : (HeapWord*) 0);
   563   }
   565   size_t cur_chunk = addr_to_chunk_idx(source_beg);
   566   const size_t end_chunk = addr_to_chunk_idx(chunk_align_up(source_end));
   568   HeapWord *dest_addr = target_beg;
   569   while (cur_chunk < end_chunk) {
   570     size_t words = _chunk_data[cur_chunk].data_size();
   572 #if     1
   573     assert(pointer_delta(target_end, dest_addr) >= words,
   574            "source region does not fit into target region");
   575 #else
   576     // XXX - need some work on the corner cases here.  If the chunk does not
   577     // fit, then must either make sure any partial_obj from the chunk fits, or
   578     // 'undo' the initial part of the partial_obj that is in the previous chunk.
   579     if (dest_addr + words >= target_end) {
   580       // Let the caller know where to continue.
   581       *target_next = dest_addr;
   582       *source_next = chunk_to_addr(cur_chunk);
   583       return false;
   584     }
   585 #endif  // #if 1
   587     _chunk_data[cur_chunk].set_destination(dest_addr);
   589     // Set the destination_count for cur_chunk, and if necessary, update
   590     // source_chunk for a destination chunk.  The source_chunk field is updated
   591     // if cur_chunk is the first (left-most) chunk to be copied to a destination
   592     // chunk.
   593     //
   594     // The destination_count calculation is a bit subtle.  A chunk that has data
   595     // that compacts into itself does not count itself as a destination.  This
   596     // maintains the invariant that a zero count means the chunk is available
   597     // and can be claimed and then filled.
   598     if (words > 0) {
   599       HeapWord* const last_addr = dest_addr + words - 1;
   600       const size_t dest_chunk_1 = addr_to_chunk_idx(dest_addr);
   601       const size_t dest_chunk_2 = addr_to_chunk_idx(last_addr);
   602 #if     0
   603       // Initially assume that the destination chunks will be the same and
   604       // adjust the value below if necessary.  Under this assumption, if
   605       // cur_chunk == dest_chunk_2, then cur_chunk will be compacted completely
   606       // into itself.
   607       uint destination_count = cur_chunk == dest_chunk_2 ? 0 : 1;
   608       if (dest_chunk_1 != dest_chunk_2) {
   609         // Destination chunks differ; adjust destination_count.
   610         destination_count += 1;
   611         // Data from cur_chunk will be copied to the start of dest_chunk_2.
   612         _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
   613       } else if (chunk_offset(dest_addr) == 0) {
   614         // Data from cur_chunk will be copied to the start of the destination
   615         // chunk.
   616         _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
   617       }
   618 #else
   619       // Initially assume that the destination chunks will be different and
   620       // adjust the value below if necessary.  Under this assumption, if
   621       // cur_chunk == dest_chunk2, then cur_chunk will be compacted partially
   622       // into dest_chunk_1 and partially into itself.
   623       uint destination_count = cur_chunk == dest_chunk_2 ? 1 : 2;
   624       if (dest_chunk_1 != dest_chunk_2) {
   625         // Data from cur_chunk will be copied to the start of dest_chunk_2.
   626         _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
   627       } else {
   628         // Destination chunks are the same; adjust destination_count.
   629         destination_count -= 1;
   630         if (chunk_offset(dest_addr) == 0) {
   631           // Data from cur_chunk will be copied to the start of the destination
   632           // chunk.
   633           _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
   634         }
   635       }
   636 #endif  // #if 0
   638       _chunk_data[cur_chunk].set_destination_count(destination_count);
   639       _chunk_data[cur_chunk].set_data_location(chunk_to_addr(cur_chunk));
   640       dest_addr += words;
   641     }
   643     ++cur_chunk;
   644   }
   646   *target_next = dest_addr;
   647   return true;
   648 }
   650 bool ParallelCompactData::partial_obj_ends_in_block(size_t block_index) {
   651   HeapWord* block_addr = block_to_addr(block_index);
   652   HeapWord* block_end_addr = block_addr + BlockSize;
   653   size_t chunk_index = addr_to_chunk_idx(block_addr);
   654   HeapWord* partial_obj_end_addr = partial_obj_end(chunk_index);
   656   // An object that ends at the end of the block, ends
   657   // in the block (the last word of the object is to
   658   // the left of the end).
   659   if ((block_addr < partial_obj_end_addr) &&
   660       (partial_obj_end_addr <= block_end_addr)) {
   661     return true;
   662   }
   664   return false;
   665 }
   667 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   668   HeapWord* result = NULL;
   669   if (UseParallelOldGCChunkPointerCalc) {
   670     result = chunk_calc_new_pointer(addr);
   671   } else {
   672     result = block_calc_new_pointer(addr);
   673   }
   674   return result;
   675 }
   677 // This method is overly complicated (expensive) to be called
   678 // for every reference.
   679 // Try to restructure this so that a NULL is returned if
   680 // the object is dead.  But don't wast the cycles to explicitly check
   681 // that it is dead since only live objects should be passed in.
   683 HeapWord* ParallelCompactData::chunk_calc_new_pointer(HeapWord* addr) {
   684   assert(addr != NULL, "Should detect NULL oop earlier");
   685   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   686 #ifdef ASSERT
   687   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   688     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   689   }
   690 #endif
   691   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   693   // Chunk covering the object.
   694   size_t chunk_index = addr_to_chunk_idx(addr);
   695   const ChunkData* const chunk_ptr = chunk(chunk_index);
   696   HeapWord* const chunk_addr = chunk_align_down(addr);
   698   assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
   699   assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
   701   HeapWord* result = chunk_ptr->destination();
   703   // If all the data in the chunk is live, then the new location of the object
   704   // can be calculated from the destination of the chunk plus the offset of the
   705   // object in the chunk.
   706   if (chunk_ptr->data_size() == ChunkSize) {
   707     result += pointer_delta(addr, chunk_addr);
   708     return result;
   709   }
   711   // The new location of the object is
   712   //    chunk destination +
   713   //    size of the partial object extending onto the chunk +
   714   //    sizes of the live objects in the Chunk that are to the left of addr
   715   const size_t partial_obj_size = chunk_ptr->partial_obj_size();
   716   HeapWord* const search_start = chunk_addr + partial_obj_size;
   718   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   719   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   721   result += partial_obj_size + live_to_left;
   722   assert(result <= addr, "object cannot move to the right");
   723   return result;
   724 }
   726 HeapWord* ParallelCompactData::block_calc_new_pointer(HeapWord* addr) {
   727   assert(addr != NULL, "Should detect NULL oop earlier");
   728   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   729 #ifdef ASSERT
   730   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   731     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   732   }
   733 #endif
   734   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   736   // Chunk covering the object.
   737   size_t chunk_index = addr_to_chunk_idx(addr);
   738   const ChunkData* const chunk_ptr = chunk(chunk_index);
   739   HeapWord* const chunk_addr = chunk_align_down(addr);
   741   assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
   742   assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
   744   HeapWord* result = chunk_ptr->destination();
   746   // If all the data in the chunk is live, then the new location of the object
   747   // can be calculated from the destination of the chunk plus the offset of the
   748   // object in the chunk.
   749   if (chunk_ptr->data_size() == ChunkSize) {
   750     result += pointer_delta(addr, chunk_addr);
   751     return result;
   752   }
   754   // The new location of the object is
   755   //    chunk destination +
   756   //    block offset +
   757   //    sizes of the live objects in the Block that are to the left of addr
   758   const size_t block_offset = addr_to_block_ptr(addr)->offset();
   759   HeapWord* const search_start = chunk_addr + block_offset;
   761   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   762   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   764   result += block_offset + live_to_left;
   765   assert(result <= addr, "object cannot move to the right");
   766   assert(result == chunk_calc_new_pointer(addr), "Should match");
   767   return result;
   768 }
   770 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
   771   klassOop updated_klass;
   772   if (PSParallelCompact::should_update_klass(old_klass)) {
   773     updated_klass = (klassOop) calc_new_pointer(old_klass);
   774   } else {
   775     updated_klass = old_klass;
   776   }
   778   return updated_klass;
   779 }
   781 #ifdef  ASSERT
   782 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   783 {
   784   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   785   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   786   for (const size_t* p = beg; p < end; ++p) {
   787     assert(*p == 0, "not zero");
   788   }
   789 }
   791 void ParallelCompactData::verify_clear()
   792 {
   793   verify_clear(_chunk_vspace);
   794   verify_clear(_block_vspace);
   795 }
   796 #endif  // #ifdef ASSERT
   798 #ifdef NOT_PRODUCT
   799 ParallelCompactData::ChunkData* debug_chunk(size_t chunk_index) {
   800   ParallelCompactData& sd = PSParallelCompact::summary_data();
   801   return sd.chunk(chunk_index);
   802 }
   803 #endif
   805 elapsedTimer        PSParallelCompact::_accumulated_time;
   806 unsigned int        PSParallelCompact::_total_invocations = 0;
   807 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   808 jlong               PSParallelCompact::_time_of_last_gc = 0;
   809 CollectorCounters*  PSParallelCompact::_counters = NULL;
   810 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   811 ParallelCompactData PSParallelCompact::_summary_data;
   813 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   814 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   815 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   817 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) {
   818 #ifdef VALIDATE_MARK_SWEEP
   819   if (ValidateMarkSweep) {
   820     if (!Universe::heap()->is_in_reserved(p)) {
   821       _root_refs_stack->push(p);
   822     } else {
   823       _other_refs_stack->push(p);
   824     }
   825   }
   826 #endif
   827   mark_and_push(_compaction_manager, p);
   828 }
   830 void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
   831                                         oop* p) {
   832   assert(Universe::heap()->is_in_reserved(p),
   833          "we should only be traversing objects here");
   834   oop m = *p;
   835   if (m != NULL && mark_bitmap()->is_unmarked(m)) {
   836     if (mark_obj(m)) {
   837       m->follow_contents(cm);  // Follow contents of the marked object
   838     }
   839   }
   840 }
   842 // Anything associated with this variable is temporary.
   844 void PSParallelCompact::mark_and_push_internal(ParCompactionManager* cm,
   845                                                oop* p) {
   846   // Push marked object, contents will be followed later
   847   oop m = *p;
   848   if (mark_obj(m)) {
   849     // This thread marked the object and
   850     // owns the subsequent processing of it.
   851     cm->save_for_scanning(m);
   852   }
   853 }
   855 void PSParallelCompact::post_initialize() {
   856   ParallelScavengeHeap* heap = gc_heap();
   857   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   859   MemRegion mr = heap->reserved_region();
   860   _ref_processor = ReferenceProcessor::create_ref_processor(
   861     mr,                         // span
   862     true,                       // atomic_discovery
   863     true,                       // mt_discovery
   864     &_is_alive_closure,
   865     ParallelGCThreads,
   866     ParallelRefProcEnabled);
   867   _counters = new CollectorCounters("PSParallelCompact", 1);
   869   // Initialize static fields in ParCompactionManager.
   870   ParCompactionManager::initialize(mark_bitmap());
   871 }
   873 bool PSParallelCompact::initialize() {
   874   ParallelScavengeHeap* heap = gc_heap();
   875   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   876   MemRegion mr = heap->reserved_region();
   878   // Was the old gen get allocated successfully?
   879   if (!heap->old_gen()->is_allocated()) {
   880     return false;
   881   }
   883   initialize_space_info();
   884   initialize_dead_wood_limiter();
   886   if (!_mark_bitmap.initialize(mr)) {
   887     vm_shutdown_during_initialization("Unable to allocate bit map for "
   888       "parallel garbage collection for the requested heap size.");
   889     return false;
   890   }
   892   if (!_summary_data.initialize(mr)) {
   893     vm_shutdown_during_initialization("Unable to allocate tables for "
   894       "parallel garbage collection for the requested heap size.");
   895     return false;
   896   }
   898   return true;
   899 }
   901 void PSParallelCompact::initialize_space_info()
   902 {
   903   memset(&_space_info, 0, sizeof(_space_info));
   905   ParallelScavengeHeap* heap = gc_heap();
   906   PSYoungGen* young_gen = heap->young_gen();
   907   MutableSpace* perm_space = heap->perm_gen()->object_space();
   909   _space_info[perm_space_id].set_space(perm_space);
   910   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   911   _space_info[eden_space_id].set_space(young_gen->eden_space());
   912   _space_info[from_space_id].set_space(young_gen->from_space());
   913   _space_info[to_space_id].set_space(young_gen->to_space());
   915   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
   916   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   918   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
   919   if (TraceParallelOldGCDensePrefix) {
   920     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
   921                   _space_info[perm_space_id].min_dense_prefix());
   922   }
   923 }
   925 void PSParallelCompact::initialize_dead_wood_limiter()
   926 {
   927   const size_t max = 100;
   928   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   929   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   930   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   931   DEBUG_ONLY(_dwl_initialized = true;)
   932   _dwl_adjustment = normal_distribution(1.0);
   933 }
   935 // Simple class for storing info about the heap at the start of GC, to be used
   936 // after GC for comparison/printing.
   937 class PreGCValues {
   938 public:
   939   PreGCValues() { }
   940   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   942   void fill(ParallelScavengeHeap* heap) {
   943     _heap_used      = heap->used();
   944     _young_gen_used = heap->young_gen()->used_in_bytes();
   945     _old_gen_used   = heap->old_gen()->used_in_bytes();
   946     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
   947   };
   949   size_t heap_used() const      { return _heap_used; }
   950   size_t young_gen_used() const { return _young_gen_used; }
   951   size_t old_gen_used() const   { return _old_gen_used; }
   952   size_t perm_gen_used() const  { return _perm_gen_used; }
   954 private:
   955   size_t _heap_used;
   956   size_t _young_gen_used;
   957   size_t _old_gen_used;
   958   size_t _perm_gen_used;
   959 };
   961 void
   962 PSParallelCompact::clear_data_covering_space(SpaceId id)
   963 {
   964   // At this point, top is the value before GC, new_top() is the value that will
   965   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   966   // should be marked above top.  The summary data is cleared to the larger of
   967   // top & new_top.
   968   MutableSpace* const space = _space_info[id].space();
   969   HeapWord* const bot = space->bottom();
   970   HeapWord* const top = space->top();
   971   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   973   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   974   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   975   _mark_bitmap.clear_range(beg_bit, end_bit);
   977   const size_t beg_chunk = _summary_data.addr_to_chunk_idx(bot);
   978   const size_t end_chunk =
   979     _summary_data.addr_to_chunk_idx(_summary_data.chunk_align_up(max_top));
   980   _summary_data.clear_range(beg_chunk, end_chunk);
   981 }
   983 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   984 {
   985   // Update the from & to space pointers in space_info, since they are swapped
   986   // at each young gen gc.  Do the update unconditionally (even though a
   987   // promotion failure does not swap spaces) because an unknown number of minor
   988   // collections will have swapped the spaces an unknown number of times.
   989   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   990   ParallelScavengeHeap* heap = gc_heap();
   991   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   992   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   994   pre_gc_values->fill(heap);
   996   ParCompactionManager::reset();
   997   NOT_PRODUCT(_mark_bitmap.reset_counters());
   998   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   999   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
  1001   // Increment the invocation count
  1002   heap->increment_total_collections(true);
  1004   // We need to track unique mark sweep invocations as well.
  1005   _total_invocations++;
  1007   if (PrintHeapAtGC) {
  1008     Universe::print_heap_before_gc();
  1011   // Fill in TLABs
  1012   heap->accumulate_statistics_all_tlabs();
  1013   heap->ensure_parsability(true);  // retire TLABs
  1015   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
  1016     HandleMark hm;  // Discard invalid handles created during verification
  1017     gclog_or_tty->print(" VerifyBeforeGC:");
  1018     Universe::verify(true);
  1021   // Verify object start arrays
  1022   if (VerifyObjectStartArray &&
  1023       VerifyBeforeGC) {
  1024     heap->old_gen()->verify_object_start_array();
  1025     heap->perm_gen()->verify_object_start_array();
  1028   DEBUG_ONLY(mark_bitmap()->verify_clear();)
  1029   DEBUG_ONLY(summary_data().verify_clear();)
  1032 void PSParallelCompact::post_compact()
  1034   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
  1036   // Clear the marking bitmap and summary data and update top() in each space.
  1037   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  1038     clear_data_covering_space(SpaceId(id));
  1039     _space_info[id].space()->set_top(_space_info[id].new_top());
  1042   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1043   MutableSpace* const from_space = _space_info[from_space_id].space();
  1044   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1046   ParallelScavengeHeap* heap = gc_heap();
  1047   bool eden_empty = eden_space->is_empty();
  1048   if (!eden_empty) {
  1049     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1050                                             heap->young_gen(), heap->old_gen());
  1053   // Update heap occupancy information which is used as input to the soft ref
  1054   // clearing policy at the next gc.
  1055   Universe::update_heap_info_at_gc();
  1057   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1058     to_space->is_empty();
  1060   BarrierSet* bs = heap->barrier_set();
  1061   if (bs->is_a(BarrierSet::ModRef)) {
  1062     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1063     MemRegion old_mr = heap->old_gen()->reserved();
  1064     MemRegion perm_mr = heap->perm_gen()->reserved();
  1065     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
  1067     if (young_gen_empty) {
  1068       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
  1069     } else {
  1070       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
  1074   Threads::gc_epilogue();
  1075   CodeCache::gc_epilogue();
  1077   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1079   ref_processor()->enqueue_discovered_references(NULL);
  1081   // Update time of last GC
  1082   reset_millis_since_last_gc();
  1085 HeapWord*
  1086 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1087                                                     bool maximum_compaction)
  1089   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1090   const ParallelCompactData& sd = summary_data();
  1092   const MutableSpace* const space = _space_info[id].space();
  1093   HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  1094   const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(space->bottom());
  1095   const ChunkData* const end_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  1097   // Skip full chunks at the beginning of the space--they are necessarily part
  1098   // of the dense prefix.
  1099   size_t full_count = 0;
  1100   const ChunkData* cp;
  1101   for (cp = beg_cp; cp < end_cp && cp->data_size() == chunk_size; ++cp) {
  1102     ++full_count;
  1105   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1106   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1107   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1108   if (maximum_compaction || cp == end_cp || interval_ended) {
  1109     _maximum_compaction_gc_num = total_invocations();
  1110     return sd.chunk_to_addr(cp);
  1113   HeapWord* const new_top = _space_info[id].new_top();
  1114   const size_t space_live = pointer_delta(new_top, space->bottom());
  1115   const size_t space_used = space->used_in_words();
  1116   const size_t space_capacity = space->capacity_in_words();
  1118   const double cur_density = double(space_live) / space_capacity;
  1119   const double deadwood_density =
  1120     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1121   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1123   if (TraceParallelOldGCDensePrefix) {
  1124     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1125                   cur_density, deadwood_density, deadwood_goal);
  1126     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1127                   "space_cap=" SIZE_FORMAT,
  1128                   space_live, space_used,
  1129                   space_capacity);
  1132   // XXX - Use binary search?
  1133   HeapWord* dense_prefix = sd.chunk_to_addr(cp);
  1134   const ChunkData* full_cp = cp;
  1135   const ChunkData* const top_cp = sd.addr_to_chunk_ptr(space->top() - 1);
  1136   while (cp < end_cp) {
  1137     HeapWord* chunk_destination = cp->destination();
  1138     const size_t cur_deadwood = pointer_delta(dense_prefix, chunk_destination);
  1139     if (TraceParallelOldGCDensePrefix && Verbose) {
  1140       tty->print_cr("c#=" SIZE_FORMAT_W("04") " dst=" PTR_FORMAT " "
  1141                     "dp=" SIZE_FORMAT_W("08") " " "cdw=" SIZE_FORMAT_W("08"),
  1142                     sd.chunk(cp), chunk_destination,
  1143                     dense_prefix, cur_deadwood);
  1146     if (cur_deadwood >= deadwood_goal) {
  1147       // Found the chunk that has the correct amount of deadwood to the left.
  1148       // This typically occurs after crossing a fairly sparse set of chunks, so
  1149       // iterate backwards over those sparse chunks, looking for the chunk that
  1150       // has the lowest density of live objects 'to the right.'
  1151       size_t space_to_left = sd.chunk(cp) * chunk_size;
  1152       size_t live_to_left = space_to_left - cur_deadwood;
  1153       size_t space_to_right = space_capacity - space_to_left;
  1154       size_t live_to_right = space_live - live_to_left;
  1155       double density_to_right = double(live_to_right) / space_to_right;
  1156       while (cp > full_cp) {
  1157         --cp;
  1158         const size_t prev_chunk_live_to_right = live_to_right - cp->data_size();
  1159         const size_t prev_chunk_space_to_right = space_to_right + chunk_size;
  1160         double prev_chunk_density_to_right =
  1161           double(prev_chunk_live_to_right) / prev_chunk_space_to_right;
  1162         if (density_to_right <= prev_chunk_density_to_right) {
  1163           return dense_prefix;
  1165         if (TraceParallelOldGCDensePrefix && Verbose) {
  1166           tty->print_cr("backing up from c=" SIZE_FORMAT_W("4") " d2r=%10.8f "
  1167                         "pc_d2r=%10.8f", sd.chunk(cp), density_to_right,
  1168                         prev_chunk_density_to_right);
  1170         dense_prefix -= chunk_size;
  1171         live_to_right = prev_chunk_live_to_right;
  1172         space_to_right = prev_chunk_space_to_right;
  1173         density_to_right = prev_chunk_density_to_right;
  1175       return dense_prefix;
  1178     dense_prefix += chunk_size;
  1179     ++cp;
  1182   return dense_prefix;
  1185 #ifndef PRODUCT
  1186 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1187                                                  const SpaceId id,
  1188                                                  const bool maximum_compaction,
  1189                                                  HeapWord* const addr)
  1191   const size_t chunk_idx = summary_data().addr_to_chunk_idx(addr);
  1192   ChunkData* const cp = summary_data().chunk(chunk_idx);
  1193   const MutableSpace* const space = _space_info[id].space();
  1194   HeapWord* const new_top = _space_info[id].new_top();
  1196   const size_t space_live = pointer_delta(new_top, space->bottom());
  1197   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1198   const size_t space_cap = space->capacity_in_words();
  1199   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1200   const size_t live_to_right = new_top - cp->destination();
  1201   const size_t dead_to_right = space->top() - addr - live_to_right;
  1203   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W("05") " "
  1204                 "spl=" SIZE_FORMAT " "
  1205                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1206                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1207                 " ratio=%10.8f",
  1208                 algorithm, addr, chunk_idx,
  1209                 space_live,
  1210                 dead_to_left, dead_to_left_pct,
  1211                 dead_to_right, live_to_right,
  1212                 double(dead_to_right) / live_to_right);
  1214 #endif  // #ifndef PRODUCT
  1216 // Return a fraction indicating how much of the generation can be treated as
  1217 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1218 // based on the density of live objects in the generation to determine a limit,
  1219 // which is then adjusted so the return value is min_percent when the density is
  1220 // 1.
  1221 //
  1222 // The following table shows some return values for a different values of the
  1223 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1224 // min_percent is 1.
  1225 //
  1226 //                          fraction allowed as dead wood
  1227 //         -----------------------------------------------------------------
  1228 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1229 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1230 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1231 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1232 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1233 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1234 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1235 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1236 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1237 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1238 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1239 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1240 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1241 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1242 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1243 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1244 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1245 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1246 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1247 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1248 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1249 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1250 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1252 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1254   assert(_dwl_initialized, "uninitialized");
  1256   // The raw limit is the value of the normal distribution at x = density.
  1257   const double raw_limit = normal_distribution(density);
  1259   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1260   //
  1261   // First subtract the adjustment value (which is simply the precomputed value
  1262   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1263   // Then add the minimum value, so the minimum is returned when the density is
  1264   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1265   const double min = double(min_percent) / 100.0;
  1266   const double limit = raw_limit - _dwl_adjustment + min;
  1267   return MAX2(limit, 0.0);
  1270 ParallelCompactData::ChunkData*
  1271 PSParallelCompact::first_dead_space_chunk(const ChunkData* beg,
  1272                                           const ChunkData* end)
  1274   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1275   ParallelCompactData& sd = summary_data();
  1276   size_t left = sd.chunk(beg);
  1277   size_t right = end > beg ? sd.chunk(end) - 1 : left;
  1279   // Binary search.
  1280   while (left < right) {
  1281     // Equivalent to (left + right) / 2, but does not overflow.
  1282     const size_t middle = left + (right - left) / 2;
  1283     ChunkData* const middle_ptr = sd.chunk(middle);
  1284     HeapWord* const dest = middle_ptr->destination();
  1285     HeapWord* const addr = sd.chunk_to_addr(middle);
  1286     assert(dest != NULL, "sanity");
  1287     assert(dest <= addr, "must move left");
  1289     if (middle > left && dest < addr) {
  1290       right = middle - 1;
  1291     } else if (middle < right && middle_ptr->data_size() == chunk_size) {
  1292       left = middle + 1;
  1293     } else {
  1294       return middle_ptr;
  1297   return sd.chunk(left);
  1300 ParallelCompactData::ChunkData*
  1301 PSParallelCompact::dead_wood_limit_chunk(const ChunkData* beg,
  1302                                          const ChunkData* end,
  1303                                          size_t dead_words)
  1305   ParallelCompactData& sd = summary_data();
  1306   size_t left = sd.chunk(beg);
  1307   size_t right = end > beg ? sd.chunk(end) - 1 : left;
  1309   // Binary search.
  1310   while (left < right) {
  1311     // Equivalent to (left + right) / 2, but does not overflow.
  1312     const size_t middle = left + (right - left) / 2;
  1313     ChunkData* const middle_ptr = sd.chunk(middle);
  1314     HeapWord* const dest = middle_ptr->destination();
  1315     HeapWord* const addr = sd.chunk_to_addr(middle);
  1316     assert(dest != NULL, "sanity");
  1317     assert(dest <= addr, "must move left");
  1319     const size_t dead_to_left = pointer_delta(addr, dest);
  1320     if (middle > left && dead_to_left > dead_words) {
  1321       right = middle - 1;
  1322     } else if (middle < right && dead_to_left < dead_words) {
  1323       left = middle + 1;
  1324     } else {
  1325       return middle_ptr;
  1328   return sd.chunk(left);
  1331 // The result is valid during the summary phase, after the initial summarization
  1332 // of each space into itself, and before final summarization.
  1333 inline double
  1334 PSParallelCompact::reclaimed_ratio(const ChunkData* const cp,
  1335                                    HeapWord* const bottom,
  1336                                    HeapWord* const top,
  1337                                    HeapWord* const new_top)
  1339   ParallelCompactData& sd = summary_data();
  1341   assert(cp != NULL, "sanity");
  1342   assert(bottom != NULL, "sanity");
  1343   assert(top != NULL, "sanity");
  1344   assert(new_top != NULL, "sanity");
  1345   assert(top >= new_top, "summary data problem?");
  1346   assert(new_top > bottom, "space is empty; should not be here");
  1347   assert(new_top >= cp->destination(), "sanity");
  1348   assert(top >= sd.chunk_to_addr(cp), "sanity");
  1350   HeapWord* const destination = cp->destination();
  1351   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1352   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1353   const size_t compacted_region_used = pointer_delta(top, sd.chunk_to_addr(cp));
  1354   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1356   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1357   return double(reclaimable) / divisor;
  1360 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1361 // compacted region.  The address is always on a chunk boundary.
  1362 //
  1363 // Completely full chunks at the left are skipped, since no compaction can occur
  1364 // in those chunks.  Then the maximum amount of dead wood to allow is computed,
  1365 // based on the density (amount live / capacity) of the generation; the chunk
  1366 // with approximately that amount of dead space to the left is identified as the
  1367 // limit chunk.  Chunks between the last completely full chunk and the limit
  1368 // chunk are scanned and the one that has the best (maximum) reclaimed_ratio()
  1369 // is selected.
  1370 HeapWord*
  1371 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1372                                         bool maximum_compaction)
  1374   const size_t chunk_size = ParallelCompactData::ChunkSize;
  1375   const ParallelCompactData& sd = summary_data();
  1377   const MutableSpace* const space = _space_info[id].space();
  1378   HeapWord* const top = space->top();
  1379   HeapWord* const top_aligned_up = sd.chunk_align_up(top);
  1380   HeapWord* const new_top = _space_info[id].new_top();
  1381   HeapWord* const new_top_aligned_up = sd.chunk_align_up(new_top);
  1382   HeapWord* const bottom = space->bottom();
  1383   const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(bottom);
  1384   const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  1385   const ChunkData* const new_top_cp = sd.addr_to_chunk_ptr(new_top_aligned_up);
  1387   // Skip full chunks at the beginning of the space--they are necessarily part
  1388   // of the dense prefix.
  1389   const ChunkData* const full_cp = first_dead_space_chunk(beg_cp, new_top_cp);
  1390   assert(full_cp->destination() == sd.chunk_to_addr(full_cp) ||
  1391          space->is_empty(), "no dead space allowed to the left");
  1392   assert(full_cp->data_size() < chunk_size || full_cp == new_top_cp - 1,
  1393          "chunk must have dead space");
  1395   // The gc number is saved whenever a maximum compaction is done, and used to
  1396   // determine when the maximum compaction interval has expired.  This avoids
  1397   // successive max compactions for different reasons.
  1398   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1399   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1400   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1401     total_invocations() == HeapFirstMaximumCompactionCount;
  1402   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1403     _maximum_compaction_gc_num = total_invocations();
  1404     return sd.chunk_to_addr(full_cp);
  1407   const size_t space_live = pointer_delta(new_top, bottom);
  1408   const size_t space_used = space->used_in_words();
  1409   const size_t space_capacity = space->capacity_in_words();
  1411   const double density = double(space_live) / double(space_capacity);
  1412   const size_t min_percent_free =
  1413           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  1414   const double limiter = dead_wood_limiter(density, min_percent_free);
  1415   const size_t dead_wood_max = space_used - space_live;
  1416   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1417                                       dead_wood_max);
  1419   if (TraceParallelOldGCDensePrefix) {
  1420     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1421                   "space_cap=" SIZE_FORMAT,
  1422                   space_live, space_used,
  1423                   space_capacity);
  1424     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1425                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1426                   density, min_percent_free, limiter,
  1427                   dead_wood_max, dead_wood_limit);
  1430   // Locate the chunk with the desired amount of dead space to the left.
  1431   const ChunkData* const limit_cp =
  1432     dead_wood_limit_chunk(full_cp, top_cp, dead_wood_limit);
  1434   // Scan from the first chunk with dead space to the limit chunk and find the
  1435   // one with the best (largest) reclaimed ratio.
  1436   double best_ratio = 0.0;
  1437   const ChunkData* best_cp = full_cp;
  1438   for (const ChunkData* cp = full_cp; cp < limit_cp; ++cp) {
  1439     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1440     if (tmp_ratio > best_ratio) {
  1441       best_cp = cp;
  1442       best_ratio = tmp_ratio;
  1446 #if     0
  1447   // Something to consider:  if the chunk with the best ratio is 'close to' the
  1448   // first chunk w/free space, choose the first chunk with free space
  1449   // ("first-free").  The first-free chunk is usually near the start of the
  1450   // heap, which means we are copying most of the heap already, so copy a bit
  1451   // more to get complete compaction.
  1452   if (pointer_delta(best_cp, full_cp, sizeof(ChunkData)) < 4) {
  1453     _maximum_compaction_gc_num = total_invocations();
  1454     best_cp = full_cp;
  1456 #endif  // #if 0
  1458   return sd.chunk_to_addr(best_cp);
  1461 void PSParallelCompact::summarize_spaces_quick()
  1463   for (unsigned int i = 0; i < last_space_id; ++i) {
  1464     const MutableSpace* space = _space_info[i].space();
  1465     bool result = _summary_data.summarize(space->bottom(), space->end(),
  1466                                           space->bottom(), space->top(),
  1467                                           _space_info[i].new_top_addr());
  1468     assert(result, "should never fail");
  1469     _space_info[i].set_dense_prefix(space->bottom());
  1473 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1475   HeapWord* const dense_prefix_end = dense_prefix(id);
  1476   const ChunkData* chunk = _summary_data.addr_to_chunk_ptr(dense_prefix_end);
  1477   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1478   if (dead_space_crosses_boundary(chunk, dense_prefix_bit)) {
  1479     // Only enough dead space is filled so that any remaining dead space to the
  1480     // left is larger than the minimum filler object.  (The remainder is filled
  1481     // during the copy/update phase.)
  1482     //
  1483     // The size of the dead space to the right of the boundary is not a
  1484     // concern, since compaction will be able to use whatever space is
  1485     // available.
  1486     //
  1487     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1488     // surrounds the space to be filled with an object.
  1489     //
  1490     // In the 32-bit VM, each bit represents two 32-bit words:
  1491     //                              +---+
  1492     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1493     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1494     //                              +---+
  1495     //
  1496     // In the 64-bit VM, each bit represents one 64-bit word:
  1497     //                              +------------+
  1498     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1499     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1500     //                              +------------+
  1501     //                          +-------+
  1502     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1503     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1504     //                          +-------+
  1505     //                      +-----------+
  1506     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1507     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1508     //                      +-----------+
  1509     //                          +-------+
  1510     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1511     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1512     //                          +-------+
  1514     // Initially assume case a, c or e will apply.
  1515     size_t obj_len = (size_t)oopDesc::header_size();
  1516     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1518 #ifdef  _LP64
  1519     if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1520       // Case b above.
  1521       obj_beg = dense_prefix_end - 1;
  1522     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1523                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1524       // Case d above.
  1525       obj_beg = dense_prefix_end - 3;
  1526       obj_len = 3;
  1528 #endif  // #ifdef _LP64
  1530     MemRegion region(obj_beg, obj_len);
  1531     SharedHeap::fill_region_with_object(region);
  1532     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1533     _summary_data.add_obj(obj_beg, obj_len);
  1534     assert(start_array(id) != NULL, "sanity");
  1535     start_array(id)->allocate_block(obj_beg);
  1539 void
  1540 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1542   assert(id < last_space_id, "id out of range");
  1544   const MutableSpace* space = _space_info[id].space();
  1545   HeapWord** new_top_addr = _space_info[id].new_top_addr();
  1547   HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1548   _space_info[id].set_dense_prefix(dense_prefix_end);
  1550 #ifndef PRODUCT
  1551   if (TraceParallelOldGCDensePrefix) {
  1552     print_dense_prefix_stats("ratio", id, maximum_compaction, dense_prefix_end);
  1553     HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1554     print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1556 #endif  // #ifndef PRODUCT
  1558   // If dead space crosses the dense prefix boundary, it is (at least partially)
  1559   // filled with a dummy object, marked live and added to the summary data.
  1560   // This simplifies the copy/update phase and must be done before the final
  1561   // locations of objects are determined, to prevent leaving a fragment of dead
  1562   // space that is too small to fill with an object.
  1563   if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1564     fill_dense_prefix_end(id);
  1567   // Compute the destination of each Chunk, and thus each object.
  1568   _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1569   _summary_data.summarize(dense_prefix_end, space->end(),
  1570                           dense_prefix_end, space->top(),
  1571                           new_top_addr);
  1573   if (TraceParallelOldGCSummaryPhase) {
  1574     const size_t chunk_size = ParallelCompactData::ChunkSize;
  1575     const size_t dp_chunk = _summary_data.addr_to_chunk_idx(dense_prefix_end);
  1576     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1577     const HeapWord* nt_aligned_up = _summary_data.chunk_align_up(*new_top_addr);
  1578     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1579     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1580                   "dp_chunk=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1581                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1582                   id, space->capacity_in_words(), dense_prefix_end,
  1583                   dp_chunk, dp_words / chunk_size,
  1584                   cr_words / chunk_size, *new_top_addr);
  1588 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1589                                       bool maximum_compaction)
  1591   EventMark m("2 summarize");
  1592   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1593   // trace("2");
  1595 #ifdef  ASSERT
  1596   if (VerifyParallelOldWithMarkSweep  &&
  1597       (PSParallelCompact::total_invocations() %
  1598          VerifyParallelOldWithMarkSweepInterval) == 0) {
  1599     verify_mark_bitmap(_mark_bitmap);
  1601   if (TraceParallelOldGCMarkingPhase) {
  1602     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1603                   "add_obj_bytes=" SIZE_FORMAT,
  1604                   add_obj_count, add_obj_size * HeapWordSize);
  1605     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1606                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1607                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1609 #endif  // #ifdef ASSERT
  1611   // Quick summarization of each space into itself, to see how much is live.
  1612   summarize_spaces_quick();
  1614   if (TraceParallelOldGCSummaryPhase) {
  1615     tty->print_cr("summary_phase:  after summarizing each space to self");
  1616     Universe::print();
  1617     NOT_PRODUCT(print_chunk_ranges());
  1618     if (Verbose) {
  1619       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1623   // The amount of live data that will end up in old space (assuming it fits).
  1624   size_t old_space_total_live = 0;
  1625   unsigned int id;
  1626   for (id = old_space_id; id < last_space_id; ++id) {
  1627     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1628                                           _space_info[id].space()->bottom());
  1631   const MutableSpace* old_space = _space_info[old_space_id].space();
  1632   if (old_space_total_live > old_space->capacity_in_words()) {
  1633     // XXX - should also try to expand
  1634     maximum_compaction = true;
  1635   } else if (!UseParallelOldGCDensePrefix) {
  1636     maximum_compaction = true;
  1639   // Permanent and Old generations.
  1640   summarize_space(perm_space_id, maximum_compaction);
  1641   summarize_space(old_space_id, maximum_compaction);
  1643   // Summarize the remaining spaces (those in the young gen) into old space.  If
  1644   // the live data from a space doesn't fit, the existing summarization is left
  1645   // intact, so the data is compacted down within the space itself.
  1646   HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
  1647   HeapWord* const target_space_end = old_space->end();
  1648   for (id = eden_space_id; id < last_space_id; ++id) {
  1649     const MutableSpace* space = _space_info[id].space();
  1650     const size_t live = pointer_delta(_space_info[id].new_top(),
  1651                                       space->bottom());
  1652     const size_t available = pointer_delta(target_space_end, *new_top_addr);
  1653     if (live <= available) {
  1654       // All the live data will fit.
  1655       if (TraceParallelOldGCSummaryPhase) {
  1656         tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
  1657                       id, *new_top_addr);
  1659       _summary_data.summarize(*new_top_addr, target_space_end,
  1660                               space->bottom(), space->top(),
  1661                               new_top_addr);
  1663       // Reset the new_top value for the space.
  1664       _space_info[id].set_new_top(space->bottom());
  1666       // Clear the source_chunk field for each chunk in the space.
  1667       ChunkData* beg_chunk = _summary_data.addr_to_chunk_ptr(space->bottom());
  1668       ChunkData* end_chunk = _summary_data.addr_to_chunk_ptr(space->top() - 1);
  1669       while (beg_chunk <= end_chunk) {
  1670         beg_chunk->set_source_chunk(0);
  1671         ++beg_chunk;
  1676   // Fill in the block data after any changes to the chunks have
  1677   // been made.
  1678 #ifdef  ASSERT
  1679   summarize_blocks(cm, perm_space_id);
  1680   summarize_blocks(cm, old_space_id);
  1681 #else
  1682   if (!UseParallelOldGCChunkPointerCalc) {
  1683     summarize_blocks(cm, perm_space_id);
  1684     summarize_blocks(cm, old_space_id);
  1686 #endif
  1688   if (TraceParallelOldGCSummaryPhase) {
  1689     tty->print_cr("summary_phase:  after final summarization");
  1690     Universe::print();
  1691     NOT_PRODUCT(print_chunk_ranges());
  1692     if (Verbose) {
  1693       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1698 // Fill in the BlockData.
  1699 // Iterate over the spaces and within each space iterate over
  1700 // the chunks and fill in the BlockData for each chunk.
  1702 void PSParallelCompact::summarize_blocks(ParCompactionManager* cm,
  1703                                          SpaceId first_compaction_space_id) {
  1704 #if     0
  1705   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(1);)
  1706   for (SpaceId cur_space_id = first_compaction_space_id;
  1707        cur_space_id != last_space_id;
  1708        cur_space_id = next_compaction_space_id(cur_space_id)) {
  1709     // Iterate over the chunks in the space
  1710     size_t start_chunk_index =
  1711       _summary_data.addr_to_chunk_idx(space(cur_space_id)->bottom());
  1712     BitBlockUpdateClosure bbu(mark_bitmap(),
  1713                               cm,
  1714                               start_chunk_index);
  1715     // Iterate over blocks.
  1716     for (size_t chunk_index =  start_chunk_index;
  1717          chunk_index < _summary_data.chunk_count() &&
  1718          _summary_data.chunk_to_addr(chunk_index) < space(cur_space_id)->top();
  1719          chunk_index++) {
  1721       // Reset the closure for the new chunk.  Note that the closure
  1722       // maintains some data that does not get reset for each chunk
  1723       // so a new instance of the closure is no appropriate.
  1724       bbu.reset_chunk(chunk_index);
  1726       // Start the iteration with the first live object.  This
  1727       // may return the end of the chunk.  That is acceptable since
  1728       // it will properly limit the iterations.
  1729       ParMarkBitMap::idx_t left_offset = mark_bitmap()->addr_to_bit(
  1730         _summary_data.first_live_or_end_in_chunk(chunk_index));
  1732       // End the iteration at the end of the chunk.
  1733       HeapWord* chunk_addr = _summary_data.chunk_to_addr(chunk_index);
  1734       HeapWord* chunk_end = chunk_addr + ParallelCompactData::ChunkSize;
  1735       ParMarkBitMap::idx_t right_offset =
  1736         mark_bitmap()->addr_to_bit(chunk_end);
  1738       // Blocks that have not objects starting in them can be
  1739       // skipped because their data will never be used.
  1740       if (left_offset < right_offset) {
  1742         // Iterate through the objects in the chunk.
  1743         ParMarkBitMap::idx_t last_offset =
  1744           mark_bitmap()->pair_iterate(&bbu, left_offset, right_offset);
  1746         // If last_offset is less than right_offset, then the iterations
  1747         // terminated while it was looking for an end bit.  "last_offset"
  1748         // is then the offset for the last start bit.  In this situation
  1749         // the "offset" field for the next block to the right (_cur_block + 1)
  1750         // will not have been update although there may be live data
  1751         // to the left of the chunk.
  1753         size_t cur_block_plus_1 = bbu.cur_block() + 1;
  1754         HeapWord* cur_block_plus_1_addr =
  1755         _summary_data.block_to_addr(bbu.cur_block()) +
  1756         ParallelCompactData::BlockSize;
  1757         HeapWord* last_offset_addr = mark_bitmap()->bit_to_addr(last_offset);
  1758  #if 1  // This code works.  The else doesn't but should.  Why does it?
  1759         // The current block (cur_block()) has already been updated.
  1760         // The last block that may need to be updated is either the
  1761         // next block (current block + 1) or the block where the
  1762         // last object starts (which can be greater than the
  1763         // next block if there were no objects found in intervening
  1764         // blocks).
  1765         size_t last_block =
  1766           MAX2(bbu.cur_block() + 1,
  1767                _summary_data.addr_to_block_idx(last_offset_addr));
  1768  #else
  1769         // The current block has already been updated.  The only block
  1770         // that remains to be updated is the block where the last
  1771         // object in the chunk starts.
  1772         size_t last_block = _summary_data.addr_to_block_idx(last_offset_addr);
  1773  #endif
  1774         assert_bit_is_start(last_offset);
  1775         assert((last_block == _summary_data.block_count()) ||
  1776              (_summary_data.block(last_block)->raw_offset() == 0),
  1777           "Should not have been set");
  1778         // Is the last block still in the current chunk?  If still
  1779         // in this chunk, update the last block (the counting that
  1780         // included the current block is meant for the offset of the last
  1781         // block).  If not in this chunk, do nothing.  Should not
  1782         // update a block in the next chunk.
  1783         if (ParallelCompactData::chunk_contains_block(bbu.chunk_index(),
  1784                                                       last_block)) {
  1785           if (last_offset < right_offset) {
  1786             // The last object started in this chunk but ends beyond
  1787             // this chunk.  Update the block for this last object.
  1788             assert(mark_bitmap()->is_marked(last_offset), "Should be marked");
  1789             // No end bit was found.  The closure takes care of
  1790             // the cases where
  1791             //   an objects crosses over into the next block
  1792             //   an objects starts and ends in the next block
  1793             // It does not handle the case where an object is
  1794             // the first object in a later block and extends
  1795             // past the end of the chunk (i.e., the closure
  1796             // only handles complete objects that are in the range
  1797             // it is given).  That object is handed back here
  1798             // for any special consideration necessary.
  1799             //
  1800             // Is the first bit in the last block a start or end bit?
  1801             //
  1802             // If the partial object ends in the last block L,
  1803             // then the 1st bit in L may be an end bit.
  1804             //
  1805             // Else does the last object start in a block after the current
  1806             // block? A block AA will already have been updated if an
  1807             // object ends in the next block AA+1.  An object found to end in
  1808             // the AA+1 is the trigger that updates AA.  Objects are being
  1809             // counted in the current block for updaing a following
  1810             // block.  An object may start in later block
  1811             // block but may extend beyond the last block in the chunk.
  1812             // Updates are only done when the end of an object has been
  1813             // found. If the last object (covered by block L) starts
  1814             // beyond the current block, then no object ends in L (otherwise
  1815             // L would be the current block).  So the first bit in L is
  1816             // a start bit.
  1817             //
  1818             // Else the last objects start in the current block and ends
  1819             // beyond the chunk.  The current block has already been
  1820             // updated and there is no later block (with an object
  1821             // starting in it) that needs to be updated.
  1822             //
  1823             if (_summary_data.partial_obj_ends_in_block(last_block)) {
  1824               _summary_data.block(last_block)->set_end_bit_offset(
  1825                 bbu.live_data_left());
  1826             } else if (last_offset_addr >= cur_block_plus_1_addr) {
  1827               //   The start of the object is on a later block
  1828               // (to the right of the current block and there are no
  1829               // complete live objects to the left of this last object
  1830               // within the chunk.
  1831               //   The first bit in the block is for the start of the
  1832               // last object.
  1833               _summary_data.block(last_block)->set_start_bit_offset(
  1834                 bbu.live_data_left());
  1835             } else {
  1836               //   The start of the last object was found in
  1837               // the current chunk (which has already
  1838               // been updated).
  1839               assert(bbu.cur_block() ==
  1840                       _summary_data.addr_to_block_idx(last_offset_addr),
  1841                 "Should be a block already processed");
  1843 #ifdef ASSERT
  1844             // Is there enough block information to find this object?
  1845             // The destination of the chunk has not been set so the
  1846             // values returned by calc_new_pointer() and
  1847             // block_calc_new_pointer() will only be
  1848             // offsets.  But they should agree.
  1849             HeapWord* moved_obj_with_chunks =
  1850               _summary_data.chunk_calc_new_pointer(last_offset_addr);
  1851             HeapWord* moved_obj_with_blocks =
  1852               _summary_data.calc_new_pointer(last_offset_addr);
  1853             assert(moved_obj_with_chunks == moved_obj_with_blocks,
  1854               "Block calculation is wrong");
  1855 #endif
  1856           } else if (last_block < _summary_data.block_count()) {
  1857             // Iterations ended looking for a start bit (but
  1858             // did not run off the end of the block table).
  1859             _summary_data.block(last_block)->set_start_bit_offset(
  1860               bbu.live_data_left());
  1863 #ifdef ASSERT
  1864         // Is there enough block information to find this object?
  1865           HeapWord* left_offset_addr = mark_bitmap()->bit_to_addr(left_offset);
  1866         HeapWord* moved_obj_with_chunks =
  1867           _summary_data.calc_new_pointer(left_offset_addr);
  1868         HeapWord* moved_obj_with_blocks =
  1869           _summary_data.calc_new_pointer(left_offset_addr);
  1870           assert(moved_obj_with_chunks == moved_obj_with_blocks,
  1871           "Block calculation is wrong");
  1872 #endif
  1874         // Is there another block after the end of this chunk?
  1875 #ifdef ASSERT
  1876         if (last_block < _summary_data.block_count()) {
  1877         // No object may have been found in a block.  If that
  1878         // block is at the end of the chunk, the iteration will
  1879         // terminate without incrementing the current block so
  1880         // that the current block is not the last block in the
  1881         // chunk.  That situation precludes asserting that the
  1882         // current block is the last block in the chunk.  Assert
  1883         // the lesser condition that the current block does not
  1884         // exceed the chunk.
  1885           assert(_summary_data.block_to_addr(last_block) <=
  1886                (_summary_data.chunk_to_addr(chunk_index) +
  1887                  ParallelCompactData::ChunkSize),
  1888               "Chunk and block inconsistency");
  1889           assert(last_offset <= right_offset, "Iteration over ran end");
  1891 #endif
  1893 #ifdef ASSERT
  1894       if (PrintGCDetails && Verbose) {
  1895         if (_summary_data.chunk(chunk_index)->partial_obj_size() == 1) {
  1896           size_t first_block =
  1897             chunk_index / ParallelCompactData::BlocksPerChunk;
  1898           gclog_or_tty->print_cr("first_block " PTR_FORMAT
  1899             " _offset " PTR_FORMAT
  1900             "_first_is_start_bit %d",
  1901             first_block,
  1902             _summary_data.block(first_block)->raw_offset(),
  1903             _summary_data.block(first_block)->first_is_start_bit());
  1906 #endif
  1909   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(16);)
  1910 #endif  // #if 0
  1913 // This method should contain all heap-specific policy for invoking a full
  1914 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1915 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1916 // before full gc, or any other specialized behavior, it needs to be added here.
  1917 //
  1918 // Note that this method should only be called from the vm_thread while at a
  1919 // safepoint.
  1920 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1921   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1922   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1923          "should be in vm thread");
  1924   ParallelScavengeHeap* heap = gc_heap();
  1925   GCCause::Cause gc_cause = heap->gc_cause();
  1926   assert(!heap->is_gc_active(), "not reentrant");
  1928   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1930   // Before each allocation/collection attempt, find out from the
  1931   // policy object if GCs are, on the whole, taking too long. If so,
  1932   // bail out without attempting a collection.  The exceptions are
  1933   // for explicitly requested GC's.
  1934   if (!policy->gc_time_limit_exceeded() ||
  1935       GCCause::is_user_requested_gc(gc_cause) ||
  1936       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1937     IsGCActiveMark mark;
  1939     if (ScavengeBeforeFullGC) {
  1940       PSScavenge::invoke_no_policy();
  1943     PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  1947 bool ParallelCompactData::chunk_contains(size_t chunk_index, HeapWord* addr) {
  1948   size_t addr_chunk_index = addr_to_chunk_idx(addr);
  1949   return chunk_index == addr_chunk_index;
  1952 bool ParallelCompactData::chunk_contains_block(size_t chunk_index,
  1953                                                size_t block_index) {
  1954   size_t first_block_in_chunk = chunk_index * BlocksPerChunk;
  1955   size_t last_block_in_chunk = (chunk_index + 1) * BlocksPerChunk - 1;
  1957   return (first_block_in_chunk <= block_index) &&
  1958          (block_index <= last_block_in_chunk);
  1961 // This method contains no policy. You should probably
  1962 // be calling invoke() instead.
  1963 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1964   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1965   assert(ref_processor() != NULL, "Sanity");
  1967   if (GC_locker::check_active_before_gc()) {
  1968     return;
  1971   TimeStamp marking_start;
  1972   TimeStamp compaction_start;
  1973   TimeStamp collection_exit;
  1975   // "serial_CM" is needed until the parallel implementation
  1976   // of the move and update is done.
  1977   ParCompactionManager* serial_CM = new ParCompactionManager();
  1978   // Don't initialize more than once.
  1979   // serial_CM->initialize(&summary_data(), mark_bitmap());
  1981   ParallelScavengeHeap* heap = gc_heap();
  1982   GCCause::Cause gc_cause = heap->gc_cause();
  1983   PSYoungGen* young_gen = heap->young_gen();
  1984   PSOldGen* old_gen = heap->old_gen();
  1985   PSPermGen* perm_gen = heap->perm_gen();
  1986   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1988   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  1990   // Make sure data structures are sane, make the heap parsable, and do other
  1991   // miscellaneous bookkeeping.
  1992   PreGCValues pre_gc_values;
  1993   pre_compact(&pre_gc_values);
  1995   // Place after pre_compact() where the number of invocations is incremented.
  1996   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  1999     ResourceMark rm;
  2000     HandleMark hm;
  2002     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
  2004     // This is useful for debugging but don't change the output the
  2005     // the customer sees.
  2006     const char* gc_cause_str = "Full GC";
  2007     if (is_system_gc && PrintGCDetails) {
  2008       gc_cause_str = "Full GC (System)";
  2010     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2011     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2012     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
  2013     TraceCollectorStats tcs(counters());
  2014     TraceMemoryManagerStats tms(true /* Full GC */);
  2016     if (TraceGen1Time) accumulated_time()->start();
  2018     // Let the size policy know we're starting
  2019     size_policy->major_collection_begin();
  2021     // When collecting the permanent generation methodOops may be moving,
  2022     // so we either have to flush all bcp data or convert it into bci.
  2023     CodeCache::gc_prologue();
  2024     Threads::gc_prologue();
  2026     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2027     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2029     ref_processor()->enable_discovery();
  2031     bool marked_for_unloading = false;
  2033     marking_start.update();
  2034     marking_phase(serial_CM, maximum_heap_compaction);
  2036 #ifndef PRODUCT
  2037     if (TraceParallelOldGCMarkingPhase) {
  2038       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2039         "cas_by_another %d",
  2040         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2041         mark_bitmap()->cas_by_another());
  2043 #endif  // #ifndef PRODUCT
  2045 #ifdef ASSERT
  2046     if (VerifyParallelOldWithMarkSweep &&
  2047         (PSParallelCompact::total_invocations() %
  2048            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2049       gclog_or_tty->print_cr("Verify marking with mark_sweep_phase1()");
  2050       if (PrintGCDetails && Verbose) {
  2051         gclog_or_tty->print_cr("mark_sweep_phase1:");
  2053       // Clear the discovered lists so that discovered objects
  2054       // don't look like they have been discovered twice.
  2055       ref_processor()->clear_discovered_references();
  2057       PSMarkSweep::allocate_stacks();
  2058       MemRegion mr = Universe::heap()->reserved_region();
  2059       PSMarkSweep::ref_processor()->enable_discovery();
  2060       PSMarkSweep::mark_sweep_phase1(maximum_heap_compaction);
  2062 #endif
  2064     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
  2065     summary_phase(serial_CM, maximum_heap_compaction || max_on_system_gc);
  2067 #ifdef ASSERT
  2068     if (VerifyParallelOldWithMarkSweep &&
  2069         (PSParallelCompact::total_invocations() %
  2070            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2071       if (PrintGCDetails && Verbose) {
  2072         gclog_or_tty->print_cr("mark_sweep_phase2:");
  2074       PSMarkSweep::mark_sweep_phase2();
  2076 #endif
  2078     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2079     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2081     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2082     // needed by the compaction for filling holes in the dense prefix.
  2083     adjust_roots();
  2085 #ifdef ASSERT
  2086     if (VerifyParallelOldWithMarkSweep &&
  2087         (PSParallelCompact::total_invocations() %
  2088            VerifyParallelOldWithMarkSweepInterval) == 0) {
  2089       // Do a separate verify phase so that the verify
  2090       // code can use the the forwarding pointers to
  2091       // check the new pointer calculation.  The restore_marks()
  2092       // has to be done before the real compact.
  2093       serial_CM->set_action(ParCompactionManager::VerifyUpdate);
  2094       compact_perm(serial_CM);
  2095       compact_serial(serial_CM);
  2096       serial_CM->set_action(ParCompactionManager::ResetObjects);
  2097       compact_perm(serial_CM);
  2098       compact_serial(serial_CM);
  2099       serial_CM->set_action(ParCompactionManager::UpdateAndCopy);
  2101       // For debugging only
  2102       PSMarkSweep::restore_marks();
  2103       PSMarkSweep::deallocate_stacks();
  2105 #endif
  2107     compaction_start.update();
  2108     // Does the perm gen always have to be done serially because
  2109     // klasses are used in the update of an object?
  2110     compact_perm(serial_CM);
  2112     if (UseParallelOldGCCompacting) {
  2113       compact();
  2114     } else {
  2115       compact_serial(serial_CM);
  2118     delete serial_CM;
  2120     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2121     // done before resizing.
  2122     post_compact();
  2124     // Let the size policy know we're done
  2125     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2127     if (UseAdaptiveSizePolicy) {
  2128       if (PrintAdaptiveSizePolicy) {
  2129         gclog_or_tty->print("AdaptiveSizeStart: ");
  2130         gclog_or_tty->stamp();
  2131         gclog_or_tty->print_cr(" collection: %d ",
  2132                        heap->total_collections());
  2133         if (Verbose) {
  2134           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
  2135             " perm_gen_capacity: %d ",
  2136             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
  2137             perm_gen->capacity_in_bytes());
  2141       // Don't check if the size_policy is ready here.  Let
  2142       // the size_policy check that internally.
  2143       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2144           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2145             UseAdaptiveSizePolicyWithSystemGC)) {
  2146         // Calculate optimal free space amounts
  2147         assert(young_gen->max_size() >
  2148           young_gen->from_space()->capacity_in_bytes() +
  2149           young_gen->to_space()->capacity_in_bytes(),
  2150           "Sizes of space in young gen are out-of-bounds");
  2151         size_t max_eden_size = young_gen->max_size() -
  2152           young_gen->from_space()->capacity_in_bytes() -
  2153           young_gen->to_space()->capacity_in_bytes();
  2154         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
  2155                                  young_gen->eden_space()->used_in_bytes(),
  2156                                  old_gen->used_in_bytes(),
  2157                                  perm_gen->used_in_bytes(),
  2158                                  young_gen->eden_space()->capacity_in_bytes(),
  2159                                  old_gen->max_gen_size(),
  2160                                  max_eden_size,
  2161                                  true /* full gc*/,
  2162                                  gc_cause);
  2164         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
  2166         // Don't resize the young generation at an major collection.  A
  2167         // desired young generation size may have been calculated but
  2168         // resizing the young generation complicates the code because the
  2169         // resizing of the old generation may have moved the boundary
  2170         // between the young generation and the old generation.  Let the
  2171         // young generation resizing happen at the minor collections.
  2173       if (PrintAdaptiveSizePolicy) {
  2174         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2175                        heap->total_collections());
  2179     if (UsePerfData) {
  2180       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2181       counters->update_counters();
  2182       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2183       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2186     heap->resize_all_tlabs();
  2188     // We collected the perm gen, so we'll resize it here.
  2189     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
  2191     if (TraceGen1Time) accumulated_time()->stop();
  2193     if (PrintGC) {
  2194       if (PrintGCDetails) {
  2195         // No GC timestamp here.  This is after GC so it would be confusing.
  2196         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2197         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2198         heap->print_heap_change(pre_gc_values.heap_used());
  2199         // Print perm gen last (print_heap_change() excludes the perm gen).
  2200         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
  2201       } else {
  2202         heap->print_heap_change(pre_gc_values.heap_used());
  2206     // Track memory usage and detect low memory
  2207     MemoryService::track_memory_usage();
  2208     heap->update_counters();
  2210     if (PrintGCDetails) {
  2211       if (size_policy->print_gc_time_limit_would_be_exceeded()) {
  2212         if (size_policy->gc_time_limit_exceeded()) {
  2213           gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
  2214             "of %d%%", GCTimeLimit);
  2215         } else {
  2216           gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
  2217             "of %d%%", GCTimeLimit);
  2220       size_policy->set_print_gc_time_limit_would_be_exceeded(false);
  2224   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2225     HandleMark hm;  // Discard invalid handles created during verification
  2226     gclog_or_tty->print(" VerifyAfterGC:");
  2227     Universe::verify(false);
  2230   // Re-verify object start arrays
  2231   if (VerifyObjectStartArray &&
  2232       VerifyAfterGC) {
  2233     old_gen->verify_object_start_array();
  2234     perm_gen->verify_object_start_array();
  2237   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2239   collection_exit.update();
  2241   if (PrintHeapAtGC) {
  2242     Universe::print_heap_after_gc();
  2244   if (PrintGCTaskTimeStamps) {
  2245     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2246                            INT64_FORMAT,
  2247                            marking_start.ticks(), compaction_start.ticks(),
  2248                            collection_exit.ticks());
  2249     gc_task_manager()->print_task_time_stamps();
  2253 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2254                                              PSYoungGen* young_gen,
  2255                                              PSOldGen* old_gen) {
  2256   MutableSpace* const eden_space = young_gen->eden_space();
  2257   assert(!eden_space->is_empty(), "eden must be non-empty");
  2258   assert(young_gen->virtual_space()->alignment() ==
  2259          old_gen->virtual_space()->alignment(), "alignments do not match");
  2261   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2262     return false;
  2265   // Both generations must be completely committed.
  2266   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2267     return false;
  2269   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2270     return false;
  2273   // Figure out how much to take from eden.  Include the average amount promoted
  2274   // in the total; otherwise the next young gen GC will simply bail out to a
  2275   // full GC.
  2276   const size_t alignment = old_gen->virtual_space()->alignment();
  2277   const size_t eden_used = eden_space->used_in_bytes();
  2278   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2279   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2280   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2282   if (absorb_size >= eden_capacity) {
  2283     return false; // Must leave some space in eden.
  2286   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2287   if (new_young_size < young_gen->min_gen_size()) {
  2288     return false; // Respect young gen minimum size.
  2291   if (TraceAdaptiveGCBoundary && Verbose) {
  2292     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2293                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2294                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2295                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2296                         absorb_size / K,
  2297                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2298                         young_gen->from_space()->used_in_bytes() / K,
  2299                         young_gen->to_space()->used_in_bytes() / K,
  2300                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2303   // Fill the unused part of the old gen.
  2304   MutableSpace* const old_space = old_gen->object_space();
  2305   MemRegion old_gen_unused(old_space->top(), old_space->end());
  2306   if (!old_gen_unused.is_empty()) {
  2307     SharedHeap::fill_region_with_object(old_gen_unused);
  2310   // Take the live data from eden and set both top and end in the old gen to
  2311   // eden top.  (Need to set end because reset_after_change() mangles the region
  2312   // from end to virtual_space->high() in debug builds).
  2313   HeapWord* const new_top = eden_space->top();
  2314   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2315                                         absorb_size);
  2316   young_gen->reset_after_change();
  2317   old_space->set_top(new_top);
  2318   old_space->set_end(new_top);
  2319   old_gen->reset_after_change();
  2321   // Update the object start array for the filler object and the data from eden.
  2322   ObjectStartArray* const start_array = old_gen->start_array();
  2323   HeapWord* const start = old_gen_unused.start();
  2324   for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
  2325     start_array->allocate_block(addr);
  2328   // Could update the promoted average here, but it is not typically updated at
  2329   // full GCs and the value to use is unclear.  Something like
  2330   //
  2331   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2333   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2334   return true;
  2337 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2338   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2339     "shouldn't return NULL");
  2340   return ParallelScavengeHeap::gc_task_manager();
  2343 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2344                                       bool maximum_heap_compaction) {
  2345   // Recursively traverse all live objects and mark them
  2346   EventMark m("1 mark object");
  2347   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2349   ParallelScavengeHeap* heap = gc_heap();
  2350   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2351   TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  2352   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2354   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2355   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2358     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2360     GCTaskQueue* q = GCTaskQueue::create();
  2362     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2363     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2364     // We scan the thread roots in parallel
  2365     Threads::create_thread_roots_marking_tasks(q);
  2366     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2367     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2368     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2369     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2370     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2371     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
  2373     if (parallel_gc_threads > 1) {
  2374       for (uint j = 0; j < parallel_gc_threads; j++) {
  2375         q->enqueue(new StealMarkingTask(&terminator));
  2379     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2380     q->enqueue(fin);
  2382     gc_task_manager()->add_list(q);
  2384     fin->wait_for();
  2386     // We have to release the barrier tasks!
  2387     WaitForBarrierGCTask::destroy(fin);
  2390   // Process reference objects found during marking
  2392     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2393     ReferencePolicy *soft_ref_policy;
  2394     if (maximum_heap_compaction) {
  2395       soft_ref_policy = new AlwaysClearPolicy();
  2396     } else {
  2397 #ifdef COMPILER2
  2398       soft_ref_policy = new LRUMaxHeapPolicy();
  2399 #else
  2400       soft_ref_policy = new LRUCurrentHeapPolicy();
  2401 #endif // COMPILER2
  2403     assert(soft_ref_policy != NULL, "No soft reference policy");
  2404     if (ref_processor()->processing_is_mt()) {
  2405       RefProcTaskExecutor task_executor;
  2406       ref_processor()->process_discovered_references(
  2407         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  2408         &follow_stack_closure, &task_executor);
  2409     } else {
  2410       ref_processor()->process_discovered_references(
  2411         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  2412         &follow_stack_closure, NULL);
  2416   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2417   // Follow system dictionary roots and unload classes.
  2418   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2420   // Follow code cache roots.
  2421   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  2422                           purged_class);
  2423   follow_stack(cm); // Flush marking stack.
  2425   // Update subklass/sibling/implementor links of live klasses
  2426   // revisit_klass_stack is used in follow_weak_klass_links().
  2427   follow_weak_klass_links(cm);
  2429   // Visit symbol and interned string tables and delete unmarked oops
  2430   SymbolTable::unlink(is_alive_closure());
  2431   StringTable::unlink(is_alive_closure());
  2433   assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  2434   assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
  2437 // This should be moved to the shared markSweep code!
  2438 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2439 public:
  2440   void do_object(oop p) { ShouldNotReachHere(); }
  2441   bool do_object_b(oop p) { return true; }
  2442 };
  2443 static PSAlwaysTrueClosure always_true;
  2445 void PSParallelCompact::adjust_roots() {
  2446   // Adjust the pointers to reflect the new locations
  2447   EventMark m("3 adjust roots");
  2448   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2450   // General strong roots.
  2451   Universe::oops_do(adjust_root_pointer_closure());
  2452   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  2453   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2454   Threads::oops_do(adjust_root_pointer_closure());
  2455   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2456   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2457   Management::oops_do(adjust_root_pointer_closure());
  2458   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2459   // SO_AllClasses
  2460   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2461   vmSymbols::oops_do(adjust_root_pointer_closure());
  2463   // Now adjust pointers in remaining weak roots.  (All of which should
  2464   // have been cleared if they pointed to non-surviving objects.)
  2465   // Global (weak) JNI handles
  2466   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2468   CodeCache::oops_do(adjust_pointer_closure());
  2469   SymbolTable::oops_do(adjust_root_pointer_closure());
  2470   StringTable::oops_do(adjust_root_pointer_closure());
  2471   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2472   // Roots were visited so references into the young gen in roots
  2473   // may have been scanned.  Process them also.
  2474   // Should the reference processor have a span that excludes
  2475   // young gen objects?
  2476   PSScavenge::reference_processor()->weak_oops_do(
  2477                                               adjust_root_pointer_closure());
  2480 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  2481   EventMark m("4 compact perm");
  2482   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  2483   // trace("4");
  2485   gc_heap()->perm_gen()->start_array()->reset();
  2486   move_and_update(cm, perm_space_id);
  2489 void PSParallelCompact::enqueue_chunk_draining_tasks(GCTaskQueue* q,
  2490                                                      uint parallel_gc_threads) {
  2491   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2493   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  2494   for (unsigned int j = 0; j < task_count; j++) {
  2495     q->enqueue(new DrainStacksCompactionTask());
  2498   // Find all chunks that are available (can be filled immediately) and
  2499   // distribute them to the thread stacks.  The iteration is done in reverse
  2500   // order (high to low) so the chunks will be removed in ascending order.
  2502   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2504   size_t fillable_chunks = 0;   // A count for diagnostic purposes.
  2505   unsigned int which = 0;       // The worker thread number.
  2507   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
  2508     SpaceInfo* const space_info = _space_info + id;
  2509     MutableSpace* const space = space_info->space();
  2510     HeapWord* const new_top = space_info->new_top();
  2512     const size_t beg_chunk = sd.addr_to_chunk_idx(space_info->dense_prefix());
  2513     const size_t end_chunk = sd.addr_to_chunk_idx(sd.chunk_align_up(new_top));
  2514     assert(end_chunk > 0, "perm gen cannot be empty");
  2516     for (size_t cur = end_chunk - 1; cur >= beg_chunk; --cur) {
  2517       if (sd.chunk(cur)->claim_unsafe()) {
  2518         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
  2519         cm->save_for_processing(cur);
  2521         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2522           const size_t count_mod_8 = fillable_chunks & 7;
  2523           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2524           gclog_or_tty->print(" " SIZE_FORMAT_W("7"), cur);
  2525           if (count_mod_8 == 7) gclog_or_tty->cr();
  2528         NOT_PRODUCT(++fillable_chunks;)
  2530         // Assign chunks to threads in round-robin fashion.
  2531         if (++which == task_count) {
  2532           which = 0;
  2538   if (TraceParallelOldGCCompactionPhase) {
  2539     if (Verbose && (fillable_chunks & 7) != 0) gclog_or_tty->cr();
  2540     gclog_or_tty->print_cr("%u initially fillable chunks", fillable_chunks);
  2544 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2546 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2547                                                     uint parallel_gc_threads) {
  2548   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2550   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2552   // Iterate over all the spaces adding tasks for updating
  2553   // chunks in the dense prefix.  Assume that 1 gc thread
  2554   // will work on opening the gaps and the remaining gc threads
  2555   // will work on the dense prefix.
  2556   SpaceId space_id = old_space_id;
  2557   while (space_id != last_space_id) {
  2558     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2559     const MutableSpace* const space = _space_info[space_id].space();
  2561     if (dense_prefix_end == space->bottom()) {
  2562       // There is no dense prefix for this space.
  2563       space_id = next_compaction_space_id(space_id);
  2564       continue;
  2567     // The dense prefix is before this chunk.
  2568     size_t chunk_index_end_dense_prefix =
  2569         sd.addr_to_chunk_idx(dense_prefix_end);
  2570     ChunkData* const dense_prefix_cp = sd.chunk(chunk_index_end_dense_prefix);
  2571     assert(dense_prefix_end == space->end() ||
  2572            dense_prefix_cp->available() ||
  2573            dense_prefix_cp->claimed(),
  2574            "The chunk after the dense prefix should always be ready to fill");
  2576     size_t chunk_index_start = sd.addr_to_chunk_idx(space->bottom());
  2578     // Is there dense prefix work?
  2579     size_t total_dense_prefix_chunks =
  2580       chunk_index_end_dense_prefix - chunk_index_start;
  2581     // How many chunks of the dense prefix should be given to
  2582     // each thread?
  2583     if (total_dense_prefix_chunks > 0) {
  2584       uint tasks_for_dense_prefix = 1;
  2585       if (UseParallelDensePrefixUpdate) {
  2586         if (total_dense_prefix_chunks <=
  2587             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2588           // Don't over partition.  This assumes that
  2589           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2590           // so there are not many chunks to process.
  2591           tasks_for_dense_prefix = parallel_gc_threads;
  2592         } else {
  2593           // Over partition
  2594           tasks_for_dense_prefix = parallel_gc_threads *
  2595             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2598       size_t chunks_per_thread = total_dense_prefix_chunks /
  2599         tasks_for_dense_prefix;
  2600       // Give each thread at least 1 chunk.
  2601       if (chunks_per_thread == 0) {
  2602         chunks_per_thread = 1;
  2605       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2606         if (chunk_index_start >= chunk_index_end_dense_prefix) {
  2607           break;
  2609         // chunk_index_end is not processed
  2610         size_t chunk_index_end = MIN2(chunk_index_start + chunks_per_thread,
  2611                                       chunk_index_end_dense_prefix);
  2612         q->enqueue(new UpdateDensePrefixTask(
  2613                                  space_id,
  2614                                  chunk_index_start,
  2615                                  chunk_index_end));
  2616         chunk_index_start = chunk_index_end;
  2619     // This gets any part of the dense prefix that did not
  2620     // fit evenly.
  2621     if (chunk_index_start < chunk_index_end_dense_prefix) {
  2622       q->enqueue(new UpdateDensePrefixTask(
  2623                                  space_id,
  2624                                  chunk_index_start,
  2625                                  chunk_index_end_dense_prefix));
  2627     space_id = next_compaction_space_id(space_id);
  2628   }  // End tasks for dense prefix
  2631 void PSParallelCompact::enqueue_chunk_stealing_tasks(
  2632                                      GCTaskQueue* q,
  2633                                      ParallelTaskTerminator* terminator_ptr,
  2634                                      uint parallel_gc_threads) {
  2635   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2637   // Once a thread has drained it's stack, it should try to steal chunks from
  2638   // other threads.
  2639   if (parallel_gc_threads > 1) {
  2640     for (uint j = 0; j < parallel_gc_threads; j++) {
  2641       q->enqueue(new StealChunkCompactionTask(terminator_ptr));
  2646 void PSParallelCompact::compact() {
  2647   EventMark m("5 compact");
  2648   // trace("5");
  2649   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2651   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2652   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2653   PSOldGen* old_gen = heap->old_gen();
  2654   old_gen->start_array()->reset();
  2655   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2656   TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
  2657   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2659   GCTaskQueue* q = GCTaskQueue::create();
  2660   enqueue_chunk_draining_tasks(q, parallel_gc_threads);
  2661   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
  2662   enqueue_chunk_stealing_tasks(q, &terminator, parallel_gc_threads);
  2665     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2667     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2668     q->enqueue(fin);
  2670     gc_task_manager()->add_list(q);
  2672     fin->wait_for();
  2674     // We have to release the barrier tasks!
  2675     WaitForBarrierGCTask::destroy(fin);
  2677 #ifdef  ASSERT
  2678     // Verify that all chunks have been processed before the deferred updates.
  2679     // Note that perm_space_id is skipped; this type of verification is not
  2680     // valid until the perm gen is compacted by chunks.
  2681     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2682       verify_complete(SpaceId(id));
  2684 #endif
  2688     // Update the deferred objects, if any.  Any compaction manager can be used.
  2689     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2690     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2691     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2692       update_deferred_objects(cm, SpaceId(id));
  2697 #ifdef  ASSERT
  2698 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2699   // All Chunks between space bottom() to new_top() should be marked as filled
  2700   // and all Chunks between new_top() and top() should be available (i.e.,
  2701   // should have been emptied).
  2702   ParallelCompactData& sd = summary_data();
  2703   SpaceInfo si = _space_info[space_id];
  2704   HeapWord* new_top_addr = sd.chunk_align_up(si.new_top());
  2705   HeapWord* old_top_addr = sd.chunk_align_up(si.space()->top());
  2706   const size_t beg_chunk = sd.addr_to_chunk_idx(si.space()->bottom());
  2707   const size_t new_top_chunk = sd.addr_to_chunk_idx(new_top_addr);
  2708   const size_t old_top_chunk = sd.addr_to_chunk_idx(old_top_addr);
  2710   bool issued_a_warning = false;
  2712   size_t cur_chunk;
  2713   for (cur_chunk = beg_chunk; cur_chunk < new_top_chunk; ++cur_chunk) {
  2714     const ChunkData* const c = sd.chunk(cur_chunk);
  2715     if (!c->completed()) {
  2716       warning("chunk " SIZE_FORMAT " not filled:  "
  2717               "destination_count=" SIZE_FORMAT,
  2718               cur_chunk, c->destination_count());
  2719       issued_a_warning = true;
  2723   for (cur_chunk = new_top_chunk; cur_chunk < old_top_chunk; ++cur_chunk) {
  2724     const ChunkData* const c = sd.chunk(cur_chunk);
  2725     if (!c->available()) {
  2726       warning("chunk " SIZE_FORMAT " not empty:   "
  2727               "destination_count=" SIZE_FORMAT,
  2728               cur_chunk, c->destination_count());
  2729       issued_a_warning = true;
  2733   if (issued_a_warning) {
  2734     print_chunk_ranges();
  2737 #endif  // #ifdef ASSERT
  2739 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  2740   EventMark m("5 compact serial");
  2741   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
  2743   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2744   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2746   PSYoungGen* young_gen = heap->young_gen();
  2747   PSOldGen* old_gen = heap->old_gen();
  2749   old_gen->start_array()->reset();
  2750   old_gen->move_and_update(cm);
  2751   young_gen->move_and_update(cm);
  2754 void PSParallelCompact::follow_root(ParCompactionManager* cm, oop* p) {
  2755   assert(!Universe::heap()->is_in_reserved(p),
  2756          "roots shouldn't be things within the heap");
  2757 #ifdef VALIDATE_MARK_SWEEP
  2758   if (ValidateMarkSweep) {
  2759     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
  2760     _root_refs_stack->push(p);
  2762 #endif
  2763   oop m = *p;
  2764   if (m != NULL && mark_bitmap()->is_unmarked(m)) {
  2765     if (mark_obj(m)) {
  2766       m->follow_contents(cm);  // Follow contents of the marked object
  2769   follow_stack(cm);
  2772 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  2773   while(!cm->overflow_stack()->is_empty()) {
  2774     oop obj = cm->overflow_stack()->pop();
  2775     obj->follow_contents(cm);
  2778   oop obj;
  2779   // obj is a reference!!!
  2780   while (cm->marking_stack()->pop_local(obj)) {
  2781     // It would be nice to assert about the type of objects we might
  2782     // pop, but they can come from anywhere, unfortunately.
  2783     obj->follow_contents(cm);
  2787 void
  2788 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  2789   // All klasses on the revisit stack are marked at this point.
  2790   // Update and follow all subklass, sibling and implementor links.
  2791   for (uint i = 0; i < ParallelGCThreads+1; i++) {
  2792     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2793     KeepAliveClosure keep_alive_closure(cm);
  2794     for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
  2795       cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
  2796         is_alive_closure(),
  2797         &keep_alive_closure);
  2799     follow_stack(cm);
  2803 void
  2804 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  2805   cm->revisit_klass_stack()->push(k);
  2808 #ifdef VALIDATE_MARK_SWEEP
  2810 void PSParallelCompact::track_adjusted_pointer(oop* p, oop newobj, bool isroot) {
  2811   if (!ValidateMarkSweep)
  2812     return;
  2814   if (!isroot) {
  2815     if (_pointer_tracking) {
  2816       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2817       _adjusted_pointers->remove(p);
  2819   } else {
  2820     ptrdiff_t index = _root_refs_stack->find(p);
  2821     if (index != -1) {
  2822       int l = _root_refs_stack->length();
  2823       if (l > 0 && l - 1 != index) {
  2824         oop* last = _root_refs_stack->pop();
  2825         assert(last != p, "should be different");
  2826         _root_refs_stack->at_put(index, last);
  2827       } else {
  2828         _root_refs_stack->remove(p);
  2835 void PSParallelCompact::check_adjust_pointer(oop* p) {
  2836   _adjusted_pointers->push(p);
  2840 class AdjusterTracker: public OopClosure {
  2841  public:
  2842   AdjusterTracker() {};
  2843   void do_oop(oop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2844 };
  2847 void PSParallelCompact::track_interior_pointers(oop obj) {
  2848   if (ValidateMarkSweep) {
  2849     _adjusted_pointers->clear();
  2850     _pointer_tracking = true;
  2852     AdjusterTracker checker;
  2853     obj->oop_iterate(&checker);
  2858 void PSParallelCompact::check_interior_pointers() {
  2859   if (ValidateMarkSweep) {
  2860     _pointer_tracking = false;
  2861     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2866 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  2867   if (ValidateMarkSweep) {
  2868     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2869     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  2874 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2875   if (ValidateMarkSweep) {
  2876     _live_oops->push(p);
  2877     _live_oops_size->push(size);
  2878     _live_oops_index++;
  2882 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2883   if (ValidateMarkSweep) {
  2884     oop obj = _live_oops->at((int)_live_oops_index);
  2885     guarantee(obj == p, "should be the same object");
  2886     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2887     _live_oops_index++;
  2891 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2892                                   HeapWord* compaction_top) {
  2893   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2894          "should be moved to forwarded location");
  2895   if (ValidateMarkSweep) {
  2896     PSParallelCompact::validate_live_oop(oop(q), size);
  2897     _live_oops_moved_to->push(oop(compaction_top));
  2899   if (RecordMarkSweepCompaction) {
  2900     _cur_gc_live_oops->push(q);
  2901     _cur_gc_live_oops_moved_to->push(compaction_top);
  2902     _cur_gc_live_oops_size->push(size);
  2907 void PSParallelCompact::compaction_complete() {
  2908   if (RecordMarkSweepCompaction) {
  2909     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2910     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2911     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2913     _cur_gc_live_oops           = _last_gc_live_oops;
  2914     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2915     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2916     _last_gc_live_oops          = _tmp_live_oops;
  2917     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2918     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2923 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2924   if (!RecordMarkSweepCompaction) {
  2925     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2926     return;
  2929   if (_last_gc_live_oops == NULL) {
  2930     tty->print_cr("No compaction information gathered yet");
  2931     return;
  2934   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2935     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2936     size_t    sz      = _last_gc_live_oops_size->at(i);
  2937     if (old_oop <= q && q < (old_oop + sz)) {
  2938       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2939       size_t offset = (q - old_oop);
  2940       tty->print_cr("Address " PTR_FORMAT, q);
  2941       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2942       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2943       return;
  2947   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2949 #endif //VALIDATE_MARK_SWEEP
  2951 void PSParallelCompact::adjust_pointer(oop* p, bool isroot) {
  2952   oop obj = *p;
  2953   VALIDATE_MARK_SWEEP_ONLY(oop saved_new_pointer = NULL);
  2954   if (obj != NULL) {
  2955     oop new_pointer = (oop) summary_data().calc_new_pointer(obj);
  2956     assert(new_pointer != NULL ||                     // is forwarding ptr?
  2957            obj->is_shared(),                          // never forwarded?
  2958            "should have a new location");
  2959     // Just always do the update unconditionally?
  2960     if (new_pointer != NULL) {
  2961       *p = new_pointer;
  2962       assert(Universe::heap()->is_in_reserved(new_pointer),
  2963              "should be in object space");
  2964       VALIDATE_MARK_SWEEP_ONLY(saved_new_pointer = new_pointer);
  2967   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, saved_new_pointer, isroot));
  2970 // Update interior oops in the ranges of chunks [beg_chunk, end_chunk).
  2971 void
  2972 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2973                                                        SpaceId space_id,
  2974                                                        size_t beg_chunk,
  2975                                                        size_t end_chunk) {
  2976   ParallelCompactData& sd = summary_data();
  2977   ParMarkBitMap* const mbm = mark_bitmap();
  2979   HeapWord* beg_addr = sd.chunk_to_addr(beg_chunk);
  2980   HeapWord* const end_addr = sd.chunk_to_addr(end_chunk);
  2981   assert(beg_chunk <= end_chunk, "bad chunk range");
  2982   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2984 #ifdef  ASSERT
  2985   // Claim the chunks to avoid triggering an assert when they are marked as
  2986   // filled.
  2987   for (size_t claim_chunk = beg_chunk; claim_chunk < end_chunk; ++claim_chunk) {
  2988     assert(sd.chunk(claim_chunk)->claim_unsafe(), "claim() failed");
  2990 #endif  // #ifdef ASSERT
  2992   if (beg_addr != space(space_id)->bottom()) {
  2993     // Find the first live object or block of dead space that *starts* in this
  2994     // range of chunks.  If a partial object crosses onto the chunk, skip it; it
  2995     // will be marked for 'deferred update' when the object head is processed.
  2996     // If dead space crosses onto the chunk, it is also skipped; it will be
  2997     // filled when the prior chunk is processed.  If neither of those apply, the
  2998     // first word in the chunk is the start of a live object or dead space.
  2999     assert(beg_addr > space(space_id)->bottom(), "sanity");
  3000     const ChunkData* const cp = sd.chunk(beg_chunk);
  3001     if (cp->partial_obj_size() != 0) {
  3002       beg_addr = sd.partial_obj_end(beg_chunk);
  3003     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  3004       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  3008   if (beg_addr < end_addr) {
  3009     // A live object or block of dead space starts in this range of Chunks.
  3010      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  3012     // Create closures and iterate.
  3013     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  3014     FillClosure fill_closure(cm, space_id);
  3015     ParMarkBitMap::IterationStatus status;
  3016     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  3017                           dense_prefix_end);
  3018     if (status == ParMarkBitMap::incomplete) {
  3019       update_closure.do_addr(update_closure.source());
  3023   // Mark the chunks as filled.
  3024   ChunkData* const beg_cp = sd.chunk(beg_chunk);
  3025   ChunkData* const end_cp = sd.chunk(end_chunk);
  3026   for (ChunkData* cp = beg_cp; cp < end_cp; ++cp) {
  3027     cp->set_completed();
  3031 // Return the SpaceId for the space containing addr.  If addr is not in the
  3032 // heap, last_space_id is returned.  In debug mode it expects the address to be
  3033 // in the heap and asserts such.
  3034 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  3035   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  3037   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  3038     if (_space_info[id].space()->contains(addr)) {
  3039       return SpaceId(id);
  3043   assert(false, "no space contains the addr");
  3044   return last_space_id;
  3047 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  3048                                                 SpaceId id) {
  3049   assert(id < last_space_id, "bad space id");
  3051   ParallelCompactData& sd = summary_data();
  3052   const SpaceInfo* const space_info = _space_info + id;
  3053   ObjectStartArray* const start_array = space_info->start_array();
  3055   const MutableSpace* const space = space_info->space();
  3056   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  3057   HeapWord* const beg_addr = space_info->dense_prefix();
  3058   HeapWord* const end_addr = sd.chunk_align_up(space_info->new_top());
  3060   const ChunkData* const beg_chunk = sd.addr_to_chunk_ptr(beg_addr);
  3061   const ChunkData* const end_chunk = sd.addr_to_chunk_ptr(end_addr);
  3062   const ChunkData* cur_chunk;
  3063   for (cur_chunk = beg_chunk; cur_chunk < end_chunk; ++cur_chunk) {
  3064     HeapWord* const addr = cur_chunk->deferred_obj_addr();
  3065     if (addr != NULL) {
  3066       if (start_array != NULL) {
  3067         start_array->allocate_block(addr);
  3069       oop(addr)->update_contents(cm);
  3070       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  3075 // Skip over count live words starting from beg, and return the address of the
  3076 // next live word.  Unless marked, the word corresponding to beg is assumed to
  3077 // be dead.  Callers must either ensure beg does not correspond to the middle of
  3078 // an object, or account for those live words in some other way.  Callers must
  3079 // also ensure that there are enough live words in the range [beg, end) to skip.
  3080 HeapWord*
  3081 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  3083   assert(count > 0, "sanity");
  3085   ParMarkBitMap* m = mark_bitmap();
  3086   idx_t bits_to_skip = m->words_to_bits(count);
  3087   idx_t cur_beg = m->addr_to_bit(beg);
  3088   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  3090   do {
  3091     cur_beg = m->find_obj_beg(cur_beg, search_end);
  3092     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  3093     const size_t obj_bits = cur_end - cur_beg + 1;
  3094     if (obj_bits > bits_to_skip) {
  3095       return m->bit_to_addr(cur_beg + bits_to_skip);
  3097     bits_to_skip -= obj_bits;
  3098     cur_beg = cur_end + 1;
  3099   } while (bits_to_skip > 0);
  3101   // Skipping the desired number of words landed just past the end of an object.
  3102   // Find the start of the next object.
  3103   cur_beg = m->find_obj_beg(cur_beg, search_end);
  3104   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  3105   return m->bit_to_addr(cur_beg);
  3108 HeapWord*
  3109 PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  3110                                  size_t src_chunk_idx)
  3112   ParMarkBitMap* const bitmap = mark_bitmap();
  3113   const ParallelCompactData& sd = summary_data();
  3114   const size_t ChunkSize = ParallelCompactData::ChunkSize;
  3116   assert(sd.is_chunk_aligned(dest_addr), "not aligned");
  3118   const ChunkData* const src_chunk_ptr = sd.chunk(src_chunk_idx);
  3119   const size_t partial_obj_size = src_chunk_ptr->partial_obj_size();
  3120   HeapWord* const src_chunk_destination = src_chunk_ptr->destination();
  3122   assert(dest_addr >= src_chunk_destination, "wrong src chunk");
  3123   assert(src_chunk_ptr->data_size() > 0, "src chunk cannot be empty");
  3125   HeapWord* const src_chunk_beg = sd.chunk_to_addr(src_chunk_idx);
  3126   HeapWord* const src_chunk_end = src_chunk_beg + ChunkSize;
  3128   HeapWord* addr = src_chunk_beg;
  3129   if (dest_addr == src_chunk_destination) {
  3130     // Return the first live word in the source chunk.
  3131     if (partial_obj_size == 0) {
  3132       addr = bitmap->find_obj_beg(addr, src_chunk_end);
  3133       assert(addr < src_chunk_end, "no objects start in src chunk");
  3135     return addr;
  3138   // Must skip some live data.
  3139   size_t words_to_skip = dest_addr - src_chunk_destination;
  3140   assert(src_chunk_ptr->data_size() > words_to_skip, "wrong src chunk");
  3142   if (partial_obj_size >= words_to_skip) {
  3143     // All the live words to skip are part of the partial object.
  3144     addr += words_to_skip;
  3145     if (partial_obj_size == words_to_skip) {
  3146       // Find the first live word past the partial object.
  3147       addr = bitmap->find_obj_beg(addr, src_chunk_end);
  3148       assert(addr < src_chunk_end, "wrong src chunk");
  3150     return addr;
  3153   // Skip over the partial object (if any).
  3154   if (partial_obj_size != 0) {
  3155     words_to_skip -= partial_obj_size;
  3156     addr += partial_obj_size;
  3159   // Skip over live words due to objects that start in the chunk.
  3160   addr = skip_live_words(addr, src_chunk_end, words_to_skip);
  3161   assert(addr < src_chunk_end, "wrong src chunk");
  3162   return addr;
  3165 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  3166                                                      size_t beg_chunk,
  3167                                                      HeapWord* end_addr)
  3169   ParallelCompactData& sd = summary_data();
  3170   ChunkData* const beg = sd.chunk(beg_chunk);
  3171   HeapWord* const end_addr_aligned_up = sd.chunk_align_up(end_addr);
  3172   ChunkData* const end = sd.addr_to_chunk_ptr(end_addr_aligned_up);
  3173   size_t cur_idx = beg_chunk;
  3174   for (ChunkData* cur = beg; cur < end; ++cur, ++cur_idx) {
  3175     assert(cur->data_size() > 0, "chunk must have live data");
  3176     cur->decrement_destination_count();
  3177     if (cur_idx <= cur->source_chunk() && cur->available() && cur->claim()) {
  3178       cm->save_for_processing(cur_idx);
  3183 size_t PSParallelCompact::next_src_chunk(MoveAndUpdateClosure& closure,
  3184                                          SpaceId& src_space_id,
  3185                                          HeapWord*& src_space_top,
  3186                                          HeapWord* end_addr)
  3188   typedef ParallelCompactData::ChunkData ChunkData;
  3190   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3191   const size_t chunk_size = ParallelCompactData::ChunkSize;
  3193   size_t src_chunk_idx = 0;
  3195   // Skip empty chunks (if any) up to the top of the space.
  3196   HeapWord* const src_aligned_up = sd.chunk_align_up(end_addr);
  3197   ChunkData* src_chunk_ptr = sd.addr_to_chunk_ptr(src_aligned_up);
  3198   HeapWord* const top_aligned_up = sd.chunk_align_up(src_space_top);
  3199   const ChunkData* const top_chunk_ptr = sd.addr_to_chunk_ptr(top_aligned_up);
  3200   while (src_chunk_ptr < top_chunk_ptr && src_chunk_ptr->data_size() == 0) {
  3201     ++src_chunk_ptr;
  3204   if (src_chunk_ptr < top_chunk_ptr) {
  3205     // The next source chunk is in the current space.  Update src_chunk_idx and
  3206     // the source address to match src_chunk_ptr.
  3207     src_chunk_idx = sd.chunk(src_chunk_ptr);
  3208     HeapWord* const src_chunk_addr = sd.chunk_to_addr(src_chunk_idx);
  3209     if (src_chunk_addr > closure.source()) {
  3210       closure.set_source(src_chunk_addr);
  3212     return src_chunk_idx;
  3215   // Switch to a new source space and find the first non-empty chunk.
  3216   unsigned int space_id = src_space_id + 1;
  3217   assert(space_id < last_space_id, "not enough spaces");
  3219   HeapWord* const destination = closure.destination();
  3221   do {
  3222     MutableSpace* space = _space_info[space_id].space();
  3223     HeapWord* const bottom = space->bottom();
  3224     const ChunkData* const bottom_cp = sd.addr_to_chunk_ptr(bottom);
  3226     // Iterate over the spaces that do not compact into themselves.
  3227     if (bottom_cp->destination() != bottom) {
  3228       HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
  3229       const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
  3231       for (const ChunkData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3232         if (src_cp->live_obj_size() > 0) {
  3233           // Found it.
  3234           assert(src_cp->destination() == destination,
  3235                  "first live obj in the space must match the destination");
  3236           assert(src_cp->partial_obj_size() == 0,
  3237                  "a space cannot begin with a partial obj");
  3239           src_space_id = SpaceId(space_id);
  3240           src_space_top = space->top();
  3241           const size_t src_chunk_idx = sd.chunk(src_cp);
  3242           closure.set_source(sd.chunk_to_addr(src_chunk_idx));
  3243           return src_chunk_idx;
  3244         } else {
  3245           assert(src_cp->data_size() == 0, "sanity");
  3249   } while (++space_id < last_space_id);
  3251   assert(false, "no source chunk was found");
  3252   return 0;
  3255 void PSParallelCompact::fill_chunk(ParCompactionManager* cm, size_t chunk_idx)
  3257   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3258   const size_t ChunkSize = ParallelCompactData::ChunkSize;
  3259   ParMarkBitMap* const bitmap = mark_bitmap();
  3260   ParallelCompactData& sd = summary_data();
  3261   ChunkData* const chunk_ptr = sd.chunk(chunk_idx);
  3263   // Get the items needed to construct the closure.
  3264   HeapWord* dest_addr = sd.chunk_to_addr(chunk_idx);
  3265   SpaceId dest_space_id = space_id(dest_addr);
  3266   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3267   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3268   assert(dest_addr < new_top, "sanity");
  3269   const size_t words = MIN2(pointer_delta(new_top, dest_addr), ChunkSize);
  3271   // Get the source chunk and related info.
  3272   size_t src_chunk_idx = chunk_ptr->source_chunk();
  3273   SpaceId src_space_id = space_id(sd.chunk_to_addr(src_chunk_idx));
  3274   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3276   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3277   closure.set_source(first_src_addr(dest_addr, src_chunk_idx));
  3279   // Adjust src_chunk_idx to prepare for decrementing destination counts (the
  3280   // destination count is not decremented when a chunk is copied to itself).
  3281   if (src_chunk_idx == chunk_idx) {
  3282     src_chunk_idx += 1;
  3285   if (bitmap->is_unmarked(closure.source())) {
  3286     // The first source word is in the middle of an object; copy the remainder
  3287     // of the object or as much as will fit.  The fact that pointer updates were
  3288     // deferred will be noted when the object header is processed.
  3289     HeapWord* const old_src_addr = closure.source();
  3290     closure.copy_partial_obj();
  3291     if (closure.is_full()) {
  3292       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3293       chunk_ptr->set_deferred_obj_addr(NULL);
  3294       chunk_ptr->set_completed();
  3295       return;
  3298     HeapWord* const end_addr = sd.chunk_align_down(closure.source());
  3299     if (sd.chunk_align_down(old_src_addr) != end_addr) {
  3300       // The partial object was copied from more than one source chunk.
  3301       decrement_destination_counts(cm, src_chunk_idx, end_addr);
  3303       // Move to the next source chunk, possibly switching spaces as well.  All
  3304       // args except end_addr may be modified.
  3305       src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
  3306                                      end_addr);
  3310   do {
  3311     HeapWord* const cur_addr = closure.source();
  3312     HeapWord* const end_addr = MIN2(sd.chunk_align_up(cur_addr + 1),
  3313                                     src_space_top);
  3314     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3316     if (status == ParMarkBitMap::incomplete) {
  3317       // The last obj that starts in the source chunk does not end in the chunk.
  3318       assert(closure.source() < end_addr, "sanity")
  3319       HeapWord* const obj_beg = closure.source();
  3320       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3321                                        src_space_top);
  3322       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3323       if (obj_end < range_end) {
  3324         // The end was found; the entire object will fit.
  3325         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3326         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3327       } else {
  3328         // The end was not found; the object will not fit.
  3329         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3330         status = ParMarkBitMap::would_overflow;
  3334     if (status == ParMarkBitMap::would_overflow) {
  3335       // The last object did not fit.  Note that interior oop updates were
  3336       // deferred, then copy enough of the object to fill the chunk.
  3337       chunk_ptr->set_deferred_obj_addr(closure.destination());
  3338       status = closure.copy_until_full(); // copies from closure.source()
  3340       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3341       chunk_ptr->set_completed();
  3342       return;
  3345     if (status == ParMarkBitMap::full) {
  3346       decrement_destination_counts(cm, src_chunk_idx, closure.source());
  3347       chunk_ptr->set_deferred_obj_addr(NULL);
  3348       chunk_ptr->set_completed();
  3349       return;
  3352     decrement_destination_counts(cm, src_chunk_idx, end_addr);
  3354     // Move to the next source chunk, possibly switching spaces as well.  All
  3355     // args except end_addr may be modified.
  3356     src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
  3357                                    end_addr);
  3358   } while (true);
  3361 void
  3362 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3363   const MutableSpace* sp = space(space_id);
  3364   if (sp->is_empty()) {
  3365     return;
  3368   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3369   ParMarkBitMap* const bitmap = mark_bitmap();
  3370   HeapWord* const dp_addr = dense_prefix(space_id);
  3371   HeapWord* beg_addr = sp->bottom();
  3372   HeapWord* end_addr = sp->top();
  3374 #ifdef ASSERT
  3375   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3376   if (cm->should_verify_only()) {
  3377     VerifyUpdateClosure verify_update(cm, sp);
  3378     bitmap->iterate(&verify_update, beg_addr, end_addr);
  3379     return;
  3382   if (cm->should_reset_only()) {
  3383     ResetObjectsClosure reset_objects(cm);
  3384     bitmap->iterate(&reset_objects, beg_addr, end_addr);
  3385     return;
  3387 #endif
  3389   const size_t beg_chunk = sd.addr_to_chunk_idx(beg_addr);
  3390   const size_t dp_chunk = sd.addr_to_chunk_idx(dp_addr);
  3391   if (beg_chunk < dp_chunk) {
  3392     update_and_deadwood_in_dense_prefix(cm, space_id, beg_chunk, dp_chunk);
  3395   // The destination of the first live object that starts in the chunk is one
  3396   // past the end of the partial object entering the chunk (if any).
  3397   HeapWord* const dest_addr = sd.partial_obj_end(dp_chunk);
  3398   HeapWord* const new_top = _space_info[space_id].new_top();
  3399   assert(new_top >= dest_addr, "bad new_top value");
  3400   const size_t words = pointer_delta(new_top, dest_addr);
  3402   if (words > 0) {
  3403     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3404     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3406     ParMarkBitMap::IterationStatus status;
  3407     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3408     assert(status == ParMarkBitMap::full, "iteration not complete");
  3409     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3410            "live objects skipped because closure is full");
  3414 jlong PSParallelCompact::millis_since_last_gc() {
  3415   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  3416   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3417   if (ret_val < 0) {
  3418     NOT_PRODUCT(warning("time warp: %d", ret_val);)
  3419     return 0;
  3421   return ret_val;
  3424 void PSParallelCompact::reset_millis_since_last_gc() {
  3425   _time_of_last_gc = os::javaTimeMillis();
  3428 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3430   if (source() != destination()) {
  3431     assert(source() > destination(), "must copy to the left");
  3432     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3434   update_state(words_remaining());
  3435   assert(is_full(), "sanity");
  3436   return ParMarkBitMap::full;
  3439 void MoveAndUpdateClosure::copy_partial_obj()
  3441   size_t words = words_remaining();
  3443   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3444   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3445   if (end_addr < range_end) {
  3446     words = bitmap()->obj_size(source(), end_addr);
  3449   // This test is necessary; if omitted, the pointer updates to a partial object
  3450   // that crosses the dense prefix boundary could be overwritten.
  3451   if (source() != destination()) {
  3452     assert(source() > destination(), "must copy to the left");
  3453     Copy::aligned_conjoint_words(source(), destination(), words);
  3455   update_state(words);
  3458 ParMarkBitMapClosure::IterationStatus
  3459 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3460   assert(destination() != NULL, "sanity");
  3461   assert(bitmap()->obj_size(addr) == words, "bad size");
  3463   _source = addr;
  3464   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3465          destination(), "wrong destination");
  3467   if (words > words_remaining()) {
  3468     return ParMarkBitMap::would_overflow;
  3471   // The start_array must be updated even if the object is not moving.
  3472   if (_start_array != NULL) {
  3473     _start_array->allocate_block(destination());
  3476   if (destination() != source()) {
  3477     assert(destination() < source(), "must copy to the left");
  3478     Copy::aligned_conjoint_words(source(), destination(), words);
  3481   oop moved_oop = (oop) destination();
  3482   moved_oop->update_contents(compaction_manager());
  3483   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3485   update_state(words);
  3486   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3487   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3490 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3491                                      ParCompactionManager* cm,
  3492                                      PSParallelCompact::SpaceId space_id) :
  3493   ParMarkBitMapClosure(mbm, cm),
  3494   _space_id(space_id),
  3495   _start_array(PSParallelCompact::start_array(space_id))
  3499 // Updates the references in the object to their new values.
  3500 ParMarkBitMapClosure::IterationStatus
  3501 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3502   do_addr(addr);
  3503   return ParMarkBitMap::incomplete;
  3506 BitBlockUpdateClosure::BitBlockUpdateClosure(ParMarkBitMap* mbm,
  3507                         ParCompactionManager* cm,
  3508                         size_t chunk_index) :
  3509                         ParMarkBitMapClosure(mbm, cm),
  3510                         _live_data_left(0),
  3511                         _cur_block(0) {
  3512   _chunk_start =
  3513     PSParallelCompact::summary_data().chunk_to_addr(chunk_index);
  3514   _chunk_end =
  3515     PSParallelCompact::summary_data().chunk_to_addr(chunk_index) +
  3516                  ParallelCompactData::ChunkSize;
  3517   _chunk_index = chunk_index;
  3518   _cur_block =
  3519     PSParallelCompact::summary_data().addr_to_block_idx(_chunk_start);
  3522 bool BitBlockUpdateClosure::chunk_contains_cur_block() {
  3523   return ParallelCompactData::chunk_contains_block(_chunk_index, _cur_block);
  3526 void BitBlockUpdateClosure::reset_chunk(size_t chunk_index) {
  3527   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(7);)
  3528   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3529   _chunk_index = chunk_index;
  3530   _live_data_left = 0;
  3531   _chunk_start = sd.chunk_to_addr(chunk_index);
  3532   _chunk_end = sd.chunk_to_addr(chunk_index) + ParallelCompactData::ChunkSize;
  3534   // The first block in this chunk
  3535   size_t first_block =  sd.addr_to_block_idx(_chunk_start);
  3536   size_t partial_live_size = sd.chunk(chunk_index)->partial_obj_size();
  3538   // Set the offset to 0. By definition it should have that value
  3539   // but it may have been written while processing an earlier chunk.
  3540   if (partial_live_size == 0) {
  3541     // No live object extends onto the chunk.  The first bit
  3542     // in the bit map for the first chunk must be a start bit.
  3543     // Although there may not be any marked bits, it is safe
  3544     // to set it as a start bit.
  3545     sd.block(first_block)->set_start_bit_offset(0);
  3546     sd.block(first_block)->set_first_is_start_bit(true);
  3547   } else if (sd.partial_obj_ends_in_block(first_block)) {
  3548     sd.block(first_block)->set_end_bit_offset(0);
  3549     sd.block(first_block)->set_first_is_start_bit(false);
  3550   } else {
  3551     // The partial object extends beyond the first block.
  3552     // There is no object starting in the first block
  3553     // so the offset and bit parity are not needed.
  3554     // Set the the bit parity to start bit so assertions
  3555     // work when not bit is found.
  3556     sd.block(first_block)->set_end_bit_offset(0);
  3557     sd.block(first_block)->set_first_is_start_bit(false);
  3559   _cur_block = first_block;
  3560 #ifdef ASSERT
  3561   if (sd.block(first_block)->first_is_start_bit()) {
  3562     assert(!sd.partial_obj_ends_in_block(first_block),
  3563       "Partial object cannot end in first block");
  3566   if (PrintGCDetails && Verbose) {
  3567     if (partial_live_size == 1) {
  3568     gclog_or_tty->print_cr("first_block " PTR_FORMAT
  3569       " _offset " PTR_FORMAT
  3570       " _first_is_start_bit %d",
  3571       first_block,
  3572       sd.block(first_block)->raw_offset(),
  3573       sd.block(first_block)->first_is_start_bit());
  3576 #endif
  3577   DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(17);)
  3580 // This method is called when a object has been found (both beginning
  3581 // and end of the object) in the range of iteration.  This method is
  3582 // calculating the words of live data to the left of a block.  That live
  3583 // data includes any object starting to the left of the block (i.e.,
  3584 // the live-data-to-the-left of block AAA will include the full size
  3585 // of any object entering AAA).
  3587 ParMarkBitMapClosure::IterationStatus
  3588 BitBlockUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3589   // add the size to the block data.
  3590   HeapWord* obj = addr;
  3591   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3593   assert(bitmap()->obj_size(obj) == words, "bad size");
  3594   assert(_chunk_start <= obj, "object is not in chunk");
  3595   assert(obj + words <= _chunk_end, "object is not in chunk");
  3597   // Update the live data to the left
  3598   size_t prev_live_data_left = _live_data_left;
  3599   _live_data_left = _live_data_left + words;
  3601   // Is this object in the current block.
  3602   size_t block_of_obj = sd.addr_to_block_idx(obj);
  3603   size_t block_of_obj_last = sd.addr_to_block_idx(obj + words - 1);
  3604   HeapWord* block_of_obj_last_addr = sd.block_to_addr(block_of_obj_last);
  3605   if (_cur_block < block_of_obj) {
  3607     //
  3608     // No object crossed the block boundary and this object was found
  3609     // on the other side of the block boundary.  Update the offset for
  3610     // the new block with the data size that does not include this object.
  3611     //
  3612     // The first bit in block_of_obj is a start bit except in the
  3613     // case where the partial object for the chunk extends into
  3614     // this block.
  3615     if (sd.partial_obj_ends_in_block(block_of_obj)) {
  3616       sd.block(block_of_obj)->set_end_bit_offset(prev_live_data_left);
  3617     } else {
  3618       sd.block(block_of_obj)->set_start_bit_offset(prev_live_data_left);
  3621     // Does this object pass beyond the its block?
  3622     if (block_of_obj < block_of_obj_last) {
  3623       // Object crosses block boundary.  Two blocks need to be udpated:
  3624       //        the current block where the object started
  3625       //        the block where the object ends
  3626       //
  3627       // The offset for blocks with no objects starting in them
  3628       // (e.g., blocks between _cur_block and  block_of_obj_last)
  3629       // should not be needed.
  3630       // Note that block_of_obj_last may be in another chunk.  If so,
  3631       // it should be overwritten later.  This is a problem (writting
  3632       // into a block in a later chunk) for parallel execution.
  3633       assert(obj < block_of_obj_last_addr,
  3634         "Object should start in previous block");
  3636       // obj is crossing into block_of_obj_last so the first bit
  3637       // is and end bit.
  3638       sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
  3640       _cur_block = block_of_obj_last;
  3641     } else {
  3642       // _first_is_start_bit has already been set correctly
  3643       // in the if-then-else above so don't reset it here.
  3644       _cur_block = block_of_obj;
  3646   } else {
  3647     // The current block only changes if the object extends beyound
  3648     // the block it starts in.
  3649     //
  3650     // The object starts in the current block.
  3651     // Does this object pass beyond the end of it?
  3652     if (block_of_obj < block_of_obj_last) {
  3653       // Object crosses block boundary.
  3654       // See note above on possible blocks between block_of_obj and
  3655       // block_of_obj_last
  3656       assert(obj < block_of_obj_last_addr,
  3657         "Object should start in previous block");
  3659       sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
  3661       _cur_block = block_of_obj_last;
  3665   // Return incomplete if there are more blocks to be done.
  3666   if (chunk_contains_cur_block()) {
  3667     return ParMarkBitMap::incomplete;
  3669   return ParMarkBitMap::complete;
  3672 // Verify the new location using the forwarding pointer
  3673 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
  3674 // to the initial value.
  3675 ParMarkBitMapClosure::IterationStatus
  3676 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3677   // The second arg (words) is not used.
  3678   oop obj = (oop) addr;
  3679   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  3680   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  3681   if (forwarding_ptr == NULL) {
  3682     // The object is dead or not moving.
  3683     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
  3684            "Object liveness is wrong.");
  3685     return ParMarkBitMap::incomplete;
  3687   assert(UseParallelOldGCDensePrefix ||
  3688          (HeapMaximumCompactionInterval > 1) ||
  3689          (MarkSweepAlwaysCompactCount > 1) ||
  3690          (forwarding_ptr == new_pointer),
  3691     "Calculation of new location is incorrect");
  3692   return ParMarkBitMap::incomplete;
  3695 // Reset objects modified for debug checking.
  3696 ParMarkBitMapClosure::IterationStatus
  3697 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  3698   // The second arg (words) is not used.
  3699   oop obj = (oop) addr;
  3700   obj->init_mark();
  3701   return ParMarkBitMap::incomplete;
  3704 // Prepare for compaction.  This method is executed once
  3705 // (i.e., by a single thread) before compaction.
  3706 // Save the updated location of the intArrayKlassObj for
  3707 // filling holes in the dense prefix.
  3708 void PSParallelCompact::compact_prologue() {
  3709   _updated_int_array_klass_obj = (klassOop)
  3710     summary_data().calc_new_pointer(Universe::intArrayKlassObj());
  3713 // The initial implementation of this method created a field
  3714 // _next_compaction_space_id in SpaceInfo and initialized
  3715 // that field in SpaceInfo::initialize_space_info().  That
  3716 // required that _next_compaction_space_id be declared a
  3717 // SpaceId in SpaceInfo and that would have required that
  3718 // either SpaceId be declared in a separate class or that
  3719 // it be declared in SpaceInfo.  It didn't seem consistent
  3720 // to declare it in SpaceInfo (didn't really fit logically).
  3721 // Alternatively, defining a separate class to define SpaceId
  3722 // seem excessive.  This implementation is simple and localizes
  3723 // the knowledge.
  3725 PSParallelCompact::SpaceId
  3726 PSParallelCompact::next_compaction_space_id(SpaceId id) {
  3727   assert(id < last_space_id, "id out of range");
  3728   switch (id) {
  3729     case perm_space_id :
  3730       return last_space_id;
  3731     case old_space_id :
  3732       return eden_space_id;
  3733     case eden_space_id :
  3734       return from_space_id;
  3735     case from_space_id :
  3736       return to_space_id;
  3737     case to_space_id :
  3738       return last_space_id;
  3739     default:
  3740       assert(false, "Bad space id");
  3741       return last_space_id;
  3745 // Here temporarily for debugging
  3746 #ifdef ASSERT
  3747   size_t ParallelCompactData::block_idx(BlockData* block) {
  3748     size_t index = pointer_delta(block,
  3749       PSParallelCompact::summary_data()._block_data, sizeof(BlockData));
  3750     return index;
  3752 #endif

mercurial