src/cpu/x86/vm/templateTable_x86_64.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4318
cd3d6a6b95d9
child 4542
db9981fd3124
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    39 #ifndef CC_INTERP
    41 #define __ _masm->
    43 // Platform-dependent initialization
    45 void TemplateTable::pd_initialize() {
    46   // No amd64 specific initialization
    47 }
    49 // Address computation: local variables
    51 static inline Address iaddress(int n) {
    52   return Address(r14, Interpreter::local_offset_in_bytes(n));
    53 }
    55 static inline Address laddress(int n) {
    56   return iaddress(n + 1);
    57 }
    59 static inline Address faddress(int n) {
    60   return iaddress(n);
    61 }
    63 static inline Address daddress(int n) {
    64   return laddress(n);
    65 }
    67 static inline Address aaddress(int n) {
    68   return iaddress(n);
    69 }
    71 static inline Address iaddress(Register r) {
    72   return Address(r14, r, Address::times_8);
    73 }
    75 static inline Address laddress(Register r) {
    76   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    77 }
    79 static inline Address faddress(Register r) {
    80   return iaddress(r);
    81 }
    83 static inline Address daddress(Register r) {
    84   return laddress(r);
    85 }
    87 static inline Address aaddress(Register r) {
    88   return iaddress(r);
    89 }
    91 static inline Address at_rsp() {
    92   return Address(rsp, 0);
    93 }
    95 // At top of Java expression stack which may be different than esp().  It
    96 // isn't for category 1 objects.
    97 static inline Address at_tos   () {
    98   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    99 }
   101 static inline Address at_tos_p1() {
   102   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   103 }
   105 static inline Address at_tos_p2() {
   106   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   107 }
   109 static inline Address at_tos_p3() {
   110   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   111 }
   113 // Condition conversion
   114 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   115   switch (cc) {
   116   case TemplateTable::equal        : return Assembler::notEqual;
   117   case TemplateTable::not_equal    : return Assembler::equal;
   118   case TemplateTable::less         : return Assembler::greaterEqual;
   119   case TemplateTable::less_equal   : return Assembler::greater;
   120   case TemplateTable::greater      : return Assembler::lessEqual;
   121   case TemplateTable::greater_equal: return Assembler::less;
   122   }
   123   ShouldNotReachHere();
   124   return Assembler::zero;
   125 }
   128 // Miscelaneous helper routines
   129 // Store an oop (or NULL) at the address described by obj.
   130 // If val == noreg this means store a NULL
   132 static void do_oop_store(InterpreterMacroAssembler* _masm,
   133                          Address obj,
   134                          Register val,
   135                          BarrierSet::Name barrier,
   136                          bool precise) {
   137   assert(val == noreg || val == rax, "parameter is just for looks");
   138   switch (barrier) {
   139 #ifndef SERIALGC
   140     case BarrierSet::G1SATBCT:
   141     case BarrierSet::G1SATBCTLogging:
   142       {
   143         // flatten object address if needed
   144         if (obj.index() == noreg && obj.disp() == 0) {
   145           if (obj.base() != rdx) {
   146             __ movq(rdx, obj.base());
   147           }
   148         } else {
   149           __ leaq(rdx, obj);
   150         }
   151         __ g1_write_barrier_pre(rdx /* obj */,
   152                                 rbx /* pre_val */,
   153                                 r15_thread /* thread */,
   154                                 r8  /* tmp */,
   155                                 val != noreg /* tosca_live */,
   156                                 false /* expand_call */);
   157         if (val == noreg) {
   158           __ store_heap_oop_null(Address(rdx, 0));
   159         } else {
   160           __ store_heap_oop(Address(rdx, 0), val);
   161           __ g1_write_barrier_post(rdx /* store_adr */,
   162                                    val /* new_val */,
   163                                    r15_thread /* thread */,
   164                                    r8 /* tmp */,
   165                                    rbx /* tmp2 */);
   166         }
   168       }
   169       break;
   170 #endif // SERIALGC
   171     case BarrierSet::CardTableModRef:
   172     case BarrierSet::CardTableExtension:
   173       {
   174         if (val == noreg) {
   175           __ store_heap_oop_null(obj);
   176         } else {
   177           __ store_heap_oop(obj, val);
   178           // flatten object address if needed
   179           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   180             __ store_check(obj.base());
   181           } else {
   182             __ leaq(rdx, obj);
   183             __ store_check(rdx);
   184           }
   185         }
   186       }
   187       break;
   188     case BarrierSet::ModRef:
   189     case BarrierSet::Other:
   190       if (val == noreg) {
   191         __ store_heap_oop_null(obj);
   192       } else {
   193         __ store_heap_oop(obj, val);
   194       }
   195       break;
   196     default      :
   197       ShouldNotReachHere();
   199   }
   200 }
   202 Address TemplateTable::at_bcp(int offset) {
   203   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   204   return Address(r13, offset);
   205 }
   207 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   208                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   209                                    int byte_no) {
   210   if (!RewriteBytecodes)  return;
   211   Label L_patch_done;
   213   switch (bc) {
   214   case Bytecodes::_fast_aputfield:
   215   case Bytecodes::_fast_bputfield:
   216   case Bytecodes::_fast_cputfield:
   217   case Bytecodes::_fast_dputfield:
   218   case Bytecodes::_fast_fputfield:
   219   case Bytecodes::_fast_iputfield:
   220   case Bytecodes::_fast_lputfield:
   221   case Bytecodes::_fast_sputfield:
   222     {
   223       // We skip bytecode quickening for putfield instructions when
   224       // the put_code written to the constant pool cache is zero.
   225       // This is required so that every execution of this instruction
   226       // calls out to InterpreterRuntime::resolve_get_put to do
   227       // additional, required work.
   228       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   229       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   230       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   231       __ movl(bc_reg, bc);
   232       __ cmpl(temp_reg, (int) 0);
   233       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   234     }
   235     break;
   236   default:
   237     assert(byte_no == -1, "sanity");
   238     // the pair bytecodes have already done the load.
   239     if (load_bc_into_bc_reg) {
   240       __ movl(bc_reg, bc);
   241     }
   242   }
   244   if (JvmtiExport::can_post_breakpoint()) {
   245     Label L_fast_patch;
   246     // if a breakpoint is present we can't rewrite the stream directly
   247     __ movzbl(temp_reg, at_bcp(0));
   248     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   249     __ jcc(Assembler::notEqual, L_fast_patch);
   250     __ get_method(temp_reg);
   251     // Let breakpoint table handling rewrite to quicker bytecode
   252     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   253 #ifndef ASSERT
   254     __ jmpb(L_patch_done);
   255 #else
   256     __ jmp(L_patch_done);
   257 #endif
   258     __ bind(L_fast_patch);
   259   }
   261 #ifdef ASSERT
   262   Label L_okay;
   263   __ load_unsigned_byte(temp_reg, at_bcp(0));
   264   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   265   __ jcc(Assembler::equal, L_okay);
   266   __ cmpl(temp_reg, bc_reg);
   267   __ jcc(Assembler::equal, L_okay);
   268   __ stop("patching the wrong bytecode");
   269   __ bind(L_okay);
   270 #endif
   272   // patch bytecode
   273   __ movb(at_bcp(0), bc_reg);
   274   __ bind(L_patch_done);
   275 }
   278 // Individual instructions
   280 void TemplateTable::nop() {
   281   transition(vtos, vtos);
   282   // nothing to do
   283 }
   285 void TemplateTable::shouldnotreachhere() {
   286   transition(vtos, vtos);
   287   __ stop("shouldnotreachhere bytecode");
   288 }
   290 void TemplateTable::aconst_null() {
   291   transition(vtos, atos);
   292   __ xorl(rax, rax);
   293 }
   295 void TemplateTable::iconst(int value) {
   296   transition(vtos, itos);
   297   if (value == 0) {
   298     __ xorl(rax, rax);
   299   } else {
   300     __ movl(rax, value);
   301   }
   302 }
   304 void TemplateTable::lconst(int value) {
   305   transition(vtos, ltos);
   306   if (value == 0) {
   307     __ xorl(rax, rax);
   308   } else {
   309     __ movl(rax, value);
   310   }
   311 }
   313 void TemplateTable::fconst(int value) {
   314   transition(vtos, ftos);
   315   static float one = 1.0f, two = 2.0f;
   316   switch (value) {
   317   case 0:
   318     __ xorps(xmm0, xmm0);
   319     break;
   320   case 1:
   321     __ movflt(xmm0, ExternalAddress((address) &one));
   322     break;
   323   case 2:
   324     __ movflt(xmm0, ExternalAddress((address) &two));
   325     break;
   326   default:
   327     ShouldNotReachHere();
   328     break;
   329   }
   330 }
   332 void TemplateTable::dconst(int value) {
   333   transition(vtos, dtos);
   334   static double one = 1.0;
   335   switch (value) {
   336   case 0:
   337     __ xorpd(xmm0, xmm0);
   338     break;
   339   case 1:
   340     __ movdbl(xmm0, ExternalAddress((address) &one));
   341     break;
   342   default:
   343     ShouldNotReachHere();
   344     break;
   345   }
   346 }
   348 void TemplateTable::bipush() {
   349   transition(vtos, itos);
   350   __ load_signed_byte(rax, at_bcp(1));
   351 }
   353 void TemplateTable::sipush() {
   354   transition(vtos, itos);
   355   __ load_unsigned_short(rax, at_bcp(1));
   356   __ bswapl(rax);
   357   __ sarl(rax, 16);
   358 }
   360 void TemplateTable::ldc(bool wide) {
   361   transition(vtos, vtos);
   362   Label call_ldc, notFloat, notClass, Done;
   364   if (wide) {
   365     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   366   } else {
   367     __ load_unsigned_byte(rbx, at_bcp(1));
   368   }
   370   __ get_cpool_and_tags(rcx, rax);
   371   const int base_offset = ConstantPool::header_size() * wordSize;
   372   const int tags_offset = Array<u1>::base_offset_in_bytes();
   374   // get type
   375   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   377   // unresolved class - get the resolved class
   378   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   379   __ jccb(Assembler::equal, call_ldc);
   381   // unresolved class in error state - call into runtime to throw the error
   382   // from the first resolution attempt
   383   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   384   __ jccb(Assembler::equal, call_ldc);
   386   // resolved class - need to call vm to get java mirror of the class
   387   __ cmpl(rdx, JVM_CONSTANT_Class);
   388   __ jcc(Assembler::notEqual, notClass);
   390   __ bind(call_ldc);
   391   __ movl(c_rarg1, wide);
   392   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   393   __ push_ptr(rax);
   394   __ verify_oop(rax);
   395   __ jmp(Done);
   397   __ bind(notClass);
   398   __ cmpl(rdx, JVM_CONSTANT_Float);
   399   __ jccb(Assembler::notEqual, notFloat);
   400   // ftos
   401   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   402   __ push_f();
   403   __ jmp(Done);
   405   __ bind(notFloat);
   406 #ifdef ASSERT
   407   {
   408     Label L;
   409     __ cmpl(rdx, JVM_CONSTANT_Integer);
   410     __ jcc(Assembler::equal, L);
   411     // String and Object are rewritten to fast_aldc
   412     __ stop("unexpected tag type in ldc");
   413     __ bind(L);
   414   }
   415 #endif
   416   // itos JVM_CONSTANT_Integer only
   417   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   418   __ push_i(rax);
   419   __ bind(Done);
   420 }
   422 // Fast path for caching oop constants.
   423 void TemplateTable::fast_aldc(bool wide) {
   424   transition(vtos, atos);
   426   Register result = rax;
   427   Register tmp = rdx;
   428   int index_size = wide ? sizeof(u2) : sizeof(u1);
   430   Label resolved;
   432   // We are resolved if the resolved reference cache entry contains a
   433   // non-null object (String, MethodType, etc.)
   434   assert_different_registers(result, tmp);
   435   __ get_cache_index_at_bcp(tmp, 1, index_size);
   436   __ load_resolved_reference_at_index(result, tmp);
   437   __ testl(result, result);
   438   __ jcc(Assembler::notZero, resolved);
   440   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   442   // first time invocation - must resolve first
   443   __ movl(tmp, (int)bytecode());
   444   __ call_VM(result, entry, tmp);
   446   __ bind(resolved);
   448   if (VerifyOops) {
   449     __ verify_oop(result);
   450   }
   451 }
   453 void TemplateTable::ldc2_w() {
   454   transition(vtos, vtos);
   455   Label Long, Done;
   456   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   458   __ get_cpool_and_tags(rcx, rax);
   459   const int base_offset = ConstantPool::header_size() * wordSize;
   460   const int tags_offset = Array<u1>::base_offset_in_bytes();
   462   // get type
   463   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   464           JVM_CONSTANT_Double);
   465   __ jccb(Assembler::notEqual, Long);
   466   // dtos
   467   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   468   __ push_d();
   469   __ jmpb(Done);
   471   __ bind(Long);
   472   // ltos
   473   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   474   __ push_l();
   476   __ bind(Done);
   477 }
   479 void TemplateTable::locals_index(Register reg, int offset) {
   480   __ load_unsigned_byte(reg, at_bcp(offset));
   481   __ negptr(reg);
   482 }
   484 void TemplateTable::iload() {
   485   transition(vtos, itos);
   486   if (RewriteFrequentPairs) {
   487     Label rewrite, done;
   488     const Register bc = c_rarg3;
   489     assert(rbx != bc, "register damaged");
   491     // get next byte
   492     __ load_unsigned_byte(rbx,
   493                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   494     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   495     // last two iloads in a pair.  Comparing against fast_iload means that
   496     // the next bytecode is neither an iload or a caload, and therefore
   497     // an iload pair.
   498     __ cmpl(rbx, Bytecodes::_iload);
   499     __ jcc(Assembler::equal, done);
   501     __ cmpl(rbx, Bytecodes::_fast_iload);
   502     __ movl(bc, Bytecodes::_fast_iload2);
   503     __ jccb(Assembler::equal, rewrite);
   505     // if _caload, rewrite to fast_icaload
   506     __ cmpl(rbx, Bytecodes::_caload);
   507     __ movl(bc, Bytecodes::_fast_icaload);
   508     __ jccb(Assembler::equal, rewrite);
   510     // rewrite so iload doesn't check again.
   511     __ movl(bc, Bytecodes::_fast_iload);
   513     // rewrite
   514     // bc: fast bytecode
   515     __ bind(rewrite);
   516     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   517     __ bind(done);
   518   }
   520   // Get the local value into tos
   521   locals_index(rbx);
   522   __ movl(rax, iaddress(rbx));
   523 }
   525 void TemplateTable::fast_iload2() {
   526   transition(vtos, itos);
   527   locals_index(rbx);
   528   __ movl(rax, iaddress(rbx));
   529   __ push(itos);
   530   locals_index(rbx, 3);
   531   __ movl(rax, iaddress(rbx));
   532 }
   534 void TemplateTable::fast_iload() {
   535   transition(vtos, itos);
   536   locals_index(rbx);
   537   __ movl(rax, iaddress(rbx));
   538 }
   540 void TemplateTable::lload() {
   541   transition(vtos, ltos);
   542   locals_index(rbx);
   543   __ movq(rax, laddress(rbx));
   544 }
   546 void TemplateTable::fload() {
   547   transition(vtos, ftos);
   548   locals_index(rbx);
   549   __ movflt(xmm0, faddress(rbx));
   550 }
   552 void TemplateTable::dload() {
   553   transition(vtos, dtos);
   554   locals_index(rbx);
   555   __ movdbl(xmm0, daddress(rbx));
   556 }
   558 void TemplateTable::aload() {
   559   transition(vtos, atos);
   560   locals_index(rbx);
   561   __ movptr(rax, aaddress(rbx));
   562 }
   564 void TemplateTable::locals_index_wide(Register reg) {
   565   __ movl(reg, at_bcp(2));
   566   __ bswapl(reg);
   567   __ shrl(reg, 16);
   568   __ negptr(reg);
   569 }
   571 void TemplateTable::wide_iload() {
   572   transition(vtos, itos);
   573   locals_index_wide(rbx);
   574   __ movl(rax, iaddress(rbx));
   575 }
   577 void TemplateTable::wide_lload() {
   578   transition(vtos, ltos);
   579   locals_index_wide(rbx);
   580   __ movq(rax, laddress(rbx));
   581 }
   583 void TemplateTable::wide_fload() {
   584   transition(vtos, ftos);
   585   locals_index_wide(rbx);
   586   __ movflt(xmm0, faddress(rbx));
   587 }
   589 void TemplateTable::wide_dload() {
   590   transition(vtos, dtos);
   591   locals_index_wide(rbx);
   592   __ movdbl(xmm0, daddress(rbx));
   593 }
   595 void TemplateTable::wide_aload() {
   596   transition(vtos, atos);
   597   locals_index_wide(rbx);
   598   __ movptr(rax, aaddress(rbx));
   599 }
   601 void TemplateTable::index_check(Register array, Register index) {
   602   // destroys rbx
   603   // check array
   604   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   605   // sign extend index for use by indexed load
   606   __ movl2ptr(index, index);
   607   // check index
   608   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   609   if (index != rbx) {
   610     // ??? convention: move aberrant index into ebx for exception message
   611     assert(rbx != array, "different registers");
   612     __ movl(rbx, index);
   613   }
   614   __ jump_cc(Assembler::aboveEqual,
   615              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   616 }
   618 void TemplateTable::iaload() {
   619   transition(itos, itos);
   620   __ pop_ptr(rdx);
   621   // eax: index
   622   // rdx: array
   623   index_check(rdx, rax); // kills rbx
   624   __ movl(rax, Address(rdx, rax,
   625                        Address::times_4,
   626                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   627 }
   629 void TemplateTable::laload() {
   630   transition(itos, ltos);
   631   __ pop_ptr(rdx);
   632   // eax: index
   633   // rdx: array
   634   index_check(rdx, rax); // kills rbx
   635   __ movq(rax, Address(rdx, rbx,
   636                        Address::times_8,
   637                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   638 }
   640 void TemplateTable::faload() {
   641   transition(itos, ftos);
   642   __ pop_ptr(rdx);
   643   // eax: index
   644   // rdx: array
   645   index_check(rdx, rax); // kills rbx
   646   __ movflt(xmm0, Address(rdx, rax,
   647                          Address::times_4,
   648                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   649 }
   651 void TemplateTable::daload() {
   652   transition(itos, dtos);
   653   __ pop_ptr(rdx);
   654   // eax: index
   655   // rdx: array
   656   index_check(rdx, rax); // kills rbx
   657   __ movdbl(xmm0, Address(rdx, rax,
   658                           Address::times_8,
   659                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   660 }
   662 void TemplateTable::aaload() {
   663   transition(itos, atos);
   664   __ pop_ptr(rdx);
   665   // eax: index
   666   // rdx: array
   667   index_check(rdx, rax); // kills rbx
   668   __ load_heap_oop(rax, Address(rdx, rax,
   669                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   670                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   671 }
   673 void TemplateTable::baload() {
   674   transition(itos, itos);
   675   __ pop_ptr(rdx);
   676   // eax: index
   677   // rdx: array
   678   index_check(rdx, rax); // kills rbx
   679   __ load_signed_byte(rax,
   680                       Address(rdx, rax,
   681                               Address::times_1,
   682                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   683 }
   685 void TemplateTable::caload() {
   686   transition(itos, itos);
   687   __ pop_ptr(rdx);
   688   // eax: index
   689   // rdx: array
   690   index_check(rdx, rax); // kills rbx
   691   __ load_unsigned_short(rax,
   692                          Address(rdx, rax,
   693                                  Address::times_2,
   694                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   695 }
   697 // iload followed by caload frequent pair
   698 void TemplateTable::fast_icaload() {
   699   transition(vtos, itos);
   700   // load index out of locals
   701   locals_index(rbx);
   702   __ movl(rax, iaddress(rbx));
   704   // eax: index
   705   // rdx: array
   706   __ pop_ptr(rdx);
   707   index_check(rdx, rax); // kills rbx
   708   __ load_unsigned_short(rax,
   709                          Address(rdx, rax,
   710                                  Address::times_2,
   711                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   712 }
   714 void TemplateTable::saload() {
   715   transition(itos, itos);
   716   __ pop_ptr(rdx);
   717   // eax: index
   718   // rdx: array
   719   index_check(rdx, rax); // kills rbx
   720   __ load_signed_short(rax,
   721                        Address(rdx, rax,
   722                                Address::times_2,
   723                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   724 }
   726 void TemplateTable::iload(int n) {
   727   transition(vtos, itos);
   728   __ movl(rax, iaddress(n));
   729 }
   731 void TemplateTable::lload(int n) {
   732   transition(vtos, ltos);
   733   __ movq(rax, laddress(n));
   734 }
   736 void TemplateTable::fload(int n) {
   737   transition(vtos, ftos);
   738   __ movflt(xmm0, faddress(n));
   739 }
   741 void TemplateTable::dload(int n) {
   742   transition(vtos, dtos);
   743   __ movdbl(xmm0, daddress(n));
   744 }
   746 void TemplateTable::aload(int n) {
   747   transition(vtos, atos);
   748   __ movptr(rax, aaddress(n));
   749 }
   751 void TemplateTable::aload_0() {
   752   transition(vtos, atos);
   753   // According to bytecode histograms, the pairs:
   754   //
   755   // _aload_0, _fast_igetfield
   756   // _aload_0, _fast_agetfield
   757   // _aload_0, _fast_fgetfield
   758   //
   759   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   760   // _aload_0 bytecode checks if the next bytecode is either
   761   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   762   // rewrites the current bytecode into a pair bytecode; otherwise it
   763   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   764   // the pair check anymore.
   765   //
   766   // Note: If the next bytecode is _getfield, the rewrite must be
   767   //       delayed, otherwise we may miss an opportunity for a pair.
   768   //
   769   // Also rewrite frequent pairs
   770   //   aload_0, aload_1
   771   //   aload_0, iload_1
   772   // These bytecodes with a small amount of code are most profitable
   773   // to rewrite
   774   if (RewriteFrequentPairs) {
   775     Label rewrite, done;
   776     const Register bc = c_rarg3;
   777     assert(rbx != bc, "register damaged");
   778     // get next byte
   779     __ load_unsigned_byte(rbx,
   780                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   782     // do actual aload_0
   783     aload(0);
   785     // if _getfield then wait with rewrite
   786     __ cmpl(rbx, Bytecodes::_getfield);
   787     __ jcc(Assembler::equal, done);
   789     // if _igetfield then reqrite to _fast_iaccess_0
   790     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   791            Bytecodes::_aload_0,
   792            "fix bytecode definition");
   793     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   794     __ movl(bc, Bytecodes::_fast_iaccess_0);
   795     __ jccb(Assembler::equal, rewrite);
   797     // if _agetfield then reqrite to _fast_aaccess_0
   798     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   799            Bytecodes::_aload_0,
   800            "fix bytecode definition");
   801     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   802     __ movl(bc, Bytecodes::_fast_aaccess_0);
   803     __ jccb(Assembler::equal, rewrite);
   805     // if _fgetfield then reqrite to _fast_faccess_0
   806     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   807            Bytecodes::_aload_0,
   808            "fix bytecode definition");
   809     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   810     __ movl(bc, Bytecodes::_fast_faccess_0);
   811     __ jccb(Assembler::equal, rewrite);
   813     // else rewrite to _fast_aload0
   814     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   815            Bytecodes::_aload_0,
   816            "fix bytecode definition");
   817     __ movl(bc, Bytecodes::_fast_aload_0);
   819     // rewrite
   820     // bc: fast bytecode
   821     __ bind(rewrite);
   822     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   824     __ bind(done);
   825   } else {
   826     aload(0);
   827   }
   828 }
   830 void TemplateTable::istore() {
   831   transition(itos, vtos);
   832   locals_index(rbx);
   833   __ movl(iaddress(rbx), rax);
   834 }
   836 void TemplateTable::lstore() {
   837   transition(ltos, vtos);
   838   locals_index(rbx);
   839   __ movq(laddress(rbx), rax);
   840 }
   842 void TemplateTable::fstore() {
   843   transition(ftos, vtos);
   844   locals_index(rbx);
   845   __ movflt(faddress(rbx), xmm0);
   846 }
   848 void TemplateTable::dstore() {
   849   transition(dtos, vtos);
   850   locals_index(rbx);
   851   __ movdbl(daddress(rbx), xmm0);
   852 }
   854 void TemplateTable::astore() {
   855   transition(vtos, vtos);
   856   __ pop_ptr(rax);
   857   locals_index(rbx);
   858   __ movptr(aaddress(rbx), rax);
   859 }
   861 void TemplateTable::wide_istore() {
   862   transition(vtos, vtos);
   863   __ pop_i();
   864   locals_index_wide(rbx);
   865   __ movl(iaddress(rbx), rax);
   866 }
   868 void TemplateTable::wide_lstore() {
   869   transition(vtos, vtos);
   870   __ pop_l();
   871   locals_index_wide(rbx);
   872   __ movq(laddress(rbx), rax);
   873 }
   875 void TemplateTable::wide_fstore() {
   876   transition(vtos, vtos);
   877   __ pop_f();
   878   locals_index_wide(rbx);
   879   __ movflt(faddress(rbx), xmm0);
   880 }
   882 void TemplateTable::wide_dstore() {
   883   transition(vtos, vtos);
   884   __ pop_d();
   885   locals_index_wide(rbx);
   886   __ movdbl(daddress(rbx), xmm0);
   887 }
   889 void TemplateTable::wide_astore() {
   890   transition(vtos, vtos);
   891   __ pop_ptr(rax);
   892   locals_index_wide(rbx);
   893   __ movptr(aaddress(rbx), rax);
   894 }
   896 void TemplateTable::iastore() {
   897   transition(itos, vtos);
   898   __ pop_i(rbx);
   899   __ pop_ptr(rdx);
   900   // eax: value
   901   // ebx: index
   902   // rdx: array
   903   index_check(rdx, rbx); // prefer index in ebx
   904   __ movl(Address(rdx, rbx,
   905                   Address::times_4,
   906                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   907           rax);
   908 }
   910 void TemplateTable::lastore() {
   911   transition(ltos, vtos);
   912   __ pop_i(rbx);
   913   __ pop_ptr(rdx);
   914   // rax: value
   915   // ebx: index
   916   // rdx: array
   917   index_check(rdx, rbx); // prefer index in ebx
   918   __ movq(Address(rdx, rbx,
   919                   Address::times_8,
   920                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   921           rax);
   922 }
   924 void TemplateTable::fastore() {
   925   transition(ftos, vtos);
   926   __ pop_i(rbx);
   927   __ pop_ptr(rdx);
   928   // xmm0: value
   929   // ebx:  index
   930   // rdx:  array
   931   index_check(rdx, rbx); // prefer index in ebx
   932   __ movflt(Address(rdx, rbx,
   933                    Address::times_4,
   934                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   935            xmm0);
   936 }
   938 void TemplateTable::dastore() {
   939   transition(dtos, vtos);
   940   __ pop_i(rbx);
   941   __ pop_ptr(rdx);
   942   // xmm0: value
   943   // ebx:  index
   944   // rdx:  array
   945   index_check(rdx, rbx); // prefer index in ebx
   946   __ movdbl(Address(rdx, rbx,
   947                    Address::times_8,
   948                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   949            xmm0);
   950 }
   952 void TemplateTable::aastore() {
   953   Label is_null, ok_is_subtype, done;
   954   transition(vtos, vtos);
   955   // stack: ..., array, index, value
   956   __ movptr(rax, at_tos());    // value
   957   __ movl(rcx, at_tos_p1()); // index
   958   __ movptr(rdx, at_tos_p2()); // array
   960   Address element_address(rdx, rcx,
   961                           UseCompressedOops? Address::times_4 : Address::times_8,
   962                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   964   index_check(rdx, rcx);     // kills rbx
   965   // do array store check - check for NULL value first
   966   __ testptr(rax, rax);
   967   __ jcc(Assembler::zero, is_null);
   969   // Move subklass into rbx
   970   __ load_klass(rbx, rax);
   971   // Move superklass into rax
   972   __ load_klass(rax, rdx);
   973   __ movptr(rax, Address(rax,
   974                          ObjArrayKlass::element_klass_offset()));
   975   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   976   __ lea(rdx, element_address);
   978   // Generate subtype check.  Blows rcx, rdi
   979   // Superklass in rax.  Subklass in rbx.
   980   __ gen_subtype_check(rbx, ok_is_subtype);
   982   // Come here on failure
   983   // object is at TOS
   984   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   986   // Come here on success
   987   __ bind(ok_is_subtype);
   989   // Get the value we will store
   990   __ movptr(rax, at_tos());
   991   // Now store using the appropriate barrier
   992   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   993   __ jmp(done);
   995   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   996   __ bind(is_null);
   997   __ profile_null_seen(rbx);
   999   // Store a NULL
  1000   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1002   // Pop stack arguments
  1003   __ bind(done);
  1004   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1007 void TemplateTable::bastore() {
  1008   transition(itos, vtos);
  1009   __ pop_i(rbx);
  1010   __ pop_ptr(rdx);
  1011   // eax: value
  1012   // ebx: index
  1013   // rdx: array
  1014   index_check(rdx, rbx); // prefer index in ebx
  1015   __ movb(Address(rdx, rbx,
  1016                   Address::times_1,
  1017                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1018           rax);
  1021 void TemplateTable::castore() {
  1022   transition(itos, vtos);
  1023   __ pop_i(rbx);
  1024   __ pop_ptr(rdx);
  1025   // eax: value
  1026   // ebx: index
  1027   // rdx: array
  1028   index_check(rdx, rbx);  // prefer index in ebx
  1029   __ movw(Address(rdx, rbx,
  1030                   Address::times_2,
  1031                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1032           rax);
  1035 void TemplateTable::sastore() {
  1036   castore();
  1039 void TemplateTable::istore(int n) {
  1040   transition(itos, vtos);
  1041   __ movl(iaddress(n), rax);
  1044 void TemplateTable::lstore(int n) {
  1045   transition(ltos, vtos);
  1046   __ movq(laddress(n), rax);
  1049 void TemplateTable::fstore(int n) {
  1050   transition(ftos, vtos);
  1051   __ movflt(faddress(n), xmm0);
  1054 void TemplateTable::dstore(int n) {
  1055   transition(dtos, vtos);
  1056   __ movdbl(daddress(n), xmm0);
  1059 void TemplateTable::astore(int n) {
  1060   transition(vtos, vtos);
  1061   __ pop_ptr(rax);
  1062   __ movptr(aaddress(n), rax);
  1065 void TemplateTable::pop() {
  1066   transition(vtos, vtos);
  1067   __ addptr(rsp, Interpreter::stackElementSize);
  1070 void TemplateTable::pop2() {
  1071   transition(vtos, vtos);
  1072   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1075 void TemplateTable::dup() {
  1076   transition(vtos, vtos);
  1077   __ load_ptr(0, rax);
  1078   __ push_ptr(rax);
  1079   // stack: ..., a, a
  1082 void TemplateTable::dup_x1() {
  1083   transition(vtos, vtos);
  1084   // stack: ..., a, b
  1085   __ load_ptr( 0, rax);  // load b
  1086   __ load_ptr( 1, rcx);  // load a
  1087   __ store_ptr(1, rax);  // store b
  1088   __ store_ptr(0, rcx);  // store a
  1089   __ push_ptr(rax);      // push b
  1090   // stack: ..., b, a, b
  1093 void TemplateTable::dup_x2() {
  1094   transition(vtos, vtos);
  1095   // stack: ..., a, b, c
  1096   __ load_ptr( 0, rax);  // load c
  1097   __ load_ptr( 2, rcx);  // load a
  1098   __ store_ptr(2, rax);  // store c in a
  1099   __ push_ptr(rax);      // push c
  1100   // stack: ..., c, b, c, c
  1101   __ load_ptr( 2, rax);  // load b
  1102   __ store_ptr(2, rcx);  // store a in b
  1103   // stack: ..., c, a, c, c
  1104   __ store_ptr(1, rax);  // store b in c
  1105   // stack: ..., c, a, b, c
  1108 void TemplateTable::dup2() {
  1109   transition(vtos, vtos);
  1110   // stack: ..., a, b
  1111   __ load_ptr(1, rax);  // load a
  1112   __ push_ptr(rax);     // push a
  1113   __ load_ptr(1, rax);  // load b
  1114   __ push_ptr(rax);     // push b
  1115   // stack: ..., a, b, a, b
  1118 void TemplateTable::dup2_x1() {
  1119   transition(vtos, vtos);
  1120   // stack: ..., a, b, c
  1121   __ load_ptr( 0, rcx);  // load c
  1122   __ load_ptr( 1, rax);  // load b
  1123   __ push_ptr(rax);      // push b
  1124   __ push_ptr(rcx);      // push c
  1125   // stack: ..., a, b, c, b, c
  1126   __ store_ptr(3, rcx);  // store c in b
  1127   // stack: ..., a, c, c, b, c
  1128   __ load_ptr( 4, rcx);  // load a
  1129   __ store_ptr(2, rcx);  // store a in 2nd c
  1130   // stack: ..., a, c, a, b, c
  1131   __ store_ptr(4, rax);  // store b in a
  1132   // stack: ..., b, c, a, b, c
  1135 void TemplateTable::dup2_x2() {
  1136   transition(vtos, vtos);
  1137   // stack: ..., a, b, c, d
  1138   __ load_ptr( 0, rcx);  // load d
  1139   __ load_ptr( 1, rax);  // load c
  1140   __ push_ptr(rax);      // push c
  1141   __ push_ptr(rcx);      // push d
  1142   // stack: ..., a, b, c, d, c, d
  1143   __ load_ptr( 4, rax);  // load b
  1144   __ store_ptr(2, rax);  // store b in d
  1145   __ store_ptr(4, rcx);  // store d in b
  1146   // stack: ..., a, d, c, b, c, d
  1147   __ load_ptr( 5, rcx);  // load a
  1148   __ load_ptr( 3, rax);  // load c
  1149   __ store_ptr(3, rcx);  // store a in c
  1150   __ store_ptr(5, rax);  // store c in a
  1151   // stack: ..., c, d, a, b, c, d
  1154 void TemplateTable::swap() {
  1155   transition(vtos, vtos);
  1156   // stack: ..., a, b
  1157   __ load_ptr( 1, rcx);  // load a
  1158   __ load_ptr( 0, rax);  // load b
  1159   __ store_ptr(0, rcx);  // store a in b
  1160   __ store_ptr(1, rax);  // store b in a
  1161   // stack: ..., b, a
  1164 void TemplateTable::iop2(Operation op) {
  1165   transition(itos, itos);
  1166   switch (op) {
  1167   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1168   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1169   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1170   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1171   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1172   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1173   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1174   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1175   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1176   default   : ShouldNotReachHere();
  1180 void TemplateTable::lop2(Operation op) {
  1181   transition(ltos, ltos);
  1182   switch (op) {
  1183   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1184   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1185   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1186   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1187   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1188   default   : ShouldNotReachHere();
  1192 void TemplateTable::idiv() {
  1193   transition(itos, itos);
  1194   __ movl(rcx, rax);
  1195   __ pop_i(rax);
  1196   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1197   //       they are not equal, one could do a normal division (no correction
  1198   //       needed), which may speed up this implementation for the common case.
  1199   //       (see also JVM spec., p.243 & p.271)
  1200   __ corrected_idivl(rcx);
  1203 void TemplateTable::irem() {
  1204   transition(itos, itos);
  1205   __ movl(rcx, rax);
  1206   __ pop_i(rax);
  1207   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1208   //       they are not equal, one could do a normal division (no correction
  1209   //       needed), which may speed up this implementation for the common case.
  1210   //       (see also JVM spec., p.243 & p.271)
  1211   __ corrected_idivl(rcx);
  1212   __ movl(rax, rdx);
  1215 void TemplateTable::lmul() {
  1216   transition(ltos, ltos);
  1217   __ pop_l(rdx);
  1218   __ imulq(rax, rdx);
  1221 void TemplateTable::ldiv() {
  1222   transition(ltos, ltos);
  1223   __ mov(rcx, rax);
  1224   __ pop_l(rax);
  1225   // generate explicit div0 check
  1226   __ testq(rcx, rcx);
  1227   __ jump_cc(Assembler::zero,
  1228              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1229   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1230   //       they are not equal, one could do a normal division (no correction
  1231   //       needed), which may speed up this implementation for the common case.
  1232   //       (see also JVM spec., p.243 & p.271)
  1233   __ corrected_idivq(rcx); // kills rbx
  1236 void TemplateTable::lrem() {
  1237   transition(ltos, ltos);
  1238   __ mov(rcx, rax);
  1239   __ pop_l(rax);
  1240   __ testq(rcx, rcx);
  1241   __ jump_cc(Assembler::zero,
  1242              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1243   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1244   //       they are not equal, one could do a normal division (no correction
  1245   //       needed), which may speed up this implementation for the common case.
  1246   //       (see also JVM spec., p.243 & p.271)
  1247   __ corrected_idivq(rcx); // kills rbx
  1248   __ mov(rax, rdx);
  1251 void TemplateTable::lshl() {
  1252   transition(itos, ltos);
  1253   __ movl(rcx, rax);                             // get shift count
  1254   __ pop_l(rax);                                 // get shift value
  1255   __ shlq(rax);
  1258 void TemplateTable::lshr() {
  1259   transition(itos, ltos);
  1260   __ movl(rcx, rax);                             // get shift count
  1261   __ pop_l(rax);                                 // get shift value
  1262   __ sarq(rax);
  1265 void TemplateTable::lushr() {
  1266   transition(itos, ltos);
  1267   __ movl(rcx, rax);                             // get shift count
  1268   __ pop_l(rax);                                 // get shift value
  1269   __ shrq(rax);
  1272 void TemplateTable::fop2(Operation op) {
  1273   transition(ftos, ftos);
  1274   switch (op) {
  1275   case add:
  1276     __ addss(xmm0, at_rsp());
  1277     __ addptr(rsp, Interpreter::stackElementSize);
  1278     break;
  1279   case sub:
  1280     __ movflt(xmm1, xmm0);
  1281     __ pop_f(xmm0);
  1282     __ subss(xmm0, xmm1);
  1283     break;
  1284   case mul:
  1285     __ mulss(xmm0, at_rsp());
  1286     __ addptr(rsp, Interpreter::stackElementSize);
  1287     break;
  1288   case div:
  1289     __ movflt(xmm1, xmm0);
  1290     __ pop_f(xmm0);
  1291     __ divss(xmm0, xmm1);
  1292     break;
  1293   case rem:
  1294     __ movflt(xmm1, xmm0);
  1295     __ pop_f(xmm0);
  1296     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1297     break;
  1298   default:
  1299     ShouldNotReachHere();
  1300     break;
  1304 void TemplateTable::dop2(Operation op) {
  1305   transition(dtos, dtos);
  1306   switch (op) {
  1307   case add:
  1308     __ addsd(xmm0, at_rsp());
  1309     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1310     break;
  1311   case sub:
  1312     __ movdbl(xmm1, xmm0);
  1313     __ pop_d(xmm0);
  1314     __ subsd(xmm0, xmm1);
  1315     break;
  1316   case mul:
  1317     __ mulsd(xmm0, at_rsp());
  1318     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1319     break;
  1320   case div:
  1321     __ movdbl(xmm1, xmm0);
  1322     __ pop_d(xmm0);
  1323     __ divsd(xmm0, xmm1);
  1324     break;
  1325   case rem:
  1326     __ movdbl(xmm1, xmm0);
  1327     __ pop_d(xmm0);
  1328     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1329     break;
  1330   default:
  1331     ShouldNotReachHere();
  1332     break;
  1336 void TemplateTable::ineg() {
  1337   transition(itos, itos);
  1338   __ negl(rax);
  1341 void TemplateTable::lneg() {
  1342   transition(ltos, ltos);
  1343   __ negq(rax);
  1346 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1347 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1348   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1349   // of 128-bits operands for SSE instructions.
  1350   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1351   // Store the value to a 128-bits operand.
  1352   operand[0] = lo;
  1353   operand[1] = hi;
  1354   return operand;
  1357 // Buffer for 128-bits masks used by SSE instructions.
  1358 static jlong float_signflip_pool[2*2];
  1359 static jlong double_signflip_pool[2*2];
  1361 void TemplateTable::fneg() {
  1362   transition(ftos, ftos);
  1363   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1364   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1367 void TemplateTable::dneg() {
  1368   transition(dtos, dtos);
  1369   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1370   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1373 void TemplateTable::iinc() {
  1374   transition(vtos, vtos);
  1375   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1376   locals_index(rbx);
  1377   __ addl(iaddress(rbx), rdx);
  1380 void TemplateTable::wide_iinc() {
  1381   transition(vtos, vtos);
  1382   __ movl(rdx, at_bcp(4)); // get constant
  1383   locals_index_wide(rbx);
  1384   __ bswapl(rdx); // swap bytes & sign-extend constant
  1385   __ sarl(rdx, 16);
  1386   __ addl(iaddress(rbx), rdx);
  1387   // Note: should probably use only one movl to get both
  1388   //       the index and the constant -> fix this
  1391 void TemplateTable::convert() {
  1392   // Checking
  1393 #ifdef ASSERT
  1395     TosState tos_in  = ilgl;
  1396     TosState tos_out = ilgl;
  1397     switch (bytecode()) {
  1398     case Bytecodes::_i2l: // fall through
  1399     case Bytecodes::_i2f: // fall through
  1400     case Bytecodes::_i2d: // fall through
  1401     case Bytecodes::_i2b: // fall through
  1402     case Bytecodes::_i2c: // fall through
  1403     case Bytecodes::_i2s: tos_in = itos; break;
  1404     case Bytecodes::_l2i: // fall through
  1405     case Bytecodes::_l2f: // fall through
  1406     case Bytecodes::_l2d: tos_in = ltos; break;
  1407     case Bytecodes::_f2i: // fall through
  1408     case Bytecodes::_f2l: // fall through
  1409     case Bytecodes::_f2d: tos_in = ftos; break;
  1410     case Bytecodes::_d2i: // fall through
  1411     case Bytecodes::_d2l: // fall through
  1412     case Bytecodes::_d2f: tos_in = dtos; break;
  1413     default             : ShouldNotReachHere();
  1415     switch (bytecode()) {
  1416     case Bytecodes::_l2i: // fall through
  1417     case Bytecodes::_f2i: // fall through
  1418     case Bytecodes::_d2i: // fall through
  1419     case Bytecodes::_i2b: // fall through
  1420     case Bytecodes::_i2c: // fall through
  1421     case Bytecodes::_i2s: tos_out = itos; break;
  1422     case Bytecodes::_i2l: // fall through
  1423     case Bytecodes::_f2l: // fall through
  1424     case Bytecodes::_d2l: tos_out = ltos; break;
  1425     case Bytecodes::_i2f: // fall through
  1426     case Bytecodes::_l2f: // fall through
  1427     case Bytecodes::_d2f: tos_out = ftos; break;
  1428     case Bytecodes::_i2d: // fall through
  1429     case Bytecodes::_l2d: // fall through
  1430     case Bytecodes::_f2d: tos_out = dtos; break;
  1431     default             : ShouldNotReachHere();
  1433     transition(tos_in, tos_out);
  1435 #endif // ASSERT
  1437   static const int64_t is_nan = 0x8000000000000000L;
  1439   // Conversion
  1440   switch (bytecode()) {
  1441   case Bytecodes::_i2l:
  1442     __ movslq(rax, rax);
  1443     break;
  1444   case Bytecodes::_i2f:
  1445     __ cvtsi2ssl(xmm0, rax);
  1446     break;
  1447   case Bytecodes::_i2d:
  1448     __ cvtsi2sdl(xmm0, rax);
  1449     break;
  1450   case Bytecodes::_i2b:
  1451     __ movsbl(rax, rax);
  1452     break;
  1453   case Bytecodes::_i2c:
  1454     __ movzwl(rax, rax);
  1455     break;
  1456   case Bytecodes::_i2s:
  1457     __ movswl(rax, rax);
  1458     break;
  1459   case Bytecodes::_l2i:
  1460     __ movl(rax, rax);
  1461     break;
  1462   case Bytecodes::_l2f:
  1463     __ cvtsi2ssq(xmm0, rax);
  1464     break;
  1465   case Bytecodes::_l2d:
  1466     __ cvtsi2sdq(xmm0, rax);
  1467     break;
  1468   case Bytecodes::_f2i:
  1470     Label L;
  1471     __ cvttss2sil(rax, xmm0);
  1472     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1473     __ jcc(Assembler::notEqual, L);
  1474     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1475     __ bind(L);
  1477     break;
  1478   case Bytecodes::_f2l:
  1480     Label L;
  1481     __ cvttss2siq(rax, xmm0);
  1482     // NaN or overflow/underflow?
  1483     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1484     __ jcc(Assembler::notEqual, L);
  1485     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1486     __ bind(L);
  1488     break;
  1489   case Bytecodes::_f2d:
  1490     __ cvtss2sd(xmm0, xmm0);
  1491     break;
  1492   case Bytecodes::_d2i:
  1494     Label L;
  1495     __ cvttsd2sil(rax, xmm0);
  1496     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1497     __ jcc(Assembler::notEqual, L);
  1498     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1499     __ bind(L);
  1501     break;
  1502   case Bytecodes::_d2l:
  1504     Label L;
  1505     __ cvttsd2siq(rax, xmm0);
  1506     // NaN or overflow/underflow?
  1507     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1508     __ jcc(Assembler::notEqual, L);
  1509     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1510     __ bind(L);
  1512     break;
  1513   case Bytecodes::_d2f:
  1514     __ cvtsd2ss(xmm0, xmm0);
  1515     break;
  1516   default:
  1517     ShouldNotReachHere();
  1521 void TemplateTable::lcmp() {
  1522   transition(ltos, itos);
  1523   Label done;
  1524   __ pop_l(rdx);
  1525   __ cmpq(rdx, rax);
  1526   __ movl(rax, -1);
  1527   __ jccb(Assembler::less, done);
  1528   __ setb(Assembler::notEqual, rax);
  1529   __ movzbl(rax, rax);
  1530   __ bind(done);
  1533 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1534   Label done;
  1535   if (is_float) {
  1536     // XXX get rid of pop here, use ... reg, mem32
  1537     __ pop_f(xmm1);
  1538     __ ucomiss(xmm1, xmm0);
  1539   } else {
  1540     // XXX get rid of pop here, use ... reg, mem64
  1541     __ pop_d(xmm1);
  1542     __ ucomisd(xmm1, xmm0);
  1544   if (unordered_result < 0) {
  1545     __ movl(rax, -1);
  1546     __ jccb(Assembler::parity, done);
  1547     __ jccb(Assembler::below, done);
  1548     __ setb(Assembler::notEqual, rdx);
  1549     __ movzbl(rax, rdx);
  1550   } else {
  1551     __ movl(rax, 1);
  1552     __ jccb(Assembler::parity, done);
  1553     __ jccb(Assembler::above, done);
  1554     __ movl(rax, 0);
  1555     __ jccb(Assembler::equal, done);
  1556     __ decrementl(rax);
  1558   __ bind(done);
  1561 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1562   __ get_method(rcx); // rcx holds method
  1563   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1564                                      // holds bumped taken count
  1566   const ByteSize be_offset = Method::backedge_counter_offset() +
  1567                              InvocationCounter::counter_offset();
  1568   const ByteSize inv_offset = Method::invocation_counter_offset() +
  1569                               InvocationCounter::counter_offset();
  1570   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1572   // Load up edx with the branch displacement
  1573   __ movl(rdx, at_bcp(1));
  1574   __ bswapl(rdx);
  1576   if (!is_wide) {
  1577     __ sarl(rdx, 16);
  1579   __ movl2ptr(rdx, rdx);
  1581   // Handle all the JSR stuff here, then exit.
  1582   // It's much shorter and cleaner than intermingling with the non-JSR
  1583   // normal-branch stuff occurring below.
  1584   if (is_jsr) {
  1585     // Pre-load the next target bytecode into rbx
  1586     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1588     // compute return address as bci in rax
  1589     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1590                         in_bytes(ConstMethod::codes_offset())));
  1591     __ subptr(rax, Address(rcx, Method::const_offset()));
  1592     // Adjust the bcp in r13 by the displacement in rdx
  1593     __ addptr(r13, rdx);
  1594     // jsr returns atos that is not an oop
  1595     __ push_i(rax);
  1596     __ dispatch_only(vtos);
  1597     return;
  1600   // Normal (non-jsr) branch handling
  1602   // Adjust the bcp in r13 by the displacement in rdx
  1603   __ addptr(r13, rdx);
  1605   assert(UseLoopCounter || !UseOnStackReplacement,
  1606          "on-stack-replacement requires loop counters");
  1607   Label backedge_counter_overflow;
  1608   Label profile_method;
  1609   Label dispatch;
  1610   if (UseLoopCounter) {
  1611     // increment backedge counter for backward branches
  1612     // rax: MDO
  1613     // ebx: MDO bumped taken-count
  1614     // rcx: method
  1615     // rdx: target offset
  1616     // r13: target bcp
  1617     // r14: locals pointer
  1618     __ testl(rdx, rdx);             // check if forward or backward branch
  1619     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1620     if (TieredCompilation) {
  1621       Label no_mdo;
  1622       int increment = InvocationCounter::count_increment;
  1623       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1624       if (ProfileInterpreter) {
  1625         // Are we profiling?
  1626         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1627         __ testptr(rbx, rbx);
  1628         __ jccb(Assembler::zero, no_mdo);
  1629         // Increment the MDO backedge counter
  1630         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1631                                            in_bytes(InvocationCounter::counter_offset()));
  1632         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1633                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1634         __ jmp(dispatch);
  1636       __ bind(no_mdo);
  1637       // Increment backedge counter in Method*
  1638       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1639                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1640     } else {
  1641       // increment counter
  1642       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1643       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1644       __ movl(Address(rcx, be_offset), rax);        // store counter
  1646       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1647       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1648       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1650       if (ProfileInterpreter) {
  1651         // Test to see if we should create a method data oop
  1652         __ cmp32(rax,
  1653                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1654         __ jcc(Assembler::less, dispatch);
  1656         // if no method data exists, go to profile method
  1657         __ test_method_data_pointer(rax, profile_method);
  1659         if (UseOnStackReplacement) {
  1660           // check for overflow against ebx which is the MDO taken count
  1661           __ cmp32(rbx,
  1662                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1663           __ jcc(Assembler::below, dispatch);
  1665           // When ProfileInterpreter is on, the backedge_count comes
  1666           // from the MethodData*, which value does not get reset on
  1667           // the call to frequency_counter_overflow().  To avoid
  1668           // excessive calls to the overflow routine while the method is
  1669           // being compiled, add a second test to make sure the overflow
  1670           // function is called only once every overflow_frequency.
  1671           const int overflow_frequency = 1024;
  1672           __ andl(rbx, overflow_frequency - 1);
  1673           __ jcc(Assembler::zero, backedge_counter_overflow);
  1676       } else {
  1677         if (UseOnStackReplacement) {
  1678           // check for overflow against eax, which is the sum of the
  1679           // counters
  1680           __ cmp32(rax,
  1681                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1682           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1687     __ bind(dispatch);
  1690   // Pre-load the next target bytecode into rbx
  1691   __ load_unsigned_byte(rbx, Address(r13, 0));
  1693   // continue with the bytecode @ target
  1694   // eax: return bci for jsr's, unused otherwise
  1695   // ebx: target bytecode
  1696   // r13: target bcp
  1697   __ dispatch_only(vtos);
  1699   if (UseLoopCounter) {
  1700     if (ProfileInterpreter) {
  1701       // Out-of-line code to allocate method data oop.
  1702       __ bind(profile_method);
  1703       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1704       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1705       __ set_method_data_pointer_for_bcp();
  1706       __ jmp(dispatch);
  1709     if (UseOnStackReplacement) {
  1710       // invocation counter overflow
  1711       __ bind(backedge_counter_overflow);
  1712       __ negptr(rdx);
  1713       __ addptr(rdx, r13); // branch bcp
  1714       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1715       __ call_VM(noreg,
  1716                  CAST_FROM_FN_PTR(address,
  1717                                   InterpreterRuntime::frequency_counter_overflow),
  1718                  rdx);
  1719       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1721       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1722       // ebx: target bytecode
  1723       // rdx: scratch
  1724       // r14: locals pointer
  1725       // r13: bcp
  1726       __ testptr(rax, rax);                        // test result
  1727       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1728       // nmethod may have been invalidated (VM may block upon call_VM return)
  1729       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1730       __ cmpl(rcx, InvalidOSREntryBci);
  1731       __ jcc(Assembler::equal, dispatch);
  1733       // We have the address of an on stack replacement routine in eax
  1734       // We need to prepare to execute the OSR method. First we must
  1735       // migrate the locals and monitors off of the stack.
  1737       __ mov(r13, rax);                             // save the nmethod
  1739       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1741       // eax is OSR buffer, move it to expected parameter location
  1742       __ mov(j_rarg0, rax);
  1744       // We use j_rarg definitions here so that registers don't conflict as parameter
  1745       // registers change across platforms as we are in the midst of a calling
  1746       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1748       const Register retaddr = j_rarg2;
  1749       const Register sender_sp = j_rarg1;
  1751       // pop the interpreter frame
  1752       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1753       __ leave();                                // remove frame anchor
  1754       __ pop(retaddr);                           // get return address
  1755       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1756       // Ensure compiled code always sees stack at proper alignment
  1757       __ andptr(rsp, -(StackAlignmentInBytes));
  1759       // unlike x86 we need no specialized return from compiled code
  1760       // to the interpreter or the call stub.
  1762       // push the return address
  1763       __ push(retaddr);
  1765       // and begin the OSR nmethod
  1766       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1772 void TemplateTable::if_0cmp(Condition cc) {
  1773   transition(itos, vtos);
  1774   // assume branch is more often taken than not (loops use backward branches)
  1775   Label not_taken;
  1776   __ testl(rax, rax);
  1777   __ jcc(j_not(cc), not_taken);
  1778   branch(false, false);
  1779   __ bind(not_taken);
  1780   __ profile_not_taken_branch(rax);
  1783 void TemplateTable::if_icmp(Condition cc) {
  1784   transition(itos, vtos);
  1785   // assume branch is more often taken than not (loops use backward branches)
  1786   Label not_taken;
  1787   __ pop_i(rdx);
  1788   __ cmpl(rdx, rax);
  1789   __ jcc(j_not(cc), not_taken);
  1790   branch(false, false);
  1791   __ bind(not_taken);
  1792   __ profile_not_taken_branch(rax);
  1795 void TemplateTable::if_nullcmp(Condition cc) {
  1796   transition(atos, vtos);
  1797   // assume branch is more often taken than not (loops use backward branches)
  1798   Label not_taken;
  1799   __ testptr(rax, rax);
  1800   __ jcc(j_not(cc), not_taken);
  1801   branch(false, false);
  1802   __ bind(not_taken);
  1803   __ profile_not_taken_branch(rax);
  1806 void TemplateTable::if_acmp(Condition cc) {
  1807   transition(atos, vtos);
  1808   // assume branch is more often taken than not (loops use backward branches)
  1809   Label not_taken;
  1810   __ pop_ptr(rdx);
  1811   __ cmpptr(rdx, rax);
  1812   __ jcc(j_not(cc), not_taken);
  1813   branch(false, false);
  1814   __ bind(not_taken);
  1815   __ profile_not_taken_branch(rax);
  1818 void TemplateTable::ret() {
  1819   transition(vtos, vtos);
  1820   locals_index(rbx);
  1821   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1822   __ profile_ret(rbx, rcx);
  1823   __ get_method(rax);
  1824   __ movptr(r13, Address(rax, Method::const_offset()));
  1825   __ lea(r13, Address(r13, rbx, Address::times_1,
  1826                       ConstMethod::codes_offset()));
  1827   __ dispatch_next(vtos);
  1830 void TemplateTable::wide_ret() {
  1831   transition(vtos, vtos);
  1832   locals_index_wide(rbx);
  1833   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1834   __ profile_ret(rbx, rcx);
  1835   __ get_method(rax);
  1836   __ movptr(r13, Address(rax, Method::const_offset()));
  1837   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
  1838   __ dispatch_next(vtos);
  1841 void TemplateTable::tableswitch() {
  1842   Label default_case, continue_execution;
  1843   transition(itos, vtos);
  1844   // align r13
  1845   __ lea(rbx, at_bcp(BytesPerInt));
  1846   __ andptr(rbx, -BytesPerInt);
  1847   // load lo & hi
  1848   __ movl(rcx, Address(rbx, BytesPerInt));
  1849   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1850   __ bswapl(rcx);
  1851   __ bswapl(rdx);
  1852   // check against lo & hi
  1853   __ cmpl(rax, rcx);
  1854   __ jcc(Assembler::less, default_case);
  1855   __ cmpl(rax, rdx);
  1856   __ jcc(Assembler::greater, default_case);
  1857   // lookup dispatch offset
  1858   __ subl(rax, rcx);
  1859   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1860   __ profile_switch_case(rax, rbx, rcx);
  1861   // continue execution
  1862   __ bind(continue_execution);
  1863   __ bswapl(rdx);
  1864   __ movl2ptr(rdx, rdx);
  1865   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1866   __ addptr(r13, rdx);
  1867   __ dispatch_only(vtos);
  1868   // handle default
  1869   __ bind(default_case);
  1870   __ profile_switch_default(rax);
  1871   __ movl(rdx, Address(rbx, 0));
  1872   __ jmp(continue_execution);
  1875 void TemplateTable::lookupswitch() {
  1876   transition(itos, itos);
  1877   __ stop("lookupswitch bytecode should have been rewritten");
  1880 void TemplateTable::fast_linearswitch() {
  1881   transition(itos, vtos);
  1882   Label loop_entry, loop, found, continue_execution;
  1883   // bswap rax so we can avoid bswapping the table entries
  1884   __ bswapl(rax);
  1885   // align r13
  1886   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1887                                     // this instruction (change offsets
  1888                                     // below)
  1889   __ andptr(rbx, -BytesPerInt);
  1890   // set counter
  1891   __ movl(rcx, Address(rbx, BytesPerInt));
  1892   __ bswapl(rcx);
  1893   __ jmpb(loop_entry);
  1894   // table search
  1895   __ bind(loop);
  1896   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1897   __ jcc(Assembler::equal, found);
  1898   __ bind(loop_entry);
  1899   __ decrementl(rcx);
  1900   __ jcc(Assembler::greaterEqual, loop);
  1901   // default case
  1902   __ profile_switch_default(rax);
  1903   __ movl(rdx, Address(rbx, 0));
  1904   __ jmp(continue_execution);
  1905   // entry found -> get offset
  1906   __ bind(found);
  1907   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1908   __ profile_switch_case(rcx, rax, rbx);
  1909   // continue execution
  1910   __ bind(continue_execution);
  1911   __ bswapl(rdx);
  1912   __ movl2ptr(rdx, rdx);
  1913   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1914   __ addptr(r13, rdx);
  1915   __ dispatch_only(vtos);
  1918 void TemplateTable::fast_binaryswitch() {
  1919   transition(itos, vtos);
  1920   // Implementation using the following core algorithm:
  1921   //
  1922   // int binary_search(int key, LookupswitchPair* array, int n) {
  1923   //   // Binary search according to "Methodik des Programmierens" by
  1924   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1925   //   int i = 0;
  1926   //   int j = n;
  1927   //   while (i+1 < j) {
  1928   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1929   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1930   //     // where a stands for the array and assuming that the (inexisting)
  1931   //     // element a[n] is infinitely big.
  1932   //     int h = (i + j) >> 1;
  1933   //     // i < h < j
  1934   //     if (key < array[h].fast_match()) {
  1935   //       j = h;
  1936   //     } else {
  1937   //       i = h;
  1938   //     }
  1939   //   }
  1940   //   // R: a[i] <= key < a[i+1] or Q
  1941   //   // (i.e., if key is within array, i is the correct index)
  1942   //   return i;
  1943   // }
  1945   // Register allocation
  1946   const Register key   = rax; // already set (tosca)
  1947   const Register array = rbx;
  1948   const Register i     = rcx;
  1949   const Register j     = rdx;
  1950   const Register h     = rdi;
  1951   const Register temp  = rsi;
  1953   // Find array start
  1954   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1955                                           // get rid of this
  1956                                           // instruction (change
  1957                                           // offsets below)
  1958   __ andptr(array, -BytesPerInt);
  1960   // Initialize i & j
  1961   __ xorl(i, i);                            // i = 0;
  1962   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1964   // Convert j into native byteordering
  1965   __ bswapl(j);
  1967   // And start
  1968   Label entry;
  1969   __ jmp(entry);
  1971   // binary search loop
  1973     Label loop;
  1974     __ bind(loop);
  1975     // int h = (i + j) >> 1;
  1976     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1977     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1978     // if (key < array[h].fast_match()) {
  1979     //   j = h;
  1980     // } else {
  1981     //   i = h;
  1982     // }
  1983     // Convert array[h].match to native byte-ordering before compare
  1984     __ movl(temp, Address(array, h, Address::times_8));
  1985     __ bswapl(temp);
  1986     __ cmpl(key, temp);
  1987     // j = h if (key <  array[h].fast_match())
  1988     __ cmovl(Assembler::less, j, h);
  1989     // i = h if (key >= array[h].fast_match())
  1990     __ cmovl(Assembler::greaterEqual, i, h);
  1991     // while (i+1 < j)
  1992     __ bind(entry);
  1993     __ leal(h, Address(i, 1)); // i+1
  1994     __ cmpl(h, j);             // i+1 < j
  1995     __ jcc(Assembler::less, loop);
  1998   // end of binary search, result index is i (must check again!)
  1999   Label default_case;
  2000   // Convert array[i].match to native byte-ordering before compare
  2001   __ movl(temp, Address(array, i, Address::times_8));
  2002   __ bswapl(temp);
  2003   __ cmpl(key, temp);
  2004   __ jcc(Assembler::notEqual, default_case);
  2006   // entry found -> j = offset
  2007   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2008   __ profile_switch_case(i, key, array);
  2009   __ bswapl(j);
  2010   __ movl2ptr(j, j);
  2011   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2012   __ addptr(r13, j);
  2013   __ dispatch_only(vtos);
  2015   // default case -> j = default offset
  2016   __ bind(default_case);
  2017   __ profile_switch_default(i);
  2018   __ movl(j, Address(array, -2 * BytesPerInt));
  2019   __ bswapl(j);
  2020   __ movl2ptr(j, j);
  2021   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2022   __ addptr(r13, j);
  2023   __ dispatch_only(vtos);
  2027 void TemplateTable::_return(TosState state) {
  2028   transition(state, state);
  2029   assert(_desc->calls_vm(),
  2030          "inconsistent calls_vm information"); // call in remove_activation
  2032   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2033     assert(state == vtos, "only valid state");
  2034     __ movptr(c_rarg1, aaddress(0));
  2035     __ load_klass(rdi, c_rarg1);
  2036     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2037     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2038     Label skip_register_finalizer;
  2039     __ jcc(Assembler::zero, skip_register_finalizer);
  2041     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2043     __ bind(skip_register_finalizer);
  2046   __ remove_activation(state, r13);
  2047   __ jmp(r13);
  2050 // ----------------------------------------------------------------------------
  2051 // Volatile variables demand their effects be made known to all CPU's
  2052 // in order.  Store buffers on most chips allow reads & writes to
  2053 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2054 // without some kind of memory barrier (i.e., it's not sufficient that
  2055 // the interpreter does not reorder volatile references, the hardware
  2056 // also must not reorder them).
  2057 //
  2058 // According to the new Java Memory Model (JMM):
  2059 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2060 //     writes act as aquire & release, so:
  2061 // (2) A read cannot let unrelated NON-volatile memory refs that
  2062 //     happen after the read float up to before the read.  It's OK for
  2063 //     non-volatile memory refs that happen before the volatile read to
  2064 //     float down below it.
  2065 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2066 //     memory refs that happen BEFORE the write float down to after the
  2067 //     write.  It's OK for non-volatile memory refs that happen after the
  2068 //     volatile write to float up before it.
  2069 //
  2070 // We only put in barriers around volatile refs (they are expensive),
  2071 // not _between_ memory refs (that would require us to track the
  2072 // flavor of the previous memory refs).  Requirements (2) and (3)
  2073 // require some barriers before volatile stores and after volatile
  2074 // loads.  These nearly cover requirement (1) but miss the
  2075 // volatile-store-volatile-load case.  This final case is placed after
  2076 // volatile-stores although it could just as well go before
  2077 // volatile-loads.
  2078 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2079                                      order_constraint) {
  2080   // Helper function to insert a is-volatile test and memory barrier
  2081   if (os::is_MP()) { // Not needed on single CPU
  2082     __ membar(order_constraint);
  2086 void TemplateTable::resolve_cache_and_index(int byte_no,
  2087                                             Register Rcache,
  2088                                             Register index,
  2089                                             size_t index_size) {
  2090   const Register temp = rbx;
  2091   assert_different_registers(Rcache, index, temp);
  2093   Label resolved;
  2094     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2095     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2096     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2097     __ jcc(Assembler::equal, resolved);
  2099   // resolve first time through
  2100   address entry;
  2101   switch (bytecode()) {
  2102   case Bytecodes::_getstatic:
  2103   case Bytecodes::_putstatic:
  2104   case Bytecodes::_getfield:
  2105   case Bytecodes::_putfield:
  2106     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2107     break;
  2108   case Bytecodes::_invokevirtual:
  2109   case Bytecodes::_invokespecial:
  2110   case Bytecodes::_invokestatic:
  2111   case Bytecodes::_invokeinterface:
  2112     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2113     break;
  2114   case Bytecodes::_invokehandle:
  2115     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
  2116     break;
  2117   case Bytecodes::_invokedynamic:
  2118     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2119     break;
  2120   default:
  2121     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2122     break;
  2124   __ movl(temp, (int) bytecode());
  2125   __ call_VM(noreg, entry, temp);
  2127   // Update registers with resolved info
  2128   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2129   __ bind(resolved);
  2132 // The cache and index registers must be set before call
  2133 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2134                                               Register cache,
  2135                                               Register index,
  2136                                               Register off,
  2137                                               Register flags,
  2138                                               bool is_static = false) {
  2139   assert_different_registers(cache, index, flags, off);
  2141   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2142   // Field offset
  2143   __ movptr(off, Address(cache, index, Address::times_ptr,
  2144                          in_bytes(cp_base_offset +
  2145                                   ConstantPoolCacheEntry::f2_offset())));
  2146   // Flags
  2147   __ movl(flags, Address(cache, index, Address::times_ptr,
  2148                          in_bytes(cp_base_offset +
  2149                                   ConstantPoolCacheEntry::flags_offset())));
  2151   // klass overwrite register
  2152   if (is_static) {
  2153     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2154                            in_bytes(cp_base_offset +
  2155                                     ConstantPoolCacheEntry::f1_offset())));
  2156     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2157     __ movptr(obj, Address(obj, mirror_offset));
  2161 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2162                                                Register method,
  2163                                                Register itable_index,
  2164                                                Register flags,
  2165                                                bool is_invokevirtual,
  2166                                                bool is_invokevfinal, /*unused*/
  2167                                                bool is_invokedynamic) {
  2168   // setup registers
  2169   const Register cache = rcx;
  2170   const Register index = rdx;
  2171   assert_different_registers(method, flags);
  2172   assert_different_registers(method, cache, index);
  2173   assert_different_registers(itable_index, flags);
  2174   assert_different_registers(itable_index, cache, index);
  2175   // determine constant pool cache field offsets
  2176   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2177   const int method_offset = in_bytes(
  2178     ConstantPoolCache::base_offset() +
  2179       ((byte_no == f2_byte)
  2180        ? ConstantPoolCacheEntry::f2_offset()
  2181        : ConstantPoolCacheEntry::f1_offset()));
  2182   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2183                                     ConstantPoolCacheEntry::flags_offset());
  2184   // access constant pool cache fields
  2185   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2186                                     ConstantPoolCacheEntry::f2_offset());
  2188   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2189   resolve_cache_and_index(byte_no, cache, index, index_size);
  2190     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2192   if (itable_index != noreg) {
  2193     // pick up itable or appendix index from f2 also:
  2194     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2196   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2199 // Correct values of the cache and index registers are preserved.
  2200 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2201                                             bool is_static, bool has_tos) {
  2202   // do the JVMTI work here to avoid disturbing the register state below
  2203   // We use c_rarg registers here because we want to use the register used in
  2204   // the call to the VM
  2205   if (JvmtiExport::can_post_field_access()) {
  2206     // Check to see if a field access watch has been set before we
  2207     // take the time to call into the VM.
  2208     Label L1;
  2209     assert_different_registers(cache, index, rax);
  2210     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2211     __ testl(rax, rax);
  2212     __ jcc(Assembler::zero, L1);
  2214     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2216     // cache entry pointer
  2217     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
  2218     __ shll(c_rarg3, LogBytesPerWord);
  2219     __ addptr(c_rarg2, c_rarg3);
  2220     if (is_static) {
  2221       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2222     } else {
  2223       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2224       __ verify_oop(c_rarg1);
  2226     // c_rarg1: object pointer or NULL
  2227     // c_rarg2: cache entry pointer
  2228     // c_rarg3: jvalue object on the stack
  2229     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2230                                        InterpreterRuntime::post_field_access),
  2231                c_rarg1, c_rarg2, c_rarg3);
  2232     __ get_cache_and_index_at_bcp(cache, index, 1);
  2233     __ bind(L1);
  2237 void TemplateTable::pop_and_check_object(Register r) {
  2238   __ pop_ptr(r);
  2239   __ null_check(r);  // for field access must check obj.
  2240   __ verify_oop(r);
  2243 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2244   transition(vtos, vtos);
  2246   const Register cache = rcx;
  2247   const Register index = rdx;
  2248   const Register obj   = c_rarg3;
  2249   const Register off   = rbx;
  2250   const Register flags = rax;
  2251   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2253   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2254   jvmti_post_field_access(cache, index, is_static, false);
  2255   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2257   if (!is_static) {
  2258     // obj is on the stack
  2259     pop_and_check_object(obj);
  2262   const Address field(obj, off, Address::times_1);
  2264   Label Done, notByte, notInt, notShort, notChar,
  2265               notLong, notFloat, notObj, notDouble;
  2267   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2268   // Make sure we don't need to mask edx after the above shift
  2269   assert(btos == 0, "change code, btos != 0");
  2271   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2272   __ jcc(Assembler::notZero, notByte);
  2273   // btos
  2274   __ load_signed_byte(rax, field);
  2275   __ push(btos);
  2276   // Rewrite bytecode to be faster
  2277   if (!is_static) {
  2278     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2280   __ jmp(Done);
  2282   __ bind(notByte);
  2283   __ cmpl(flags, atos);
  2284   __ jcc(Assembler::notEqual, notObj);
  2285   // atos
  2286   __ load_heap_oop(rax, field);
  2287   __ push(atos);
  2288   if (!is_static) {
  2289     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2291   __ jmp(Done);
  2293   __ bind(notObj);
  2294   __ cmpl(flags, itos);
  2295   __ jcc(Assembler::notEqual, notInt);
  2296   // itos
  2297   __ movl(rax, field);
  2298   __ push(itos);
  2299   // Rewrite bytecode to be faster
  2300   if (!is_static) {
  2301     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2303   __ jmp(Done);
  2305   __ bind(notInt);
  2306   __ cmpl(flags, ctos);
  2307   __ jcc(Assembler::notEqual, notChar);
  2308   // ctos
  2309   __ load_unsigned_short(rax, field);
  2310   __ push(ctos);
  2311   // Rewrite bytecode to be faster
  2312   if (!is_static) {
  2313     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2315   __ jmp(Done);
  2317   __ bind(notChar);
  2318   __ cmpl(flags, stos);
  2319   __ jcc(Assembler::notEqual, notShort);
  2320   // stos
  2321   __ load_signed_short(rax, field);
  2322   __ push(stos);
  2323   // Rewrite bytecode to be faster
  2324   if (!is_static) {
  2325     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2327   __ jmp(Done);
  2329   __ bind(notShort);
  2330   __ cmpl(flags, ltos);
  2331   __ jcc(Assembler::notEqual, notLong);
  2332   // ltos
  2333   __ movq(rax, field);
  2334   __ push(ltos);
  2335   // Rewrite bytecode to be faster
  2336   if (!is_static) {
  2337     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2339   __ jmp(Done);
  2341   __ bind(notLong);
  2342   __ cmpl(flags, ftos);
  2343   __ jcc(Assembler::notEqual, notFloat);
  2344   // ftos
  2345   __ movflt(xmm0, field);
  2346   __ push(ftos);
  2347   // Rewrite bytecode to be faster
  2348   if (!is_static) {
  2349     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2351   __ jmp(Done);
  2353   __ bind(notFloat);
  2354 #ifdef ASSERT
  2355   __ cmpl(flags, dtos);
  2356   __ jcc(Assembler::notEqual, notDouble);
  2357 #endif
  2358   // dtos
  2359   __ movdbl(xmm0, field);
  2360   __ push(dtos);
  2361   // Rewrite bytecode to be faster
  2362   if (!is_static) {
  2363     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2365 #ifdef ASSERT
  2366   __ jmp(Done);
  2368   __ bind(notDouble);
  2369   __ stop("Bad state");
  2370 #endif
  2372   __ bind(Done);
  2373   // [jk] not needed currently
  2374   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2375   //                                              Assembler::LoadStore));
  2379 void TemplateTable::getfield(int byte_no) {
  2380   getfield_or_static(byte_no, false);
  2383 void TemplateTable::getstatic(int byte_no) {
  2384   getfield_or_static(byte_no, true);
  2387 // The registers cache and index expected to be set before call.
  2388 // The function may destroy various registers, just not the cache and index registers.
  2389 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2390   transition(vtos, vtos);
  2392   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2394   if (JvmtiExport::can_post_field_modification()) {
  2395     // Check to see if a field modification watch has been set before
  2396     // we take the time to call into the VM.
  2397     Label L1;
  2398     assert_different_registers(cache, index, rax);
  2399     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2400     __ testl(rax, rax);
  2401     __ jcc(Assembler::zero, L1);
  2403     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2405     if (is_static) {
  2406       // Life is simple.  Null out the object pointer.
  2407       __ xorl(c_rarg1, c_rarg1);
  2408     } else {
  2409       // Life is harder. The stack holds the value on top, followed by
  2410       // the object.  We don't know the size of the value, though; it
  2411       // could be one or two words depending on its type. As a result,
  2412       // we must find the type to determine where the object is.
  2413       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2414                            Address::times_8,
  2415                            in_bytes(cp_base_offset +
  2416                                      ConstantPoolCacheEntry::flags_offset())));
  2417       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
  2418       // Make sure we don't need to mask rcx after the above shift
  2419       ConstantPoolCacheEntry::verify_tos_state_shift();
  2420       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2421       __ cmpl(c_rarg3, ltos);
  2422       __ cmovptr(Assembler::equal,
  2423                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2424       __ cmpl(c_rarg3, dtos);
  2425       __ cmovptr(Assembler::equal,
  2426                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2428     // cache entry pointer
  2429     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2430     __ shll(rscratch1, LogBytesPerWord);
  2431     __ addptr(c_rarg2, rscratch1);
  2432     // object (tos)
  2433     __ mov(c_rarg3, rsp);
  2434     // c_rarg1: object pointer set up above (NULL if static)
  2435     // c_rarg2: cache entry pointer
  2436     // c_rarg3: jvalue object on the stack
  2437     __ call_VM(noreg,
  2438                CAST_FROM_FN_PTR(address,
  2439                                 InterpreterRuntime::post_field_modification),
  2440                c_rarg1, c_rarg2, c_rarg3);
  2441     __ get_cache_and_index_at_bcp(cache, index, 1);
  2442     __ bind(L1);
  2446 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2447   transition(vtos, vtos);
  2449   const Register cache = rcx;
  2450   const Register index = rdx;
  2451   const Register obj   = rcx;
  2452   const Register off   = rbx;
  2453   const Register flags = rax;
  2454   const Register bc    = c_rarg3;
  2456   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2457   jvmti_post_field_mod(cache, index, is_static);
  2458   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2460   // [jk] not needed currently
  2461   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2462   //                                              Assembler::StoreStore));
  2464   Label notVolatile, Done;
  2465   __ movl(rdx, flags);
  2466   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2467   __ andl(rdx, 0x1);
  2469   // field address
  2470   const Address field(obj, off, Address::times_1);
  2472   Label notByte, notInt, notShort, notChar,
  2473         notLong, notFloat, notObj, notDouble;
  2475   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2477   assert(btos == 0, "change code, btos != 0");
  2478   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2479   __ jcc(Assembler::notZero, notByte);
  2481   // btos
  2483     __ pop(btos);
  2484     if (!is_static) pop_and_check_object(obj);
  2485     __ movb(field, rax);
  2486     if (!is_static) {
  2487       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2489     __ jmp(Done);
  2492   __ bind(notByte);
  2493   __ cmpl(flags, atos);
  2494   __ jcc(Assembler::notEqual, notObj);
  2496   // atos
  2498     __ pop(atos);
  2499     if (!is_static) pop_and_check_object(obj);
  2500     // Store into the field
  2501     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2502     if (!is_static) {
  2503       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2505     __ jmp(Done);
  2508   __ bind(notObj);
  2509   __ cmpl(flags, itos);
  2510   __ jcc(Assembler::notEqual, notInt);
  2512   // itos
  2514     __ pop(itos);
  2515     if (!is_static) pop_and_check_object(obj);
  2516     __ movl(field, rax);
  2517     if (!is_static) {
  2518       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2520     __ jmp(Done);
  2523   __ bind(notInt);
  2524   __ cmpl(flags, ctos);
  2525   __ jcc(Assembler::notEqual, notChar);
  2527   // ctos
  2529     __ pop(ctos);
  2530     if (!is_static) pop_and_check_object(obj);
  2531     __ movw(field, rax);
  2532     if (!is_static) {
  2533       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2535     __ jmp(Done);
  2538   __ bind(notChar);
  2539   __ cmpl(flags, stos);
  2540   __ jcc(Assembler::notEqual, notShort);
  2542   // stos
  2544     __ pop(stos);
  2545     if (!is_static) pop_and_check_object(obj);
  2546     __ movw(field, rax);
  2547     if (!is_static) {
  2548       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2550     __ jmp(Done);
  2553   __ bind(notShort);
  2554   __ cmpl(flags, ltos);
  2555   __ jcc(Assembler::notEqual, notLong);
  2557   // ltos
  2559     __ pop(ltos);
  2560     if (!is_static) pop_and_check_object(obj);
  2561     __ movq(field, rax);
  2562     if (!is_static) {
  2563       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2565     __ jmp(Done);
  2568   __ bind(notLong);
  2569   __ cmpl(flags, ftos);
  2570   __ jcc(Assembler::notEqual, notFloat);
  2572   // ftos
  2574     __ pop(ftos);
  2575     if (!is_static) pop_and_check_object(obj);
  2576     __ movflt(field, xmm0);
  2577     if (!is_static) {
  2578       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2580     __ jmp(Done);
  2583   __ bind(notFloat);
  2584 #ifdef ASSERT
  2585   __ cmpl(flags, dtos);
  2586   __ jcc(Assembler::notEqual, notDouble);
  2587 #endif
  2589   // dtos
  2591     __ pop(dtos);
  2592     if (!is_static) pop_and_check_object(obj);
  2593     __ movdbl(field, xmm0);
  2594     if (!is_static) {
  2595       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2599 #ifdef ASSERT
  2600   __ jmp(Done);
  2602   __ bind(notDouble);
  2603   __ stop("Bad state");
  2604 #endif
  2606   __ bind(Done);
  2608   // Check for volatile store
  2609   __ testl(rdx, rdx);
  2610   __ jcc(Assembler::zero, notVolatile);
  2611   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2612                                                Assembler::StoreStore));
  2613   __ bind(notVolatile);
  2616 void TemplateTable::putfield(int byte_no) {
  2617   putfield_or_static(byte_no, false);
  2620 void TemplateTable::putstatic(int byte_no) {
  2621   putfield_or_static(byte_no, true);
  2624 void TemplateTable::jvmti_post_fast_field_mod() {
  2625   if (JvmtiExport::can_post_field_modification()) {
  2626     // Check to see if a field modification watch has been set before
  2627     // we take the time to call into the VM.
  2628     Label L2;
  2629     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2630     __ testl(c_rarg3, c_rarg3);
  2631     __ jcc(Assembler::zero, L2);
  2632     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2633     __ verify_oop(rbx);
  2634     __ push_ptr(rbx);                 // put the object pointer back on tos
  2635     // Save tos values before call_VM() clobbers them. Since we have
  2636     // to do it for every data type, we use the saved values as the
  2637     // jvalue object.
  2638     switch (bytecode()) {          // load values into the jvalue object
  2639     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2640     case Bytecodes::_fast_bputfield: // fall through
  2641     case Bytecodes::_fast_sputfield: // fall through
  2642     case Bytecodes::_fast_cputfield: // fall through
  2643     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2644     case Bytecodes::_fast_dputfield: __ push_d(); break;
  2645     case Bytecodes::_fast_fputfield: __ push_f(); break;
  2646     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2648     default:
  2649       ShouldNotReachHere();
  2651     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
  2652     // access constant pool cache entry
  2653     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2654     __ verify_oop(rbx);
  2655     // rbx: object pointer copied above
  2656     // c_rarg2: cache entry pointer
  2657     // c_rarg3: jvalue object on the stack
  2658     __ call_VM(noreg,
  2659                CAST_FROM_FN_PTR(address,
  2660                                 InterpreterRuntime::post_field_modification),
  2661                rbx, c_rarg2, c_rarg3);
  2663     switch (bytecode()) {             // restore tos values
  2664     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2665     case Bytecodes::_fast_bputfield: // fall through
  2666     case Bytecodes::_fast_sputfield: // fall through
  2667     case Bytecodes::_fast_cputfield: // fall through
  2668     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2669     case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2670     case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2671     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2673     __ bind(L2);
  2677 void TemplateTable::fast_storefield(TosState state) {
  2678   transition(state, vtos);
  2680   ByteSize base = ConstantPoolCache::base_offset();
  2682   jvmti_post_fast_field_mod();
  2684   // access constant pool cache
  2685   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2687   // test for volatile with rdx
  2688   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2689                        in_bytes(base +
  2690                                 ConstantPoolCacheEntry::flags_offset())));
  2692   // replace index with field offset from cache entry
  2693   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2694                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2696   // [jk] not needed currently
  2697   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2698   //                                              Assembler::StoreStore));
  2700   Label notVolatile;
  2701   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2702   __ andl(rdx, 0x1);
  2704   // Get object from stack
  2705   pop_and_check_object(rcx);
  2707   // field address
  2708   const Address field(rcx, rbx, Address::times_1);
  2710   // access field
  2711   switch (bytecode()) {
  2712   case Bytecodes::_fast_aputfield:
  2713     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2714     break;
  2715   case Bytecodes::_fast_lputfield:
  2716     __ movq(field, rax);
  2717     break;
  2718   case Bytecodes::_fast_iputfield:
  2719     __ movl(field, rax);
  2720     break;
  2721   case Bytecodes::_fast_bputfield:
  2722     __ movb(field, rax);
  2723     break;
  2724   case Bytecodes::_fast_sputfield:
  2725     // fall through
  2726   case Bytecodes::_fast_cputfield:
  2727     __ movw(field, rax);
  2728     break;
  2729   case Bytecodes::_fast_fputfield:
  2730     __ movflt(field, xmm0);
  2731     break;
  2732   case Bytecodes::_fast_dputfield:
  2733     __ movdbl(field, xmm0);
  2734     break;
  2735   default:
  2736     ShouldNotReachHere();
  2739   // Check for volatile store
  2740   __ testl(rdx, rdx);
  2741   __ jcc(Assembler::zero, notVolatile);
  2742   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2743                                                Assembler::StoreStore));
  2744   __ bind(notVolatile);
  2748 void TemplateTable::fast_accessfield(TosState state) {
  2749   transition(atos, state);
  2751   // Do the JVMTI work here to avoid disturbing the register state below
  2752   if (JvmtiExport::can_post_field_access()) {
  2753     // Check to see if a field access watch has been set before we
  2754     // take the time to call into the VM.
  2755     Label L1;
  2756     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2757     __ testl(rcx, rcx);
  2758     __ jcc(Assembler::zero, L1);
  2759     // access constant pool cache entry
  2760     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2761     __ verify_oop(rax);
  2762     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2763     __ mov(c_rarg1, rax);
  2764     // c_rarg1: object pointer copied above
  2765     // c_rarg2: cache entry pointer
  2766     __ call_VM(noreg,
  2767                CAST_FROM_FN_PTR(address,
  2768                                 InterpreterRuntime::post_field_access),
  2769                c_rarg1, c_rarg2);
  2770     __ pop_ptr(rax); // restore object pointer
  2771     __ bind(L1);
  2774   // access constant pool cache
  2775   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2776   // replace index with field offset from cache entry
  2777   // [jk] not needed currently
  2778   // if (os::is_MP()) {
  2779   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2780   //                        in_bytes(ConstantPoolCache::base_offset() +
  2781   //                                 ConstantPoolCacheEntry::flags_offset())));
  2782   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2783   //   __ andl(rdx, 0x1);
  2784   // }
  2785   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2786                          in_bytes(ConstantPoolCache::base_offset() +
  2787                                   ConstantPoolCacheEntry::f2_offset())));
  2789   // rax: object
  2790   __ verify_oop(rax);
  2791   __ null_check(rax);
  2792   Address field(rax, rbx, Address::times_1);
  2794   // access field
  2795   switch (bytecode()) {
  2796   case Bytecodes::_fast_agetfield:
  2797     __ load_heap_oop(rax, field);
  2798     __ verify_oop(rax);
  2799     break;
  2800   case Bytecodes::_fast_lgetfield:
  2801     __ movq(rax, field);
  2802     break;
  2803   case Bytecodes::_fast_igetfield:
  2804     __ movl(rax, field);
  2805     break;
  2806   case Bytecodes::_fast_bgetfield:
  2807     __ movsbl(rax, field);
  2808     break;
  2809   case Bytecodes::_fast_sgetfield:
  2810     __ load_signed_short(rax, field);
  2811     break;
  2812   case Bytecodes::_fast_cgetfield:
  2813     __ load_unsigned_short(rax, field);
  2814     break;
  2815   case Bytecodes::_fast_fgetfield:
  2816     __ movflt(xmm0, field);
  2817     break;
  2818   case Bytecodes::_fast_dgetfield:
  2819     __ movdbl(xmm0, field);
  2820     break;
  2821   default:
  2822     ShouldNotReachHere();
  2824   // [jk] not needed currently
  2825   // if (os::is_MP()) {
  2826   //   Label notVolatile;
  2827   //   __ testl(rdx, rdx);
  2828   //   __ jcc(Assembler::zero, notVolatile);
  2829   //   __ membar(Assembler::LoadLoad);
  2830   //   __ bind(notVolatile);
  2831   //};
  2834 void TemplateTable::fast_xaccess(TosState state) {
  2835   transition(vtos, state);
  2837   // get receiver
  2838   __ movptr(rax, aaddress(0));
  2839   // access constant pool cache
  2840   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2841   __ movptr(rbx,
  2842             Address(rcx, rdx, Address::times_8,
  2843                     in_bytes(ConstantPoolCache::base_offset() +
  2844                              ConstantPoolCacheEntry::f2_offset())));
  2845   // make sure exception is reported in correct bcp range (getfield is
  2846   // next instruction)
  2847   __ increment(r13);
  2848   __ null_check(rax);
  2849   switch (state) {
  2850   case itos:
  2851     __ movl(rax, Address(rax, rbx, Address::times_1));
  2852     break;
  2853   case atos:
  2854     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2855     __ verify_oop(rax);
  2856     break;
  2857   case ftos:
  2858     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2859     break;
  2860   default:
  2861     ShouldNotReachHere();
  2864   // [jk] not needed currently
  2865   // if (os::is_MP()) {
  2866   //   Label notVolatile;
  2867   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2868   //                        in_bytes(ConstantPoolCache::base_offset() +
  2869   //                                 ConstantPoolCacheEntry::flags_offset())));
  2870   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2871   //   __ testl(rdx, 0x1);
  2872   //   __ jcc(Assembler::zero, notVolatile);
  2873   //   __ membar(Assembler::LoadLoad);
  2874   //   __ bind(notVolatile);
  2875   // }
  2877   __ decrement(r13);
  2882 //-----------------------------------------------------------------------------
  2883 // Calls
  2885 void TemplateTable::count_calls(Register method, Register temp) {
  2886   // implemented elsewhere
  2887   ShouldNotReachHere();
  2890 void TemplateTable::prepare_invoke(int byte_no,
  2891                                    Register method,  // linked method (or i-klass)
  2892                                    Register index,   // itable index, MethodType, etc.
  2893                                    Register recv,    // if caller wants to see it
  2894                                    Register flags    // if caller wants to test it
  2895                                    ) {
  2896   // determine flags
  2897   const Bytecodes::Code code = bytecode();
  2898   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2899   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2900   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2901   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2902   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2903   const bool load_receiver       = (recv  != noreg);
  2904   const bool save_flags          = (flags != noreg);
  2905   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2906   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2907   assert(flags == noreg || flags == rdx, "");
  2908   assert(recv  == noreg || recv  == rcx, "");
  2910   // setup registers & access constant pool cache
  2911   if (recv  == noreg)  recv  = rcx;
  2912   if (flags == noreg)  flags = rdx;
  2913   assert_different_registers(method, index, recv, flags);
  2915   // save 'interpreter return address'
  2916   __ save_bcp();
  2918   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2920   // maybe push appendix to arguments (just before return address)
  2921   if (is_invokedynamic || is_invokehandle) {
  2922     Label L_no_push;
  2923     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2924     __ jcc(Assembler::zero, L_no_push);
  2925     // Push the appendix as a trailing parameter.
  2926     // This must be done before we get the receiver,
  2927     // since the parameter_size includes it.
  2928     __ push(rbx);
  2929     __ mov(rbx, index);
  2930     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2931     __ load_resolved_reference_at_index(index, rbx);
  2932     __ pop(rbx);
  2933     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2934     __ bind(L_no_push);
  2937   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2938   // Note: no return address pushed yet
  2939   if (load_receiver) {
  2940     __ movl(recv, flags);
  2941     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2942     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2943     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2944     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2945     __ movptr(recv, recv_addr);
  2946     __ verify_oop(recv);
  2949   if (save_flags) {
  2950     __ movl(r13, flags);
  2953   // compute return type
  2954   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2955   // Make sure we don't need to mask flags after the above shift
  2956   ConstantPoolCacheEntry::verify_tos_state_shift();
  2957   // load return address
  2959     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2960         (address)Interpreter::return_5_addrs_by_index_table() :
  2961         (address)Interpreter::return_3_addrs_by_index_table();
  2962     ExternalAddress table(table_addr);
  2963     __ lea(rscratch1, table);
  2964     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2967   // push return address
  2968   __ push(flags);
  2970   // Restore flags value from the constant pool cache, and restore rsi
  2971   // for later null checks.  r13 is the bytecode pointer
  2972   if (save_flags) {
  2973     __ movl(flags, r13);
  2974     __ restore_bcp();
  2979 void TemplateTable::invokevirtual_helper(Register index,
  2980                                          Register recv,
  2981                                          Register flags) {
  2982   // Uses temporary registers rax, rdx
  2983   assert_different_registers(index, recv, rax, rdx);
  2984   assert(index == rbx, "");
  2985   assert(recv  == rcx, "");
  2987   // Test for an invoke of a final method
  2988   Label notFinal;
  2989   __ movl(rax, flags);
  2990   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  2991   __ jcc(Assembler::zero, notFinal);
  2993   const Register method = index;  // method must be rbx
  2994   assert(method == rbx,
  2995          "Method* must be rbx for interpreter calling convention");
  2997   // do the call - the index is actually the method to call
  2998   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  3000   // It's final, need a null check here!
  3001   __ null_check(recv);
  3003   // profile this call
  3004   __ profile_final_call(rax);
  3006   __ jump_from_interpreted(method, rax);
  3008   __ bind(notFinal);
  3010   // get receiver klass
  3011   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3012   __ load_klass(rax, recv);
  3014   // profile this call
  3015   __ profile_virtual_call(rax, r14, rdx);
  3017   // get target Method* & entry point
  3018   __ lookup_virtual_method(rax, index, method);
  3019   __ jump_from_interpreted(method, rdx);
  3023 void TemplateTable::invokevirtual(int byte_no) {
  3024   transition(vtos, vtos);
  3025   assert(byte_no == f2_byte, "use this argument");
  3026   prepare_invoke(byte_no,
  3027                  rbx,    // method or vtable index
  3028                  noreg,  // unused itable index
  3029                  rcx, rdx); // recv, flags
  3031   // rbx: index
  3032   // rcx: receiver
  3033   // rdx: flags
  3035   invokevirtual_helper(rbx, rcx, rdx);
  3039 void TemplateTable::invokespecial(int byte_no) {
  3040   transition(vtos, vtos);
  3041   assert(byte_no == f1_byte, "use this argument");
  3042   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3043                  rcx);  // get receiver also for null check
  3044   __ verify_oop(rcx);
  3045   __ null_check(rcx);
  3046   // do the call
  3047   __ profile_call(rax);
  3048   __ jump_from_interpreted(rbx, rax);
  3052 void TemplateTable::invokestatic(int byte_no) {
  3053   transition(vtos, vtos);
  3054   assert(byte_no == f1_byte, "use this argument");
  3055   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3056   // do the call
  3057   __ profile_call(rax);
  3058   __ jump_from_interpreted(rbx, rax);
  3061 void TemplateTable::fast_invokevfinal(int byte_no) {
  3062   transition(vtos, vtos);
  3063   assert(byte_no == f2_byte, "use this argument");
  3064   __ stop("fast_invokevfinal not used on amd64");
  3067 void TemplateTable::invokeinterface(int byte_no) {
  3068   transition(vtos, vtos);
  3069   assert(byte_no == f1_byte, "use this argument");
  3070   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3071                  rcx, rdx); // recv, flags
  3073   // rax: interface klass (from f1)
  3074   // rbx: itable index (from f2)
  3075   // rcx: receiver
  3076   // rdx: flags
  3078   // Special case of invokeinterface called for virtual method of
  3079   // java.lang.Object.  See cpCacheOop.cpp for details.
  3080   // This code isn't produced by javac, but could be produced by
  3081   // another compliant java compiler.
  3082   Label notMethod;
  3083   __ movl(r14, rdx);
  3084   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3085   __ jcc(Assembler::zero, notMethod);
  3087   invokevirtual_helper(rbx, rcx, rdx);
  3088   __ bind(notMethod);
  3090   // Get receiver klass into rdx - also a null check
  3091   __ restore_locals();  // restore r14
  3092   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3093   __ load_klass(rdx, rcx);
  3095   // profile this call
  3096   __ profile_virtual_call(rdx, r13, r14);
  3098   Label no_such_interface, no_such_method;
  3100   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3101                              rdx, rax, rbx,
  3102                              // outputs: method, scan temp. reg
  3103                              rbx, r13,
  3104                              no_such_interface);
  3106   // rbx: Method* to call
  3107   // rcx: receiver
  3108   // Check for abstract method error
  3109   // Note: This should be done more efficiently via a throw_abstract_method_error
  3110   //       interpreter entry point and a conditional jump to it in case of a null
  3111   //       method.
  3112   __ testptr(rbx, rbx);
  3113   __ jcc(Assembler::zero, no_such_method);
  3115   // do the call
  3116   // rcx: receiver
  3117   // rbx,: Method*
  3118   __ jump_from_interpreted(rbx, rdx);
  3119   __ should_not_reach_here();
  3121   // exception handling code follows...
  3122   // note: must restore interpreter registers to canonical
  3123   //       state for exception handling to work correctly!
  3125   __ bind(no_such_method);
  3126   // throw exception
  3127   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3128   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3129   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3130   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3131   // the call_VM checks for exception, so we should never return here.
  3132   __ should_not_reach_here();
  3134   __ bind(no_such_interface);
  3135   // throw exception
  3136   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3137   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3138   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3139   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3140                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3141   // the call_VM checks for exception, so we should never return here.
  3142   __ should_not_reach_here();
  3146 void TemplateTable::invokehandle(int byte_no) {
  3147   transition(vtos, vtos);
  3148   assert(byte_no == f1_byte, "use this argument");
  3149   const Register rbx_method = rbx;
  3150   const Register rax_mtype  = rax;
  3151   const Register rcx_recv   = rcx;
  3152   const Register rdx_flags  = rdx;
  3154   if (!EnableInvokeDynamic) {
  3155     // rewriter does not generate this bytecode
  3156     __ should_not_reach_here();
  3157     return;
  3160   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3161   __ verify_method_ptr(rbx_method);
  3162   __ verify_oop(rcx_recv);
  3163   __ null_check(rcx_recv);
  3165   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3166   // rbx: MH.invokeExact_MT method (from f2)
  3168   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3170   // FIXME: profile the LambdaForm also
  3171   __ profile_final_call(rax);
  3173   __ jump_from_interpreted(rbx_method, rdx);
  3177 void TemplateTable::invokedynamic(int byte_no) {
  3178   transition(vtos, vtos);
  3179   assert(byte_no == f1_byte, "use this argument");
  3181   if (!EnableInvokeDynamic) {
  3182     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3183     // The verifier will stop it.  However, if we get past the verifier,
  3184     // this will stop the thread in a reasonable way, without crashing the JVM.
  3185     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3186                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3187     // the call_VM checks for exception, so we should never return here.
  3188     __ should_not_reach_here();
  3189     return;
  3192   const Register rbx_method   = rbx;
  3193   const Register rax_callsite = rax;
  3195   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3197   // rax: CallSite object (from cpool->resolved_references[f1])
  3198   // rbx: MH.linkToCallSite method (from f2)
  3200   // Note:  rax_callsite is already pushed by prepare_invoke
  3202   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3203   // profile this call
  3204   __ profile_call(r13);
  3206   __ verify_oop(rax_callsite);
  3208   __ jump_from_interpreted(rbx_method, rdx);
  3212 //-----------------------------------------------------------------------------
  3213 // Allocation
  3215 void TemplateTable::_new() {
  3216   transition(vtos, atos);
  3217   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3218   Label slow_case;
  3219   Label done;
  3220   Label initialize_header;
  3221   Label initialize_object; // including clearing the fields
  3222   Label allocate_shared;
  3224   __ get_cpool_and_tags(rsi, rax);
  3225   // Make sure the class we're about to instantiate has been resolved.
  3226   // This is done before loading InstanceKlass to be consistent with the order
  3227   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3228   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3229   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3230           JVM_CONSTANT_Class);
  3231   __ jcc(Assembler::notEqual, slow_case);
  3233   // get InstanceKlass
  3234   __ movptr(rsi, Address(rsi, rdx,
  3235             Address::times_8, sizeof(ConstantPool)));
  3237   // make sure klass is initialized & doesn't have finalizer
  3238   // make sure klass is fully initialized
  3239   __ cmpb(Address(rsi,
  3240                   InstanceKlass::init_state_offset()),
  3241           InstanceKlass::fully_initialized);
  3242   __ jcc(Assembler::notEqual, slow_case);
  3244   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3245   __ movl(rdx,
  3246           Address(rsi,
  3247                   Klass::layout_helper_offset()));
  3248   // test to see if it has a finalizer or is malformed in some way
  3249   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3250   __ jcc(Assembler::notZero, slow_case);
  3252   // Allocate the instance
  3253   // 1) Try to allocate in the TLAB
  3254   // 2) if fail and the object is large allocate in the shared Eden
  3255   // 3) if the above fails (or is not applicable), go to a slow case
  3256   // (creates a new TLAB, etc.)
  3258   const bool allow_shared_alloc =
  3259     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3261   if (UseTLAB) {
  3262     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3263     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3264     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3265     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3266     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3267     if (ZeroTLAB) {
  3268       // the fields have been already cleared
  3269       __ jmp(initialize_header);
  3270     } else {
  3271       // initialize both the header and fields
  3272       __ jmp(initialize_object);
  3276   // Allocation in the shared Eden, if allowed.
  3277   //
  3278   // rdx: instance size in bytes
  3279   if (allow_shared_alloc) {
  3280     __ bind(allocate_shared);
  3282     ExternalAddress top((address)Universe::heap()->top_addr());
  3283     ExternalAddress end((address)Universe::heap()->end_addr());
  3285     const Register RtopAddr = rscratch1;
  3286     const Register RendAddr = rscratch2;
  3288     __ lea(RtopAddr, top);
  3289     __ lea(RendAddr, end);
  3290     __ movptr(rax, Address(RtopAddr, 0));
  3292     // For retries rax gets set by cmpxchgq
  3293     Label retry;
  3294     __ bind(retry);
  3295     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3296     __ cmpptr(rbx, Address(RendAddr, 0));
  3297     __ jcc(Assembler::above, slow_case);
  3299     // Compare rax with the top addr, and if still equal, store the new
  3300     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3301     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3302     //
  3303     // rax: object begin
  3304     // rbx: object end
  3305     // rdx: instance size in bytes
  3306     if (os::is_MP()) {
  3307       __ lock();
  3309     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3311     // if someone beat us on the allocation, try again, otherwise continue
  3312     __ jcc(Assembler::notEqual, retry);
  3314     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3317   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3318     // The object is initialized before the header.  If the object size is
  3319     // zero, go directly to the header initialization.
  3320     __ bind(initialize_object);
  3321     __ decrementl(rdx, sizeof(oopDesc));
  3322     __ jcc(Assembler::zero, initialize_header);
  3324     // Initialize object fields
  3325     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3326     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3328       Label loop;
  3329       __ bind(loop);
  3330       __ movq(Address(rax, rdx, Address::times_8,
  3331                       sizeof(oopDesc) - oopSize),
  3332               rcx);
  3333       __ decrementl(rdx);
  3334       __ jcc(Assembler::notZero, loop);
  3337     // initialize object header only.
  3338     __ bind(initialize_header);
  3339     if (UseBiasedLocking) {
  3340       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
  3341       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3342     } else {
  3343       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3344                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3346     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3347     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3348     __ store_klass(rax, rsi);      // store klass last
  3351       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3352       // Trigger dtrace event for fastpath
  3353       __ push(atos); // save the return value
  3354       __ call_VM_leaf(
  3355            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3356       __ pop(atos); // restore the return value
  3359     __ jmp(done);
  3363   // slow case
  3364   __ bind(slow_case);
  3365   __ get_constant_pool(c_rarg1);
  3366   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3368   __ verify_oop(rax);
  3370   // continue
  3371   __ bind(done);
  3374 void TemplateTable::newarray() {
  3375   transition(itos, atos);
  3376   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3377   __ movl(c_rarg2, rax);
  3378   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3379           c_rarg1, c_rarg2);
  3382 void TemplateTable::anewarray() {
  3383   transition(itos, atos);
  3384   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3385   __ get_constant_pool(c_rarg1);
  3386   __ movl(c_rarg3, rax);
  3387   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3388           c_rarg1, c_rarg2, c_rarg3);
  3391 void TemplateTable::arraylength() {
  3392   transition(atos, itos);
  3393   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3394   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3397 void TemplateTable::checkcast() {
  3398   transition(atos, atos);
  3399   Label done, is_null, ok_is_subtype, quicked, resolved;
  3400   __ testptr(rax, rax); // object is in rax
  3401   __ jcc(Assembler::zero, is_null);
  3403   // Get cpool & tags index
  3404   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3405   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3406   // See if bytecode has already been quicked
  3407   __ cmpb(Address(rdx, rbx,
  3408                   Address::times_1,
  3409                   Array<u1>::base_offset_in_bytes()),
  3410           JVM_CONSTANT_Class);
  3411   __ jcc(Assembler::equal, quicked);
  3412   __ push(atos); // save receiver for result, and for GC
  3413   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3414   // vm_result_2 has metadata result
  3415   __ get_vm_result_2(rax, r15_thread);
  3416   __ pop_ptr(rdx); // restore receiver
  3417   __ jmpb(resolved);
  3419   // Get superklass in rax and subklass in rbx
  3420   __ bind(quicked);
  3421   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3422   __ movptr(rax, Address(rcx, rbx,
  3423                        Address::times_8, sizeof(ConstantPool)));
  3425   __ bind(resolved);
  3426   __ load_klass(rbx, rdx);
  3428   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3429   // Superklass in rax.  Subklass in rbx.
  3430   __ gen_subtype_check(rbx, ok_is_subtype);
  3432   // Come here on failure
  3433   __ push_ptr(rdx);
  3434   // object is at TOS
  3435   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3437   // Come here on success
  3438   __ bind(ok_is_subtype);
  3439   __ mov(rax, rdx); // Restore object in rdx
  3441   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3442   if (ProfileInterpreter) {
  3443     __ jmp(done);
  3444     __ bind(is_null);
  3445     __ profile_null_seen(rcx);
  3446   } else {
  3447     __ bind(is_null);   // same as 'done'
  3449   __ bind(done);
  3452 void TemplateTable::instanceof() {
  3453   transition(atos, itos);
  3454   Label done, is_null, ok_is_subtype, quicked, resolved;
  3455   __ testptr(rax, rax);
  3456   __ jcc(Assembler::zero, is_null);
  3458   // Get cpool & tags index
  3459   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3460   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3461   // See if bytecode has already been quicked
  3462   __ cmpb(Address(rdx, rbx,
  3463                   Address::times_1,
  3464                   Array<u1>::base_offset_in_bytes()),
  3465           JVM_CONSTANT_Class);
  3466   __ jcc(Assembler::equal, quicked);
  3468   __ push(atos); // save receiver for result, and for GC
  3469   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3470   // vm_result_2 has metadata result
  3471   __ get_vm_result_2(rax, r15_thread);
  3472   __ pop_ptr(rdx); // restore receiver
  3473   __ verify_oop(rdx);
  3474   __ load_klass(rdx, rdx);
  3475   __ jmpb(resolved);
  3477   // Get superklass in rax and subklass in rdx
  3478   __ bind(quicked);
  3479   __ load_klass(rdx, rax);
  3480   __ movptr(rax, Address(rcx, rbx,
  3481                          Address::times_8, sizeof(ConstantPool)));
  3483   __ bind(resolved);
  3485   // Generate subtype check.  Blows rcx, rdi
  3486   // Superklass in rax.  Subklass in rdx.
  3487   __ gen_subtype_check(rdx, ok_is_subtype);
  3489   // Come here on failure
  3490   __ xorl(rax, rax);
  3491   __ jmpb(done);
  3492   // Come here on success
  3493   __ bind(ok_is_subtype);
  3494   __ movl(rax, 1);
  3496   // Collect counts on whether this test sees NULLs a lot or not.
  3497   if (ProfileInterpreter) {
  3498     __ jmp(done);
  3499     __ bind(is_null);
  3500     __ profile_null_seen(rcx);
  3501   } else {
  3502     __ bind(is_null);   // same as 'done'
  3504   __ bind(done);
  3505   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3506   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3509 //-----------------------------------------------------------------------------
  3510 // Breakpoints
  3511 void TemplateTable::_breakpoint() {
  3512   // Note: We get here even if we are single stepping..
  3513   // jbug inists on setting breakpoints at every bytecode
  3514   // even if we are in single step mode.
  3516   transition(vtos, vtos);
  3518   // get the unpatched byte code
  3519   __ get_method(c_rarg1);
  3520   __ call_VM(noreg,
  3521              CAST_FROM_FN_PTR(address,
  3522                               InterpreterRuntime::get_original_bytecode_at),
  3523              c_rarg1, r13);
  3524   __ mov(rbx, rax);
  3526   // post the breakpoint event
  3527   __ get_method(c_rarg1);
  3528   __ call_VM(noreg,
  3529              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3530              c_rarg1, r13);
  3532   // complete the execution of original bytecode
  3533   __ dispatch_only_normal(vtos);
  3536 //-----------------------------------------------------------------------------
  3537 // Exceptions
  3539 void TemplateTable::athrow() {
  3540   transition(atos, vtos);
  3541   __ null_check(rax);
  3542   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3545 //-----------------------------------------------------------------------------
  3546 // Synchronization
  3547 //
  3548 // Note: monitorenter & exit are symmetric routines; which is reflected
  3549 //       in the assembly code structure as well
  3550 //
  3551 // Stack layout:
  3552 //
  3553 // [expressions  ] <--- rsp               = expression stack top
  3554 // ..
  3555 // [expressions  ]
  3556 // [monitor entry] <--- monitor block top = expression stack bot
  3557 // ..
  3558 // [monitor entry]
  3559 // [frame data   ] <--- monitor block bot
  3560 // ...
  3561 // [saved rbp    ] <--- rbp
  3562 void TemplateTable::monitorenter() {
  3563   transition(atos, vtos);
  3565   // check for NULL object
  3566   __ null_check(rax);
  3568   const Address monitor_block_top(
  3569         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3570   const Address monitor_block_bot(
  3571         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3572   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3574   Label allocated;
  3576   // initialize entry pointer
  3577   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3579   // find a free slot in the monitor block (result in c_rarg1)
  3581     Label entry, loop, exit;
  3582     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3583                                      // starting with top-most entry
  3584     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3585                                      // of monitor block
  3586     __ jmpb(entry);
  3588     __ bind(loop);
  3589     // check if current entry is used
  3590     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3591     // if not used then remember entry in c_rarg1
  3592     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3593     // check if current entry is for same object
  3594     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3595     // if same object then stop searching
  3596     __ jccb(Assembler::equal, exit);
  3597     // otherwise advance to next entry
  3598     __ addptr(c_rarg3, entry_size);
  3599     __ bind(entry);
  3600     // check if bottom reached
  3601     __ cmpptr(c_rarg3, c_rarg2);
  3602     // if not at bottom then check this entry
  3603     __ jcc(Assembler::notEqual, loop);
  3604     __ bind(exit);
  3607   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3608   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3610   // allocate one if there's no free slot
  3612     Label entry, loop;
  3613     // 1. compute new pointers             // rsp: old expression stack top
  3614     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3615     __ subptr(rsp, entry_size);            // move expression stack top
  3616     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3617     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3618     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3619     __ jmp(entry);
  3620     // 2. move expression stack contents
  3621     __ bind(loop);
  3622     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3623                                                       // word from old location
  3624     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3625     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3626     __ bind(entry);
  3627     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3628     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3629                                             // copy next word
  3632   // call run-time routine
  3633   // c_rarg1: points to monitor entry
  3634   __ bind(allocated);
  3636   // Increment bcp to point to the next bytecode, so exception
  3637   // handling for async. exceptions work correctly.
  3638   // The object has already been poped from the stack, so the
  3639   // expression stack looks correct.
  3640   __ increment(r13);
  3642   // store object
  3643   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3644   __ lock_object(c_rarg1);
  3646   // check to make sure this monitor doesn't cause stack overflow after locking
  3647   __ save_bcp();  // in case of exception
  3648   __ generate_stack_overflow_check(0);
  3650   // The bcp has already been incremented. Just need to dispatch to
  3651   // next instruction.
  3652   __ dispatch_next(vtos);
  3656 void TemplateTable::monitorexit() {
  3657   transition(atos, vtos);
  3659   // check for NULL object
  3660   __ null_check(rax);
  3662   const Address monitor_block_top(
  3663         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3664   const Address monitor_block_bot(
  3665         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3666   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3668   Label found;
  3670   // find matching slot
  3672     Label entry, loop;
  3673     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3674                                      // starting with top-most entry
  3675     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3676                                      // of monitor block
  3677     __ jmpb(entry);
  3679     __ bind(loop);
  3680     // check if current entry is for same object
  3681     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3682     // if same object then stop searching
  3683     __ jcc(Assembler::equal, found);
  3684     // otherwise advance to next entry
  3685     __ addptr(c_rarg1, entry_size);
  3686     __ bind(entry);
  3687     // check if bottom reached
  3688     __ cmpptr(c_rarg1, c_rarg2);
  3689     // if not at bottom then check this entry
  3690     __ jcc(Assembler::notEqual, loop);
  3693   // error handling. Unlocking was not block-structured
  3694   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3695                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3696   __ should_not_reach_here();
  3698   // call run-time routine
  3699   // rsi: points to monitor entry
  3700   __ bind(found);
  3701   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3702   __ unlock_object(c_rarg1);
  3703   __ pop_ptr(rax); // discard object
  3707 // Wide instructions
  3708 void TemplateTable::wide() {
  3709   transition(vtos, vtos);
  3710   __ load_unsigned_byte(rbx, at_bcp(1));
  3711   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3712   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3713   // Note: the r13 increment step is part of the individual wide
  3714   // bytecode implementations
  3718 // Multi arrays
  3719 void TemplateTable::multianewarray() {
  3720   transition(vtos, atos);
  3721   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3722   // last dim is on top of stack; we want address of first one:
  3723   // first_addr = last_addr + (ndims - 1) * wordSize
  3724   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3725   call_VM(rax,
  3726           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3727           c_rarg1);
  3728   __ load_unsigned_byte(rbx, at_bcp(3));
  3729   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3731 #endif // !CC_INTERP

mercurial