src/cpu/x86/vm/templateTable_x86_64.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4318
cd3d6a6b95d9
child 4933
f2e682ef3156
child 4936
aeaca88565e6
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    38 #include "utilities/macros.hpp"
    40 #ifndef CC_INTERP
    42 #define __ _masm->
    44 // Platform-dependent initialization
    46 void TemplateTable::pd_initialize() {
    47   // No amd64 specific initialization
    48 }
    50 // Address computation: local variables
    52 static inline Address iaddress(int n) {
    53   return Address(r14, Interpreter::local_offset_in_bytes(n));
    54 }
    56 static inline Address laddress(int n) {
    57   return iaddress(n + 1);
    58 }
    60 static inline Address faddress(int n) {
    61   return iaddress(n);
    62 }
    64 static inline Address daddress(int n) {
    65   return laddress(n);
    66 }
    68 static inline Address aaddress(int n) {
    69   return iaddress(n);
    70 }
    72 static inline Address iaddress(Register r) {
    73   return Address(r14, r, Address::times_8);
    74 }
    76 static inline Address laddress(Register r) {
    77   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    78 }
    80 static inline Address faddress(Register r) {
    81   return iaddress(r);
    82 }
    84 static inline Address daddress(Register r) {
    85   return laddress(r);
    86 }
    88 static inline Address aaddress(Register r) {
    89   return iaddress(r);
    90 }
    92 static inline Address at_rsp() {
    93   return Address(rsp, 0);
    94 }
    96 // At top of Java expression stack which may be different than esp().  It
    97 // isn't for category 1 objects.
    98 static inline Address at_tos   () {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
   100 }
   102 static inline Address at_tos_p1() {
   103   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   104 }
   106 static inline Address at_tos_p2() {
   107   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   108 }
   110 static inline Address at_tos_p3() {
   111   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   112 }
   114 // Condition conversion
   115 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   116   switch (cc) {
   117   case TemplateTable::equal        : return Assembler::notEqual;
   118   case TemplateTable::not_equal    : return Assembler::equal;
   119   case TemplateTable::less         : return Assembler::greaterEqual;
   120   case TemplateTable::less_equal   : return Assembler::greater;
   121   case TemplateTable::greater      : return Assembler::lessEqual;
   122   case TemplateTable::greater_equal: return Assembler::less;
   123   }
   124   ShouldNotReachHere();
   125   return Assembler::zero;
   126 }
   129 // Miscelaneous helper routines
   130 // Store an oop (or NULL) at the address described by obj.
   131 // If val == noreg this means store a NULL
   133 static void do_oop_store(InterpreterMacroAssembler* _masm,
   134                          Address obj,
   135                          Register val,
   136                          BarrierSet::Name barrier,
   137                          bool precise) {
   138   assert(val == noreg || val == rax, "parameter is just for looks");
   139   switch (barrier) {
   140 #if INCLUDE_ALL_GCS
   141     case BarrierSet::G1SATBCT:
   142     case BarrierSet::G1SATBCTLogging:
   143       {
   144         // flatten object address if needed
   145         if (obj.index() == noreg && obj.disp() == 0) {
   146           if (obj.base() != rdx) {
   147             __ movq(rdx, obj.base());
   148           }
   149         } else {
   150           __ leaq(rdx, obj);
   151         }
   152         __ g1_write_barrier_pre(rdx /* obj */,
   153                                 rbx /* pre_val */,
   154                                 r15_thread /* thread */,
   155                                 r8  /* tmp */,
   156                                 val != noreg /* tosca_live */,
   157                                 false /* expand_call */);
   158         if (val == noreg) {
   159           __ store_heap_oop_null(Address(rdx, 0));
   160         } else {
   161           __ store_heap_oop(Address(rdx, 0), val);
   162           __ g1_write_barrier_post(rdx /* store_adr */,
   163                                    val /* new_val */,
   164                                    r15_thread /* thread */,
   165                                    r8 /* tmp */,
   166                                    rbx /* tmp2 */);
   167         }
   169       }
   170       break;
   171 #endif // INCLUDE_ALL_GCS
   172     case BarrierSet::CardTableModRef:
   173     case BarrierSet::CardTableExtension:
   174       {
   175         if (val == noreg) {
   176           __ store_heap_oop_null(obj);
   177         } else {
   178           __ store_heap_oop(obj, val);
   179           // flatten object address if needed
   180           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   181             __ store_check(obj.base());
   182           } else {
   183             __ leaq(rdx, obj);
   184             __ store_check(rdx);
   185           }
   186         }
   187       }
   188       break;
   189     case BarrierSet::ModRef:
   190     case BarrierSet::Other:
   191       if (val == noreg) {
   192         __ store_heap_oop_null(obj);
   193       } else {
   194         __ store_heap_oop(obj, val);
   195       }
   196       break;
   197     default      :
   198       ShouldNotReachHere();
   200   }
   201 }
   203 Address TemplateTable::at_bcp(int offset) {
   204   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   205   return Address(r13, offset);
   206 }
   208 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   209                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   210                                    int byte_no) {
   211   if (!RewriteBytecodes)  return;
   212   Label L_patch_done;
   214   switch (bc) {
   215   case Bytecodes::_fast_aputfield:
   216   case Bytecodes::_fast_bputfield:
   217   case Bytecodes::_fast_cputfield:
   218   case Bytecodes::_fast_dputfield:
   219   case Bytecodes::_fast_fputfield:
   220   case Bytecodes::_fast_iputfield:
   221   case Bytecodes::_fast_lputfield:
   222   case Bytecodes::_fast_sputfield:
   223     {
   224       // We skip bytecode quickening for putfield instructions when
   225       // the put_code written to the constant pool cache is zero.
   226       // This is required so that every execution of this instruction
   227       // calls out to InterpreterRuntime::resolve_get_put to do
   228       // additional, required work.
   229       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   230       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   231       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   232       __ movl(bc_reg, bc);
   233       __ cmpl(temp_reg, (int) 0);
   234       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   235     }
   236     break;
   237   default:
   238     assert(byte_no == -1, "sanity");
   239     // the pair bytecodes have already done the load.
   240     if (load_bc_into_bc_reg) {
   241       __ movl(bc_reg, bc);
   242     }
   243   }
   245   if (JvmtiExport::can_post_breakpoint()) {
   246     Label L_fast_patch;
   247     // if a breakpoint is present we can't rewrite the stream directly
   248     __ movzbl(temp_reg, at_bcp(0));
   249     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   250     __ jcc(Assembler::notEqual, L_fast_patch);
   251     __ get_method(temp_reg);
   252     // Let breakpoint table handling rewrite to quicker bytecode
   253     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   254 #ifndef ASSERT
   255     __ jmpb(L_patch_done);
   256 #else
   257     __ jmp(L_patch_done);
   258 #endif
   259     __ bind(L_fast_patch);
   260   }
   262 #ifdef ASSERT
   263   Label L_okay;
   264   __ load_unsigned_byte(temp_reg, at_bcp(0));
   265   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   266   __ jcc(Assembler::equal, L_okay);
   267   __ cmpl(temp_reg, bc_reg);
   268   __ jcc(Assembler::equal, L_okay);
   269   __ stop("patching the wrong bytecode");
   270   __ bind(L_okay);
   271 #endif
   273   // patch bytecode
   274   __ movb(at_bcp(0), bc_reg);
   275   __ bind(L_patch_done);
   276 }
   279 // Individual instructions
   281 void TemplateTable::nop() {
   282   transition(vtos, vtos);
   283   // nothing to do
   284 }
   286 void TemplateTable::shouldnotreachhere() {
   287   transition(vtos, vtos);
   288   __ stop("shouldnotreachhere bytecode");
   289 }
   291 void TemplateTable::aconst_null() {
   292   transition(vtos, atos);
   293   __ xorl(rax, rax);
   294 }
   296 void TemplateTable::iconst(int value) {
   297   transition(vtos, itos);
   298   if (value == 0) {
   299     __ xorl(rax, rax);
   300   } else {
   301     __ movl(rax, value);
   302   }
   303 }
   305 void TemplateTable::lconst(int value) {
   306   transition(vtos, ltos);
   307   if (value == 0) {
   308     __ xorl(rax, rax);
   309   } else {
   310     __ movl(rax, value);
   311   }
   312 }
   314 void TemplateTable::fconst(int value) {
   315   transition(vtos, ftos);
   316   static float one = 1.0f, two = 2.0f;
   317   switch (value) {
   318   case 0:
   319     __ xorps(xmm0, xmm0);
   320     break;
   321   case 1:
   322     __ movflt(xmm0, ExternalAddress((address) &one));
   323     break;
   324   case 2:
   325     __ movflt(xmm0, ExternalAddress((address) &two));
   326     break;
   327   default:
   328     ShouldNotReachHere();
   329     break;
   330   }
   331 }
   333 void TemplateTable::dconst(int value) {
   334   transition(vtos, dtos);
   335   static double one = 1.0;
   336   switch (value) {
   337   case 0:
   338     __ xorpd(xmm0, xmm0);
   339     break;
   340   case 1:
   341     __ movdbl(xmm0, ExternalAddress((address) &one));
   342     break;
   343   default:
   344     ShouldNotReachHere();
   345     break;
   346   }
   347 }
   349 void TemplateTable::bipush() {
   350   transition(vtos, itos);
   351   __ load_signed_byte(rax, at_bcp(1));
   352 }
   354 void TemplateTable::sipush() {
   355   transition(vtos, itos);
   356   __ load_unsigned_short(rax, at_bcp(1));
   357   __ bswapl(rax);
   358   __ sarl(rax, 16);
   359 }
   361 void TemplateTable::ldc(bool wide) {
   362   transition(vtos, vtos);
   363   Label call_ldc, notFloat, notClass, Done;
   365   if (wide) {
   366     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   367   } else {
   368     __ load_unsigned_byte(rbx, at_bcp(1));
   369   }
   371   __ get_cpool_and_tags(rcx, rax);
   372   const int base_offset = ConstantPool::header_size() * wordSize;
   373   const int tags_offset = Array<u1>::base_offset_in_bytes();
   375   // get type
   376   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   378   // unresolved class - get the resolved class
   379   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   380   __ jccb(Assembler::equal, call_ldc);
   382   // unresolved class in error state - call into runtime to throw the error
   383   // from the first resolution attempt
   384   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   385   __ jccb(Assembler::equal, call_ldc);
   387   // resolved class - need to call vm to get java mirror of the class
   388   __ cmpl(rdx, JVM_CONSTANT_Class);
   389   __ jcc(Assembler::notEqual, notClass);
   391   __ bind(call_ldc);
   392   __ movl(c_rarg1, wide);
   393   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   394   __ push_ptr(rax);
   395   __ verify_oop(rax);
   396   __ jmp(Done);
   398   __ bind(notClass);
   399   __ cmpl(rdx, JVM_CONSTANT_Float);
   400   __ jccb(Assembler::notEqual, notFloat);
   401   // ftos
   402   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   403   __ push_f();
   404   __ jmp(Done);
   406   __ bind(notFloat);
   407 #ifdef ASSERT
   408   {
   409     Label L;
   410     __ cmpl(rdx, JVM_CONSTANT_Integer);
   411     __ jcc(Assembler::equal, L);
   412     // String and Object are rewritten to fast_aldc
   413     __ stop("unexpected tag type in ldc");
   414     __ bind(L);
   415   }
   416 #endif
   417   // itos JVM_CONSTANT_Integer only
   418   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   419   __ push_i(rax);
   420   __ bind(Done);
   421 }
   423 // Fast path for caching oop constants.
   424 void TemplateTable::fast_aldc(bool wide) {
   425   transition(vtos, atos);
   427   Register result = rax;
   428   Register tmp = rdx;
   429   int index_size = wide ? sizeof(u2) : sizeof(u1);
   431   Label resolved;
   433   // We are resolved if the resolved reference cache entry contains a
   434   // non-null object (String, MethodType, etc.)
   435   assert_different_registers(result, tmp);
   436   __ get_cache_index_at_bcp(tmp, 1, index_size);
   437   __ load_resolved_reference_at_index(result, tmp);
   438   __ testl(result, result);
   439   __ jcc(Assembler::notZero, resolved);
   441   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   443   // first time invocation - must resolve first
   444   __ movl(tmp, (int)bytecode());
   445   __ call_VM(result, entry, tmp);
   447   __ bind(resolved);
   449   if (VerifyOops) {
   450     __ verify_oop(result);
   451   }
   452 }
   454 void TemplateTable::ldc2_w() {
   455   transition(vtos, vtos);
   456   Label Long, Done;
   457   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   459   __ get_cpool_and_tags(rcx, rax);
   460   const int base_offset = ConstantPool::header_size() * wordSize;
   461   const int tags_offset = Array<u1>::base_offset_in_bytes();
   463   // get type
   464   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   465           JVM_CONSTANT_Double);
   466   __ jccb(Assembler::notEqual, Long);
   467   // dtos
   468   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   469   __ push_d();
   470   __ jmpb(Done);
   472   __ bind(Long);
   473   // ltos
   474   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   475   __ push_l();
   477   __ bind(Done);
   478 }
   480 void TemplateTable::locals_index(Register reg, int offset) {
   481   __ load_unsigned_byte(reg, at_bcp(offset));
   482   __ negptr(reg);
   483 }
   485 void TemplateTable::iload() {
   486   transition(vtos, itos);
   487   if (RewriteFrequentPairs) {
   488     Label rewrite, done;
   489     const Register bc = c_rarg3;
   490     assert(rbx != bc, "register damaged");
   492     // get next byte
   493     __ load_unsigned_byte(rbx,
   494                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   495     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   496     // last two iloads in a pair.  Comparing against fast_iload means that
   497     // the next bytecode is neither an iload or a caload, and therefore
   498     // an iload pair.
   499     __ cmpl(rbx, Bytecodes::_iload);
   500     __ jcc(Assembler::equal, done);
   502     __ cmpl(rbx, Bytecodes::_fast_iload);
   503     __ movl(bc, Bytecodes::_fast_iload2);
   504     __ jccb(Assembler::equal, rewrite);
   506     // if _caload, rewrite to fast_icaload
   507     __ cmpl(rbx, Bytecodes::_caload);
   508     __ movl(bc, Bytecodes::_fast_icaload);
   509     __ jccb(Assembler::equal, rewrite);
   511     // rewrite so iload doesn't check again.
   512     __ movl(bc, Bytecodes::_fast_iload);
   514     // rewrite
   515     // bc: fast bytecode
   516     __ bind(rewrite);
   517     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   518     __ bind(done);
   519   }
   521   // Get the local value into tos
   522   locals_index(rbx);
   523   __ movl(rax, iaddress(rbx));
   524 }
   526 void TemplateTable::fast_iload2() {
   527   transition(vtos, itos);
   528   locals_index(rbx);
   529   __ movl(rax, iaddress(rbx));
   530   __ push(itos);
   531   locals_index(rbx, 3);
   532   __ movl(rax, iaddress(rbx));
   533 }
   535 void TemplateTable::fast_iload() {
   536   transition(vtos, itos);
   537   locals_index(rbx);
   538   __ movl(rax, iaddress(rbx));
   539 }
   541 void TemplateTable::lload() {
   542   transition(vtos, ltos);
   543   locals_index(rbx);
   544   __ movq(rax, laddress(rbx));
   545 }
   547 void TemplateTable::fload() {
   548   transition(vtos, ftos);
   549   locals_index(rbx);
   550   __ movflt(xmm0, faddress(rbx));
   551 }
   553 void TemplateTable::dload() {
   554   transition(vtos, dtos);
   555   locals_index(rbx);
   556   __ movdbl(xmm0, daddress(rbx));
   557 }
   559 void TemplateTable::aload() {
   560   transition(vtos, atos);
   561   locals_index(rbx);
   562   __ movptr(rax, aaddress(rbx));
   563 }
   565 void TemplateTable::locals_index_wide(Register reg) {
   566   __ movl(reg, at_bcp(2));
   567   __ bswapl(reg);
   568   __ shrl(reg, 16);
   569   __ negptr(reg);
   570 }
   572 void TemplateTable::wide_iload() {
   573   transition(vtos, itos);
   574   locals_index_wide(rbx);
   575   __ movl(rax, iaddress(rbx));
   576 }
   578 void TemplateTable::wide_lload() {
   579   transition(vtos, ltos);
   580   locals_index_wide(rbx);
   581   __ movq(rax, laddress(rbx));
   582 }
   584 void TemplateTable::wide_fload() {
   585   transition(vtos, ftos);
   586   locals_index_wide(rbx);
   587   __ movflt(xmm0, faddress(rbx));
   588 }
   590 void TemplateTable::wide_dload() {
   591   transition(vtos, dtos);
   592   locals_index_wide(rbx);
   593   __ movdbl(xmm0, daddress(rbx));
   594 }
   596 void TemplateTable::wide_aload() {
   597   transition(vtos, atos);
   598   locals_index_wide(rbx);
   599   __ movptr(rax, aaddress(rbx));
   600 }
   602 void TemplateTable::index_check(Register array, Register index) {
   603   // destroys rbx
   604   // check array
   605   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   606   // sign extend index for use by indexed load
   607   __ movl2ptr(index, index);
   608   // check index
   609   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   610   if (index != rbx) {
   611     // ??? convention: move aberrant index into ebx for exception message
   612     assert(rbx != array, "different registers");
   613     __ movl(rbx, index);
   614   }
   615   __ jump_cc(Assembler::aboveEqual,
   616              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   617 }
   619 void TemplateTable::iaload() {
   620   transition(itos, itos);
   621   __ pop_ptr(rdx);
   622   // eax: index
   623   // rdx: array
   624   index_check(rdx, rax); // kills rbx
   625   __ movl(rax, Address(rdx, rax,
   626                        Address::times_4,
   627                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   628 }
   630 void TemplateTable::laload() {
   631   transition(itos, ltos);
   632   __ pop_ptr(rdx);
   633   // eax: index
   634   // rdx: array
   635   index_check(rdx, rax); // kills rbx
   636   __ movq(rax, Address(rdx, rbx,
   637                        Address::times_8,
   638                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   639 }
   641 void TemplateTable::faload() {
   642   transition(itos, ftos);
   643   __ pop_ptr(rdx);
   644   // eax: index
   645   // rdx: array
   646   index_check(rdx, rax); // kills rbx
   647   __ movflt(xmm0, Address(rdx, rax,
   648                          Address::times_4,
   649                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   650 }
   652 void TemplateTable::daload() {
   653   transition(itos, dtos);
   654   __ pop_ptr(rdx);
   655   // eax: index
   656   // rdx: array
   657   index_check(rdx, rax); // kills rbx
   658   __ movdbl(xmm0, Address(rdx, rax,
   659                           Address::times_8,
   660                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   661 }
   663 void TemplateTable::aaload() {
   664   transition(itos, atos);
   665   __ pop_ptr(rdx);
   666   // eax: index
   667   // rdx: array
   668   index_check(rdx, rax); // kills rbx
   669   __ load_heap_oop(rax, Address(rdx, rax,
   670                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   671                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   672 }
   674 void TemplateTable::baload() {
   675   transition(itos, itos);
   676   __ pop_ptr(rdx);
   677   // eax: index
   678   // rdx: array
   679   index_check(rdx, rax); // kills rbx
   680   __ load_signed_byte(rax,
   681                       Address(rdx, rax,
   682                               Address::times_1,
   683                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   684 }
   686 void TemplateTable::caload() {
   687   transition(itos, itos);
   688   __ pop_ptr(rdx);
   689   // eax: index
   690   // rdx: array
   691   index_check(rdx, rax); // kills rbx
   692   __ load_unsigned_short(rax,
   693                          Address(rdx, rax,
   694                                  Address::times_2,
   695                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   696 }
   698 // iload followed by caload frequent pair
   699 void TemplateTable::fast_icaload() {
   700   transition(vtos, itos);
   701   // load index out of locals
   702   locals_index(rbx);
   703   __ movl(rax, iaddress(rbx));
   705   // eax: index
   706   // rdx: array
   707   __ pop_ptr(rdx);
   708   index_check(rdx, rax); // kills rbx
   709   __ load_unsigned_short(rax,
   710                          Address(rdx, rax,
   711                                  Address::times_2,
   712                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   713 }
   715 void TemplateTable::saload() {
   716   transition(itos, itos);
   717   __ pop_ptr(rdx);
   718   // eax: index
   719   // rdx: array
   720   index_check(rdx, rax); // kills rbx
   721   __ load_signed_short(rax,
   722                        Address(rdx, rax,
   723                                Address::times_2,
   724                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   725 }
   727 void TemplateTable::iload(int n) {
   728   transition(vtos, itos);
   729   __ movl(rax, iaddress(n));
   730 }
   732 void TemplateTable::lload(int n) {
   733   transition(vtos, ltos);
   734   __ movq(rax, laddress(n));
   735 }
   737 void TemplateTable::fload(int n) {
   738   transition(vtos, ftos);
   739   __ movflt(xmm0, faddress(n));
   740 }
   742 void TemplateTable::dload(int n) {
   743   transition(vtos, dtos);
   744   __ movdbl(xmm0, daddress(n));
   745 }
   747 void TemplateTable::aload(int n) {
   748   transition(vtos, atos);
   749   __ movptr(rax, aaddress(n));
   750 }
   752 void TemplateTable::aload_0() {
   753   transition(vtos, atos);
   754   // According to bytecode histograms, the pairs:
   755   //
   756   // _aload_0, _fast_igetfield
   757   // _aload_0, _fast_agetfield
   758   // _aload_0, _fast_fgetfield
   759   //
   760   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   761   // _aload_0 bytecode checks if the next bytecode is either
   762   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   763   // rewrites the current bytecode into a pair bytecode; otherwise it
   764   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   765   // the pair check anymore.
   766   //
   767   // Note: If the next bytecode is _getfield, the rewrite must be
   768   //       delayed, otherwise we may miss an opportunity for a pair.
   769   //
   770   // Also rewrite frequent pairs
   771   //   aload_0, aload_1
   772   //   aload_0, iload_1
   773   // These bytecodes with a small amount of code are most profitable
   774   // to rewrite
   775   if (RewriteFrequentPairs) {
   776     Label rewrite, done;
   777     const Register bc = c_rarg3;
   778     assert(rbx != bc, "register damaged");
   779     // get next byte
   780     __ load_unsigned_byte(rbx,
   781                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   783     // do actual aload_0
   784     aload(0);
   786     // if _getfield then wait with rewrite
   787     __ cmpl(rbx, Bytecodes::_getfield);
   788     __ jcc(Assembler::equal, done);
   790     // if _igetfield then reqrite to _fast_iaccess_0
   791     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   792            Bytecodes::_aload_0,
   793            "fix bytecode definition");
   794     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   795     __ movl(bc, Bytecodes::_fast_iaccess_0);
   796     __ jccb(Assembler::equal, rewrite);
   798     // if _agetfield then reqrite to _fast_aaccess_0
   799     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   800            Bytecodes::_aload_0,
   801            "fix bytecode definition");
   802     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   803     __ movl(bc, Bytecodes::_fast_aaccess_0);
   804     __ jccb(Assembler::equal, rewrite);
   806     // if _fgetfield then reqrite to _fast_faccess_0
   807     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   808            Bytecodes::_aload_0,
   809            "fix bytecode definition");
   810     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   811     __ movl(bc, Bytecodes::_fast_faccess_0);
   812     __ jccb(Assembler::equal, rewrite);
   814     // else rewrite to _fast_aload0
   815     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   816            Bytecodes::_aload_0,
   817            "fix bytecode definition");
   818     __ movl(bc, Bytecodes::_fast_aload_0);
   820     // rewrite
   821     // bc: fast bytecode
   822     __ bind(rewrite);
   823     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   825     __ bind(done);
   826   } else {
   827     aload(0);
   828   }
   829 }
   831 void TemplateTable::istore() {
   832   transition(itos, vtos);
   833   locals_index(rbx);
   834   __ movl(iaddress(rbx), rax);
   835 }
   837 void TemplateTable::lstore() {
   838   transition(ltos, vtos);
   839   locals_index(rbx);
   840   __ movq(laddress(rbx), rax);
   841 }
   843 void TemplateTable::fstore() {
   844   transition(ftos, vtos);
   845   locals_index(rbx);
   846   __ movflt(faddress(rbx), xmm0);
   847 }
   849 void TemplateTable::dstore() {
   850   transition(dtos, vtos);
   851   locals_index(rbx);
   852   __ movdbl(daddress(rbx), xmm0);
   853 }
   855 void TemplateTable::astore() {
   856   transition(vtos, vtos);
   857   __ pop_ptr(rax);
   858   locals_index(rbx);
   859   __ movptr(aaddress(rbx), rax);
   860 }
   862 void TemplateTable::wide_istore() {
   863   transition(vtos, vtos);
   864   __ pop_i();
   865   locals_index_wide(rbx);
   866   __ movl(iaddress(rbx), rax);
   867 }
   869 void TemplateTable::wide_lstore() {
   870   transition(vtos, vtos);
   871   __ pop_l();
   872   locals_index_wide(rbx);
   873   __ movq(laddress(rbx), rax);
   874 }
   876 void TemplateTable::wide_fstore() {
   877   transition(vtos, vtos);
   878   __ pop_f();
   879   locals_index_wide(rbx);
   880   __ movflt(faddress(rbx), xmm0);
   881 }
   883 void TemplateTable::wide_dstore() {
   884   transition(vtos, vtos);
   885   __ pop_d();
   886   locals_index_wide(rbx);
   887   __ movdbl(daddress(rbx), xmm0);
   888 }
   890 void TemplateTable::wide_astore() {
   891   transition(vtos, vtos);
   892   __ pop_ptr(rax);
   893   locals_index_wide(rbx);
   894   __ movptr(aaddress(rbx), rax);
   895 }
   897 void TemplateTable::iastore() {
   898   transition(itos, vtos);
   899   __ pop_i(rbx);
   900   __ pop_ptr(rdx);
   901   // eax: value
   902   // ebx: index
   903   // rdx: array
   904   index_check(rdx, rbx); // prefer index in ebx
   905   __ movl(Address(rdx, rbx,
   906                   Address::times_4,
   907                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   908           rax);
   909 }
   911 void TemplateTable::lastore() {
   912   transition(ltos, vtos);
   913   __ pop_i(rbx);
   914   __ pop_ptr(rdx);
   915   // rax: value
   916   // ebx: index
   917   // rdx: array
   918   index_check(rdx, rbx); // prefer index in ebx
   919   __ movq(Address(rdx, rbx,
   920                   Address::times_8,
   921                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   922           rax);
   923 }
   925 void TemplateTable::fastore() {
   926   transition(ftos, vtos);
   927   __ pop_i(rbx);
   928   __ pop_ptr(rdx);
   929   // xmm0: value
   930   // ebx:  index
   931   // rdx:  array
   932   index_check(rdx, rbx); // prefer index in ebx
   933   __ movflt(Address(rdx, rbx,
   934                    Address::times_4,
   935                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   936            xmm0);
   937 }
   939 void TemplateTable::dastore() {
   940   transition(dtos, vtos);
   941   __ pop_i(rbx);
   942   __ pop_ptr(rdx);
   943   // xmm0: value
   944   // ebx:  index
   945   // rdx:  array
   946   index_check(rdx, rbx); // prefer index in ebx
   947   __ movdbl(Address(rdx, rbx,
   948                    Address::times_8,
   949                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   950            xmm0);
   951 }
   953 void TemplateTable::aastore() {
   954   Label is_null, ok_is_subtype, done;
   955   transition(vtos, vtos);
   956   // stack: ..., array, index, value
   957   __ movptr(rax, at_tos());    // value
   958   __ movl(rcx, at_tos_p1()); // index
   959   __ movptr(rdx, at_tos_p2()); // array
   961   Address element_address(rdx, rcx,
   962                           UseCompressedOops? Address::times_4 : Address::times_8,
   963                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   965   index_check(rdx, rcx);     // kills rbx
   966   // do array store check - check for NULL value first
   967   __ testptr(rax, rax);
   968   __ jcc(Assembler::zero, is_null);
   970   // Move subklass into rbx
   971   __ load_klass(rbx, rax);
   972   // Move superklass into rax
   973   __ load_klass(rax, rdx);
   974   __ movptr(rax, Address(rax,
   975                          ObjArrayKlass::element_klass_offset()));
   976   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   977   __ lea(rdx, element_address);
   979   // Generate subtype check.  Blows rcx, rdi
   980   // Superklass in rax.  Subklass in rbx.
   981   __ gen_subtype_check(rbx, ok_is_subtype);
   983   // Come here on failure
   984   // object is at TOS
   985   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   987   // Come here on success
   988   __ bind(ok_is_subtype);
   990   // Get the value we will store
   991   __ movptr(rax, at_tos());
   992   // Now store using the appropriate barrier
   993   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   994   __ jmp(done);
   996   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   997   __ bind(is_null);
   998   __ profile_null_seen(rbx);
  1000   // Store a NULL
  1001   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1003   // Pop stack arguments
  1004   __ bind(done);
  1005   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1008 void TemplateTable::bastore() {
  1009   transition(itos, vtos);
  1010   __ pop_i(rbx);
  1011   __ pop_ptr(rdx);
  1012   // eax: value
  1013   // ebx: index
  1014   // rdx: array
  1015   index_check(rdx, rbx); // prefer index in ebx
  1016   __ movb(Address(rdx, rbx,
  1017                   Address::times_1,
  1018                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1019           rax);
  1022 void TemplateTable::castore() {
  1023   transition(itos, vtos);
  1024   __ pop_i(rbx);
  1025   __ pop_ptr(rdx);
  1026   // eax: value
  1027   // ebx: index
  1028   // rdx: array
  1029   index_check(rdx, rbx);  // prefer index in ebx
  1030   __ movw(Address(rdx, rbx,
  1031                   Address::times_2,
  1032                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1033           rax);
  1036 void TemplateTable::sastore() {
  1037   castore();
  1040 void TemplateTable::istore(int n) {
  1041   transition(itos, vtos);
  1042   __ movl(iaddress(n), rax);
  1045 void TemplateTable::lstore(int n) {
  1046   transition(ltos, vtos);
  1047   __ movq(laddress(n), rax);
  1050 void TemplateTable::fstore(int n) {
  1051   transition(ftos, vtos);
  1052   __ movflt(faddress(n), xmm0);
  1055 void TemplateTable::dstore(int n) {
  1056   transition(dtos, vtos);
  1057   __ movdbl(daddress(n), xmm0);
  1060 void TemplateTable::astore(int n) {
  1061   transition(vtos, vtos);
  1062   __ pop_ptr(rax);
  1063   __ movptr(aaddress(n), rax);
  1066 void TemplateTable::pop() {
  1067   transition(vtos, vtos);
  1068   __ addptr(rsp, Interpreter::stackElementSize);
  1071 void TemplateTable::pop2() {
  1072   transition(vtos, vtos);
  1073   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1076 void TemplateTable::dup() {
  1077   transition(vtos, vtos);
  1078   __ load_ptr(0, rax);
  1079   __ push_ptr(rax);
  1080   // stack: ..., a, a
  1083 void TemplateTable::dup_x1() {
  1084   transition(vtos, vtos);
  1085   // stack: ..., a, b
  1086   __ load_ptr( 0, rax);  // load b
  1087   __ load_ptr( 1, rcx);  // load a
  1088   __ store_ptr(1, rax);  // store b
  1089   __ store_ptr(0, rcx);  // store a
  1090   __ push_ptr(rax);      // push b
  1091   // stack: ..., b, a, b
  1094 void TemplateTable::dup_x2() {
  1095   transition(vtos, vtos);
  1096   // stack: ..., a, b, c
  1097   __ load_ptr( 0, rax);  // load c
  1098   __ load_ptr( 2, rcx);  // load a
  1099   __ store_ptr(2, rax);  // store c in a
  1100   __ push_ptr(rax);      // push c
  1101   // stack: ..., c, b, c, c
  1102   __ load_ptr( 2, rax);  // load b
  1103   __ store_ptr(2, rcx);  // store a in b
  1104   // stack: ..., c, a, c, c
  1105   __ store_ptr(1, rax);  // store b in c
  1106   // stack: ..., c, a, b, c
  1109 void TemplateTable::dup2() {
  1110   transition(vtos, vtos);
  1111   // stack: ..., a, b
  1112   __ load_ptr(1, rax);  // load a
  1113   __ push_ptr(rax);     // push a
  1114   __ load_ptr(1, rax);  // load b
  1115   __ push_ptr(rax);     // push b
  1116   // stack: ..., a, b, a, b
  1119 void TemplateTable::dup2_x1() {
  1120   transition(vtos, vtos);
  1121   // stack: ..., a, b, c
  1122   __ load_ptr( 0, rcx);  // load c
  1123   __ load_ptr( 1, rax);  // load b
  1124   __ push_ptr(rax);      // push b
  1125   __ push_ptr(rcx);      // push c
  1126   // stack: ..., a, b, c, b, c
  1127   __ store_ptr(3, rcx);  // store c in b
  1128   // stack: ..., a, c, c, b, c
  1129   __ load_ptr( 4, rcx);  // load a
  1130   __ store_ptr(2, rcx);  // store a in 2nd c
  1131   // stack: ..., a, c, a, b, c
  1132   __ store_ptr(4, rax);  // store b in a
  1133   // stack: ..., b, c, a, b, c
  1136 void TemplateTable::dup2_x2() {
  1137   transition(vtos, vtos);
  1138   // stack: ..., a, b, c, d
  1139   __ load_ptr( 0, rcx);  // load d
  1140   __ load_ptr( 1, rax);  // load c
  1141   __ push_ptr(rax);      // push c
  1142   __ push_ptr(rcx);      // push d
  1143   // stack: ..., a, b, c, d, c, d
  1144   __ load_ptr( 4, rax);  // load b
  1145   __ store_ptr(2, rax);  // store b in d
  1146   __ store_ptr(4, rcx);  // store d in b
  1147   // stack: ..., a, d, c, b, c, d
  1148   __ load_ptr( 5, rcx);  // load a
  1149   __ load_ptr( 3, rax);  // load c
  1150   __ store_ptr(3, rcx);  // store a in c
  1151   __ store_ptr(5, rax);  // store c in a
  1152   // stack: ..., c, d, a, b, c, d
  1155 void TemplateTable::swap() {
  1156   transition(vtos, vtos);
  1157   // stack: ..., a, b
  1158   __ load_ptr( 1, rcx);  // load a
  1159   __ load_ptr( 0, rax);  // load b
  1160   __ store_ptr(0, rcx);  // store a in b
  1161   __ store_ptr(1, rax);  // store b in a
  1162   // stack: ..., b, a
  1165 void TemplateTable::iop2(Operation op) {
  1166   transition(itos, itos);
  1167   switch (op) {
  1168   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1169   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1170   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1171   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1172   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1173   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1174   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1175   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1176   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1177   default   : ShouldNotReachHere();
  1181 void TemplateTable::lop2(Operation op) {
  1182   transition(ltos, ltos);
  1183   switch (op) {
  1184   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1185   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1186   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1187   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1188   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1189   default   : ShouldNotReachHere();
  1193 void TemplateTable::idiv() {
  1194   transition(itos, itos);
  1195   __ movl(rcx, rax);
  1196   __ pop_i(rax);
  1197   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1198   //       they are not equal, one could do a normal division (no correction
  1199   //       needed), which may speed up this implementation for the common case.
  1200   //       (see also JVM spec., p.243 & p.271)
  1201   __ corrected_idivl(rcx);
  1204 void TemplateTable::irem() {
  1205   transition(itos, itos);
  1206   __ movl(rcx, rax);
  1207   __ pop_i(rax);
  1208   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1209   //       they are not equal, one could do a normal division (no correction
  1210   //       needed), which may speed up this implementation for the common case.
  1211   //       (see also JVM spec., p.243 & p.271)
  1212   __ corrected_idivl(rcx);
  1213   __ movl(rax, rdx);
  1216 void TemplateTable::lmul() {
  1217   transition(ltos, ltos);
  1218   __ pop_l(rdx);
  1219   __ imulq(rax, rdx);
  1222 void TemplateTable::ldiv() {
  1223   transition(ltos, ltos);
  1224   __ mov(rcx, rax);
  1225   __ pop_l(rax);
  1226   // generate explicit div0 check
  1227   __ testq(rcx, rcx);
  1228   __ jump_cc(Assembler::zero,
  1229              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1230   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1231   //       they are not equal, one could do a normal division (no correction
  1232   //       needed), which may speed up this implementation for the common case.
  1233   //       (see also JVM spec., p.243 & p.271)
  1234   __ corrected_idivq(rcx); // kills rbx
  1237 void TemplateTable::lrem() {
  1238   transition(ltos, ltos);
  1239   __ mov(rcx, rax);
  1240   __ pop_l(rax);
  1241   __ testq(rcx, rcx);
  1242   __ jump_cc(Assembler::zero,
  1243              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1244   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1245   //       they are not equal, one could do a normal division (no correction
  1246   //       needed), which may speed up this implementation for the common case.
  1247   //       (see also JVM spec., p.243 & p.271)
  1248   __ corrected_idivq(rcx); // kills rbx
  1249   __ mov(rax, rdx);
  1252 void TemplateTable::lshl() {
  1253   transition(itos, ltos);
  1254   __ movl(rcx, rax);                             // get shift count
  1255   __ pop_l(rax);                                 // get shift value
  1256   __ shlq(rax);
  1259 void TemplateTable::lshr() {
  1260   transition(itos, ltos);
  1261   __ movl(rcx, rax);                             // get shift count
  1262   __ pop_l(rax);                                 // get shift value
  1263   __ sarq(rax);
  1266 void TemplateTable::lushr() {
  1267   transition(itos, ltos);
  1268   __ movl(rcx, rax);                             // get shift count
  1269   __ pop_l(rax);                                 // get shift value
  1270   __ shrq(rax);
  1273 void TemplateTable::fop2(Operation op) {
  1274   transition(ftos, ftos);
  1275   switch (op) {
  1276   case add:
  1277     __ addss(xmm0, at_rsp());
  1278     __ addptr(rsp, Interpreter::stackElementSize);
  1279     break;
  1280   case sub:
  1281     __ movflt(xmm1, xmm0);
  1282     __ pop_f(xmm0);
  1283     __ subss(xmm0, xmm1);
  1284     break;
  1285   case mul:
  1286     __ mulss(xmm0, at_rsp());
  1287     __ addptr(rsp, Interpreter::stackElementSize);
  1288     break;
  1289   case div:
  1290     __ movflt(xmm1, xmm0);
  1291     __ pop_f(xmm0);
  1292     __ divss(xmm0, xmm1);
  1293     break;
  1294   case rem:
  1295     __ movflt(xmm1, xmm0);
  1296     __ pop_f(xmm0);
  1297     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1298     break;
  1299   default:
  1300     ShouldNotReachHere();
  1301     break;
  1305 void TemplateTable::dop2(Operation op) {
  1306   transition(dtos, dtos);
  1307   switch (op) {
  1308   case add:
  1309     __ addsd(xmm0, at_rsp());
  1310     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1311     break;
  1312   case sub:
  1313     __ movdbl(xmm1, xmm0);
  1314     __ pop_d(xmm0);
  1315     __ subsd(xmm0, xmm1);
  1316     break;
  1317   case mul:
  1318     __ mulsd(xmm0, at_rsp());
  1319     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1320     break;
  1321   case div:
  1322     __ movdbl(xmm1, xmm0);
  1323     __ pop_d(xmm0);
  1324     __ divsd(xmm0, xmm1);
  1325     break;
  1326   case rem:
  1327     __ movdbl(xmm1, xmm0);
  1328     __ pop_d(xmm0);
  1329     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1330     break;
  1331   default:
  1332     ShouldNotReachHere();
  1333     break;
  1337 void TemplateTable::ineg() {
  1338   transition(itos, itos);
  1339   __ negl(rax);
  1342 void TemplateTable::lneg() {
  1343   transition(ltos, ltos);
  1344   __ negq(rax);
  1347 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1348 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1349   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1350   // of 128-bits operands for SSE instructions.
  1351   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1352   // Store the value to a 128-bits operand.
  1353   operand[0] = lo;
  1354   operand[1] = hi;
  1355   return operand;
  1358 // Buffer for 128-bits masks used by SSE instructions.
  1359 static jlong float_signflip_pool[2*2];
  1360 static jlong double_signflip_pool[2*2];
  1362 void TemplateTable::fneg() {
  1363   transition(ftos, ftos);
  1364   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1365   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1368 void TemplateTable::dneg() {
  1369   transition(dtos, dtos);
  1370   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1371   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1374 void TemplateTable::iinc() {
  1375   transition(vtos, vtos);
  1376   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1377   locals_index(rbx);
  1378   __ addl(iaddress(rbx), rdx);
  1381 void TemplateTable::wide_iinc() {
  1382   transition(vtos, vtos);
  1383   __ movl(rdx, at_bcp(4)); // get constant
  1384   locals_index_wide(rbx);
  1385   __ bswapl(rdx); // swap bytes & sign-extend constant
  1386   __ sarl(rdx, 16);
  1387   __ addl(iaddress(rbx), rdx);
  1388   // Note: should probably use only one movl to get both
  1389   //       the index and the constant -> fix this
  1392 void TemplateTable::convert() {
  1393   // Checking
  1394 #ifdef ASSERT
  1396     TosState tos_in  = ilgl;
  1397     TosState tos_out = ilgl;
  1398     switch (bytecode()) {
  1399     case Bytecodes::_i2l: // fall through
  1400     case Bytecodes::_i2f: // fall through
  1401     case Bytecodes::_i2d: // fall through
  1402     case Bytecodes::_i2b: // fall through
  1403     case Bytecodes::_i2c: // fall through
  1404     case Bytecodes::_i2s: tos_in = itos; break;
  1405     case Bytecodes::_l2i: // fall through
  1406     case Bytecodes::_l2f: // fall through
  1407     case Bytecodes::_l2d: tos_in = ltos; break;
  1408     case Bytecodes::_f2i: // fall through
  1409     case Bytecodes::_f2l: // fall through
  1410     case Bytecodes::_f2d: tos_in = ftos; break;
  1411     case Bytecodes::_d2i: // fall through
  1412     case Bytecodes::_d2l: // fall through
  1413     case Bytecodes::_d2f: tos_in = dtos; break;
  1414     default             : ShouldNotReachHere();
  1416     switch (bytecode()) {
  1417     case Bytecodes::_l2i: // fall through
  1418     case Bytecodes::_f2i: // fall through
  1419     case Bytecodes::_d2i: // fall through
  1420     case Bytecodes::_i2b: // fall through
  1421     case Bytecodes::_i2c: // fall through
  1422     case Bytecodes::_i2s: tos_out = itos; break;
  1423     case Bytecodes::_i2l: // fall through
  1424     case Bytecodes::_f2l: // fall through
  1425     case Bytecodes::_d2l: tos_out = ltos; break;
  1426     case Bytecodes::_i2f: // fall through
  1427     case Bytecodes::_l2f: // fall through
  1428     case Bytecodes::_d2f: tos_out = ftos; break;
  1429     case Bytecodes::_i2d: // fall through
  1430     case Bytecodes::_l2d: // fall through
  1431     case Bytecodes::_f2d: tos_out = dtos; break;
  1432     default             : ShouldNotReachHere();
  1434     transition(tos_in, tos_out);
  1436 #endif // ASSERT
  1438   static const int64_t is_nan = 0x8000000000000000L;
  1440   // Conversion
  1441   switch (bytecode()) {
  1442   case Bytecodes::_i2l:
  1443     __ movslq(rax, rax);
  1444     break;
  1445   case Bytecodes::_i2f:
  1446     __ cvtsi2ssl(xmm0, rax);
  1447     break;
  1448   case Bytecodes::_i2d:
  1449     __ cvtsi2sdl(xmm0, rax);
  1450     break;
  1451   case Bytecodes::_i2b:
  1452     __ movsbl(rax, rax);
  1453     break;
  1454   case Bytecodes::_i2c:
  1455     __ movzwl(rax, rax);
  1456     break;
  1457   case Bytecodes::_i2s:
  1458     __ movswl(rax, rax);
  1459     break;
  1460   case Bytecodes::_l2i:
  1461     __ movl(rax, rax);
  1462     break;
  1463   case Bytecodes::_l2f:
  1464     __ cvtsi2ssq(xmm0, rax);
  1465     break;
  1466   case Bytecodes::_l2d:
  1467     __ cvtsi2sdq(xmm0, rax);
  1468     break;
  1469   case Bytecodes::_f2i:
  1471     Label L;
  1472     __ cvttss2sil(rax, xmm0);
  1473     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1474     __ jcc(Assembler::notEqual, L);
  1475     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1476     __ bind(L);
  1478     break;
  1479   case Bytecodes::_f2l:
  1481     Label L;
  1482     __ cvttss2siq(rax, xmm0);
  1483     // NaN or overflow/underflow?
  1484     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1485     __ jcc(Assembler::notEqual, L);
  1486     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1487     __ bind(L);
  1489     break;
  1490   case Bytecodes::_f2d:
  1491     __ cvtss2sd(xmm0, xmm0);
  1492     break;
  1493   case Bytecodes::_d2i:
  1495     Label L;
  1496     __ cvttsd2sil(rax, xmm0);
  1497     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1498     __ jcc(Assembler::notEqual, L);
  1499     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1500     __ bind(L);
  1502     break;
  1503   case Bytecodes::_d2l:
  1505     Label L;
  1506     __ cvttsd2siq(rax, xmm0);
  1507     // NaN or overflow/underflow?
  1508     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1509     __ jcc(Assembler::notEqual, L);
  1510     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1511     __ bind(L);
  1513     break;
  1514   case Bytecodes::_d2f:
  1515     __ cvtsd2ss(xmm0, xmm0);
  1516     break;
  1517   default:
  1518     ShouldNotReachHere();
  1522 void TemplateTable::lcmp() {
  1523   transition(ltos, itos);
  1524   Label done;
  1525   __ pop_l(rdx);
  1526   __ cmpq(rdx, rax);
  1527   __ movl(rax, -1);
  1528   __ jccb(Assembler::less, done);
  1529   __ setb(Assembler::notEqual, rax);
  1530   __ movzbl(rax, rax);
  1531   __ bind(done);
  1534 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1535   Label done;
  1536   if (is_float) {
  1537     // XXX get rid of pop here, use ... reg, mem32
  1538     __ pop_f(xmm1);
  1539     __ ucomiss(xmm1, xmm0);
  1540   } else {
  1541     // XXX get rid of pop here, use ... reg, mem64
  1542     __ pop_d(xmm1);
  1543     __ ucomisd(xmm1, xmm0);
  1545   if (unordered_result < 0) {
  1546     __ movl(rax, -1);
  1547     __ jccb(Assembler::parity, done);
  1548     __ jccb(Assembler::below, done);
  1549     __ setb(Assembler::notEqual, rdx);
  1550     __ movzbl(rax, rdx);
  1551   } else {
  1552     __ movl(rax, 1);
  1553     __ jccb(Assembler::parity, done);
  1554     __ jccb(Assembler::above, done);
  1555     __ movl(rax, 0);
  1556     __ jccb(Assembler::equal, done);
  1557     __ decrementl(rax);
  1559   __ bind(done);
  1562 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1563   __ get_method(rcx); // rcx holds method
  1564   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1565                                      // holds bumped taken count
  1567   const ByteSize be_offset = Method::backedge_counter_offset() +
  1568                              InvocationCounter::counter_offset();
  1569   const ByteSize inv_offset = Method::invocation_counter_offset() +
  1570                               InvocationCounter::counter_offset();
  1571   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1573   // Load up edx with the branch displacement
  1574   __ movl(rdx, at_bcp(1));
  1575   __ bswapl(rdx);
  1577   if (!is_wide) {
  1578     __ sarl(rdx, 16);
  1580   __ movl2ptr(rdx, rdx);
  1582   // Handle all the JSR stuff here, then exit.
  1583   // It's much shorter and cleaner than intermingling with the non-JSR
  1584   // normal-branch stuff occurring below.
  1585   if (is_jsr) {
  1586     // Pre-load the next target bytecode into rbx
  1587     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1589     // compute return address as bci in rax
  1590     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1591                         in_bytes(ConstMethod::codes_offset())));
  1592     __ subptr(rax, Address(rcx, Method::const_offset()));
  1593     // Adjust the bcp in r13 by the displacement in rdx
  1594     __ addptr(r13, rdx);
  1595     // jsr returns atos that is not an oop
  1596     __ push_i(rax);
  1597     __ dispatch_only(vtos);
  1598     return;
  1601   // Normal (non-jsr) branch handling
  1603   // Adjust the bcp in r13 by the displacement in rdx
  1604   __ addptr(r13, rdx);
  1606   assert(UseLoopCounter || !UseOnStackReplacement,
  1607          "on-stack-replacement requires loop counters");
  1608   Label backedge_counter_overflow;
  1609   Label profile_method;
  1610   Label dispatch;
  1611   if (UseLoopCounter) {
  1612     // increment backedge counter for backward branches
  1613     // rax: MDO
  1614     // ebx: MDO bumped taken-count
  1615     // rcx: method
  1616     // rdx: target offset
  1617     // r13: target bcp
  1618     // r14: locals pointer
  1619     __ testl(rdx, rdx);             // check if forward or backward branch
  1620     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1621     if (TieredCompilation) {
  1622       Label no_mdo;
  1623       int increment = InvocationCounter::count_increment;
  1624       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1625       if (ProfileInterpreter) {
  1626         // Are we profiling?
  1627         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1628         __ testptr(rbx, rbx);
  1629         __ jccb(Assembler::zero, no_mdo);
  1630         // Increment the MDO backedge counter
  1631         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1632                                            in_bytes(InvocationCounter::counter_offset()));
  1633         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1634                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1635         __ jmp(dispatch);
  1637       __ bind(no_mdo);
  1638       // Increment backedge counter in Method*
  1639       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1640                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1641     } else {
  1642       // increment counter
  1643       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1644       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1645       __ movl(Address(rcx, be_offset), rax);        // store counter
  1647       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1648       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1649       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1651       if (ProfileInterpreter) {
  1652         // Test to see if we should create a method data oop
  1653         __ cmp32(rax,
  1654                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1655         __ jcc(Assembler::less, dispatch);
  1657         // if no method data exists, go to profile method
  1658         __ test_method_data_pointer(rax, profile_method);
  1660         if (UseOnStackReplacement) {
  1661           // check for overflow against ebx which is the MDO taken count
  1662           __ cmp32(rbx,
  1663                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1664           __ jcc(Assembler::below, dispatch);
  1666           // When ProfileInterpreter is on, the backedge_count comes
  1667           // from the MethodData*, which value does not get reset on
  1668           // the call to frequency_counter_overflow().  To avoid
  1669           // excessive calls to the overflow routine while the method is
  1670           // being compiled, add a second test to make sure the overflow
  1671           // function is called only once every overflow_frequency.
  1672           const int overflow_frequency = 1024;
  1673           __ andl(rbx, overflow_frequency - 1);
  1674           __ jcc(Assembler::zero, backedge_counter_overflow);
  1677       } else {
  1678         if (UseOnStackReplacement) {
  1679           // check for overflow against eax, which is the sum of the
  1680           // counters
  1681           __ cmp32(rax,
  1682                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1683           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1688     __ bind(dispatch);
  1691   // Pre-load the next target bytecode into rbx
  1692   __ load_unsigned_byte(rbx, Address(r13, 0));
  1694   // continue with the bytecode @ target
  1695   // eax: return bci for jsr's, unused otherwise
  1696   // ebx: target bytecode
  1697   // r13: target bcp
  1698   __ dispatch_only(vtos);
  1700   if (UseLoopCounter) {
  1701     if (ProfileInterpreter) {
  1702       // Out-of-line code to allocate method data oop.
  1703       __ bind(profile_method);
  1704       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1705       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1706       __ set_method_data_pointer_for_bcp();
  1707       __ jmp(dispatch);
  1710     if (UseOnStackReplacement) {
  1711       // invocation counter overflow
  1712       __ bind(backedge_counter_overflow);
  1713       __ negptr(rdx);
  1714       __ addptr(rdx, r13); // branch bcp
  1715       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1716       __ call_VM(noreg,
  1717                  CAST_FROM_FN_PTR(address,
  1718                                   InterpreterRuntime::frequency_counter_overflow),
  1719                  rdx);
  1720       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1722       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1723       // ebx: target bytecode
  1724       // rdx: scratch
  1725       // r14: locals pointer
  1726       // r13: bcp
  1727       __ testptr(rax, rax);                        // test result
  1728       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1729       // nmethod may have been invalidated (VM may block upon call_VM return)
  1730       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1731       __ cmpl(rcx, InvalidOSREntryBci);
  1732       __ jcc(Assembler::equal, dispatch);
  1734       // We have the address of an on stack replacement routine in eax
  1735       // We need to prepare to execute the OSR method. First we must
  1736       // migrate the locals and monitors off of the stack.
  1738       __ mov(r13, rax);                             // save the nmethod
  1740       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1742       // eax is OSR buffer, move it to expected parameter location
  1743       __ mov(j_rarg0, rax);
  1745       // We use j_rarg definitions here so that registers don't conflict as parameter
  1746       // registers change across platforms as we are in the midst of a calling
  1747       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1749       const Register retaddr = j_rarg2;
  1750       const Register sender_sp = j_rarg1;
  1752       // pop the interpreter frame
  1753       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1754       __ leave();                                // remove frame anchor
  1755       __ pop(retaddr);                           // get return address
  1756       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1757       // Ensure compiled code always sees stack at proper alignment
  1758       __ andptr(rsp, -(StackAlignmentInBytes));
  1760       // unlike x86 we need no specialized return from compiled code
  1761       // to the interpreter or the call stub.
  1763       // push the return address
  1764       __ push(retaddr);
  1766       // and begin the OSR nmethod
  1767       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1773 void TemplateTable::if_0cmp(Condition cc) {
  1774   transition(itos, vtos);
  1775   // assume branch is more often taken than not (loops use backward branches)
  1776   Label not_taken;
  1777   __ testl(rax, rax);
  1778   __ jcc(j_not(cc), not_taken);
  1779   branch(false, false);
  1780   __ bind(not_taken);
  1781   __ profile_not_taken_branch(rax);
  1784 void TemplateTable::if_icmp(Condition cc) {
  1785   transition(itos, vtos);
  1786   // assume branch is more often taken than not (loops use backward branches)
  1787   Label not_taken;
  1788   __ pop_i(rdx);
  1789   __ cmpl(rdx, rax);
  1790   __ jcc(j_not(cc), not_taken);
  1791   branch(false, false);
  1792   __ bind(not_taken);
  1793   __ profile_not_taken_branch(rax);
  1796 void TemplateTable::if_nullcmp(Condition cc) {
  1797   transition(atos, vtos);
  1798   // assume branch is more often taken than not (loops use backward branches)
  1799   Label not_taken;
  1800   __ testptr(rax, rax);
  1801   __ jcc(j_not(cc), not_taken);
  1802   branch(false, false);
  1803   __ bind(not_taken);
  1804   __ profile_not_taken_branch(rax);
  1807 void TemplateTable::if_acmp(Condition cc) {
  1808   transition(atos, vtos);
  1809   // assume branch is more often taken than not (loops use backward branches)
  1810   Label not_taken;
  1811   __ pop_ptr(rdx);
  1812   __ cmpptr(rdx, rax);
  1813   __ jcc(j_not(cc), not_taken);
  1814   branch(false, false);
  1815   __ bind(not_taken);
  1816   __ profile_not_taken_branch(rax);
  1819 void TemplateTable::ret() {
  1820   transition(vtos, vtos);
  1821   locals_index(rbx);
  1822   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1823   __ profile_ret(rbx, rcx);
  1824   __ get_method(rax);
  1825   __ movptr(r13, Address(rax, Method::const_offset()));
  1826   __ lea(r13, Address(r13, rbx, Address::times_1,
  1827                       ConstMethod::codes_offset()));
  1828   __ dispatch_next(vtos);
  1831 void TemplateTable::wide_ret() {
  1832   transition(vtos, vtos);
  1833   locals_index_wide(rbx);
  1834   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1835   __ profile_ret(rbx, rcx);
  1836   __ get_method(rax);
  1837   __ movptr(r13, Address(rax, Method::const_offset()));
  1838   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
  1839   __ dispatch_next(vtos);
  1842 void TemplateTable::tableswitch() {
  1843   Label default_case, continue_execution;
  1844   transition(itos, vtos);
  1845   // align r13
  1846   __ lea(rbx, at_bcp(BytesPerInt));
  1847   __ andptr(rbx, -BytesPerInt);
  1848   // load lo & hi
  1849   __ movl(rcx, Address(rbx, BytesPerInt));
  1850   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1851   __ bswapl(rcx);
  1852   __ bswapl(rdx);
  1853   // check against lo & hi
  1854   __ cmpl(rax, rcx);
  1855   __ jcc(Assembler::less, default_case);
  1856   __ cmpl(rax, rdx);
  1857   __ jcc(Assembler::greater, default_case);
  1858   // lookup dispatch offset
  1859   __ subl(rax, rcx);
  1860   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1861   __ profile_switch_case(rax, rbx, rcx);
  1862   // continue execution
  1863   __ bind(continue_execution);
  1864   __ bswapl(rdx);
  1865   __ movl2ptr(rdx, rdx);
  1866   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1867   __ addptr(r13, rdx);
  1868   __ dispatch_only(vtos);
  1869   // handle default
  1870   __ bind(default_case);
  1871   __ profile_switch_default(rax);
  1872   __ movl(rdx, Address(rbx, 0));
  1873   __ jmp(continue_execution);
  1876 void TemplateTable::lookupswitch() {
  1877   transition(itos, itos);
  1878   __ stop("lookupswitch bytecode should have been rewritten");
  1881 void TemplateTable::fast_linearswitch() {
  1882   transition(itos, vtos);
  1883   Label loop_entry, loop, found, continue_execution;
  1884   // bswap rax so we can avoid bswapping the table entries
  1885   __ bswapl(rax);
  1886   // align r13
  1887   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1888                                     // this instruction (change offsets
  1889                                     // below)
  1890   __ andptr(rbx, -BytesPerInt);
  1891   // set counter
  1892   __ movl(rcx, Address(rbx, BytesPerInt));
  1893   __ bswapl(rcx);
  1894   __ jmpb(loop_entry);
  1895   // table search
  1896   __ bind(loop);
  1897   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1898   __ jcc(Assembler::equal, found);
  1899   __ bind(loop_entry);
  1900   __ decrementl(rcx);
  1901   __ jcc(Assembler::greaterEqual, loop);
  1902   // default case
  1903   __ profile_switch_default(rax);
  1904   __ movl(rdx, Address(rbx, 0));
  1905   __ jmp(continue_execution);
  1906   // entry found -> get offset
  1907   __ bind(found);
  1908   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1909   __ profile_switch_case(rcx, rax, rbx);
  1910   // continue execution
  1911   __ bind(continue_execution);
  1912   __ bswapl(rdx);
  1913   __ movl2ptr(rdx, rdx);
  1914   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1915   __ addptr(r13, rdx);
  1916   __ dispatch_only(vtos);
  1919 void TemplateTable::fast_binaryswitch() {
  1920   transition(itos, vtos);
  1921   // Implementation using the following core algorithm:
  1922   //
  1923   // int binary_search(int key, LookupswitchPair* array, int n) {
  1924   //   // Binary search according to "Methodik des Programmierens" by
  1925   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1926   //   int i = 0;
  1927   //   int j = n;
  1928   //   while (i+1 < j) {
  1929   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1930   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1931   //     // where a stands for the array and assuming that the (inexisting)
  1932   //     // element a[n] is infinitely big.
  1933   //     int h = (i + j) >> 1;
  1934   //     // i < h < j
  1935   //     if (key < array[h].fast_match()) {
  1936   //       j = h;
  1937   //     } else {
  1938   //       i = h;
  1939   //     }
  1940   //   }
  1941   //   // R: a[i] <= key < a[i+1] or Q
  1942   //   // (i.e., if key is within array, i is the correct index)
  1943   //   return i;
  1944   // }
  1946   // Register allocation
  1947   const Register key   = rax; // already set (tosca)
  1948   const Register array = rbx;
  1949   const Register i     = rcx;
  1950   const Register j     = rdx;
  1951   const Register h     = rdi;
  1952   const Register temp  = rsi;
  1954   // Find array start
  1955   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1956                                           // get rid of this
  1957                                           // instruction (change
  1958                                           // offsets below)
  1959   __ andptr(array, -BytesPerInt);
  1961   // Initialize i & j
  1962   __ xorl(i, i);                            // i = 0;
  1963   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1965   // Convert j into native byteordering
  1966   __ bswapl(j);
  1968   // And start
  1969   Label entry;
  1970   __ jmp(entry);
  1972   // binary search loop
  1974     Label loop;
  1975     __ bind(loop);
  1976     // int h = (i + j) >> 1;
  1977     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1978     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1979     // if (key < array[h].fast_match()) {
  1980     //   j = h;
  1981     // } else {
  1982     //   i = h;
  1983     // }
  1984     // Convert array[h].match to native byte-ordering before compare
  1985     __ movl(temp, Address(array, h, Address::times_8));
  1986     __ bswapl(temp);
  1987     __ cmpl(key, temp);
  1988     // j = h if (key <  array[h].fast_match())
  1989     __ cmovl(Assembler::less, j, h);
  1990     // i = h if (key >= array[h].fast_match())
  1991     __ cmovl(Assembler::greaterEqual, i, h);
  1992     // while (i+1 < j)
  1993     __ bind(entry);
  1994     __ leal(h, Address(i, 1)); // i+1
  1995     __ cmpl(h, j);             // i+1 < j
  1996     __ jcc(Assembler::less, loop);
  1999   // end of binary search, result index is i (must check again!)
  2000   Label default_case;
  2001   // Convert array[i].match to native byte-ordering before compare
  2002   __ movl(temp, Address(array, i, Address::times_8));
  2003   __ bswapl(temp);
  2004   __ cmpl(key, temp);
  2005   __ jcc(Assembler::notEqual, default_case);
  2007   // entry found -> j = offset
  2008   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2009   __ profile_switch_case(i, key, array);
  2010   __ bswapl(j);
  2011   __ movl2ptr(j, j);
  2012   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2013   __ addptr(r13, j);
  2014   __ dispatch_only(vtos);
  2016   // default case -> j = default offset
  2017   __ bind(default_case);
  2018   __ profile_switch_default(i);
  2019   __ movl(j, Address(array, -2 * BytesPerInt));
  2020   __ bswapl(j);
  2021   __ movl2ptr(j, j);
  2022   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2023   __ addptr(r13, j);
  2024   __ dispatch_only(vtos);
  2028 void TemplateTable::_return(TosState state) {
  2029   transition(state, state);
  2030   assert(_desc->calls_vm(),
  2031          "inconsistent calls_vm information"); // call in remove_activation
  2033   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2034     assert(state == vtos, "only valid state");
  2035     __ movptr(c_rarg1, aaddress(0));
  2036     __ load_klass(rdi, c_rarg1);
  2037     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2038     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2039     Label skip_register_finalizer;
  2040     __ jcc(Assembler::zero, skip_register_finalizer);
  2042     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2044     __ bind(skip_register_finalizer);
  2047   __ remove_activation(state, r13);
  2048   __ jmp(r13);
  2051 // ----------------------------------------------------------------------------
  2052 // Volatile variables demand their effects be made known to all CPU's
  2053 // in order.  Store buffers on most chips allow reads & writes to
  2054 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2055 // without some kind of memory barrier (i.e., it's not sufficient that
  2056 // the interpreter does not reorder volatile references, the hardware
  2057 // also must not reorder them).
  2058 //
  2059 // According to the new Java Memory Model (JMM):
  2060 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2061 //     writes act as aquire & release, so:
  2062 // (2) A read cannot let unrelated NON-volatile memory refs that
  2063 //     happen after the read float up to before the read.  It's OK for
  2064 //     non-volatile memory refs that happen before the volatile read to
  2065 //     float down below it.
  2066 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2067 //     memory refs that happen BEFORE the write float down to after the
  2068 //     write.  It's OK for non-volatile memory refs that happen after the
  2069 //     volatile write to float up before it.
  2070 //
  2071 // We only put in barriers around volatile refs (they are expensive),
  2072 // not _between_ memory refs (that would require us to track the
  2073 // flavor of the previous memory refs).  Requirements (2) and (3)
  2074 // require some barriers before volatile stores and after volatile
  2075 // loads.  These nearly cover requirement (1) but miss the
  2076 // volatile-store-volatile-load case.  This final case is placed after
  2077 // volatile-stores although it could just as well go before
  2078 // volatile-loads.
  2079 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2080                                      order_constraint) {
  2081   // Helper function to insert a is-volatile test and memory barrier
  2082   if (os::is_MP()) { // Not needed on single CPU
  2083     __ membar(order_constraint);
  2087 void TemplateTable::resolve_cache_and_index(int byte_no,
  2088                                             Register Rcache,
  2089                                             Register index,
  2090                                             size_t index_size) {
  2091   const Register temp = rbx;
  2092   assert_different_registers(Rcache, index, temp);
  2094   Label resolved;
  2095     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2096     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2097     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2098     __ jcc(Assembler::equal, resolved);
  2100   // resolve first time through
  2101   address entry;
  2102   switch (bytecode()) {
  2103   case Bytecodes::_getstatic:
  2104   case Bytecodes::_putstatic:
  2105   case Bytecodes::_getfield:
  2106   case Bytecodes::_putfield:
  2107     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2108     break;
  2109   case Bytecodes::_invokevirtual:
  2110   case Bytecodes::_invokespecial:
  2111   case Bytecodes::_invokestatic:
  2112   case Bytecodes::_invokeinterface:
  2113     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2114     break;
  2115   case Bytecodes::_invokehandle:
  2116     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
  2117     break;
  2118   case Bytecodes::_invokedynamic:
  2119     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2120     break;
  2121   default:
  2122     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2123     break;
  2125   __ movl(temp, (int) bytecode());
  2126   __ call_VM(noreg, entry, temp);
  2128   // Update registers with resolved info
  2129   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2130   __ bind(resolved);
  2133 // The cache and index registers must be set before call
  2134 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2135                                               Register cache,
  2136                                               Register index,
  2137                                               Register off,
  2138                                               Register flags,
  2139                                               bool is_static = false) {
  2140   assert_different_registers(cache, index, flags, off);
  2142   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2143   // Field offset
  2144   __ movptr(off, Address(cache, index, Address::times_ptr,
  2145                          in_bytes(cp_base_offset +
  2146                                   ConstantPoolCacheEntry::f2_offset())));
  2147   // Flags
  2148   __ movl(flags, Address(cache, index, Address::times_ptr,
  2149                          in_bytes(cp_base_offset +
  2150                                   ConstantPoolCacheEntry::flags_offset())));
  2152   // klass overwrite register
  2153   if (is_static) {
  2154     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2155                            in_bytes(cp_base_offset +
  2156                                     ConstantPoolCacheEntry::f1_offset())));
  2157     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2158     __ movptr(obj, Address(obj, mirror_offset));
  2162 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2163                                                Register method,
  2164                                                Register itable_index,
  2165                                                Register flags,
  2166                                                bool is_invokevirtual,
  2167                                                bool is_invokevfinal, /*unused*/
  2168                                                bool is_invokedynamic) {
  2169   // setup registers
  2170   const Register cache = rcx;
  2171   const Register index = rdx;
  2172   assert_different_registers(method, flags);
  2173   assert_different_registers(method, cache, index);
  2174   assert_different_registers(itable_index, flags);
  2175   assert_different_registers(itable_index, cache, index);
  2176   // determine constant pool cache field offsets
  2177   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2178   const int method_offset = in_bytes(
  2179     ConstantPoolCache::base_offset() +
  2180       ((byte_no == f2_byte)
  2181        ? ConstantPoolCacheEntry::f2_offset()
  2182        : ConstantPoolCacheEntry::f1_offset()));
  2183   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2184                                     ConstantPoolCacheEntry::flags_offset());
  2185   // access constant pool cache fields
  2186   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2187                                     ConstantPoolCacheEntry::f2_offset());
  2189   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2190   resolve_cache_and_index(byte_no, cache, index, index_size);
  2191     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2193   if (itable_index != noreg) {
  2194     // pick up itable or appendix index from f2 also:
  2195     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2197   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2200 // Correct values of the cache and index registers are preserved.
  2201 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2202                                             bool is_static, bool has_tos) {
  2203   // do the JVMTI work here to avoid disturbing the register state below
  2204   // We use c_rarg registers here because we want to use the register used in
  2205   // the call to the VM
  2206   if (JvmtiExport::can_post_field_access()) {
  2207     // Check to see if a field access watch has been set before we
  2208     // take the time to call into the VM.
  2209     Label L1;
  2210     assert_different_registers(cache, index, rax);
  2211     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2212     __ testl(rax, rax);
  2213     __ jcc(Assembler::zero, L1);
  2215     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2217     // cache entry pointer
  2218     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
  2219     __ shll(c_rarg3, LogBytesPerWord);
  2220     __ addptr(c_rarg2, c_rarg3);
  2221     if (is_static) {
  2222       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2223     } else {
  2224       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2225       __ verify_oop(c_rarg1);
  2227     // c_rarg1: object pointer or NULL
  2228     // c_rarg2: cache entry pointer
  2229     // c_rarg3: jvalue object on the stack
  2230     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2231                                        InterpreterRuntime::post_field_access),
  2232                c_rarg1, c_rarg2, c_rarg3);
  2233     __ get_cache_and_index_at_bcp(cache, index, 1);
  2234     __ bind(L1);
  2238 void TemplateTable::pop_and_check_object(Register r) {
  2239   __ pop_ptr(r);
  2240   __ null_check(r);  // for field access must check obj.
  2241   __ verify_oop(r);
  2244 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2245   transition(vtos, vtos);
  2247   const Register cache = rcx;
  2248   const Register index = rdx;
  2249   const Register obj   = c_rarg3;
  2250   const Register off   = rbx;
  2251   const Register flags = rax;
  2252   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2254   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2255   jvmti_post_field_access(cache, index, is_static, false);
  2256   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2258   if (!is_static) {
  2259     // obj is on the stack
  2260     pop_and_check_object(obj);
  2263   const Address field(obj, off, Address::times_1);
  2265   Label Done, notByte, notInt, notShort, notChar,
  2266               notLong, notFloat, notObj, notDouble;
  2268   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2269   // Make sure we don't need to mask edx after the above shift
  2270   assert(btos == 0, "change code, btos != 0");
  2272   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2273   __ jcc(Assembler::notZero, notByte);
  2274   // btos
  2275   __ load_signed_byte(rax, field);
  2276   __ push(btos);
  2277   // Rewrite bytecode to be faster
  2278   if (!is_static) {
  2279     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2281   __ jmp(Done);
  2283   __ bind(notByte);
  2284   __ cmpl(flags, atos);
  2285   __ jcc(Assembler::notEqual, notObj);
  2286   // atos
  2287   __ load_heap_oop(rax, field);
  2288   __ push(atos);
  2289   if (!is_static) {
  2290     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2292   __ jmp(Done);
  2294   __ bind(notObj);
  2295   __ cmpl(flags, itos);
  2296   __ jcc(Assembler::notEqual, notInt);
  2297   // itos
  2298   __ movl(rax, field);
  2299   __ push(itos);
  2300   // Rewrite bytecode to be faster
  2301   if (!is_static) {
  2302     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2304   __ jmp(Done);
  2306   __ bind(notInt);
  2307   __ cmpl(flags, ctos);
  2308   __ jcc(Assembler::notEqual, notChar);
  2309   // ctos
  2310   __ load_unsigned_short(rax, field);
  2311   __ push(ctos);
  2312   // Rewrite bytecode to be faster
  2313   if (!is_static) {
  2314     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2316   __ jmp(Done);
  2318   __ bind(notChar);
  2319   __ cmpl(flags, stos);
  2320   __ jcc(Assembler::notEqual, notShort);
  2321   // stos
  2322   __ load_signed_short(rax, field);
  2323   __ push(stos);
  2324   // Rewrite bytecode to be faster
  2325   if (!is_static) {
  2326     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2328   __ jmp(Done);
  2330   __ bind(notShort);
  2331   __ cmpl(flags, ltos);
  2332   __ jcc(Assembler::notEqual, notLong);
  2333   // ltos
  2334   __ movq(rax, field);
  2335   __ push(ltos);
  2336   // Rewrite bytecode to be faster
  2337   if (!is_static) {
  2338     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2340   __ jmp(Done);
  2342   __ bind(notLong);
  2343   __ cmpl(flags, ftos);
  2344   __ jcc(Assembler::notEqual, notFloat);
  2345   // ftos
  2346   __ movflt(xmm0, field);
  2347   __ push(ftos);
  2348   // Rewrite bytecode to be faster
  2349   if (!is_static) {
  2350     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2352   __ jmp(Done);
  2354   __ bind(notFloat);
  2355 #ifdef ASSERT
  2356   __ cmpl(flags, dtos);
  2357   __ jcc(Assembler::notEqual, notDouble);
  2358 #endif
  2359   // dtos
  2360   __ movdbl(xmm0, field);
  2361   __ push(dtos);
  2362   // Rewrite bytecode to be faster
  2363   if (!is_static) {
  2364     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2366 #ifdef ASSERT
  2367   __ jmp(Done);
  2369   __ bind(notDouble);
  2370   __ stop("Bad state");
  2371 #endif
  2373   __ bind(Done);
  2374   // [jk] not needed currently
  2375   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2376   //                                              Assembler::LoadStore));
  2380 void TemplateTable::getfield(int byte_no) {
  2381   getfield_or_static(byte_no, false);
  2384 void TemplateTable::getstatic(int byte_no) {
  2385   getfield_or_static(byte_no, true);
  2388 // The registers cache and index expected to be set before call.
  2389 // The function may destroy various registers, just not the cache and index registers.
  2390 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2391   transition(vtos, vtos);
  2393   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2395   if (JvmtiExport::can_post_field_modification()) {
  2396     // Check to see if a field modification watch has been set before
  2397     // we take the time to call into the VM.
  2398     Label L1;
  2399     assert_different_registers(cache, index, rax);
  2400     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2401     __ testl(rax, rax);
  2402     __ jcc(Assembler::zero, L1);
  2404     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2406     if (is_static) {
  2407       // Life is simple.  Null out the object pointer.
  2408       __ xorl(c_rarg1, c_rarg1);
  2409     } else {
  2410       // Life is harder. The stack holds the value on top, followed by
  2411       // the object.  We don't know the size of the value, though; it
  2412       // could be one or two words depending on its type. As a result,
  2413       // we must find the type to determine where the object is.
  2414       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2415                            Address::times_8,
  2416                            in_bytes(cp_base_offset +
  2417                                      ConstantPoolCacheEntry::flags_offset())));
  2418       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
  2419       // Make sure we don't need to mask rcx after the above shift
  2420       ConstantPoolCacheEntry::verify_tos_state_shift();
  2421       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2422       __ cmpl(c_rarg3, ltos);
  2423       __ cmovptr(Assembler::equal,
  2424                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2425       __ cmpl(c_rarg3, dtos);
  2426       __ cmovptr(Assembler::equal,
  2427                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2429     // cache entry pointer
  2430     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2431     __ shll(rscratch1, LogBytesPerWord);
  2432     __ addptr(c_rarg2, rscratch1);
  2433     // object (tos)
  2434     __ mov(c_rarg3, rsp);
  2435     // c_rarg1: object pointer set up above (NULL if static)
  2436     // c_rarg2: cache entry pointer
  2437     // c_rarg3: jvalue object on the stack
  2438     __ call_VM(noreg,
  2439                CAST_FROM_FN_PTR(address,
  2440                                 InterpreterRuntime::post_field_modification),
  2441                c_rarg1, c_rarg2, c_rarg3);
  2442     __ get_cache_and_index_at_bcp(cache, index, 1);
  2443     __ bind(L1);
  2447 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2448   transition(vtos, vtos);
  2450   const Register cache = rcx;
  2451   const Register index = rdx;
  2452   const Register obj   = rcx;
  2453   const Register off   = rbx;
  2454   const Register flags = rax;
  2455   const Register bc    = c_rarg3;
  2457   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2458   jvmti_post_field_mod(cache, index, is_static);
  2459   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2461   // [jk] not needed currently
  2462   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2463   //                                              Assembler::StoreStore));
  2465   Label notVolatile, Done;
  2466   __ movl(rdx, flags);
  2467   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2468   __ andl(rdx, 0x1);
  2470   // field address
  2471   const Address field(obj, off, Address::times_1);
  2473   Label notByte, notInt, notShort, notChar,
  2474         notLong, notFloat, notObj, notDouble;
  2476   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2478   assert(btos == 0, "change code, btos != 0");
  2479   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2480   __ jcc(Assembler::notZero, notByte);
  2482   // btos
  2484     __ pop(btos);
  2485     if (!is_static) pop_and_check_object(obj);
  2486     __ movb(field, rax);
  2487     if (!is_static) {
  2488       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2490     __ jmp(Done);
  2493   __ bind(notByte);
  2494   __ cmpl(flags, atos);
  2495   __ jcc(Assembler::notEqual, notObj);
  2497   // atos
  2499     __ pop(atos);
  2500     if (!is_static) pop_and_check_object(obj);
  2501     // Store into the field
  2502     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2503     if (!is_static) {
  2504       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2506     __ jmp(Done);
  2509   __ bind(notObj);
  2510   __ cmpl(flags, itos);
  2511   __ jcc(Assembler::notEqual, notInt);
  2513   // itos
  2515     __ pop(itos);
  2516     if (!is_static) pop_and_check_object(obj);
  2517     __ movl(field, rax);
  2518     if (!is_static) {
  2519       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2521     __ jmp(Done);
  2524   __ bind(notInt);
  2525   __ cmpl(flags, ctos);
  2526   __ jcc(Assembler::notEqual, notChar);
  2528   // ctos
  2530     __ pop(ctos);
  2531     if (!is_static) pop_and_check_object(obj);
  2532     __ movw(field, rax);
  2533     if (!is_static) {
  2534       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2536     __ jmp(Done);
  2539   __ bind(notChar);
  2540   __ cmpl(flags, stos);
  2541   __ jcc(Assembler::notEqual, notShort);
  2543   // stos
  2545     __ pop(stos);
  2546     if (!is_static) pop_and_check_object(obj);
  2547     __ movw(field, rax);
  2548     if (!is_static) {
  2549       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2551     __ jmp(Done);
  2554   __ bind(notShort);
  2555   __ cmpl(flags, ltos);
  2556   __ jcc(Assembler::notEqual, notLong);
  2558   // ltos
  2560     __ pop(ltos);
  2561     if (!is_static) pop_and_check_object(obj);
  2562     __ movq(field, rax);
  2563     if (!is_static) {
  2564       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2566     __ jmp(Done);
  2569   __ bind(notLong);
  2570   __ cmpl(flags, ftos);
  2571   __ jcc(Assembler::notEqual, notFloat);
  2573   // ftos
  2575     __ pop(ftos);
  2576     if (!is_static) pop_and_check_object(obj);
  2577     __ movflt(field, xmm0);
  2578     if (!is_static) {
  2579       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2581     __ jmp(Done);
  2584   __ bind(notFloat);
  2585 #ifdef ASSERT
  2586   __ cmpl(flags, dtos);
  2587   __ jcc(Assembler::notEqual, notDouble);
  2588 #endif
  2590   // dtos
  2592     __ pop(dtos);
  2593     if (!is_static) pop_and_check_object(obj);
  2594     __ movdbl(field, xmm0);
  2595     if (!is_static) {
  2596       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2600 #ifdef ASSERT
  2601   __ jmp(Done);
  2603   __ bind(notDouble);
  2604   __ stop("Bad state");
  2605 #endif
  2607   __ bind(Done);
  2609   // Check for volatile store
  2610   __ testl(rdx, rdx);
  2611   __ jcc(Assembler::zero, notVolatile);
  2612   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2613                                                Assembler::StoreStore));
  2614   __ bind(notVolatile);
  2617 void TemplateTable::putfield(int byte_no) {
  2618   putfield_or_static(byte_no, false);
  2621 void TemplateTable::putstatic(int byte_no) {
  2622   putfield_or_static(byte_no, true);
  2625 void TemplateTable::jvmti_post_fast_field_mod() {
  2626   if (JvmtiExport::can_post_field_modification()) {
  2627     // Check to see if a field modification watch has been set before
  2628     // we take the time to call into the VM.
  2629     Label L2;
  2630     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2631     __ testl(c_rarg3, c_rarg3);
  2632     __ jcc(Assembler::zero, L2);
  2633     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2634     __ verify_oop(rbx);
  2635     __ push_ptr(rbx);                 // put the object pointer back on tos
  2636     // Save tos values before call_VM() clobbers them. Since we have
  2637     // to do it for every data type, we use the saved values as the
  2638     // jvalue object.
  2639     switch (bytecode()) {          // load values into the jvalue object
  2640     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2641     case Bytecodes::_fast_bputfield: // fall through
  2642     case Bytecodes::_fast_sputfield: // fall through
  2643     case Bytecodes::_fast_cputfield: // fall through
  2644     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2645     case Bytecodes::_fast_dputfield: __ push_d(); break;
  2646     case Bytecodes::_fast_fputfield: __ push_f(); break;
  2647     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2649     default:
  2650       ShouldNotReachHere();
  2652     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
  2653     // access constant pool cache entry
  2654     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2655     __ verify_oop(rbx);
  2656     // rbx: object pointer copied above
  2657     // c_rarg2: cache entry pointer
  2658     // c_rarg3: jvalue object on the stack
  2659     __ call_VM(noreg,
  2660                CAST_FROM_FN_PTR(address,
  2661                                 InterpreterRuntime::post_field_modification),
  2662                rbx, c_rarg2, c_rarg3);
  2664     switch (bytecode()) {             // restore tos values
  2665     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2666     case Bytecodes::_fast_bputfield: // fall through
  2667     case Bytecodes::_fast_sputfield: // fall through
  2668     case Bytecodes::_fast_cputfield: // fall through
  2669     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2670     case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2671     case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2672     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2674     __ bind(L2);
  2678 void TemplateTable::fast_storefield(TosState state) {
  2679   transition(state, vtos);
  2681   ByteSize base = ConstantPoolCache::base_offset();
  2683   jvmti_post_fast_field_mod();
  2685   // access constant pool cache
  2686   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2688   // test for volatile with rdx
  2689   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2690                        in_bytes(base +
  2691                                 ConstantPoolCacheEntry::flags_offset())));
  2693   // replace index with field offset from cache entry
  2694   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2695                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2697   // [jk] not needed currently
  2698   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2699   //                                              Assembler::StoreStore));
  2701   Label notVolatile;
  2702   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2703   __ andl(rdx, 0x1);
  2705   // Get object from stack
  2706   pop_and_check_object(rcx);
  2708   // field address
  2709   const Address field(rcx, rbx, Address::times_1);
  2711   // access field
  2712   switch (bytecode()) {
  2713   case Bytecodes::_fast_aputfield:
  2714     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2715     break;
  2716   case Bytecodes::_fast_lputfield:
  2717     __ movq(field, rax);
  2718     break;
  2719   case Bytecodes::_fast_iputfield:
  2720     __ movl(field, rax);
  2721     break;
  2722   case Bytecodes::_fast_bputfield:
  2723     __ movb(field, rax);
  2724     break;
  2725   case Bytecodes::_fast_sputfield:
  2726     // fall through
  2727   case Bytecodes::_fast_cputfield:
  2728     __ movw(field, rax);
  2729     break;
  2730   case Bytecodes::_fast_fputfield:
  2731     __ movflt(field, xmm0);
  2732     break;
  2733   case Bytecodes::_fast_dputfield:
  2734     __ movdbl(field, xmm0);
  2735     break;
  2736   default:
  2737     ShouldNotReachHere();
  2740   // Check for volatile store
  2741   __ testl(rdx, rdx);
  2742   __ jcc(Assembler::zero, notVolatile);
  2743   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2744                                                Assembler::StoreStore));
  2745   __ bind(notVolatile);
  2749 void TemplateTable::fast_accessfield(TosState state) {
  2750   transition(atos, state);
  2752   // Do the JVMTI work here to avoid disturbing the register state below
  2753   if (JvmtiExport::can_post_field_access()) {
  2754     // Check to see if a field access watch has been set before we
  2755     // take the time to call into the VM.
  2756     Label L1;
  2757     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2758     __ testl(rcx, rcx);
  2759     __ jcc(Assembler::zero, L1);
  2760     // access constant pool cache entry
  2761     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2762     __ verify_oop(rax);
  2763     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2764     __ mov(c_rarg1, rax);
  2765     // c_rarg1: object pointer copied above
  2766     // c_rarg2: cache entry pointer
  2767     __ call_VM(noreg,
  2768                CAST_FROM_FN_PTR(address,
  2769                                 InterpreterRuntime::post_field_access),
  2770                c_rarg1, c_rarg2);
  2771     __ pop_ptr(rax); // restore object pointer
  2772     __ bind(L1);
  2775   // access constant pool cache
  2776   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2777   // replace index with field offset from cache entry
  2778   // [jk] not needed currently
  2779   // if (os::is_MP()) {
  2780   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2781   //                        in_bytes(ConstantPoolCache::base_offset() +
  2782   //                                 ConstantPoolCacheEntry::flags_offset())));
  2783   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2784   //   __ andl(rdx, 0x1);
  2785   // }
  2786   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2787                          in_bytes(ConstantPoolCache::base_offset() +
  2788                                   ConstantPoolCacheEntry::f2_offset())));
  2790   // rax: object
  2791   __ verify_oop(rax);
  2792   __ null_check(rax);
  2793   Address field(rax, rbx, Address::times_1);
  2795   // access field
  2796   switch (bytecode()) {
  2797   case Bytecodes::_fast_agetfield:
  2798     __ load_heap_oop(rax, field);
  2799     __ verify_oop(rax);
  2800     break;
  2801   case Bytecodes::_fast_lgetfield:
  2802     __ movq(rax, field);
  2803     break;
  2804   case Bytecodes::_fast_igetfield:
  2805     __ movl(rax, field);
  2806     break;
  2807   case Bytecodes::_fast_bgetfield:
  2808     __ movsbl(rax, field);
  2809     break;
  2810   case Bytecodes::_fast_sgetfield:
  2811     __ load_signed_short(rax, field);
  2812     break;
  2813   case Bytecodes::_fast_cgetfield:
  2814     __ load_unsigned_short(rax, field);
  2815     break;
  2816   case Bytecodes::_fast_fgetfield:
  2817     __ movflt(xmm0, field);
  2818     break;
  2819   case Bytecodes::_fast_dgetfield:
  2820     __ movdbl(xmm0, field);
  2821     break;
  2822   default:
  2823     ShouldNotReachHere();
  2825   // [jk] not needed currently
  2826   // if (os::is_MP()) {
  2827   //   Label notVolatile;
  2828   //   __ testl(rdx, rdx);
  2829   //   __ jcc(Assembler::zero, notVolatile);
  2830   //   __ membar(Assembler::LoadLoad);
  2831   //   __ bind(notVolatile);
  2832   //};
  2835 void TemplateTable::fast_xaccess(TosState state) {
  2836   transition(vtos, state);
  2838   // get receiver
  2839   __ movptr(rax, aaddress(0));
  2840   // access constant pool cache
  2841   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2842   __ movptr(rbx,
  2843             Address(rcx, rdx, Address::times_8,
  2844                     in_bytes(ConstantPoolCache::base_offset() +
  2845                              ConstantPoolCacheEntry::f2_offset())));
  2846   // make sure exception is reported in correct bcp range (getfield is
  2847   // next instruction)
  2848   __ increment(r13);
  2849   __ null_check(rax);
  2850   switch (state) {
  2851   case itos:
  2852     __ movl(rax, Address(rax, rbx, Address::times_1));
  2853     break;
  2854   case atos:
  2855     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2856     __ verify_oop(rax);
  2857     break;
  2858   case ftos:
  2859     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2860     break;
  2861   default:
  2862     ShouldNotReachHere();
  2865   // [jk] not needed currently
  2866   // if (os::is_MP()) {
  2867   //   Label notVolatile;
  2868   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2869   //                        in_bytes(ConstantPoolCache::base_offset() +
  2870   //                                 ConstantPoolCacheEntry::flags_offset())));
  2871   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2872   //   __ testl(rdx, 0x1);
  2873   //   __ jcc(Assembler::zero, notVolatile);
  2874   //   __ membar(Assembler::LoadLoad);
  2875   //   __ bind(notVolatile);
  2876   // }
  2878   __ decrement(r13);
  2883 //-----------------------------------------------------------------------------
  2884 // Calls
  2886 void TemplateTable::count_calls(Register method, Register temp) {
  2887   // implemented elsewhere
  2888   ShouldNotReachHere();
  2891 void TemplateTable::prepare_invoke(int byte_no,
  2892                                    Register method,  // linked method (or i-klass)
  2893                                    Register index,   // itable index, MethodType, etc.
  2894                                    Register recv,    // if caller wants to see it
  2895                                    Register flags    // if caller wants to test it
  2896                                    ) {
  2897   // determine flags
  2898   const Bytecodes::Code code = bytecode();
  2899   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2900   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2901   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2902   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2903   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2904   const bool load_receiver       = (recv  != noreg);
  2905   const bool save_flags          = (flags != noreg);
  2906   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2907   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2908   assert(flags == noreg || flags == rdx, "");
  2909   assert(recv  == noreg || recv  == rcx, "");
  2911   // setup registers & access constant pool cache
  2912   if (recv  == noreg)  recv  = rcx;
  2913   if (flags == noreg)  flags = rdx;
  2914   assert_different_registers(method, index, recv, flags);
  2916   // save 'interpreter return address'
  2917   __ save_bcp();
  2919   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2921   // maybe push appendix to arguments (just before return address)
  2922   if (is_invokedynamic || is_invokehandle) {
  2923     Label L_no_push;
  2924     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2925     __ jcc(Assembler::zero, L_no_push);
  2926     // Push the appendix as a trailing parameter.
  2927     // This must be done before we get the receiver,
  2928     // since the parameter_size includes it.
  2929     __ push(rbx);
  2930     __ mov(rbx, index);
  2931     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2932     __ load_resolved_reference_at_index(index, rbx);
  2933     __ pop(rbx);
  2934     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2935     __ bind(L_no_push);
  2938   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2939   // Note: no return address pushed yet
  2940   if (load_receiver) {
  2941     __ movl(recv, flags);
  2942     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2943     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2944     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2945     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2946     __ movptr(recv, recv_addr);
  2947     __ verify_oop(recv);
  2950   if (save_flags) {
  2951     __ movl(r13, flags);
  2954   // compute return type
  2955   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2956   // Make sure we don't need to mask flags after the above shift
  2957   ConstantPoolCacheEntry::verify_tos_state_shift();
  2958   // load return address
  2960     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2961         (address)Interpreter::return_5_addrs_by_index_table() :
  2962         (address)Interpreter::return_3_addrs_by_index_table();
  2963     ExternalAddress table(table_addr);
  2964     __ lea(rscratch1, table);
  2965     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2968   // push return address
  2969   __ push(flags);
  2971   // Restore flags value from the constant pool cache, and restore rsi
  2972   // for later null checks.  r13 is the bytecode pointer
  2973   if (save_flags) {
  2974     __ movl(flags, r13);
  2975     __ restore_bcp();
  2980 void TemplateTable::invokevirtual_helper(Register index,
  2981                                          Register recv,
  2982                                          Register flags) {
  2983   // Uses temporary registers rax, rdx
  2984   assert_different_registers(index, recv, rax, rdx);
  2985   assert(index == rbx, "");
  2986   assert(recv  == rcx, "");
  2988   // Test for an invoke of a final method
  2989   Label notFinal;
  2990   __ movl(rax, flags);
  2991   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  2992   __ jcc(Assembler::zero, notFinal);
  2994   const Register method = index;  // method must be rbx
  2995   assert(method == rbx,
  2996          "Method* must be rbx for interpreter calling convention");
  2998   // do the call - the index is actually the method to call
  2999   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  3001   // It's final, need a null check here!
  3002   __ null_check(recv);
  3004   // profile this call
  3005   __ profile_final_call(rax);
  3007   __ jump_from_interpreted(method, rax);
  3009   __ bind(notFinal);
  3011   // get receiver klass
  3012   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3013   __ load_klass(rax, recv);
  3015   // profile this call
  3016   __ profile_virtual_call(rax, r14, rdx);
  3018   // get target Method* & entry point
  3019   __ lookup_virtual_method(rax, index, method);
  3020   __ jump_from_interpreted(method, rdx);
  3024 void TemplateTable::invokevirtual(int byte_no) {
  3025   transition(vtos, vtos);
  3026   assert(byte_no == f2_byte, "use this argument");
  3027   prepare_invoke(byte_no,
  3028                  rbx,    // method or vtable index
  3029                  noreg,  // unused itable index
  3030                  rcx, rdx); // recv, flags
  3032   // rbx: index
  3033   // rcx: receiver
  3034   // rdx: flags
  3036   invokevirtual_helper(rbx, rcx, rdx);
  3040 void TemplateTable::invokespecial(int byte_no) {
  3041   transition(vtos, vtos);
  3042   assert(byte_no == f1_byte, "use this argument");
  3043   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3044                  rcx);  // get receiver also for null check
  3045   __ verify_oop(rcx);
  3046   __ null_check(rcx);
  3047   // do the call
  3048   __ profile_call(rax);
  3049   __ jump_from_interpreted(rbx, rax);
  3053 void TemplateTable::invokestatic(int byte_no) {
  3054   transition(vtos, vtos);
  3055   assert(byte_no == f1_byte, "use this argument");
  3056   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3057   // do the call
  3058   __ profile_call(rax);
  3059   __ jump_from_interpreted(rbx, rax);
  3062 void TemplateTable::fast_invokevfinal(int byte_no) {
  3063   transition(vtos, vtos);
  3064   assert(byte_no == f2_byte, "use this argument");
  3065   __ stop("fast_invokevfinal not used on amd64");
  3068 void TemplateTable::invokeinterface(int byte_no) {
  3069   transition(vtos, vtos);
  3070   assert(byte_no == f1_byte, "use this argument");
  3071   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3072                  rcx, rdx); // recv, flags
  3074   // rax: interface klass (from f1)
  3075   // rbx: itable index (from f2)
  3076   // rcx: receiver
  3077   // rdx: flags
  3079   // Special case of invokeinterface called for virtual method of
  3080   // java.lang.Object.  See cpCacheOop.cpp for details.
  3081   // This code isn't produced by javac, but could be produced by
  3082   // another compliant java compiler.
  3083   Label notMethod;
  3084   __ movl(r14, rdx);
  3085   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3086   __ jcc(Assembler::zero, notMethod);
  3088   invokevirtual_helper(rbx, rcx, rdx);
  3089   __ bind(notMethod);
  3091   // Get receiver klass into rdx - also a null check
  3092   __ restore_locals();  // restore r14
  3093   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3094   __ load_klass(rdx, rcx);
  3096   // profile this call
  3097   __ profile_virtual_call(rdx, r13, r14);
  3099   Label no_such_interface, no_such_method;
  3101   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3102                              rdx, rax, rbx,
  3103                              // outputs: method, scan temp. reg
  3104                              rbx, r13,
  3105                              no_such_interface);
  3107   // rbx: Method* to call
  3108   // rcx: receiver
  3109   // Check for abstract method error
  3110   // Note: This should be done more efficiently via a throw_abstract_method_error
  3111   //       interpreter entry point and a conditional jump to it in case of a null
  3112   //       method.
  3113   __ testptr(rbx, rbx);
  3114   __ jcc(Assembler::zero, no_such_method);
  3116   // do the call
  3117   // rcx: receiver
  3118   // rbx,: Method*
  3119   __ jump_from_interpreted(rbx, rdx);
  3120   __ should_not_reach_here();
  3122   // exception handling code follows...
  3123   // note: must restore interpreter registers to canonical
  3124   //       state for exception handling to work correctly!
  3126   __ bind(no_such_method);
  3127   // throw exception
  3128   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3129   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3130   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3131   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3132   // the call_VM checks for exception, so we should never return here.
  3133   __ should_not_reach_here();
  3135   __ bind(no_such_interface);
  3136   // throw exception
  3137   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3138   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3139   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3140   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3141                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3142   // the call_VM checks for exception, so we should never return here.
  3143   __ should_not_reach_here();
  3147 void TemplateTable::invokehandle(int byte_no) {
  3148   transition(vtos, vtos);
  3149   assert(byte_no == f1_byte, "use this argument");
  3150   const Register rbx_method = rbx;
  3151   const Register rax_mtype  = rax;
  3152   const Register rcx_recv   = rcx;
  3153   const Register rdx_flags  = rdx;
  3155   if (!EnableInvokeDynamic) {
  3156     // rewriter does not generate this bytecode
  3157     __ should_not_reach_here();
  3158     return;
  3161   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3162   __ verify_method_ptr(rbx_method);
  3163   __ verify_oop(rcx_recv);
  3164   __ null_check(rcx_recv);
  3166   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3167   // rbx: MH.invokeExact_MT method (from f2)
  3169   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3171   // FIXME: profile the LambdaForm also
  3172   __ profile_final_call(rax);
  3174   __ jump_from_interpreted(rbx_method, rdx);
  3178 void TemplateTable::invokedynamic(int byte_no) {
  3179   transition(vtos, vtos);
  3180   assert(byte_no == f1_byte, "use this argument");
  3182   if (!EnableInvokeDynamic) {
  3183     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3184     // The verifier will stop it.  However, if we get past the verifier,
  3185     // this will stop the thread in a reasonable way, without crashing the JVM.
  3186     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3187                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3188     // the call_VM checks for exception, so we should never return here.
  3189     __ should_not_reach_here();
  3190     return;
  3193   const Register rbx_method   = rbx;
  3194   const Register rax_callsite = rax;
  3196   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3198   // rax: CallSite object (from cpool->resolved_references[f1])
  3199   // rbx: MH.linkToCallSite method (from f2)
  3201   // Note:  rax_callsite is already pushed by prepare_invoke
  3203   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3204   // profile this call
  3205   __ profile_call(r13);
  3207   __ verify_oop(rax_callsite);
  3209   __ jump_from_interpreted(rbx_method, rdx);
  3213 //-----------------------------------------------------------------------------
  3214 // Allocation
  3216 void TemplateTable::_new() {
  3217   transition(vtos, atos);
  3218   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3219   Label slow_case;
  3220   Label done;
  3221   Label initialize_header;
  3222   Label initialize_object; // including clearing the fields
  3223   Label allocate_shared;
  3225   __ get_cpool_and_tags(rsi, rax);
  3226   // Make sure the class we're about to instantiate has been resolved.
  3227   // This is done before loading InstanceKlass to be consistent with the order
  3228   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3229   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3230   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3231           JVM_CONSTANT_Class);
  3232   __ jcc(Assembler::notEqual, slow_case);
  3234   // get InstanceKlass
  3235   __ movptr(rsi, Address(rsi, rdx,
  3236             Address::times_8, sizeof(ConstantPool)));
  3238   // make sure klass is initialized & doesn't have finalizer
  3239   // make sure klass is fully initialized
  3240   __ cmpb(Address(rsi,
  3241                   InstanceKlass::init_state_offset()),
  3242           InstanceKlass::fully_initialized);
  3243   __ jcc(Assembler::notEqual, slow_case);
  3245   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3246   __ movl(rdx,
  3247           Address(rsi,
  3248                   Klass::layout_helper_offset()));
  3249   // test to see if it has a finalizer or is malformed in some way
  3250   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3251   __ jcc(Assembler::notZero, slow_case);
  3253   // Allocate the instance
  3254   // 1) Try to allocate in the TLAB
  3255   // 2) if fail and the object is large allocate in the shared Eden
  3256   // 3) if the above fails (or is not applicable), go to a slow case
  3257   // (creates a new TLAB, etc.)
  3259   const bool allow_shared_alloc =
  3260     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3262   if (UseTLAB) {
  3263     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3264     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3265     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3266     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3267     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3268     if (ZeroTLAB) {
  3269       // the fields have been already cleared
  3270       __ jmp(initialize_header);
  3271     } else {
  3272       // initialize both the header and fields
  3273       __ jmp(initialize_object);
  3277   // Allocation in the shared Eden, if allowed.
  3278   //
  3279   // rdx: instance size in bytes
  3280   if (allow_shared_alloc) {
  3281     __ bind(allocate_shared);
  3283     ExternalAddress top((address)Universe::heap()->top_addr());
  3284     ExternalAddress end((address)Universe::heap()->end_addr());
  3286     const Register RtopAddr = rscratch1;
  3287     const Register RendAddr = rscratch2;
  3289     __ lea(RtopAddr, top);
  3290     __ lea(RendAddr, end);
  3291     __ movptr(rax, Address(RtopAddr, 0));
  3293     // For retries rax gets set by cmpxchgq
  3294     Label retry;
  3295     __ bind(retry);
  3296     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3297     __ cmpptr(rbx, Address(RendAddr, 0));
  3298     __ jcc(Assembler::above, slow_case);
  3300     // Compare rax with the top addr, and if still equal, store the new
  3301     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3302     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3303     //
  3304     // rax: object begin
  3305     // rbx: object end
  3306     // rdx: instance size in bytes
  3307     if (os::is_MP()) {
  3308       __ lock();
  3310     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3312     // if someone beat us on the allocation, try again, otherwise continue
  3313     __ jcc(Assembler::notEqual, retry);
  3315     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3318   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3319     // The object is initialized before the header.  If the object size is
  3320     // zero, go directly to the header initialization.
  3321     __ bind(initialize_object);
  3322     __ decrementl(rdx, sizeof(oopDesc));
  3323     __ jcc(Assembler::zero, initialize_header);
  3325     // Initialize object fields
  3326     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3327     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3329       Label loop;
  3330       __ bind(loop);
  3331       __ movq(Address(rax, rdx, Address::times_8,
  3332                       sizeof(oopDesc) - oopSize),
  3333               rcx);
  3334       __ decrementl(rdx);
  3335       __ jcc(Assembler::notZero, loop);
  3338     // initialize object header only.
  3339     __ bind(initialize_header);
  3340     if (UseBiasedLocking) {
  3341       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
  3342       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3343     } else {
  3344       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3345                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3347     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3348     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3349     __ store_klass(rax, rsi);      // store klass last
  3352       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3353       // Trigger dtrace event for fastpath
  3354       __ push(atos); // save the return value
  3355       __ call_VM_leaf(
  3356            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3357       __ pop(atos); // restore the return value
  3360     __ jmp(done);
  3364   // slow case
  3365   __ bind(slow_case);
  3366   __ get_constant_pool(c_rarg1);
  3367   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3368   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3369   __ verify_oop(rax);
  3371   // continue
  3372   __ bind(done);
  3375 void TemplateTable::newarray() {
  3376   transition(itos, atos);
  3377   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3378   __ movl(c_rarg2, rax);
  3379   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3380           c_rarg1, c_rarg2);
  3383 void TemplateTable::anewarray() {
  3384   transition(itos, atos);
  3385   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3386   __ get_constant_pool(c_rarg1);
  3387   __ movl(c_rarg3, rax);
  3388   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3389           c_rarg1, c_rarg2, c_rarg3);
  3392 void TemplateTable::arraylength() {
  3393   transition(atos, itos);
  3394   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3395   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3398 void TemplateTable::checkcast() {
  3399   transition(atos, atos);
  3400   Label done, is_null, ok_is_subtype, quicked, resolved;
  3401   __ testptr(rax, rax); // object is in rax
  3402   __ jcc(Assembler::zero, is_null);
  3404   // Get cpool & tags index
  3405   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3406   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3407   // See if bytecode has already been quicked
  3408   __ cmpb(Address(rdx, rbx,
  3409                   Address::times_1,
  3410                   Array<u1>::base_offset_in_bytes()),
  3411           JVM_CONSTANT_Class);
  3412   __ jcc(Assembler::equal, quicked);
  3413   __ push(atos); // save receiver for result, and for GC
  3414   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3415   // vm_result_2 has metadata result
  3416   __ get_vm_result_2(rax, r15_thread);
  3417   __ pop_ptr(rdx); // restore receiver
  3418   __ jmpb(resolved);
  3420   // Get superklass in rax and subklass in rbx
  3421   __ bind(quicked);
  3422   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3423   __ movptr(rax, Address(rcx, rbx,
  3424                        Address::times_8, sizeof(ConstantPool)));
  3426   __ bind(resolved);
  3427   __ load_klass(rbx, rdx);
  3429   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3430   // Superklass in rax.  Subklass in rbx.
  3431   __ gen_subtype_check(rbx, ok_is_subtype);
  3433   // Come here on failure
  3434   __ push_ptr(rdx);
  3435   // object is at TOS
  3436   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3438   // Come here on success
  3439   __ bind(ok_is_subtype);
  3440   __ mov(rax, rdx); // Restore object in rdx
  3442   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3443   if (ProfileInterpreter) {
  3444     __ jmp(done);
  3445     __ bind(is_null);
  3446     __ profile_null_seen(rcx);
  3447   } else {
  3448     __ bind(is_null);   // same as 'done'
  3450   __ bind(done);
  3453 void TemplateTable::instanceof() {
  3454   transition(atos, itos);
  3455   Label done, is_null, ok_is_subtype, quicked, resolved;
  3456   __ testptr(rax, rax);
  3457   __ jcc(Assembler::zero, is_null);
  3459   // Get cpool & tags index
  3460   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3461   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3462   // See if bytecode has already been quicked
  3463   __ cmpb(Address(rdx, rbx,
  3464                   Address::times_1,
  3465                   Array<u1>::base_offset_in_bytes()),
  3466           JVM_CONSTANT_Class);
  3467   __ jcc(Assembler::equal, quicked);
  3469   __ push(atos); // save receiver for result, and for GC
  3470   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3471   // vm_result_2 has metadata result
  3472   __ get_vm_result_2(rax, r15_thread);
  3473   __ pop_ptr(rdx); // restore receiver
  3474   __ verify_oop(rdx);
  3475   __ load_klass(rdx, rdx);
  3476   __ jmpb(resolved);
  3478   // Get superklass in rax and subklass in rdx
  3479   __ bind(quicked);
  3480   __ load_klass(rdx, rax);
  3481   __ movptr(rax, Address(rcx, rbx,
  3482                          Address::times_8, sizeof(ConstantPool)));
  3484   __ bind(resolved);
  3486   // Generate subtype check.  Blows rcx, rdi
  3487   // Superklass in rax.  Subklass in rdx.
  3488   __ gen_subtype_check(rdx, ok_is_subtype);
  3490   // Come here on failure
  3491   __ xorl(rax, rax);
  3492   __ jmpb(done);
  3493   // Come here on success
  3494   __ bind(ok_is_subtype);
  3495   __ movl(rax, 1);
  3497   // Collect counts on whether this test sees NULLs a lot or not.
  3498   if (ProfileInterpreter) {
  3499     __ jmp(done);
  3500     __ bind(is_null);
  3501     __ profile_null_seen(rcx);
  3502   } else {
  3503     __ bind(is_null);   // same as 'done'
  3505   __ bind(done);
  3506   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3507   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3510 //-----------------------------------------------------------------------------
  3511 // Breakpoints
  3512 void TemplateTable::_breakpoint() {
  3513   // Note: We get here even if we are single stepping..
  3514   // jbug inists on setting breakpoints at every bytecode
  3515   // even if we are in single step mode.
  3517   transition(vtos, vtos);
  3519   // get the unpatched byte code
  3520   __ get_method(c_rarg1);
  3521   __ call_VM(noreg,
  3522              CAST_FROM_FN_PTR(address,
  3523                               InterpreterRuntime::get_original_bytecode_at),
  3524              c_rarg1, r13);
  3525   __ mov(rbx, rax);
  3527   // post the breakpoint event
  3528   __ get_method(c_rarg1);
  3529   __ call_VM(noreg,
  3530              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3531              c_rarg1, r13);
  3533   // complete the execution of original bytecode
  3534   __ dispatch_only_normal(vtos);
  3537 //-----------------------------------------------------------------------------
  3538 // Exceptions
  3540 void TemplateTable::athrow() {
  3541   transition(atos, vtos);
  3542   __ null_check(rax);
  3543   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3546 //-----------------------------------------------------------------------------
  3547 // Synchronization
  3548 //
  3549 // Note: monitorenter & exit are symmetric routines; which is reflected
  3550 //       in the assembly code structure as well
  3551 //
  3552 // Stack layout:
  3553 //
  3554 // [expressions  ] <--- rsp               = expression stack top
  3555 // ..
  3556 // [expressions  ]
  3557 // [monitor entry] <--- monitor block top = expression stack bot
  3558 // ..
  3559 // [monitor entry]
  3560 // [frame data   ] <--- monitor block bot
  3561 // ...
  3562 // [saved rbp    ] <--- rbp
  3563 void TemplateTable::monitorenter() {
  3564   transition(atos, vtos);
  3566   // check for NULL object
  3567   __ null_check(rax);
  3569   const Address monitor_block_top(
  3570         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3571   const Address monitor_block_bot(
  3572         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3573   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3575   Label allocated;
  3577   // initialize entry pointer
  3578   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3580   // find a free slot in the monitor block (result in c_rarg1)
  3582     Label entry, loop, exit;
  3583     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3584                                      // starting with top-most entry
  3585     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3586                                      // of monitor block
  3587     __ jmpb(entry);
  3589     __ bind(loop);
  3590     // check if current entry is used
  3591     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3592     // if not used then remember entry in c_rarg1
  3593     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3594     // check if current entry is for same object
  3595     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3596     // if same object then stop searching
  3597     __ jccb(Assembler::equal, exit);
  3598     // otherwise advance to next entry
  3599     __ addptr(c_rarg3, entry_size);
  3600     __ bind(entry);
  3601     // check if bottom reached
  3602     __ cmpptr(c_rarg3, c_rarg2);
  3603     // if not at bottom then check this entry
  3604     __ jcc(Assembler::notEqual, loop);
  3605     __ bind(exit);
  3608   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3609   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3611   // allocate one if there's no free slot
  3613     Label entry, loop;
  3614     // 1. compute new pointers             // rsp: old expression stack top
  3615     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3616     __ subptr(rsp, entry_size);            // move expression stack top
  3617     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3618     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3619     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3620     __ jmp(entry);
  3621     // 2. move expression stack contents
  3622     __ bind(loop);
  3623     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3624                                                       // word from old location
  3625     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3626     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3627     __ bind(entry);
  3628     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3629     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3630                                             // copy next word
  3633   // call run-time routine
  3634   // c_rarg1: points to monitor entry
  3635   __ bind(allocated);
  3637   // Increment bcp to point to the next bytecode, so exception
  3638   // handling for async. exceptions work correctly.
  3639   // The object has already been poped from the stack, so the
  3640   // expression stack looks correct.
  3641   __ increment(r13);
  3643   // store object
  3644   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3645   __ lock_object(c_rarg1);
  3647   // check to make sure this monitor doesn't cause stack overflow after locking
  3648   __ save_bcp();  // in case of exception
  3649   __ generate_stack_overflow_check(0);
  3651   // The bcp has already been incremented. Just need to dispatch to
  3652   // next instruction.
  3653   __ dispatch_next(vtos);
  3657 void TemplateTable::monitorexit() {
  3658   transition(atos, vtos);
  3660   // check for NULL object
  3661   __ null_check(rax);
  3663   const Address monitor_block_top(
  3664         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3665   const Address monitor_block_bot(
  3666         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3667   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3669   Label found;
  3671   // find matching slot
  3673     Label entry, loop;
  3674     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3675                                      // starting with top-most entry
  3676     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3677                                      // of monitor block
  3678     __ jmpb(entry);
  3680     __ bind(loop);
  3681     // check if current entry is for same object
  3682     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3683     // if same object then stop searching
  3684     __ jcc(Assembler::equal, found);
  3685     // otherwise advance to next entry
  3686     __ addptr(c_rarg1, entry_size);
  3687     __ bind(entry);
  3688     // check if bottom reached
  3689     __ cmpptr(c_rarg1, c_rarg2);
  3690     // if not at bottom then check this entry
  3691     __ jcc(Assembler::notEqual, loop);
  3694   // error handling. Unlocking was not block-structured
  3695   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3696                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3697   __ should_not_reach_here();
  3699   // call run-time routine
  3700   // rsi: points to monitor entry
  3701   __ bind(found);
  3702   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3703   __ unlock_object(c_rarg1);
  3704   __ pop_ptr(rax); // discard object
  3708 // Wide instructions
  3709 void TemplateTable::wide() {
  3710   transition(vtos, vtos);
  3711   __ load_unsigned_byte(rbx, at_bcp(1));
  3712   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3713   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3714   // Note: the r13 increment step is part of the individual wide
  3715   // bytecode implementations
  3719 // Multi arrays
  3720 void TemplateTable::multianewarray() {
  3721   transition(vtos, atos);
  3722   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3723   // last dim is on top of stack; we want address of first one:
  3724   // first_addr = last_addr + (ndims - 1) * wordSize
  3725   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3726   call_VM(rax,
  3727           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3728           c_rarg1);
  3729   __ load_unsigned_byte(rbx, at_bcp(3));
  3730   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3732 #endif // !CC_INTERP

mercurial