src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4338
fd74228fd5ca
child 4542
db9981fd3124
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #define __ _masm->
    50 #ifndef CC_INTERP
    52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    56 //-----------------------------------------------------------------------------
    58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    59   address entry = __ pc();
    61 #ifdef ASSERT
    62   {
    63     Label L;
    64     __ lea(rax, Address(rbp,
    65                         frame::interpreter_frame_monitor_block_top_offset *
    66                         wordSize));
    67     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    68                          // grows negative)
    69     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    70     __ stop ("interpreter frame not set up");
    71     __ bind(L);
    72   }
    73 #endif // ASSERT
    74   // Restore bcp under the assumption that the current frame is still
    75   // interpreted
    76   __ restore_bcp();
    78   // expression stack must be empty before entering the VM if an
    79   // exception happened
    80   __ empty_expression_stack();
    81   // throw exception
    82   __ call_VM(noreg,
    83              CAST_FROM_FN_PTR(address,
    84                               InterpreterRuntime::throw_StackOverflowError));
    85   return entry;
    86 }
    88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    89         const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an
    92   // exception happened
    93   __ empty_expression_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register ebx
    96   __ lea(c_rarg1, ExternalAddress((address)name));
    97   __ call_VM(noreg,
    98              CAST_FROM_FN_PTR(address,
    99                               InterpreterRuntime::
   100                               throw_ArrayIndexOutOfBoundsException),
   101              c_rarg1, rbx);
   102   return entry;
   103 }
   105 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   106   address entry = __ pc();
   108   // object is at TOS
   109   __ pop(c_rarg1);
   111   // expression stack must be empty before entering the VM if an
   112   // exception happened
   113   __ empty_expression_stack();
   115   __ call_VM(noreg,
   116              CAST_FROM_FN_PTR(address,
   117                               InterpreterRuntime::
   118                               throw_ClassCastException),
   119              c_rarg1);
   120   return entry;
   121 }
   123 address TemplateInterpreterGenerator::generate_exception_handler_common(
   124         const char* name, const char* message, bool pass_oop) {
   125   assert(!pass_oop || message == NULL, "either oop or message but not both");
   126   address entry = __ pc();
   127   if (pass_oop) {
   128     // object is at TOS
   129     __ pop(c_rarg2);
   130   }
   131   // expression stack must be empty before entering the VM if an
   132   // exception happened
   133   __ empty_expression_stack();
   134   // setup parameters
   135   __ lea(c_rarg1, ExternalAddress((address)name));
   136   if (pass_oop) {
   137     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   138                                      InterpreterRuntime::
   139                                      create_klass_exception),
   140                c_rarg1, c_rarg2);
   141   } else {
   142     // kind of lame ExternalAddress can't take NULL because
   143     // external_word_Relocation will assert.
   144     if (message != NULL) {
   145       __ lea(c_rarg2, ExternalAddress((address)message));
   146     } else {
   147       __ movptr(c_rarg2, NULL_WORD);
   148     }
   149     __ call_VM(rax,
   150                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   151                c_rarg1, c_rarg2);
   152   }
   153   // throw exception
   154   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   155   return entry;
   156 }
   159 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   160   address entry = __ pc();
   161   // NULL last_sp until next java call
   162   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   163   __ dispatch_next(state);
   164   return entry;
   165 }
   168 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   169   address entry = __ pc();
   171   // Restore stack bottom in case i2c adjusted stack
   172   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   173   // and NULL it as marker that esp is now tos until next java call
   174   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   176   __ restore_bcp();
   177   __ restore_locals();
   179   Label L_got_cache, L_giant_index;
   180   if (EnableInvokeDynamic) {
   181     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   182     __ jcc(Assembler::equal, L_giant_index);
   183   }
   184   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   185   __ bind(L_got_cache);
   186   __ movl(rbx, Address(rbx, rcx,
   187                        Address::times_ptr,
   188                        in_bytes(ConstantPoolCache::base_offset()) +
   189                        3 * wordSize));
   190   __ andl(rbx, 0xFF);
   191   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   192   __ dispatch_next(state, step);
   194   // out of the main line of code...
   195   if (EnableInvokeDynamic) {
   196     __ bind(L_giant_index);
   197     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   198     __ jmp(L_got_cache);
   199   }
   201   return entry;
   202 }
   205 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   206                                                                int step) {
   207   address entry = __ pc();
   208   // NULL last_sp until next java call
   209   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   210   __ restore_bcp();
   211   __ restore_locals();
   212   // handle exceptions
   213   {
   214     Label L;
   215     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   216     __ jcc(Assembler::zero, L);
   217     __ call_VM(noreg,
   218                CAST_FROM_FN_PTR(address,
   219                                 InterpreterRuntime::throw_pending_exception));
   220     __ should_not_reach_here();
   221     __ bind(L);
   222   }
   223   __ dispatch_next(state, step);
   224   return entry;
   225 }
   227 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   228   int i = 0;
   229   switch (type) {
   230     case T_BOOLEAN: i = 0; break;
   231     case T_CHAR   : i = 1; break;
   232     case T_BYTE   : i = 2; break;
   233     case T_SHORT  : i = 3; break;
   234     case T_INT    : i = 4; break;
   235     case T_LONG   : i = 5; break;
   236     case T_VOID   : i = 6; break;
   237     case T_FLOAT  : i = 7; break;
   238     case T_DOUBLE : i = 8; break;
   239     case T_OBJECT : i = 9; break;
   240     case T_ARRAY  : i = 9; break;
   241     default       : ShouldNotReachHere();
   242   }
   243   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   244          "index out of bounds");
   245   return i;
   246 }
   249 address TemplateInterpreterGenerator::generate_result_handler_for(
   250         BasicType type) {
   251   address entry = __ pc();
   252   switch (type) {
   253   case T_BOOLEAN: __ c2bool(rax);            break;
   254   case T_CHAR   : __ movzwl(rax, rax);       break;
   255   case T_BYTE   : __ sign_extend_byte(rax);  break;
   256   case T_SHORT  : __ sign_extend_short(rax); break;
   257   case T_INT    : /* nothing to do */        break;
   258   case T_LONG   : /* nothing to do */        break;
   259   case T_VOID   : /* nothing to do */        break;
   260   case T_FLOAT  : /* nothing to do */        break;
   261   case T_DOUBLE : /* nothing to do */        break;
   262   case T_OBJECT :
   263     // retrieve result from frame
   264     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   265     // and verify it
   266     __ verify_oop(rax);
   267     break;
   268   default       : ShouldNotReachHere();
   269   }
   270   __ ret(0);                                   // return from result handler
   271   return entry;
   272 }
   274 address TemplateInterpreterGenerator::generate_safept_entry_for(
   275         TosState state,
   276         address runtime_entry) {
   277   address entry = __ pc();
   278   __ push(state);
   279   __ call_VM(noreg, runtime_entry);
   280   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   281   return entry;
   282 }
   286 // Helpers for commoning out cases in the various type of method entries.
   287 //
   290 // increment invocation count & check for overflow
   291 //
   292 // Note: checking for negative value instead of overflow
   293 //       so we have a 'sticky' overflow test
   294 //
   295 // rbx: method
   296 // ecx: invocation counter
   297 //
   298 void InterpreterGenerator::generate_counter_incr(
   299         Label* overflow,
   300         Label* profile_method,
   301         Label* profile_method_continue) {
   302   const Address invocation_counter(rbx, in_bytes(Method::invocation_counter_offset()) +
   303                                         in_bytes(InvocationCounter::counter_offset()));
   304   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   305   if (TieredCompilation) {
   306     int increment = InvocationCounter::count_increment;
   307     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   308     Label no_mdo, done;
   309     if (ProfileInterpreter) {
   310       // Are we profiling?
   311       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   312       __ testptr(rax, rax);
   313       __ jccb(Assembler::zero, no_mdo);
   314       // Increment counter in the MDO
   315       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   316                                                 in_bytes(InvocationCounter::counter_offset()));
   317       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   318       __ jmpb(done);
   319     }
   320     __ bind(no_mdo);
   321     // Increment counter in Method* (we don't need to load it, it's in ecx).
   322     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   323     __ bind(done);
   324   } else {
   325     const Address backedge_counter(rbx,
   326                                    Method::backedge_counter_offset() +
   327                                    InvocationCounter::counter_offset());
   329     if (ProfileInterpreter) { // %%% Merge this into MethodData*
   330       __ incrementl(Address(rbx,
   331                             Method::interpreter_invocation_counter_offset()));
   332     }
   333     // Update standard invocation counters
   334     __ movl(rax, backedge_counter);   // load backedge counter
   336     __ incrementl(rcx, InvocationCounter::count_increment);
   337     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   339     __ movl(invocation_counter, rcx); // save invocation count
   340     __ addl(rcx, rax);                // add both counters
   342     // profile_method is non-null only for interpreted method so
   343     // profile_method != NULL == !native_call
   345     if (ProfileInterpreter && profile_method != NULL) {
   346       // Test to see if we should create a method data oop
   347       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   348       __ jcc(Assembler::less, *profile_method_continue);
   350       // if no method data exists, go to profile_method
   351       __ test_method_data_pointer(rax, *profile_method);
   352     }
   354     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   355     __ jcc(Assembler::aboveEqual, *overflow);
   356   }
   357 }
   359 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   361   // Asm interpreter on entry
   362   // r14 - locals
   363   // r13 - bcp
   364   // rbx - method
   365   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   366   // rbp - interpreter frame
   368   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   369   // Everything as it was on entry
   370   // rdx is not restored. Doesn't appear to really be set.
   372   // InterpreterRuntime::frequency_counter_overflow takes two
   373   // arguments, the first (thread) is passed by call_VM, the second
   374   // indicates if the counter overflow occurs at a backwards branch
   375   // (NULL bcp).  We pass zero for it.  The call returns the address
   376   // of the verified entry point for the method or NULL if the
   377   // compilation did not complete (either went background or bailed
   378   // out).
   379   __ movl(c_rarg1, 0);
   380   __ call_VM(noreg,
   381              CAST_FROM_FN_PTR(address,
   382                               InterpreterRuntime::frequency_counter_overflow),
   383              c_rarg1);
   385   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   386   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   387   // and jump to the interpreted entry.
   388   __ jmp(*do_continue, relocInfo::none);
   389 }
   391 // See if we've got enough room on the stack for locals plus overhead.
   392 // The expression stack grows down incrementally, so the normal guard
   393 // page mechanism will work for that.
   394 //
   395 // NOTE: Since the additional locals are also always pushed (wasn't
   396 // obvious in generate_method_entry) so the guard should work for them
   397 // too.
   398 //
   399 // Args:
   400 //      rdx: number of additional locals this frame needs (what we must check)
   401 //      rbx: Method*
   402 //
   403 // Kills:
   404 //      rax
   405 void InterpreterGenerator::generate_stack_overflow_check(void) {
   407   // monitor entry size: see picture of stack set
   408   // (generate_method_entry) and frame_amd64.hpp
   409   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   411   // total overhead size: entry_size + (saved rbp through expr stack
   412   // bottom).  be sure to change this if you add/subtract anything
   413   // to/from the overhead area
   414   const int overhead_size =
   415     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   417   const int page_size = os::vm_page_size();
   419   Label after_frame_check;
   421   // see if the frame is greater than one page in size. If so,
   422   // then we need to verify there is enough stack space remaining
   423   // for the additional locals.
   424   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   425   __ jcc(Assembler::belowEqual, after_frame_check);
   427   // compute rsp as if this were going to be the last frame on
   428   // the stack before the red zone
   430   const Address stack_base(r15_thread, Thread::stack_base_offset());
   431   const Address stack_size(r15_thread, Thread::stack_size_offset());
   433   // locals + overhead, in bytes
   434   __ mov(rax, rdx);
   435   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   436   __ addptr(rax, overhead_size);
   438 #ifdef ASSERT
   439   Label stack_base_okay, stack_size_okay;
   440   // verify that thread stack base is non-zero
   441   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   442   __ jcc(Assembler::notEqual, stack_base_okay);
   443   __ stop("stack base is zero");
   444   __ bind(stack_base_okay);
   445   // verify that thread stack size is non-zero
   446   __ cmpptr(stack_size, 0);
   447   __ jcc(Assembler::notEqual, stack_size_okay);
   448   __ stop("stack size is zero");
   449   __ bind(stack_size_okay);
   450 #endif
   452   // Add stack base to locals and subtract stack size
   453   __ addptr(rax, stack_base);
   454   __ subptr(rax, stack_size);
   456   // Use the maximum number of pages we might bang.
   457   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   458                                                                               (StackRedPages+StackYellowPages);
   460   // add in the red and yellow zone sizes
   461   __ addptr(rax, max_pages * page_size);
   463   // check against the current stack bottom
   464   __ cmpptr(rsp, rax);
   465   __ jcc(Assembler::above, after_frame_check);
   467   // Restore sender's sp as SP. This is necessary if the sender's
   468   // frame is an extended compiled frame (see gen_c2i_adapter())
   469   // and safer anyway in case of JSR292 adaptations.
   471   __ pop(rax); // return address must be moved if SP is changed
   472   __ mov(rsp, r13);
   473   __ push(rax);
   475   // Note: the restored frame is not necessarily interpreted.
   476   // Use the shared runtime version of the StackOverflowError.
   477   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   478   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   480   // all done with frame size check
   481   __ bind(after_frame_check);
   482 }
   484 // Allocate monitor and lock method (asm interpreter)
   485 //
   486 // Args:
   487 //      rbx: Method*
   488 //      r14: locals
   489 //
   490 // Kills:
   491 //      rax
   492 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   493 //      rscratch1, rscratch2 (scratch regs)
   494 void InterpreterGenerator::lock_method(void) {
   495   // synchronize method
   496   const Address access_flags(rbx, Method::access_flags_offset());
   497   const Address monitor_block_top(
   498         rbp,
   499         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   500   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   502 #ifdef ASSERT
   503   {
   504     Label L;
   505     __ movl(rax, access_flags);
   506     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   507     __ jcc(Assembler::notZero, L);
   508     __ stop("method doesn't need synchronization");
   509     __ bind(L);
   510   }
   511 #endif // ASSERT
   513   // get synchronization object
   514   {
   515     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   516     Label done;
   517     __ movl(rax, access_flags);
   518     __ testl(rax, JVM_ACC_STATIC);
   519     // get receiver (assume this is frequent case)
   520     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   521     __ jcc(Assembler::zero, done);
   522     __ movptr(rax, Address(rbx, Method::const_offset()));
   523     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   524     __ movptr(rax, Address(rax,
   525                            ConstantPool::pool_holder_offset_in_bytes()));
   526     __ movptr(rax, Address(rax, mirror_offset));
   528 #ifdef ASSERT
   529     {
   530       Label L;
   531       __ testptr(rax, rax);
   532       __ jcc(Assembler::notZero, L);
   533       __ stop("synchronization object is NULL");
   534       __ bind(L);
   535     }
   536 #endif // ASSERT
   538     __ bind(done);
   539   }
   541   // add space for monitor & lock
   542   __ subptr(rsp, entry_size); // add space for a monitor entry
   543   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   544   // store object
   545   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   546   __ movptr(c_rarg1, rsp); // object address
   547   __ lock_object(c_rarg1);
   548 }
   550 // Generate a fixed interpreter frame. This is identical setup for
   551 // interpreted methods and for native methods hence the shared code.
   552 //
   553 // Args:
   554 //      rax: return address
   555 //      rbx: Method*
   556 //      r14: pointer to locals
   557 //      r13: sender sp
   558 //      rdx: cp cache
   559 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   560   // initialize fixed part of activation frame
   561   __ push(rax);        // save return address
   562   __ enter();          // save old & set new rbp
   563   __ push(r13);        // set sender sp
   564   __ push((int)NULL_WORD); // leave last_sp as null
   565   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
   566   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
   567   __ push(rbx);        // save Method*
   568   if (ProfileInterpreter) {
   569     Label method_data_continue;
   570     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   571     __ testptr(rdx, rdx);
   572     __ jcc(Assembler::zero, method_data_continue);
   573     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   574     __ bind(method_data_continue);
   575     __ push(rdx);      // set the mdp (method data pointer)
   576   } else {
   577     __ push(0);
   578   }
   580   __ movptr(rdx, Address(rbx, Method::const_offset()));
   581   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   582   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   583   __ push(rdx); // set constant pool cache
   584   __ push(r14); // set locals pointer
   585   if (native_call) {
   586     __ push(0); // no bcp
   587   } else {
   588     __ push(r13); // set bcp
   589   }
   590   __ push(0); // reserve word for pointer to expression stack bottom
   591   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   592 }
   594 // End of helpers
   596 // Various method entries
   597 //------------------------------------------------------------------------------------------------------------------------
   598 //
   599 //
   601 // Call an accessor method (assuming it is resolved, otherwise drop
   602 // into vanilla (slow path) entry
   603 address InterpreterGenerator::generate_accessor_entry(void) {
   604   // rbx: Method*
   606   // r13: senderSP must preserver for slow path, set SP to it on fast path
   608   address entry_point = __ pc();
   609   Label xreturn_path;
   611   // do fastpath for resolved accessor methods
   612   if (UseFastAccessorMethods) {
   613     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   614     //       thereof; parameter size = 1
   615     // Note: We can only use this code if the getfield has been resolved
   616     //       and if we don't have a null-pointer exception => check for
   617     //       these conditions first and use slow path if necessary.
   618     Label slow_path;
   619     // If we need a safepoint check, generate full interpreter entry.
   620     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   621              SafepointSynchronize::_not_synchronized);
   623     __ jcc(Assembler::notEqual, slow_path);
   624     // rbx: method
   625     __ movptr(rax, Address(rsp, wordSize));
   627     // check if local 0 != NULL and read field
   628     __ testptr(rax, rax);
   629     __ jcc(Assembler::zero, slow_path);
   631     // read first instruction word and extract bytecode @ 1 and index @ 2
   632     __ movptr(rdx, Address(rbx, Method::const_offset()));
   633     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   634     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   635     // Shift codes right to get the index on the right.
   636     // The bytecode fetched looks like <index><0xb4><0x2a>
   637     __ shrl(rdx, 2 * BitsPerByte);
   638     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   639     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   641     // rax: local 0
   642     // rbx: method
   643     // rdx: constant pool cache index
   644     // rdi: constant pool cache
   646     // check if getfield has been resolved and read constant pool cache entry
   647     // check the validity of the cache entry by testing whether _indices field
   648     // contains Bytecode::_getfield in b1 byte.
   649     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   650            "adjust shift below");
   651     __ movl(rcx,
   652             Address(rdi,
   653                     rdx,
   654                     Address::times_8,
   655                     ConstantPoolCache::base_offset() +
   656                     ConstantPoolCacheEntry::indices_offset()));
   657     __ shrl(rcx, 2 * BitsPerByte);
   658     __ andl(rcx, 0xFF);
   659     __ cmpl(rcx, Bytecodes::_getfield);
   660     __ jcc(Assembler::notEqual, slow_path);
   662     // Note: constant pool entry is not valid before bytecode is resolved
   663     __ movptr(rcx,
   664               Address(rdi,
   665                       rdx,
   666                       Address::times_8,
   667                       ConstantPoolCache::base_offset() +
   668                       ConstantPoolCacheEntry::f2_offset()));
   669     // edx: flags
   670     __ movl(rdx,
   671             Address(rdi,
   672                     rdx,
   673                     Address::times_8,
   674                     ConstantPoolCache::base_offset() +
   675                     ConstantPoolCacheEntry::flags_offset()));
   677     Label notObj, notInt, notByte, notShort;
   678     const Address field_address(rax, rcx, Address::times_1);
   680     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   681     // because they are different sizes.
   682     // Use the type from the constant pool cache
   683     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   684     // Make sure we don't need to mask edx after the above shift
   685     ConstantPoolCacheEntry::verify_tos_state_shift();
   687     __ cmpl(rdx, atos);
   688     __ jcc(Assembler::notEqual, notObj);
   689     // atos
   690     __ load_heap_oop(rax, field_address);
   691     __ jmp(xreturn_path);
   693     __ bind(notObj);
   694     __ cmpl(rdx, itos);
   695     __ jcc(Assembler::notEqual, notInt);
   696     // itos
   697     __ movl(rax, field_address);
   698     __ jmp(xreturn_path);
   700     __ bind(notInt);
   701     __ cmpl(rdx, btos);
   702     __ jcc(Assembler::notEqual, notByte);
   703     // btos
   704     __ load_signed_byte(rax, field_address);
   705     __ jmp(xreturn_path);
   707     __ bind(notByte);
   708     __ cmpl(rdx, stos);
   709     __ jcc(Assembler::notEqual, notShort);
   710     // stos
   711     __ load_signed_short(rax, field_address);
   712     __ jmp(xreturn_path);
   714     __ bind(notShort);
   715 #ifdef ASSERT
   716     Label okay;
   717     __ cmpl(rdx, ctos);
   718     __ jcc(Assembler::equal, okay);
   719     __ stop("what type is this?");
   720     __ bind(okay);
   721 #endif
   722     // ctos
   723     __ load_unsigned_short(rax, field_address);
   725     __ bind(xreturn_path);
   727     // _ireturn/_areturn
   728     __ pop(rdi);
   729     __ mov(rsp, r13);
   730     __ jmp(rdi);
   731     __ ret(0);
   733     // generate a vanilla interpreter entry as the slow path
   734     __ bind(slow_path);
   735     (void) generate_normal_entry(false);
   736   } else {
   737     (void) generate_normal_entry(false);
   738   }
   740   return entry_point;
   741 }
   743 // Method entry for java.lang.ref.Reference.get.
   744 address InterpreterGenerator::generate_Reference_get_entry(void) {
   745 #ifndef SERIALGC
   746   // Code: _aload_0, _getfield, _areturn
   747   // parameter size = 1
   748   //
   749   // The code that gets generated by this routine is split into 2 parts:
   750   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   751   //    2. The slow path - which is an expansion of the regular method entry.
   752   //
   753   // Notes:-
   754   // * In the G1 code we do not check whether we need to block for
   755   //   a safepoint. If G1 is enabled then we must execute the specialized
   756   //   code for Reference.get (except when the Reference object is null)
   757   //   so that we can log the value in the referent field with an SATB
   758   //   update buffer.
   759   //   If the code for the getfield template is modified so that the
   760   //   G1 pre-barrier code is executed when the current method is
   761   //   Reference.get() then going through the normal method entry
   762   //   will be fine.
   763   // * The G1 code can, however, check the receiver object (the instance
   764   //   of java.lang.Reference) and jump to the slow path if null. If the
   765   //   Reference object is null then we obviously cannot fetch the referent
   766   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   767   //   regular method entry code to generate the NPE.
   768   //
   769   // This code is based on generate_accessor_enty.
   770   //
   771   // rbx: Method*
   773   // r13: senderSP must preserve for slow path, set SP to it on fast path
   775   address entry = __ pc();
   777   const int referent_offset = java_lang_ref_Reference::referent_offset;
   778   guarantee(referent_offset > 0, "referent offset not initialized");
   780   if (UseG1GC) {
   781     Label slow_path;
   782     // rbx: method
   784     // Check if local 0 != NULL
   785     // If the receiver is null then it is OK to jump to the slow path.
   786     __ movptr(rax, Address(rsp, wordSize));
   788     __ testptr(rax, rax);
   789     __ jcc(Assembler::zero, slow_path);
   791     // rax: local 0
   792     // rbx: method (but can be used as scratch now)
   793     // rdx: scratch
   794     // rdi: scratch
   796     // Generate the G1 pre-barrier code to log the value of
   797     // the referent field in an SATB buffer.
   799     // Load the value of the referent field.
   800     const Address field_address(rax, referent_offset);
   801     __ load_heap_oop(rax, field_address);
   803     // Generate the G1 pre-barrier code to log the value of
   804     // the referent field in an SATB buffer.
   805     __ g1_write_barrier_pre(noreg /* obj */,
   806                             rax /* pre_val */,
   807                             r15_thread /* thread */,
   808                             rbx /* tmp */,
   809                             true /* tosca_live */,
   810                             true /* expand_call */);
   812     // _areturn
   813     __ pop(rdi);                // get return address
   814     __ mov(rsp, r13);           // set sp to sender sp
   815     __ jmp(rdi);
   816     __ ret(0);
   818     // generate a vanilla interpreter entry as the slow path
   819     __ bind(slow_path);
   820     (void) generate_normal_entry(false);
   822     return entry;
   823   }
   824 #endif // SERIALGC
   826   // If G1 is not enabled then attempt to go through the accessor entry point
   827   // Reference.get is an accessor
   828   return generate_accessor_entry();
   829 }
   832 // Interpreter stub for calling a native method. (asm interpreter)
   833 // This sets up a somewhat different looking stack for calling the
   834 // native method than the typical interpreter frame setup.
   835 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   836   // determine code generation flags
   837   bool inc_counter  = UseCompiler || CountCompiledCalls;
   839   // rbx: Method*
   840   // r13: sender sp
   842   address entry_point = __ pc();
   844   const Address constMethod       (rbx, Method::const_offset());
   845   const Address invocation_counter(rbx, Method::
   846                                         invocation_counter_offset() +
   847                                         InvocationCounter::counter_offset());
   848   const Address access_flags      (rbx, Method::access_flags_offset());
   849   const Address size_of_parameters(rcx, ConstMethod::
   850                                         size_of_parameters_offset());
   853   // get parameter size (always needed)
   854   __ movptr(rcx, constMethod);
   855   __ load_unsigned_short(rcx, size_of_parameters);
   857   // native calls don't need the stack size check since they have no
   858   // expression stack and the arguments are already on the stack and
   859   // we only add a handful of words to the stack
   861   // rbx: Method*
   862   // rcx: size of parameters
   863   // r13: sender sp
   864   __ pop(rax);                                       // get return address
   866   // for natives the size of locals is zero
   868   // compute beginning of parameters (r14)
   869   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   871   // add 2 zero-initialized slots for native calls
   872   // initialize result_handler slot
   873   __ push((int) NULL_WORD);
   874   // slot for oop temp
   875   // (static native method holder mirror/jni oop result)
   876   __ push((int) NULL_WORD);
   878   if (inc_counter) {
   879     __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   880   }
   882   // initialize fixed part of activation frame
   883   generate_fixed_frame(true);
   885   // make sure method is native & not abstract
   886 #ifdef ASSERT
   887   __ movl(rax, access_flags);
   888   {
   889     Label L;
   890     __ testl(rax, JVM_ACC_NATIVE);
   891     __ jcc(Assembler::notZero, L);
   892     __ stop("tried to execute non-native method as native");
   893     __ bind(L);
   894   }
   895   {
   896     Label L;
   897     __ testl(rax, JVM_ACC_ABSTRACT);
   898     __ jcc(Assembler::zero, L);
   899     __ stop("tried to execute abstract method in interpreter");
   900     __ bind(L);
   901   }
   902 #endif
   904   // Since at this point in the method invocation the exception handler
   905   // would try to exit the monitor of synchronized methods which hasn't
   906   // been entered yet, we set the thread local variable
   907   // _do_not_unlock_if_synchronized to true. The remove_activation will
   908   // check this flag.
   910   const Address do_not_unlock_if_synchronized(r15_thread,
   911         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   912   __ movbool(do_not_unlock_if_synchronized, true);
   914   // increment invocation count & check for overflow
   915   Label invocation_counter_overflow;
   916   if (inc_counter) {
   917     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   918   }
   920   Label continue_after_compile;
   921   __ bind(continue_after_compile);
   923   bang_stack_shadow_pages(true);
   925   // reset the _do_not_unlock_if_synchronized flag
   926   __ movbool(do_not_unlock_if_synchronized, false);
   928   // check for synchronized methods
   929   // Must happen AFTER invocation_counter check and stack overflow check,
   930   // so method is not locked if overflows.
   931   if (synchronized) {
   932     lock_method();
   933   } else {
   934     // no synchronization necessary
   935 #ifdef ASSERT
   936     {
   937       Label L;
   938       __ movl(rax, access_flags);
   939       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   940       __ jcc(Assembler::zero, L);
   941       __ stop("method needs synchronization");
   942       __ bind(L);
   943     }
   944 #endif
   945   }
   947   // start execution
   948 #ifdef ASSERT
   949   {
   950     Label L;
   951     const Address monitor_block_top(rbp,
   952                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   953     __ movptr(rax, monitor_block_top);
   954     __ cmpptr(rax, rsp);
   955     __ jcc(Assembler::equal, L);
   956     __ stop("broken stack frame setup in interpreter");
   957     __ bind(L);
   958   }
   959 #endif
   961   // jvmti support
   962   __ notify_method_entry();
   964   // work registers
   965   const Register method = rbx;
   966   const Register t      = r11;
   968   // allocate space for parameters
   969   __ get_method(method);
   970   __ movptr(t, Address(method, Method::const_offset()));
   971   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
   972   __ shll(t, Interpreter::logStackElementSize);
   974   __ subptr(rsp, t);
   975   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   976   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   978   // get signature handler
   979   {
   980     Label L;
   981     __ movptr(t, Address(method, Method::signature_handler_offset()));
   982     __ testptr(t, t);
   983     __ jcc(Assembler::notZero, L);
   984     __ call_VM(noreg,
   985                CAST_FROM_FN_PTR(address,
   986                                 InterpreterRuntime::prepare_native_call),
   987                method);
   988     __ get_method(method);
   989     __ movptr(t, Address(method, Method::signature_handler_offset()));
   990     __ bind(L);
   991   }
   993   // call signature handler
   994   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
   995          "adjust this code");
   996   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
   997          "adjust this code");
   998   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
   999           "adjust this code");
  1001   // The generated handlers do not touch RBX (the method oop).
  1002   // However, large signatures cannot be cached and are generated
  1003   // each time here.  The slow-path generator can do a GC on return,
  1004   // so we must reload it after the call.
  1005   __ call(t);
  1006   __ get_method(method);        // slow path can do a GC, reload RBX
  1009   // result handler is in rax
  1010   // set result handler
  1011   __ movptr(Address(rbp,
  1012                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1013             rax);
  1015   // pass mirror handle if static call
  1017     Label L;
  1018     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1019     __ movl(t, Address(method, Method::access_flags_offset()));
  1020     __ testl(t, JVM_ACC_STATIC);
  1021     __ jcc(Assembler::zero, L);
  1022     // get mirror
  1023     __ movptr(t, Address(method, Method::const_offset()));
  1024     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1025     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1026     __ movptr(t, Address(t, mirror_offset));
  1027     // copy mirror into activation frame
  1028     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1029             t);
  1030     // pass handle to mirror
  1031     __ lea(c_rarg1,
  1032            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1033     __ bind(L);
  1036   // get native function entry point
  1038     Label L;
  1039     __ movptr(rax, Address(method, Method::native_function_offset()));
  1040     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1041     __ movptr(rscratch2, unsatisfied.addr());
  1042     __ cmpptr(rax, rscratch2);
  1043     __ jcc(Assembler::notEqual, L);
  1044     __ call_VM(noreg,
  1045                CAST_FROM_FN_PTR(address,
  1046                                 InterpreterRuntime::prepare_native_call),
  1047                method);
  1048     __ get_method(method);
  1049     __ movptr(rax, Address(method, Method::native_function_offset()));
  1050     __ bind(L);
  1053   // pass JNIEnv
  1054   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1056   // It is enough that the pc() points into the right code
  1057   // segment. It does not have to be the correct return pc.
  1058   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1060   // change thread state
  1061 #ifdef ASSERT
  1063     Label L;
  1064     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1065     __ cmpl(t, _thread_in_Java);
  1066     __ jcc(Assembler::equal, L);
  1067     __ stop("Wrong thread state in native stub");
  1068     __ bind(L);
  1070 #endif
  1072   // Change state to native
  1074   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1075           _thread_in_native);
  1077   // Call the native method.
  1078   __ call(rax);
  1079   // result potentially in rax or xmm0
  1081   // Depending on runtime options, either restore the MXCSR
  1082   // register after returning from the JNI Call or verify that
  1083   // it wasn't changed during -Xcheck:jni.
  1084   if (RestoreMXCSROnJNICalls) {
  1085     __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  1087   else if (CheckJNICalls) {
  1088     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  1091   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1092   // in order to extract the result of a method call. If the order of these
  1093   // pushes change or anything else is added to the stack then the code in
  1094   // interpreter_frame_result must also change.
  1096   __ push(dtos);
  1097   __ push(ltos);
  1099   // change thread state
  1100   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1101           _thread_in_native_trans);
  1103   if (os::is_MP()) {
  1104     if (UseMembar) {
  1105       // Force this write out before the read below
  1106       __ membar(Assembler::Membar_mask_bits(
  1107            Assembler::LoadLoad | Assembler::LoadStore |
  1108            Assembler::StoreLoad | Assembler::StoreStore));
  1109     } else {
  1110       // Write serialization page so VM thread can do a pseudo remote membar.
  1111       // We use the current thread pointer to calculate a thread specific
  1112       // offset to write to within the page. This minimizes bus traffic
  1113       // due to cache line collision.
  1114       __ serialize_memory(r15_thread, rscratch2);
  1118   // check for safepoint operation in progress and/or pending suspend requests
  1120     Label Continue;
  1121     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1122              SafepointSynchronize::_not_synchronized);
  1124     Label L;
  1125     __ jcc(Assembler::notEqual, L);
  1126     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1127     __ jcc(Assembler::equal, Continue);
  1128     __ bind(L);
  1130     // Don't use call_VM as it will see a possible pending exception
  1131     // and forward it and never return here preventing us from
  1132     // clearing _last_native_pc down below.  Also can't use
  1133     // call_VM_leaf either as it will check to see if r13 & r14 are
  1134     // preserved and correspond to the bcp/locals pointers. So we do a
  1135     // runtime call by hand.
  1136     //
  1137     __ mov(c_rarg0, r15_thread);
  1138     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1139     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1140     __ andptr(rsp, -16); // align stack as required by ABI
  1141     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1142     __ mov(rsp, r12); // restore sp
  1143     __ reinit_heapbase();
  1144     __ bind(Continue);
  1147   // change thread state
  1148   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1150   // reset_last_Java_frame
  1151   __ reset_last_Java_frame(true, true);
  1153   // reset handle block
  1154   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1155   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1157   // If result is an oop unbox and store it in frame where gc will see it
  1158   // and result handler will pick it up
  1161     Label no_oop, store_result;
  1162     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1163     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1164     __ jcc(Assembler::notEqual, no_oop);
  1165     // retrieve result
  1166     __ pop(ltos);
  1167     __ testptr(rax, rax);
  1168     __ jcc(Assembler::zero, store_result);
  1169     __ movptr(rax, Address(rax, 0));
  1170     __ bind(store_result);
  1171     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1172     // keep stack depth as expected by pushing oop which will eventually be discarde
  1173     __ push(ltos);
  1174     __ bind(no_oop);
  1179     Label no_reguard;
  1180     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1181             JavaThread::stack_guard_yellow_disabled);
  1182     __ jcc(Assembler::notEqual, no_reguard);
  1184     __ pusha(); // XXX only save smashed registers
  1185     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1186     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1187     __ andptr(rsp, -16); // align stack as required by ABI
  1188     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1189     __ mov(rsp, r12); // restore sp
  1190     __ popa(); // XXX only restore smashed registers
  1191     __ reinit_heapbase();
  1193     __ bind(no_reguard);
  1197   // The method register is junk from after the thread_in_native transition
  1198   // until here.  Also can't call_VM until the bcp has been
  1199   // restored.  Need bcp for throwing exception below so get it now.
  1200   __ get_method(method);
  1202   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1203   // r13 == code_base()
  1204   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
  1205   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
  1206   // handle exceptions (exception handling will handle unlocking!)
  1208     Label L;
  1209     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1210     __ jcc(Assembler::zero, L);
  1211     // Note: At some point we may want to unify this with the code
  1212     // used in call_VM_base(); i.e., we should use the
  1213     // StubRoutines::forward_exception code. For now this doesn't work
  1214     // here because the rsp is not correctly set at this point.
  1215     __ MacroAssembler::call_VM(noreg,
  1216                                CAST_FROM_FN_PTR(address,
  1217                                InterpreterRuntime::throw_pending_exception));
  1218     __ should_not_reach_here();
  1219     __ bind(L);
  1222   // do unlocking if necessary
  1224     Label L;
  1225     __ movl(t, Address(method, Method::access_flags_offset()));
  1226     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1227     __ jcc(Assembler::zero, L);
  1228     // the code below should be shared with interpreter macro
  1229     // assembler implementation
  1231       Label unlock;
  1232       // BasicObjectLock will be first in list, since this is a
  1233       // synchronized method. However, need to check that the object
  1234       // has not been unlocked by an explicit monitorexit bytecode.
  1235       const Address monitor(rbp,
  1236                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1237                                        wordSize - sizeof(BasicObjectLock)));
  1239       // monitor expect in c_rarg1 for slow unlock path
  1240       __ lea(c_rarg1, monitor); // address of first monitor
  1242       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1243       __ testptr(t, t);
  1244       __ jcc(Assembler::notZero, unlock);
  1246       // Entry already unlocked, need to throw exception
  1247       __ MacroAssembler::call_VM(noreg,
  1248                                  CAST_FROM_FN_PTR(address,
  1249                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1250       __ should_not_reach_here();
  1252       __ bind(unlock);
  1253       __ unlock_object(c_rarg1);
  1255     __ bind(L);
  1258   // jvmti support
  1259   // Note: This must happen _after_ handling/throwing any exceptions since
  1260   //       the exception handler code notifies the runtime of method exits
  1261   //       too. If this happens before, method entry/exit notifications are
  1262   //       not properly paired (was bug - gri 11/22/99).
  1263   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1265   // restore potential result in edx:eax, call result handler to
  1266   // restore potential result in ST0 & handle result
  1268   __ pop(ltos);
  1269   __ pop(dtos);
  1271   __ movptr(t, Address(rbp,
  1272                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1273   __ call(t);
  1275   // remove activation
  1276   __ movptr(t, Address(rbp,
  1277                        frame::interpreter_frame_sender_sp_offset *
  1278                        wordSize)); // get sender sp
  1279   __ leave();                                // remove frame anchor
  1280   __ pop(rdi);                               // get return address
  1281   __ mov(rsp, t);                            // set sp to sender sp
  1282   __ jmp(rdi);
  1284   if (inc_counter) {
  1285     // Handle overflow of counter and compile method
  1286     __ bind(invocation_counter_overflow);
  1287     generate_counter_overflow(&continue_after_compile);
  1290   return entry_point;
  1293 //
  1294 // Generic interpreted method entry to (asm) interpreter
  1295 //
  1296 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1297   // determine code generation flags
  1298   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1300   // ebx: Method*
  1301   // r13: sender sp
  1302   address entry_point = __ pc();
  1304   const Address constMethod(rbx, Method::const_offset());
  1305   const Address invocation_counter(rbx,
  1306                                    Method::invocation_counter_offset() +
  1307                                    InvocationCounter::counter_offset());
  1308   const Address access_flags(rbx, Method::access_flags_offset());
  1309   const Address size_of_parameters(rdx,
  1310                                    ConstMethod::size_of_parameters_offset());
  1311   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
  1314   // get parameter size (always needed)
  1315   __ movptr(rdx, constMethod);
  1316   __ load_unsigned_short(rcx, size_of_parameters);
  1318   // rbx: Method*
  1319   // rcx: size of parameters
  1320   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1322   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1323   __ subl(rdx, rcx); // rdx = no. of additional locals
  1325   // YYY
  1326 //   __ incrementl(rdx);
  1327 //   __ andl(rdx, -2);
  1329   // see if we've got enough room on the stack for locals plus overhead.
  1330   generate_stack_overflow_check();
  1332   // get return address
  1333   __ pop(rax);
  1335   // compute beginning of parameters (r14)
  1336   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1338   // rdx - # of additional locals
  1339   // allocate space for locals
  1340   // explicitly initialize locals
  1342     Label exit, loop;
  1343     __ testl(rdx, rdx);
  1344     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1345     __ bind(loop);
  1346     __ push((int) NULL_WORD); // initialize local variables
  1347     __ decrementl(rdx); // until everything initialized
  1348     __ jcc(Assembler::greater, loop);
  1349     __ bind(exit);
  1352   // (pre-)fetch invocation count
  1353   if (inc_counter) {
  1354     __ movl(rcx, invocation_counter);
  1356   // initialize fixed part of activation frame
  1357   generate_fixed_frame(false);
  1359   // make sure method is not native & not abstract
  1360 #ifdef ASSERT
  1361   __ movl(rax, access_flags);
  1363     Label L;
  1364     __ testl(rax, JVM_ACC_NATIVE);
  1365     __ jcc(Assembler::zero, L);
  1366     __ stop("tried to execute native method as non-native");
  1367     __ bind(L);
  1370     Label L;
  1371     __ testl(rax, JVM_ACC_ABSTRACT);
  1372     __ jcc(Assembler::zero, L);
  1373     __ stop("tried to execute abstract method in interpreter");
  1374     __ bind(L);
  1376 #endif
  1378   // Since at this point in the method invocation the exception
  1379   // handler would try to exit the monitor of synchronized methods
  1380   // which hasn't been entered yet, we set the thread local variable
  1381   // _do_not_unlock_if_synchronized to true. The remove_activation
  1382   // will check this flag.
  1384   const Address do_not_unlock_if_synchronized(r15_thread,
  1385         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1386   __ movbool(do_not_unlock_if_synchronized, true);
  1388   // increment invocation count & check for overflow
  1389   Label invocation_counter_overflow;
  1390   Label profile_method;
  1391   Label profile_method_continue;
  1392   if (inc_counter) {
  1393     generate_counter_incr(&invocation_counter_overflow,
  1394                           &profile_method,
  1395                           &profile_method_continue);
  1396     if (ProfileInterpreter) {
  1397       __ bind(profile_method_continue);
  1401   Label continue_after_compile;
  1402   __ bind(continue_after_compile);
  1404   // check for synchronized interpreted methods
  1405   bang_stack_shadow_pages(false);
  1407   // reset the _do_not_unlock_if_synchronized flag
  1408   __ movbool(do_not_unlock_if_synchronized, false);
  1410   // check for synchronized methods
  1411   // Must happen AFTER invocation_counter check and stack overflow check,
  1412   // so method is not locked if overflows.
  1413   if (synchronized) {
  1414     // Allocate monitor and lock method
  1415     lock_method();
  1416   } else {
  1417     // no synchronization necessary
  1418 #ifdef ASSERT
  1420       Label L;
  1421       __ movl(rax, access_flags);
  1422       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1423       __ jcc(Assembler::zero, L);
  1424       __ stop("method needs synchronization");
  1425       __ bind(L);
  1427 #endif
  1430   // start execution
  1431 #ifdef ASSERT
  1433     Label L;
  1434      const Address monitor_block_top (rbp,
  1435                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1436     __ movptr(rax, monitor_block_top);
  1437     __ cmpptr(rax, rsp);
  1438     __ jcc(Assembler::equal, L);
  1439     __ stop("broken stack frame setup in interpreter");
  1440     __ bind(L);
  1442 #endif
  1444   // jvmti support
  1445   __ notify_method_entry();
  1447   __ dispatch_next(vtos);
  1449   // invocation counter overflow
  1450   if (inc_counter) {
  1451     if (ProfileInterpreter) {
  1452       // We have decided to profile this method in the interpreter
  1453       __ bind(profile_method);
  1454       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1455       __ set_method_data_pointer_for_bcp();
  1456       __ get_method(rbx);
  1457       __ jmp(profile_method_continue);
  1459     // Handle overflow of counter and compile method
  1460     __ bind(invocation_counter_overflow);
  1461     generate_counter_overflow(&continue_after_compile);
  1464   return entry_point;
  1467 // Entry points
  1468 //
  1469 // Here we generate the various kind of entries into the interpreter.
  1470 // The two main entry type are generic bytecode methods and native
  1471 // call method.  These both come in synchronized and non-synchronized
  1472 // versions but the frame layout they create is very similar. The
  1473 // other method entry types are really just special purpose entries
  1474 // that are really entry and interpretation all in one. These are for
  1475 // trivial methods like accessor, empty, or special math methods.
  1476 //
  1477 // When control flow reaches any of the entry types for the interpreter
  1478 // the following holds ->
  1479 //
  1480 // Arguments:
  1481 //
  1482 // rbx: Method*
  1483 //
  1484 // Stack layout immediately at entry
  1485 //
  1486 // [ return address     ] <--- rsp
  1487 // [ parameter n        ]
  1488 //   ...
  1489 // [ parameter 1        ]
  1490 // [ expression stack   ] (caller's java expression stack)
  1492 // Assuming that we don't go to one of the trivial specialized entries
  1493 // the stack will look like below when we are ready to execute the
  1494 // first bytecode (or call the native routine). The register usage
  1495 // will be as the template based interpreter expects (see
  1496 // interpreter_amd64.hpp).
  1497 //
  1498 // local variables follow incoming parameters immediately; i.e.
  1499 // the return address is moved to the end of the locals).
  1500 //
  1501 // [ monitor entry      ] <--- rsp
  1502 //   ...
  1503 // [ monitor entry      ]
  1504 // [ expr. stack bottom ]
  1505 // [ saved r13          ]
  1506 // [ current r14        ]
  1507 // [ Method*            ]
  1508 // [ saved ebp          ] <--- rbp
  1509 // [ return address     ]
  1510 // [ local variable m   ]
  1511 //   ...
  1512 // [ local variable 1   ]
  1513 // [ parameter n        ]
  1514 //   ...
  1515 // [ parameter 1        ] <--- r14
  1517 address AbstractInterpreterGenerator::generate_method_entry(
  1518                                         AbstractInterpreter::MethodKind kind) {
  1519   // determine code generation flags
  1520   bool synchronized = false;
  1521   address entry_point = NULL;
  1523   switch (kind) {
  1524   case Interpreter::zerolocals             :                                                                             break;
  1525   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1526   case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
  1527   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);  break;
  1528   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();       break;
  1529   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();    break;
  1530   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();    break;
  1532   case Interpreter::java_lang_math_sin     : // fall thru
  1533   case Interpreter::java_lang_math_cos     : // fall thru
  1534   case Interpreter::java_lang_math_tan     : // fall thru
  1535   case Interpreter::java_lang_math_abs     : // fall thru
  1536   case Interpreter::java_lang_math_log     : // fall thru
  1537   case Interpreter::java_lang_math_log10   : // fall thru
  1538   case Interpreter::java_lang_math_sqrt    : // fall thru
  1539   case Interpreter::java_lang_math_pow     : // fall thru
  1540   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);    break;
  1541   case Interpreter::java_lang_ref_reference_get
  1542                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1543   default:
  1544     fatal(err_msg("unexpected method kind: %d", kind));
  1545     break;
  1548   if (entry_point) {
  1549     return entry_point;
  1552   return ((InterpreterGenerator*) this)->
  1553                                 generate_normal_entry(synchronized);
  1556 // These should never be compiled since the interpreter will prefer
  1557 // the compiled version to the intrinsic version.
  1558 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1559   switch (method_kind(m)) {
  1560     case Interpreter::java_lang_math_sin     : // fall thru
  1561     case Interpreter::java_lang_math_cos     : // fall thru
  1562     case Interpreter::java_lang_math_tan     : // fall thru
  1563     case Interpreter::java_lang_math_abs     : // fall thru
  1564     case Interpreter::java_lang_math_log     : // fall thru
  1565     case Interpreter::java_lang_math_log10   : // fall thru
  1566     case Interpreter::java_lang_math_sqrt    : // fall thru
  1567     case Interpreter::java_lang_math_pow     : // fall thru
  1568     case Interpreter::java_lang_math_exp     :
  1569       return false;
  1570     default:
  1571       return true;
  1575 // How much stack a method activation needs in words.
  1576 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1577   const int entry_size = frame::interpreter_frame_monitor_size();
  1579   // total overhead size: entry_size + (saved rbp thru expr stack
  1580   // bottom).  be sure to change this if you add/subtract anything
  1581   // to/from the overhead area
  1582   const int overhead_size =
  1583     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1585   const int stub_code = frame::entry_frame_after_call_words;
  1586   const int extra_stack = Method::extra_stack_entries();
  1587   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1588                            Interpreter::stackElementWords;
  1589   return (overhead_size + method_stack + stub_code);
  1592 int AbstractInterpreter::layout_activation(Method* method,
  1593                                            int tempcount,
  1594                                            int popframe_extra_args,
  1595                                            int moncount,
  1596                                            int caller_actual_parameters,
  1597                                            int callee_param_count,
  1598                                            int callee_locals,
  1599                                            frame* caller,
  1600                                            frame* interpreter_frame,
  1601                                            bool is_top_frame) {
  1602   // Note: This calculation must exactly parallel the frame setup
  1603   // in AbstractInterpreterGenerator::generate_method_entry.
  1604   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1605   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1606   // right size, as determined by a previous call to this method.
  1607   // It is also guaranteed to be walkable even though it is in a skeletal state
  1609   // fixed size of an interpreter frame:
  1610   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1611   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1612                      Interpreter::stackElementWords;
  1614   int overhead = frame::sender_sp_offset -
  1615                  frame::interpreter_frame_initial_sp_offset;
  1616   // Our locals were accounted for by the caller (or last_frame_adjust
  1617   // on the transistion) Since the callee parameters already account
  1618   // for the callee's params we only need to account for the extra
  1619   // locals.
  1620   int size = overhead +
  1621          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
  1622          moncount * frame::interpreter_frame_monitor_size() +
  1623          tempcount* Interpreter::stackElementWords + popframe_extra_args;
  1624   if (interpreter_frame != NULL) {
  1625 #ifdef ASSERT
  1626     if (!EnableInvokeDynamic)
  1627       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1628       // Probably, since deoptimization doesn't work yet.
  1629       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1630     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1631 #endif
  1633     interpreter_frame->interpreter_frame_set_method(method);
  1634     // NOTE the difference in using sender_sp and
  1635     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1636     // the original sp of the caller (the unextended_sp) and
  1637     // sender_sp is fp+16 XXX
  1638     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1640 #ifdef ASSERT
  1641     if (caller->is_interpreted_frame()) {
  1642       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1644 #endif
  1646     interpreter_frame->interpreter_frame_set_locals(locals);
  1647     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1648     BasicObjectLock* monbot = montop - moncount;
  1649     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1651     // Set last_sp
  1652     intptr_t*  esp = (intptr_t*) monbot -
  1653                      tempcount*Interpreter::stackElementWords -
  1654                      popframe_extra_args;
  1655     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1657     // All frames but the initial (oldest) interpreter frame we fill in have
  1658     // a value for sender_sp that allows walking the stack but isn't
  1659     // truly correct. Correct the value here.
  1660     if (extra_locals != 0 &&
  1661         interpreter_frame->sender_sp() ==
  1662         interpreter_frame->interpreter_frame_sender_sp()) {
  1663       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1664                                                          extra_locals);
  1666     *interpreter_frame->interpreter_frame_cache_addr() =
  1667       method->constants()->cache();
  1669   return size;
  1672 //-----------------------------------------------------------------------------
  1673 // Exceptions
  1675 void TemplateInterpreterGenerator::generate_throw_exception() {
  1676   // Entry point in previous activation (i.e., if the caller was
  1677   // interpreted)
  1678   Interpreter::_rethrow_exception_entry = __ pc();
  1679   // Restore sp to interpreter_frame_last_sp even though we are going
  1680   // to empty the expression stack for the exception processing.
  1681   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1682   // rax: exception
  1683   // rdx: return address/pc that threw exception
  1684   __ restore_bcp();    // r13 points to call/send
  1685   __ restore_locals();
  1686   __ reinit_heapbase();  // restore r12 as heapbase.
  1687   // Entry point for exceptions thrown within interpreter code
  1688   Interpreter::_throw_exception_entry = __ pc();
  1689   // expression stack is undefined here
  1690   // rax: exception
  1691   // r13: exception bcp
  1692   __ verify_oop(rax);
  1693   __ mov(c_rarg1, rax);
  1695   // expression stack must be empty before entering the VM in case of
  1696   // an exception
  1697   __ empty_expression_stack();
  1698   // find exception handler address and preserve exception oop
  1699   __ call_VM(rdx,
  1700              CAST_FROM_FN_PTR(address,
  1701                           InterpreterRuntime::exception_handler_for_exception),
  1702              c_rarg1);
  1703   // rax: exception handler entry point
  1704   // rdx: preserved exception oop
  1705   // r13: bcp for exception handler
  1706   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1707   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1709   // If the exception is not handled in the current frame the frame is
  1710   // removed and the exception is rethrown (i.e. exception
  1711   // continuation is _rethrow_exception).
  1712   //
  1713   // Note: At this point the bci is still the bxi for the instruction
  1714   // which caused the exception and the expression stack is
  1715   // empty. Thus, for any VM calls at this point, GC will find a legal
  1716   // oop map (with empty expression stack).
  1718   // In current activation
  1719   // tos: exception
  1720   // esi: exception bcp
  1722   //
  1723   // JVMTI PopFrame support
  1724   //
  1726   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1727   __ empty_expression_stack();
  1728   // Set the popframe_processing bit in pending_popframe_condition
  1729   // indicating that we are currently handling popframe, so that
  1730   // call_VMs that may happen later do not trigger new popframe
  1731   // handling cycles.
  1732   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1733   __ orl(rdx, JavaThread::popframe_processing_bit);
  1734   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1737     // Check to see whether we are returning to a deoptimized frame.
  1738     // (The PopFrame call ensures that the caller of the popped frame is
  1739     // either interpreted or compiled and deoptimizes it if compiled.)
  1740     // In this case, we can't call dispatch_next() after the frame is
  1741     // popped, but instead must save the incoming arguments and restore
  1742     // them after deoptimization has occurred.
  1743     //
  1744     // Note that we don't compare the return PC against the
  1745     // deoptimization blob's unpack entry because of the presence of
  1746     // adapter frames in C2.
  1747     Label caller_not_deoptimized;
  1748     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1749     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1750                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1751     __ testl(rax, rax);
  1752     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1754     // Compute size of arguments for saving when returning to
  1755     // deoptimized caller
  1756     __ get_method(rax);
  1757     __ movptr(rax, Address(rax, Method::const_offset()));
  1758     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
  1759                                                 size_of_parameters_offset())));
  1760     __ shll(rax, Interpreter::logStackElementSize);
  1761     __ restore_locals(); // XXX do we need this?
  1762     __ subptr(r14, rax);
  1763     __ addptr(r14, wordSize);
  1764     // Save these arguments
  1765     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1766                                            Deoptimization::
  1767                                            popframe_preserve_args),
  1768                           r15_thread, rax, r14);
  1770     __ remove_activation(vtos, rdx,
  1771                          /* throw_monitor_exception */ false,
  1772                          /* install_monitor_exception */ false,
  1773                          /* notify_jvmdi */ false);
  1775     // Inform deoptimization that it is responsible for restoring
  1776     // these arguments
  1777     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1778             JavaThread::popframe_force_deopt_reexecution_bit);
  1780     // Continue in deoptimization handler
  1781     __ jmp(rdx);
  1783     __ bind(caller_not_deoptimized);
  1786   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1787                        /* throw_monitor_exception */ false,
  1788                        /* install_monitor_exception */ false,
  1789                        /* notify_jvmdi */ false);
  1791   // Finish with popframe handling
  1792   // A previous I2C followed by a deoptimization might have moved the
  1793   // outgoing arguments further up the stack. PopFrame expects the
  1794   // mutations to those outgoing arguments to be preserved and other
  1795   // constraints basically require this frame to look exactly as
  1796   // though it had previously invoked an interpreted activation with
  1797   // no space between the top of the expression stack (current
  1798   // last_sp) and the top of stack. Rather than force deopt to
  1799   // maintain this kind of invariant all the time we call a small
  1800   // fixup routine to move the mutated arguments onto the top of our
  1801   // expression stack if necessary.
  1802   __ mov(c_rarg1, rsp);
  1803   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1804   // PC must point into interpreter here
  1805   __ set_last_Java_frame(noreg, rbp, __ pc());
  1806   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1807   __ reset_last_Java_frame(true, true);
  1808   // Restore the last_sp and null it out
  1809   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1810   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1812   __ restore_bcp();  // XXX do we need this?
  1813   __ restore_locals(); // XXX do we need this?
  1814   // The method data pointer was incremented already during
  1815   // call profiling. We have to restore the mdp for the current bcp.
  1816   if (ProfileInterpreter) {
  1817     __ set_method_data_pointer_for_bcp();
  1820   // Clear the popframe condition flag
  1821   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1822           JavaThread::popframe_inactive);
  1824   __ dispatch_next(vtos);
  1825   // end of PopFrame support
  1827   Interpreter::_remove_activation_entry = __ pc();
  1829   // preserve exception over this code sequence
  1830   __ pop_ptr(rax);
  1831   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1832   // remove the activation (without doing throws on illegalMonitorExceptions)
  1833   __ remove_activation(vtos, rdx, false, true, false);
  1834   // restore exception
  1835   __ get_vm_result(rax, r15_thread);
  1837   // In between activations - previous activation type unknown yet
  1838   // compute continuation point - the continuation point expects the
  1839   // following registers set up:
  1840   //
  1841   // rax: exception
  1842   // rdx: return address/pc that threw exception
  1843   // rsp: expression stack of caller
  1844   // rbp: ebp of caller
  1845   __ push(rax);                                  // save exception
  1846   __ push(rdx);                                  // save return address
  1847   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1848                           SharedRuntime::exception_handler_for_return_address),
  1849                         r15_thread, rdx);
  1850   __ mov(rbx, rax);                              // save exception handler
  1851   __ pop(rdx);                                   // restore return address
  1852   __ pop(rax);                                   // restore exception
  1853   // Note that an "issuing PC" is actually the next PC after the call
  1854   __ jmp(rbx);                                   // jump to exception
  1855                                                  // handler of caller
  1859 //
  1860 // JVMTI ForceEarlyReturn support
  1861 //
  1862 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1863   address entry = __ pc();
  1865   __ restore_bcp();
  1866   __ restore_locals();
  1867   __ empty_expression_stack();
  1868   __ load_earlyret_value(state);
  1870   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1871   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1873   // Clear the earlyret state
  1874   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1876   __ remove_activation(state, rsi,
  1877                        false, /* throw_monitor_exception */
  1878                        false, /* install_monitor_exception */
  1879                        true); /* notify_jvmdi */
  1880   __ jmp(rsi);
  1882   return entry;
  1883 } // end of ForceEarlyReturn support
  1886 //-----------------------------------------------------------------------------
  1887 // Helper for vtos entry point generation
  1889 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1890                                                          address& bep,
  1891                                                          address& cep,
  1892                                                          address& sep,
  1893                                                          address& aep,
  1894                                                          address& iep,
  1895                                                          address& lep,
  1896                                                          address& fep,
  1897                                                          address& dep,
  1898                                                          address& vep) {
  1899   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1900   Label L;
  1901   aep = __ pc();  __ push_ptr();  __ jmp(L);
  1902   fep = __ pc();  __ push_f();    __ jmp(L);
  1903   dep = __ pc();  __ push_d();    __ jmp(L);
  1904   lep = __ pc();  __ push_l();    __ jmp(L);
  1905   bep = cep = sep =
  1906   iep = __ pc();  __ push_i();
  1907   vep = __ pc();
  1908   __ bind(L);
  1909   generate_and_dispatch(t);
  1913 //-----------------------------------------------------------------------------
  1914 // Generation of individual instructions
  1916 // helpers for generate_and_dispatch
  1919 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1920   : TemplateInterpreterGenerator(code) {
  1921    generate_all(); // down here so it can be "virtual"
  1924 //-----------------------------------------------------------------------------
  1926 // Non-product code
  1927 #ifndef PRODUCT
  1928 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1929   address entry = __ pc();
  1931   __ push(state);
  1932   __ push(c_rarg0);
  1933   __ push(c_rarg1);
  1934   __ push(c_rarg2);
  1935   __ push(c_rarg3);
  1936   __ mov(c_rarg2, rax);  // Pass itos
  1937 #ifdef _WIN64
  1938   __ movflt(xmm3, xmm0); // Pass ftos
  1939 #endif
  1940   __ call_VM(noreg,
  1941              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  1942              c_rarg1, c_rarg2, c_rarg3);
  1943   __ pop(c_rarg3);
  1944   __ pop(c_rarg2);
  1945   __ pop(c_rarg1);
  1946   __ pop(c_rarg0);
  1947   __ pop(state);
  1948   __ ret(0);                                   // return from result handler
  1950   return entry;
  1953 void TemplateInterpreterGenerator::count_bytecode() {
  1954   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1957 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1958   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1961 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1962   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  1963   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1964   __ orl(rbx,
  1965          ((int) t->bytecode()) <<
  1966          BytecodePairHistogram::log2_number_of_codes);
  1967   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1968   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  1969   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  1973 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1974   // Call a little run-time stub to avoid blow-up for each bytecode.
  1975   // The run-time runtime saves the right registers, depending on
  1976   // the tosca in-state for the given template.
  1978   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1979          "entry must have been generated");
  1980   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1981   __ andptr(rsp, -16); // align stack as required by ABI
  1982   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1983   __ mov(rsp, r12); // restore sp
  1984   __ reinit_heapbase();
  1988 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1989   Label L;
  1990   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1991            StopInterpreterAt);
  1992   __ jcc(Assembler::notEqual, L);
  1993   __ int3();
  1994   __ bind(L);
  1996 #endif // !PRODUCT
  1997 #endif // ! CC_INTERP

mercurial