src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4338
fd74228fd5ca
child 4727
0094485b46c7
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    51 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //-----------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62 #ifdef ASSERT
    63   {
    64     Label L;
    65     __ lea(rax, Address(rbp,
    66                         frame::interpreter_frame_monitor_block_top_offset *
    67                         wordSize));
    68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    69                          // grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an
    80   // exception happened
    81   __ empty_expression_stack();
    82   // throw exception
    83   __ call_VM(noreg,
    84              CAST_FROM_FN_PTR(address,
    85                               InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    90         const char* name) {
    91   address entry = __ pc();
    92   // expression stack must be empty before entering the VM if an
    93   // exception happened
    94   __ empty_expression_stack();
    95   // setup parameters
    96   // ??? convention: expect aberrant index in register ebx
    97   __ lea(c_rarg1, ExternalAddress((address)name));
    98   __ call_VM(noreg,
    99              CAST_FROM_FN_PTR(address,
   100                               InterpreterRuntime::
   101                               throw_ArrayIndexOutOfBoundsException),
   102              c_rarg1, rbx);
   103   return entry;
   104 }
   106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   107   address entry = __ pc();
   109   // object is at TOS
   110   __ pop(c_rarg1);
   112   // expression stack must be empty before entering the VM if an
   113   // exception happened
   114   __ empty_expression_stack();
   116   __ call_VM(noreg,
   117              CAST_FROM_FN_PTR(address,
   118                               InterpreterRuntime::
   119                               throw_ClassCastException),
   120              c_rarg1);
   121   return entry;
   122 }
   124 address TemplateInterpreterGenerator::generate_exception_handler_common(
   125         const char* name, const char* message, bool pass_oop) {
   126   assert(!pass_oop || message == NULL, "either oop or message but not both");
   127   address entry = __ pc();
   128   if (pass_oop) {
   129     // object is at TOS
   130     __ pop(c_rarg2);
   131   }
   132   // expression stack must be empty before entering the VM if an
   133   // exception happened
   134   __ empty_expression_stack();
   135   // setup parameters
   136   __ lea(c_rarg1, ExternalAddress((address)name));
   137   if (pass_oop) {
   138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   139                                      InterpreterRuntime::
   140                                      create_klass_exception),
   141                c_rarg1, c_rarg2);
   142   } else {
   143     // kind of lame ExternalAddress can't take NULL because
   144     // external_word_Relocation will assert.
   145     if (message != NULL) {
   146       __ lea(c_rarg2, ExternalAddress((address)message));
   147     } else {
   148       __ movptr(c_rarg2, NULL_WORD);
   149     }
   150     __ call_VM(rax,
   151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   152                c_rarg1, c_rarg2);
   153   }
   154   // throw exception
   155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   156   return entry;
   157 }
   160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   161   address entry = __ pc();
   162   // NULL last_sp until next java call
   163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   164   __ dispatch_next(state);
   165   return entry;
   166 }
   169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   170   address entry = __ pc();
   172   // Restore stack bottom in case i2c adjusted stack
   173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   174   // and NULL it as marker that esp is now tos until next java call
   175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   177   __ restore_bcp();
   178   __ restore_locals();
   180   Label L_got_cache, L_giant_index;
   181   if (EnableInvokeDynamic) {
   182     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   183     __ jcc(Assembler::equal, L_giant_index);
   184   }
   185   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   186   __ bind(L_got_cache);
   187   __ movl(rbx, Address(rbx, rcx,
   188                        Address::times_ptr,
   189                        in_bytes(ConstantPoolCache::base_offset()) +
   190                        3 * wordSize));
   191   __ andl(rbx, 0xFF);
   192   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   193   __ dispatch_next(state, step);
   195   // out of the main line of code...
   196   if (EnableInvokeDynamic) {
   197     __ bind(L_giant_index);
   198     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   199     __ jmp(L_got_cache);
   200   }
   202   return entry;
   203 }
   206 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   207                                                                int step) {
   208   address entry = __ pc();
   209   // NULL last_sp until next java call
   210   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   211   __ restore_bcp();
   212   __ restore_locals();
   213   // handle exceptions
   214   {
   215     Label L;
   216     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   217     __ jcc(Assembler::zero, L);
   218     __ call_VM(noreg,
   219                CAST_FROM_FN_PTR(address,
   220                                 InterpreterRuntime::throw_pending_exception));
   221     __ should_not_reach_here();
   222     __ bind(L);
   223   }
   224   __ dispatch_next(state, step);
   225   return entry;
   226 }
   228 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   229   int i = 0;
   230   switch (type) {
   231     case T_BOOLEAN: i = 0; break;
   232     case T_CHAR   : i = 1; break;
   233     case T_BYTE   : i = 2; break;
   234     case T_SHORT  : i = 3; break;
   235     case T_INT    : i = 4; break;
   236     case T_LONG   : i = 5; break;
   237     case T_VOID   : i = 6; break;
   238     case T_FLOAT  : i = 7; break;
   239     case T_DOUBLE : i = 8; break;
   240     case T_OBJECT : i = 9; break;
   241     case T_ARRAY  : i = 9; break;
   242     default       : ShouldNotReachHere();
   243   }
   244   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   245          "index out of bounds");
   246   return i;
   247 }
   250 address TemplateInterpreterGenerator::generate_result_handler_for(
   251         BasicType type) {
   252   address entry = __ pc();
   253   switch (type) {
   254   case T_BOOLEAN: __ c2bool(rax);            break;
   255   case T_CHAR   : __ movzwl(rax, rax);       break;
   256   case T_BYTE   : __ sign_extend_byte(rax);  break;
   257   case T_SHORT  : __ sign_extend_short(rax); break;
   258   case T_INT    : /* nothing to do */        break;
   259   case T_LONG   : /* nothing to do */        break;
   260   case T_VOID   : /* nothing to do */        break;
   261   case T_FLOAT  : /* nothing to do */        break;
   262   case T_DOUBLE : /* nothing to do */        break;
   263   case T_OBJECT :
   264     // retrieve result from frame
   265     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   266     // and verify it
   267     __ verify_oop(rax);
   268     break;
   269   default       : ShouldNotReachHere();
   270   }
   271   __ ret(0);                                   // return from result handler
   272   return entry;
   273 }
   275 address TemplateInterpreterGenerator::generate_safept_entry_for(
   276         TosState state,
   277         address runtime_entry) {
   278   address entry = __ pc();
   279   __ push(state);
   280   __ call_VM(noreg, runtime_entry);
   281   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   282   return entry;
   283 }
   287 // Helpers for commoning out cases in the various type of method entries.
   288 //
   291 // increment invocation count & check for overflow
   292 //
   293 // Note: checking for negative value instead of overflow
   294 //       so we have a 'sticky' overflow test
   295 //
   296 // rbx: method
   297 // ecx: invocation counter
   298 //
   299 void InterpreterGenerator::generate_counter_incr(
   300         Label* overflow,
   301         Label* profile_method,
   302         Label* profile_method_continue) {
   303   const Address invocation_counter(rbx, in_bytes(Method::invocation_counter_offset()) +
   304                                         in_bytes(InvocationCounter::counter_offset()));
   305   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   306   if (TieredCompilation) {
   307     int increment = InvocationCounter::count_increment;
   308     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   309     Label no_mdo, done;
   310     if (ProfileInterpreter) {
   311       // Are we profiling?
   312       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   313       __ testptr(rax, rax);
   314       __ jccb(Assembler::zero, no_mdo);
   315       // Increment counter in the MDO
   316       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   317                                                 in_bytes(InvocationCounter::counter_offset()));
   318       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   319       __ jmpb(done);
   320     }
   321     __ bind(no_mdo);
   322     // Increment counter in Method* (we don't need to load it, it's in ecx).
   323     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   324     __ bind(done);
   325   } else {
   326     const Address backedge_counter(rbx,
   327                                    Method::backedge_counter_offset() +
   328                                    InvocationCounter::counter_offset());
   330     if (ProfileInterpreter) { // %%% Merge this into MethodData*
   331       __ incrementl(Address(rbx,
   332                             Method::interpreter_invocation_counter_offset()));
   333     }
   334     // Update standard invocation counters
   335     __ movl(rax, backedge_counter);   // load backedge counter
   337     __ incrementl(rcx, InvocationCounter::count_increment);
   338     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   340     __ movl(invocation_counter, rcx); // save invocation count
   341     __ addl(rcx, rax);                // add both counters
   343     // profile_method is non-null only for interpreted method so
   344     // profile_method != NULL == !native_call
   346     if (ProfileInterpreter && profile_method != NULL) {
   347       // Test to see if we should create a method data oop
   348       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   349       __ jcc(Assembler::less, *profile_method_continue);
   351       // if no method data exists, go to profile_method
   352       __ test_method_data_pointer(rax, *profile_method);
   353     }
   355     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   356     __ jcc(Assembler::aboveEqual, *overflow);
   357   }
   358 }
   360 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   362   // Asm interpreter on entry
   363   // r14 - locals
   364   // r13 - bcp
   365   // rbx - method
   366   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   367   // rbp - interpreter frame
   369   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   370   // Everything as it was on entry
   371   // rdx is not restored. Doesn't appear to really be set.
   373   // InterpreterRuntime::frequency_counter_overflow takes two
   374   // arguments, the first (thread) is passed by call_VM, the second
   375   // indicates if the counter overflow occurs at a backwards branch
   376   // (NULL bcp).  We pass zero for it.  The call returns the address
   377   // of the verified entry point for the method or NULL if the
   378   // compilation did not complete (either went background or bailed
   379   // out).
   380   __ movl(c_rarg1, 0);
   381   __ call_VM(noreg,
   382              CAST_FROM_FN_PTR(address,
   383                               InterpreterRuntime::frequency_counter_overflow),
   384              c_rarg1);
   386   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   387   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   388   // and jump to the interpreted entry.
   389   __ jmp(*do_continue, relocInfo::none);
   390 }
   392 // See if we've got enough room on the stack for locals plus overhead.
   393 // The expression stack grows down incrementally, so the normal guard
   394 // page mechanism will work for that.
   395 //
   396 // NOTE: Since the additional locals are also always pushed (wasn't
   397 // obvious in generate_method_entry) so the guard should work for them
   398 // too.
   399 //
   400 // Args:
   401 //      rdx: number of additional locals this frame needs (what we must check)
   402 //      rbx: Method*
   403 //
   404 // Kills:
   405 //      rax
   406 void InterpreterGenerator::generate_stack_overflow_check(void) {
   408   // monitor entry size: see picture of stack set
   409   // (generate_method_entry) and frame_amd64.hpp
   410   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   412   // total overhead size: entry_size + (saved rbp through expr stack
   413   // bottom).  be sure to change this if you add/subtract anything
   414   // to/from the overhead area
   415   const int overhead_size =
   416     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   418   const int page_size = os::vm_page_size();
   420   Label after_frame_check;
   422   // see if the frame is greater than one page in size. If so,
   423   // then we need to verify there is enough stack space remaining
   424   // for the additional locals.
   425   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   426   __ jcc(Assembler::belowEqual, after_frame_check);
   428   // compute rsp as if this were going to be the last frame on
   429   // the stack before the red zone
   431   const Address stack_base(r15_thread, Thread::stack_base_offset());
   432   const Address stack_size(r15_thread, Thread::stack_size_offset());
   434   // locals + overhead, in bytes
   435   __ mov(rax, rdx);
   436   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   437   __ addptr(rax, overhead_size);
   439 #ifdef ASSERT
   440   Label stack_base_okay, stack_size_okay;
   441   // verify that thread stack base is non-zero
   442   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   443   __ jcc(Assembler::notEqual, stack_base_okay);
   444   __ stop("stack base is zero");
   445   __ bind(stack_base_okay);
   446   // verify that thread stack size is non-zero
   447   __ cmpptr(stack_size, 0);
   448   __ jcc(Assembler::notEqual, stack_size_okay);
   449   __ stop("stack size is zero");
   450   __ bind(stack_size_okay);
   451 #endif
   453   // Add stack base to locals and subtract stack size
   454   __ addptr(rax, stack_base);
   455   __ subptr(rax, stack_size);
   457   // Use the maximum number of pages we might bang.
   458   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   459                                                                               (StackRedPages+StackYellowPages);
   461   // add in the red and yellow zone sizes
   462   __ addptr(rax, max_pages * page_size);
   464   // check against the current stack bottom
   465   __ cmpptr(rsp, rax);
   466   __ jcc(Assembler::above, after_frame_check);
   468   // Restore sender's sp as SP. This is necessary if the sender's
   469   // frame is an extended compiled frame (see gen_c2i_adapter())
   470   // and safer anyway in case of JSR292 adaptations.
   472   __ pop(rax); // return address must be moved if SP is changed
   473   __ mov(rsp, r13);
   474   __ push(rax);
   476   // Note: the restored frame is not necessarily interpreted.
   477   // Use the shared runtime version of the StackOverflowError.
   478   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   479   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   481   // all done with frame size check
   482   __ bind(after_frame_check);
   483 }
   485 // Allocate monitor and lock method (asm interpreter)
   486 //
   487 // Args:
   488 //      rbx: Method*
   489 //      r14: locals
   490 //
   491 // Kills:
   492 //      rax
   493 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   494 //      rscratch1, rscratch2 (scratch regs)
   495 void InterpreterGenerator::lock_method(void) {
   496   // synchronize method
   497   const Address access_flags(rbx, Method::access_flags_offset());
   498   const Address monitor_block_top(
   499         rbp,
   500         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   501   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   503 #ifdef ASSERT
   504   {
   505     Label L;
   506     __ movl(rax, access_flags);
   507     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   508     __ jcc(Assembler::notZero, L);
   509     __ stop("method doesn't need synchronization");
   510     __ bind(L);
   511   }
   512 #endif // ASSERT
   514   // get synchronization object
   515   {
   516     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   517     Label done;
   518     __ movl(rax, access_flags);
   519     __ testl(rax, JVM_ACC_STATIC);
   520     // get receiver (assume this is frequent case)
   521     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   522     __ jcc(Assembler::zero, done);
   523     __ movptr(rax, Address(rbx, Method::const_offset()));
   524     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   525     __ movptr(rax, Address(rax,
   526                            ConstantPool::pool_holder_offset_in_bytes()));
   527     __ movptr(rax, Address(rax, mirror_offset));
   529 #ifdef ASSERT
   530     {
   531       Label L;
   532       __ testptr(rax, rax);
   533       __ jcc(Assembler::notZero, L);
   534       __ stop("synchronization object is NULL");
   535       __ bind(L);
   536     }
   537 #endif // ASSERT
   539     __ bind(done);
   540   }
   542   // add space for monitor & lock
   543   __ subptr(rsp, entry_size); // add space for a monitor entry
   544   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   545   // store object
   546   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   547   __ movptr(c_rarg1, rsp); // object address
   548   __ lock_object(c_rarg1);
   549 }
   551 // Generate a fixed interpreter frame. This is identical setup for
   552 // interpreted methods and for native methods hence the shared code.
   553 //
   554 // Args:
   555 //      rax: return address
   556 //      rbx: Method*
   557 //      r14: pointer to locals
   558 //      r13: sender sp
   559 //      rdx: cp cache
   560 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   561   // initialize fixed part of activation frame
   562   __ push(rax);        // save return address
   563   __ enter();          // save old & set new rbp
   564   __ push(r13);        // set sender sp
   565   __ push((int)NULL_WORD); // leave last_sp as null
   566   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
   567   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
   568   __ push(rbx);        // save Method*
   569   if (ProfileInterpreter) {
   570     Label method_data_continue;
   571     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   572     __ testptr(rdx, rdx);
   573     __ jcc(Assembler::zero, method_data_continue);
   574     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   575     __ bind(method_data_continue);
   576     __ push(rdx);      // set the mdp (method data pointer)
   577   } else {
   578     __ push(0);
   579   }
   581   __ movptr(rdx, Address(rbx, Method::const_offset()));
   582   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   583   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   584   __ push(rdx); // set constant pool cache
   585   __ push(r14); // set locals pointer
   586   if (native_call) {
   587     __ push(0); // no bcp
   588   } else {
   589     __ push(r13); // set bcp
   590   }
   591   __ push(0); // reserve word for pointer to expression stack bottom
   592   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   593 }
   595 // End of helpers
   597 // Various method entries
   598 //------------------------------------------------------------------------------------------------------------------------
   599 //
   600 //
   602 // Call an accessor method (assuming it is resolved, otherwise drop
   603 // into vanilla (slow path) entry
   604 address InterpreterGenerator::generate_accessor_entry(void) {
   605   // rbx: Method*
   607   // r13: senderSP must preserver for slow path, set SP to it on fast path
   609   address entry_point = __ pc();
   610   Label xreturn_path;
   612   // do fastpath for resolved accessor methods
   613   if (UseFastAccessorMethods) {
   614     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   615     //       thereof; parameter size = 1
   616     // Note: We can only use this code if the getfield has been resolved
   617     //       and if we don't have a null-pointer exception => check for
   618     //       these conditions first and use slow path if necessary.
   619     Label slow_path;
   620     // If we need a safepoint check, generate full interpreter entry.
   621     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   622              SafepointSynchronize::_not_synchronized);
   624     __ jcc(Assembler::notEqual, slow_path);
   625     // rbx: method
   626     __ movptr(rax, Address(rsp, wordSize));
   628     // check if local 0 != NULL and read field
   629     __ testptr(rax, rax);
   630     __ jcc(Assembler::zero, slow_path);
   632     // read first instruction word and extract bytecode @ 1 and index @ 2
   633     __ movptr(rdx, Address(rbx, Method::const_offset()));
   634     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   635     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   636     // Shift codes right to get the index on the right.
   637     // The bytecode fetched looks like <index><0xb4><0x2a>
   638     __ shrl(rdx, 2 * BitsPerByte);
   639     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   640     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   642     // rax: local 0
   643     // rbx: method
   644     // rdx: constant pool cache index
   645     // rdi: constant pool cache
   647     // check if getfield has been resolved and read constant pool cache entry
   648     // check the validity of the cache entry by testing whether _indices field
   649     // contains Bytecode::_getfield in b1 byte.
   650     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   651            "adjust shift below");
   652     __ movl(rcx,
   653             Address(rdi,
   654                     rdx,
   655                     Address::times_8,
   656                     ConstantPoolCache::base_offset() +
   657                     ConstantPoolCacheEntry::indices_offset()));
   658     __ shrl(rcx, 2 * BitsPerByte);
   659     __ andl(rcx, 0xFF);
   660     __ cmpl(rcx, Bytecodes::_getfield);
   661     __ jcc(Assembler::notEqual, slow_path);
   663     // Note: constant pool entry is not valid before bytecode is resolved
   664     __ movptr(rcx,
   665               Address(rdi,
   666                       rdx,
   667                       Address::times_8,
   668                       ConstantPoolCache::base_offset() +
   669                       ConstantPoolCacheEntry::f2_offset()));
   670     // edx: flags
   671     __ movl(rdx,
   672             Address(rdi,
   673                     rdx,
   674                     Address::times_8,
   675                     ConstantPoolCache::base_offset() +
   676                     ConstantPoolCacheEntry::flags_offset()));
   678     Label notObj, notInt, notByte, notShort;
   679     const Address field_address(rax, rcx, Address::times_1);
   681     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   682     // because they are different sizes.
   683     // Use the type from the constant pool cache
   684     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   685     // Make sure we don't need to mask edx after the above shift
   686     ConstantPoolCacheEntry::verify_tos_state_shift();
   688     __ cmpl(rdx, atos);
   689     __ jcc(Assembler::notEqual, notObj);
   690     // atos
   691     __ load_heap_oop(rax, field_address);
   692     __ jmp(xreturn_path);
   694     __ bind(notObj);
   695     __ cmpl(rdx, itos);
   696     __ jcc(Assembler::notEqual, notInt);
   697     // itos
   698     __ movl(rax, field_address);
   699     __ jmp(xreturn_path);
   701     __ bind(notInt);
   702     __ cmpl(rdx, btos);
   703     __ jcc(Assembler::notEqual, notByte);
   704     // btos
   705     __ load_signed_byte(rax, field_address);
   706     __ jmp(xreturn_path);
   708     __ bind(notByte);
   709     __ cmpl(rdx, stos);
   710     __ jcc(Assembler::notEqual, notShort);
   711     // stos
   712     __ load_signed_short(rax, field_address);
   713     __ jmp(xreturn_path);
   715     __ bind(notShort);
   716 #ifdef ASSERT
   717     Label okay;
   718     __ cmpl(rdx, ctos);
   719     __ jcc(Assembler::equal, okay);
   720     __ stop("what type is this?");
   721     __ bind(okay);
   722 #endif
   723     // ctos
   724     __ load_unsigned_short(rax, field_address);
   726     __ bind(xreturn_path);
   728     // _ireturn/_areturn
   729     __ pop(rdi);
   730     __ mov(rsp, r13);
   731     __ jmp(rdi);
   732     __ ret(0);
   734     // generate a vanilla interpreter entry as the slow path
   735     __ bind(slow_path);
   736     (void) generate_normal_entry(false);
   737   } else {
   738     (void) generate_normal_entry(false);
   739   }
   741   return entry_point;
   742 }
   744 // Method entry for java.lang.ref.Reference.get.
   745 address InterpreterGenerator::generate_Reference_get_entry(void) {
   746 #if INCLUDE_ALL_GCS
   747   // Code: _aload_0, _getfield, _areturn
   748   // parameter size = 1
   749   //
   750   // The code that gets generated by this routine is split into 2 parts:
   751   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   752   //    2. The slow path - which is an expansion of the regular method entry.
   753   //
   754   // Notes:-
   755   // * In the G1 code we do not check whether we need to block for
   756   //   a safepoint. If G1 is enabled then we must execute the specialized
   757   //   code for Reference.get (except when the Reference object is null)
   758   //   so that we can log the value in the referent field with an SATB
   759   //   update buffer.
   760   //   If the code for the getfield template is modified so that the
   761   //   G1 pre-barrier code is executed when the current method is
   762   //   Reference.get() then going through the normal method entry
   763   //   will be fine.
   764   // * The G1 code can, however, check the receiver object (the instance
   765   //   of java.lang.Reference) and jump to the slow path if null. If the
   766   //   Reference object is null then we obviously cannot fetch the referent
   767   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   768   //   regular method entry code to generate the NPE.
   769   //
   770   // This code is based on generate_accessor_enty.
   771   //
   772   // rbx: Method*
   774   // r13: senderSP must preserve for slow path, set SP to it on fast path
   776   address entry = __ pc();
   778   const int referent_offset = java_lang_ref_Reference::referent_offset;
   779   guarantee(referent_offset > 0, "referent offset not initialized");
   781   if (UseG1GC) {
   782     Label slow_path;
   783     // rbx: method
   785     // Check if local 0 != NULL
   786     // If the receiver is null then it is OK to jump to the slow path.
   787     __ movptr(rax, Address(rsp, wordSize));
   789     __ testptr(rax, rax);
   790     __ jcc(Assembler::zero, slow_path);
   792     // rax: local 0
   793     // rbx: method (but can be used as scratch now)
   794     // rdx: scratch
   795     // rdi: scratch
   797     // Generate the G1 pre-barrier code to log the value of
   798     // the referent field in an SATB buffer.
   800     // Load the value of the referent field.
   801     const Address field_address(rax, referent_offset);
   802     __ load_heap_oop(rax, field_address);
   804     // Generate the G1 pre-barrier code to log the value of
   805     // the referent field in an SATB buffer.
   806     __ g1_write_barrier_pre(noreg /* obj */,
   807                             rax /* pre_val */,
   808                             r15_thread /* thread */,
   809                             rbx /* tmp */,
   810                             true /* tosca_live */,
   811                             true /* expand_call */);
   813     // _areturn
   814     __ pop(rdi);                // get return address
   815     __ mov(rsp, r13);           // set sp to sender sp
   816     __ jmp(rdi);
   817     __ ret(0);
   819     // generate a vanilla interpreter entry as the slow path
   820     __ bind(slow_path);
   821     (void) generate_normal_entry(false);
   823     return entry;
   824   }
   825 #endif // INCLUDE_ALL_GCS
   827   // If G1 is not enabled then attempt to go through the accessor entry point
   828   // Reference.get is an accessor
   829   return generate_accessor_entry();
   830 }
   833 // Interpreter stub for calling a native method. (asm interpreter)
   834 // This sets up a somewhat different looking stack for calling the
   835 // native method than the typical interpreter frame setup.
   836 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   837   // determine code generation flags
   838   bool inc_counter  = UseCompiler || CountCompiledCalls;
   840   // rbx: Method*
   841   // r13: sender sp
   843   address entry_point = __ pc();
   845   const Address constMethod       (rbx, Method::const_offset());
   846   const Address invocation_counter(rbx, Method::
   847                                         invocation_counter_offset() +
   848                                         InvocationCounter::counter_offset());
   849   const Address access_flags      (rbx, Method::access_flags_offset());
   850   const Address size_of_parameters(rcx, ConstMethod::
   851                                         size_of_parameters_offset());
   854   // get parameter size (always needed)
   855   __ movptr(rcx, constMethod);
   856   __ load_unsigned_short(rcx, size_of_parameters);
   858   // native calls don't need the stack size check since they have no
   859   // expression stack and the arguments are already on the stack and
   860   // we only add a handful of words to the stack
   862   // rbx: Method*
   863   // rcx: size of parameters
   864   // r13: sender sp
   865   __ pop(rax);                                       // get return address
   867   // for natives the size of locals is zero
   869   // compute beginning of parameters (r14)
   870   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   872   // add 2 zero-initialized slots for native calls
   873   // initialize result_handler slot
   874   __ push((int) NULL_WORD);
   875   // slot for oop temp
   876   // (static native method holder mirror/jni oop result)
   877   __ push((int) NULL_WORD);
   879   if (inc_counter) {
   880     __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   881   }
   883   // initialize fixed part of activation frame
   884   generate_fixed_frame(true);
   886   // make sure method is native & not abstract
   887 #ifdef ASSERT
   888   __ movl(rax, access_flags);
   889   {
   890     Label L;
   891     __ testl(rax, JVM_ACC_NATIVE);
   892     __ jcc(Assembler::notZero, L);
   893     __ stop("tried to execute non-native method as native");
   894     __ bind(L);
   895   }
   896   {
   897     Label L;
   898     __ testl(rax, JVM_ACC_ABSTRACT);
   899     __ jcc(Assembler::zero, L);
   900     __ stop("tried to execute abstract method in interpreter");
   901     __ bind(L);
   902   }
   903 #endif
   905   // Since at this point in the method invocation the exception handler
   906   // would try to exit the monitor of synchronized methods which hasn't
   907   // been entered yet, we set the thread local variable
   908   // _do_not_unlock_if_synchronized to true. The remove_activation will
   909   // check this flag.
   911   const Address do_not_unlock_if_synchronized(r15_thread,
   912         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   913   __ movbool(do_not_unlock_if_synchronized, true);
   915   // increment invocation count & check for overflow
   916   Label invocation_counter_overflow;
   917   if (inc_counter) {
   918     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   919   }
   921   Label continue_after_compile;
   922   __ bind(continue_after_compile);
   924   bang_stack_shadow_pages(true);
   926   // reset the _do_not_unlock_if_synchronized flag
   927   __ movbool(do_not_unlock_if_synchronized, false);
   929   // check for synchronized methods
   930   // Must happen AFTER invocation_counter check and stack overflow check,
   931   // so method is not locked if overflows.
   932   if (synchronized) {
   933     lock_method();
   934   } else {
   935     // no synchronization necessary
   936 #ifdef ASSERT
   937     {
   938       Label L;
   939       __ movl(rax, access_flags);
   940       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   941       __ jcc(Assembler::zero, L);
   942       __ stop("method needs synchronization");
   943       __ bind(L);
   944     }
   945 #endif
   946   }
   948   // start execution
   949 #ifdef ASSERT
   950   {
   951     Label L;
   952     const Address monitor_block_top(rbp,
   953                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   954     __ movptr(rax, monitor_block_top);
   955     __ cmpptr(rax, rsp);
   956     __ jcc(Assembler::equal, L);
   957     __ stop("broken stack frame setup in interpreter");
   958     __ bind(L);
   959   }
   960 #endif
   962   // jvmti support
   963   __ notify_method_entry();
   965   // work registers
   966   const Register method = rbx;
   967   const Register t      = r11;
   969   // allocate space for parameters
   970   __ get_method(method);
   971   __ movptr(t, Address(method, Method::const_offset()));
   972   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
   973   __ shll(t, Interpreter::logStackElementSize);
   975   __ subptr(rsp, t);
   976   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   977   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   979   // get signature handler
   980   {
   981     Label L;
   982     __ movptr(t, Address(method, Method::signature_handler_offset()));
   983     __ testptr(t, t);
   984     __ jcc(Assembler::notZero, L);
   985     __ call_VM(noreg,
   986                CAST_FROM_FN_PTR(address,
   987                                 InterpreterRuntime::prepare_native_call),
   988                method);
   989     __ get_method(method);
   990     __ movptr(t, Address(method, Method::signature_handler_offset()));
   991     __ bind(L);
   992   }
   994   // call signature handler
   995   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
   996          "adjust this code");
   997   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
   998          "adjust this code");
   999   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
  1000           "adjust this code");
  1002   // The generated handlers do not touch RBX (the method oop).
  1003   // However, large signatures cannot be cached and are generated
  1004   // each time here.  The slow-path generator can do a GC on return,
  1005   // so we must reload it after the call.
  1006   __ call(t);
  1007   __ get_method(method);        // slow path can do a GC, reload RBX
  1010   // result handler is in rax
  1011   // set result handler
  1012   __ movptr(Address(rbp,
  1013                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1014             rax);
  1016   // pass mirror handle if static call
  1018     Label L;
  1019     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1020     __ movl(t, Address(method, Method::access_flags_offset()));
  1021     __ testl(t, JVM_ACC_STATIC);
  1022     __ jcc(Assembler::zero, L);
  1023     // get mirror
  1024     __ movptr(t, Address(method, Method::const_offset()));
  1025     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1026     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1027     __ movptr(t, Address(t, mirror_offset));
  1028     // copy mirror into activation frame
  1029     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1030             t);
  1031     // pass handle to mirror
  1032     __ lea(c_rarg1,
  1033            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1034     __ bind(L);
  1037   // get native function entry point
  1039     Label L;
  1040     __ movptr(rax, Address(method, Method::native_function_offset()));
  1041     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1042     __ movptr(rscratch2, unsatisfied.addr());
  1043     __ cmpptr(rax, rscratch2);
  1044     __ jcc(Assembler::notEqual, L);
  1045     __ call_VM(noreg,
  1046                CAST_FROM_FN_PTR(address,
  1047                                 InterpreterRuntime::prepare_native_call),
  1048                method);
  1049     __ get_method(method);
  1050     __ movptr(rax, Address(method, Method::native_function_offset()));
  1051     __ bind(L);
  1054   // pass JNIEnv
  1055   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1057   // It is enough that the pc() points into the right code
  1058   // segment. It does not have to be the correct return pc.
  1059   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1061   // change thread state
  1062 #ifdef ASSERT
  1064     Label L;
  1065     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1066     __ cmpl(t, _thread_in_Java);
  1067     __ jcc(Assembler::equal, L);
  1068     __ stop("Wrong thread state in native stub");
  1069     __ bind(L);
  1071 #endif
  1073   // Change state to native
  1075   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1076           _thread_in_native);
  1078   // Call the native method.
  1079   __ call(rax);
  1080   // result potentially in rax or xmm0
  1082   // Depending on runtime options, either restore the MXCSR
  1083   // register after returning from the JNI Call or verify that
  1084   // it wasn't changed during -Xcheck:jni.
  1085   if (RestoreMXCSROnJNICalls) {
  1086     __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  1088   else if (CheckJNICalls) {
  1089     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  1092   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1093   // in order to extract the result of a method call. If the order of these
  1094   // pushes change or anything else is added to the stack then the code in
  1095   // interpreter_frame_result must also change.
  1097   __ push(dtos);
  1098   __ push(ltos);
  1100   // change thread state
  1101   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1102           _thread_in_native_trans);
  1104   if (os::is_MP()) {
  1105     if (UseMembar) {
  1106       // Force this write out before the read below
  1107       __ membar(Assembler::Membar_mask_bits(
  1108            Assembler::LoadLoad | Assembler::LoadStore |
  1109            Assembler::StoreLoad | Assembler::StoreStore));
  1110     } else {
  1111       // Write serialization page so VM thread can do a pseudo remote membar.
  1112       // We use the current thread pointer to calculate a thread specific
  1113       // offset to write to within the page. This minimizes bus traffic
  1114       // due to cache line collision.
  1115       __ serialize_memory(r15_thread, rscratch2);
  1119   // check for safepoint operation in progress and/or pending suspend requests
  1121     Label Continue;
  1122     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1123              SafepointSynchronize::_not_synchronized);
  1125     Label L;
  1126     __ jcc(Assembler::notEqual, L);
  1127     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1128     __ jcc(Assembler::equal, Continue);
  1129     __ bind(L);
  1131     // Don't use call_VM as it will see a possible pending exception
  1132     // and forward it and never return here preventing us from
  1133     // clearing _last_native_pc down below.  Also can't use
  1134     // call_VM_leaf either as it will check to see if r13 & r14 are
  1135     // preserved and correspond to the bcp/locals pointers. So we do a
  1136     // runtime call by hand.
  1137     //
  1138     __ mov(c_rarg0, r15_thread);
  1139     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1140     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1141     __ andptr(rsp, -16); // align stack as required by ABI
  1142     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1143     __ mov(rsp, r12); // restore sp
  1144     __ reinit_heapbase();
  1145     __ bind(Continue);
  1148   // change thread state
  1149   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1151   // reset_last_Java_frame
  1152   __ reset_last_Java_frame(true, true);
  1154   // reset handle block
  1155   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1156   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1158   // If result is an oop unbox and store it in frame where gc will see it
  1159   // and result handler will pick it up
  1162     Label no_oop, store_result;
  1163     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1164     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1165     __ jcc(Assembler::notEqual, no_oop);
  1166     // retrieve result
  1167     __ pop(ltos);
  1168     __ testptr(rax, rax);
  1169     __ jcc(Assembler::zero, store_result);
  1170     __ movptr(rax, Address(rax, 0));
  1171     __ bind(store_result);
  1172     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1173     // keep stack depth as expected by pushing oop which will eventually be discarde
  1174     __ push(ltos);
  1175     __ bind(no_oop);
  1180     Label no_reguard;
  1181     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1182             JavaThread::stack_guard_yellow_disabled);
  1183     __ jcc(Assembler::notEqual, no_reguard);
  1185     __ pusha(); // XXX only save smashed registers
  1186     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1187     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1188     __ andptr(rsp, -16); // align stack as required by ABI
  1189     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1190     __ mov(rsp, r12); // restore sp
  1191     __ popa(); // XXX only restore smashed registers
  1192     __ reinit_heapbase();
  1194     __ bind(no_reguard);
  1198   // The method register is junk from after the thread_in_native transition
  1199   // until here.  Also can't call_VM until the bcp has been
  1200   // restored.  Need bcp for throwing exception below so get it now.
  1201   __ get_method(method);
  1203   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1204   // r13 == code_base()
  1205   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
  1206   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
  1207   // handle exceptions (exception handling will handle unlocking!)
  1209     Label L;
  1210     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1211     __ jcc(Assembler::zero, L);
  1212     // Note: At some point we may want to unify this with the code
  1213     // used in call_VM_base(); i.e., we should use the
  1214     // StubRoutines::forward_exception code. For now this doesn't work
  1215     // here because the rsp is not correctly set at this point.
  1216     __ MacroAssembler::call_VM(noreg,
  1217                                CAST_FROM_FN_PTR(address,
  1218                                InterpreterRuntime::throw_pending_exception));
  1219     __ should_not_reach_here();
  1220     __ bind(L);
  1223   // do unlocking if necessary
  1225     Label L;
  1226     __ movl(t, Address(method, Method::access_flags_offset()));
  1227     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1228     __ jcc(Assembler::zero, L);
  1229     // the code below should be shared with interpreter macro
  1230     // assembler implementation
  1232       Label unlock;
  1233       // BasicObjectLock will be first in list, since this is a
  1234       // synchronized method. However, need to check that the object
  1235       // has not been unlocked by an explicit monitorexit bytecode.
  1236       const Address monitor(rbp,
  1237                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1238                                        wordSize - sizeof(BasicObjectLock)));
  1240       // monitor expect in c_rarg1 for slow unlock path
  1241       __ lea(c_rarg1, monitor); // address of first monitor
  1243       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1244       __ testptr(t, t);
  1245       __ jcc(Assembler::notZero, unlock);
  1247       // Entry already unlocked, need to throw exception
  1248       __ MacroAssembler::call_VM(noreg,
  1249                                  CAST_FROM_FN_PTR(address,
  1250                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1251       __ should_not_reach_here();
  1253       __ bind(unlock);
  1254       __ unlock_object(c_rarg1);
  1256     __ bind(L);
  1259   // jvmti support
  1260   // Note: This must happen _after_ handling/throwing any exceptions since
  1261   //       the exception handler code notifies the runtime of method exits
  1262   //       too. If this happens before, method entry/exit notifications are
  1263   //       not properly paired (was bug - gri 11/22/99).
  1264   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1266   // restore potential result in edx:eax, call result handler to
  1267   // restore potential result in ST0 & handle result
  1269   __ pop(ltos);
  1270   __ pop(dtos);
  1272   __ movptr(t, Address(rbp,
  1273                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1274   __ call(t);
  1276   // remove activation
  1277   __ movptr(t, Address(rbp,
  1278                        frame::interpreter_frame_sender_sp_offset *
  1279                        wordSize)); // get sender sp
  1280   __ leave();                                // remove frame anchor
  1281   __ pop(rdi);                               // get return address
  1282   __ mov(rsp, t);                            // set sp to sender sp
  1283   __ jmp(rdi);
  1285   if (inc_counter) {
  1286     // Handle overflow of counter and compile method
  1287     __ bind(invocation_counter_overflow);
  1288     generate_counter_overflow(&continue_after_compile);
  1291   return entry_point;
  1294 //
  1295 // Generic interpreted method entry to (asm) interpreter
  1296 //
  1297 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1298   // determine code generation flags
  1299   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1301   // ebx: Method*
  1302   // r13: sender sp
  1303   address entry_point = __ pc();
  1305   const Address constMethod(rbx, Method::const_offset());
  1306   const Address invocation_counter(rbx,
  1307                                    Method::invocation_counter_offset() +
  1308                                    InvocationCounter::counter_offset());
  1309   const Address access_flags(rbx, Method::access_flags_offset());
  1310   const Address size_of_parameters(rdx,
  1311                                    ConstMethod::size_of_parameters_offset());
  1312   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
  1315   // get parameter size (always needed)
  1316   __ movptr(rdx, constMethod);
  1317   __ load_unsigned_short(rcx, size_of_parameters);
  1319   // rbx: Method*
  1320   // rcx: size of parameters
  1321   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1323   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1324   __ subl(rdx, rcx); // rdx = no. of additional locals
  1326   // YYY
  1327 //   __ incrementl(rdx);
  1328 //   __ andl(rdx, -2);
  1330   // see if we've got enough room on the stack for locals plus overhead.
  1331   generate_stack_overflow_check();
  1333   // get return address
  1334   __ pop(rax);
  1336   // compute beginning of parameters (r14)
  1337   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1339   // rdx - # of additional locals
  1340   // allocate space for locals
  1341   // explicitly initialize locals
  1343     Label exit, loop;
  1344     __ testl(rdx, rdx);
  1345     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1346     __ bind(loop);
  1347     __ push((int) NULL_WORD); // initialize local variables
  1348     __ decrementl(rdx); // until everything initialized
  1349     __ jcc(Assembler::greater, loop);
  1350     __ bind(exit);
  1353   // (pre-)fetch invocation count
  1354   if (inc_counter) {
  1355     __ movl(rcx, invocation_counter);
  1357   // initialize fixed part of activation frame
  1358   generate_fixed_frame(false);
  1360   // make sure method is not native & not abstract
  1361 #ifdef ASSERT
  1362   __ movl(rax, access_flags);
  1364     Label L;
  1365     __ testl(rax, JVM_ACC_NATIVE);
  1366     __ jcc(Assembler::zero, L);
  1367     __ stop("tried to execute native method as non-native");
  1368     __ bind(L);
  1371     Label L;
  1372     __ testl(rax, JVM_ACC_ABSTRACT);
  1373     __ jcc(Assembler::zero, L);
  1374     __ stop("tried to execute abstract method in interpreter");
  1375     __ bind(L);
  1377 #endif
  1379   // Since at this point in the method invocation the exception
  1380   // handler would try to exit the monitor of synchronized methods
  1381   // which hasn't been entered yet, we set the thread local variable
  1382   // _do_not_unlock_if_synchronized to true. The remove_activation
  1383   // will check this flag.
  1385   const Address do_not_unlock_if_synchronized(r15_thread,
  1386         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1387   __ movbool(do_not_unlock_if_synchronized, true);
  1389   // increment invocation count & check for overflow
  1390   Label invocation_counter_overflow;
  1391   Label profile_method;
  1392   Label profile_method_continue;
  1393   if (inc_counter) {
  1394     generate_counter_incr(&invocation_counter_overflow,
  1395                           &profile_method,
  1396                           &profile_method_continue);
  1397     if (ProfileInterpreter) {
  1398       __ bind(profile_method_continue);
  1402   Label continue_after_compile;
  1403   __ bind(continue_after_compile);
  1405   // check for synchronized interpreted methods
  1406   bang_stack_shadow_pages(false);
  1408   // reset the _do_not_unlock_if_synchronized flag
  1409   __ movbool(do_not_unlock_if_synchronized, false);
  1411   // check for synchronized methods
  1412   // Must happen AFTER invocation_counter check and stack overflow check,
  1413   // so method is not locked if overflows.
  1414   if (synchronized) {
  1415     // Allocate monitor and lock method
  1416     lock_method();
  1417   } else {
  1418     // no synchronization necessary
  1419 #ifdef ASSERT
  1421       Label L;
  1422       __ movl(rax, access_flags);
  1423       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1424       __ jcc(Assembler::zero, L);
  1425       __ stop("method needs synchronization");
  1426       __ bind(L);
  1428 #endif
  1431   // start execution
  1432 #ifdef ASSERT
  1434     Label L;
  1435      const Address monitor_block_top (rbp,
  1436                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1437     __ movptr(rax, monitor_block_top);
  1438     __ cmpptr(rax, rsp);
  1439     __ jcc(Assembler::equal, L);
  1440     __ stop("broken stack frame setup in interpreter");
  1441     __ bind(L);
  1443 #endif
  1445   // jvmti support
  1446   __ notify_method_entry();
  1448   __ dispatch_next(vtos);
  1450   // invocation counter overflow
  1451   if (inc_counter) {
  1452     if (ProfileInterpreter) {
  1453       // We have decided to profile this method in the interpreter
  1454       __ bind(profile_method);
  1455       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1456       __ set_method_data_pointer_for_bcp();
  1457       __ get_method(rbx);
  1458       __ jmp(profile_method_continue);
  1460     // Handle overflow of counter and compile method
  1461     __ bind(invocation_counter_overflow);
  1462     generate_counter_overflow(&continue_after_compile);
  1465   return entry_point;
  1468 // Entry points
  1469 //
  1470 // Here we generate the various kind of entries into the interpreter.
  1471 // The two main entry type are generic bytecode methods and native
  1472 // call method.  These both come in synchronized and non-synchronized
  1473 // versions but the frame layout they create is very similar. The
  1474 // other method entry types are really just special purpose entries
  1475 // that are really entry and interpretation all in one. These are for
  1476 // trivial methods like accessor, empty, or special math methods.
  1477 //
  1478 // When control flow reaches any of the entry types for the interpreter
  1479 // the following holds ->
  1480 //
  1481 // Arguments:
  1482 //
  1483 // rbx: Method*
  1484 //
  1485 // Stack layout immediately at entry
  1486 //
  1487 // [ return address     ] <--- rsp
  1488 // [ parameter n        ]
  1489 //   ...
  1490 // [ parameter 1        ]
  1491 // [ expression stack   ] (caller's java expression stack)
  1493 // Assuming that we don't go to one of the trivial specialized entries
  1494 // the stack will look like below when we are ready to execute the
  1495 // first bytecode (or call the native routine). The register usage
  1496 // will be as the template based interpreter expects (see
  1497 // interpreter_amd64.hpp).
  1498 //
  1499 // local variables follow incoming parameters immediately; i.e.
  1500 // the return address is moved to the end of the locals).
  1501 //
  1502 // [ monitor entry      ] <--- rsp
  1503 //   ...
  1504 // [ monitor entry      ]
  1505 // [ expr. stack bottom ]
  1506 // [ saved r13          ]
  1507 // [ current r14        ]
  1508 // [ Method*            ]
  1509 // [ saved ebp          ] <--- rbp
  1510 // [ return address     ]
  1511 // [ local variable m   ]
  1512 //   ...
  1513 // [ local variable 1   ]
  1514 // [ parameter n        ]
  1515 //   ...
  1516 // [ parameter 1        ] <--- r14
  1518 address AbstractInterpreterGenerator::generate_method_entry(
  1519                                         AbstractInterpreter::MethodKind kind) {
  1520   // determine code generation flags
  1521   bool synchronized = false;
  1522   address entry_point = NULL;
  1524   switch (kind) {
  1525   case Interpreter::zerolocals             :                                                                             break;
  1526   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1527   case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
  1528   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);  break;
  1529   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();       break;
  1530   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();    break;
  1531   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();    break;
  1533   case Interpreter::java_lang_math_sin     : // fall thru
  1534   case Interpreter::java_lang_math_cos     : // fall thru
  1535   case Interpreter::java_lang_math_tan     : // fall thru
  1536   case Interpreter::java_lang_math_abs     : // fall thru
  1537   case Interpreter::java_lang_math_log     : // fall thru
  1538   case Interpreter::java_lang_math_log10   : // fall thru
  1539   case Interpreter::java_lang_math_sqrt    : // fall thru
  1540   case Interpreter::java_lang_math_pow     : // fall thru
  1541   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);    break;
  1542   case Interpreter::java_lang_ref_reference_get
  1543                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1544   default:
  1545     fatal(err_msg("unexpected method kind: %d", kind));
  1546     break;
  1549   if (entry_point) {
  1550     return entry_point;
  1553   return ((InterpreterGenerator*) this)->
  1554                                 generate_normal_entry(synchronized);
  1557 // These should never be compiled since the interpreter will prefer
  1558 // the compiled version to the intrinsic version.
  1559 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1560   switch (method_kind(m)) {
  1561     case Interpreter::java_lang_math_sin     : // fall thru
  1562     case Interpreter::java_lang_math_cos     : // fall thru
  1563     case Interpreter::java_lang_math_tan     : // fall thru
  1564     case Interpreter::java_lang_math_abs     : // fall thru
  1565     case Interpreter::java_lang_math_log     : // fall thru
  1566     case Interpreter::java_lang_math_log10   : // fall thru
  1567     case Interpreter::java_lang_math_sqrt    : // fall thru
  1568     case Interpreter::java_lang_math_pow     : // fall thru
  1569     case Interpreter::java_lang_math_exp     :
  1570       return false;
  1571     default:
  1572       return true;
  1576 // How much stack a method activation needs in words.
  1577 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1578   const int entry_size = frame::interpreter_frame_monitor_size();
  1580   // total overhead size: entry_size + (saved rbp thru expr stack
  1581   // bottom).  be sure to change this if you add/subtract anything
  1582   // to/from the overhead area
  1583   const int overhead_size =
  1584     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1586   const int stub_code = frame::entry_frame_after_call_words;
  1587   const int extra_stack = Method::extra_stack_entries();
  1588   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1589                            Interpreter::stackElementWords;
  1590   return (overhead_size + method_stack + stub_code);
  1593 int AbstractInterpreter::layout_activation(Method* method,
  1594                                            int tempcount,
  1595                                            int popframe_extra_args,
  1596                                            int moncount,
  1597                                            int caller_actual_parameters,
  1598                                            int callee_param_count,
  1599                                            int callee_locals,
  1600                                            frame* caller,
  1601                                            frame* interpreter_frame,
  1602                                            bool is_top_frame) {
  1603   // Note: This calculation must exactly parallel the frame setup
  1604   // in AbstractInterpreterGenerator::generate_method_entry.
  1605   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1606   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1607   // right size, as determined by a previous call to this method.
  1608   // It is also guaranteed to be walkable even though it is in a skeletal state
  1610   // fixed size of an interpreter frame:
  1611   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1612   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1613                      Interpreter::stackElementWords;
  1615   int overhead = frame::sender_sp_offset -
  1616                  frame::interpreter_frame_initial_sp_offset;
  1617   // Our locals were accounted for by the caller (or last_frame_adjust
  1618   // on the transistion) Since the callee parameters already account
  1619   // for the callee's params we only need to account for the extra
  1620   // locals.
  1621   int size = overhead +
  1622          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
  1623          moncount * frame::interpreter_frame_monitor_size() +
  1624          tempcount* Interpreter::stackElementWords + popframe_extra_args;
  1625   if (interpreter_frame != NULL) {
  1626 #ifdef ASSERT
  1627     if (!EnableInvokeDynamic)
  1628       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1629       // Probably, since deoptimization doesn't work yet.
  1630       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1631     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1632 #endif
  1634     interpreter_frame->interpreter_frame_set_method(method);
  1635     // NOTE the difference in using sender_sp and
  1636     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1637     // the original sp of the caller (the unextended_sp) and
  1638     // sender_sp is fp+16 XXX
  1639     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1641 #ifdef ASSERT
  1642     if (caller->is_interpreted_frame()) {
  1643       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1645 #endif
  1647     interpreter_frame->interpreter_frame_set_locals(locals);
  1648     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1649     BasicObjectLock* monbot = montop - moncount;
  1650     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1652     // Set last_sp
  1653     intptr_t*  esp = (intptr_t*) monbot -
  1654                      tempcount*Interpreter::stackElementWords -
  1655                      popframe_extra_args;
  1656     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1658     // All frames but the initial (oldest) interpreter frame we fill in have
  1659     // a value for sender_sp that allows walking the stack but isn't
  1660     // truly correct. Correct the value here.
  1661     if (extra_locals != 0 &&
  1662         interpreter_frame->sender_sp() ==
  1663         interpreter_frame->interpreter_frame_sender_sp()) {
  1664       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1665                                                          extra_locals);
  1667     *interpreter_frame->interpreter_frame_cache_addr() =
  1668       method->constants()->cache();
  1670   return size;
  1673 //-----------------------------------------------------------------------------
  1674 // Exceptions
  1676 void TemplateInterpreterGenerator::generate_throw_exception() {
  1677   // Entry point in previous activation (i.e., if the caller was
  1678   // interpreted)
  1679   Interpreter::_rethrow_exception_entry = __ pc();
  1680   // Restore sp to interpreter_frame_last_sp even though we are going
  1681   // to empty the expression stack for the exception processing.
  1682   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1683   // rax: exception
  1684   // rdx: return address/pc that threw exception
  1685   __ restore_bcp();    // r13 points to call/send
  1686   __ restore_locals();
  1687   __ reinit_heapbase();  // restore r12 as heapbase.
  1688   // Entry point for exceptions thrown within interpreter code
  1689   Interpreter::_throw_exception_entry = __ pc();
  1690   // expression stack is undefined here
  1691   // rax: exception
  1692   // r13: exception bcp
  1693   __ verify_oop(rax);
  1694   __ mov(c_rarg1, rax);
  1696   // expression stack must be empty before entering the VM in case of
  1697   // an exception
  1698   __ empty_expression_stack();
  1699   // find exception handler address and preserve exception oop
  1700   __ call_VM(rdx,
  1701              CAST_FROM_FN_PTR(address,
  1702                           InterpreterRuntime::exception_handler_for_exception),
  1703              c_rarg1);
  1704   // rax: exception handler entry point
  1705   // rdx: preserved exception oop
  1706   // r13: bcp for exception handler
  1707   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1708   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1710   // If the exception is not handled in the current frame the frame is
  1711   // removed and the exception is rethrown (i.e. exception
  1712   // continuation is _rethrow_exception).
  1713   //
  1714   // Note: At this point the bci is still the bxi for the instruction
  1715   // which caused the exception and the expression stack is
  1716   // empty. Thus, for any VM calls at this point, GC will find a legal
  1717   // oop map (with empty expression stack).
  1719   // In current activation
  1720   // tos: exception
  1721   // esi: exception bcp
  1723   //
  1724   // JVMTI PopFrame support
  1725   //
  1727   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1728   __ empty_expression_stack();
  1729   // Set the popframe_processing bit in pending_popframe_condition
  1730   // indicating that we are currently handling popframe, so that
  1731   // call_VMs that may happen later do not trigger new popframe
  1732   // handling cycles.
  1733   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1734   __ orl(rdx, JavaThread::popframe_processing_bit);
  1735   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1738     // Check to see whether we are returning to a deoptimized frame.
  1739     // (The PopFrame call ensures that the caller of the popped frame is
  1740     // either interpreted or compiled and deoptimizes it if compiled.)
  1741     // In this case, we can't call dispatch_next() after the frame is
  1742     // popped, but instead must save the incoming arguments and restore
  1743     // them after deoptimization has occurred.
  1744     //
  1745     // Note that we don't compare the return PC against the
  1746     // deoptimization blob's unpack entry because of the presence of
  1747     // adapter frames in C2.
  1748     Label caller_not_deoptimized;
  1749     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1750     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1751                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1752     __ testl(rax, rax);
  1753     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1755     // Compute size of arguments for saving when returning to
  1756     // deoptimized caller
  1757     __ get_method(rax);
  1758     __ movptr(rax, Address(rax, Method::const_offset()));
  1759     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
  1760                                                 size_of_parameters_offset())));
  1761     __ shll(rax, Interpreter::logStackElementSize);
  1762     __ restore_locals(); // XXX do we need this?
  1763     __ subptr(r14, rax);
  1764     __ addptr(r14, wordSize);
  1765     // Save these arguments
  1766     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1767                                            Deoptimization::
  1768                                            popframe_preserve_args),
  1769                           r15_thread, rax, r14);
  1771     __ remove_activation(vtos, rdx,
  1772                          /* throw_monitor_exception */ false,
  1773                          /* install_monitor_exception */ false,
  1774                          /* notify_jvmdi */ false);
  1776     // Inform deoptimization that it is responsible for restoring
  1777     // these arguments
  1778     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1779             JavaThread::popframe_force_deopt_reexecution_bit);
  1781     // Continue in deoptimization handler
  1782     __ jmp(rdx);
  1784     __ bind(caller_not_deoptimized);
  1787   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1788                        /* throw_monitor_exception */ false,
  1789                        /* install_monitor_exception */ false,
  1790                        /* notify_jvmdi */ false);
  1792   // Finish with popframe handling
  1793   // A previous I2C followed by a deoptimization might have moved the
  1794   // outgoing arguments further up the stack. PopFrame expects the
  1795   // mutations to those outgoing arguments to be preserved and other
  1796   // constraints basically require this frame to look exactly as
  1797   // though it had previously invoked an interpreted activation with
  1798   // no space between the top of the expression stack (current
  1799   // last_sp) and the top of stack. Rather than force deopt to
  1800   // maintain this kind of invariant all the time we call a small
  1801   // fixup routine to move the mutated arguments onto the top of our
  1802   // expression stack if necessary.
  1803   __ mov(c_rarg1, rsp);
  1804   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1805   // PC must point into interpreter here
  1806   __ set_last_Java_frame(noreg, rbp, __ pc());
  1807   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1808   __ reset_last_Java_frame(true, true);
  1809   // Restore the last_sp and null it out
  1810   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1811   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1813   __ restore_bcp();  // XXX do we need this?
  1814   __ restore_locals(); // XXX do we need this?
  1815   // The method data pointer was incremented already during
  1816   // call profiling. We have to restore the mdp for the current bcp.
  1817   if (ProfileInterpreter) {
  1818     __ set_method_data_pointer_for_bcp();
  1821   // Clear the popframe condition flag
  1822   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1823           JavaThread::popframe_inactive);
  1825   __ dispatch_next(vtos);
  1826   // end of PopFrame support
  1828   Interpreter::_remove_activation_entry = __ pc();
  1830   // preserve exception over this code sequence
  1831   __ pop_ptr(rax);
  1832   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1833   // remove the activation (without doing throws on illegalMonitorExceptions)
  1834   __ remove_activation(vtos, rdx, false, true, false);
  1835   // restore exception
  1836   __ get_vm_result(rax, r15_thread);
  1838   // In between activations - previous activation type unknown yet
  1839   // compute continuation point - the continuation point expects the
  1840   // following registers set up:
  1841   //
  1842   // rax: exception
  1843   // rdx: return address/pc that threw exception
  1844   // rsp: expression stack of caller
  1845   // rbp: ebp of caller
  1846   __ push(rax);                                  // save exception
  1847   __ push(rdx);                                  // save return address
  1848   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1849                           SharedRuntime::exception_handler_for_return_address),
  1850                         r15_thread, rdx);
  1851   __ mov(rbx, rax);                              // save exception handler
  1852   __ pop(rdx);                                   // restore return address
  1853   __ pop(rax);                                   // restore exception
  1854   // Note that an "issuing PC" is actually the next PC after the call
  1855   __ jmp(rbx);                                   // jump to exception
  1856                                                  // handler of caller
  1860 //
  1861 // JVMTI ForceEarlyReturn support
  1862 //
  1863 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1864   address entry = __ pc();
  1866   __ restore_bcp();
  1867   __ restore_locals();
  1868   __ empty_expression_stack();
  1869   __ load_earlyret_value(state);
  1871   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1872   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1874   // Clear the earlyret state
  1875   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1877   __ remove_activation(state, rsi,
  1878                        false, /* throw_monitor_exception */
  1879                        false, /* install_monitor_exception */
  1880                        true); /* notify_jvmdi */
  1881   __ jmp(rsi);
  1883   return entry;
  1884 } // end of ForceEarlyReturn support
  1887 //-----------------------------------------------------------------------------
  1888 // Helper for vtos entry point generation
  1890 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1891                                                          address& bep,
  1892                                                          address& cep,
  1893                                                          address& sep,
  1894                                                          address& aep,
  1895                                                          address& iep,
  1896                                                          address& lep,
  1897                                                          address& fep,
  1898                                                          address& dep,
  1899                                                          address& vep) {
  1900   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1901   Label L;
  1902   aep = __ pc();  __ push_ptr();  __ jmp(L);
  1903   fep = __ pc();  __ push_f();    __ jmp(L);
  1904   dep = __ pc();  __ push_d();    __ jmp(L);
  1905   lep = __ pc();  __ push_l();    __ jmp(L);
  1906   bep = cep = sep =
  1907   iep = __ pc();  __ push_i();
  1908   vep = __ pc();
  1909   __ bind(L);
  1910   generate_and_dispatch(t);
  1914 //-----------------------------------------------------------------------------
  1915 // Generation of individual instructions
  1917 // helpers for generate_and_dispatch
  1920 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1921   : TemplateInterpreterGenerator(code) {
  1922    generate_all(); // down here so it can be "virtual"
  1925 //-----------------------------------------------------------------------------
  1927 // Non-product code
  1928 #ifndef PRODUCT
  1929 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1930   address entry = __ pc();
  1932   __ push(state);
  1933   __ push(c_rarg0);
  1934   __ push(c_rarg1);
  1935   __ push(c_rarg2);
  1936   __ push(c_rarg3);
  1937   __ mov(c_rarg2, rax);  // Pass itos
  1938 #ifdef _WIN64
  1939   __ movflt(xmm3, xmm0); // Pass ftos
  1940 #endif
  1941   __ call_VM(noreg,
  1942              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  1943              c_rarg1, c_rarg2, c_rarg3);
  1944   __ pop(c_rarg3);
  1945   __ pop(c_rarg2);
  1946   __ pop(c_rarg1);
  1947   __ pop(c_rarg0);
  1948   __ pop(state);
  1949   __ ret(0);                                   // return from result handler
  1951   return entry;
  1954 void TemplateInterpreterGenerator::count_bytecode() {
  1955   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1958 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1959   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1962 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1963   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  1964   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1965   __ orl(rbx,
  1966          ((int) t->bytecode()) <<
  1967          BytecodePairHistogram::log2_number_of_codes);
  1968   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1969   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  1970   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  1974 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1975   // Call a little run-time stub to avoid blow-up for each bytecode.
  1976   // The run-time runtime saves the right registers, depending on
  1977   // the tosca in-state for the given template.
  1979   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1980          "entry must have been generated");
  1981   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1982   __ andptr(rsp, -16); // align stack as required by ABI
  1983   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1984   __ mov(rsp, r12); // restore sp
  1985   __ reinit_heapbase();
  1989 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1990   Label L;
  1991   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1992            StopInterpreterAt);
  1993   __ jcc(Assembler::notEqual, L);
  1994   __ int3();
  1995   __ bind(L);
  1997 #endif // !PRODUCT
  1998 #endif // ! CC_INTERP

mercurial