src/cpu/x86/vm/assembler_x86.cpp

Fri, 25 Jan 2013 10:04:08 -0500

author
zgu
date
Fri, 25 Jan 2013 10:04:08 -0500
changeset 4492
8b46b0196eb0
parent 4413
038dd2875b94
child 4479
b30b3c2a0cf2
child 4542
db9981fd3124
permissions
-rw-r--r--

8000692: Remove old KERNEL code
Summary: Removed depreciated kernel VM source code from hotspot VM
Reviewed-by: dholmes, acorn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 #ifdef PRODUCT
    46 #define BLOCK_COMMENT(str) /* nothing */
    47 #define STOP(error) stop(error)
    48 #else
    49 #define BLOCK_COMMENT(str) block_comment(str)
    50 #define STOP(error) block_comment(error); stop(error)
    51 #endif
    53 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    54 // Implementation of AddressLiteral
    56 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    57   _is_lval = false;
    58   _target = target;
    59   switch (rtype) {
    60   case relocInfo::oop_type:
    61   case relocInfo::metadata_type:
    62     // Oops are a special case. Normally they would be their own section
    63     // but in cases like icBuffer they are literals in the code stream that
    64     // we don't have a section for. We use none so that we get a literal address
    65     // which is always patchable.
    66     break;
    67   case relocInfo::external_word_type:
    68     _rspec = external_word_Relocation::spec(target);
    69     break;
    70   case relocInfo::internal_word_type:
    71     _rspec = internal_word_Relocation::spec(target);
    72     break;
    73   case relocInfo::opt_virtual_call_type:
    74     _rspec = opt_virtual_call_Relocation::spec();
    75     break;
    76   case relocInfo::static_call_type:
    77     _rspec = static_call_Relocation::spec();
    78     break;
    79   case relocInfo::runtime_call_type:
    80     _rspec = runtime_call_Relocation::spec();
    81     break;
    82   case relocInfo::poll_type:
    83   case relocInfo::poll_return_type:
    84     _rspec = Relocation::spec_simple(rtype);
    85     break;
    86   case relocInfo::none:
    87     break;
    88   default:
    89     ShouldNotReachHere();
    90     break;
    91   }
    92 }
    94 // Implementation of Address
    96 #ifdef _LP64
    98 Address Address::make_array(ArrayAddress adr) {
    99   // Not implementable on 64bit machines
   100   // Should have been handled higher up the call chain.
   101   ShouldNotReachHere();
   102   return Address();
   103 }
   105 // exceedingly dangerous constructor
   106 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   107   _base  = noreg;
   108   _index = noreg;
   109   _scale = no_scale;
   110   _disp  = disp;
   111   switch (rtype) {
   112     case relocInfo::external_word_type:
   113       _rspec = external_word_Relocation::spec(loc);
   114       break;
   115     case relocInfo::internal_word_type:
   116       _rspec = internal_word_Relocation::spec(loc);
   117       break;
   118     case relocInfo::runtime_call_type:
   119       // HMM
   120       _rspec = runtime_call_Relocation::spec();
   121       break;
   122     case relocInfo::poll_type:
   123     case relocInfo::poll_return_type:
   124       _rspec = Relocation::spec_simple(rtype);
   125       break;
   126     case relocInfo::none:
   127       break;
   128     default:
   129       ShouldNotReachHere();
   130   }
   131 }
   132 #else // LP64
   134 Address Address::make_array(ArrayAddress adr) {
   135   AddressLiteral base = adr.base();
   136   Address index = adr.index();
   137   assert(index._disp == 0, "must not have disp"); // maybe it can?
   138   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   139   array._rspec = base._rspec;
   140   return array;
   141 }
   143 // exceedingly dangerous constructor
   144 Address::Address(address loc, RelocationHolder spec) {
   145   _base  = noreg;
   146   _index = noreg;
   147   _scale = no_scale;
   148   _disp  = (intptr_t) loc;
   149   _rspec = spec;
   150 }
   152 #endif // _LP64
   156 // Convert the raw encoding form into the form expected by the constructor for
   157 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   158 // that to noreg for the Address constructor.
   159 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   160   RelocationHolder rspec;
   161   if (disp_reloc != relocInfo::none) {
   162     rspec = Relocation::spec_simple(disp_reloc);
   163   }
   164   bool valid_index = index != rsp->encoding();
   165   if (valid_index) {
   166     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   167     madr._rspec = rspec;
   168     return madr;
   169   } else {
   170     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   171     madr._rspec = rspec;
   172     return madr;
   173   }
   174 }
   176 // Implementation of Assembler
   178 int AbstractAssembler::code_fill_byte() {
   179   return (u_char)'\xF4'; // hlt
   180 }
   182 // make this go away someday
   183 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   184   if (rtype == relocInfo::none)
   185         emit_int32(data);
   186   else  emit_data(data, Relocation::spec_simple(rtype), format);
   187 }
   189 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   190   assert(imm_operand == 0, "default format must be immediate in this file");
   191   assert(inst_mark() != NULL, "must be inside InstructionMark");
   192   if (rspec.type() !=  relocInfo::none) {
   193     #ifdef ASSERT
   194       check_relocation(rspec, format);
   195     #endif
   196     // Do not use AbstractAssembler::relocate, which is not intended for
   197     // embedded words.  Instead, relocate to the enclosing instruction.
   199     // hack. call32 is too wide for mask so use disp32
   200     if (format == call32_operand)
   201       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   202     else
   203       code_section()->relocate(inst_mark(), rspec, format);
   204   }
   205   emit_int32(data);
   206 }
   208 static int encode(Register r) {
   209   int enc = r->encoding();
   210   if (enc >= 8) {
   211     enc -= 8;
   212   }
   213   return enc;
   214 }
   216 static int encode(XMMRegister r) {
   217   int enc = r->encoding();
   218   if (enc >= 8) {
   219     enc -= 8;
   220   }
   221   return enc;
   222 }
   224 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   225   assert(dst->has_byte_register(), "must have byte register");
   226   assert(isByte(op1) && isByte(op2), "wrong opcode");
   227   assert(isByte(imm8), "not a byte");
   228   assert((op1 & 0x01) == 0, "should be 8bit operation");
   229   emit_int8(op1);
   230   emit_int8(op2 | encode(dst));
   231   emit_int8(imm8);
   232 }
   235 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   236   assert(isByte(op1) && isByte(op2), "wrong opcode");
   237   assert((op1 & 0x01) == 1, "should be 32bit operation");
   238   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   239   if (is8bit(imm32)) {
   240     emit_int8(op1 | 0x02); // set sign bit
   241     emit_int8(op2 | encode(dst));
   242     emit_int8(imm32 & 0xFF);
   243   } else {
   244     emit_int8(op1);
   245     emit_int8(op2 | encode(dst));
   246     emit_int32(imm32);
   247   }
   248 }
   250 // Force generation of a 4 byte immediate value even if it fits into 8bit
   251 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   252   assert(isByte(op1) && isByte(op2), "wrong opcode");
   253   assert((op1 & 0x01) == 1, "should be 32bit operation");
   254   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   255   emit_int8(op1);
   256   emit_int8(op2 | encode(dst));
   257   emit_int32(imm32);
   258 }
   260 // immediate-to-memory forms
   261 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   262   assert((op1 & 0x01) == 1, "should be 32bit operation");
   263   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   264   if (is8bit(imm32)) {
   265     emit_int8(op1 | 0x02); // set sign bit
   266     emit_operand(rm, adr, 1);
   267     emit_int8(imm32 & 0xFF);
   268   } else {
   269     emit_int8(op1);
   270     emit_operand(rm, adr, 4);
   271     emit_int32(imm32);
   272   }
   273 }
   276 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   277   assert(isByte(op1) && isByte(op2), "wrong opcode");
   278   emit_int8(op1);
   279   emit_int8(op2 | encode(dst) << 3 | encode(src));
   280 }
   283 void Assembler::emit_operand(Register reg, Register base, Register index,
   284                              Address::ScaleFactor scale, int disp,
   285                              RelocationHolder const& rspec,
   286                              int rip_relative_correction) {
   287   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   289   // Encode the registers as needed in the fields they are used in
   291   int regenc = encode(reg) << 3;
   292   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   293   int baseenc = base->is_valid() ? encode(base) : 0;
   295   if (base->is_valid()) {
   296     if (index->is_valid()) {
   297       assert(scale != Address::no_scale, "inconsistent address");
   298       // [base + index*scale + disp]
   299       if (disp == 0 && rtype == relocInfo::none  &&
   300           base != rbp LP64_ONLY(&& base != r13)) {
   301         // [base + index*scale]
   302         // [00 reg 100][ss index base]
   303         assert(index != rsp, "illegal addressing mode");
   304         emit_int8(0x04 | regenc);
   305         emit_int8(scale << 6 | indexenc | baseenc);
   306       } else if (is8bit(disp) && rtype == relocInfo::none) {
   307         // [base + index*scale + imm8]
   308         // [01 reg 100][ss index base] imm8
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_int8(0x44 | regenc);
   311         emit_int8(scale << 6 | indexenc | baseenc);
   312         emit_int8(disp & 0xFF);
   313       } else {
   314         // [base + index*scale + disp32]
   315         // [10 reg 100][ss index base] disp32
   316         assert(index != rsp, "illegal addressing mode");
   317         emit_int8(0x84 | regenc);
   318         emit_int8(scale << 6 | indexenc | baseenc);
   319         emit_data(disp, rspec, disp32_operand);
   320       }
   321     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   322       // [rsp + disp]
   323       if (disp == 0 && rtype == relocInfo::none) {
   324         // [rsp]
   325         // [00 reg 100][00 100 100]
   326         emit_int8(0x04 | regenc);
   327         emit_int8(0x24);
   328       } else if (is8bit(disp) && rtype == relocInfo::none) {
   329         // [rsp + imm8]
   330         // [01 reg 100][00 100 100] disp8
   331         emit_int8(0x44 | regenc);
   332         emit_int8(0x24);
   333         emit_int8(disp & 0xFF);
   334       } else {
   335         // [rsp + imm32]
   336         // [10 reg 100][00 100 100] disp32
   337         emit_int8(0x84 | regenc);
   338         emit_int8(0x24);
   339         emit_data(disp, rspec, disp32_operand);
   340       }
   341     } else {
   342       // [base + disp]
   343       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   344       if (disp == 0 && rtype == relocInfo::none &&
   345           base != rbp LP64_ONLY(&& base != r13)) {
   346         // [base]
   347         // [00 reg base]
   348         emit_int8(0x00 | regenc | baseenc);
   349       } else if (is8bit(disp) && rtype == relocInfo::none) {
   350         // [base + disp8]
   351         // [01 reg base] disp8
   352         emit_int8(0x40 | regenc | baseenc);
   353         emit_int8(disp & 0xFF);
   354       } else {
   355         // [base + disp32]
   356         // [10 reg base] disp32
   357         emit_int8(0x80 | regenc | baseenc);
   358         emit_data(disp, rspec, disp32_operand);
   359       }
   360     }
   361   } else {
   362     if (index->is_valid()) {
   363       assert(scale != Address::no_scale, "inconsistent address");
   364       // [index*scale + disp]
   365       // [00 reg 100][ss index 101] disp32
   366       assert(index != rsp, "illegal addressing mode");
   367       emit_int8(0x04 | regenc);
   368       emit_int8(scale << 6 | indexenc | 0x05);
   369       emit_data(disp, rspec, disp32_operand);
   370     } else if (rtype != relocInfo::none ) {
   371       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   372       // [00 000 101] disp32
   374       emit_int8(0x05 | regenc);
   375       // Note that the RIP-rel. correction applies to the generated
   376       // disp field, but _not_ to the target address in the rspec.
   378       // disp was created by converting the target address minus the pc
   379       // at the start of the instruction. That needs more correction here.
   380       // intptr_t disp = target - next_ip;
   381       assert(inst_mark() != NULL, "must be inside InstructionMark");
   382       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   383       int64_t adjusted = disp;
   384       // Do rip-rel adjustment for 64bit
   385       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   386       assert(is_simm32(adjusted),
   387              "must be 32bit offset (RIP relative address)");
   388       emit_data((int32_t) adjusted, rspec, disp32_operand);
   390     } else {
   391       // 32bit never did this, did everything as the rip-rel/disp code above
   392       // [disp] ABSOLUTE
   393       // [00 reg 100][00 100 101] disp32
   394       emit_int8(0x04 | regenc);
   395       emit_int8(0x25);
   396       emit_data(disp, rspec, disp32_operand);
   397     }
   398   }
   399 }
   401 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   402                              Address::ScaleFactor scale, int disp,
   403                              RelocationHolder const& rspec) {
   404   emit_operand((Register)reg, base, index, scale, disp, rspec);
   405 }
   407 // Secret local extension to Assembler::WhichOperand:
   408 #define end_pc_operand (_WhichOperand_limit)
   410 address Assembler::locate_operand(address inst, WhichOperand which) {
   411   // Decode the given instruction, and return the address of
   412   // an embedded 32-bit operand word.
   414   // If "which" is disp32_operand, selects the displacement portion
   415   // of an effective address specifier.
   416   // If "which" is imm64_operand, selects the trailing immediate constant.
   417   // If "which" is call32_operand, selects the displacement of a call or jump.
   418   // Caller is responsible for ensuring that there is such an operand,
   419   // and that it is 32/64 bits wide.
   421   // If "which" is end_pc_operand, find the end of the instruction.
   423   address ip = inst;
   424   bool is_64bit = false;
   426   debug_only(bool has_disp32 = false);
   427   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   429   again_after_prefix:
   430   switch (0xFF & *ip++) {
   432   // These convenience macros generate groups of "case" labels for the switch.
   433 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   434 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   435              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   436 #define REP16(x) REP8((x)+0): \
   437               case REP8((x)+8)
   439   case CS_segment:
   440   case SS_segment:
   441   case DS_segment:
   442   case ES_segment:
   443   case FS_segment:
   444   case GS_segment:
   445     // Seems dubious
   446     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   447     assert(ip == inst+1, "only one prefix allowed");
   448     goto again_after_prefix;
   450   case 0x67:
   451   case REX:
   452   case REX_B:
   453   case REX_X:
   454   case REX_XB:
   455   case REX_R:
   456   case REX_RB:
   457   case REX_RX:
   458   case REX_RXB:
   459     NOT_LP64(assert(false, "64bit prefixes"));
   460     goto again_after_prefix;
   462   case REX_W:
   463   case REX_WB:
   464   case REX_WX:
   465   case REX_WXB:
   466   case REX_WR:
   467   case REX_WRB:
   468   case REX_WRX:
   469   case REX_WRXB:
   470     NOT_LP64(assert(false, "64bit prefixes"));
   471     is_64bit = true;
   472     goto again_after_prefix;
   474   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   475   case 0x88: // movb a, r
   476   case 0x89: // movl a, r
   477   case 0x8A: // movb r, a
   478   case 0x8B: // movl r, a
   479   case 0x8F: // popl a
   480     debug_only(has_disp32 = true);
   481     break;
   483   case 0x68: // pushq #32
   484     if (which == end_pc_operand) {
   485       return ip + 4;
   486     }
   487     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   488     return ip;                  // not produced by emit_operand
   490   case 0x66: // movw ... (size prefix)
   491     again_after_size_prefix2:
   492     switch (0xFF & *ip++) {
   493     case REX:
   494     case REX_B:
   495     case REX_X:
   496     case REX_XB:
   497     case REX_R:
   498     case REX_RB:
   499     case REX_RX:
   500     case REX_RXB:
   501     case REX_W:
   502     case REX_WB:
   503     case REX_WX:
   504     case REX_WXB:
   505     case REX_WR:
   506     case REX_WRB:
   507     case REX_WRX:
   508     case REX_WRXB:
   509       NOT_LP64(assert(false, "64bit prefix found"));
   510       goto again_after_size_prefix2;
   511     case 0x8B: // movw r, a
   512     case 0x89: // movw a, r
   513       debug_only(has_disp32 = true);
   514       break;
   515     case 0xC7: // movw a, #16
   516       debug_only(has_disp32 = true);
   517       tail_size = 2;  // the imm16
   518       break;
   519     case 0x0F: // several SSE/SSE2 variants
   520       ip--;    // reparse the 0x0F
   521       goto again_after_prefix;
   522     default:
   523       ShouldNotReachHere();
   524     }
   525     break;
   527   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   528     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   529     // these asserts are somewhat nonsensical
   530 #ifndef _LP64
   531     assert(which == imm_operand || which == disp32_operand,
   532            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   533 #else
   534     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   535            which == narrow_oop_operand && !is_64bit,
   536            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   537 #endif // _LP64
   538     return ip;
   540   case 0x69: // imul r, a, #32
   541   case 0xC7: // movl a, #32(oop?)
   542     tail_size = 4;
   543     debug_only(has_disp32 = true); // has both kinds of operands!
   544     break;
   546   case 0x0F: // movx..., etc.
   547     switch (0xFF & *ip++) {
   548     case 0x3A: // pcmpestri
   549       tail_size = 1;
   550     case 0x38: // ptest, pmovzxbw
   551       ip++; // skip opcode
   552       debug_only(has_disp32 = true); // has both kinds of operands!
   553       break;
   555     case 0x70: // pshufd r, r/a, #8
   556       debug_only(has_disp32 = true); // has both kinds of operands!
   557     case 0x73: // psrldq r, #8
   558       tail_size = 1;
   559       break;
   561     case 0x12: // movlps
   562     case 0x28: // movaps
   563     case 0x2E: // ucomiss
   564     case 0x2F: // comiss
   565     case 0x54: // andps
   566     case 0x55: // andnps
   567     case 0x56: // orps
   568     case 0x57: // xorps
   569     case 0x6E: // movd
   570     case 0x7E: // movd
   571     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   572       debug_only(has_disp32 = true);
   573       break;
   575     case 0xAD: // shrd r, a, %cl
   576     case 0xAF: // imul r, a
   577     case 0xBE: // movsbl r, a (movsxb)
   578     case 0xBF: // movswl r, a (movsxw)
   579     case 0xB6: // movzbl r, a (movzxb)
   580     case 0xB7: // movzwl r, a (movzxw)
   581     case REP16(0x40): // cmovl cc, r, a
   582     case 0xB0: // cmpxchgb
   583     case 0xB1: // cmpxchg
   584     case 0xC1: // xaddl
   585     case 0xC7: // cmpxchg8
   586     case REP16(0x90): // setcc a
   587       debug_only(has_disp32 = true);
   588       // fall out of the switch to decode the address
   589       break;
   591     case 0xC4: // pinsrw r, a, #8
   592       debug_only(has_disp32 = true);
   593     case 0xC5: // pextrw r, r, #8
   594       tail_size = 1;  // the imm8
   595       break;
   597     case 0xAC: // shrd r, a, #8
   598       debug_only(has_disp32 = true);
   599       tail_size = 1;  // the imm8
   600       break;
   602     case REP16(0x80): // jcc rdisp32
   603       if (which == end_pc_operand)  return ip + 4;
   604       assert(which == call32_operand, "jcc has no disp32 or imm");
   605       return ip;
   606     default:
   607       ShouldNotReachHere();
   608     }
   609     break;
   611   case 0x81: // addl a, #32; addl r, #32
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     // on 32bit in the case of cmpl, the imm might be an oop
   614     tail_size = 4;
   615     debug_only(has_disp32 = true); // has both kinds of operands!
   616     break;
   618   case 0x83: // addl a, #8; addl r, #8
   619     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   620     debug_only(has_disp32 = true); // has both kinds of operands!
   621     tail_size = 1;
   622     break;
   624   case 0x9B:
   625     switch (0xFF & *ip++) {
   626     case 0xD9: // fnstcw a
   627       debug_only(has_disp32 = true);
   628       break;
   629     default:
   630       ShouldNotReachHere();
   631     }
   632     break;
   634   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   635   case REP4(0x10): // adc...
   636   case REP4(0x20): // and...
   637   case REP4(0x30): // xor...
   638   case REP4(0x08): // or...
   639   case REP4(0x18): // sbb...
   640   case REP4(0x28): // sub...
   641   case 0xF7: // mull a
   642   case 0x8D: // lea r, a
   643   case 0x87: // xchg r, a
   644   case REP4(0x38): // cmp...
   645   case 0x85: // test r, a
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     break;
   649   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   650   case 0xC6: // movb a, #8
   651   case 0x80: // cmpb a, #8
   652   case 0x6B: // imul r, a, #8
   653     debug_only(has_disp32 = true); // has both kinds of operands!
   654     tail_size = 1; // the imm8
   655     break;
   657   case 0xC4: // VEX_3bytes
   658   case 0xC5: // VEX_2bytes
   659     assert((UseAVX > 0), "shouldn't have VEX prefix");
   660     assert(ip == inst+1, "no prefixes allowed");
   661     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   662     // but they have prefix 0x0F and processed when 0x0F processed above.
   663     //
   664     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   665     // instructions (these instructions are not supported in 64-bit mode).
   666     // To distinguish them bits [7:6] are set in the VEX second byte since
   667     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   668     // those VEX bits REX and vvvv bits are inverted.
   669     //
   670     // Fortunately C2 doesn't generate these instructions so we don't need
   671     // to check for them in product version.
   673     // Check second byte
   674     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   676     // First byte
   677     if ((0xFF & *inst) == VEX_3bytes) {
   678       ip++; // third byte
   679       is_64bit = ((VEX_W & *ip) == VEX_W);
   680     }
   681     ip++; // opcode
   682     // To find the end of instruction (which == end_pc_operand).
   683     switch (0xFF & *ip) {
   684     case 0x61: // pcmpestri r, r/a, #8
   685     case 0x70: // pshufd r, r/a, #8
   686     case 0x73: // psrldq r, #8
   687       tail_size = 1;  // the imm8
   688       break;
   689     default:
   690       break;
   691     }
   692     ip++; // skip opcode
   693     debug_only(has_disp32 = true); // has both kinds of operands!
   694     break;
   696   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   697   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   698   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   699   case 0xDD: // fld_d a; fst_d a; fstp_d a
   700   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   701   case 0xDF: // fild_d a; fistp_d a
   702   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   703   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   704   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   705     debug_only(has_disp32 = true);
   706     break;
   708   case 0xE8: // call rdisp32
   709   case 0xE9: // jmp  rdisp32
   710     if (which == end_pc_operand)  return ip + 4;
   711     assert(which == call32_operand, "call has no disp32 or imm");
   712     return ip;
   714   case 0xF0:                    // Lock
   715     assert(os::is_MP(), "only on MP");
   716     goto again_after_prefix;
   718   case 0xF3:                    // For SSE
   719   case 0xF2:                    // For SSE2
   720     switch (0xFF & *ip++) {
   721     case REX:
   722     case REX_B:
   723     case REX_X:
   724     case REX_XB:
   725     case REX_R:
   726     case REX_RB:
   727     case REX_RX:
   728     case REX_RXB:
   729     case REX_W:
   730     case REX_WB:
   731     case REX_WX:
   732     case REX_WXB:
   733     case REX_WR:
   734     case REX_WRB:
   735     case REX_WRX:
   736     case REX_WRXB:
   737       NOT_LP64(assert(false, "found 64bit prefix"));
   738       ip++;
   739     default:
   740       ip++;
   741     }
   742     debug_only(has_disp32 = true); // has both kinds of operands!
   743     break;
   745   default:
   746     ShouldNotReachHere();
   748 #undef REP8
   749 #undef REP16
   750   }
   752   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   753 #ifdef _LP64
   754   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   755 #else
   756   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   757   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   758 #endif // LP64
   759   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   761   // parse the output of emit_operand
   762   int op2 = 0xFF & *ip++;
   763   int base = op2 & 0x07;
   764   int op3 = -1;
   765   const int b100 = 4;
   766   const int b101 = 5;
   767   if (base == b100 && (op2 >> 6) != 3) {
   768     op3 = 0xFF & *ip++;
   769     base = op3 & 0x07;   // refetch the base
   770   }
   771   // now ip points at the disp (if any)
   773   switch (op2 >> 6) {
   774   case 0:
   775     // [00 reg  100][ss index base]
   776     // [00 reg  100][00   100  esp]
   777     // [00 reg base]
   778     // [00 reg  100][ss index  101][disp32]
   779     // [00 reg  101]               [disp32]
   781     if (base == b101) {
   782       if (which == disp32_operand)
   783         return ip;              // caller wants the disp32
   784       ip += 4;                  // skip the disp32
   785     }
   786     break;
   788   case 1:
   789     // [01 reg  100][ss index base][disp8]
   790     // [01 reg  100][00   100  esp][disp8]
   791     // [01 reg base]               [disp8]
   792     ip += 1;                    // skip the disp8
   793     break;
   795   case 2:
   796     // [10 reg  100][ss index base][disp32]
   797     // [10 reg  100][00   100  esp][disp32]
   798     // [10 reg base]               [disp32]
   799     if (which == disp32_operand)
   800       return ip;                // caller wants the disp32
   801     ip += 4;                    // skip the disp32
   802     break;
   804   case 3:
   805     // [11 reg base]  (not a memory addressing mode)
   806     break;
   807   }
   809   if (which == end_pc_operand) {
   810     return ip + tail_size;
   811   }
   813 #ifdef _LP64
   814   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   815 #else
   816   assert(which == imm_operand, "instruction has only an imm field");
   817 #endif // LP64
   818   return ip;
   819 }
   821 address Assembler::locate_next_instruction(address inst) {
   822   // Secretly share code with locate_operand:
   823   return locate_operand(inst, end_pc_operand);
   824 }
   827 #ifdef ASSERT
   828 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   829   address inst = inst_mark();
   830   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   831   address opnd;
   833   Relocation* r = rspec.reloc();
   834   if (r->type() == relocInfo::none) {
   835     return;
   836   } else if (r->is_call() || format == call32_operand) {
   837     // assert(format == imm32_operand, "cannot specify a nonzero format");
   838     opnd = locate_operand(inst, call32_operand);
   839   } else if (r->is_data()) {
   840     assert(format == imm_operand || format == disp32_operand
   841            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   842     opnd = locate_operand(inst, (WhichOperand)format);
   843   } else {
   844     assert(format == imm_operand, "cannot specify a format");
   845     return;
   846   }
   847   assert(opnd == pc(), "must put operand where relocs can find it");
   848 }
   849 #endif // ASSERT
   851 void Assembler::emit_operand32(Register reg, Address adr) {
   852   assert(reg->encoding() < 8, "no extended registers");
   853   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   855                adr._rspec);
   856 }
   858 void Assembler::emit_operand(Register reg, Address adr,
   859                              int rip_relative_correction) {
   860   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   861                adr._rspec,
   862                rip_relative_correction);
   863 }
   865 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   866   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   867                adr._rspec);
   868 }
   870 // MMX operations
   871 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   872   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   873   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   874 }
   876 // work around gcc (3.2.1-7a) bug
   877 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   878   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   879   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   880 }
   883 void Assembler::emit_farith(int b1, int b2, int i) {
   884   assert(isByte(b1) && isByte(b2), "wrong opcode");
   885   assert(0 <= i &&  i < 8, "illegal stack offset");
   886   emit_int8(b1);
   887   emit_int8(b2 + i);
   888 }
   891 // Now the Assembler instructions (identical for 32/64 bits)
   893 void Assembler::adcl(Address dst, int32_t imm32) {
   894   InstructionMark im(this);
   895   prefix(dst);
   896   emit_arith_operand(0x81, rdx, dst, imm32);
   897 }
   899 void Assembler::adcl(Address dst, Register src) {
   900   InstructionMark im(this);
   901   prefix(dst, src);
   902   emit_int8(0x11);
   903   emit_operand(src, dst);
   904 }
   906 void Assembler::adcl(Register dst, int32_t imm32) {
   907   prefix(dst);
   908   emit_arith(0x81, 0xD0, dst, imm32);
   909 }
   911 void Assembler::adcl(Register dst, Address src) {
   912   InstructionMark im(this);
   913   prefix(src, dst);
   914   emit_int8(0x13);
   915   emit_operand(dst, src);
   916 }
   918 void Assembler::adcl(Register dst, Register src) {
   919   (void) prefix_and_encode(dst->encoding(), src->encoding());
   920   emit_arith(0x13, 0xC0, dst, src);
   921 }
   923 void Assembler::addl(Address dst, int32_t imm32) {
   924   InstructionMark im(this);
   925   prefix(dst);
   926   emit_arith_operand(0x81, rax, dst, imm32);
   927 }
   929 void Assembler::addl(Address dst, Register src) {
   930   InstructionMark im(this);
   931   prefix(dst, src);
   932   emit_int8(0x01);
   933   emit_operand(src, dst);
   934 }
   936 void Assembler::addl(Register dst, int32_t imm32) {
   937   prefix(dst);
   938   emit_arith(0x81, 0xC0, dst, imm32);
   939 }
   941 void Assembler::addl(Register dst, Address src) {
   942   InstructionMark im(this);
   943   prefix(src, dst);
   944   emit_int8(0x03);
   945   emit_operand(dst, src);
   946 }
   948 void Assembler::addl(Register dst, Register src) {
   949   (void) prefix_and_encode(dst->encoding(), src->encoding());
   950   emit_arith(0x03, 0xC0, dst, src);
   951 }
   953 void Assembler::addr_nop_4() {
   954   assert(UseAddressNop, "no CPU support");
   955   // 4 bytes: NOP DWORD PTR [EAX+0]
   956   emit_int8(0x0F);
   957   emit_int8(0x1F);
   958   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   959   emit_int8(0);    // 8-bits offset (1 byte)
   960 }
   962 void Assembler::addr_nop_5() {
   963   assert(UseAddressNop, "no CPU support");
   964   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   965   emit_int8(0x0F);
   966   emit_int8(0x1F);
   967   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   968   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   969   emit_int8(0);    // 8-bits offset (1 byte)
   970 }
   972 void Assembler::addr_nop_7() {
   973   assert(UseAddressNop, "no CPU support");
   974   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   975   emit_int8(0x0F);
   976   emit_int8(0x1F);
   977   emit_int8((unsigned char)0x80);
   978                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   979   emit_int32(0);   // 32-bits offset (4 bytes)
   980 }
   982 void Assembler::addr_nop_8() {
   983   assert(UseAddressNop, "no CPU support");
   984   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   985   emit_int8(0x0F);
   986   emit_int8(0x1F);
   987   emit_int8((unsigned char)0x84);
   988                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   989   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   990   emit_int32(0);   // 32-bits offset (4 bytes)
   991 }
   993 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   994   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   995   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   996 }
   998 void Assembler::addsd(XMMRegister dst, Address src) {
   999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1000   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
  1003 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1005   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1008 void Assembler::addss(XMMRegister dst, Address src) {
  1009   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1010   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1013 void Assembler::aesdec(XMMRegister dst, Address src) {
  1014   assert(VM_Version::supports_aes(), "");
  1015   InstructionMark im(this);
  1016   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1017   emit_int8((unsigned char)0xDE);
  1018   emit_operand(dst, src);
  1021 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1022   assert(VM_Version::supports_aes(), "");
  1023   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1024   emit_int8((unsigned char)0xDE);
  1025   emit_int8(0xC0 | encode);
  1028 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1029   assert(VM_Version::supports_aes(), "");
  1030   InstructionMark im(this);
  1031   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1032   emit_int8((unsigned char)0xDF);
  1033   emit_operand(dst, src);
  1036 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1037   assert(VM_Version::supports_aes(), "");
  1038   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1039   emit_int8((unsigned char)0xDF);
  1040   emit_int8((unsigned char)(0xC0 | encode));
  1043 void Assembler::aesenc(XMMRegister dst, Address src) {
  1044   assert(VM_Version::supports_aes(), "");
  1045   InstructionMark im(this);
  1046   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1047   emit_int8((unsigned char)0xDC);
  1048   emit_operand(dst, src);
  1051 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1052   assert(VM_Version::supports_aes(), "");
  1053   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1054   emit_int8((unsigned char)0xDC);
  1055   emit_int8(0xC0 | encode);
  1058 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1059   assert(VM_Version::supports_aes(), "");
  1060   InstructionMark im(this);
  1061   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1062   emit_int8((unsigned char)0xDD);
  1063   emit_operand(dst, src);
  1066 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1067   assert(VM_Version::supports_aes(), "");
  1068   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1069   emit_int8((unsigned char)0xDD);
  1070   emit_int8((unsigned char)(0xC0 | encode));
  1074 void Assembler::andl(Address dst, int32_t imm32) {
  1075   InstructionMark im(this);
  1076   prefix(dst);
  1077   emit_int8((unsigned char)0x81);
  1078   emit_operand(rsp, dst, 4);
  1079   emit_int32(imm32);
  1082 void Assembler::andl(Register dst, int32_t imm32) {
  1083   prefix(dst);
  1084   emit_arith(0x81, 0xE0, dst, imm32);
  1087 void Assembler::andl(Register dst, Address src) {
  1088   InstructionMark im(this);
  1089   prefix(src, dst);
  1090   emit_int8(0x23);
  1091   emit_operand(dst, src);
  1094 void Assembler::andl(Register dst, Register src) {
  1095   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1096   emit_arith(0x23, 0xC0, dst, src);
  1099 void Assembler::bsfl(Register dst, Register src) {
  1100   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1101   emit_int8(0x0F);
  1102   emit_int8((unsigned char)0xBC);
  1103   emit_int8((unsigned char)(0xC0 | encode));
  1106 void Assembler::bsrl(Register dst, Register src) {
  1107   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1109   emit_int8(0x0F);
  1110   emit_int8((unsigned char)0xBD);
  1111   emit_int8((unsigned char)(0xC0 | encode));
  1114 void Assembler::bswapl(Register reg) { // bswap
  1115   int encode = prefix_and_encode(reg->encoding());
  1116   emit_int8(0x0F);
  1117   emit_int8((unsigned char)(0xC8 | encode));
  1120 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1121   // suspect disp32 is always good
  1122   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1124   if (L.is_bound()) {
  1125     const int long_size = 5;
  1126     int offs = (int)( target(L) - pc() );
  1127     assert(offs <= 0, "assembler error");
  1128     InstructionMark im(this);
  1129     // 1110 1000 #32-bit disp
  1130     emit_int8((unsigned char)0xE8);
  1131     emit_data(offs - long_size, rtype, operand);
  1132   } else {
  1133     InstructionMark im(this);
  1134     // 1110 1000 #32-bit disp
  1135     L.add_patch_at(code(), locator());
  1137     emit_int8((unsigned char)0xE8);
  1138     emit_data(int(0), rtype, operand);
  1142 void Assembler::call(Register dst) {
  1143   int encode = prefix_and_encode(dst->encoding());
  1144   emit_int8((unsigned char)0xFF);
  1145   emit_int8((unsigned char)(0xD0 | encode));
  1149 void Assembler::call(Address adr) {
  1150   InstructionMark im(this);
  1151   prefix(adr);
  1152   emit_int8((unsigned char)0xFF);
  1153   emit_operand(rdx, adr);
  1156 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1157   assert(entry != NULL, "call most probably wrong");
  1158   InstructionMark im(this);
  1159   emit_int8((unsigned char)0xE8);
  1160   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1161   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1162   // Technically, should use call32_operand, but this format is
  1163   // implied by the fact that we're emitting a call instruction.
  1165   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1166   emit_data((int) disp, rspec, operand);
  1169 void Assembler::cdql() {
  1170   emit_int8((unsigned char)0x99);
  1173 void Assembler::cld() {
  1174   emit_int8((unsigned char)0xFC);
  1177 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1178   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1179   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1180   emit_int8(0x0F);
  1181   emit_int8(0x40 | cc);
  1182   emit_int8((unsigned char)(0xC0 | encode));
  1186 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1187   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1188   prefix(src, dst);
  1189   emit_int8(0x0F);
  1190   emit_int8(0x40 | cc);
  1191   emit_operand(dst, src);
  1194 void Assembler::cmpb(Address dst, int imm8) {
  1195   InstructionMark im(this);
  1196   prefix(dst);
  1197   emit_int8((unsigned char)0x80);
  1198   emit_operand(rdi, dst, 1);
  1199   emit_int8(imm8);
  1202 void Assembler::cmpl(Address dst, int32_t imm32) {
  1203   InstructionMark im(this);
  1204   prefix(dst);
  1205   emit_int8((unsigned char)0x81);
  1206   emit_operand(rdi, dst, 4);
  1207   emit_int32(imm32);
  1210 void Assembler::cmpl(Register dst, int32_t imm32) {
  1211   prefix(dst);
  1212   emit_arith(0x81, 0xF8, dst, imm32);
  1215 void Assembler::cmpl(Register dst, Register src) {
  1216   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1217   emit_arith(0x3B, 0xC0, dst, src);
  1221 void Assembler::cmpl(Register dst, Address  src) {
  1222   InstructionMark im(this);
  1223   prefix(src, dst);
  1224   emit_int8((unsigned char)0x3B);
  1225   emit_operand(dst, src);
  1228 void Assembler::cmpw(Address dst, int imm16) {
  1229   InstructionMark im(this);
  1230   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1231   emit_int8(0x66);
  1232   emit_int8((unsigned char)0x81);
  1233   emit_operand(rdi, dst, 2);
  1234   emit_int16(imm16);
  1237 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1238 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1239 // The ZF is set if the compared values were equal, and cleared otherwise.
  1240 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1241   InstructionMark im(this);
  1242   prefix(adr, reg);
  1243   emit_int8(0x0F);
  1244   emit_int8((unsigned char)0xB1);
  1245   emit_operand(reg, adr);
  1248 void Assembler::comisd(XMMRegister dst, Address src) {
  1249   // NOTE: dbx seems to decode this as comiss even though the
  1250   // 0x66 is there. Strangly ucomisd comes out correct
  1251   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1252   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1255 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1257   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1260 void Assembler::comiss(XMMRegister dst, Address src) {
  1261   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1262   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1265 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1266   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1267   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1270 void Assembler::cpuid() {
  1271   emit_int8(0x0F);
  1272   emit_int8((unsigned char)0xA2);
  1275 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1277   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1280 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1282   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1285 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1287   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1290 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1291   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1292   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1295 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1297   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1298   emit_int8(0x2A);
  1299   emit_int8((unsigned char)(0xC0 | encode));
  1302 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1304   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1307 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1308   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1309   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1310   emit_int8(0x2A);
  1311   emit_int8((unsigned char)(0xC0 | encode));
  1314 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1315   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1316   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1319 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1321   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1324 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1325   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1326   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1330 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1331   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1332   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1333   emit_int8(0x2C);
  1334   emit_int8((unsigned char)(0xC0 | encode));
  1337 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1338   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1339   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1340   emit_int8(0x2C);
  1341   emit_int8((unsigned char)(0xC0 | encode));
  1344 void Assembler::decl(Address dst) {
  1345   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1346   InstructionMark im(this);
  1347   prefix(dst);
  1348   emit_int8((unsigned char)0xFF);
  1349   emit_operand(rcx, dst);
  1352 void Assembler::divsd(XMMRegister dst, Address src) {
  1353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1354   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1357 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1359   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1362 void Assembler::divss(XMMRegister dst, Address src) {
  1363   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1364   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1367 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1368   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1369   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1372 void Assembler::emms() {
  1373   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1374   emit_int8(0x0F);
  1375   emit_int8(0x77);
  1378 void Assembler::hlt() {
  1379   emit_int8((unsigned char)0xF4);
  1382 void Assembler::idivl(Register src) {
  1383   int encode = prefix_and_encode(src->encoding());
  1384   emit_int8((unsigned char)0xF7);
  1385   emit_int8((unsigned char)(0xF8 | encode));
  1388 void Assembler::divl(Register src) { // Unsigned
  1389   int encode = prefix_and_encode(src->encoding());
  1390   emit_int8((unsigned char)0xF7);
  1391   emit_int8((unsigned char)(0xF0 | encode));
  1394 void Assembler::imull(Register dst, Register src) {
  1395   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1396   emit_int8(0x0F);
  1397   emit_int8((unsigned char)0xAF);
  1398   emit_int8((unsigned char)(0xC0 | encode));
  1402 void Assembler::imull(Register dst, Register src, int value) {
  1403   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1404   if (is8bit(value)) {
  1405     emit_int8(0x6B);
  1406     emit_int8((unsigned char)(0xC0 | encode));
  1407     emit_int8(value & 0xFF);
  1408   } else {
  1409     emit_int8(0x69);
  1410     emit_int8((unsigned char)(0xC0 | encode));
  1411     emit_int32(value);
  1415 void Assembler::incl(Address dst) {
  1416   // Don't use it directly. Use MacroAssembler::increment() instead.
  1417   InstructionMark im(this);
  1418   prefix(dst);
  1419   emit_int8((unsigned char)0xFF);
  1420   emit_operand(rax, dst);
  1423 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1424   InstructionMark im(this);
  1425   assert((0 <= cc) && (cc < 16), "illegal cc");
  1426   if (L.is_bound()) {
  1427     address dst = target(L);
  1428     assert(dst != NULL, "jcc most probably wrong");
  1430     const int short_size = 2;
  1431     const int long_size = 6;
  1432     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1433     if (maybe_short && is8bit(offs - short_size)) {
  1434       // 0111 tttn #8-bit disp
  1435       emit_int8(0x70 | cc);
  1436       emit_int8((offs - short_size) & 0xFF);
  1437     } else {
  1438       // 0000 1111 1000 tttn #32-bit disp
  1439       assert(is_simm32(offs - long_size),
  1440              "must be 32bit offset (call4)");
  1441       emit_int8(0x0F);
  1442       emit_int8((unsigned char)(0x80 | cc));
  1443       emit_int32(offs - long_size);
  1445   } else {
  1446     // Note: could eliminate cond. jumps to this jump if condition
  1447     //       is the same however, seems to be rather unlikely case.
  1448     // Note: use jccb() if label to be bound is very close to get
  1449     //       an 8-bit displacement
  1450     L.add_patch_at(code(), locator());
  1451     emit_int8(0x0F);
  1452     emit_int8((unsigned char)(0x80 | cc));
  1453     emit_int32(0);
  1457 void Assembler::jccb(Condition cc, Label& L) {
  1458   if (L.is_bound()) {
  1459     const int short_size = 2;
  1460     address entry = target(L);
  1461 #ifdef ASSERT
  1462     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1463     intptr_t delta = short_branch_delta();
  1464     if (delta != 0) {
  1465       dist += (dist < 0 ? (-delta) :delta);
  1467     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1468 #endif
  1469     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1470     // 0111 tttn #8-bit disp
  1471     emit_int8(0x70 | cc);
  1472     emit_int8((offs - short_size) & 0xFF);
  1473   } else {
  1474     InstructionMark im(this);
  1475     L.add_patch_at(code(), locator());
  1476     emit_int8(0x70 | cc);
  1477     emit_int8(0);
  1481 void Assembler::jmp(Address adr) {
  1482   InstructionMark im(this);
  1483   prefix(adr);
  1484   emit_int8((unsigned char)0xFF);
  1485   emit_operand(rsp, adr);
  1488 void Assembler::jmp(Label& L, bool maybe_short) {
  1489   if (L.is_bound()) {
  1490     address entry = target(L);
  1491     assert(entry != NULL, "jmp most probably wrong");
  1492     InstructionMark im(this);
  1493     const int short_size = 2;
  1494     const int long_size = 5;
  1495     intptr_t offs = entry - pc();
  1496     if (maybe_short && is8bit(offs - short_size)) {
  1497       emit_int8((unsigned char)0xEB);
  1498       emit_int8((offs - short_size) & 0xFF);
  1499     } else {
  1500       emit_int8((unsigned char)0xE9);
  1501       emit_int32(offs - long_size);
  1503   } else {
  1504     // By default, forward jumps are always 32-bit displacements, since
  1505     // we can't yet know where the label will be bound.  If you're sure that
  1506     // the forward jump will not run beyond 256 bytes, use jmpb to
  1507     // force an 8-bit displacement.
  1508     InstructionMark im(this);
  1509     L.add_patch_at(code(), locator());
  1510     emit_int8((unsigned char)0xE9);
  1511     emit_int32(0);
  1515 void Assembler::jmp(Register entry) {
  1516   int encode = prefix_and_encode(entry->encoding());
  1517   emit_int8((unsigned char)0xFF);
  1518   emit_int8((unsigned char)(0xE0 | encode));
  1521 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1522   InstructionMark im(this);
  1523   emit_int8((unsigned char)0xE9);
  1524   assert(dest != NULL, "must have a target");
  1525   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1526   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1527   emit_data(disp, rspec.reloc(), call32_operand);
  1530 void Assembler::jmpb(Label& L) {
  1531   if (L.is_bound()) {
  1532     const int short_size = 2;
  1533     address entry = target(L);
  1534     assert(entry != NULL, "jmp most probably wrong");
  1535 #ifdef ASSERT
  1536     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1537     intptr_t delta = short_branch_delta();
  1538     if (delta != 0) {
  1539       dist += (dist < 0 ? (-delta) :delta);
  1541     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1542 #endif
  1543     intptr_t offs = entry - pc();
  1544     emit_int8((unsigned char)0xEB);
  1545     emit_int8((offs - short_size) & 0xFF);
  1546   } else {
  1547     InstructionMark im(this);
  1548     L.add_patch_at(code(), locator());
  1549     emit_int8((unsigned char)0xEB);
  1550     emit_int8(0);
  1554 void Assembler::ldmxcsr( Address src) {
  1555   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1556   InstructionMark im(this);
  1557   prefix(src);
  1558   emit_int8(0x0F);
  1559   emit_int8((unsigned char)0xAE);
  1560   emit_operand(as_Register(2), src);
  1563 void Assembler::leal(Register dst, Address src) {
  1564   InstructionMark im(this);
  1565 #ifdef _LP64
  1566   emit_int8(0x67); // addr32
  1567   prefix(src, dst);
  1568 #endif // LP64
  1569   emit_int8((unsigned char)0x8D);
  1570   emit_operand(dst, src);
  1573 void Assembler::lfence() {
  1574   emit_int8(0x0F);
  1575   emit_int8((unsigned char)0xAE);
  1576   emit_int8((unsigned char)0xE8);
  1579 void Assembler::lock() {
  1580   emit_int8((unsigned char)0xF0);
  1583 void Assembler::lzcntl(Register dst, Register src) {
  1584   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1585   emit_int8((unsigned char)0xF3);
  1586   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1587   emit_int8(0x0F);
  1588   emit_int8((unsigned char)0xBD);
  1589   emit_int8((unsigned char)(0xC0 | encode));
  1592 // Emit mfence instruction
  1593 void Assembler::mfence() {
  1594   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1595   emit_int8(0x0F);
  1596   emit_int8((unsigned char)0xAE);
  1597   emit_int8((unsigned char)0xF0);
  1600 void Assembler::mov(Register dst, Register src) {
  1601   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1604 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1605   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1606   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1609 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1610   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1611   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1614 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1615   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1616   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1617   emit_int8(0x16);
  1618   emit_int8((unsigned char)(0xC0 | encode));
  1621 void Assembler::movb(Register dst, Address src) {
  1622   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1623   InstructionMark im(this);
  1624   prefix(src, dst, true);
  1625   emit_int8((unsigned char)0x8A);
  1626   emit_operand(dst, src);
  1630 void Assembler::movb(Address dst, int imm8) {
  1631   InstructionMark im(this);
  1632    prefix(dst);
  1633   emit_int8((unsigned char)0xC6);
  1634   emit_operand(rax, dst, 1);
  1635   emit_int8(imm8);
  1639 void Assembler::movb(Address dst, Register src) {
  1640   assert(src->has_byte_register(), "must have byte register");
  1641   InstructionMark im(this);
  1642   prefix(dst, src, true);
  1643   emit_int8((unsigned char)0x88);
  1644   emit_operand(src, dst);
  1647 void Assembler::movdl(XMMRegister dst, Register src) {
  1648   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1649   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1650   emit_int8(0x6E);
  1651   emit_int8((unsigned char)(0xC0 | encode));
  1654 void Assembler::movdl(Register dst, XMMRegister src) {
  1655   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1656   // swap src/dst to get correct prefix
  1657   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1658   emit_int8(0x7E);
  1659   emit_int8((unsigned char)(0xC0 | encode));
  1662 void Assembler::movdl(XMMRegister dst, Address src) {
  1663   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1664   InstructionMark im(this);
  1665   simd_prefix(dst, src, VEX_SIMD_66);
  1666   emit_int8(0x6E);
  1667   emit_operand(dst, src);
  1670 void Assembler::movdl(Address dst, XMMRegister src) {
  1671   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1672   InstructionMark im(this);
  1673   simd_prefix(dst, src, VEX_SIMD_66);
  1674   emit_int8(0x7E);
  1675   emit_operand(src, dst);
  1678 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1679   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1680   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1683 void Assembler::movdqu(XMMRegister dst, Address src) {
  1684   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1685   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1688 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1690   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1693 void Assembler::movdqu(Address dst, XMMRegister src) {
  1694   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1695   InstructionMark im(this);
  1696   simd_prefix(dst, src, VEX_SIMD_F3);
  1697   emit_int8(0x7F);
  1698   emit_operand(src, dst);
  1701 // Move Unaligned 256bit Vector
  1702 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1703   assert(UseAVX, "");
  1704   bool vector256 = true;
  1705   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1706   emit_int8(0x6F);
  1707   emit_int8((unsigned char)(0xC0 | encode));
  1710 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1711   assert(UseAVX, "");
  1712   InstructionMark im(this);
  1713   bool vector256 = true;
  1714   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1715   emit_int8(0x6F);
  1716   emit_operand(dst, src);
  1719 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1720   assert(UseAVX, "");
  1721   InstructionMark im(this);
  1722   bool vector256 = true;
  1723   // swap src<->dst for encoding
  1724   assert(src != xnoreg, "sanity");
  1725   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1726   emit_int8(0x7F);
  1727   emit_operand(src, dst);
  1730 // Uses zero extension on 64bit
  1732 void Assembler::movl(Register dst, int32_t imm32) {
  1733   int encode = prefix_and_encode(dst->encoding());
  1734   emit_int8((unsigned char)(0xB8 | encode));
  1735   emit_int32(imm32);
  1738 void Assembler::movl(Register dst, Register src) {
  1739   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1740   emit_int8((unsigned char)0x8B);
  1741   emit_int8((unsigned char)(0xC0 | encode));
  1744 void Assembler::movl(Register dst, Address src) {
  1745   InstructionMark im(this);
  1746   prefix(src, dst);
  1747   emit_int8((unsigned char)0x8B);
  1748   emit_operand(dst, src);
  1751 void Assembler::movl(Address dst, int32_t imm32) {
  1752   InstructionMark im(this);
  1753   prefix(dst);
  1754   emit_int8((unsigned char)0xC7);
  1755   emit_operand(rax, dst, 4);
  1756   emit_int32(imm32);
  1759 void Assembler::movl(Address dst, Register src) {
  1760   InstructionMark im(this);
  1761   prefix(dst, src);
  1762   emit_int8((unsigned char)0x89);
  1763   emit_operand(src, dst);
  1766 // New cpus require to use movsd and movss to avoid partial register stall
  1767 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1768 // The selection is done in MacroAssembler::movdbl() and movflt().
  1769 void Assembler::movlpd(XMMRegister dst, Address src) {
  1770   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1771   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1774 void Assembler::movq( MMXRegister dst, Address src ) {
  1775   assert( VM_Version::supports_mmx(), "" );
  1776   emit_int8(0x0F);
  1777   emit_int8(0x6F);
  1778   emit_operand(dst, src);
  1781 void Assembler::movq( Address dst, MMXRegister src ) {
  1782   assert( VM_Version::supports_mmx(), "" );
  1783   emit_int8(0x0F);
  1784   emit_int8(0x7F);
  1785   // workaround gcc (3.2.1-7a) bug
  1786   // In that version of gcc with only an emit_operand(MMX, Address)
  1787   // gcc will tail jump and try and reverse the parameters completely
  1788   // obliterating dst in the process. By having a version available
  1789   // that doesn't need to swap the args at the tail jump the bug is
  1790   // avoided.
  1791   emit_operand(dst, src);
  1794 void Assembler::movq(XMMRegister dst, Address src) {
  1795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1796   InstructionMark im(this);
  1797   simd_prefix(dst, src, VEX_SIMD_F3);
  1798   emit_int8(0x7E);
  1799   emit_operand(dst, src);
  1802 void Assembler::movq(Address dst, XMMRegister src) {
  1803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1804   InstructionMark im(this);
  1805   simd_prefix(dst, src, VEX_SIMD_66);
  1806   emit_int8((unsigned char)0xD6);
  1807   emit_operand(src, dst);
  1810 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1811   InstructionMark im(this);
  1812   prefix(src, dst);
  1813   emit_int8(0x0F);
  1814   emit_int8((unsigned char)0xBE);
  1815   emit_operand(dst, src);
  1818 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1819   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1820   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1821   emit_int8(0x0F);
  1822   emit_int8((unsigned char)0xBE);
  1823   emit_int8((unsigned char)(0xC0 | encode));
  1826 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1828   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1831 void Assembler::movsd(XMMRegister dst, Address src) {
  1832   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1833   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1836 void Assembler::movsd(Address dst, XMMRegister src) {
  1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1838   InstructionMark im(this);
  1839   simd_prefix(dst, src, VEX_SIMD_F2);
  1840   emit_int8(0x11);
  1841   emit_operand(src, dst);
  1844 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1845   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1846   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1849 void Assembler::movss(XMMRegister dst, Address src) {
  1850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1851   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1854 void Assembler::movss(Address dst, XMMRegister src) {
  1855   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1856   InstructionMark im(this);
  1857   simd_prefix(dst, src, VEX_SIMD_F3);
  1858   emit_int8(0x11);
  1859   emit_operand(src, dst);
  1862 void Assembler::movswl(Register dst, Address src) { // movsxw
  1863   InstructionMark im(this);
  1864   prefix(src, dst);
  1865   emit_int8(0x0F);
  1866   emit_int8((unsigned char)0xBF);
  1867   emit_operand(dst, src);
  1870 void Assembler::movswl(Register dst, Register src) { // movsxw
  1871   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1872   emit_int8(0x0F);
  1873   emit_int8((unsigned char)0xBF);
  1874   emit_int8((unsigned char)(0xC0 | encode));
  1877 void Assembler::movw(Address dst, int imm16) {
  1878   InstructionMark im(this);
  1880   emit_int8(0x66); // switch to 16-bit mode
  1881   prefix(dst);
  1882   emit_int8((unsigned char)0xC7);
  1883   emit_operand(rax, dst, 2);
  1884   emit_int16(imm16);
  1887 void Assembler::movw(Register dst, Address src) {
  1888   InstructionMark im(this);
  1889   emit_int8(0x66);
  1890   prefix(src, dst);
  1891   emit_int8((unsigned char)0x8B);
  1892   emit_operand(dst, src);
  1895 void Assembler::movw(Address dst, Register src) {
  1896   InstructionMark im(this);
  1897   emit_int8(0x66);
  1898   prefix(dst, src);
  1899   emit_int8((unsigned char)0x89);
  1900   emit_operand(src, dst);
  1903 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1904   InstructionMark im(this);
  1905   prefix(src, dst);
  1906   emit_int8(0x0F);
  1907   emit_int8((unsigned char)0xB6);
  1908   emit_operand(dst, src);
  1911 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1912   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1913   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1914   emit_int8(0x0F);
  1915   emit_int8((unsigned char)0xB6);
  1916   emit_int8(0xC0 | encode);
  1919 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1920   InstructionMark im(this);
  1921   prefix(src, dst);
  1922   emit_int8(0x0F);
  1923   emit_int8((unsigned char)0xB7);
  1924   emit_operand(dst, src);
  1927 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1928   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1929   emit_int8(0x0F);
  1930   emit_int8((unsigned char)0xB7);
  1931   emit_int8(0xC0 | encode);
  1934 void Assembler::mull(Address src) {
  1935   InstructionMark im(this);
  1936   prefix(src);
  1937   emit_int8((unsigned char)0xF7);
  1938   emit_operand(rsp, src);
  1941 void Assembler::mull(Register src) {
  1942   int encode = prefix_and_encode(src->encoding());
  1943   emit_int8((unsigned char)0xF7);
  1944   emit_int8((unsigned char)(0xE0 | encode));
  1947 void Assembler::mulsd(XMMRegister dst, Address src) {
  1948   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1949   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1952 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1953   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1954   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1957 void Assembler::mulss(XMMRegister dst, Address src) {
  1958   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1959   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1962 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1963   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1964   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1967 void Assembler::negl(Register dst) {
  1968   int encode = prefix_and_encode(dst->encoding());
  1969   emit_int8((unsigned char)0xF7);
  1970   emit_int8((unsigned char)(0xD8 | encode));
  1973 void Assembler::nop(int i) {
  1974 #ifdef ASSERT
  1975   assert(i > 0, " ");
  1976   // The fancy nops aren't currently recognized by debuggers making it a
  1977   // pain to disassemble code while debugging. If asserts are on clearly
  1978   // speed is not an issue so simply use the single byte traditional nop
  1979   // to do alignment.
  1981   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
  1982   return;
  1984 #endif // ASSERT
  1986   if (UseAddressNop && VM_Version::is_intel()) {
  1987     //
  1988     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1989     //  1: 0x90
  1990     //  2: 0x66 0x90
  1991     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1992     //  4: 0x0F 0x1F 0x40 0x00
  1993     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1994     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1995     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1996     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1997     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1998     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1999     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2001     // The rest coding is Intel specific - don't use consecutive address nops
  2003     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2004     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2005     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2006     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2008     while(i >= 15) {
  2009       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2010       i -= 15;
  2011       emit_int8(0x66);   // size prefix
  2012       emit_int8(0x66);   // size prefix
  2013       emit_int8(0x66);   // size prefix
  2014       addr_nop_8();
  2015       emit_int8(0x66);   // size prefix
  2016       emit_int8(0x66);   // size prefix
  2017       emit_int8(0x66);   // size prefix
  2018       emit_int8((unsigned char)0x90);
  2019                          // nop
  2021     switch (i) {
  2022       case 14:
  2023         emit_int8(0x66); // size prefix
  2024       case 13:
  2025         emit_int8(0x66); // size prefix
  2026       case 12:
  2027         addr_nop_8();
  2028         emit_int8(0x66); // size prefix
  2029         emit_int8(0x66); // size prefix
  2030         emit_int8(0x66); // size prefix
  2031         emit_int8((unsigned char)0x90);
  2032                          // nop
  2033         break;
  2034       case 11:
  2035         emit_int8(0x66); // size prefix
  2036       case 10:
  2037         emit_int8(0x66); // size prefix
  2038       case 9:
  2039         emit_int8(0x66); // size prefix
  2040       case 8:
  2041         addr_nop_8();
  2042         break;
  2043       case 7:
  2044         addr_nop_7();
  2045         break;
  2046       case 6:
  2047         emit_int8(0x66); // size prefix
  2048       case 5:
  2049         addr_nop_5();
  2050         break;
  2051       case 4:
  2052         addr_nop_4();
  2053         break;
  2054       case 3:
  2055         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2056         emit_int8(0x66); // size prefix
  2057       case 2:
  2058         emit_int8(0x66); // size prefix
  2059       case 1:
  2060         emit_int8((unsigned char)0x90);
  2061                          // nop
  2062         break;
  2063       default:
  2064         assert(i == 0, " ");
  2066     return;
  2068   if (UseAddressNop && VM_Version::is_amd()) {
  2069     //
  2070     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2071     //  1: 0x90
  2072     //  2: 0x66 0x90
  2073     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2074     //  4: 0x0F 0x1F 0x40 0x00
  2075     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2076     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2077     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2078     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2079     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2080     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2081     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2083     // The rest coding is AMD specific - use consecutive address nops
  2085     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2086     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2087     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2088     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2089     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2090     //     Size prefixes (0x66) are added for larger sizes
  2092     while(i >= 22) {
  2093       i -= 11;
  2094       emit_int8(0x66); // size prefix
  2095       emit_int8(0x66); // size prefix
  2096       emit_int8(0x66); // size prefix
  2097       addr_nop_8();
  2099     // Generate first nop for size between 21-12
  2100     switch (i) {
  2101       case 21:
  2102         i -= 1;
  2103         emit_int8(0x66); // size prefix
  2104       case 20:
  2105       case 19:
  2106         i -= 1;
  2107         emit_int8(0x66); // size prefix
  2108       case 18:
  2109       case 17:
  2110         i -= 1;
  2111         emit_int8(0x66); // size prefix
  2112       case 16:
  2113       case 15:
  2114         i -= 8;
  2115         addr_nop_8();
  2116         break;
  2117       case 14:
  2118       case 13:
  2119         i -= 7;
  2120         addr_nop_7();
  2121         break;
  2122       case 12:
  2123         i -= 6;
  2124         emit_int8(0x66); // size prefix
  2125         addr_nop_5();
  2126         break;
  2127       default:
  2128         assert(i < 12, " ");
  2131     // Generate second nop for size between 11-1
  2132     switch (i) {
  2133       case 11:
  2134         emit_int8(0x66); // size prefix
  2135       case 10:
  2136         emit_int8(0x66); // size prefix
  2137       case 9:
  2138         emit_int8(0x66); // size prefix
  2139       case 8:
  2140         addr_nop_8();
  2141         break;
  2142       case 7:
  2143         addr_nop_7();
  2144         break;
  2145       case 6:
  2146         emit_int8(0x66); // size prefix
  2147       case 5:
  2148         addr_nop_5();
  2149         break;
  2150       case 4:
  2151         addr_nop_4();
  2152         break;
  2153       case 3:
  2154         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2155         emit_int8(0x66); // size prefix
  2156       case 2:
  2157         emit_int8(0x66); // size prefix
  2158       case 1:
  2159         emit_int8((unsigned char)0x90);
  2160                          // nop
  2161         break;
  2162       default:
  2163         assert(i == 0, " ");
  2165     return;
  2168   // Using nops with size prefixes "0x66 0x90".
  2169   // From AMD Optimization Guide:
  2170   //  1: 0x90
  2171   //  2: 0x66 0x90
  2172   //  3: 0x66 0x66 0x90
  2173   //  4: 0x66 0x66 0x66 0x90
  2174   //  5: 0x66 0x66 0x90 0x66 0x90
  2175   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2176   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2177   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2178   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2179   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2180   //
  2181   while(i > 12) {
  2182     i -= 4;
  2183     emit_int8(0x66); // size prefix
  2184     emit_int8(0x66);
  2185     emit_int8(0x66);
  2186     emit_int8((unsigned char)0x90);
  2187                      // nop
  2189   // 1 - 12 nops
  2190   if(i > 8) {
  2191     if(i > 9) {
  2192       i -= 1;
  2193       emit_int8(0x66);
  2195     i -= 3;
  2196     emit_int8(0x66);
  2197     emit_int8(0x66);
  2198     emit_int8((unsigned char)0x90);
  2200   // 1 - 8 nops
  2201   if(i > 4) {
  2202     if(i > 6) {
  2203       i -= 1;
  2204       emit_int8(0x66);
  2206     i -= 3;
  2207     emit_int8(0x66);
  2208     emit_int8(0x66);
  2209     emit_int8((unsigned char)0x90);
  2211   switch (i) {
  2212     case 4:
  2213       emit_int8(0x66);
  2214     case 3:
  2215       emit_int8(0x66);
  2216     case 2:
  2217       emit_int8(0x66);
  2218     case 1:
  2219       emit_int8((unsigned char)0x90);
  2220       break;
  2221     default:
  2222       assert(i == 0, " ");
  2226 void Assembler::notl(Register dst) {
  2227   int encode = prefix_and_encode(dst->encoding());
  2228   emit_int8((unsigned char)0xF7);
  2229   emit_int8((unsigned char)(0xD0 | encode));
  2232 void Assembler::orl(Address dst, int32_t imm32) {
  2233   InstructionMark im(this);
  2234   prefix(dst);
  2235   emit_arith_operand(0x81, rcx, dst, imm32);
  2238 void Assembler::orl(Register dst, int32_t imm32) {
  2239   prefix(dst);
  2240   emit_arith(0x81, 0xC8, dst, imm32);
  2243 void Assembler::orl(Register dst, Address src) {
  2244   InstructionMark im(this);
  2245   prefix(src, dst);
  2246   emit_int8(0x0B);
  2247   emit_operand(dst, src);
  2250 void Assembler::orl(Register dst, Register src) {
  2251   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2252   emit_arith(0x0B, 0xC0, dst, src);
  2255 void Assembler::packuswb(XMMRegister dst, Address src) {
  2256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2257   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2258   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2261 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2263   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2266 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2267   assert(VM_Version::supports_sse4_2(), "");
  2268   InstructionMark im(this);
  2269   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2270   emit_int8(0x61);
  2271   emit_operand(dst, src);
  2272   emit_int8(imm8);
  2275 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2276   assert(VM_Version::supports_sse4_2(), "");
  2277   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2278   emit_int8(0x61);
  2279   emit_int8((unsigned char)(0xC0 | encode));
  2280   emit_int8(imm8);
  2283 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2284   assert(VM_Version::supports_sse4_1(), "");
  2285   InstructionMark im(this);
  2286   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2287   emit_int8(0x30);
  2288   emit_operand(dst, src);
  2291 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2292   assert(VM_Version::supports_sse4_1(), "");
  2293   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2294   emit_int8(0x30);
  2295   emit_int8((unsigned char)(0xC0 | encode));
  2298 // generic
  2299 void Assembler::pop(Register dst) {
  2300   int encode = prefix_and_encode(dst->encoding());
  2301   emit_int8(0x58 | encode);
  2304 void Assembler::popcntl(Register dst, Address src) {
  2305   assert(VM_Version::supports_popcnt(), "must support");
  2306   InstructionMark im(this);
  2307   emit_int8((unsigned char)0xF3);
  2308   prefix(src, dst);
  2309   emit_int8(0x0F);
  2310   emit_int8((unsigned char)0xB8);
  2311   emit_operand(dst, src);
  2314 void Assembler::popcntl(Register dst, Register src) {
  2315   assert(VM_Version::supports_popcnt(), "must support");
  2316   emit_int8((unsigned char)0xF3);
  2317   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2318   emit_int8(0x0F);
  2319   emit_int8((unsigned char)0xB8);
  2320   emit_int8((unsigned char)(0xC0 | encode));
  2323 void Assembler::popf() {
  2324   emit_int8((unsigned char)0x9D);
  2327 #ifndef _LP64 // no 32bit push/pop on amd64
  2328 void Assembler::popl(Address dst) {
  2329   // NOTE: this will adjust stack by 8byte on 64bits
  2330   InstructionMark im(this);
  2331   prefix(dst);
  2332   emit_int8((unsigned char)0x8F);
  2333   emit_operand(rax, dst);
  2335 #endif
  2337 void Assembler::prefetch_prefix(Address src) {
  2338   prefix(src);
  2339   emit_int8(0x0F);
  2342 void Assembler::prefetchnta(Address src) {
  2343   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2344   InstructionMark im(this);
  2345   prefetch_prefix(src);
  2346   emit_int8(0x18);
  2347   emit_operand(rax, src); // 0, src
  2350 void Assembler::prefetchr(Address src) {
  2351   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2352   InstructionMark im(this);
  2353   prefetch_prefix(src);
  2354   emit_int8(0x0D);
  2355   emit_operand(rax, src); // 0, src
  2358 void Assembler::prefetcht0(Address src) {
  2359   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2360   InstructionMark im(this);
  2361   prefetch_prefix(src);
  2362   emit_int8(0x18);
  2363   emit_operand(rcx, src); // 1, src
  2366 void Assembler::prefetcht1(Address src) {
  2367   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2368   InstructionMark im(this);
  2369   prefetch_prefix(src);
  2370   emit_int8(0x18);
  2371   emit_operand(rdx, src); // 2, src
  2374 void Assembler::prefetcht2(Address src) {
  2375   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2376   InstructionMark im(this);
  2377   prefetch_prefix(src);
  2378   emit_int8(0x18);
  2379   emit_operand(rbx, src); // 3, src
  2382 void Assembler::prefetchw(Address src) {
  2383   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2384   InstructionMark im(this);
  2385   prefetch_prefix(src);
  2386   emit_int8(0x0D);
  2387   emit_operand(rcx, src); // 1, src
  2390 void Assembler::prefix(Prefix p) {
  2391   emit_int8(p);
  2394 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2395   assert(VM_Version::supports_ssse3(), "");
  2396   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2397   emit_int8(0x00);
  2398   emit_int8((unsigned char)(0xC0 | encode));
  2401 void Assembler::pshufb(XMMRegister dst, Address src) {
  2402   assert(VM_Version::supports_ssse3(), "");
  2403   InstructionMark im(this);
  2404   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2405   emit_int8(0x00);
  2406   emit_operand(dst, src);
  2409 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2410   assert(isByte(mode), "invalid value");
  2411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2412   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2413   emit_int8(mode & 0xFF);
  2417 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2418   assert(isByte(mode), "invalid value");
  2419   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2420   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2421   InstructionMark im(this);
  2422   simd_prefix(dst, src, VEX_SIMD_66);
  2423   emit_int8(0x70);
  2424   emit_operand(dst, src);
  2425   emit_int8(mode & 0xFF);
  2428 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2429   assert(isByte(mode), "invalid value");
  2430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2431   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2432   emit_int8(mode & 0xFF);
  2435 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2436   assert(isByte(mode), "invalid value");
  2437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2438   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2439   InstructionMark im(this);
  2440   simd_prefix(dst, src, VEX_SIMD_F2);
  2441   emit_int8(0x70);
  2442   emit_operand(dst, src);
  2443   emit_int8(mode & 0xFF);
  2446 void Assembler::psrldq(XMMRegister dst, int shift) {
  2447   // Shift 128 bit value in xmm register by number of bytes.
  2448   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2449   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2450   emit_int8(0x73);
  2451   emit_int8((unsigned char)(0xC0 | encode));
  2452   emit_int8(shift);
  2455 void Assembler::ptest(XMMRegister dst, Address src) {
  2456   assert(VM_Version::supports_sse4_1(), "");
  2457   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2458   InstructionMark im(this);
  2459   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2460   emit_int8(0x17);
  2461   emit_operand(dst, src);
  2464 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2465   assert(VM_Version::supports_sse4_1(), "");
  2466   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2467   emit_int8(0x17);
  2468   emit_int8((unsigned char)(0xC0 | encode));
  2471 void Assembler::vptest(XMMRegister dst, Address src) {
  2472   assert(VM_Version::supports_avx(), "");
  2473   InstructionMark im(this);
  2474   bool vector256 = true;
  2475   assert(dst != xnoreg, "sanity");
  2476   int dst_enc = dst->encoding();
  2477   // swap src<->dst for encoding
  2478   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  2479   emit_int8(0x17);
  2480   emit_operand(dst, src);
  2483 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  2484   assert(VM_Version::supports_avx(), "");
  2485   bool vector256 = true;
  2486   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  2487   emit_int8(0x17);
  2488   emit_int8((unsigned char)(0xC0 | encode));
  2491 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2492   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2493   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2494   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2497 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2498   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2499   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2502 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2503   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2504   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2505   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2508 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2510   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2513 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2514   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2515   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2518 void Assembler::push(int32_t imm32) {
  2519   // in 64bits we push 64bits onto the stack but only
  2520   // take a 32bit immediate
  2521   emit_int8(0x68);
  2522   emit_int32(imm32);
  2525 void Assembler::push(Register src) {
  2526   int encode = prefix_and_encode(src->encoding());
  2528   emit_int8(0x50 | encode);
  2531 void Assembler::pushf() {
  2532   emit_int8((unsigned char)0x9C);
  2535 #ifndef _LP64 // no 32bit push/pop on amd64
  2536 void Assembler::pushl(Address src) {
  2537   // Note this will push 64bit on 64bit
  2538   InstructionMark im(this);
  2539   prefix(src);
  2540   emit_int8((unsigned char)0xFF);
  2541   emit_operand(rsi, src);
  2543 #endif
  2545 void Assembler::rcll(Register dst, int imm8) {
  2546   assert(isShiftCount(imm8), "illegal shift count");
  2547   int encode = prefix_and_encode(dst->encoding());
  2548   if (imm8 == 1) {
  2549     emit_int8((unsigned char)0xD1);
  2550     emit_int8((unsigned char)(0xD0 | encode));
  2551   } else {
  2552     emit_int8((unsigned char)0xC1);
  2553     emit_int8((unsigned char)0xD0 | encode);
  2554     emit_int8(imm8);
  2558 // copies data from [esi] to [edi] using rcx pointer sized words
  2559 // generic
  2560 void Assembler::rep_mov() {
  2561   emit_int8((unsigned char)0xF3);
  2562   // MOVSQ
  2563   LP64_ONLY(prefix(REX_W));
  2564   emit_int8((unsigned char)0xA5);
  2567 // sets rcx bytes with rax, value at [edi]
  2568 void Assembler::rep_stosb() {
  2569   emit_int8((unsigned char)0xF3); // REP
  2570   LP64_ONLY(prefix(REX_W));
  2571   emit_int8((unsigned char)0xAA); // STOSB
  2574 // sets rcx pointer sized words with rax, value at [edi]
  2575 // generic
  2576 void Assembler::rep_stos() {
  2577   emit_int8((unsigned char)0xF3); // REP
  2578   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
  2579   emit_int8((unsigned char)0xAB);
  2582 // scans rcx pointer sized words at [edi] for occurance of rax,
  2583 // generic
  2584 void Assembler::repne_scan() { // repne_scan
  2585   emit_int8((unsigned char)0xF2);
  2586   // SCASQ
  2587   LP64_ONLY(prefix(REX_W));
  2588   emit_int8((unsigned char)0xAF);
  2591 #ifdef _LP64
  2592 // scans rcx 4 byte words at [edi] for occurance of rax,
  2593 // generic
  2594 void Assembler::repne_scanl() { // repne_scan
  2595   emit_int8((unsigned char)0xF2);
  2596   // SCASL
  2597   emit_int8((unsigned char)0xAF);
  2599 #endif
  2601 void Assembler::ret(int imm16) {
  2602   if (imm16 == 0) {
  2603     emit_int8((unsigned char)0xC3);
  2604   } else {
  2605     emit_int8((unsigned char)0xC2);
  2606     emit_int16(imm16);
  2610 void Assembler::sahf() {
  2611 #ifdef _LP64
  2612   // Not supported in 64bit mode
  2613   ShouldNotReachHere();
  2614 #endif
  2615   emit_int8((unsigned char)0x9E);
  2618 void Assembler::sarl(Register dst, int imm8) {
  2619   int encode = prefix_and_encode(dst->encoding());
  2620   assert(isShiftCount(imm8), "illegal shift count");
  2621   if (imm8 == 1) {
  2622     emit_int8((unsigned char)0xD1);
  2623     emit_int8((unsigned char)(0xF8 | encode));
  2624   } else {
  2625     emit_int8((unsigned char)0xC1);
  2626     emit_int8((unsigned char)(0xF8 | encode));
  2627     emit_int8(imm8);
  2631 void Assembler::sarl(Register dst) {
  2632   int encode = prefix_and_encode(dst->encoding());
  2633   emit_int8((unsigned char)0xD3);
  2634   emit_int8((unsigned char)(0xF8 | encode));
  2637 void Assembler::sbbl(Address dst, int32_t imm32) {
  2638   InstructionMark im(this);
  2639   prefix(dst);
  2640   emit_arith_operand(0x81, rbx, dst, imm32);
  2643 void Assembler::sbbl(Register dst, int32_t imm32) {
  2644   prefix(dst);
  2645   emit_arith(0x81, 0xD8, dst, imm32);
  2649 void Assembler::sbbl(Register dst, Address src) {
  2650   InstructionMark im(this);
  2651   prefix(src, dst);
  2652   emit_int8(0x1B);
  2653   emit_operand(dst, src);
  2656 void Assembler::sbbl(Register dst, Register src) {
  2657   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2658   emit_arith(0x1B, 0xC0, dst, src);
  2661 void Assembler::setb(Condition cc, Register dst) {
  2662   assert(0 <= cc && cc < 16, "illegal cc");
  2663   int encode = prefix_and_encode(dst->encoding(), true);
  2664   emit_int8(0x0F);
  2665   emit_int8((unsigned char)0x90 | cc);
  2666   emit_int8((unsigned char)(0xC0 | encode));
  2669 void Assembler::shll(Register dst, int imm8) {
  2670   assert(isShiftCount(imm8), "illegal shift count");
  2671   int encode = prefix_and_encode(dst->encoding());
  2672   if (imm8 == 1 ) {
  2673     emit_int8((unsigned char)0xD1);
  2674     emit_int8((unsigned char)(0xE0 | encode));
  2675   } else {
  2676     emit_int8((unsigned char)0xC1);
  2677     emit_int8((unsigned char)(0xE0 | encode));
  2678     emit_int8(imm8);
  2682 void Assembler::shll(Register dst) {
  2683   int encode = prefix_and_encode(dst->encoding());
  2684   emit_int8((unsigned char)0xD3);
  2685   emit_int8((unsigned char)(0xE0 | encode));
  2688 void Assembler::shrl(Register dst, int imm8) {
  2689   assert(isShiftCount(imm8), "illegal shift count");
  2690   int encode = prefix_and_encode(dst->encoding());
  2691   emit_int8((unsigned char)0xC1);
  2692   emit_int8((unsigned char)(0xE8 | encode));
  2693   emit_int8(imm8);
  2696 void Assembler::shrl(Register dst) {
  2697   int encode = prefix_and_encode(dst->encoding());
  2698   emit_int8((unsigned char)0xD3);
  2699   emit_int8((unsigned char)(0xE8 | encode));
  2702 // copies a single word from [esi] to [edi]
  2703 void Assembler::smovl() {
  2704   emit_int8((unsigned char)0xA5);
  2707 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2708   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2709   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2712 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2713   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2714   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2717 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2718   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2719   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2722 void Assembler::std() {
  2723   emit_int8((unsigned char)0xFD);
  2726 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2727   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2728   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2731 void Assembler::stmxcsr( Address dst) {
  2732   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2733   InstructionMark im(this);
  2734   prefix(dst);
  2735   emit_int8(0x0F);
  2736   emit_int8((unsigned char)0xAE);
  2737   emit_operand(as_Register(3), dst);
  2740 void Assembler::subl(Address dst, int32_t imm32) {
  2741   InstructionMark im(this);
  2742   prefix(dst);
  2743   emit_arith_operand(0x81, rbp, dst, imm32);
  2746 void Assembler::subl(Address dst, Register src) {
  2747   InstructionMark im(this);
  2748   prefix(dst, src);
  2749   emit_int8(0x29);
  2750   emit_operand(src, dst);
  2753 void Assembler::subl(Register dst, int32_t imm32) {
  2754   prefix(dst);
  2755   emit_arith(0x81, 0xE8, dst, imm32);
  2758 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2759 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2760   prefix(dst);
  2761   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2764 void Assembler::subl(Register dst, Address src) {
  2765   InstructionMark im(this);
  2766   prefix(src, dst);
  2767   emit_int8(0x2B);
  2768   emit_operand(dst, src);
  2771 void Assembler::subl(Register dst, Register src) {
  2772   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2773   emit_arith(0x2B, 0xC0, dst, src);
  2776 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2778   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2781 void Assembler::subsd(XMMRegister dst, Address src) {
  2782   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2783   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2786 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2787   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2788   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2791 void Assembler::subss(XMMRegister dst, Address src) {
  2792   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2793   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2796 void Assembler::testb(Register dst, int imm8) {
  2797   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2798   (void) prefix_and_encode(dst->encoding(), true);
  2799   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2802 void Assembler::testl(Register dst, int32_t imm32) {
  2803   // not using emit_arith because test
  2804   // doesn't support sign-extension of
  2805   // 8bit operands
  2806   int encode = dst->encoding();
  2807   if (encode == 0) {
  2808     emit_int8((unsigned char)0xA9);
  2809   } else {
  2810     encode = prefix_and_encode(encode);
  2811     emit_int8((unsigned char)0xF7);
  2812     emit_int8((unsigned char)(0xC0 | encode));
  2814   emit_int32(imm32);
  2817 void Assembler::testl(Register dst, Register src) {
  2818   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2819   emit_arith(0x85, 0xC0, dst, src);
  2822 void Assembler::testl(Register dst, Address  src) {
  2823   InstructionMark im(this);
  2824   prefix(src, dst);
  2825   emit_int8((unsigned char)0x85);
  2826   emit_operand(dst, src);
  2829 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2831   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2834 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2836   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2839 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2841   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2844 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2845   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2846   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2850 void Assembler::xaddl(Address dst, Register src) {
  2851   InstructionMark im(this);
  2852   prefix(dst, src);
  2853   emit_int8(0x0F);
  2854   emit_int8((unsigned char)0xC1);
  2855   emit_operand(src, dst);
  2858 void Assembler::xchgl(Register dst, Address src) { // xchg
  2859   InstructionMark im(this);
  2860   prefix(src, dst);
  2861   emit_int8((unsigned char)0x87);
  2862   emit_operand(dst, src);
  2865 void Assembler::xchgl(Register dst, Register src) {
  2866   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2867   emit_int8((unsigned char)0x87);
  2868   emit_int8((unsigned char)(0xC0 | encode));
  2871 void Assembler::xgetbv() {
  2872   emit_int8(0x0F);
  2873   emit_int8(0x01);
  2874   emit_int8((unsigned char)0xD0);
  2877 void Assembler::xorl(Register dst, int32_t imm32) {
  2878   prefix(dst);
  2879   emit_arith(0x81, 0xF0, dst, imm32);
  2882 void Assembler::xorl(Register dst, Address src) {
  2883   InstructionMark im(this);
  2884   prefix(src, dst);
  2885   emit_int8(0x33);
  2886   emit_operand(dst, src);
  2889 void Assembler::xorl(Register dst, Register src) {
  2890   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2891   emit_arith(0x33, 0xC0, dst, src);
  2895 // AVX 3-operands scalar float-point arithmetic instructions
  2897 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2898   assert(VM_Version::supports_avx(), "");
  2899   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2902 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2903   assert(VM_Version::supports_avx(), "");
  2904   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2907 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2908   assert(VM_Version::supports_avx(), "");
  2909   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2912 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2913   assert(VM_Version::supports_avx(), "");
  2914   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2917 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2918   assert(VM_Version::supports_avx(), "");
  2919   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2922 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2923   assert(VM_Version::supports_avx(), "");
  2924   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2927 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2928   assert(VM_Version::supports_avx(), "");
  2929   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2932 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2933   assert(VM_Version::supports_avx(), "");
  2934   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2937 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2938   assert(VM_Version::supports_avx(), "");
  2939   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2942 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2943   assert(VM_Version::supports_avx(), "");
  2944   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2947 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2948   assert(VM_Version::supports_avx(), "");
  2949   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2952 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2953   assert(VM_Version::supports_avx(), "");
  2954   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2957 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2958   assert(VM_Version::supports_avx(), "");
  2959   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2962 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2963   assert(VM_Version::supports_avx(), "");
  2964   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2967 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2968   assert(VM_Version::supports_avx(), "");
  2969   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2972 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2973   assert(VM_Version::supports_avx(), "");
  2974   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2977 //====================VECTOR ARITHMETIC=====================================
  2979 // Float-point vector arithmetic
  2981 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2982   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2983   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  2986 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  2987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2988   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  2991 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2992   assert(VM_Version::supports_avx(), "");
  2993   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2996 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2997   assert(VM_Version::supports_avx(), "");
  2998   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3001 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3002   assert(VM_Version::supports_avx(), "");
  3003   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3006 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3007   assert(VM_Version::supports_avx(), "");
  3008   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3011 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  3012   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3013   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  3016 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  3017   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3018   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  3021 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3022   assert(VM_Version::supports_avx(), "");
  3023   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3026 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3027   assert(VM_Version::supports_avx(), "");
  3028   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3031 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3032   assert(VM_Version::supports_avx(), "");
  3033   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3036 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3037   assert(VM_Version::supports_avx(), "");
  3038   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3041 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3042   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3043   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3046 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3047   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3048   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3051 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3052   assert(VM_Version::supports_avx(), "");
  3053   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3056 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3057   assert(VM_Version::supports_avx(), "");
  3058   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3061 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3062   assert(VM_Version::supports_avx(), "");
  3063   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3066 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3067   assert(VM_Version::supports_avx(), "");
  3068   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3071 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3072   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3073   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3076 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3078   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3081 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3082   assert(VM_Version::supports_avx(), "");
  3083   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3086 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3087   assert(VM_Version::supports_avx(), "");
  3088   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3091 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3092   assert(VM_Version::supports_avx(), "");
  3093   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3096 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3097   assert(VM_Version::supports_avx(), "");
  3098   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3101 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3102   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3103   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3106 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3107   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3108   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3111 void Assembler::andps(XMMRegister dst, Address src) {
  3112   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3113   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3116 void Assembler::andpd(XMMRegister dst, Address src) {
  3117   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3118   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3121 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3122   assert(VM_Version::supports_avx(), "");
  3123   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3126 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3127   assert(VM_Version::supports_avx(), "");
  3128   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3131 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3132   assert(VM_Version::supports_avx(), "");
  3133   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3136 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3137   assert(VM_Version::supports_avx(), "");
  3138   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3141 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3142   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3143   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3146 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3147   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3148   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3151 void Assembler::xorpd(XMMRegister dst, Address src) {
  3152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3153   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3156 void Assembler::xorps(XMMRegister dst, Address src) {
  3157   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3158   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3161 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3162   assert(VM_Version::supports_avx(), "");
  3163   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3166 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3167   assert(VM_Version::supports_avx(), "");
  3168   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3171 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3172   assert(VM_Version::supports_avx(), "");
  3173   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3176 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3177   assert(VM_Version::supports_avx(), "");
  3178   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3182 // Integer vector arithmetic
  3183 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3185   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3188 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3189   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3190   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3193 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3194   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3195   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3198 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3200   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3203 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3204   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3205   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3208 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3209   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3210   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3213 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3214   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3215   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3218 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3219   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3220   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3223 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3224   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3225   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3228 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3229   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3230   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3233 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3234   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3235   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3238 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3239   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3240   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3243 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3245   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3248 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3250   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3253 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3255   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3258 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3260   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3263 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3264   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3265   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3268 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3269   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3270   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3273 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3274   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3275   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3278 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3279   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3280   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3283 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3284   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3285   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3288 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3289   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3290   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3293 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3294   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3295   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3298 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3299   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3300   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3303 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3305   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3308 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3309   assert(VM_Version::supports_sse4_1(), "");
  3310   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3311   emit_int8(0x40);
  3312   emit_int8((unsigned char)(0xC0 | encode));
  3315 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3316   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3317   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3320 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3321   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3322   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3323   emit_int8(0x40);
  3324   emit_int8((unsigned char)(0xC0 | encode));
  3327 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3328   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3329   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3332 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3333   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3334   InstructionMark im(this);
  3335   int dst_enc = dst->encoding();
  3336   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3337   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3338   emit_int8(0x40);
  3339   emit_operand(dst, src);
  3342 // Shift packed integers left by specified number of bits.
  3343 void Assembler::psllw(XMMRegister dst, int shift) {
  3344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3345   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3346   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3347   emit_int8(0x71);
  3348   emit_int8((unsigned char)(0xC0 | encode));
  3349   emit_int8(shift & 0xFF);
  3352 void Assembler::pslld(XMMRegister dst, int shift) {
  3353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3354   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3355   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3356   emit_int8(0x72);
  3357   emit_int8((unsigned char)(0xC0 | encode));
  3358   emit_int8(shift & 0xFF);
  3361 void Assembler::psllq(XMMRegister dst, int shift) {
  3362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3363   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3364   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3365   emit_int8(0x73);
  3366   emit_int8((unsigned char)(0xC0 | encode));
  3367   emit_int8(shift & 0xFF);
  3370 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3372   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3375 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3376   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3377   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3380 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3382   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3385 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3386   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3387   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3388   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3389   emit_int8(shift & 0xFF);
  3392 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3393   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3394   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3395   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3396   emit_int8(shift & 0xFF);
  3399 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3400   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3401   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3402   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3403   emit_int8(shift & 0xFF);
  3406 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3407   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3408   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3411 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3412   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3413   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3416 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3417   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3418   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3421 // Shift packed integers logically right by specified number of bits.
  3422 void Assembler::psrlw(XMMRegister dst, int shift) {
  3423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3424   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3425   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3426   emit_int8(0x71);
  3427   emit_int8((unsigned char)(0xC0 | encode));
  3428   emit_int8(shift & 0xFF);
  3431 void Assembler::psrld(XMMRegister dst, int shift) {
  3432   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3433   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3434   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3435   emit_int8(0x72);
  3436   emit_int8((unsigned char)(0xC0 | encode));
  3437   emit_int8(shift & 0xFF);
  3440 void Assembler::psrlq(XMMRegister dst, int shift) {
  3441   // Do not confuse it with psrldq SSE2 instruction which
  3442   // shifts 128 bit value in xmm register by number of bytes.
  3443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3444   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3445   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3446   emit_int8(0x73);
  3447   emit_int8((unsigned char)(0xC0 | encode));
  3448   emit_int8(shift & 0xFF);
  3451 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3452   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3453   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3456 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3457   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3458   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3461 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3462   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3463   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3466 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3467   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3468   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3469   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3470   emit_int8(shift & 0xFF);
  3473 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3474   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3475   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3476   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3477   emit_int8(shift & 0xFF);
  3480 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3481   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3482   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3483   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3484   emit_int8(shift & 0xFF);
  3487 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3488   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3489   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3492 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3493   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3494   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3497 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3498   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3499   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3502 // Shift packed integers arithmetically right by specified number of bits.
  3503 void Assembler::psraw(XMMRegister dst, int shift) {
  3504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3505   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3506   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3507   emit_int8(0x71);
  3508   emit_int8((unsigned char)(0xC0 | encode));
  3509   emit_int8(shift & 0xFF);
  3512 void Assembler::psrad(XMMRegister dst, int shift) {
  3513   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3514   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3515   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3516   emit_int8(0x72);
  3517   emit_int8((unsigned char)(0xC0 | encode));
  3518   emit_int8(shift & 0xFF);
  3521 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3523   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3526 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3528   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3531 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3532   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3533   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3534   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3535   emit_int8(shift & 0xFF);
  3538 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3539   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3540   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3541   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3542   emit_int8(shift & 0xFF);
  3545 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3546   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3547   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3550 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3551   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3552   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3556 // AND packed integers
  3557 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3558   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3559   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3562 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3563   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3564   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3567 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3568   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3569   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3572 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3573   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3574   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3577 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3578   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3579   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3582 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3583   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3584   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3587 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3588   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3589   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3592 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3593   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3594   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3597 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3598   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3599   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3603 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3604   assert(VM_Version::supports_avx(), "");
  3605   bool vector256 = true;
  3606   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3607   emit_int8(0x18);
  3608   emit_int8((unsigned char)(0xC0 | encode));
  3609   // 0x00 - insert into lower 128 bits
  3610   // 0x01 - insert into upper 128 bits
  3611   emit_int8(0x01);
  3614 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3615   assert(VM_Version::supports_avx(), "");
  3616   InstructionMark im(this);
  3617   bool vector256 = true;
  3618   assert(dst != xnoreg, "sanity");
  3619   int dst_enc = dst->encoding();
  3620   // swap src<->dst for encoding
  3621   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3622   emit_int8(0x18);
  3623   emit_operand(dst, src);
  3624   // 0x01 - insert into upper 128 bits
  3625   emit_int8(0x01);
  3628 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3629   assert(VM_Version::supports_avx(), "");
  3630   InstructionMark im(this);
  3631   bool vector256 = true;
  3632   assert(src != xnoreg, "sanity");
  3633   int src_enc = src->encoding();
  3634   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3635   emit_int8(0x19);
  3636   emit_operand(src, dst);
  3637   // 0x01 - extract from upper 128 bits
  3638   emit_int8(0x01);
  3641 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3642   assert(VM_Version::supports_avx2(), "");
  3643   bool vector256 = true;
  3644   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3645   emit_int8(0x38);
  3646   emit_int8((unsigned char)(0xC0 | encode));
  3647   // 0x00 - insert into lower 128 bits
  3648   // 0x01 - insert into upper 128 bits
  3649   emit_int8(0x01);
  3652 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3653   assert(VM_Version::supports_avx2(), "");
  3654   InstructionMark im(this);
  3655   bool vector256 = true;
  3656   assert(dst != xnoreg, "sanity");
  3657   int dst_enc = dst->encoding();
  3658   // swap src<->dst for encoding
  3659   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3660   emit_int8(0x38);
  3661   emit_operand(dst, src);
  3662   // 0x01 - insert into upper 128 bits
  3663   emit_int8(0x01);
  3666 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3667   assert(VM_Version::supports_avx2(), "");
  3668   InstructionMark im(this);
  3669   bool vector256 = true;
  3670   assert(src != xnoreg, "sanity");
  3671   int src_enc = src->encoding();
  3672   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3673   emit_int8(0x39);
  3674   emit_operand(src, dst);
  3675   // 0x01 - extract from upper 128 bits
  3676   emit_int8(0x01);
  3679 // duplicate 4-bytes integer data from src into 8 locations in dest
  3680 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  3681   assert(VM_Version::supports_avx2(), "");
  3682   bool vector256 = true;
  3683   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3684   emit_int8(0x58);
  3685   emit_int8((unsigned char)(0xC0 | encode));
  3688 void Assembler::vzeroupper() {
  3689   assert(VM_Version::supports_avx(), "");
  3690   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3691   emit_int8(0x77);
  3695 #ifndef _LP64
  3696 // 32bit only pieces of the assembler
  3698 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3699   // NO PREFIX AS NEVER 64BIT
  3700   InstructionMark im(this);
  3701   emit_int8((unsigned char)0x81);
  3702   emit_int8((unsigned char)(0xF8 | src1->encoding()));
  3703   emit_data(imm32, rspec, 0);
  3706 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3707   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3708   InstructionMark im(this);
  3709   emit_int8((unsigned char)0x81);
  3710   emit_operand(rdi, src1);
  3711   emit_data(imm32, rspec, 0);
  3714 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3715 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3716 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3717 void Assembler::cmpxchg8(Address adr) {
  3718   InstructionMark im(this);
  3719   emit_int8(0x0F);
  3720   emit_int8((unsigned char)0xC7);
  3721   emit_operand(rcx, adr);
  3724 void Assembler::decl(Register dst) {
  3725   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3726  emit_int8(0x48 | dst->encoding());
  3729 #endif // _LP64
  3731 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3733 void Assembler::fabs() {
  3734   emit_int8((unsigned char)0xD9);
  3735   emit_int8((unsigned char)0xE1);
  3738 void Assembler::fadd(int i) {
  3739   emit_farith(0xD8, 0xC0, i);
  3742 void Assembler::fadd_d(Address src) {
  3743   InstructionMark im(this);
  3744   emit_int8((unsigned char)0xDC);
  3745   emit_operand32(rax, src);
  3748 void Assembler::fadd_s(Address src) {
  3749   InstructionMark im(this);
  3750   emit_int8((unsigned char)0xD8);
  3751   emit_operand32(rax, src);
  3754 void Assembler::fadda(int i) {
  3755   emit_farith(0xDC, 0xC0, i);
  3758 void Assembler::faddp(int i) {
  3759   emit_farith(0xDE, 0xC0, i);
  3762 void Assembler::fchs() {
  3763   emit_int8((unsigned char)0xD9);
  3764   emit_int8((unsigned char)0xE0);
  3767 void Assembler::fcom(int i) {
  3768   emit_farith(0xD8, 0xD0, i);
  3771 void Assembler::fcomp(int i) {
  3772   emit_farith(0xD8, 0xD8, i);
  3775 void Assembler::fcomp_d(Address src) {
  3776   InstructionMark im(this);
  3777   emit_int8((unsigned char)0xDC);
  3778   emit_operand32(rbx, src);
  3781 void Assembler::fcomp_s(Address src) {
  3782   InstructionMark im(this);
  3783   emit_int8((unsigned char)0xD8);
  3784   emit_operand32(rbx, src);
  3787 void Assembler::fcompp() {
  3788   emit_int8((unsigned char)0xDE);
  3789   emit_int8((unsigned char)0xD9);
  3792 void Assembler::fcos() {
  3793   emit_int8((unsigned char)0xD9);
  3794   emit_int8((unsigned char)0xFF);
  3797 void Assembler::fdecstp() {
  3798   emit_int8((unsigned char)0xD9);
  3799   emit_int8((unsigned char)0xF6);
  3802 void Assembler::fdiv(int i) {
  3803   emit_farith(0xD8, 0xF0, i);
  3806 void Assembler::fdiv_d(Address src) {
  3807   InstructionMark im(this);
  3808   emit_int8((unsigned char)0xDC);
  3809   emit_operand32(rsi, src);
  3812 void Assembler::fdiv_s(Address src) {
  3813   InstructionMark im(this);
  3814   emit_int8((unsigned char)0xD8);
  3815   emit_operand32(rsi, src);
  3818 void Assembler::fdiva(int i) {
  3819   emit_farith(0xDC, 0xF8, i);
  3822 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3823 //       is erroneous for some of the floating-point instructions below.
  3825 void Assembler::fdivp(int i) {
  3826   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3829 void Assembler::fdivr(int i) {
  3830   emit_farith(0xD8, 0xF8, i);
  3833 void Assembler::fdivr_d(Address src) {
  3834   InstructionMark im(this);
  3835   emit_int8((unsigned char)0xDC);
  3836   emit_operand32(rdi, src);
  3839 void Assembler::fdivr_s(Address src) {
  3840   InstructionMark im(this);
  3841   emit_int8((unsigned char)0xD8);
  3842   emit_operand32(rdi, src);
  3845 void Assembler::fdivra(int i) {
  3846   emit_farith(0xDC, 0xF0, i);
  3849 void Assembler::fdivrp(int i) {
  3850   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3853 void Assembler::ffree(int i) {
  3854   emit_farith(0xDD, 0xC0, i);
  3857 void Assembler::fild_d(Address adr) {
  3858   InstructionMark im(this);
  3859   emit_int8((unsigned char)0xDF);
  3860   emit_operand32(rbp, adr);
  3863 void Assembler::fild_s(Address adr) {
  3864   InstructionMark im(this);
  3865   emit_int8((unsigned char)0xDB);
  3866   emit_operand32(rax, adr);
  3869 void Assembler::fincstp() {
  3870   emit_int8((unsigned char)0xD9);
  3871   emit_int8((unsigned char)0xF7);
  3874 void Assembler::finit() {
  3875   emit_int8((unsigned char)0x9B);
  3876   emit_int8((unsigned char)0xDB);
  3877   emit_int8((unsigned char)0xE3);
  3880 void Assembler::fist_s(Address adr) {
  3881   InstructionMark im(this);
  3882   emit_int8((unsigned char)0xDB);
  3883   emit_operand32(rdx, adr);
  3886 void Assembler::fistp_d(Address adr) {
  3887   InstructionMark im(this);
  3888   emit_int8((unsigned char)0xDF);
  3889   emit_operand32(rdi, adr);
  3892 void Assembler::fistp_s(Address adr) {
  3893   InstructionMark im(this);
  3894   emit_int8((unsigned char)0xDB);
  3895   emit_operand32(rbx, adr);
  3898 void Assembler::fld1() {
  3899   emit_int8((unsigned char)0xD9);
  3900   emit_int8((unsigned char)0xE8);
  3903 void Assembler::fld_d(Address adr) {
  3904   InstructionMark im(this);
  3905   emit_int8((unsigned char)0xDD);
  3906   emit_operand32(rax, adr);
  3909 void Assembler::fld_s(Address adr) {
  3910   InstructionMark im(this);
  3911   emit_int8((unsigned char)0xD9);
  3912   emit_operand32(rax, adr);
  3916 void Assembler::fld_s(int index) {
  3917   emit_farith(0xD9, 0xC0, index);
  3920 void Assembler::fld_x(Address adr) {
  3921   InstructionMark im(this);
  3922   emit_int8((unsigned char)0xDB);
  3923   emit_operand32(rbp, adr);
  3926 void Assembler::fldcw(Address src) {
  3927   InstructionMark im(this);
  3928   emit_int8((unsigned char)0xD9);
  3929   emit_operand32(rbp, src);
  3932 void Assembler::fldenv(Address src) {
  3933   InstructionMark im(this);
  3934   emit_int8((unsigned char)0xD9);
  3935   emit_operand32(rsp, src);
  3938 void Assembler::fldlg2() {
  3939   emit_int8((unsigned char)0xD9);
  3940   emit_int8((unsigned char)0xEC);
  3943 void Assembler::fldln2() {
  3944   emit_int8((unsigned char)0xD9);
  3945   emit_int8((unsigned char)0xED);
  3948 void Assembler::fldz() {
  3949   emit_int8((unsigned char)0xD9);
  3950   emit_int8((unsigned char)0xEE);
  3953 void Assembler::flog() {
  3954   fldln2();
  3955   fxch();
  3956   fyl2x();
  3959 void Assembler::flog10() {
  3960   fldlg2();
  3961   fxch();
  3962   fyl2x();
  3965 void Assembler::fmul(int i) {
  3966   emit_farith(0xD8, 0xC8, i);
  3969 void Assembler::fmul_d(Address src) {
  3970   InstructionMark im(this);
  3971   emit_int8((unsigned char)0xDC);
  3972   emit_operand32(rcx, src);
  3975 void Assembler::fmul_s(Address src) {
  3976   InstructionMark im(this);
  3977   emit_int8((unsigned char)0xD8);
  3978   emit_operand32(rcx, src);
  3981 void Assembler::fmula(int i) {
  3982   emit_farith(0xDC, 0xC8, i);
  3985 void Assembler::fmulp(int i) {
  3986   emit_farith(0xDE, 0xC8, i);
  3989 void Assembler::fnsave(Address dst) {
  3990   InstructionMark im(this);
  3991   emit_int8((unsigned char)0xDD);
  3992   emit_operand32(rsi, dst);
  3995 void Assembler::fnstcw(Address src) {
  3996   InstructionMark im(this);
  3997   emit_int8((unsigned char)0x9B);
  3998   emit_int8((unsigned char)0xD9);
  3999   emit_operand32(rdi, src);
  4002 void Assembler::fnstsw_ax() {
  4003   emit_int8((unsigned char)0xDF);
  4004   emit_int8((unsigned char)0xE0);
  4007 void Assembler::fprem() {
  4008   emit_int8((unsigned char)0xD9);
  4009   emit_int8((unsigned char)0xF8);
  4012 void Assembler::fprem1() {
  4013   emit_int8((unsigned char)0xD9);
  4014   emit_int8((unsigned char)0xF5);
  4017 void Assembler::frstor(Address src) {
  4018   InstructionMark im(this);
  4019   emit_int8((unsigned char)0xDD);
  4020   emit_operand32(rsp, src);
  4023 void Assembler::fsin() {
  4024   emit_int8((unsigned char)0xD9);
  4025   emit_int8((unsigned char)0xFE);
  4028 void Assembler::fsqrt() {
  4029   emit_int8((unsigned char)0xD9);
  4030   emit_int8((unsigned char)0xFA);
  4033 void Assembler::fst_d(Address adr) {
  4034   InstructionMark im(this);
  4035   emit_int8((unsigned char)0xDD);
  4036   emit_operand32(rdx, adr);
  4039 void Assembler::fst_s(Address adr) {
  4040   InstructionMark im(this);
  4041   emit_int8((unsigned char)0xD9);
  4042   emit_operand32(rdx, adr);
  4045 void Assembler::fstp_d(Address adr) {
  4046   InstructionMark im(this);
  4047   emit_int8((unsigned char)0xDD);
  4048   emit_operand32(rbx, adr);
  4051 void Assembler::fstp_d(int index) {
  4052   emit_farith(0xDD, 0xD8, index);
  4055 void Assembler::fstp_s(Address adr) {
  4056   InstructionMark im(this);
  4057   emit_int8((unsigned char)0xD9);
  4058   emit_operand32(rbx, adr);
  4061 void Assembler::fstp_x(Address adr) {
  4062   InstructionMark im(this);
  4063   emit_int8((unsigned char)0xDB);
  4064   emit_operand32(rdi, adr);
  4067 void Assembler::fsub(int i) {
  4068   emit_farith(0xD8, 0xE0, i);
  4071 void Assembler::fsub_d(Address src) {
  4072   InstructionMark im(this);
  4073   emit_int8((unsigned char)0xDC);
  4074   emit_operand32(rsp, src);
  4077 void Assembler::fsub_s(Address src) {
  4078   InstructionMark im(this);
  4079   emit_int8((unsigned char)0xD8);
  4080   emit_operand32(rsp, src);
  4083 void Assembler::fsuba(int i) {
  4084   emit_farith(0xDC, 0xE8, i);
  4087 void Assembler::fsubp(int i) {
  4088   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4091 void Assembler::fsubr(int i) {
  4092   emit_farith(0xD8, 0xE8, i);
  4095 void Assembler::fsubr_d(Address src) {
  4096   InstructionMark im(this);
  4097   emit_int8((unsigned char)0xDC);
  4098   emit_operand32(rbp, src);
  4101 void Assembler::fsubr_s(Address src) {
  4102   InstructionMark im(this);
  4103   emit_int8((unsigned char)0xD8);
  4104   emit_operand32(rbp, src);
  4107 void Assembler::fsubra(int i) {
  4108   emit_farith(0xDC, 0xE0, i);
  4111 void Assembler::fsubrp(int i) {
  4112   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4115 void Assembler::ftan() {
  4116   emit_int8((unsigned char)0xD9);
  4117   emit_int8((unsigned char)0xF2);
  4118   emit_int8((unsigned char)0xDD);
  4119   emit_int8((unsigned char)0xD8);
  4122 void Assembler::ftst() {
  4123   emit_int8((unsigned char)0xD9);
  4124   emit_int8((unsigned char)0xE4);
  4127 void Assembler::fucomi(int i) {
  4128   // make sure the instruction is supported (introduced for P6, together with cmov)
  4129   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4130   emit_farith(0xDB, 0xE8, i);
  4133 void Assembler::fucomip(int i) {
  4134   // make sure the instruction is supported (introduced for P6, together with cmov)
  4135   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4136   emit_farith(0xDF, 0xE8, i);
  4139 void Assembler::fwait() {
  4140   emit_int8((unsigned char)0x9B);
  4143 void Assembler::fxch(int i) {
  4144   emit_farith(0xD9, 0xC8, i);
  4147 void Assembler::fyl2x() {
  4148   emit_int8((unsigned char)0xD9);
  4149   emit_int8((unsigned char)0xF1);
  4152 void Assembler::frndint() {
  4153   emit_int8((unsigned char)0xD9);
  4154   emit_int8((unsigned char)0xFC);
  4157 void Assembler::f2xm1() {
  4158   emit_int8((unsigned char)0xD9);
  4159   emit_int8((unsigned char)0xF0);
  4162 void Assembler::fldl2e() {
  4163   emit_int8((unsigned char)0xD9);
  4164   emit_int8((unsigned char)0xEA);
  4167 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4168 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4169 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4170 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4172 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4173 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4174   if (pre > 0) {
  4175     emit_int8(simd_pre[pre]);
  4177   if (rex_w) {
  4178     prefixq(adr, xreg);
  4179   } else {
  4180     prefix(adr, xreg);
  4182   if (opc > 0) {
  4183     emit_int8(0x0F);
  4184     int opc2 = simd_opc[opc];
  4185     if (opc2 > 0) {
  4186       emit_int8(opc2);
  4191 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4192   if (pre > 0) {
  4193     emit_int8(simd_pre[pre]);
  4195   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4196                           prefix_and_encode(dst_enc, src_enc);
  4197   if (opc > 0) {
  4198     emit_int8(0x0F);
  4199     int opc2 = simd_opc[opc];
  4200     if (opc2 > 0) {
  4201       emit_int8(opc2);
  4204   return encode;
  4208 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4209   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4210     prefix(VEX_3bytes);
  4212     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4213     byte1 = (~byte1) & 0xE0;
  4214     byte1 |= opc;
  4215     emit_int8(byte1);
  4217     int byte2 = ((~nds_enc) & 0xf) << 3;
  4218     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4219     emit_int8(byte2);
  4220   } else {
  4221     prefix(VEX_2bytes);
  4223     int byte1 = vex_r ? VEX_R : 0;
  4224     byte1 = (~byte1) & 0x80;
  4225     byte1 |= ((~nds_enc) & 0xf) << 3;
  4226     byte1 |= (vector256 ? 4 : 0) | pre;
  4227     emit_int8(byte1);
  4231 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4232   bool vex_r = (xreg_enc >= 8);
  4233   bool vex_b = adr.base_needs_rex();
  4234   bool vex_x = adr.index_needs_rex();
  4235   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4238 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4239   bool vex_r = (dst_enc >= 8);
  4240   bool vex_b = (src_enc >= 8);
  4241   bool vex_x = false;
  4242   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4243   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4247 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4248   if (UseAVX > 0) {
  4249     int xreg_enc = xreg->encoding();
  4250     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4251     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4252   } else {
  4253     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4254     rex_prefix(adr, xreg, pre, opc, rex_w);
  4258 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4259   int dst_enc = dst->encoding();
  4260   int src_enc = src->encoding();
  4261   if (UseAVX > 0) {
  4262     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4263     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4264   } else {
  4265     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4266     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4270 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4271   InstructionMark im(this);
  4272   simd_prefix(dst, dst, src, pre);
  4273   emit_int8(opcode);
  4274   emit_operand(dst, src);
  4277 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4278   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4279   emit_int8(opcode);
  4280   emit_int8((unsigned char)(0xC0 | encode));
  4283 // Versions with no second source register (non-destructive source).
  4284 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4285   InstructionMark im(this);
  4286   simd_prefix(dst, xnoreg, src, pre);
  4287   emit_int8(opcode);
  4288   emit_operand(dst, src);
  4291 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4292   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4293   emit_int8(opcode);
  4294   emit_int8((unsigned char)(0xC0 | encode));
  4297 // 3-operands AVX instructions
  4298 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4299                                Address src, VexSimdPrefix pre, bool vector256) {
  4300   InstructionMark im(this);
  4301   vex_prefix(dst, nds, src, pre, vector256);
  4302   emit_int8(opcode);
  4303   emit_operand(dst, src);
  4306 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4307                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4308   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4309   emit_int8(opcode);
  4310   emit_int8((unsigned char)(0xC0 | encode));
  4313 #ifndef _LP64
  4315 void Assembler::incl(Register dst) {
  4316   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4317   emit_int8(0x40 | dst->encoding());
  4320 void Assembler::lea(Register dst, Address src) {
  4321   leal(dst, src);
  4324 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4325   InstructionMark im(this);
  4326   emit_int8((unsigned char)0xC7);
  4327   emit_operand(rax, dst);
  4328   emit_data((int)imm32, rspec, 0);
  4331 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4332   InstructionMark im(this);
  4333   int encode = prefix_and_encode(dst->encoding());
  4334   emit_int8((unsigned char)(0xB8 | encode));
  4335   emit_data((int)imm32, rspec, 0);
  4338 void Assembler::popa() { // 32bit
  4339   emit_int8(0x61);
  4342 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4343   InstructionMark im(this);
  4344   emit_int8(0x68);
  4345   emit_data(imm32, rspec, 0);
  4348 void Assembler::pusha() { // 32bit
  4349   emit_int8(0x60);
  4352 void Assembler::set_byte_if_not_zero(Register dst) {
  4353   emit_int8(0x0F);
  4354   emit_int8((unsigned char)0x95);
  4355   emit_int8((unsigned char)(0xE0 | dst->encoding()));
  4358 void Assembler::shldl(Register dst, Register src) {
  4359   emit_int8(0x0F);
  4360   emit_int8((unsigned char)0xA5);
  4361   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4364 void Assembler::shrdl(Register dst, Register src) {
  4365   emit_int8(0x0F);
  4366   emit_int8((unsigned char)0xAD);
  4367   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4370 #else // LP64
  4372 void Assembler::set_byte_if_not_zero(Register dst) {
  4373   int enc = prefix_and_encode(dst->encoding(), true);
  4374   emit_int8(0x0F);
  4375   emit_int8((unsigned char)0x95);
  4376   emit_int8((unsigned char)(0xE0 | enc));
  4379 // 64bit only pieces of the assembler
  4380 // This should only be used by 64bit instructions that can use rip-relative
  4381 // it cannot be used by instructions that want an immediate value.
  4383 bool Assembler::reachable(AddressLiteral adr) {
  4384   int64_t disp;
  4385   // None will force a 64bit literal to the code stream. Likely a placeholder
  4386   // for something that will be patched later and we need to certain it will
  4387   // always be reachable.
  4388   if (adr.reloc() == relocInfo::none) {
  4389     return false;
  4391   if (adr.reloc() == relocInfo::internal_word_type) {
  4392     // This should be rip relative and easily reachable.
  4393     return true;
  4395   if (adr.reloc() == relocInfo::virtual_call_type ||
  4396       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4397       adr.reloc() == relocInfo::static_call_type ||
  4398       adr.reloc() == relocInfo::static_stub_type ) {
  4399     // This should be rip relative within the code cache and easily
  4400     // reachable until we get huge code caches. (At which point
  4401     // ic code is going to have issues).
  4402     return true;
  4404   if (adr.reloc() != relocInfo::external_word_type &&
  4405       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4406       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4407       adr.reloc() != relocInfo::runtime_call_type ) {
  4408     return false;
  4411   // Stress the correction code
  4412   if (ForceUnreachable) {
  4413     // Must be runtimecall reloc, see if it is in the codecache
  4414     // Flipping stuff in the codecache to be unreachable causes issues
  4415     // with things like inline caches where the additional instructions
  4416     // are not handled.
  4417     if (CodeCache::find_blob(adr._target) == NULL) {
  4418       return false;
  4421   // For external_word_type/runtime_call_type if it is reachable from where we
  4422   // are now (possibly a temp buffer) and where we might end up
  4423   // anywhere in the codeCache then we are always reachable.
  4424   // This would have to change if we ever save/restore shared code
  4425   // to be more pessimistic.
  4426   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4427   if (!is_simm32(disp)) return false;
  4428   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4429   if (!is_simm32(disp)) return false;
  4431   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4433   // Because rip relative is a disp + address_of_next_instruction and we
  4434   // don't know the value of address_of_next_instruction we apply a fudge factor
  4435   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4436   // We don't have to fudge the checks above here because they are already worst case.
  4438   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4439   // + 4 because better safe than sorry.
  4440   const int fudge = 12 + 4;
  4441   if (disp < 0) {
  4442     disp -= fudge;
  4443   } else {
  4444     disp += fudge;
  4446   return is_simm32(disp);
  4449 // Check if the polling page is not reachable from the code cache using rip-relative
  4450 // addressing.
  4451 bool Assembler::is_polling_page_far() {
  4452   intptr_t addr = (intptr_t)os::get_polling_page();
  4453   return ForceUnreachable ||
  4454          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4455          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4458 void Assembler::emit_data64(jlong data,
  4459                             relocInfo::relocType rtype,
  4460                             int format) {
  4461   if (rtype == relocInfo::none) {
  4462     emit_int64(data);
  4463   } else {
  4464     emit_data64(data, Relocation::spec_simple(rtype), format);
  4468 void Assembler::emit_data64(jlong data,
  4469                             RelocationHolder const& rspec,
  4470                             int format) {
  4471   assert(imm_operand == 0, "default format must be immediate in this file");
  4472   assert(imm_operand == format, "must be immediate");
  4473   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4474   // Do not use AbstractAssembler::relocate, which is not intended for
  4475   // embedded words.  Instead, relocate to the enclosing instruction.
  4476   code_section()->relocate(inst_mark(), rspec, format);
  4477 #ifdef ASSERT
  4478   check_relocation(rspec, format);
  4479 #endif
  4480   emit_int64(data);
  4483 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4484   if (reg_enc >= 8) {
  4485     prefix(REX_B);
  4486     reg_enc -= 8;
  4487   } else if (byteinst && reg_enc >= 4) {
  4488     prefix(REX);
  4490   return reg_enc;
  4493 int Assembler::prefixq_and_encode(int reg_enc) {
  4494   if (reg_enc < 8) {
  4495     prefix(REX_W);
  4496   } else {
  4497     prefix(REX_WB);
  4498     reg_enc -= 8;
  4500   return reg_enc;
  4503 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4504   if (dst_enc < 8) {
  4505     if (src_enc >= 8) {
  4506       prefix(REX_B);
  4507       src_enc -= 8;
  4508     } else if (byteinst && src_enc >= 4) {
  4509       prefix(REX);
  4511   } else {
  4512     if (src_enc < 8) {
  4513       prefix(REX_R);
  4514     } else {
  4515       prefix(REX_RB);
  4516       src_enc -= 8;
  4518     dst_enc -= 8;
  4520   return dst_enc << 3 | src_enc;
  4523 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4524   if (dst_enc < 8) {
  4525     if (src_enc < 8) {
  4526       prefix(REX_W);
  4527     } else {
  4528       prefix(REX_WB);
  4529       src_enc -= 8;
  4531   } else {
  4532     if (src_enc < 8) {
  4533       prefix(REX_WR);
  4534     } else {
  4535       prefix(REX_WRB);
  4536       src_enc -= 8;
  4538     dst_enc -= 8;
  4540   return dst_enc << 3 | src_enc;
  4543 void Assembler::prefix(Register reg) {
  4544   if (reg->encoding() >= 8) {
  4545     prefix(REX_B);
  4549 void Assembler::prefix(Address adr) {
  4550   if (adr.base_needs_rex()) {
  4551     if (adr.index_needs_rex()) {
  4552       prefix(REX_XB);
  4553     } else {
  4554       prefix(REX_B);
  4556   } else {
  4557     if (adr.index_needs_rex()) {
  4558       prefix(REX_X);
  4563 void Assembler::prefixq(Address adr) {
  4564   if (adr.base_needs_rex()) {
  4565     if (adr.index_needs_rex()) {
  4566       prefix(REX_WXB);
  4567     } else {
  4568       prefix(REX_WB);
  4570   } else {
  4571     if (adr.index_needs_rex()) {
  4572       prefix(REX_WX);
  4573     } else {
  4574       prefix(REX_W);
  4580 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4581   if (reg->encoding() < 8) {
  4582     if (adr.base_needs_rex()) {
  4583       if (adr.index_needs_rex()) {
  4584         prefix(REX_XB);
  4585       } else {
  4586         prefix(REX_B);
  4588     } else {
  4589       if (adr.index_needs_rex()) {
  4590         prefix(REX_X);
  4591       } else if (byteinst && reg->encoding() >= 4 ) {
  4592         prefix(REX);
  4595   } else {
  4596     if (adr.base_needs_rex()) {
  4597       if (adr.index_needs_rex()) {
  4598         prefix(REX_RXB);
  4599       } else {
  4600         prefix(REX_RB);
  4602     } else {
  4603       if (adr.index_needs_rex()) {
  4604         prefix(REX_RX);
  4605       } else {
  4606         prefix(REX_R);
  4612 void Assembler::prefixq(Address adr, Register src) {
  4613   if (src->encoding() < 8) {
  4614     if (adr.base_needs_rex()) {
  4615       if (adr.index_needs_rex()) {
  4616         prefix(REX_WXB);
  4617       } else {
  4618         prefix(REX_WB);
  4620     } else {
  4621       if (adr.index_needs_rex()) {
  4622         prefix(REX_WX);
  4623       } else {
  4624         prefix(REX_W);
  4627   } else {
  4628     if (adr.base_needs_rex()) {
  4629       if (adr.index_needs_rex()) {
  4630         prefix(REX_WRXB);
  4631       } else {
  4632         prefix(REX_WRB);
  4634     } else {
  4635       if (adr.index_needs_rex()) {
  4636         prefix(REX_WRX);
  4637       } else {
  4638         prefix(REX_WR);
  4644 void Assembler::prefix(Address adr, XMMRegister reg) {
  4645   if (reg->encoding() < 8) {
  4646     if (adr.base_needs_rex()) {
  4647       if (adr.index_needs_rex()) {
  4648         prefix(REX_XB);
  4649       } else {
  4650         prefix(REX_B);
  4652     } else {
  4653       if (adr.index_needs_rex()) {
  4654         prefix(REX_X);
  4657   } else {
  4658     if (adr.base_needs_rex()) {
  4659       if (adr.index_needs_rex()) {
  4660         prefix(REX_RXB);
  4661       } else {
  4662         prefix(REX_RB);
  4664     } else {
  4665       if (adr.index_needs_rex()) {
  4666         prefix(REX_RX);
  4667       } else {
  4668         prefix(REX_R);
  4674 void Assembler::prefixq(Address adr, XMMRegister src) {
  4675   if (src->encoding() < 8) {
  4676     if (adr.base_needs_rex()) {
  4677       if (adr.index_needs_rex()) {
  4678         prefix(REX_WXB);
  4679       } else {
  4680         prefix(REX_WB);
  4682     } else {
  4683       if (adr.index_needs_rex()) {
  4684         prefix(REX_WX);
  4685       } else {
  4686         prefix(REX_W);
  4689   } else {
  4690     if (adr.base_needs_rex()) {
  4691       if (adr.index_needs_rex()) {
  4692         prefix(REX_WRXB);
  4693       } else {
  4694         prefix(REX_WRB);
  4696     } else {
  4697       if (adr.index_needs_rex()) {
  4698         prefix(REX_WRX);
  4699       } else {
  4700         prefix(REX_WR);
  4706 void Assembler::adcq(Register dst, int32_t imm32) {
  4707   (void) prefixq_and_encode(dst->encoding());
  4708   emit_arith(0x81, 0xD0, dst, imm32);
  4711 void Assembler::adcq(Register dst, Address src) {
  4712   InstructionMark im(this);
  4713   prefixq(src, dst);
  4714   emit_int8(0x13);
  4715   emit_operand(dst, src);
  4718 void Assembler::adcq(Register dst, Register src) {
  4719   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4720   emit_arith(0x13, 0xC0, dst, src);
  4723 void Assembler::addq(Address dst, int32_t imm32) {
  4724   InstructionMark im(this);
  4725   prefixq(dst);
  4726   emit_arith_operand(0x81, rax, dst,imm32);
  4729 void Assembler::addq(Address dst, Register src) {
  4730   InstructionMark im(this);
  4731   prefixq(dst, src);
  4732   emit_int8(0x01);
  4733   emit_operand(src, dst);
  4736 void Assembler::addq(Register dst, int32_t imm32) {
  4737   (void) prefixq_and_encode(dst->encoding());
  4738   emit_arith(0x81, 0xC0, dst, imm32);
  4741 void Assembler::addq(Register dst, Address src) {
  4742   InstructionMark im(this);
  4743   prefixq(src, dst);
  4744   emit_int8(0x03);
  4745   emit_operand(dst, src);
  4748 void Assembler::addq(Register dst, Register src) {
  4749   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4750   emit_arith(0x03, 0xC0, dst, src);
  4753 void Assembler::andq(Address dst, int32_t imm32) {
  4754   InstructionMark im(this);
  4755   prefixq(dst);
  4756   emit_int8((unsigned char)0x81);
  4757   emit_operand(rsp, dst, 4);
  4758   emit_int32(imm32);
  4761 void Assembler::andq(Register dst, int32_t imm32) {
  4762   (void) prefixq_and_encode(dst->encoding());
  4763   emit_arith(0x81, 0xE0, dst, imm32);
  4766 void Assembler::andq(Register dst, Address src) {
  4767   InstructionMark im(this);
  4768   prefixq(src, dst);
  4769   emit_int8(0x23);
  4770   emit_operand(dst, src);
  4773 void Assembler::andq(Register dst, Register src) {
  4774   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4775   emit_arith(0x23, 0xC0, dst, src);
  4778 void Assembler::bsfq(Register dst, Register src) {
  4779   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4780   emit_int8(0x0F);
  4781   emit_int8((unsigned char)0xBC);
  4782   emit_int8((unsigned char)(0xC0 | encode));
  4785 void Assembler::bsrq(Register dst, Register src) {
  4786   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4787   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4788   emit_int8(0x0F);
  4789   emit_int8((unsigned char)0xBD);
  4790   emit_int8((unsigned char)(0xC0 | encode));
  4793 void Assembler::bswapq(Register reg) {
  4794   int encode = prefixq_and_encode(reg->encoding());
  4795   emit_int8(0x0F);
  4796   emit_int8((unsigned char)(0xC8 | encode));
  4799 void Assembler::cdqq() {
  4800   prefix(REX_W);
  4801   emit_int8((unsigned char)0x99);
  4804 void Assembler::clflush(Address adr) {
  4805   prefix(adr);
  4806   emit_int8(0x0F);
  4807   emit_int8((unsigned char)0xAE);
  4808   emit_operand(rdi, adr);
  4811 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4812   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4813   emit_int8(0x0F);
  4814   emit_int8(0x40 | cc);
  4815   emit_int8((unsigned char)(0xC0 | encode));
  4818 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4819   InstructionMark im(this);
  4820   prefixq(src, dst);
  4821   emit_int8(0x0F);
  4822   emit_int8(0x40 | cc);
  4823   emit_operand(dst, src);
  4826 void Assembler::cmpq(Address dst, int32_t imm32) {
  4827   InstructionMark im(this);
  4828   prefixq(dst);
  4829   emit_int8((unsigned char)0x81);
  4830   emit_operand(rdi, dst, 4);
  4831   emit_int32(imm32);
  4834 void Assembler::cmpq(Register dst, int32_t imm32) {
  4835   (void) prefixq_and_encode(dst->encoding());
  4836   emit_arith(0x81, 0xF8, dst, imm32);
  4839 void Assembler::cmpq(Address dst, Register src) {
  4840   InstructionMark im(this);
  4841   prefixq(dst, src);
  4842   emit_int8(0x3B);
  4843   emit_operand(src, dst);
  4846 void Assembler::cmpq(Register dst, Register src) {
  4847   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4848   emit_arith(0x3B, 0xC0, dst, src);
  4851 void Assembler::cmpq(Register dst, Address  src) {
  4852   InstructionMark im(this);
  4853   prefixq(src, dst);
  4854   emit_int8(0x3B);
  4855   emit_operand(dst, src);
  4858 void Assembler::cmpxchgq(Register reg, Address adr) {
  4859   InstructionMark im(this);
  4860   prefixq(adr, reg);
  4861   emit_int8(0x0F);
  4862   emit_int8((unsigned char)0xB1);
  4863   emit_operand(reg, adr);
  4866 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4867   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4868   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4869   emit_int8(0x2A);
  4870   emit_int8((unsigned char)(0xC0 | encode));
  4873 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4874   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4875   InstructionMark im(this);
  4876   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4877   emit_int8(0x2A);
  4878   emit_operand(dst, src);
  4881 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4882   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4883   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4884   emit_int8(0x2A);
  4885   emit_int8((unsigned char)(0xC0 | encode));
  4888 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4889   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4890   InstructionMark im(this);
  4891   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4892   emit_int8(0x2A);
  4893   emit_operand(dst, src);
  4896 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4897   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4898   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4899   emit_int8(0x2C);
  4900   emit_int8((unsigned char)(0xC0 | encode));
  4903 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4904   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4905   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4906   emit_int8(0x2C);
  4907   emit_int8((unsigned char)(0xC0 | encode));
  4910 void Assembler::decl(Register dst) {
  4911   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4912   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4913   int encode = prefix_and_encode(dst->encoding());
  4914   emit_int8((unsigned char)0xFF);
  4915   emit_int8((unsigned char)(0xC8 | encode));
  4918 void Assembler::decq(Register dst) {
  4919   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4920   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4921   int encode = prefixq_and_encode(dst->encoding());
  4922   emit_int8((unsigned char)0xFF);
  4923   emit_int8(0xC8 | encode);
  4926 void Assembler::decq(Address dst) {
  4927   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4928   InstructionMark im(this);
  4929   prefixq(dst);
  4930   emit_int8((unsigned char)0xFF);
  4931   emit_operand(rcx, dst);
  4934 void Assembler::fxrstor(Address src) {
  4935   prefixq(src);
  4936   emit_int8(0x0F);
  4937   emit_int8((unsigned char)0xAE);
  4938   emit_operand(as_Register(1), src);
  4941 void Assembler::fxsave(Address dst) {
  4942   prefixq(dst);
  4943   emit_int8(0x0F);
  4944   emit_int8((unsigned char)0xAE);
  4945   emit_operand(as_Register(0), dst);
  4948 void Assembler::idivq(Register src) {
  4949   int encode = prefixq_and_encode(src->encoding());
  4950   emit_int8((unsigned char)0xF7);
  4951   emit_int8((unsigned char)(0xF8 | encode));
  4954 void Assembler::imulq(Register dst, Register src) {
  4955   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4956   emit_int8(0x0F);
  4957   emit_int8((unsigned char)0xAF);
  4958   emit_int8((unsigned char)(0xC0 | encode));
  4961 void Assembler::imulq(Register dst, Register src, int value) {
  4962   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4963   if (is8bit(value)) {
  4964     emit_int8(0x6B);
  4965     emit_int8((unsigned char)(0xC0 | encode));
  4966     emit_int8(value & 0xFF);
  4967   } else {
  4968     emit_int8(0x69);
  4969     emit_int8((unsigned char)(0xC0 | encode));
  4970     emit_int32(value);
  4974 void Assembler::incl(Register dst) {
  4975   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4976   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4977   int encode = prefix_and_encode(dst->encoding());
  4978   emit_int8((unsigned char)0xFF);
  4979   emit_int8((unsigned char)(0xC0 | encode));
  4982 void Assembler::incq(Register dst) {
  4983   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4984   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4985   int encode = prefixq_and_encode(dst->encoding());
  4986   emit_int8((unsigned char)0xFF);
  4987   emit_int8((unsigned char)(0xC0 | encode));
  4990 void Assembler::incq(Address dst) {
  4991   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4992   InstructionMark im(this);
  4993   prefixq(dst);
  4994   emit_int8((unsigned char)0xFF);
  4995   emit_operand(rax, dst);
  4998 void Assembler::lea(Register dst, Address src) {
  4999   leaq(dst, src);
  5002 void Assembler::leaq(Register dst, Address src) {
  5003   InstructionMark im(this);
  5004   prefixq(src, dst);
  5005   emit_int8((unsigned char)0x8D);
  5006   emit_operand(dst, src);
  5009 void Assembler::mov64(Register dst, int64_t imm64) {
  5010   InstructionMark im(this);
  5011   int encode = prefixq_and_encode(dst->encoding());
  5012   emit_int8((unsigned char)(0xB8 | encode));
  5013   emit_int64(imm64);
  5016 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  5017   InstructionMark im(this);
  5018   int encode = prefixq_and_encode(dst->encoding());
  5019   emit_int8(0xB8 | encode);
  5020   emit_data64(imm64, rspec);
  5023 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  5024   InstructionMark im(this);
  5025   int encode = prefix_and_encode(dst->encoding());
  5026   emit_int8((unsigned char)(0xB8 | encode));
  5027   emit_data((int)imm32, rspec, narrow_oop_operand);
  5030 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  5031   InstructionMark im(this);
  5032   prefix(dst);
  5033   emit_int8((unsigned char)0xC7);
  5034   emit_operand(rax, dst, 4);
  5035   emit_data((int)imm32, rspec, narrow_oop_operand);
  5038 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  5039   InstructionMark im(this);
  5040   int encode = prefix_and_encode(src1->encoding());
  5041   emit_int8((unsigned char)0x81);
  5042   emit_int8((unsigned char)(0xF8 | encode));
  5043   emit_data((int)imm32, rspec, narrow_oop_operand);
  5046 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5047   InstructionMark im(this);
  5048   prefix(src1);
  5049   emit_int8((unsigned char)0x81);
  5050   emit_operand(rax, src1, 4);
  5051   emit_data((int)imm32, rspec, narrow_oop_operand);
  5054 void Assembler::lzcntq(Register dst, Register src) {
  5055   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5056   emit_int8((unsigned char)0xF3);
  5057   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5058   emit_int8(0x0F);
  5059   emit_int8((unsigned char)0xBD);
  5060   emit_int8((unsigned char)(0xC0 | encode));
  5063 void Assembler::movdq(XMMRegister dst, Register src) {
  5064   // table D-1 says MMX/SSE2
  5065   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5066   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5067   emit_int8(0x6E);
  5068   emit_int8((unsigned char)(0xC0 | encode));
  5071 void Assembler::movdq(Register dst, XMMRegister src) {
  5072   // table D-1 says MMX/SSE2
  5073   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5074   // swap src/dst to get correct prefix
  5075   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5076   emit_int8(0x7E);
  5077   emit_int8((unsigned char)(0xC0 | encode));
  5080 void Assembler::movq(Register dst, Register src) {
  5081   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5082   emit_int8((unsigned char)0x8B);
  5083   emit_int8((unsigned char)(0xC0 | encode));
  5086 void Assembler::movq(Register dst, Address src) {
  5087   InstructionMark im(this);
  5088   prefixq(src, dst);
  5089   emit_int8((unsigned char)0x8B);
  5090   emit_operand(dst, src);
  5093 void Assembler::movq(Address dst, Register src) {
  5094   InstructionMark im(this);
  5095   prefixq(dst, src);
  5096   emit_int8((unsigned char)0x89);
  5097   emit_operand(src, dst);
  5100 void Assembler::movsbq(Register dst, Address src) {
  5101   InstructionMark im(this);
  5102   prefixq(src, dst);
  5103   emit_int8(0x0F);
  5104   emit_int8((unsigned char)0xBE);
  5105   emit_operand(dst, src);
  5108 void Assembler::movsbq(Register dst, Register src) {
  5109   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5110   emit_int8(0x0F);
  5111   emit_int8((unsigned char)0xBE);
  5112   emit_int8((unsigned char)(0xC0 | encode));
  5115 void Assembler::movslq(Register dst, int32_t imm32) {
  5116   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5117   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5118   // as a result we shouldn't use until tested at runtime...
  5119   ShouldNotReachHere();
  5120   InstructionMark im(this);
  5121   int encode = prefixq_and_encode(dst->encoding());
  5122   emit_int8((unsigned char)(0xC7 | encode));
  5123   emit_int32(imm32);
  5126 void Assembler::movslq(Address dst, int32_t imm32) {
  5127   assert(is_simm32(imm32), "lost bits");
  5128   InstructionMark im(this);
  5129   prefixq(dst);
  5130   emit_int8((unsigned char)0xC7);
  5131   emit_operand(rax, dst, 4);
  5132   emit_int32(imm32);
  5135 void Assembler::movslq(Register dst, Address src) {
  5136   InstructionMark im(this);
  5137   prefixq(src, dst);
  5138   emit_int8(0x63);
  5139   emit_operand(dst, src);
  5142 void Assembler::movslq(Register dst, Register src) {
  5143   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5144   emit_int8(0x63);
  5145   emit_int8((unsigned char)(0xC0 | encode));
  5148 void Assembler::movswq(Register dst, Address src) {
  5149   InstructionMark im(this);
  5150   prefixq(src, dst);
  5151   emit_int8(0x0F);
  5152   emit_int8((unsigned char)0xBF);
  5153   emit_operand(dst, src);
  5156 void Assembler::movswq(Register dst, Register src) {
  5157   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5158   emit_int8((unsigned char)0x0F);
  5159   emit_int8((unsigned char)0xBF);
  5160   emit_int8((unsigned char)(0xC0 | encode));
  5163 void Assembler::movzbq(Register dst, Address src) {
  5164   InstructionMark im(this);
  5165   prefixq(src, dst);
  5166   emit_int8((unsigned char)0x0F);
  5167   emit_int8((unsigned char)0xB6);
  5168   emit_operand(dst, src);
  5171 void Assembler::movzbq(Register dst, Register src) {
  5172   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5173   emit_int8(0x0F);
  5174   emit_int8((unsigned char)0xB6);
  5175   emit_int8(0xC0 | encode);
  5178 void Assembler::movzwq(Register dst, Address src) {
  5179   InstructionMark im(this);
  5180   prefixq(src, dst);
  5181   emit_int8((unsigned char)0x0F);
  5182   emit_int8((unsigned char)0xB7);
  5183   emit_operand(dst, src);
  5186 void Assembler::movzwq(Register dst, Register src) {
  5187   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5188   emit_int8((unsigned char)0x0F);
  5189   emit_int8((unsigned char)0xB7);
  5190   emit_int8((unsigned char)(0xC0 | encode));
  5193 void Assembler::negq(Register dst) {
  5194   int encode = prefixq_and_encode(dst->encoding());
  5195   emit_int8((unsigned char)0xF7);
  5196   emit_int8((unsigned char)(0xD8 | encode));
  5199 void Assembler::notq(Register dst) {
  5200   int encode = prefixq_and_encode(dst->encoding());
  5201   emit_int8((unsigned char)0xF7);
  5202   emit_int8((unsigned char)(0xD0 | encode));
  5205 void Assembler::orq(Address dst, int32_t imm32) {
  5206   InstructionMark im(this);
  5207   prefixq(dst);
  5208   emit_int8((unsigned char)0x81);
  5209   emit_operand(rcx, dst, 4);
  5210   emit_int32(imm32);
  5213 void Assembler::orq(Register dst, int32_t imm32) {
  5214   (void) prefixq_and_encode(dst->encoding());
  5215   emit_arith(0x81, 0xC8, dst, imm32);
  5218 void Assembler::orq(Register dst, Address src) {
  5219   InstructionMark im(this);
  5220   prefixq(src, dst);
  5221   emit_int8(0x0B);
  5222   emit_operand(dst, src);
  5225 void Assembler::orq(Register dst, Register src) {
  5226   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5227   emit_arith(0x0B, 0xC0, dst, src);
  5230 void Assembler::popa() { // 64bit
  5231   movq(r15, Address(rsp, 0));
  5232   movq(r14, Address(rsp, wordSize));
  5233   movq(r13, Address(rsp, 2 * wordSize));
  5234   movq(r12, Address(rsp, 3 * wordSize));
  5235   movq(r11, Address(rsp, 4 * wordSize));
  5236   movq(r10, Address(rsp, 5 * wordSize));
  5237   movq(r9,  Address(rsp, 6 * wordSize));
  5238   movq(r8,  Address(rsp, 7 * wordSize));
  5239   movq(rdi, Address(rsp, 8 * wordSize));
  5240   movq(rsi, Address(rsp, 9 * wordSize));
  5241   movq(rbp, Address(rsp, 10 * wordSize));
  5242   // skip rsp
  5243   movq(rbx, Address(rsp, 12 * wordSize));
  5244   movq(rdx, Address(rsp, 13 * wordSize));
  5245   movq(rcx, Address(rsp, 14 * wordSize));
  5246   movq(rax, Address(rsp, 15 * wordSize));
  5248   addq(rsp, 16 * wordSize);
  5251 void Assembler::popcntq(Register dst, Address src) {
  5252   assert(VM_Version::supports_popcnt(), "must support");
  5253   InstructionMark im(this);
  5254   emit_int8((unsigned char)0xF3);
  5255   prefixq(src, dst);
  5256   emit_int8((unsigned char)0x0F);
  5257   emit_int8((unsigned char)0xB8);
  5258   emit_operand(dst, src);
  5261 void Assembler::popcntq(Register dst, Register src) {
  5262   assert(VM_Version::supports_popcnt(), "must support");
  5263   emit_int8((unsigned char)0xF3);
  5264   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5265   emit_int8((unsigned char)0x0F);
  5266   emit_int8((unsigned char)0xB8);
  5267   emit_int8((unsigned char)(0xC0 | encode));
  5270 void Assembler::popq(Address dst) {
  5271   InstructionMark im(this);
  5272   prefixq(dst);
  5273   emit_int8((unsigned char)0x8F);
  5274   emit_operand(rax, dst);
  5277 void Assembler::pusha() { // 64bit
  5278   // we have to store original rsp.  ABI says that 128 bytes
  5279   // below rsp are local scratch.
  5280   movq(Address(rsp, -5 * wordSize), rsp);
  5282   subq(rsp, 16 * wordSize);
  5284   movq(Address(rsp, 15 * wordSize), rax);
  5285   movq(Address(rsp, 14 * wordSize), rcx);
  5286   movq(Address(rsp, 13 * wordSize), rdx);
  5287   movq(Address(rsp, 12 * wordSize), rbx);
  5288   // skip rsp
  5289   movq(Address(rsp, 10 * wordSize), rbp);
  5290   movq(Address(rsp, 9 * wordSize), rsi);
  5291   movq(Address(rsp, 8 * wordSize), rdi);
  5292   movq(Address(rsp, 7 * wordSize), r8);
  5293   movq(Address(rsp, 6 * wordSize), r9);
  5294   movq(Address(rsp, 5 * wordSize), r10);
  5295   movq(Address(rsp, 4 * wordSize), r11);
  5296   movq(Address(rsp, 3 * wordSize), r12);
  5297   movq(Address(rsp, 2 * wordSize), r13);
  5298   movq(Address(rsp, wordSize), r14);
  5299   movq(Address(rsp, 0), r15);
  5302 void Assembler::pushq(Address src) {
  5303   InstructionMark im(this);
  5304   prefixq(src);
  5305   emit_int8((unsigned char)0xFF);
  5306   emit_operand(rsi, src);
  5309 void Assembler::rclq(Register dst, int imm8) {
  5310   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5311   int encode = prefixq_and_encode(dst->encoding());
  5312   if (imm8 == 1) {
  5313     emit_int8((unsigned char)0xD1);
  5314     emit_int8((unsigned char)(0xD0 | encode));
  5315   } else {
  5316     emit_int8((unsigned char)0xC1);
  5317     emit_int8((unsigned char)(0xD0 | encode));
  5318     emit_int8(imm8);
  5321 void Assembler::sarq(Register dst, int imm8) {
  5322   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5323   int encode = prefixq_and_encode(dst->encoding());
  5324   if (imm8 == 1) {
  5325     emit_int8((unsigned char)0xD1);
  5326     emit_int8((unsigned char)(0xF8 | encode));
  5327   } else {
  5328     emit_int8((unsigned char)0xC1);
  5329     emit_int8((unsigned char)(0xF8 | encode));
  5330     emit_int8(imm8);
  5334 void Assembler::sarq(Register dst) {
  5335   int encode = prefixq_and_encode(dst->encoding());
  5336   emit_int8((unsigned char)0xD3);
  5337   emit_int8((unsigned char)(0xF8 | encode));
  5340 void Assembler::sbbq(Address dst, int32_t imm32) {
  5341   InstructionMark im(this);
  5342   prefixq(dst);
  5343   emit_arith_operand(0x81, rbx, dst, imm32);
  5346 void Assembler::sbbq(Register dst, int32_t imm32) {
  5347   (void) prefixq_and_encode(dst->encoding());
  5348   emit_arith(0x81, 0xD8, dst, imm32);
  5351 void Assembler::sbbq(Register dst, Address src) {
  5352   InstructionMark im(this);
  5353   prefixq(src, dst);
  5354   emit_int8(0x1B);
  5355   emit_operand(dst, src);
  5358 void Assembler::sbbq(Register dst, Register src) {
  5359   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5360   emit_arith(0x1B, 0xC0, dst, src);
  5363 void Assembler::shlq(Register dst, int imm8) {
  5364   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5365   int encode = prefixq_and_encode(dst->encoding());
  5366   if (imm8 == 1) {
  5367     emit_int8((unsigned char)0xD1);
  5368     emit_int8((unsigned char)(0xE0 | encode));
  5369   } else {
  5370     emit_int8((unsigned char)0xC1);
  5371     emit_int8((unsigned char)(0xE0 | encode));
  5372     emit_int8(imm8);
  5376 void Assembler::shlq(Register dst) {
  5377   int encode = prefixq_and_encode(dst->encoding());
  5378   emit_int8((unsigned char)0xD3);
  5379   emit_int8((unsigned char)(0xE0 | encode));
  5382 void Assembler::shrq(Register dst, int imm8) {
  5383   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5384   int encode = prefixq_and_encode(dst->encoding());
  5385   emit_int8((unsigned char)0xC1);
  5386   emit_int8((unsigned char)(0xE8 | encode));
  5387   emit_int8(imm8);
  5390 void Assembler::shrq(Register dst) {
  5391   int encode = prefixq_and_encode(dst->encoding());
  5392   emit_int8((unsigned char)0xD3);
  5393   emit_int8(0xE8 | encode);
  5396 void Assembler::subq(Address dst, int32_t imm32) {
  5397   InstructionMark im(this);
  5398   prefixq(dst);
  5399   emit_arith_operand(0x81, rbp, dst, imm32);
  5402 void Assembler::subq(Address dst, Register src) {
  5403   InstructionMark im(this);
  5404   prefixq(dst, src);
  5405   emit_int8(0x29);
  5406   emit_operand(src, dst);
  5409 void Assembler::subq(Register dst, int32_t imm32) {
  5410   (void) prefixq_and_encode(dst->encoding());
  5411   emit_arith(0x81, 0xE8, dst, imm32);
  5414 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5415 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5416   (void) prefixq_and_encode(dst->encoding());
  5417   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5420 void Assembler::subq(Register dst, Address src) {
  5421   InstructionMark im(this);
  5422   prefixq(src, dst);
  5423   emit_int8(0x2B);
  5424   emit_operand(dst, src);
  5427 void Assembler::subq(Register dst, Register src) {
  5428   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5429   emit_arith(0x2B, 0xC0, dst, src);
  5432 void Assembler::testq(Register dst, int32_t imm32) {
  5433   // not using emit_arith because test
  5434   // doesn't support sign-extension of
  5435   // 8bit operands
  5436   int encode = dst->encoding();
  5437   if (encode == 0) {
  5438     prefix(REX_W);
  5439     emit_int8((unsigned char)0xA9);
  5440   } else {
  5441     encode = prefixq_and_encode(encode);
  5442     emit_int8((unsigned char)0xF7);
  5443     emit_int8((unsigned char)(0xC0 | encode));
  5445   emit_int32(imm32);
  5448 void Assembler::testq(Register dst, Register src) {
  5449   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5450   emit_arith(0x85, 0xC0, dst, src);
  5453 void Assembler::xaddq(Address dst, Register src) {
  5454   InstructionMark im(this);
  5455   prefixq(dst, src);
  5456   emit_int8(0x0F);
  5457   emit_int8((unsigned char)0xC1);
  5458   emit_operand(src, dst);
  5461 void Assembler::xchgq(Register dst, Address src) {
  5462   InstructionMark im(this);
  5463   prefixq(src, dst);
  5464   emit_int8((unsigned char)0x87);
  5465   emit_operand(dst, src);
  5468 void Assembler::xchgq(Register dst, Register src) {
  5469   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5470   emit_int8((unsigned char)0x87);
  5471   emit_int8((unsigned char)(0xc0 | encode));
  5474 void Assembler::xorq(Register dst, Register src) {
  5475   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5476   emit_arith(0x33, 0xC0, dst, src);
  5479 void Assembler::xorq(Register dst, Address src) {
  5480   InstructionMark im(this);
  5481   prefixq(src, dst);
  5482   emit_int8(0x33);
  5483   emit_operand(dst, src);
  5486 #endif // !LP64

mercurial