src/share/vm/gc_implementation/g1/heapRegion.hpp

Sat, 06 Oct 2012 01:17:44 -0700

author
johnc
date
Sat, 06 Oct 2012 01:17:44 -0700
changeset 4173
8a5ea0a9ccc4
parent 4065
8fbf05030e24
child 4542
db9981fd3124
permissions
-rw-r--r--

7127708: G1: change task num types from int to uint in concurrent mark
Summary: Change the type of various task num fields, parameters etc to unsigned and rename them to be more consistent with the other collectors. Code changes were also reviewed by Vitaly Davidovich.
Reviewed-by: johnc
Contributed-by: Kaushik Srenevasan <kaushik@twitter.com>

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrs_index(), \
    58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    59                 (_hr_)->startsHumongous() ? "HS" : \
    60                 (_hr_)->continuesHumongous() ? "HC" : \
    61                 !(_hr_)->is_empty() ? "O" : "F", \
    62                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    64 // sentinel value for hrs_index
    65 #define G1_NULL_HRS_INDEX ((uint) -1)
    67 // A dirty card to oop closure for heap regions. It
    68 // knows how to get the G1 heap and how to use the bitmap
    69 // in the concurrent marker used by G1 to filter remembered
    70 // sets.
    72 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    73 public:
    74   // Specification of possible DirtyCardToOopClosure filtering.
    75   enum FilterKind {
    76     NoFilterKind,
    77     IntoCSFilterKind,
    78     OutOfRegionFilterKind
    79   };
    81 protected:
    82   HeapRegion* _hr;
    83   FilterKind _fk;
    84   G1CollectedHeap* _g1;
    86   void walk_mem_region_with_cl(MemRegion mr,
    87                                HeapWord* bottom, HeapWord* top,
    88                                ExtendedOopClosure* cl);
    90   // We don't specialize this for FilteringClosure; filtering is handled by
    91   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    92   // warning.
    93   void walk_mem_region_with_cl(MemRegion mr,
    94                                HeapWord* bottom, HeapWord* top,
    95                                FilteringClosure* cl) {
    96     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    97                                              (ExtendedOopClosure*)cl);
    98   }
   100   // Get the actual top of the area on which the closure will
   101   // operate, given where the top is assumed to be (the end of the
   102   // memory region passed to do_MemRegion) and where the object
   103   // at the top is assumed to start. For example, an object may
   104   // start at the top but actually extend past the assumed top,
   105   // in which case the top becomes the end of the object.
   106   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   107     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   108   }
   110   // Walk the given memory region from bottom to (actual) top
   111   // looking for objects and applying the oop closure (_cl) to
   112   // them. The base implementation of this treats the area as
   113   // blocks, where a block may or may not be an object. Sub-
   114   // classes should override this to provide more accurate
   115   // or possibly more efficient walking.
   116   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   117     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   118   }
   120 public:
   121   HeapRegionDCTOC(G1CollectedHeap* g1,
   122                   HeapRegion* hr, ExtendedOopClosure* cl,
   123                   CardTableModRefBS::PrecisionStyle precision,
   124                   FilterKind fk);
   125 };
   127 // The complicating factor is that BlockOffsetTable diverged
   128 // significantly, and we need functionality that is only in the G1 version.
   129 // So I copied that code, which led to an alternate G1 version of
   130 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   131 // be reconciled, then G1OffsetTableContigSpace could go away.
   133 // The idea behind time stamps is the following. Doing a save_marks on
   134 // all regions at every GC pause is time consuming (if I remember
   135 // well, 10ms or so). So, we would like to do that only for regions
   136 // that are GC alloc regions. To achieve this, we use time
   137 // stamps. For every evacuation pause, G1CollectedHeap generates a
   138 // unique time stamp (essentially a counter that gets
   139 // incremented). Every time we want to call save_marks on a region,
   140 // we set the saved_mark_word to top and also copy the current GC
   141 // time stamp to the time stamp field of the space. Reading the
   142 // saved_mark_word involves checking the time stamp of the
   143 // region. If it is the same as the current GC time stamp, then we
   144 // can safely read the saved_mark_word field, as it is valid. If the
   145 // time stamp of the region is not the same as the current GC time
   146 // stamp, then we instead read top, as the saved_mark_word field is
   147 // invalid. Time stamps (on the regions and also on the
   148 // G1CollectedHeap) are reset at every cleanup (we iterate over
   149 // the regions anyway) and at the end of a Full GC. The current scheme
   150 // that uses sequential unsigned ints will fail only if we have 4b
   151 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   153 class G1OffsetTableContigSpace: public ContiguousSpace {
   154   friend class VMStructs;
   155  protected:
   156   G1BlockOffsetArrayContigSpace _offsets;
   157   Mutex _par_alloc_lock;
   158   volatile unsigned _gc_time_stamp;
   159   // When we need to retire an allocation region, while other threads
   160   // are also concurrently trying to allocate into it, we typically
   161   // allocate a dummy object at the end of the region to ensure that
   162   // no more allocations can take place in it. However, sometimes we
   163   // want to know where the end of the last "real" object we allocated
   164   // into the region was and this is what this keeps track.
   165   HeapWord* _pre_dummy_top;
   167  public:
   168   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   169                            MemRegion mr);
   171   void set_bottom(HeapWord* value);
   172   void set_end(HeapWord* value);
   174   virtual HeapWord* saved_mark_word() const;
   175   virtual void set_saved_mark();
   176   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   177   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   179   // See the comment above in the declaration of _pre_dummy_top for an
   180   // explanation of what it is.
   181   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   182     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   183     _pre_dummy_top = pre_dummy_top;
   184   }
   185   HeapWord* pre_dummy_top() {
   186     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   187   }
   188   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   190   virtual void clear(bool mangle_space);
   192   HeapWord* block_start(const void* p);
   193   HeapWord* block_start_const(const void* p) const;
   195   // Add offset table update.
   196   virtual HeapWord* allocate(size_t word_size);
   197   HeapWord* par_allocate(size_t word_size);
   199   // MarkSweep support phase3
   200   virtual HeapWord* initialize_threshold();
   201   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   203   virtual void print() const;
   205   void reset_bot() {
   206     _offsets.zero_bottom_entry();
   207     _offsets.initialize_threshold();
   208   }
   210   void update_bot_for_object(HeapWord* start, size_t word_size) {
   211     _offsets.alloc_block(start, word_size);
   212   }
   214   void print_bot_on(outputStream* out) {
   215     _offsets.print_on(out);
   216   }
   217 };
   219 class HeapRegion: public G1OffsetTableContigSpace {
   220   friend class VMStructs;
   221  private:
   223   enum HumongousType {
   224     NotHumongous = 0,
   225     StartsHumongous,
   226     ContinuesHumongous
   227   };
   229   // Requires that the region "mr" be dense with objects, and begin and end
   230   // with an object.
   231   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   233   // The remembered set for this region.
   234   // (Might want to make this "inline" later, to avoid some alloc failure
   235   // issues.)
   236   HeapRegionRemSet* _rem_set;
   238   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   240  protected:
   241   // The index of this region in the heap region sequence.
   242   uint  _hrs_index;
   244   HumongousType _humongous_type;
   245   // For a humongous region, region in which it starts.
   246   HeapRegion* _humongous_start_region;
   247   // For the start region of a humongous sequence, it's original end().
   248   HeapWord* _orig_end;
   250   // True iff the region is in current collection_set.
   251   bool _in_collection_set;
   253   // True iff an attempt to evacuate an object in the region failed.
   254   bool _evacuation_failed;
   256   // A heap region may be a member one of a number of special subsets, each
   257   // represented as linked lists through the field below.  Currently, these
   258   // sets include:
   259   //   The collection set.
   260   //   The set of allocation regions used in a collection pause.
   261   //   Spaces that may contain gray objects.
   262   HeapRegion* _next_in_special_set;
   264   // next region in the young "generation" region set
   265   HeapRegion* _next_young_region;
   267   // Next region whose cards need cleaning
   268   HeapRegion* _next_dirty_cards_region;
   270   // Fields used by the HeapRegionSetBase class and subclasses.
   271   HeapRegion* _next;
   272 #ifdef ASSERT
   273   HeapRegionSetBase* _containing_set;
   274 #endif // ASSERT
   275   bool _pending_removal;
   277   // For parallel heapRegion traversal.
   278   jint _claimed;
   280   // We use concurrent marking to determine the amount of live data
   281   // in each heap region.
   282   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   283   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   285   // The calculated GC efficiency of the region.
   286   double _gc_efficiency;
   288   enum YoungType {
   289     NotYoung,                   // a region is not young
   290     Young,                      // a region is young
   291     Survivor                    // a region is young and it contains survivors
   292   };
   294   volatile YoungType _young_type;
   295   int  _young_index_in_cset;
   296   SurvRateGroup* _surv_rate_group;
   297   int  _age_index;
   299   // The start of the unmarked area. The unmarked area extends from this
   300   // word until the top and/or end of the region, and is the part
   301   // of the region for which no marking was done, i.e. objects may
   302   // have been allocated in this part since the last mark phase.
   303   // "prev" is the top at the start of the last completed marking.
   304   // "next" is the top at the start of the in-progress marking (if any.)
   305   HeapWord* _prev_top_at_mark_start;
   306   HeapWord* _next_top_at_mark_start;
   307   // If a collection pause is in progress, this is the top at the start
   308   // of that pause.
   310   void init_top_at_mark_start() {
   311     assert(_prev_marked_bytes == 0 &&
   312            _next_marked_bytes == 0,
   313            "Must be called after zero_marked_bytes.");
   314     HeapWord* bot = bottom();
   315     _prev_top_at_mark_start = bot;
   316     _next_top_at_mark_start = bot;
   317   }
   319   void set_young_type(YoungType new_type) {
   320     //assert(_young_type != new_type, "setting the same type" );
   321     // TODO: add more assertions here
   322     _young_type = new_type;
   323   }
   325   // Cached attributes used in the collection set policy information
   327   // The RSet length that was added to the total value
   328   // for the collection set.
   329   size_t _recorded_rs_length;
   331   // The predicted elapsed time that was added to total value
   332   // for the collection set.
   333   double _predicted_elapsed_time_ms;
   335   // The predicted number of bytes to copy that was added to
   336   // the total value for the collection set.
   337   size_t _predicted_bytes_to_copy;
   339  public:
   340   HeapRegion(uint hrs_index,
   341              G1BlockOffsetSharedArray* sharedOffsetArray,
   342              MemRegion mr);
   344   static int    LogOfHRGrainBytes;
   345   static int    LogOfHRGrainWords;
   347   static size_t GrainBytes;
   348   static size_t GrainWords;
   349   static size_t CardsPerRegion;
   351   static size_t align_up_to_region_byte_size(size_t sz) {
   352     return (sz + (size_t) GrainBytes - 1) &
   353                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   354   }
   356   // It sets up the heap region size (GrainBytes / GrainWords), as
   357   // well as other related fields that are based on the heap region
   358   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   359   // CardsPerRegion). All those fields are considered constant
   360   // throughout the JVM's execution, therefore they should only be set
   361   // up once during initialization time.
   362   static void setup_heap_region_size(uintx min_heap_size);
   364   enum ClaimValues {
   365     InitialClaimValue          = 0,
   366     FinalCountClaimValue       = 1,
   367     NoteEndClaimValue          = 2,
   368     ScrubRemSetClaimValue      = 3,
   369     ParVerifyClaimValue        = 4,
   370     RebuildRSClaimValue        = 5,
   371     ParEvacFailureClaimValue   = 6,
   372     AggregateCountClaimValue   = 7,
   373     VerifyCountClaimValue      = 8
   374   };
   376   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   377     assert(is_young(), "we can only skip BOT updates on young regions");
   378     return ContiguousSpace::par_allocate(word_size);
   379   }
   380   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   381     assert(is_young(), "we can only skip BOT updates on young regions");
   382     return ContiguousSpace::allocate(word_size);
   383   }
   385   // If this region is a member of a HeapRegionSeq, the index in that
   386   // sequence, otherwise -1.
   387   uint hrs_index() const { return _hrs_index; }
   389   // The number of bytes marked live in the region in the last marking phase.
   390   size_t marked_bytes()    { return _prev_marked_bytes; }
   391   size_t live_bytes() {
   392     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   393   }
   395   // The number of bytes counted in the next marking.
   396   size_t next_marked_bytes() { return _next_marked_bytes; }
   397   // The number of bytes live wrt the next marking.
   398   size_t next_live_bytes() {
   399     return
   400       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   401   }
   403   // A lower bound on the amount of garbage bytes in the region.
   404   size_t garbage_bytes() {
   405     size_t used_at_mark_start_bytes =
   406       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   407     assert(used_at_mark_start_bytes >= marked_bytes(),
   408            "Can't mark more than we have.");
   409     return used_at_mark_start_bytes - marked_bytes();
   410   }
   412   // Return the amount of bytes we'll reclaim if we collect this
   413   // region. This includes not only the known garbage bytes in the
   414   // region but also any unallocated space in it, i.e., [top, end),
   415   // since it will also be reclaimed if we collect the region.
   416   size_t reclaimable_bytes() {
   417     size_t known_live_bytes = live_bytes();
   418     assert(known_live_bytes <= capacity(), "sanity");
   419     return capacity() - known_live_bytes;
   420   }
   422   // An upper bound on the number of live bytes in the region.
   423   size_t max_live_bytes() { return used() - garbage_bytes(); }
   425   void add_to_marked_bytes(size_t incr_bytes) {
   426     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   427     assert(_next_marked_bytes <= used(), "invariant" );
   428   }
   430   void zero_marked_bytes()      {
   431     _prev_marked_bytes = _next_marked_bytes = 0;
   432   }
   434   bool isHumongous() const { return _humongous_type != NotHumongous; }
   435   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   436   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   437   // For a humongous region, region in which it starts.
   438   HeapRegion* humongous_start_region() const {
   439     return _humongous_start_region;
   440   }
   442   // Return the number of distinct regions that are covered by this region:
   443   // 1 if the region is not humongous, >= 1 if the region is humongous.
   444   uint region_num() const {
   445     if (!isHumongous()) {
   446       return 1U;
   447     } else {
   448       assert(startsHumongous(), "doesn't make sense on HC regions");
   449       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   450       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   451     }
   452   }
   454   // Return the index + 1 of the last HC regions that's associated
   455   // with this HS region.
   456   uint last_hc_index() const {
   457     assert(startsHumongous(), "don't call this otherwise");
   458     return hrs_index() + region_num();
   459   }
   461   // Same as Space::is_in_reserved, but will use the original size of the region.
   462   // The original size is different only for start humongous regions. They get
   463   // their _end set up to be the end of the last continues region of the
   464   // corresponding humongous object.
   465   bool is_in_reserved_raw(const void* p) const {
   466     return _bottom <= p && p < _orig_end;
   467   }
   469   // Makes the current region be a "starts humongous" region, i.e.,
   470   // the first region in a series of one or more contiguous regions
   471   // that will contain a single "humongous" object. The two parameters
   472   // are as follows:
   473   //
   474   // new_top : The new value of the top field of this region which
   475   // points to the end of the humongous object that's being
   476   // allocated. If there is more than one region in the series, top
   477   // will lie beyond this region's original end field and on the last
   478   // region in the series.
   479   //
   480   // new_end : The new value of the end field of this region which
   481   // points to the end of the last region in the series. If there is
   482   // one region in the series (namely: this one) end will be the same
   483   // as the original end of this region.
   484   //
   485   // Updating top and end as described above makes this region look as
   486   // if it spans the entire space taken up by all the regions in the
   487   // series and an single allocation moved its top to new_top. This
   488   // ensures that the space (capacity / allocated) taken up by all
   489   // humongous regions can be calculated by just looking at the
   490   // "starts humongous" regions and by ignoring the "continues
   491   // humongous" regions.
   492   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   494   // Makes the current region be a "continues humongous'
   495   // region. first_hr is the "start humongous" region of the series
   496   // which this region will be part of.
   497   void set_continuesHumongous(HeapRegion* first_hr);
   499   // Unsets the humongous-related fields on the region.
   500   void set_notHumongous();
   502   // If the region has a remembered set, return a pointer to it.
   503   HeapRegionRemSet* rem_set() const {
   504     return _rem_set;
   505   }
   507   // True iff the region is in current collection_set.
   508   bool in_collection_set() const {
   509     return _in_collection_set;
   510   }
   511   void set_in_collection_set(bool b) {
   512     _in_collection_set = b;
   513   }
   514   HeapRegion* next_in_collection_set() {
   515     assert(in_collection_set(), "should only invoke on member of CS.");
   516     assert(_next_in_special_set == NULL ||
   517            _next_in_special_set->in_collection_set(),
   518            "Malformed CS.");
   519     return _next_in_special_set;
   520   }
   521   void set_next_in_collection_set(HeapRegion* r) {
   522     assert(in_collection_set(), "should only invoke on member of CS.");
   523     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   524     _next_in_special_set = r;
   525   }
   527   // Methods used by the HeapRegionSetBase class and subclasses.
   529   // Getter and setter for the next field used to link regions into
   530   // linked lists.
   531   HeapRegion* next()              { return _next; }
   533   void set_next(HeapRegion* next) { _next = next; }
   535   // Every region added to a set is tagged with a reference to that
   536   // set. This is used for doing consistency checking to make sure that
   537   // the contents of a set are as they should be and it's only
   538   // available in non-product builds.
   539 #ifdef ASSERT
   540   void set_containing_set(HeapRegionSetBase* containing_set) {
   541     assert((containing_set == NULL && _containing_set != NULL) ||
   542            (containing_set != NULL && _containing_set == NULL),
   543            err_msg("containing_set: "PTR_FORMAT" "
   544                    "_containing_set: "PTR_FORMAT,
   545                    containing_set, _containing_set));
   547     _containing_set = containing_set;
   548   }
   550   HeapRegionSetBase* containing_set() { return _containing_set; }
   551 #else // ASSERT
   552   void set_containing_set(HeapRegionSetBase* containing_set) { }
   554   // containing_set() is only used in asserts so there's no reason
   555   // to provide a dummy version of it.
   556 #endif // ASSERT
   558   // If we want to remove regions from a list in bulk we can simply tag
   559   // them with the pending_removal tag and call the
   560   // remove_all_pending() method on the list.
   562   bool pending_removal() { return _pending_removal; }
   564   void set_pending_removal(bool pending_removal) {
   565     if (pending_removal) {
   566       assert(!_pending_removal && containing_set() != NULL,
   567              "can only set pending removal to true if it's false and "
   568              "the region belongs to a region set");
   569     } else {
   570       assert( _pending_removal && containing_set() == NULL,
   571               "can only set pending removal to false if it's true and "
   572               "the region does not belong to a region set");
   573     }
   575     _pending_removal = pending_removal;
   576   }
   578   HeapRegion* get_next_young_region() { return _next_young_region; }
   579   void set_next_young_region(HeapRegion* hr) {
   580     _next_young_region = hr;
   581   }
   583   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   584   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   585   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   586   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   588   HeapWord* orig_end() { return _orig_end; }
   590   // Allows logical separation between objects allocated before and after.
   591   void save_marks();
   593   // Reset HR stuff to default values.
   594   void hr_clear(bool par, bool clear_space);
   595   void par_clear();
   597   // Get the start of the unmarked area in this region.
   598   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   599   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   601   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   602   // allocated in the current region before the last call to "save_mark".
   603   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   605   // Note the start or end of marking. This tells the heap region
   606   // that the collector is about to start or has finished (concurrently)
   607   // marking the heap.
   609   // Notify the region that concurrent marking is starting. Initialize
   610   // all fields related to the next marking info.
   611   inline void note_start_of_marking();
   613   // Notify the region that concurrent marking has finished. Copy the
   614   // (now finalized) next marking info fields into the prev marking
   615   // info fields.
   616   inline void note_end_of_marking();
   618   // Notify the region that it will be used as to-space during a GC
   619   // and we are about to start copying objects into it.
   620   inline void note_start_of_copying(bool during_initial_mark);
   622   // Notify the region that it ceases being to-space during a GC and
   623   // we will not copy objects into it any more.
   624   inline void note_end_of_copying(bool during_initial_mark);
   626   // Notify the region that we are about to start processing
   627   // self-forwarded objects during evac failure handling.
   628   void note_self_forwarding_removal_start(bool during_initial_mark,
   629                                           bool during_conc_mark);
   631   // Notify the region that we have finished processing self-forwarded
   632   // objects during evac failure handling.
   633   void note_self_forwarding_removal_end(bool during_initial_mark,
   634                                         bool during_conc_mark,
   635                                         size_t marked_bytes);
   637   // Returns "false" iff no object in the region was allocated when the
   638   // last mark phase ended.
   639   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   641   void reset_during_compaction() {
   642     assert(isHumongous() && startsHumongous(),
   643            "should only be called for starts humongous regions");
   645     zero_marked_bytes();
   646     init_top_at_mark_start();
   647   }
   649   void calc_gc_efficiency(void);
   650   double gc_efficiency() { return _gc_efficiency;}
   652   bool is_young() const     { return _young_type != NotYoung; }
   653   bool is_survivor() const  { return _young_type == Survivor; }
   655   int  young_index_in_cset() const { return _young_index_in_cset; }
   656   void set_young_index_in_cset(int index) {
   657     assert( (index == -1) || is_young(), "pre-condition" );
   658     _young_index_in_cset = index;
   659   }
   661   int age_in_surv_rate_group() {
   662     assert( _surv_rate_group != NULL, "pre-condition" );
   663     assert( _age_index > -1, "pre-condition" );
   664     return _surv_rate_group->age_in_group(_age_index);
   665   }
   667   void record_surv_words_in_group(size_t words_survived) {
   668     assert( _surv_rate_group != NULL, "pre-condition" );
   669     assert( _age_index > -1, "pre-condition" );
   670     int age_in_group = age_in_surv_rate_group();
   671     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   672   }
   674   int age_in_surv_rate_group_cond() {
   675     if (_surv_rate_group != NULL)
   676       return age_in_surv_rate_group();
   677     else
   678       return -1;
   679   }
   681   SurvRateGroup* surv_rate_group() {
   682     return _surv_rate_group;
   683   }
   685   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   686     assert( surv_rate_group != NULL, "pre-condition" );
   687     assert( _surv_rate_group == NULL, "pre-condition" );
   688     assert( is_young(), "pre-condition" );
   690     _surv_rate_group = surv_rate_group;
   691     _age_index = surv_rate_group->next_age_index();
   692   }
   694   void uninstall_surv_rate_group() {
   695     if (_surv_rate_group != NULL) {
   696       assert( _age_index > -1, "pre-condition" );
   697       assert( is_young(), "pre-condition" );
   699       _surv_rate_group = NULL;
   700       _age_index = -1;
   701     } else {
   702       assert( _age_index == -1, "pre-condition" );
   703     }
   704   }
   706   void set_young() { set_young_type(Young); }
   708   void set_survivor() { set_young_type(Survivor); }
   710   void set_not_young() { set_young_type(NotYoung); }
   712   // Determine if an object has been allocated since the last
   713   // mark performed by the collector. This returns true iff the object
   714   // is within the unmarked area of the region.
   715   bool obj_allocated_since_prev_marking(oop obj) const {
   716     return (HeapWord *) obj >= prev_top_at_mark_start();
   717   }
   718   bool obj_allocated_since_next_marking(oop obj) const {
   719     return (HeapWord *) obj >= next_top_at_mark_start();
   720   }
   722   // For parallel heapRegion traversal.
   723   bool claimHeapRegion(int claimValue);
   724   jint claim_value() { return _claimed; }
   725   // Use this carefully: only when you're sure no one is claiming...
   726   void set_claim_value(int claimValue) { _claimed = claimValue; }
   728   // Returns the "evacuation_failed" property of the region.
   729   bool evacuation_failed() { return _evacuation_failed; }
   731   // Sets the "evacuation_failed" property of the region.
   732   void set_evacuation_failed(bool b) {
   733     _evacuation_failed = b;
   735     if (b) {
   736       _next_marked_bytes = 0;
   737     }
   738   }
   740   // Requires that "mr" be entirely within the region.
   741   // Apply "cl->do_object" to all objects that intersect with "mr".
   742   // If the iteration encounters an unparseable portion of the region,
   743   // or if "cl->abort()" is true after a closure application,
   744   // terminate the iteration and return the address of the start of the
   745   // subregion that isn't done.  (The two can be distinguished by querying
   746   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   747   // completed.
   748   HeapWord*
   749   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   751   // filter_young: if true and the region is a young region then we
   752   // skip the iteration.
   753   // card_ptr: if not NULL, and we decide that the card is not young
   754   // and we iterate over it, we'll clean the card before we start the
   755   // iteration.
   756   HeapWord*
   757   oops_on_card_seq_iterate_careful(MemRegion mr,
   758                                    FilterOutOfRegionClosure* cl,
   759                                    bool filter_young,
   760                                    jbyte* card_ptr);
   762   // A version of block start that is guaranteed to find *some* block
   763   // boundary at or before "p", but does not object iteration, and may
   764   // therefore be used safely when the heap is unparseable.
   765   HeapWord* block_start_careful(const void* p) const {
   766     return _offsets.block_start_careful(p);
   767   }
   769   // Requires that "addr" is within the region.  Returns the start of the
   770   // first ("careful") block that starts at or after "addr", or else the
   771   // "end" of the region if there is no such block.
   772   HeapWord* next_block_start_careful(HeapWord* addr);
   774   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   775   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   776   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   778   void set_recorded_rs_length(size_t rs_length) {
   779     _recorded_rs_length = rs_length;
   780   }
   782   void set_predicted_elapsed_time_ms(double ms) {
   783     _predicted_elapsed_time_ms = ms;
   784   }
   786   void set_predicted_bytes_to_copy(size_t bytes) {
   787     _predicted_bytes_to_copy = bytes;
   788   }
   790 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   791   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   792   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   794   virtual CompactibleSpace* next_compaction_space() const;
   796   virtual void reset_after_compaction();
   798   void print() const;
   799   void print_on(outputStream* st) const;
   801   // vo == UsePrevMarking  -> use "prev" marking information,
   802   // vo == UseNextMarking -> use "next" marking information
   803   // vo == UseMarkWord    -> use the mark word in the object header
   804   //
   805   // NOTE: Only the "prev" marking information is guaranteed to be
   806   // consistent most of the time, so most calls to this should use
   807   // vo == UsePrevMarking.
   808   // Currently, there is only one case where this is called with
   809   // vo == UseNextMarking, which is to verify the "next" marking
   810   // information at the end of remark.
   811   // Currently there is only one place where this is called with
   812   // vo == UseMarkWord, which is to verify the marking during a
   813   // full GC.
   814   void verify(VerifyOption vo, bool *failures) const;
   816   // Override; it uses the "prev" marking information
   817   virtual void verify() const;
   818 };
   820 // HeapRegionClosure is used for iterating over regions.
   821 // Terminates the iteration when the "doHeapRegion" method returns "true".
   822 class HeapRegionClosure : public StackObj {
   823   friend class HeapRegionSeq;
   824   friend class G1CollectedHeap;
   826   bool _complete;
   827   void incomplete() { _complete = false; }
   829  public:
   830   HeapRegionClosure(): _complete(true) {}
   832   // Typically called on each region until it returns true.
   833   virtual bool doHeapRegion(HeapRegion* r) = 0;
   835   // True after iteration if the closure was applied to all heap regions
   836   // and returned "false" in all cases.
   837   bool complete() { return _complete; }
   838 };
   840 #endif // SERIALGC
   842 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial