src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4065
8fbf05030e24
child 5548
5888334c9c24
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    35 #include "utilities/macros.hpp"
    37 #if INCLUDE_ALL_GCS
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class CompactibleSpace;
    50 class ContiguousSpace;
    51 class HeapRegionRemSet;
    52 class HeapRegionRemSetIterator;
    53 class HeapRegion;
    54 class HeapRegionSetBase;
    56 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    57 #define HR_FORMAT_PARAMS(_hr_) \
    58                 (_hr_)->hrs_index(), \
    59                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    60                 (_hr_)->startsHumongous() ? "HS" : \
    61                 (_hr_)->continuesHumongous() ? "HC" : \
    62                 !(_hr_)->is_empty() ? "O" : "F", \
    63                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    65 // sentinel value for hrs_index
    66 #define G1_NULL_HRS_INDEX ((uint) -1)
    68 // A dirty card to oop closure for heap regions. It
    69 // knows how to get the G1 heap and how to use the bitmap
    70 // in the concurrent marker used by G1 to filter remembered
    71 // sets.
    73 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    74 public:
    75   // Specification of possible DirtyCardToOopClosure filtering.
    76   enum FilterKind {
    77     NoFilterKind,
    78     IntoCSFilterKind,
    79     OutOfRegionFilterKind
    80   };
    82 protected:
    83   HeapRegion* _hr;
    84   FilterKind _fk;
    85   G1CollectedHeap* _g1;
    87   void walk_mem_region_with_cl(MemRegion mr,
    88                                HeapWord* bottom, HeapWord* top,
    89                                ExtendedOopClosure* cl);
    91   // We don't specialize this for FilteringClosure; filtering is handled by
    92   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    93   // warning.
    94   void walk_mem_region_with_cl(MemRegion mr,
    95                                HeapWord* bottom, HeapWord* top,
    96                                FilteringClosure* cl) {
    97     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    98                                              (ExtendedOopClosure*)cl);
    99   }
   101   // Get the actual top of the area on which the closure will
   102   // operate, given where the top is assumed to be (the end of the
   103   // memory region passed to do_MemRegion) and where the object
   104   // at the top is assumed to start. For example, an object may
   105   // start at the top but actually extend past the assumed top,
   106   // in which case the top becomes the end of the object.
   107   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   108     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   109   }
   111   // Walk the given memory region from bottom to (actual) top
   112   // looking for objects and applying the oop closure (_cl) to
   113   // them. The base implementation of this treats the area as
   114   // blocks, where a block may or may not be an object. Sub-
   115   // classes should override this to provide more accurate
   116   // or possibly more efficient walking.
   117   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   118     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   119   }
   121 public:
   122   HeapRegionDCTOC(G1CollectedHeap* g1,
   123                   HeapRegion* hr, ExtendedOopClosure* cl,
   124                   CardTableModRefBS::PrecisionStyle precision,
   125                   FilterKind fk);
   126 };
   128 // The complicating factor is that BlockOffsetTable diverged
   129 // significantly, and we need functionality that is only in the G1 version.
   130 // So I copied that code, which led to an alternate G1 version of
   131 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   132 // be reconciled, then G1OffsetTableContigSpace could go away.
   134 // The idea behind time stamps is the following. Doing a save_marks on
   135 // all regions at every GC pause is time consuming (if I remember
   136 // well, 10ms or so). So, we would like to do that only for regions
   137 // that are GC alloc regions. To achieve this, we use time
   138 // stamps. For every evacuation pause, G1CollectedHeap generates a
   139 // unique time stamp (essentially a counter that gets
   140 // incremented). Every time we want to call save_marks on a region,
   141 // we set the saved_mark_word to top and also copy the current GC
   142 // time stamp to the time stamp field of the space. Reading the
   143 // saved_mark_word involves checking the time stamp of the
   144 // region. If it is the same as the current GC time stamp, then we
   145 // can safely read the saved_mark_word field, as it is valid. If the
   146 // time stamp of the region is not the same as the current GC time
   147 // stamp, then we instead read top, as the saved_mark_word field is
   148 // invalid. Time stamps (on the regions and also on the
   149 // G1CollectedHeap) are reset at every cleanup (we iterate over
   150 // the regions anyway) and at the end of a Full GC. The current scheme
   151 // that uses sequential unsigned ints will fail only if we have 4b
   152 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   154 class G1OffsetTableContigSpace: public ContiguousSpace {
   155   friend class VMStructs;
   156  protected:
   157   G1BlockOffsetArrayContigSpace _offsets;
   158   Mutex _par_alloc_lock;
   159   volatile unsigned _gc_time_stamp;
   160   // When we need to retire an allocation region, while other threads
   161   // are also concurrently trying to allocate into it, we typically
   162   // allocate a dummy object at the end of the region to ensure that
   163   // no more allocations can take place in it. However, sometimes we
   164   // want to know where the end of the last "real" object we allocated
   165   // into the region was and this is what this keeps track.
   166   HeapWord* _pre_dummy_top;
   168  public:
   169   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   170                            MemRegion mr);
   172   void set_bottom(HeapWord* value);
   173   void set_end(HeapWord* value);
   175   virtual HeapWord* saved_mark_word() const;
   176   virtual void set_saved_mark();
   177   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   178   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   180   // See the comment above in the declaration of _pre_dummy_top for an
   181   // explanation of what it is.
   182   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   183     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   184     _pre_dummy_top = pre_dummy_top;
   185   }
   186   HeapWord* pre_dummy_top() {
   187     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   188   }
   189   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   191   virtual void clear(bool mangle_space);
   193   HeapWord* block_start(const void* p);
   194   HeapWord* block_start_const(const void* p) const;
   196   // Add offset table update.
   197   virtual HeapWord* allocate(size_t word_size);
   198   HeapWord* par_allocate(size_t word_size);
   200   // MarkSweep support phase3
   201   virtual HeapWord* initialize_threshold();
   202   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   204   virtual void print() const;
   206   void reset_bot() {
   207     _offsets.zero_bottom_entry();
   208     _offsets.initialize_threshold();
   209   }
   211   void update_bot_for_object(HeapWord* start, size_t word_size) {
   212     _offsets.alloc_block(start, word_size);
   213   }
   215   void print_bot_on(outputStream* out) {
   216     _offsets.print_on(out);
   217   }
   218 };
   220 class HeapRegion: public G1OffsetTableContigSpace {
   221   friend class VMStructs;
   222  private:
   224   enum HumongousType {
   225     NotHumongous = 0,
   226     StartsHumongous,
   227     ContinuesHumongous
   228   };
   230   // Requires that the region "mr" be dense with objects, and begin and end
   231   // with an object.
   232   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   234   // The remembered set for this region.
   235   // (Might want to make this "inline" later, to avoid some alloc failure
   236   // issues.)
   237   HeapRegionRemSet* _rem_set;
   239   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   241  protected:
   242   // The index of this region in the heap region sequence.
   243   uint  _hrs_index;
   245   HumongousType _humongous_type;
   246   // For a humongous region, region in which it starts.
   247   HeapRegion* _humongous_start_region;
   248   // For the start region of a humongous sequence, it's original end().
   249   HeapWord* _orig_end;
   251   // True iff the region is in current collection_set.
   252   bool _in_collection_set;
   254   // True iff an attempt to evacuate an object in the region failed.
   255   bool _evacuation_failed;
   257   // A heap region may be a member one of a number of special subsets, each
   258   // represented as linked lists through the field below.  Currently, these
   259   // sets include:
   260   //   The collection set.
   261   //   The set of allocation regions used in a collection pause.
   262   //   Spaces that may contain gray objects.
   263   HeapRegion* _next_in_special_set;
   265   // next region in the young "generation" region set
   266   HeapRegion* _next_young_region;
   268   // Next region whose cards need cleaning
   269   HeapRegion* _next_dirty_cards_region;
   271   // Fields used by the HeapRegionSetBase class and subclasses.
   272   HeapRegion* _next;
   273 #ifdef ASSERT
   274   HeapRegionSetBase* _containing_set;
   275 #endif // ASSERT
   276   bool _pending_removal;
   278   // For parallel heapRegion traversal.
   279   jint _claimed;
   281   // We use concurrent marking to determine the amount of live data
   282   // in each heap region.
   283   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   284   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   286   // The calculated GC efficiency of the region.
   287   double _gc_efficiency;
   289   enum YoungType {
   290     NotYoung,                   // a region is not young
   291     Young,                      // a region is young
   292     Survivor                    // a region is young and it contains survivors
   293   };
   295   volatile YoungType _young_type;
   296   int  _young_index_in_cset;
   297   SurvRateGroup* _surv_rate_group;
   298   int  _age_index;
   300   // The start of the unmarked area. The unmarked area extends from this
   301   // word until the top and/or end of the region, and is the part
   302   // of the region for which no marking was done, i.e. objects may
   303   // have been allocated in this part since the last mark phase.
   304   // "prev" is the top at the start of the last completed marking.
   305   // "next" is the top at the start of the in-progress marking (if any.)
   306   HeapWord* _prev_top_at_mark_start;
   307   HeapWord* _next_top_at_mark_start;
   308   // If a collection pause is in progress, this is the top at the start
   309   // of that pause.
   311   void init_top_at_mark_start() {
   312     assert(_prev_marked_bytes == 0 &&
   313            _next_marked_bytes == 0,
   314            "Must be called after zero_marked_bytes.");
   315     HeapWord* bot = bottom();
   316     _prev_top_at_mark_start = bot;
   317     _next_top_at_mark_start = bot;
   318   }
   320   void set_young_type(YoungType new_type) {
   321     //assert(_young_type != new_type, "setting the same type" );
   322     // TODO: add more assertions here
   323     _young_type = new_type;
   324   }
   326   // Cached attributes used in the collection set policy information
   328   // The RSet length that was added to the total value
   329   // for the collection set.
   330   size_t _recorded_rs_length;
   332   // The predicted elapsed time that was added to total value
   333   // for the collection set.
   334   double _predicted_elapsed_time_ms;
   336   // The predicted number of bytes to copy that was added to
   337   // the total value for the collection set.
   338   size_t _predicted_bytes_to_copy;
   340  public:
   341   HeapRegion(uint hrs_index,
   342              G1BlockOffsetSharedArray* sharedOffsetArray,
   343              MemRegion mr);
   345   static int    LogOfHRGrainBytes;
   346   static int    LogOfHRGrainWords;
   348   static size_t GrainBytes;
   349   static size_t GrainWords;
   350   static size_t CardsPerRegion;
   352   static size_t align_up_to_region_byte_size(size_t sz) {
   353     return (sz + (size_t) GrainBytes - 1) &
   354                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   355   }
   357   // It sets up the heap region size (GrainBytes / GrainWords), as
   358   // well as other related fields that are based on the heap region
   359   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   360   // CardsPerRegion). All those fields are considered constant
   361   // throughout the JVM's execution, therefore they should only be set
   362   // up once during initialization time.
   363   static void setup_heap_region_size(uintx min_heap_size);
   365   enum ClaimValues {
   366     InitialClaimValue          = 0,
   367     FinalCountClaimValue       = 1,
   368     NoteEndClaimValue          = 2,
   369     ScrubRemSetClaimValue      = 3,
   370     ParVerifyClaimValue        = 4,
   371     RebuildRSClaimValue        = 5,
   372     ParEvacFailureClaimValue   = 6,
   373     AggregateCountClaimValue   = 7,
   374     VerifyCountClaimValue      = 8
   375   };
   377   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   378     assert(is_young(), "we can only skip BOT updates on young regions");
   379     return ContiguousSpace::par_allocate(word_size);
   380   }
   381   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   382     assert(is_young(), "we can only skip BOT updates on young regions");
   383     return ContiguousSpace::allocate(word_size);
   384   }
   386   // If this region is a member of a HeapRegionSeq, the index in that
   387   // sequence, otherwise -1.
   388   uint hrs_index() const { return _hrs_index; }
   390   // The number of bytes marked live in the region in the last marking phase.
   391   size_t marked_bytes()    { return _prev_marked_bytes; }
   392   size_t live_bytes() {
   393     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   394   }
   396   // The number of bytes counted in the next marking.
   397   size_t next_marked_bytes() { return _next_marked_bytes; }
   398   // The number of bytes live wrt the next marking.
   399   size_t next_live_bytes() {
   400     return
   401       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   402   }
   404   // A lower bound on the amount of garbage bytes in the region.
   405   size_t garbage_bytes() {
   406     size_t used_at_mark_start_bytes =
   407       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   408     assert(used_at_mark_start_bytes >= marked_bytes(),
   409            "Can't mark more than we have.");
   410     return used_at_mark_start_bytes - marked_bytes();
   411   }
   413   // Return the amount of bytes we'll reclaim if we collect this
   414   // region. This includes not only the known garbage bytes in the
   415   // region but also any unallocated space in it, i.e., [top, end),
   416   // since it will also be reclaimed if we collect the region.
   417   size_t reclaimable_bytes() {
   418     size_t known_live_bytes = live_bytes();
   419     assert(known_live_bytes <= capacity(), "sanity");
   420     return capacity() - known_live_bytes;
   421   }
   423   // An upper bound on the number of live bytes in the region.
   424   size_t max_live_bytes() { return used() - garbage_bytes(); }
   426   void add_to_marked_bytes(size_t incr_bytes) {
   427     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   428     assert(_next_marked_bytes <= used(), "invariant" );
   429   }
   431   void zero_marked_bytes()      {
   432     _prev_marked_bytes = _next_marked_bytes = 0;
   433   }
   435   bool isHumongous() const { return _humongous_type != NotHumongous; }
   436   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   437   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   438   // For a humongous region, region in which it starts.
   439   HeapRegion* humongous_start_region() const {
   440     return _humongous_start_region;
   441   }
   443   // Return the number of distinct regions that are covered by this region:
   444   // 1 if the region is not humongous, >= 1 if the region is humongous.
   445   uint region_num() const {
   446     if (!isHumongous()) {
   447       return 1U;
   448     } else {
   449       assert(startsHumongous(), "doesn't make sense on HC regions");
   450       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   451       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   452     }
   453   }
   455   // Return the index + 1 of the last HC regions that's associated
   456   // with this HS region.
   457   uint last_hc_index() const {
   458     assert(startsHumongous(), "don't call this otherwise");
   459     return hrs_index() + region_num();
   460   }
   462   // Same as Space::is_in_reserved, but will use the original size of the region.
   463   // The original size is different only for start humongous regions. They get
   464   // their _end set up to be the end of the last continues region of the
   465   // corresponding humongous object.
   466   bool is_in_reserved_raw(const void* p) const {
   467     return _bottom <= p && p < _orig_end;
   468   }
   470   // Makes the current region be a "starts humongous" region, i.e.,
   471   // the first region in a series of one or more contiguous regions
   472   // that will contain a single "humongous" object. The two parameters
   473   // are as follows:
   474   //
   475   // new_top : The new value of the top field of this region which
   476   // points to the end of the humongous object that's being
   477   // allocated. If there is more than one region in the series, top
   478   // will lie beyond this region's original end field and on the last
   479   // region in the series.
   480   //
   481   // new_end : The new value of the end field of this region which
   482   // points to the end of the last region in the series. If there is
   483   // one region in the series (namely: this one) end will be the same
   484   // as the original end of this region.
   485   //
   486   // Updating top and end as described above makes this region look as
   487   // if it spans the entire space taken up by all the regions in the
   488   // series and an single allocation moved its top to new_top. This
   489   // ensures that the space (capacity / allocated) taken up by all
   490   // humongous regions can be calculated by just looking at the
   491   // "starts humongous" regions and by ignoring the "continues
   492   // humongous" regions.
   493   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   495   // Makes the current region be a "continues humongous'
   496   // region. first_hr is the "start humongous" region of the series
   497   // which this region will be part of.
   498   void set_continuesHumongous(HeapRegion* first_hr);
   500   // Unsets the humongous-related fields on the region.
   501   void set_notHumongous();
   503   // If the region has a remembered set, return a pointer to it.
   504   HeapRegionRemSet* rem_set() const {
   505     return _rem_set;
   506   }
   508   // True iff the region is in current collection_set.
   509   bool in_collection_set() const {
   510     return _in_collection_set;
   511   }
   512   void set_in_collection_set(bool b) {
   513     _in_collection_set = b;
   514   }
   515   HeapRegion* next_in_collection_set() {
   516     assert(in_collection_set(), "should only invoke on member of CS.");
   517     assert(_next_in_special_set == NULL ||
   518            _next_in_special_set->in_collection_set(),
   519            "Malformed CS.");
   520     return _next_in_special_set;
   521   }
   522   void set_next_in_collection_set(HeapRegion* r) {
   523     assert(in_collection_set(), "should only invoke on member of CS.");
   524     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   525     _next_in_special_set = r;
   526   }
   528   // Methods used by the HeapRegionSetBase class and subclasses.
   530   // Getter and setter for the next field used to link regions into
   531   // linked lists.
   532   HeapRegion* next()              { return _next; }
   534   void set_next(HeapRegion* next) { _next = next; }
   536   // Every region added to a set is tagged with a reference to that
   537   // set. This is used for doing consistency checking to make sure that
   538   // the contents of a set are as they should be and it's only
   539   // available in non-product builds.
   540 #ifdef ASSERT
   541   void set_containing_set(HeapRegionSetBase* containing_set) {
   542     assert((containing_set == NULL && _containing_set != NULL) ||
   543            (containing_set != NULL && _containing_set == NULL),
   544            err_msg("containing_set: "PTR_FORMAT" "
   545                    "_containing_set: "PTR_FORMAT,
   546                    containing_set, _containing_set));
   548     _containing_set = containing_set;
   549   }
   551   HeapRegionSetBase* containing_set() { return _containing_set; }
   552 #else // ASSERT
   553   void set_containing_set(HeapRegionSetBase* containing_set) { }
   555   // containing_set() is only used in asserts so there's no reason
   556   // to provide a dummy version of it.
   557 #endif // ASSERT
   559   // If we want to remove regions from a list in bulk we can simply tag
   560   // them with the pending_removal tag and call the
   561   // remove_all_pending() method on the list.
   563   bool pending_removal() { return _pending_removal; }
   565   void set_pending_removal(bool pending_removal) {
   566     if (pending_removal) {
   567       assert(!_pending_removal && containing_set() != NULL,
   568              "can only set pending removal to true if it's false and "
   569              "the region belongs to a region set");
   570     } else {
   571       assert( _pending_removal && containing_set() == NULL,
   572               "can only set pending removal to false if it's true and "
   573               "the region does not belong to a region set");
   574     }
   576     _pending_removal = pending_removal;
   577   }
   579   HeapRegion* get_next_young_region() { return _next_young_region; }
   580   void set_next_young_region(HeapRegion* hr) {
   581     _next_young_region = hr;
   582   }
   584   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   585   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   586   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   587   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   589   HeapWord* orig_end() { return _orig_end; }
   591   // Allows logical separation between objects allocated before and after.
   592   void save_marks();
   594   // Reset HR stuff to default values.
   595   void hr_clear(bool par, bool clear_space);
   596   void par_clear();
   598   // Get the start of the unmarked area in this region.
   599   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   600   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   602   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   603   // allocated in the current region before the last call to "save_mark".
   604   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   606   // Note the start or end of marking. This tells the heap region
   607   // that the collector is about to start or has finished (concurrently)
   608   // marking the heap.
   610   // Notify the region that concurrent marking is starting. Initialize
   611   // all fields related to the next marking info.
   612   inline void note_start_of_marking();
   614   // Notify the region that concurrent marking has finished. Copy the
   615   // (now finalized) next marking info fields into the prev marking
   616   // info fields.
   617   inline void note_end_of_marking();
   619   // Notify the region that it will be used as to-space during a GC
   620   // and we are about to start copying objects into it.
   621   inline void note_start_of_copying(bool during_initial_mark);
   623   // Notify the region that it ceases being to-space during a GC and
   624   // we will not copy objects into it any more.
   625   inline void note_end_of_copying(bool during_initial_mark);
   627   // Notify the region that we are about to start processing
   628   // self-forwarded objects during evac failure handling.
   629   void note_self_forwarding_removal_start(bool during_initial_mark,
   630                                           bool during_conc_mark);
   632   // Notify the region that we have finished processing self-forwarded
   633   // objects during evac failure handling.
   634   void note_self_forwarding_removal_end(bool during_initial_mark,
   635                                         bool during_conc_mark,
   636                                         size_t marked_bytes);
   638   // Returns "false" iff no object in the region was allocated when the
   639   // last mark phase ended.
   640   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   642   void reset_during_compaction() {
   643     assert(isHumongous() && startsHumongous(),
   644            "should only be called for starts humongous regions");
   646     zero_marked_bytes();
   647     init_top_at_mark_start();
   648   }
   650   void calc_gc_efficiency(void);
   651   double gc_efficiency() { return _gc_efficiency;}
   653   bool is_young() const     { return _young_type != NotYoung; }
   654   bool is_survivor() const  { return _young_type == Survivor; }
   656   int  young_index_in_cset() const { return _young_index_in_cset; }
   657   void set_young_index_in_cset(int index) {
   658     assert( (index == -1) || is_young(), "pre-condition" );
   659     _young_index_in_cset = index;
   660   }
   662   int age_in_surv_rate_group() {
   663     assert( _surv_rate_group != NULL, "pre-condition" );
   664     assert( _age_index > -1, "pre-condition" );
   665     return _surv_rate_group->age_in_group(_age_index);
   666   }
   668   void record_surv_words_in_group(size_t words_survived) {
   669     assert( _surv_rate_group != NULL, "pre-condition" );
   670     assert( _age_index > -1, "pre-condition" );
   671     int age_in_group = age_in_surv_rate_group();
   672     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   673   }
   675   int age_in_surv_rate_group_cond() {
   676     if (_surv_rate_group != NULL)
   677       return age_in_surv_rate_group();
   678     else
   679       return -1;
   680   }
   682   SurvRateGroup* surv_rate_group() {
   683     return _surv_rate_group;
   684   }
   686   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   687     assert( surv_rate_group != NULL, "pre-condition" );
   688     assert( _surv_rate_group == NULL, "pre-condition" );
   689     assert( is_young(), "pre-condition" );
   691     _surv_rate_group = surv_rate_group;
   692     _age_index = surv_rate_group->next_age_index();
   693   }
   695   void uninstall_surv_rate_group() {
   696     if (_surv_rate_group != NULL) {
   697       assert( _age_index > -1, "pre-condition" );
   698       assert( is_young(), "pre-condition" );
   700       _surv_rate_group = NULL;
   701       _age_index = -1;
   702     } else {
   703       assert( _age_index == -1, "pre-condition" );
   704     }
   705   }
   707   void set_young() { set_young_type(Young); }
   709   void set_survivor() { set_young_type(Survivor); }
   711   void set_not_young() { set_young_type(NotYoung); }
   713   // Determine if an object has been allocated since the last
   714   // mark performed by the collector. This returns true iff the object
   715   // is within the unmarked area of the region.
   716   bool obj_allocated_since_prev_marking(oop obj) const {
   717     return (HeapWord *) obj >= prev_top_at_mark_start();
   718   }
   719   bool obj_allocated_since_next_marking(oop obj) const {
   720     return (HeapWord *) obj >= next_top_at_mark_start();
   721   }
   723   // For parallel heapRegion traversal.
   724   bool claimHeapRegion(int claimValue);
   725   jint claim_value() { return _claimed; }
   726   // Use this carefully: only when you're sure no one is claiming...
   727   void set_claim_value(int claimValue) { _claimed = claimValue; }
   729   // Returns the "evacuation_failed" property of the region.
   730   bool evacuation_failed() { return _evacuation_failed; }
   732   // Sets the "evacuation_failed" property of the region.
   733   void set_evacuation_failed(bool b) {
   734     _evacuation_failed = b;
   736     if (b) {
   737       _next_marked_bytes = 0;
   738     }
   739   }
   741   // Requires that "mr" be entirely within the region.
   742   // Apply "cl->do_object" to all objects that intersect with "mr".
   743   // If the iteration encounters an unparseable portion of the region,
   744   // or if "cl->abort()" is true after a closure application,
   745   // terminate the iteration and return the address of the start of the
   746   // subregion that isn't done.  (The two can be distinguished by querying
   747   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   748   // completed.
   749   HeapWord*
   750   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   752   // filter_young: if true and the region is a young region then we
   753   // skip the iteration.
   754   // card_ptr: if not NULL, and we decide that the card is not young
   755   // and we iterate over it, we'll clean the card before we start the
   756   // iteration.
   757   HeapWord*
   758   oops_on_card_seq_iterate_careful(MemRegion mr,
   759                                    FilterOutOfRegionClosure* cl,
   760                                    bool filter_young,
   761                                    jbyte* card_ptr);
   763   // A version of block start that is guaranteed to find *some* block
   764   // boundary at or before "p", but does not object iteration, and may
   765   // therefore be used safely when the heap is unparseable.
   766   HeapWord* block_start_careful(const void* p) const {
   767     return _offsets.block_start_careful(p);
   768   }
   770   // Requires that "addr" is within the region.  Returns the start of the
   771   // first ("careful") block that starts at or after "addr", or else the
   772   // "end" of the region if there is no such block.
   773   HeapWord* next_block_start_careful(HeapWord* addr);
   775   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   776   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   777   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   779   void set_recorded_rs_length(size_t rs_length) {
   780     _recorded_rs_length = rs_length;
   781   }
   783   void set_predicted_elapsed_time_ms(double ms) {
   784     _predicted_elapsed_time_ms = ms;
   785   }
   787   void set_predicted_bytes_to_copy(size_t bytes) {
   788     _predicted_bytes_to_copy = bytes;
   789   }
   791 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   792   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   793   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   795   virtual CompactibleSpace* next_compaction_space() const;
   797   virtual void reset_after_compaction();
   799   void print() const;
   800   void print_on(outputStream* st) const;
   802   // vo == UsePrevMarking  -> use "prev" marking information,
   803   // vo == UseNextMarking -> use "next" marking information
   804   // vo == UseMarkWord    -> use the mark word in the object header
   805   //
   806   // NOTE: Only the "prev" marking information is guaranteed to be
   807   // consistent most of the time, so most calls to this should use
   808   // vo == UsePrevMarking.
   809   // Currently, there is only one case where this is called with
   810   // vo == UseNextMarking, which is to verify the "next" marking
   811   // information at the end of remark.
   812   // Currently there is only one place where this is called with
   813   // vo == UseMarkWord, which is to verify the marking during a
   814   // full GC.
   815   void verify(VerifyOption vo, bool *failures) const;
   817   // Override; it uses the "prev" marking information
   818   virtual void verify() const;
   819 };
   821 // HeapRegionClosure is used for iterating over regions.
   822 // Terminates the iteration when the "doHeapRegion" method returns "true".
   823 class HeapRegionClosure : public StackObj {
   824   friend class HeapRegionSeq;
   825   friend class G1CollectedHeap;
   827   bool _complete;
   828   void incomplete() { _complete = false; }
   830  public:
   831   HeapRegionClosure(): _complete(true) {}
   833   // Typically called on each region until it returns true.
   834   virtual bool doHeapRegion(HeapRegion* r) = 0;
   836   // True after iteration if the closure was applied to all heap regions
   837   // and returned "false" in all cases.
   838   bool complete() { return _complete; }
   839 };
   841 #endif // INCLUDE_ALL_GCS
   843 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial