src/cpu/sparc/vm/sparc.ad

Mon, 05 Mar 2012 14:19:00 -0500

author
coleenp
date
Mon, 05 Mar 2012 14:19:00 -0500
changeset 3627
8a48c2906f91
parent 3406
e9a5e0a812c8
child 3637
61b82be3b1ff
permissions
-rw-r--r--

7150046: SIGILL on sparcv9 fastdebug
Summary: Breakpoint needs to do 64-bit compare for pointers on sparcv9
Reviewed-by: coleenp, never
Contributed-by: dean.long@oracle.com

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   int bit_width = width * 8;
   682   jlong elt_val = con;
   683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   684   jlong val = elt_val;
   685   for (int i = 0; i < count - 1; i++) {
   686     val <<= bit_width;
   687     val |= elt_val;
   688   }
   689   jdouble dval = *((jdouble*) &val);  // coerce to double type
   690   return dval;
   691 }
   693 // Standard Sparc opcode form2 field breakdown
   694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   696   int op = (f30 << 30) |
   697            (f29 << 29) |
   698            (f25 << 25) |
   699            (f22 << 22) |
   700            (f20 << 20) |
   701            (f19 << 19) |
   702            (f0  <<  0);
   703   cbuf.insts()->emit_int32(op);
   704 }
   706 // Standard Sparc opcode form2 field breakdown
   707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   708   f0 >>= 10;           // Drop 10 bits
   709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   710   int op = (f30 << 30) |
   711            (f25 << 25) |
   712            (f22 << 22) |
   713            (f0  <<  0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 // Standard Sparc opcode form3 field breakdown
   718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   719   int op = (f30 << 30) |
   720            (f25 << 25) |
   721            (f19 << 19) |
   722            (f14 << 14) |
   723            (f5  <<  5) |
   724            (f0  <<  0);
   725   cbuf.insts()->emit_int32(op);
   726 }
   728 // Standard Sparc opcode form3 field breakdown
   729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   730   simm13 &= (1<<13)-1; // Mask to 13 bits
   731   int op = (f30 << 30) |
   732            (f25 << 25) |
   733            (f19 << 19) |
   734            (f14 << 14) |
   735            (1   << 13) | // bit to indicate immediate-mode
   736            (simm13<<0);
   737   cbuf.insts()->emit_int32(op);
   738 }
   740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   741   simm10 &= (1<<10)-1; // Mask to 10 bits
   742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   743 }
   745 #ifdef ASSERT
   746 // Helper function for VerifyOops in emit_form3_mem_reg
   747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   748   warning("VerifyOops encountered unexpected instruction:");
   749   n->dump(2);
   750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   751 }
   752 #endif
   755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   758 #ifdef ASSERT
   759   // The following code implements the +VerifyOops feature.
   760   // It verifies oop values which are loaded into or stored out of
   761   // the current method activation.  +VerifyOops complements techniques
   762   // like ScavengeALot, because it eagerly inspects oops in transit,
   763   // as they enter or leave the stack, as opposed to ScavengeALot,
   764   // which inspects oops "at rest", in the stack or heap, at safepoints.
   765   // For this reason, +VerifyOops can sometimes detect bugs very close
   766   // to their point of creation.  It can also serve as a cross-check
   767   // on the validity of oop maps, when used toegether with ScavengeALot.
   769   // It would be good to verify oops at other points, especially
   770   // when an oop is used as a base pointer for a load or store.
   771   // This is presently difficult, because it is hard to know when
   772   // a base address is biased or not.  (If we had such information,
   773   // it would be easy and useful to make a two-argument version of
   774   // verify_oop which unbiases the base, and performs verification.)
   776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   777   bool is_verified_oop_base  = false;
   778   bool is_verified_oop_load  = false;
   779   bool is_verified_oop_store = false;
   780   int tmp_enc = -1;
   781   if (VerifyOops && src1_enc != R_SP_enc) {
   782     // classify the op, mainly for an assert check
   783     int st_op = 0, ld_op = 0;
   784     switch (primary) {
   785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   789     case Assembler::std_op3:  st_op = Op_StoreL; break;
   790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   805     default: ShouldNotReachHere();
   806     }
   807     if (tertiary == REGP_OP) {
   808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   810       else                          ShouldNotReachHere();
   811       if (st_op) {
   812         // a store
   813         // inputs are (0:control, 1:memory, 2:address, 3:value)
   814         Node* n2 = n->in(3);
   815         if (n2 != NULL) {
   816           const Type* t = n2->bottom_type();
   817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818         }
   819       } else {
   820         // a load
   821         const Type* t = n->bottom_type();
   822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823       }
   824     }
   826     if (ld_op) {
   827       // a Load
   828       // inputs are (0:control, 1:memory, 2:address)
   829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   843           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   845           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   846           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   847           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   848           !(n->rule() == loadUB_rule)) {
   849         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   850       }
   851     } else if (st_op) {
   852       // a Store
   853       // inputs are (0:control, 1:memory, 2:address, 3:value)
   854       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   855           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   856           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   857           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   858           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   860           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   862           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   863         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   864       }
   865     }
   867     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   868       Node* addr = n->in(2);
   869       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   870         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   871         if (atype != NULL) {
   872           intptr_t offset = get_offset_from_base(n, atype, disp32);
   873           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   874           if (offset != offset_2) {
   875             get_offset_from_base(n, atype, disp32);
   876             get_offset_from_base_2(n, atype, disp32);
   877           }
   878           assert(offset == offset_2, "different offsets");
   879           if (offset == disp32) {
   880             // we now know that src1 is a true oop pointer
   881             is_verified_oop_base = true;
   882             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   883               if( primary == Assembler::ldd_op3 ) {
   884                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   885               } else {
   886                 tmp_enc = dst_enc;
   887                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   888                 assert(src1_enc != dst_enc, "");
   889               }
   890             }
   891           }
   892           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   893                        || offset == oopDesc::mark_offset_in_bytes())) {
   894                       // loading the mark should not be allowed either, but
   895                       // we don't check this since it conflicts with InlineObjectHash
   896                       // usage of LoadINode to get the mark. We could keep the
   897                       // check if we create a new LoadMarkNode
   898             // but do not verify the object before its header is initialized
   899             ShouldNotReachHere();
   900           }
   901         }
   902       }
   903     }
   904   }
   905 #endif
   907   uint instr;
   908   instr = (Assembler::ldst_op << 30)
   909         | (dst_enc        << 25)
   910         | (primary        << 19)
   911         | (src1_enc       << 14);
   913   uint index = src2_enc;
   914   int disp = disp32;
   916   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   917     disp += STACK_BIAS;
   919   // We should have a compiler bailout here rather than a guarantee.
   920   // Better yet would be some mechanism to handle variable-size matches correctly.
   921   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   923   if( disp == 0 ) {
   924     // use reg-reg form
   925     // bit 13 is already zero
   926     instr |= index;
   927   } else {
   928     // use reg-imm form
   929     instr |= 0x00002000;          // set bit 13 to one
   930     instr |= disp & 0x1FFF;
   931   }
   933   cbuf.insts()->emit_int32(instr);
   935 #ifdef ASSERT
   936   {
   937     MacroAssembler _masm(&cbuf);
   938     if (is_verified_oop_base) {
   939       __ verify_oop(reg_to_register_object(src1_enc));
   940     }
   941     if (is_verified_oop_store) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944     if (tmp_enc != -1) {
   945       __ mov(O7, reg_to_register_object(tmp_enc));
   946     }
   947     if (is_verified_oop_load) {
   948       __ verify_oop(reg_to_register_object(dst_enc));
   949     }
   950   }
   951 #endif
   952 }
   954 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   955   // The method which records debug information at every safepoint
   956   // expects the call to be the first instruction in the snippet as
   957   // it creates a PcDesc structure which tracks the offset of a call
   958   // from the start of the codeBlob. This offset is computed as
   959   // code_end() - code_begin() of the code which has been emitted
   960   // so far.
   961   // In this particular case we have skirted around the problem by
   962   // putting the "mov" instruction in the delay slot but the problem
   963   // may bite us again at some other point and a cleaner/generic
   964   // solution using relocations would be needed.
   965   MacroAssembler _masm(&cbuf);
   966   __ set_inst_mark();
   968   // We flush the current window just so that there is a valid stack copy
   969   // the fact that the current window becomes active again instantly is
   970   // not a problem there is nothing live in it.
   972 #ifdef ASSERT
   973   int startpos = __ offset();
   974 #endif /* ASSERT */
   976   __ call((address)entry_point, rtype);
   978   if (preserve_g2)   __ delayed()->mov(G2, L7);
   979   else __ delayed()->nop();
   981   if (preserve_g2)   __ mov(L7, G2);
   983 #ifdef ASSERT
   984   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   985 #ifdef _LP64
   986     // Trash argument dump slots.
   987     __ set(0xb0b8ac0db0b8ac0d, G1);
   988     __ mov(G1, G5);
   989     __ stx(G1, SP, STACK_BIAS + 0x80);
   990     __ stx(G1, SP, STACK_BIAS + 0x88);
   991     __ stx(G1, SP, STACK_BIAS + 0x90);
   992     __ stx(G1, SP, STACK_BIAS + 0x98);
   993     __ stx(G1, SP, STACK_BIAS + 0xA0);
   994     __ stx(G1, SP, STACK_BIAS + 0xA8);
   995 #else // _LP64
   996     // this is also a native call, so smash the first 7 stack locations,
   997     // and the various registers
   999     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1000     // while [SP+0x44..0x58] are the argument dump slots.
  1001     __ set((intptr_t)0xbaadf00d, G1);
  1002     __ mov(G1, G5);
  1003     __ sllx(G1, 32, G1);
  1004     __ or3(G1, G5, G1);
  1005     __ mov(G1, G5);
  1006     __ stx(G1, SP, 0x40);
  1007     __ stx(G1, SP, 0x48);
  1008     __ stx(G1, SP, 0x50);
  1009     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1010 #endif // _LP64
  1012 #endif /*ASSERT*/
  1015 //=============================================================================
  1016 // REQUIRED FUNCTIONALITY for encoding
  1017 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1018 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1021 //=============================================================================
  1022 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1024 int Compile::ConstantTable::calculate_table_base_offset() const {
  1025   if (UseRDPCForConstantTableBase) {
  1026     // The table base offset might be less but then it fits into
  1027     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1028     return Assembler::min_simm13();
  1029   } else {
  1030     int offset = -(size() / 2);
  1031     if (!Assembler::is_simm13(offset)) {
  1032       offset = Assembler::min_simm13();
  1034     return offset;
  1038 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1039   Compile* C = ra_->C;
  1040   Compile::ConstantTable& constant_table = C->constant_table();
  1041   MacroAssembler _masm(&cbuf);
  1043   Register r = as_Register(ra_->get_encode(this));
  1044   CodeSection* consts_section = __ code()->consts();
  1045   int consts_size = consts_section->align_at_start(consts_section->size());
  1046   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1048   if (UseRDPCForConstantTableBase) {
  1049     // For the following RDPC logic to work correctly the consts
  1050     // section must be allocated right before the insts section.  This
  1051     // assert checks for that.  The layout and the SECT_* constants
  1052     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1053     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1054     int insts_offset = __ offset();
  1056     // Layout:
  1057     //
  1058     // |----------- consts section ------------|----------- insts section -----------...
  1059     // |------ constant table -----|- padding -|------------------x----
  1060     //                                                            \ current PC (RDPC instruction)
  1061     // |<------------- consts_size ----------->|<- insts_offset ->|
  1062     //                                                            \ table base
  1063     // The table base offset is later added to the load displacement
  1064     // so it has to be negative.
  1065     int table_base_offset = -(consts_size + insts_offset);
  1066     int disp;
  1068     // If the displacement from the current PC to the constant table
  1069     // base fits into simm13 we set the constant table base to the
  1070     // current PC.
  1071     if (Assembler::is_simm13(table_base_offset)) {
  1072       constant_table.set_table_base_offset(table_base_offset);
  1073       disp = 0;
  1074     } else {
  1075       // Otherwise we set the constant table base offset to the
  1076       // maximum negative displacement of load instructions to keep
  1077       // the disp as small as possible:
  1078       //
  1079       // |<------------- consts_size ----------->|<- insts_offset ->|
  1080       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1081       //                                  \ table base
  1082       table_base_offset = Assembler::min_simm13();
  1083       constant_table.set_table_base_offset(table_base_offset);
  1084       disp = (consts_size + insts_offset) + table_base_offset;
  1087     __ rdpc(r);
  1089     if (disp != 0) {
  1090       assert(r != O7, "need temporary");
  1091       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1094   else {
  1095     // Materialize the constant table base.
  1096     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1097     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1098     AddressLiteral base(baseaddr, rspec);
  1099     __ set(base, r);
  1103 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1104   if (UseRDPCForConstantTableBase) {
  1105     // This is really the worst case but generally it's only 1 instruction.
  1106     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1107   } else {
  1108     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1112 #ifndef PRODUCT
  1113 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1114   char reg[128];
  1115   ra_->dump_register(this, reg);
  1116   if (UseRDPCForConstantTableBase) {
  1117     st->print("RDPC   %s\t! constant table base", reg);
  1118   } else {
  1119     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1122 #endif
  1125 //=============================================================================
  1127 #ifndef PRODUCT
  1128 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1129   Compile* C = ra_->C;
  1131   for (int i = 0; i < OptoPrologueNops; i++) {
  1132     st->print_cr("NOP"); st->print("\t");
  1135   if( VerifyThread ) {
  1136     st->print_cr("Verify_Thread"); st->print("\t");
  1139   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1141   // Calls to C2R adapters often do not accept exceptional returns.
  1142   // We require that their callers must bang for them.  But be careful, because
  1143   // some VM calls (such as call site linkage) can use several kilobytes of
  1144   // stack.  But the stack safety zone should account for that.
  1145   // See bugs 4446381, 4468289, 4497237.
  1146   if (C->need_stack_bang(framesize)) {
  1147     st->print_cr("! stack bang"); st->print("\t");
  1150   if (Assembler::is_simm13(-framesize)) {
  1151     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1152   } else {
  1153     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1154     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1155     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1159 #endif
  1161 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1162   Compile* C = ra_->C;
  1163   MacroAssembler _masm(&cbuf);
  1165   for (int i = 0; i < OptoPrologueNops; i++) {
  1166     __ nop();
  1169   __ verify_thread();
  1171   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1172   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1173   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1175   // Calls to C2R adapters often do not accept exceptional returns.
  1176   // We require that their callers must bang for them.  But be careful, because
  1177   // some VM calls (such as call site linkage) can use several kilobytes of
  1178   // stack.  But the stack safety zone should account for that.
  1179   // See bugs 4446381, 4468289, 4497237.
  1180   if (C->need_stack_bang(framesize)) {
  1181     __ generate_stack_overflow_check(framesize);
  1184   if (Assembler::is_simm13(-framesize)) {
  1185     __ save(SP, -framesize, SP);
  1186   } else {
  1187     __ sethi(-framesize & ~0x3ff, G3);
  1188     __ add(G3, -framesize & 0x3ff, G3);
  1189     __ save(SP, G3, SP);
  1191   C->set_frame_complete( __ offset() );
  1193   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1194     // NOTE: We set the table base offset here because users might be
  1195     // emitted before MachConstantBaseNode.
  1196     Compile::ConstantTable& constant_table = C->constant_table();
  1197     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1201 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1202   return MachNode::size(ra_);
  1205 int MachPrologNode::reloc() const {
  1206   return 10; // a large enough number
  1209 //=============================================================================
  1210 #ifndef PRODUCT
  1211 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1212   Compile* C = ra_->C;
  1214   if( do_polling() && ra_->C->is_method_compilation() ) {
  1215     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1216 #ifdef _LP64
  1217     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1218 #else
  1219     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1220 #endif
  1223   if( do_polling() )
  1224     st->print("RET\n\t");
  1226   st->print("RESTORE");
  1228 #endif
  1230 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1231   MacroAssembler _masm(&cbuf);
  1232   Compile* C = ra_->C;
  1234   __ verify_thread();
  1236   // If this does safepoint polling, then do it here
  1237   if( do_polling() && ra_->C->is_method_compilation() ) {
  1238     AddressLiteral polling_page(os::get_polling_page());
  1239     __ sethi(polling_page, L0);
  1240     __ relocate(relocInfo::poll_return_type);
  1241     __ ld_ptr( L0, 0, G0 );
  1244   // If this is a return, then stuff the restore in the delay slot
  1245   if( do_polling() ) {
  1246     __ ret();
  1247     __ delayed()->restore();
  1248   } else {
  1249     __ restore();
  1253 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1254   return MachNode::size(ra_);
  1257 int MachEpilogNode::reloc() const {
  1258   return 16; // a large enough number
  1261 const Pipeline * MachEpilogNode::pipeline() const {
  1262   return MachNode::pipeline_class();
  1265 int MachEpilogNode::safepoint_offset() const {
  1266   assert( do_polling(), "no return for this epilog node");
  1267   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1270 //=============================================================================
  1272 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1273 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1274 static enum RC rc_class( OptoReg::Name reg ) {
  1275   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1276   if (OptoReg::is_stack(reg)) return rc_stack;
  1277   VMReg r = OptoReg::as_VMReg(reg);
  1278   if (r->is_Register()) return rc_int;
  1279   assert(r->is_FloatRegister(), "must be");
  1280   return rc_float;
  1283 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1284   if( cbuf ) {
  1285     // Better yet would be some mechanism to handle variable-size matches correctly
  1286     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1287       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1288     } else {
  1289       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1292 #ifndef PRODUCT
  1293   else if( !do_size ) {
  1294     if( size != 0 ) st->print("\n\t");
  1295     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1296     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1298 #endif
  1299   return size+4;
  1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1304 #ifndef PRODUCT
  1305   else if( !do_size ) {
  1306     if( size != 0 ) st->print("\n\t");
  1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1309 #endif
  1310   return size+4;
  1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1314                                         PhaseRegAlloc *ra_,
  1315                                         bool do_size,
  1316                                         outputStream* st ) const {
  1317   // Get registers to move
  1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1323   enum RC src_second_rc = rc_class(src_second);
  1324   enum RC src_first_rc = rc_class(src_first);
  1325   enum RC dst_second_rc = rc_class(dst_second);
  1326   enum RC dst_first_rc = rc_class(dst_first);
  1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1330   // Generate spill code!
  1331   int size = 0;
  1333   if( src_first == dst_first && src_second == dst_second )
  1334     return size;            // Self copy, no move
  1336   // --------------------------------------
  1337   // Check for mem-mem move.  Load into unused float registers and fall into
  1338   // the float-store case.
  1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1340     int offset = ra_->reg2offset(src_first);
  1341     // Further check for aligned-adjacent pair, so we can use a double load
  1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1343       src_second    = OptoReg::Name(R_F31_num);
  1344       src_second_rc = rc_float;
  1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1346     } else {
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1349     src_first    = OptoReg::Name(R_F30_num);
  1350     src_first_rc = rc_float;
  1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1354     int offset = ra_->reg2offset(src_second);
  1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1356     src_second    = OptoReg::Name(R_F31_num);
  1357     src_second_rc = rc_float;
  1360   // --------------------------------------
  1361   // Check for float->int copy; requires a trip through memory
  1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1363     int offset = frame::register_save_words*wordSize;
  1364     if (cbuf) {
  1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1370 #ifndef PRODUCT
  1371     else if (!do_size) {
  1372       if (size != 0) st->print("\n\t");
  1373       st->print(  "SUB    R_SP,16,R_SP\n");
  1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1376       st->print("\tADD    R_SP,16,R_SP\n");
  1378 #endif
  1379     size += 16;
  1382   // Check for float->int copy on T4
  1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1384     // Further check for aligned-adjacent pair, so we can use a double move
  1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1389   // Check for int->float copy on T4
  1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1391     // Further check for aligned-adjacent pair, so we can use a double move
  1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1397   // --------------------------------------
  1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1401   // there.  Misaligned sources only come from native-long-returns (handled
  1402   // special below).
  1403 #ifndef _LP64
  1404   if( src_first_rc == rc_int &&     // source is already big-endian
  1405       src_second_rc != rc_bad &&    // 64-bit move
  1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1408     // Do the big-endian flop.
  1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1412 #endif
  1414   // --------------------------------------
  1415   // Check for integer reg-reg copy
  1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1417 #ifndef _LP64
  1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1421       //       operand contains the least significant word of the 64-bit value and vice versa.
  1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1425       if( cbuf ) {
  1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1429 #ifndef PRODUCT
  1430       } else if( !do_size ) {
  1431         if( size != 0 ) st->print("\n\t");
  1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1435 #endif
  1437       return size+12;
  1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1440       // returning a long value in I0/I1
  1441       // a SpillCopy must be able to target a return instruction's reg_class
  1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1444       //       operand contains the least significant word of the 64-bit value and vice versa.
  1445       OptoReg::Name tdest = dst_first;
  1447       if (src_first == dst_first) {
  1448         tdest = OptoReg::Name(R_O7_num);
  1449         size += 4;
  1452       if( cbuf ) {
  1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1455         // ShrL_reg_imm6
  1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1457         // ShrR_reg_imm6  src, 0, dst
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1459         if (tdest != dst_first) {
  1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1463 #ifndef PRODUCT
  1464       else if( !do_size ) {
  1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1468         if (tdest != dst_first) {
  1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1472 #endif // PRODUCT
  1473       return size+8;
  1475 #endif // !_LP64
  1476     // Else normal reg-reg copy
  1477     assert( src_second != dst_first, "smashed second before evacuating it" );
  1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1480     // This moves an aligned adjacent pair.
  1481     // See if we are done.
  1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1483       return size;
  1486   // Check for integer store
  1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1488     int offset = ra_->reg2offset(dst_first);
  1489     // Further check for aligned-adjacent pair, so we can use a double store
  1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1495   // Check for integer load
  1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1497     int offset = ra_->reg2offset(src_first);
  1498     // Further check for aligned-adjacent pair, so we can use a double load
  1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1504   // Check for float reg-reg copy
  1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1506     // Further check for aligned-adjacent pair, so we can use a double move
  1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1512   // Check for float store
  1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1514     int offset = ra_->reg2offset(dst_first);
  1515     // Further check for aligned-adjacent pair, so we can use a double store
  1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1521   // Check for float load
  1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1523     int offset = ra_->reg2offset(src_first);
  1524     // Further check for aligned-adjacent pair, so we can use a double load
  1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1530   // --------------------------------------------------------------------
  1531   // Check for hi bits still needing moving.  Only happens for misaligned
  1532   // arguments to native calls.
  1533   if( src_second == dst_second )
  1534     return size;               // Self copy; no move
  1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1537 #ifndef _LP64
  1538   // In the LP64 build, all registers can be moved as aligned/adjacent
  1539   // pairs, so there's never any need to move the high bits separately.
  1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1541   // all sorts of silly alignment problems.
  1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1544   // 32-bits of a 64-bit register, but are needed in low bits of another
  1545   // register (else it's a hi-bits-to-hi-bits copy which should have
  1546   // happened already as part of a 64-bit move)
  1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1550     // Shift src_second down to dst_second's low bits.
  1551     if( cbuf ) {
  1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1553 #ifndef PRODUCT
  1554     } else if( !do_size ) {
  1555       if( size != 0 ) st->print("\n\t");
  1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1557 #endif
  1559     return size+4;
  1562   // Check for high word integer store.  Must down-shift the hi bits
  1563   // into a temp register, then fall into the case of storing int bits.
  1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1565     // Shift src_second down to dst_second's low bits.
  1566     if( cbuf ) {
  1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1568 #ifndef PRODUCT
  1569     } else if( !do_size ) {
  1570       if( size != 0 ) st->print("\n\t");
  1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1572 #endif
  1574     size+=4;
  1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1578   // Check for high word integer load
  1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1582   // Check for high word integer store
  1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1586   // Check for high word float store
  1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1590 #endif // !_LP64
  1592   Unimplemented();
  1595 #ifndef PRODUCT
  1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1597   implementation( NULL, ra_, false, st );
  1599 #endif
  1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1602   implementation( &cbuf, ra_, false, NULL );
  1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1606   return implementation( NULL, ra_, true, NULL );
  1609 //=============================================================================
  1610 #ifndef PRODUCT
  1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1614 #endif
  1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1617   MacroAssembler _masm(&cbuf);
  1618   for(int i = 0; i < _count; i += 1) {
  1619     __ nop();
  1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1624   return 4 * _count;
  1628 //=============================================================================
  1629 #ifndef PRODUCT
  1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1632   int reg = ra_->get_reg_first(this);
  1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1635 #endif
  1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1638   MacroAssembler _masm(&cbuf);
  1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1640   int reg = ra_->get_encode(this);
  1642   if (Assembler::is_simm13(offset)) {
  1643      __ add(SP, offset, reg_to_register_object(reg));
  1644   } else {
  1645      __ set(offset, O7);
  1646      __ add(SP, O7, reg_to_register_object(reg));
  1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1652   assert(ra_ == ra_->C->regalloc(), "sanity");
  1653   return ra_->C->scratch_emit_size(this);
  1656 //=============================================================================
  1658 // emit call stub, compiled java to interpretor
  1659 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1661   // Stub is fixed up when the corresponding call is converted from calling
  1662   // compiled code to calling interpreted code.
  1663   // set (empty), G5
  1664   // jmp -1
  1666   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1668   MacroAssembler _masm(&cbuf);
  1670   address base =
  1671   __ start_a_stub(Compile::MAX_stubs_size);
  1672   if (base == NULL)  return;  // CodeBuffer::expand failed
  1674   // static stub relocation stores the instruction address of the call
  1675   __ relocate(static_stub_Relocation::spec(mark));
  1677   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1679   __ set_inst_mark();
  1680   AddressLiteral addrlit(-1);
  1681   __ JUMP(addrlit, G3, 0);
  1683   __ delayed()->nop();
  1685   // Update current stubs pointer and restore code_end.
  1686   __ end_a_stub();
  1689 // size of call stub, compiled java to interpretor
  1690 uint size_java_to_interp() {
  1691   // This doesn't need to be accurate but it must be larger or equal to
  1692   // the real size of the stub.
  1693   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1694           NativeJump::instruction_size + // sethi; jmp; nop
  1695           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1697 // relocation entries for call stub, compiled java to interpretor
  1698 uint reloc_java_to_interp() {
  1699   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1703 //=============================================================================
  1704 #ifndef PRODUCT
  1705 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1706   st->print_cr("\nUEP:");
  1707 #ifdef    _LP64
  1708   if (UseCompressedOops) {
  1709     assert(Universe::heap() != NULL, "java heap should be initialized");
  1710     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1711     st->print_cr("\tSLL    R_G5,3,R_G5");
  1712     if (Universe::narrow_oop_base() != NULL)
  1713       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1714   } else {
  1715     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1717   st->print_cr("\tCMP    R_G5,R_G3" );
  1718   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1719 #else  // _LP64
  1720   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1721   st->print_cr("\tCMP    R_G5,R_G3" );
  1722   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1723 #endif // _LP64
  1725 #endif
  1727 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1728   MacroAssembler _masm(&cbuf);
  1729   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1730   Register temp_reg   = G3;
  1731   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1733   // Load klass from receiver
  1734   __ load_klass(O0, temp_reg);
  1735   // Compare against expected klass
  1736   __ cmp(temp_reg, G5_ic_reg);
  1737   // Branch to miss code, checks xcc or icc depending
  1738   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1741 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1742   return MachNode::size(ra_);
  1746 //=============================================================================
  1748 uint size_exception_handler() {
  1749   if (TraceJumps) {
  1750     return (400); // just a guess
  1752   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1755 uint size_deopt_handler() {
  1756   if (TraceJumps) {
  1757     return (400); // just a guess
  1759   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1762 // Emit exception handler code.
  1763 int emit_exception_handler(CodeBuffer& cbuf) {
  1764   Register temp_reg = G3;
  1765   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1766   MacroAssembler _masm(&cbuf);
  1768   address base =
  1769   __ start_a_stub(size_exception_handler());
  1770   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1772   int offset = __ offset();
  1774   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1775   __ delayed()->nop();
  1777   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1779   __ end_a_stub();
  1781   return offset;
  1784 int emit_deopt_handler(CodeBuffer& cbuf) {
  1785   // Can't use any of the current frame's registers as we may have deopted
  1786   // at a poll and everything (including G3) can be live.
  1787   Register temp_reg = L0;
  1788   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1789   MacroAssembler _masm(&cbuf);
  1791   address base =
  1792   __ start_a_stub(size_deopt_handler());
  1793   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1795   int offset = __ offset();
  1796   __ save_frame(0);
  1797   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1798   __ delayed()->restore();
  1800   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1802   __ end_a_stub();
  1803   return offset;
  1807 // Given a register encoding, produce a Integer Register object
  1808 static Register reg_to_register_object(int register_encoding) {
  1809   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1810   return as_Register(register_encoding);
  1813 // Given a register encoding, produce a single-precision Float Register object
  1814 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1815   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1816   return as_SingleFloatRegister(register_encoding);
  1819 // Given a register encoding, produce a double-precision Float Register object
  1820 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1821   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1822   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1823   return as_DoubleFloatRegister(register_encoding);
  1826 const bool Matcher::match_rule_supported(int opcode) {
  1827   if (!has_match_rule(opcode))
  1828     return false;
  1830   switch (opcode) {
  1831   case Op_CountLeadingZerosI:
  1832   case Op_CountLeadingZerosL:
  1833   case Op_CountTrailingZerosI:
  1834   case Op_CountTrailingZerosL:
  1835     if (!UsePopCountInstruction)
  1836       return false;
  1837     break;
  1840   return true;  // Per default match rules are supported.
  1843 int Matcher::regnum_to_fpu_offset(int regnum) {
  1844   return regnum - 32; // The FP registers are in the second chunk
  1847 #ifdef ASSERT
  1848 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1849 #endif
  1851 // Vector width in bytes
  1852 const uint Matcher::vector_width_in_bytes(void) {
  1853   return 8;
  1856 // Vector ideal reg
  1857 const uint Matcher::vector_ideal_reg(void) {
  1858   return Op_RegD;
  1861 // USII supports fxtof through the whole range of number, USIII doesn't
  1862 const bool Matcher::convL2FSupported(void) {
  1863   return VM_Version::has_fast_fxtof();
  1866 // Is this branch offset short enough that a short branch can be used?
  1867 //
  1868 // NOTE: If the platform does not provide any short branch variants, then
  1869 //       this method should return false for offset 0.
  1870 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1871   // The passed offset is relative to address of the branch.
  1872   // Don't need to adjust the offset.
  1873   return UseCBCond && Assembler::is_simm12(offset);
  1876 const bool Matcher::isSimpleConstant64(jlong value) {
  1877   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1878   // Depends on optimizations in MacroAssembler::setx.
  1879   int hi = (int)(value >> 32);
  1880   int lo = (int)(value & ~0);
  1881   return (hi == 0) || (hi == -1) || (lo == 0);
  1884 // No scaling for the parameter the ClearArray node.
  1885 const bool Matcher::init_array_count_is_in_bytes = true;
  1887 // Threshold size for cleararray.
  1888 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1890 // No additional cost for CMOVL.
  1891 const int Matcher::long_cmove_cost() { return 0; }
  1893 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1894 const int Matcher::float_cmove_cost() {
  1895   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1898 // Should the Matcher clone shifts on addressing modes, expecting them to
  1899 // be subsumed into complex addressing expressions or compute them into
  1900 // registers?  True for Intel but false for most RISCs
  1901 const bool Matcher::clone_shift_expressions = false;
  1903 // Do we need to mask the count passed to shift instructions or does
  1904 // the cpu only look at the lower 5/6 bits anyway?
  1905 const bool Matcher::need_masked_shift_count = false;
  1907 bool Matcher::narrow_oop_use_complex_address() {
  1908   NOT_LP64(ShouldNotCallThis());
  1909   assert(UseCompressedOops, "only for compressed oops code");
  1910   return false;
  1913 // Is it better to copy float constants, or load them directly from memory?
  1914 // Intel can load a float constant from a direct address, requiring no
  1915 // extra registers.  Most RISCs will have to materialize an address into a
  1916 // register first, so they would do better to copy the constant from stack.
  1917 const bool Matcher::rematerialize_float_constants = false;
  1919 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1920 // needed.  Else we split the double into 2 integer pieces and move it
  1921 // piece-by-piece.  Only happens when passing doubles into C code as the
  1922 // Java calling convention forces doubles to be aligned.
  1923 #ifdef _LP64
  1924 const bool Matcher::misaligned_doubles_ok = true;
  1925 #else
  1926 const bool Matcher::misaligned_doubles_ok = false;
  1927 #endif
  1929 // No-op on SPARC.
  1930 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1933 // Advertise here if the CPU requires explicit rounding operations
  1934 // to implement the UseStrictFP mode.
  1935 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1937 // Are floats conerted to double when stored to stack during deoptimization?
  1938 // Sparc does not handle callee-save floats.
  1939 bool Matcher::float_in_double() { return false; }
  1941 // Do ints take an entire long register or just half?
  1942 // Note that we if-def off of _LP64.
  1943 // The relevant question is how the int is callee-saved.  In _LP64
  1944 // the whole long is written but de-opt'ing will have to extract
  1945 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1946 #ifdef _LP64
  1947 const bool Matcher::int_in_long = true;
  1948 #else
  1949 const bool Matcher::int_in_long = false;
  1950 #endif
  1952 // Return whether or not this register is ever used as an argument.  This
  1953 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1954 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1955 // arguments in those registers not be available to the callee.
  1956 bool Matcher::can_be_java_arg( int reg ) {
  1957   // Standard sparc 6 args in registers
  1958   if( reg == R_I0_num ||
  1959       reg == R_I1_num ||
  1960       reg == R_I2_num ||
  1961       reg == R_I3_num ||
  1962       reg == R_I4_num ||
  1963       reg == R_I5_num ) return true;
  1964 #ifdef _LP64
  1965   // 64-bit builds can pass 64-bit pointers and longs in
  1966   // the high I registers
  1967   if( reg == R_I0H_num ||
  1968       reg == R_I1H_num ||
  1969       reg == R_I2H_num ||
  1970       reg == R_I3H_num ||
  1971       reg == R_I4H_num ||
  1972       reg == R_I5H_num ) return true;
  1974   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1975     return true;
  1978 #else
  1979   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1980   // Longs cannot be passed in O regs, because O regs become I regs
  1981   // after a 'save' and I regs get their high bits chopped off on
  1982   // interrupt.
  1983   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1984   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1985 #endif
  1986   // A few float args in registers
  1987   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1989   return false;
  1992 bool Matcher::is_spillable_arg( int reg ) {
  1993   return can_be_java_arg(reg);
  1996 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1997   // Use hardware SDIVX instruction when it is
  1998   // faster than a code which use multiply.
  1999   return VM_Version::has_fast_idiv();
  2002 // Register for DIVI projection of divmodI
  2003 RegMask Matcher::divI_proj_mask() {
  2004   ShouldNotReachHere();
  2005   return RegMask();
  2008 // Register for MODI projection of divmodI
  2009 RegMask Matcher::modI_proj_mask() {
  2010   ShouldNotReachHere();
  2011   return RegMask();
  2014 // Register for DIVL projection of divmodL
  2015 RegMask Matcher::divL_proj_mask() {
  2016   ShouldNotReachHere();
  2017   return RegMask();
  2020 // Register for MODL projection of divmodL
  2021 RegMask Matcher::modL_proj_mask() {
  2022   ShouldNotReachHere();
  2023   return RegMask();
  2026 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2027   return L7_REGP_mask();
  2030 %}
  2033 // The intptr_t operand types, defined by textual substitution.
  2034 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2035 #ifdef _LP64
  2036 #define immX      immL
  2037 #define immX13    immL13
  2038 #define immX13m7  immL13m7
  2039 #define iRegX     iRegL
  2040 #define g1RegX    g1RegL
  2041 #else
  2042 #define immX      immI
  2043 #define immX13    immI13
  2044 #define immX13m7  immI13m7
  2045 #define iRegX     iRegI
  2046 #define g1RegX    g1RegI
  2047 #endif
  2049 //----------ENCODING BLOCK-----------------------------------------------------
  2050 // This block specifies the encoding classes used by the compiler to output
  2051 // byte streams.  Encoding classes are parameterized macros used by
  2052 // Machine Instruction Nodes in order to generate the bit encoding of the
  2053 // instruction.  Operands specify their base encoding interface with the
  2054 // interface keyword.  There are currently supported four interfaces,
  2055 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2056 // operand to generate a function which returns its register number when
  2057 // queried.   CONST_INTER causes an operand to generate a function which
  2058 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2059 // operand to generate four functions which return the Base Register, the
  2060 // Index Register, the Scale Value, and the Offset Value of the operand when
  2061 // queried.  COND_INTER causes an operand to generate six functions which
  2062 // return the encoding code (ie - encoding bits for the instruction)
  2063 // associated with each basic boolean condition for a conditional instruction.
  2064 //
  2065 // Instructions specify two basic values for encoding.  Again, a function
  2066 // is available to check if the constant displacement is an oop. They use the
  2067 // ins_encode keyword to specify their encoding classes (which must be
  2068 // a sequence of enc_class names, and their parameters, specified in
  2069 // the encoding block), and they use the
  2070 // opcode keyword to specify, in order, their primary, secondary, and
  2071 // tertiary opcode.  Only the opcode sections which a particular instruction
  2072 // needs for encoding need to be specified.
  2073 encode %{
  2074   enc_class enc_untested %{
  2075 #ifdef ASSERT
  2076     MacroAssembler _masm(&cbuf);
  2077     __ untested("encoding");
  2078 #endif
  2079   %}
  2081   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2082     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2083                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2084   %}
  2086   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2087     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2088                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2089   %}
  2091   enc_class form3_mem_prefetch_read( memory mem ) %{
  2092     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2093                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2094   %}
  2096   enc_class form3_mem_prefetch_write( memory mem ) %{
  2097     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2098                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2099   %}
  2101   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2102     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2103     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2104     guarantee($mem$$index == R_G0_enc, "double index?");
  2105     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2106     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2107     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2108     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2109   %}
  2111   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2112     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2113     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2114     guarantee($mem$$index == R_G0_enc, "double index?");
  2115     // Load long with 2 instructions
  2116     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2117     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2118   %}
  2120   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2121   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2122     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2123     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2124   %}
  2126   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2127     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2128     if( $rs2$$reg != $rd$$reg )
  2129       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2130   %}
  2132   // Target lo half of long
  2133   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2134     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2135     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2136       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2137   %}
  2139   // Source lo half of long
  2140   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2141     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2142     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2143       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2144   %}
  2146   // Target hi half of long
  2147   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2148     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2149   %}
  2151   // Source lo half of long, and leave it sign extended.
  2152   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2153     // Sign extend low half
  2154     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2155   %}
  2157   // Source hi half of long, and leave it sign extended.
  2158   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2159     // Shift high half to low half
  2160     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2161   %}
  2163   // Source hi half of long
  2164   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2165     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2166     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2167       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2168   %}
  2170   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2171     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2172   %}
  2174   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2175     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2176     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2177   %}
  2179   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2180     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2181     // clear if nothing else is happening
  2182     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2183     // blt,a,pn done
  2184     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2185     // mov dst,-1 in delay slot
  2186     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2187   %}
  2189   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2190     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2191   %}
  2193   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2194     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2195   %}
  2197   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2198     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2199   %}
  2201   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2202     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2203   %}
  2205   enc_class move_return_pc_to_o1() %{
  2206     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2207   %}
  2209 #ifdef _LP64
  2210   /* %%% merge with enc_to_bool */
  2211   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2212     MacroAssembler _masm(&cbuf);
  2214     Register   src_reg = reg_to_register_object($src$$reg);
  2215     Register   dst_reg = reg_to_register_object($dst$$reg);
  2216     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2217   %}
  2218 #endif
  2220   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2221     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2222     MacroAssembler _masm(&cbuf);
  2224     Register   p_reg = reg_to_register_object($p$$reg);
  2225     Register   q_reg = reg_to_register_object($q$$reg);
  2226     Register   y_reg = reg_to_register_object($y$$reg);
  2227     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2229     __ subcc( p_reg, q_reg,   p_reg );
  2230     __ add  ( p_reg, y_reg, tmp_reg );
  2231     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2232   %}
  2234   enc_class form_d2i_helper(regD src, regF dst) %{
  2235     // fcmp %fcc0,$src,$src
  2236     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2237     // branch %fcc0 not-nan, predict taken
  2238     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2239     // fdtoi $src,$dst
  2240     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2241     // fitos $dst,$dst (if nan)
  2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2243     // clear $dst (if nan)
  2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2245     // carry on here...
  2246   %}
  2248   enc_class form_d2l_helper(regD src, regD dst) %{
  2249     // fcmp %fcc0,$src,$src  check for NAN
  2250     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2251     // branch %fcc0 not-nan, predict taken
  2252     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2253     // fdtox $src,$dst   convert in delay slot
  2254     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2255     // fxtod $dst,$dst  (if nan)
  2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2257     // clear $dst (if nan)
  2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2259     // carry on here...
  2260   %}
  2262   enc_class form_f2i_helper(regF src, regF dst) %{
  2263     // fcmps %fcc0,$src,$src
  2264     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2265     // branch %fcc0 not-nan, predict taken
  2266     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2267     // fstoi $src,$dst
  2268     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2269     // fitos $dst,$dst (if nan)
  2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2271     // clear $dst (if nan)
  2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2273     // carry on here...
  2274   %}
  2276   enc_class form_f2l_helper(regF src, regD dst) %{
  2277     // fcmps %fcc0,$src,$src
  2278     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2279     // branch %fcc0 not-nan, predict taken
  2280     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2281     // fstox $src,$dst
  2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2283     // fxtod $dst,$dst (if nan)
  2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2285     // clear $dst (if nan)
  2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2287     // carry on here...
  2288   %}
  2290   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2291   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2292   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2293   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2295   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2297   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2298   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2300   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2301     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2302   %}
  2304   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2305     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2306   %}
  2308   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2309     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2310   %}
  2312   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2313     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2314   %}
  2316   enc_class form3_convI2F(regF rs2, regF rd) %{
  2317     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2318   %}
  2320   // Encloding class for traceable jumps
  2321   enc_class form_jmpl(g3RegP dest) %{
  2322     emit_jmpl(cbuf, $dest$$reg);
  2323   %}
  2325   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2326     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2327   %}
  2329   enc_class form2_nop() %{
  2330     emit_nop(cbuf);
  2331   %}
  2333   enc_class form2_illtrap() %{
  2334     emit_illtrap(cbuf);
  2335   %}
  2338   // Compare longs and convert into -1, 0, 1.
  2339   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2340     // CMP $src1,$src2
  2341     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2342     // blt,a,pn done
  2343     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2344     // mov dst,-1 in delay slot
  2345     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2346     // bgt,a,pn done
  2347     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2348     // mov dst,1 in delay slot
  2349     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2350     // CLR    $dst
  2351     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2352   %}
  2354   enc_class enc_PartialSubtypeCheck() %{
  2355     MacroAssembler _masm(&cbuf);
  2356     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2357     __ delayed()->nop();
  2358   %}
  2360   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2361     MacroAssembler _masm(&cbuf);
  2362     Label* L = $labl$$label;
  2363     Assembler::Predict predict_taken =
  2364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2366     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2367     __ delayed()->nop();
  2368   %}
  2370   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2371     MacroAssembler _masm(&cbuf);
  2372     Label* L = $labl$$label;
  2373     Assembler::Predict predict_taken =
  2374       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2376     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2377     __ delayed()->nop();
  2378   %}
  2380   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2381     int op = (Assembler::arith_op << 30) |
  2382              ($dst$$reg << 25) |
  2383              (Assembler::movcc_op3 << 19) |
  2384              (1 << 18) |                    // cc2 bit for 'icc'
  2385              ($cmp$$cmpcode << 14) |
  2386              (0 << 13) |                    // select register move
  2387              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2388              ($src$$reg << 0);
  2389     cbuf.insts()->emit_int32(op);
  2390   %}
  2392   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2393     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2394     int op = (Assembler::arith_op << 30) |
  2395              ($dst$$reg << 25) |
  2396              (Assembler::movcc_op3 << 19) |
  2397              (1 << 18) |                    // cc2 bit for 'icc'
  2398              ($cmp$$cmpcode << 14) |
  2399              (1 << 13) |                    // select immediate move
  2400              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2401              (simm11 << 0);
  2402     cbuf.insts()->emit_int32(op);
  2403   %}
  2405   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2406     int op = (Assembler::arith_op << 30) |
  2407              ($dst$$reg << 25) |
  2408              (Assembler::movcc_op3 << 19) |
  2409              (0 << 18) |                    // cc2 bit for 'fccX'
  2410              ($cmp$$cmpcode << 14) |
  2411              (0 << 13) |                    // select register move
  2412              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2413              ($src$$reg << 0);
  2414     cbuf.insts()->emit_int32(op);
  2415   %}
  2417   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2418     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2419     int op = (Assembler::arith_op << 30) |
  2420              ($dst$$reg << 25) |
  2421              (Assembler::movcc_op3 << 19) |
  2422              (0 << 18) |                    // cc2 bit for 'fccX'
  2423              ($cmp$$cmpcode << 14) |
  2424              (1 << 13) |                    // select immediate move
  2425              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2426              (simm11 << 0);
  2427     cbuf.insts()->emit_int32(op);
  2428   %}
  2430   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2431     int op = (Assembler::arith_op << 30) |
  2432              ($dst$$reg << 25) |
  2433              (Assembler::fpop2_op3 << 19) |
  2434              (0 << 18) |
  2435              ($cmp$$cmpcode << 14) |
  2436              (1 << 13) |                    // select register move
  2437              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2438              ($primary << 5) |              // select single, double or quad
  2439              ($src$$reg << 0);
  2440     cbuf.insts()->emit_int32(op);
  2441   %}
  2443   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2444     int op = (Assembler::arith_op << 30) |
  2445              ($dst$$reg << 25) |
  2446              (Assembler::fpop2_op3 << 19) |
  2447              (0 << 18) |
  2448              ($cmp$$cmpcode << 14) |
  2449              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2450              ($primary << 5) |              // select single, double or quad
  2451              ($src$$reg << 0);
  2452     cbuf.insts()->emit_int32(op);
  2453   %}
  2455   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2456   // the condition comes from opcode-field instead of an argument.
  2457   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2458     int op = (Assembler::arith_op << 30) |
  2459              ($dst$$reg << 25) |
  2460              (Assembler::movcc_op3 << 19) |
  2461              (1 << 18) |                    // cc2 bit for 'icc'
  2462              ($primary << 14) |
  2463              (0 << 13) |                    // select register move
  2464              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2465              ($src$$reg << 0);
  2466     cbuf.insts()->emit_int32(op);
  2467   %}
  2469   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2470     int op = (Assembler::arith_op << 30) |
  2471              ($dst$$reg << 25) |
  2472              (Assembler::movcc_op3 << 19) |
  2473              (6 << 16) |                    // cc2 bit for 'xcc'
  2474              ($primary << 14) |
  2475              (0 << 13) |                    // select register move
  2476              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2477              ($src$$reg << 0);
  2478     cbuf.insts()->emit_int32(op);
  2479   %}
  2481   enc_class Set13( immI13 src, iRegI rd ) %{
  2482     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2483   %}
  2485   enc_class SetHi22( immI src, iRegI rd ) %{
  2486     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2487   %}
  2489   enc_class Set32( immI src, iRegI rd ) %{
  2490     MacroAssembler _masm(&cbuf);
  2491     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2492   %}
  2494   enc_class call_epilog %{
  2495     if( VerifyStackAtCalls ) {
  2496       MacroAssembler _masm(&cbuf);
  2497       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2498       Register temp_reg = G3;
  2499       __ add(SP, framesize, temp_reg);
  2500       __ cmp(temp_reg, FP);
  2501       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2503   %}
  2505   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2506   // to G1 so the register allocator will not have to deal with the misaligned register
  2507   // pair.
  2508   enc_class adjust_long_from_native_call %{
  2509 #ifndef _LP64
  2510     if (returns_long()) {
  2511       //    sllx  O0,32,O0
  2512       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2513       //    srl   O1,0,O1
  2514       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2515       //    or    O0,O1,G1
  2516       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2518 #endif
  2519   %}
  2521   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2522     // CALL directly to the runtime
  2523     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2524     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2525                     /*preserve_g2=*/true);
  2526   %}
  2528   enc_class preserve_SP %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ mov(SP, L7_mh_SP_save);
  2531   %}
  2533   enc_class restore_SP %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ mov(L7_mh_SP_save, SP);
  2536   %}
  2538   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2539     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2540     // who we intended to call.
  2541     if ( !_method ) {
  2542       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2543     } else if (_optimized_virtual) {
  2544       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2545     } else {
  2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2548     if( _method ) {  // Emit stub for static call
  2549       emit_java_to_interp(cbuf);
  2551   %}
  2553   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2554     MacroAssembler _masm(&cbuf);
  2555     __ set_inst_mark();
  2556     int vtable_index = this->_vtable_index;
  2557     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2558     if (vtable_index < 0) {
  2559       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2560       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2561       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2562       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2563       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2564       // !!!!!
  2565       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2566       // emit_call_dynamic_prologue( cbuf );
  2567       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2569       address  virtual_call_oop_addr = __ inst_mark();
  2570       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2571       // who we intended to call.
  2572       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2573       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2574     } else {
  2575       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2576       // Just go thru the vtable
  2577       // get receiver klass (receiver already checked for non-null)
  2578       // If we end up going thru a c2i adapter interpreter expects method in G5
  2579       int off = __ offset();
  2580       __ load_klass(O0, G3_scratch);
  2581       int klass_load_size;
  2582       if (UseCompressedOops) {
  2583         assert(Universe::heap() != NULL, "java heap should be initialized");
  2584         if (Universe::narrow_oop_base() == NULL)
  2585           klass_load_size = 2*BytesPerInstWord;
  2586         else
  2587           klass_load_size = 3*BytesPerInstWord;
  2588       } else {
  2589         klass_load_size = 1*BytesPerInstWord;
  2591       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2592       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2593       if (Assembler::is_simm13(v_off)) {
  2594         __ ld_ptr(G3, v_off, G5_method);
  2595       } else {
  2596         // Generate 2 instructions
  2597         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2598         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2599         // ld_ptr, set_hi, set
  2600         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2601                "Unexpected instruction size(s)");
  2602         __ ld_ptr(G3, G5_method, G5_method);
  2604       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2605       // However it may very well end up in handle_wrong_method if the
  2606       // method is abstract for the particular class.
  2607       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2608       // jump to target (either compiled code or c2iadapter)
  2609       __ jmpl(G3_scratch, G0, O7);
  2610       __ delayed()->nop();
  2612   %}
  2614   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2615     MacroAssembler _masm(&cbuf);
  2617     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2618     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2619                               // we might be calling a C2I adapter which needs it.
  2621     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2622     // Load nmethod
  2623     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2625     // CALL to compiled java, indirect the contents of G3
  2626     __ set_inst_mark();
  2627     __ callr(temp_reg, G0);
  2628     __ delayed()->nop();
  2629   %}
  2631 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2632     MacroAssembler _masm(&cbuf);
  2633     Register Rdividend = reg_to_register_object($src1$$reg);
  2634     Register Rdivisor = reg_to_register_object($src2$$reg);
  2635     Register Rresult = reg_to_register_object($dst$$reg);
  2637     __ sra(Rdivisor, 0, Rdivisor);
  2638     __ sra(Rdividend, 0, Rdividend);
  2639     __ sdivx(Rdividend, Rdivisor, Rresult);
  2640 %}
  2642 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2643     MacroAssembler _masm(&cbuf);
  2645     Register Rdividend = reg_to_register_object($src1$$reg);
  2646     int divisor = $imm$$constant;
  2647     Register Rresult = reg_to_register_object($dst$$reg);
  2649     __ sra(Rdividend, 0, Rdividend);
  2650     __ sdivx(Rdividend, divisor, Rresult);
  2651 %}
  2653 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2654     MacroAssembler _masm(&cbuf);
  2655     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2656     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2657     Register Rdst  = reg_to_register_object($dst$$reg);
  2659     __ sra( Rsrc1, 0, Rsrc1 );
  2660     __ sra( Rsrc2, 0, Rsrc2 );
  2661     __ mulx( Rsrc1, Rsrc2, Rdst );
  2662     __ srlx( Rdst, 32, Rdst );
  2663 %}
  2665 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2666     MacroAssembler _masm(&cbuf);
  2667     Register Rdividend = reg_to_register_object($src1$$reg);
  2668     Register Rdivisor = reg_to_register_object($src2$$reg);
  2669     Register Rresult = reg_to_register_object($dst$$reg);
  2670     Register Rscratch = reg_to_register_object($scratch$$reg);
  2672     assert(Rdividend != Rscratch, "");
  2673     assert(Rdivisor  != Rscratch, "");
  2675     __ sra(Rdividend, 0, Rdividend);
  2676     __ sra(Rdivisor, 0, Rdivisor);
  2677     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2678     __ mulx(Rscratch, Rdivisor, Rscratch);
  2679     __ sub(Rdividend, Rscratch, Rresult);
  2680 %}
  2682 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2683     MacroAssembler _masm(&cbuf);
  2685     Register Rdividend = reg_to_register_object($src1$$reg);
  2686     int divisor = $imm$$constant;
  2687     Register Rresult = reg_to_register_object($dst$$reg);
  2688     Register Rscratch = reg_to_register_object($scratch$$reg);
  2690     assert(Rdividend != Rscratch, "");
  2692     __ sra(Rdividend, 0, Rdividend);
  2693     __ sdivx(Rdividend, divisor, Rscratch);
  2694     __ mulx(Rscratch, divisor, Rscratch);
  2695     __ sub(Rdividend, Rscratch, Rresult);
  2696 %}
  2698 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2699     MacroAssembler _masm(&cbuf);
  2701     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2702     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2704     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2705 %}
  2707 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2708     MacroAssembler _masm(&cbuf);
  2710     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2711     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2713     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2714 %}
  2716 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2717     MacroAssembler _masm(&cbuf);
  2719     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2720     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2722     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2723 %}
  2725 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2726     MacroAssembler _masm(&cbuf);
  2728     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2729     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2731     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2732 %}
  2734 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2735     MacroAssembler _masm(&cbuf);
  2737     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2738     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2740     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2741 %}
  2743 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2744     MacroAssembler _masm(&cbuf);
  2746     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2747     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2749     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2750 %}
  2752 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2753     MacroAssembler _masm(&cbuf);
  2755     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2756     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2758     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2759 %}
  2761 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2762     MacroAssembler _masm(&cbuf);
  2764     Register Roop  = reg_to_register_object($oop$$reg);
  2765     Register Rbox  = reg_to_register_object($box$$reg);
  2766     Register Rscratch = reg_to_register_object($scratch$$reg);
  2767     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2769     assert(Roop  != Rscratch, "");
  2770     assert(Roop  != Rmark, "");
  2771     assert(Rbox  != Rscratch, "");
  2772     assert(Rbox  != Rmark, "");
  2774     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2775 %}
  2777 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2778     MacroAssembler _masm(&cbuf);
  2780     Register Roop  = reg_to_register_object($oop$$reg);
  2781     Register Rbox  = reg_to_register_object($box$$reg);
  2782     Register Rscratch = reg_to_register_object($scratch$$reg);
  2783     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2785     assert(Roop  != Rscratch, "");
  2786     assert(Roop  != Rmark, "");
  2787     assert(Rbox  != Rscratch, "");
  2788     assert(Rbox  != Rmark, "");
  2790     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2791   %}
  2793   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2794     MacroAssembler _masm(&cbuf);
  2795     Register Rmem = reg_to_register_object($mem$$reg);
  2796     Register Rold = reg_to_register_object($old$$reg);
  2797     Register Rnew = reg_to_register_object($new$$reg);
  2799     // casx_under_lock picks 1 of 3 encodings:
  2800     // For 32-bit pointers you get a 32-bit CAS
  2801     // For 64-bit pointers you get a 64-bit CASX
  2802     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2803     __ cmp( Rold, Rnew );
  2804   %}
  2806   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2807     Register Rmem = reg_to_register_object($mem$$reg);
  2808     Register Rold = reg_to_register_object($old$$reg);
  2809     Register Rnew = reg_to_register_object($new$$reg);
  2811     MacroAssembler _masm(&cbuf);
  2812     __ mov(Rnew, O7);
  2813     __ casx(Rmem, Rold, O7);
  2814     __ cmp( Rold, O7 );
  2815   %}
  2817   // raw int cas, used for compareAndSwap
  2818   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2819     Register Rmem = reg_to_register_object($mem$$reg);
  2820     Register Rold = reg_to_register_object($old$$reg);
  2821     Register Rnew = reg_to_register_object($new$$reg);
  2823     MacroAssembler _masm(&cbuf);
  2824     __ mov(Rnew, O7);
  2825     __ cas(Rmem, Rold, O7);
  2826     __ cmp( Rold, O7 );
  2827   %}
  2829   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2830     Register Rres = reg_to_register_object($res$$reg);
  2832     MacroAssembler _masm(&cbuf);
  2833     __ mov(1, Rres);
  2834     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2835   %}
  2837   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2838     Register Rres = reg_to_register_object($res$$reg);
  2840     MacroAssembler _masm(&cbuf);
  2841     __ mov(1, Rres);
  2842     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2843   %}
  2845   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2846     MacroAssembler _masm(&cbuf);
  2847     Register Rdst = reg_to_register_object($dst$$reg);
  2848     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2849                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2850     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2851                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2853     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2854     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2855   %}
  2858   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2859     Label Ldone, Lloop;
  2860     MacroAssembler _masm(&cbuf);
  2862     Register   str1_reg = reg_to_register_object($str1$$reg);
  2863     Register   str2_reg = reg_to_register_object($str2$$reg);
  2864     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2865     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2866     Register result_reg = reg_to_register_object($result$$reg);
  2868     assert(result_reg != str1_reg &&
  2869            result_reg != str2_reg &&
  2870            result_reg != cnt1_reg &&
  2871            result_reg != cnt2_reg ,
  2872            "need different registers");
  2874     // Compute the minimum of the string lengths(str1_reg) and the
  2875     // difference of the string lengths (stack)
  2877     // See if the lengths are different, and calculate min in str1_reg.
  2878     // Stash diff in O7 in case we need it for a tie-breaker.
  2879     Label Lskip;
  2880     __ subcc(cnt1_reg, cnt2_reg, O7);
  2881     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2882     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2883     // cnt2 is shorter, so use its count:
  2884     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2885     __ bind(Lskip);
  2887     // reallocate cnt1_reg, cnt2_reg, result_reg
  2888     // Note:  limit_reg holds the string length pre-scaled by 2
  2889     Register limit_reg =   cnt1_reg;
  2890     Register  chr2_reg =   cnt2_reg;
  2891     Register  chr1_reg = result_reg;
  2892     // str{12} are the base pointers
  2894     // Is the minimum length zero?
  2895     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2896     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2897     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2899     // Load first characters
  2900     __ lduh(str1_reg, 0, chr1_reg);
  2901     __ lduh(str2_reg, 0, chr2_reg);
  2903     // Compare first characters
  2904     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2905     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2906     assert(chr1_reg == result_reg, "result must be pre-placed");
  2907     __ delayed()->nop();
  2910       // Check after comparing first character to see if strings are equivalent
  2911       Label LSkip2;
  2912       // Check if the strings start at same location
  2913       __ cmp(str1_reg, str2_reg);
  2914       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2915       __ delayed()->nop();
  2917       // Check if the length difference is zero (in O7)
  2918       __ cmp(G0, O7);
  2919       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2920       __ delayed()->mov(G0, result_reg);  // result is zero
  2922       // Strings might not be equal
  2923       __ bind(LSkip2);
  2926     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2927     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2928     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2930     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2931     __ add(str1_reg, limit_reg, str1_reg);
  2932     __ add(str2_reg, limit_reg, str2_reg);
  2933     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2935     // Compare the rest of the characters
  2936     __ lduh(str1_reg, limit_reg, chr1_reg);
  2937     __ bind(Lloop);
  2938     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2939     __ lduh(str2_reg, limit_reg, chr2_reg);
  2940     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2941     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2942     assert(chr1_reg == result_reg, "result must be pre-placed");
  2943     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2944     // annul LDUH if branch is not taken to prevent access past end of string
  2945     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2946     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2948     // If strings are equal up to min length, return the length difference.
  2949     __ mov(O7, result_reg);
  2951     // Otherwise, return the difference between the first mismatched chars.
  2952     __ bind(Ldone);
  2953   %}
  2955 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2956     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2957     MacroAssembler _masm(&cbuf);
  2959     Register   str1_reg = reg_to_register_object($str1$$reg);
  2960     Register   str2_reg = reg_to_register_object($str2$$reg);
  2961     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2962     Register   tmp1_reg = O7;
  2963     Register result_reg = reg_to_register_object($result$$reg);
  2965     assert(result_reg != str1_reg &&
  2966            result_reg != str2_reg &&
  2967            result_reg !=  cnt_reg &&
  2968            result_reg != tmp1_reg ,
  2969            "need different registers");
  2971     __ cmp(str1_reg, str2_reg); //same char[] ?
  2972     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2973     __ delayed()->add(G0, 1, result_reg);
  2975     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2976     __ delayed()->add(G0, 1, result_reg); // count == 0
  2978     //rename registers
  2979     Register limit_reg =    cnt_reg;
  2980     Register  chr1_reg = result_reg;
  2981     Register  chr2_reg =   tmp1_reg;
  2983     //check for alignment and position the pointers to the ends
  2984     __ or3(str1_reg, str2_reg, chr1_reg);
  2985     __ andcc(chr1_reg, 0x3, chr1_reg);
  2986     // notZero means at least one not 4-byte aligned.
  2987     // We could optimize the case when both arrays are not aligned
  2988     // but it is not frequent case and it requires additional checks.
  2989     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2990     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2992     // Compare char[] arrays aligned to 4 bytes.
  2993     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2994                           chr1_reg, chr2_reg, Ldone);
  2995     __ ba(Ldone);
  2996     __ delayed()->add(G0, 1, result_reg);
  2998     // char by char compare
  2999     __ bind(Lchar);
  3000     __ add(str1_reg, limit_reg, str1_reg);
  3001     __ add(str2_reg, limit_reg, str2_reg);
  3002     __ neg(limit_reg); //negate count
  3004     __ lduh(str1_reg, limit_reg, chr1_reg);
  3005     // Lchar_loop
  3006     __ bind(Lchar_loop);
  3007     __ lduh(str2_reg, limit_reg, chr2_reg);
  3008     __ cmp(chr1_reg, chr2_reg);
  3009     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3010     __ delayed()->mov(G0, result_reg); //not equal
  3011     __ inccc(limit_reg, sizeof(jchar));
  3012     // annul LDUH if branch is not taken to prevent access past end of string
  3013     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3014     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3016     __ add(G0, 1, result_reg);  //equal
  3018     __ bind(Ldone);
  3019   %}
  3021 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3022     Label Lvector, Ldone, Lloop;
  3023     MacroAssembler _masm(&cbuf);
  3025     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3026     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3027     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3028     Register   tmp2_reg = O7;
  3029     Register result_reg = reg_to_register_object($result$$reg);
  3031     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3032     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3034     // return true if the same array
  3035     __ cmp(ary1_reg, ary2_reg);
  3036     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3037     __ delayed()->add(G0, 1, result_reg); // equal
  3039     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3040     __ delayed()->mov(G0, result_reg);    // not equal
  3042     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3043     __ delayed()->mov(G0, result_reg);    // not equal
  3045     //load the lengths of arrays
  3046     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3047     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3049     // return false if the two arrays are not equal length
  3050     __ cmp(tmp1_reg, tmp2_reg);
  3051     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3052     __ delayed()->mov(G0, result_reg);     // not equal
  3054     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3055     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3057     // load array addresses
  3058     __ add(ary1_reg, base_offset, ary1_reg);
  3059     __ add(ary2_reg, base_offset, ary2_reg);
  3061     // renaming registers
  3062     Register chr1_reg  =  result_reg; // for characters in ary1
  3063     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3064     Register limit_reg =  tmp1_reg;   // length
  3066     // set byte count
  3067     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3069     // Compare char[] arrays aligned to 4 bytes.
  3070     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3071                           chr1_reg, chr2_reg, Ldone);
  3072     __ add(G0, 1, result_reg); // equals
  3074     __ bind(Ldone);
  3075   %}
  3077   enc_class enc_rethrow() %{
  3078     cbuf.set_insts_mark();
  3079     Register temp_reg = G3;
  3080     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3081     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3082     MacroAssembler _masm(&cbuf);
  3083 #ifdef ASSERT
  3084     __ save_frame(0);
  3085     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3086     __ sethi(last_rethrow_addrlit, L1);
  3087     Address addr(L1, last_rethrow_addrlit.low10());
  3088     __ get_pc(L2);
  3089     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3090     __ st_ptr(L2, addr);
  3091     __ restore();
  3092 #endif
  3093     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3094     __ delayed()->nop();
  3095   %}
  3097   enc_class emit_mem_nop() %{
  3098     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3099     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3100   %}
  3102   enc_class emit_fadd_nop() %{
  3103     // Generates the instruction FMOVS f31,f31
  3104     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3105   %}
  3107   enc_class emit_br_nop() %{
  3108     // Generates the instruction BPN,PN .
  3109     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3110   %}
  3112   enc_class enc_membar_acquire %{
  3113     MacroAssembler _masm(&cbuf);
  3114     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3115   %}
  3117   enc_class enc_membar_release %{
  3118     MacroAssembler _masm(&cbuf);
  3119     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3120   %}
  3122   enc_class enc_membar_volatile %{
  3123     MacroAssembler _masm(&cbuf);
  3124     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3125   %}
  3127   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3128     MacroAssembler _masm(&cbuf);
  3129     Register src_reg = reg_to_register_object($src$$reg);
  3130     Register dst_reg = reg_to_register_object($dst$$reg);
  3131     __ sllx(src_reg, 56, dst_reg);
  3132     __ srlx(dst_reg,  8, O7);
  3133     __ or3 (dst_reg, O7, dst_reg);
  3134     __ srlx(dst_reg, 16, O7);
  3135     __ or3 (dst_reg, O7, dst_reg);
  3136     __ srlx(dst_reg, 32, O7);
  3137     __ or3 (dst_reg, O7, dst_reg);
  3138   %}
  3140   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3141     MacroAssembler _masm(&cbuf);
  3142     Register src_reg = reg_to_register_object($src$$reg);
  3143     Register dst_reg = reg_to_register_object($dst$$reg);
  3144     __ sll(src_reg, 24, dst_reg);
  3145     __ srl(dst_reg,  8, O7);
  3146     __ or3(dst_reg, O7, dst_reg);
  3147     __ srl(dst_reg, 16, O7);
  3148     __ or3(dst_reg, O7, dst_reg);
  3149   %}
  3151   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3152     MacroAssembler _masm(&cbuf);
  3153     Register src_reg = reg_to_register_object($src$$reg);
  3154     Register dst_reg = reg_to_register_object($dst$$reg);
  3155     __ sllx(src_reg, 48, dst_reg);
  3156     __ srlx(dst_reg, 16, O7);
  3157     __ or3 (dst_reg, O7, dst_reg);
  3158     __ srlx(dst_reg, 32, O7);
  3159     __ or3 (dst_reg, O7, dst_reg);
  3160   %}
  3162   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3163     MacroAssembler _masm(&cbuf);
  3164     Register src_reg = reg_to_register_object($src$$reg);
  3165     Register dst_reg = reg_to_register_object($dst$$reg);
  3166     __ sllx(src_reg, 32, dst_reg);
  3167     __ srlx(dst_reg, 32, O7);
  3168     __ or3 (dst_reg, O7, dst_reg);
  3169   %}
  3171 %}
  3173 //----------FRAME--------------------------------------------------------------
  3174 // Definition of frame structure and management information.
  3175 //
  3176 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3177 //                             |   (to get allocators register number
  3178 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3179 //  r   CALLER     |        |
  3180 //  o     |        +--------+      pad to even-align allocators stack-slot
  3181 //  w     V        |  pad0  |        numbers; owned by CALLER
  3182 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3183 //  h     ^        |   in   |  5
  3184 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3185 //  |     |        |        |  3
  3186 //  |     |        +--------+
  3187 //  V     |        | old out|      Empty on Intel, window on Sparc
  3188 //        |    old |preserve|      Must be even aligned.
  3189 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3190 //        |        |   in   |  3   area for Intel ret address
  3191 //     Owned by    |preserve|      Empty on Sparc.
  3192 //       SELF      +--------+
  3193 //        |        |  pad2  |  2   pad to align old SP
  3194 //        |        +--------+  1
  3195 //        |        | locks  |  0
  3196 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3197 //        |        |  pad1  | 11   pad to align new SP
  3198 //        |        +--------+
  3199 //        |        |        | 10
  3200 //        |        | spills |  9   spills
  3201 //        V        |        |  8   (pad0 slot for callee)
  3202 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3203 //        ^        |  out   |  7
  3204 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3205 //     Owned by    +--------+
  3206 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3207 //        |    new |preserve|      Must be even-aligned.
  3208 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3209 //        |        |        |
  3210 //
  3211 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3212 //         known from SELF's arguments and the Java calling convention.
  3213 //         Region 6-7 is determined per call site.
  3214 // Note 2: If the calling convention leaves holes in the incoming argument
  3215 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3216 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3217 //         incoming area, as the Java calling convention is completely under
  3218 //         the control of the AD file.  Doubles can be sorted and packed to
  3219 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3220 //         varargs C calling conventions.
  3221 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3222 //         even aligned with pad0 as needed.
  3223 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3224 //         region 6-11 is even aligned; it may be padded out more so that
  3225 //         the region from SP to FP meets the minimum stack alignment.
  3227 frame %{
  3228   // What direction does stack grow in (assumed to be same for native & Java)
  3229   stack_direction(TOWARDS_LOW);
  3231   // These two registers define part of the calling convention
  3232   // between compiled code and the interpreter.
  3233   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3234   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3236   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3237   cisc_spilling_operand_name(indOffset);
  3239   // Number of stack slots consumed by a Monitor enter
  3240 #ifdef _LP64
  3241   sync_stack_slots(2);
  3242 #else
  3243   sync_stack_slots(1);
  3244 #endif
  3246   // Compiled code's Frame Pointer
  3247   frame_pointer(R_SP);
  3249   // Stack alignment requirement
  3250   stack_alignment(StackAlignmentInBytes);
  3251   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3252   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3254   // Number of stack slots between incoming argument block and the start of
  3255   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3256   // EPILOG must remove this many slots.
  3257   in_preserve_stack_slots(0);
  3259   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3260   // for calls to C.  Supports the var-args backing area for register parms.
  3261   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3262 #ifdef _LP64
  3263   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3264   varargs_C_out_slots_killed(12);
  3265 #else
  3266   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3267   varargs_C_out_slots_killed( 7);
  3268 #endif
  3270   // The after-PROLOG location of the return address.  Location of
  3271   // return address specifies a type (REG or STACK) and a number
  3272   // representing the register number (i.e. - use a register name) or
  3273   // stack slot.
  3274   return_addr(REG R_I7);          // Ret Addr is in register I7
  3276   // Body of function which returns an OptoRegs array locating
  3277   // arguments either in registers or in stack slots for calling
  3278   // java
  3279   calling_convention %{
  3280     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3282   %}
  3284   // Body of function which returns an OptoRegs array locating
  3285   // arguments either in registers or in stack slots for callin
  3286   // C.
  3287   c_calling_convention %{
  3288     // This is obviously always outgoing
  3289     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3290   %}
  3292   // Location of native (C/C++) and interpreter return values.  This is specified to
  3293   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3294   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3295   // to and from the register pairs is done by the appropriate call and epilog
  3296   // opcodes.  This simplifies the register allocator.
  3297   c_return_value %{
  3298     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3299 #ifdef     _LP64
  3300     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3301     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3302     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3303     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3304 #else  // !_LP64
  3305     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3306     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3307     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3308     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3309 #endif
  3310     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3311                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3312   %}
  3314   // Location of compiled Java return values.  Same as C
  3315   return_value %{
  3316     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3317 #ifdef     _LP64
  3318     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3319     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3320     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3321     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3322 #else  // !_LP64
  3323     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3324     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3325     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3326     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3327 #endif
  3328     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3329                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3330   %}
  3332 %}
  3335 //----------ATTRIBUTES---------------------------------------------------------
  3336 //----------Operand Attributes-------------------------------------------------
  3337 op_attrib op_cost(1);          // Required cost attribute
  3339 //----------Instruction Attributes---------------------------------------------
  3340 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3341 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3342 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3343 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3344                                    // non-matching short branch variant of some
  3345                                                             // long branch?
  3347 //----------OPERANDS-----------------------------------------------------------
  3348 // Operand definitions must precede instruction definitions for correct parsing
  3349 // in the ADLC because operands constitute user defined types which are used in
  3350 // instruction definitions.
  3352 //----------Simple Operands----------------------------------------------------
  3353 // Immediate Operands
  3354 // Integer Immediate: 32-bit
  3355 operand immI() %{
  3356   match(ConI);
  3358   op_cost(0);
  3359   // formats are generated automatically for constants and base registers
  3360   format %{ %}
  3361   interface(CONST_INTER);
  3362 %}
  3364 // Integer Immediate: 8-bit
  3365 operand immI8() %{
  3366   predicate(Assembler::is_simm8(n->get_int()));
  3367   match(ConI);
  3368   op_cost(0);
  3369   format %{ %}
  3370   interface(CONST_INTER);
  3371 %}
  3373 // Integer Immediate: 13-bit
  3374 operand immI13() %{
  3375   predicate(Assembler::is_simm13(n->get_int()));
  3376   match(ConI);
  3377   op_cost(0);
  3379   format %{ %}
  3380   interface(CONST_INTER);
  3381 %}
  3383 // Integer Immediate: 13-bit minus 7
  3384 operand immI13m7() %{
  3385   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3386   match(ConI);
  3387   op_cost(0);
  3389   format %{ %}
  3390   interface(CONST_INTER);
  3391 %}
  3393 // Integer Immediate: 16-bit
  3394 operand immI16() %{
  3395   predicate(Assembler::is_simm16(n->get_int()));
  3396   match(ConI);
  3397   op_cost(0);
  3398   format %{ %}
  3399   interface(CONST_INTER);
  3400 %}
  3402 // Unsigned (positive) Integer Immediate: 13-bit
  3403 operand immU13() %{
  3404   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3405   match(ConI);
  3406   op_cost(0);
  3408   format %{ %}
  3409   interface(CONST_INTER);
  3410 %}
  3412 // Integer Immediate: 6-bit
  3413 operand immU6() %{
  3414   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3415   match(ConI);
  3416   op_cost(0);
  3417   format %{ %}
  3418   interface(CONST_INTER);
  3419 %}
  3421 // Integer Immediate: 11-bit
  3422 operand immI11() %{
  3423   predicate(Assembler::is_simm11(n->get_int()));
  3424   match(ConI);
  3425   op_cost(0);
  3426   format %{ %}
  3427   interface(CONST_INTER);
  3428 %}
  3430 // Integer Immediate: 5-bit
  3431 operand immI5() %{
  3432   predicate(Assembler::is_simm5(n->get_int()));
  3433   match(ConI);
  3434   op_cost(0);
  3435   format %{ %}
  3436   interface(CONST_INTER);
  3437 %}
  3439 // Integer Immediate: 0-bit
  3440 operand immI0() %{
  3441   predicate(n->get_int() == 0);
  3442   match(ConI);
  3443   op_cost(0);
  3445   format %{ %}
  3446   interface(CONST_INTER);
  3447 %}
  3449 // Integer Immediate: the value 10
  3450 operand immI10() %{
  3451   predicate(n->get_int() == 10);
  3452   match(ConI);
  3453   op_cost(0);
  3455   format %{ %}
  3456   interface(CONST_INTER);
  3457 %}
  3459 // Integer Immediate: the values 0-31
  3460 operand immU5() %{
  3461   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3462   match(ConI);
  3463   op_cost(0);
  3465   format %{ %}
  3466   interface(CONST_INTER);
  3467 %}
  3469 // Integer Immediate: the values 1-31
  3470 operand immI_1_31() %{
  3471   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3472   match(ConI);
  3473   op_cost(0);
  3475   format %{ %}
  3476   interface(CONST_INTER);
  3477 %}
  3479 // Integer Immediate: the values 32-63
  3480 operand immI_32_63() %{
  3481   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3482   match(ConI);
  3483   op_cost(0);
  3485   format %{ %}
  3486   interface(CONST_INTER);
  3487 %}
  3489 // Immediates for special shifts (sign extend)
  3491 // Integer Immediate: the value 16
  3492 operand immI_16() %{
  3493   predicate(n->get_int() == 16);
  3494   match(ConI);
  3495   op_cost(0);
  3497   format %{ %}
  3498   interface(CONST_INTER);
  3499 %}
  3501 // Integer Immediate: the value 24
  3502 operand immI_24() %{
  3503   predicate(n->get_int() == 24);
  3504   match(ConI);
  3505   op_cost(0);
  3507   format %{ %}
  3508   interface(CONST_INTER);
  3509 %}
  3511 // Integer Immediate: the value 255
  3512 operand immI_255() %{
  3513   predicate( n->get_int() == 255 );
  3514   match(ConI);
  3515   op_cost(0);
  3517   format %{ %}
  3518   interface(CONST_INTER);
  3519 %}
  3521 // Integer Immediate: the value 65535
  3522 operand immI_65535() %{
  3523   predicate(n->get_int() == 65535);
  3524   match(ConI);
  3525   op_cost(0);
  3527   format %{ %}
  3528   interface(CONST_INTER);
  3529 %}
  3531 // Long Immediate: the value FF
  3532 operand immL_FF() %{
  3533   predicate( n->get_long() == 0xFFL );
  3534   match(ConL);
  3535   op_cost(0);
  3537   format %{ %}
  3538   interface(CONST_INTER);
  3539 %}
  3541 // Long Immediate: the value FFFF
  3542 operand immL_FFFF() %{
  3543   predicate( n->get_long() == 0xFFFFL );
  3544   match(ConL);
  3545   op_cost(0);
  3547   format %{ %}
  3548   interface(CONST_INTER);
  3549 %}
  3551 // Pointer Immediate: 32 or 64-bit
  3552 operand immP() %{
  3553   match(ConP);
  3555   op_cost(5);
  3556   // formats are generated automatically for constants and base registers
  3557   format %{ %}
  3558   interface(CONST_INTER);
  3559 %}
  3561 #ifdef _LP64
  3562 // Pointer Immediate: 64-bit
  3563 operand immP_set() %{
  3564   predicate(!VM_Version::is_niagara_plus());
  3565   match(ConP);
  3567   op_cost(5);
  3568   // formats are generated automatically for constants and base registers
  3569   format %{ %}
  3570   interface(CONST_INTER);
  3571 %}
  3573 // Pointer Immediate: 64-bit
  3574 // From Niagara2 processors on a load should be better than materializing.
  3575 operand immP_load() %{
  3576   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3577   match(ConP);
  3579   op_cost(5);
  3580   // formats are generated automatically for constants and base registers
  3581   format %{ %}
  3582   interface(CONST_INTER);
  3583 %}
  3585 // Pointer Immediate: 64-bit
  3586 operand immP_no_oop_cheap() %{
  3587   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3588   match(ConP);
  3590   op_cost(5);
  3591   // formats are generated automatically for constants and base registers
  3592   format %{ %}
  3593   interface(CONST_INTER);
  3594 %}
  3595 #endif
  3597 operand immP13() %{
  3598   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3599   match(ConP);
  3600   op_cost(0);
  3602   format %{ %}
  3603   interface(CONST_INTER);
  3604 %}
  3606 operand immP0() %{
  3607   predicate(n->get_ptr() == 0);
  3608   match(ConP);
  3609   op_cost(0);
  3611   format %{ %}
  3612   interface(CONST_INTER);
  3613 %}
  3615 operand immP_poll() %{
  3616   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3617   match(ConP);
  3619   // formats are generated automatically for constants and base registers
  3620   format %{ %}
  3621   interface(CONST_INTER);
  3622 %}
  3624 // Pointer Immediate
  3625 operand immN()
  3626 %{
  3627   match(ConN);
  3629   op_cost(10);
  3630   format %{ %}
  3631   interface(CONST_INTER);
  3632 %}
  3634 // NULL Pointer Immediate
  3635 operand immN0()
  3636 %{
  3637   predicate(n->get_narrowcon() == 0);
  3638   match(ConN);
  3640   op_cost(0);
  3641   format %{ %}
  3642   interface(CONST_INTER);
  3643 %}
  3645 operand immL() %{
  3646   match(ConL);
  3647   op_cost(40);
  3648   // formats are generated automatically for constants and base registers
  3649   format %{ %}
  3650   interface(CONST_INTER);
  3651 %}
  3653 operand immL0() %{
  3654   predicate(n->get_long() == 0L);
  3655   match(ConL);
  3656   op_cost(0);
  3657   // formats are generated automatically for constants and base registers
  3658   format %{ %}
  3659   interface(CONST_INTER);
  3660 %}
  3662 // Integer Immediate: 5-bit
  3663 operand immL5() %{
  3664   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3665   match(ConL);
  3666   op_cost(0);
  3667   format %{ %}
  3668   interface(CONST_INTER);
  3669 %}
  3671 // Long Immediate: 13-bit
  3672 operand immL13() %{
  3673   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3674   match(ConL);
  3675   op_cost(0);
  3677   format %{ %}
  3678   interface(CONST_INTER);
  3679 %}
  3681 // Long Immediate: 13-bit minus 7
  3682 operand immL13m7() %{
  3683   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3684   match(ConL);
  3685   op_cost(0);
  3687   format %{ %}
  3688   interface(CONST_INTER);
  3689 %}
  3691 // Long Immediate: low 32-bit mask
  3692 operand immL_32bits() %{
  3693   predicate(n->get_long() == 0xFFFFFFFFL);
  3694   match(ConL);
  3695   op_cost(0);
  3697   format %{ %}
  3698   interface(CONST_INTER);
  3699 %}
  3701 // Long Immediate: cheap (materialize in <= 3 instructions)
  3702 operand immL_cheap() %{
  3703   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3704   match(ConL);
  3705   op_cost(0);
  3707   format %{ %}
  3708   interface(CONST_INTER);
  3709 %}
  3711 // Long Immediate: expensive (materialize in > 3 instructions)
  3712 operand immL_expensive() %{
  3713   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3714   match(ConL);
  3715   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 // Double Immediate
  3722 operand immD() %{
  3723   match(ConD);
  3725   op_cost(40);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 operand immD0() %{
  3731 #ifdef _LP64
  3732   // on 64-bit architectures this comparision is faster
  3733   predicate(jlong_cast(n->getd()) == 0);
  3734 #else
  3735   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3736 #endif
  3737   match(ConD);
  3739   op_cost(0);
  3740   format %{ %}
  3741   interface(CONST_INTER);
  3742 %}
  3744 // Float Immediate
  3745 operand immF() %{
  3746   match(ConF);
  3748   op_cost(20);
  3749   format %{ %}
  3750   interface(CONST_INTER);
  3751 %}
  3753 // Float Immediate: 0
  3754 operand immF0() %{
  3755   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3756   match(ConF);
  3758   op_cost(0);
  3759   format %{ %}
  3760   interface(CONST_INTER);
  3761 %}
  3763 // Integer Register Operands
  3764 // Integer Register
  3765 operand iRegI() %{
  3766   constraint(ALLOC_IN_RC(int_reg));
  3767   match(RegI);
  3769   match(notemp_iRegI);
  3770   match(g1RegI);
  3771   match(o0RegI);
  3772   match(iRegIsafe);
  3774   format %{ %}
  3775   interface(REG_INTER);
  3776 %}
  3778 operand notemp_iRegI() %{
  3779   constraint(ALLOC_IN_RC(notemp_int_reg));
  3780   match(RegI);
  3782   match(o0RegI);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 operand o0RegI() %{
  3789   constraint(ALLOC_IN_RC(o0_regI));
  3790   match(iRegI);
  3792   format %{ %}
  3793   interface(REG_INTER);
  3794 %}
  3796 // Pointer Register
  3797 operand iRegP() %{
  3798   constraint(ALLOC_IN_RC(ptr_reg));
  3799   match(RegP);
  3801   match(lock_ptr_RegP);
  3802   match(g1RegP);
  3803   match(g2RegP);
  3804   match(g3RegP);
  3805   match(g4RegP);
  3806   match(i0RegP);
  3807   match(o0RegP);
  3808   match(o1RegP);
  3809   match(l7RegP);
  3811   format %{ %}
  3812   interface(REG_INTER);
  3813 %}
  3815 operand sp_ptr_RegP() %{
  3816   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3817   match(RegP);
  3818   match(iRegP);
  3820   format %{ %}
  3821   interface(REG_INTER);
  3822 %}
  3824 operand lock_ptr_RegP() %{
  3825   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3826   match(RegP);
  3827   match(i0RegP);
  3828   match(o0RegP);
  3829   match(o1RegP);
  3830   match(l7RegP);
  3832   format %{ %}
  3833   interface(REG_INTER);
  3834 %}
  3836 operand g1RegP() %{
  3837   constraint(ALLOC_IN_RC(g1_regP));
  3838   match(iRegP);
  3840   format %{ %}
  3841   interface(REG_INTER);
  3842 %}
  3844 operand g2RegP() %{
  3845   constraint(ALLOC_IN_RC(g2_regP));
  3846   match(iRegP);
  3848   format %{ %}
  3849   interface(REG_INTER);
  3850 %}
  3852 operand g3RegP() %{
  3853   constraint(ALLOC_IN_RC(g3_regP));
  3854   match(iRegP);
  3856   format %{ %}
  3857   interface(REG_INTER);
  3858 %}
  3860 operand g1RegI() %{
  3861   constraint(ALLOC_IN_RC(g1_regI));
  3862   match(iRegI);
  3864   format %{ %}
  3865   interface(REG_INTER);
  3866 %}
  3868 operand g3RegI() %{
  3869   constraint(ALLOC_IN_RC(g3_regI));
  3870   match(iRegI);
  3872   format %{ %}
  3873   interface(REG_INTER);
  3874 %}
  3876 operand g4RegI() %{
  3877   constraint(ALLOC_IN_RC(g4_regI));
  3878   match(iRegI);
  3880   format %{ %}
  3881   interface(REG_INTER);
  3882 %}
  3884 operand g4RegP() %{
  3885   constraint(ALLOC_IN_RC(g4_regP));
  3886   match(iRegP);
  3888   format %{ %}
  3889   interface(REG_INTER);
  3890 %}
  3892 operand i0RegP() %{
  3893   constraint(ALLOC_IN_RC(i0_regP));
  3894   match(iRegP);
  3896   format %{ %}
  3897   interface(REG_INTER);
  3898 %}
  3900 operand o0RegP() %{
  3901   constraint(ALLOC_IN_RC(o0_regP));
  3902   match(iRegP);
  3904   format %{ %}
  3905   interface(REG_INTER);
  3906 %}
  3908 operand o1RegP() %{
  3909   constraint(ALLOC_IN_RC(o1_regP));
  3910   match(iRegP);
  3912   format %{ %}
  3913   interface(REG_INTER);
  3914 %}
  3916 operand o2RegP() %{
  3917   constraint(ALLOC_IN_RC(o2_regP));
  3918   match(iRegP);
  3920   format %{ %}
  3921   interface(REG_INTER);
  3922 %}
  3924 operand o7RegP() %{
  3925   constraint(ALLOC_IN_RC(o7_regP));
  3926   match(iRegP);
  3928   format %{ %}
  3929   interface(REG_INTER);
  3930 %}
  3932 operand l7RegP() %{
  3933   constraint(ALLOC_IN_RC(l7_regP));
  3934   match(iRegP);
  3936   format %{ %}
  3937   interface(REG_INTER);
  3938 %}
  3940 operand o7RegI() %{
  3941   constraint(ALLOC_IN_RC(o7_regI));
  3942   match(iRegI);
  3944   format %{ %}
  3945   interface(REG_INTER);
  3946 %}
  3948 operand iRegN() %{
  3949   constraint(ALLOC_IN_RC(int_reg));
  3950   match(RegN);
  3952   format %{ %}
  3953   interface(REG_INTER);
  3954 %}
  3956 // Long Register
  3957 operand iRegL() %{
  3958   constraint(ALLOC_IN_RC(long_reg));
  3959   match(RegL);
  3961   format %{ %}
  3962   interface(REG_INTER);
  3963 %}
  3965 operand o2RegL() %{
  3966   constraint(ALLOC_IN_RC(o2_regL));
  3967   match(iRegL);
  3969   format %{ %}
  3970   interface(REG_INTER);
  3971 %}
  3973 operand o7RegL() %{
  3974   constraint(ALLOC_IN_RC(o7_regL));
  3975   match(iRegL);
  3977   format %{ %}
  3978   interface(REG_INTER);
  3979 %}
  3981 operand g1RegL() %{
  3982   constraint(ALLOC_IN_RC(g1_regL));
  3983   match(iRegL);
  3985   format %{ %}
  3986   interface(REG_INTER);
  3987 %}
  3989 operand g3RegL() %{
  3990   constraint(ALLOC_IN_RC(g3_regL));
  3991   match(iRegL);
  3993   format %{ %}
  3994   interface(REG_INTER);
  3995 %}
  3997 // Int Register safe
  3998 // This is 64bit safe
  3999 operand iRegIsafe() %{
  4000   constraint(ALLOC_IN_RC(long_reg));
  4002   match(iRegI);
  4004   format %{ %}
  4005   interface(REG_INTER);
  4006 %}
  4008 // Condition Code Flag Register
  4009 operand flagsReg() %{
  4010   constraint(ALLOC_IN_RC(int_flags));
  4011   match(RegFlags);
  4013   format %{ "ccr" %} // both ICC and XCC
  4014   interface(REG_INTER);
  4015 %}
  4017 // Condition Code Register, unsigned comparisons.
  4018 operand flagsRegU() %{
  4019   constraint(ALLOC_IN_RC(int_flags));
  4020   match(RegFlags);
  4022   format %{ "icc_U" %}
  4023   interface(REG_INTER);
  4024 %}
  4026 // Condition Code Register, pointer comparisons.
  4027 operand flagsRegP() %{
  4028   constraint(ALLOC_IN_RC(int_flags));
  4029   match(RegFlags);
  4031 #ifdef _LP64
  4032   format %{ "xcc_P" %}
  4033 #else
  4034   format %{ "icc_P" %}
  4035 #endif
  4036   interface(REG_INTER);
  4037 %}
  4039 // Condition Code Register, long comparisons.
  4040 operand flagsRegL() %{
  4041   constraint(ALLOC_IN_RC(int_flags));
  4042   match(RegFlags);
  4044   format %{ "xcc_L" %}
  4045   interface(REG_INTER);
  4046 %}
  4048 // Condition Code Register, floating comparisons, unordered same as "less".
  4049 operand flagsRegF() %{
  4050   constraint(ALLOC_IN_RC(float_flags));
  4051   match(RegFlags);
  4052   match(flagsRegF0);
  4054   format %{ %}
  4055   interface(REG_INTER);
  4056 %}
  4058 operand flagsRegF0() %{
  4059   constraint(ALLOC_IN_RC(float_flag0));
  4060   match(RegFlags);
  4062   format %{ %}
  4063   interface(REG_INTER);
  4064 %}
  4067 // Condition Code Flag Register used by long compare
  4068 operand flagsReg_long_LTGE() %{
  4069   constraint(ALLOC_IN_RC(int_flags));
  4070   match(RegFlags);
  4071   format %{ "icc_LTGE" %}
  4072   interface(REG_INTER);
  4073 %}
  4074 operand flagsReg_long_EQNE() %{
  4075   constraint(ALLOC_IN_RC(int_flags));
  4076   match(RegFlags);
  4077   format %{ "icc_EQNE" %}
  4078   interface(REG_INTER);
  4079 %}
  4080 operand flagsReg_long_LEGT() %{
  4081   constraint(ALLOC_IN_RC(int_flags));
  4082   match(RegFlags);
  4083   format %{ "icc_LEGT" %}
  4084   interface(REG_INTER);
  4085 %}
  4088 operand regD() %{
  4089   constraint(ALLOC_IN_RC(dflt_reg));
  4090   match(RegD);
  4092   match(regD_low);
  4094   format %{ %}
  4095   interface(REG_INTER);
  4096 %}
  4098 operand regF() %{
  4099   constraint(ALLOC_IN_RC(sflt_reg));
  4100   match(RegF);
  4102   format %{ %}
  4103   interface(REG_INTER);
  4104 %}
  4106 operand regD_low() %{
  4107   constraint(ALLOC_IN_RC(dflt_low_reg));
  4108   match(regD);
  4110   format %{ %}
  4111   interface(REG_INTER);
  4112 %}
  4114 // Special Registers
  4116 // Method Register
  4117 operand inline_cache_regP(iRegP reg) %{
  4118   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4119   match(reg);
  4120   format %{ %}
  4121   interface(REG_INTER);
  4122 %}
  4124 operand interpreter_method_oop_regP(iRegP reg) %{
  4125   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4126   match(reg);
  4127   format %{ %}
  4128   interface(REG_INTER);
  4129 %}
  4132 //----------Complex Operands---------------------------------------------------
  4133 // Indirect Memory Reference
  4134 operand indirect(sp_ptr_RegP reg) %{
  4135   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4136   match(reg);
  4138   op_cost(100);
  4139   format %{ "[$reg]" %}
  4140   interface(MEMORY_INTER) %{
  4141     base($reg);
  4142     index(0x0);
  4143     scale(0x0);
  4144     disp(0x0);
  4145   %}
  4146 %}
  4148 // Indirect with simm13 Offset
  4149 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4150   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4151   match(AddP reg offset);
  4153   op_cost(100);
  4154   format %{ "[$reg + $offset]" %}
  4155   interface(MEMORY_INTER) %{
  4156     base($reg);
  4157     index(0x0);
  4158     scale(0x0);
  4159     disp($offset);
  4160   %}
  4161 %}
  4163 // Indirect with simm13 Offset minus 7
  4164 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4165   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4166   match(AddP reg offset);
  4168   op_cost(100);
  4169   format %{ "[$reg + $offset]" %}
  4170   interface(MEMORY_INTER) %{
  4171     base($reg);
  4172     index(0x0);
  4173     scale(0x0);
  4174     disp($offset);
  4175   %}
  4176 %}
  4178 // Note:  Intel has a swapped version also, like this:
  4179 //operand indOffsetX(iRegI reg, immP offset) %{
  4180 //  constraint(ALLOC_IN_RC(int_reg));
  4181 //  match(AddP offset reg);
  4182 //
  4183 //  op_cost(100);
  4184 //  format %{ "[$reg + $offset]" %}
  4185 //  interface(MEMORY_INTER) %{
  4186 //    base($reg);
  4187 //    index(0x0);
  4188 //    scale(0x0);
  4189 //    disp($offset);
  4190 //  %}
  4191 //%}
  4192 //// However, it doesn't make sense for SPARC, since
  4193 // we have no particularly good way to embed oops in
  4194 // single instructions.
  4196 // Indirect with Register Index
  4197 operand indIndex(iRegP addr, iRegX index) %{
  4198   constraint(ALLOC_IN_RC(ptr_reg));
  4199   match(AddP addr index);
  4201   op_cost(100);
  4202   format %{ "[$addr + $index]" %}
  4203   interface(MEMORY_INTER) %{
  4204     base($addr);
  4205     index($index);
  4206     scale(0x0);
  4207     disp(0x0);
  4208   %}
  4209 %}
  4211 //----------Special Memory Operands--------------------------------------------
  4212 // Stack Slot Operand - This operand is used for loading and storing temporary
  4213 //                      values on the stack where a match requires a value to
  4214 //                      flow through memory.
  4215 operand stackSlotI(sRegI reg) %{
  4216   constraint(ALLOC_IN_RC(stack_slots));
  4217   op_cost(100);
  4218   //match(RegI);
  4219   format %{ "[$reg]" %}
  4220   interface(MEMORY_INTER) %{
  4221     base(0xE);   // R_SP
  4222     index(0x0);
  4223     scale(0x0);
  4224     disp($reg);  // Stack Offset
  4225   %}
  4226 %}
  4228 operand stackSlotP(sRegP reg) %{
  4229   constraint(ALLOC_IN_RC(stack_slots));
  4230   op_cost(100);
  4231   //match(RegP);
  4232   format %{ "[$reg]" %}
  4233   interface(MEMORY_INTER) %{
  4234     base(0xE);   // R_SP
  4235     index(0x0);
  4236     scale(0x0);
  4237     disp($reg);  // Stack Offset
  4238   %}
  4239 %}
  4241 operand stackSlotF(sRegF reg) %{
  4242   constraint(ALLOC_IN_RC(stack_slots));
  4243   op_cost(100);
  4244   //match(RegF);
  4245   format %{ "[$reg]" %}
  4246   interface(MEMORY_INTER) %{
  4247     base(0xE);   // R_SP
  4248     index(0x0);
  4249     scale(0x0);
  4250     disp($reg);  // Stack Offset
  4251   %}
  4252 %}
  4253 operand stackSlotD(sRegD reg) %{
  4254   constraint(ALLOC_IN_RC(stack_slots));
  4255   op_cost(100);
  4256   //match(RegD);
  4257   format %{ "[$reg]" %}
  4258   interface(MEMORY_INTER) %{
  4259     base(0xE);   // R_SP
  4260     index(0x0);
  4261     scale(0x0);
  4262     disp($reg);  // Stack Offset
  4263   %}
  4264 %}
  4265 operand stackSlotL(sRegL reg) %{
  4266   constraint(ALLOC_IN_RC(stack_slots));
  4267   op_cost(100);
  4268   //match(RegL);
  4269   format %{ "[$reg]" %}
  4270   interface(MEMORY_INTER) %{
  4271     base(0xE);   // R_SP
  4272     index(0x0);
  4273     scale(0x0);
  4274     disp($reg);  // Stack Offset
  4275   %}
  4276 %}
  4278 // Operands for expressing Control Flow
  4279 // NOTE:  Label is a predefined operand which should not be redefined in
  4280 //        the AD file.  It is generically handled within the ADLC.
  4282 //----------Conditional Branch Operands----------------------------------------
  4283 // Comparison Op  - This is the operation of the comparison, and is limited to
  4284 //                  the following set of codes:
  4285 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4286 //
  4287 // Other attributes of the comparison, such as unsignedness, are specified
  4288 // by the comparison instruction that sets a condition code flags register.
  4289 // That result is represented by a flags operand whose subtype is appropriate
  4290 // to the unsignedness (etc.) of the comparison.
  4291 //
  4292 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4293 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4294 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4296 operand cmpOp() %{
  4297   match(Bool);
  4299   format %{ "" %}
  4300   interface(COND_INTER) %{
  4301     equal(0x1);
  4302     not_equal(0x9);
  4303     less(0x3);
  4304     greater_equal(0xB);
  4305     less_equal(0x2);
  4306     greater(0xA);
  4307   %}
  4308 %}
  4310 // Comparison Op, unsigned
  4311 operand cmpOpU() %{
  4312   match(Bool);
  4314   format %{ "u" %}
  4315   interface(COND_INTER) %{
  4316     equal(0x1);
  4317     not_equal(0x9);
  4318     less(0x5);
  4319     greater_equal(0xD);
  4320     less_equal(0x4);
  4321     greater(0xC);
  4322   %}
  4323 %}
  4325 // Comparison Op, pointer (same as unsigned)
  4326 operand cmpOpP() %{
  4327   match(Bool);
  4329   format %{ "p" %}
  4330   interface(COND_INTER) %{
  4331     equal(0x1);
  4332     not_equal(0x9);
  4333     less(0x5);
  4334     greater_equal(0xD);
  4335     less_equal(0x4);
  4336     greater(0xC);
  4337   %}
  4338 %}
  4340 // Comparison Op, branch-register encoding
  4341 operand cmpOp_reg() %{
  4342   match(Bool);
  4344   format %{ "" %}
  4345   interface(COND_INTER) %{
  4346     equal        (0x1);
  4347     not_equal    (0x5);
  4348     less         (0x3);
  4349     greater_equal(0x7);
  4350     less_equal   (0x2);
  4351     greater      (0x6);
  4352   %}
  4353 %}
  4355 // Comparison Code, floating, unordered same as less
  4356 operand cmpOpF() %{
  4357   match(Bool);
  4359   format %{ "fl" %}
  4360   interface(COND_INTER) %{
  4361     equal(0x9);
  4362     not_equal(0x1);
  4363     less(0x3);
  4364     greater_equal(0xB);
  4365     less_equal(0xE);
  4366     greater(0x6);
  4367   %}
  4368 %}
  4370 // Used by long compare
  4371 operand cmpOp_commute() %{
  4372   match(Bool);
  4374   format %{ "" %}
  4375   interface(COND_INTER) %{
  4376     equal(0x1);
  4377     not_equal(0x9);
  4378     less(0xA);
  4379     greater_equal(0x2);
  4380     less_equal(0xB);
  4381     greater(0x3);
  4382   %}
  4383 %}
  4385 //----------OPERAND CLASSES----------------------------------------------------
  4386 // Operand Classes are groups of operands that are used to simplify
  4387 // instruction definitions by not requiring the AD writer to specify separate
  4388 // instructions for every form of operand when the instruction accepts
  4389 // multiple operand types with the same basic encoding and format.  The classic
  4390 // case of this is memory operands.
  4391 opclass memory( indirect, indOffset13, indIndex );
  4392 opclass indIndexMemory( indIndex );
  4394 //----------PIPELINE-----------------------------------------------------------
  4395 pipeline %{
  4397 //----------ATTRIBUTES---------------------------------------------------------
  4398 attributes %{
  4399   fixed_size_instructions;           // Fixed size instructions
  4400   branch_has_delay_slot;             // Branch has delay slot following
  4401   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4402   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4403   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4404   instruction_fetch_units = 1;       // of 16 bytes
  4406   // List of nop instructions
  4407   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4408 %}
  4410 //----------RESOURCES----------------------------------------------------------
  4411 // Resources are the functional units available to the machine
  4412 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4414 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4415 // Pipeline Description specifies the stages in the machine's pipeline
  4417 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4419 //----------PIPELINE CLASSES---------------------------------------------------
  4420 // Pipeline Classes describe the stages in which input and output are
  4421 // referenced by the hardware pipeline.
  4423 // Integer ALU reg-reg operation
  4424 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4425     single_instruction;
  4426     dst   : E(write);
  4427     src1  : R(read);
  4428     src2  : R(read);
  4429     IALU  : R;
  4430 %}
  4432 // Integer ALU reg-reg long operation
  4433 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4434     instruction_count(2);
  4435     dst   : E(write);
  4436     src1  : R(read);
  4437     src2  : R(read);
  4438     IALU  : R;
  4439     IALU  : R;
  4440 %}
  4442 // Integer ALU reg-reg long dependent operation
  4443 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4444     instruction_count(1); multiple_bundles;
  4445     dst   : E(write);
  4446     src1  : R(read);
  4447     src2  : R(read);
  4448     cr    : E(write);
  4449     IALU  : R(2);
  4450 %}
  4452 // Integer ALU reg-imm operaion
  4453 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4454     single_instruction;
  4455     dst   : E(write);
  4456     src1  : R(read);
  4457     IALU  : R;
  4458 %}
  4460 // Integer ALU reg-reg operation with condition code
  4461 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4462     single_instruction;
  4463     dst   : E(write);
  4464     cr    : E(write);
  4465     src1  : R(read);
  4466     src2  : R(read);
  4467     IALU  : R;
  4468 %}
  4470 // Integer ALU reg-imm operation with condition code
  4471 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4472     single_instruction;
  4473     dst   : E(write);
  4474     cr    : E(write);
  4475     src1  : R(read);
  4476     IALU  : R;
  4477 %}
  4479 // Integer ALU zero-reg operation
  4480 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4481     single_instruction;
  4482     dst   : E(write);
  4483     src2  : R(read);
  4484     IALU  : R;
  4485 %}
  4487 // Integer ALU zero-reg operation with condition code only
  4488 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4489     single_instruction;
  4490     cr    : E(write);
  4491     src   : R(read);
  4492     IALU  : R;
  4493 %}
  4495 // Integer ALU reg-reg operation with condition code only
  4496 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4497     single_instruction;
  4498     cr    : E(write);
  4499     src1  : R(read);
  4500     src2  : R(read);
  4501     IALU  : R;
  4502 %}
  4504 // Integer ALU reg-imm operation with condition code only
  4505 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4506     single_instruction;
  4507     cr    : E(write);
  4508     src1  : R(read);
  4509     IALU  : R;
  4510 %}
  4512 // Integer ALU reg-reg-zero operation with condition code only
  4513 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4514     single_instruction;
  4515     cr    : E(write);
  4516     src1  : R(read);
  4517     src2  : R(read);
  4518     IALU  : R;
  4519 %}
  4521 // Integer ALU reg-imm-zero operation with condition code only
  4522 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4523     single_instruction;
  4524     cr    : E(write);
  4525     src1  : R(read);
  4526     IALU  : R;
  4527 %}
  4529 // Integer ALU reg-reg operation with condition code, src1 modified
  4530 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4531     single_instruction;
  4532     cr    : E(write);
  4533     src1  : E(write);
  4534     src1  : R(read);
  4535     src2  : R(read);
  4536     IALU  : R;
  4537 %}
  4539 // Integer ALU reg-imm operation with condition code, src1 modified
  4540 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4541     single_instruction;
  4542     cr    : E(write);
  4543     src1  : E(write);
  4544     src1  : R(read);
  4545     IALU  : R;
  4546 %}
  4548 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4549     multiple_bundles;
  4550     dst   : E(write)+4;
  4551     cr    : E(write);
  4552     src1  : R(read);
  4553     src2  : R(read);
  4554     IALU  : R(3);
  4555     BR    : R(2);
  4556 %}
  4558 // Integer ALU operation
  4559 pipe_class ialu_none(iRegI dst) %{
  4560     single_instruction;
  4561     dst   : E(write);
  4562     IALU  : R;
  4563 %}
  4565 // Integer ALU reg operation
  4566 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4567     single_instruction; may_have_no_code;
  4568     dst   : E(write);
  4569     src   : R(read);
  4570     IALU  : R;
  4571 %}
  4573 // Integer ALU reg conditional operation
  4574 // This instruction has a 1 cycle stall, and cannot execute
  4575 // in the same cycle as the instruction setting the condition
  4576 // code. We kludge this by pretending to read the condition code
  4577 // 1 cycle earlier, and by marking the functional units as busy
  4578 // for 2 cycles with the result available 1 cycle later than
  4579 // is really the case.
  4580 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4581     single_instruction;
  4582     op2_out : C(write);
  4583     op1     : R(read);
  4584     cr      : R(read);       // This is really E, with a 1 cycle stall
  4585     BR      : R(2);
  4586     MS      : R(2);
  4587 %}
  4589 #ifdef _LP64
  4590 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4591     instruction_count(1); multiple_bundles;
  4592     dst     : C(write)+1;
  4593     src     : R(read)+1;
  4594     IALU    : R(1);
  4595     BR      : E(2);
  4596     MS      : E(2);
  4597 %}
  4598 #endif
  4600 // Integer ALU reg operation
  4601 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4602     single_instruction; may_have_no_code;
  4603     dst   : E(write);
  4604     src   : R(read);
  4605     IALU  : R;
  4606 %}
  4607 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4608     single_instruction; may_have_no_code;
  4609     dst   : E(write);
  4610     src   : R(read);
  4611     IALU  : R;
  4612 %}
  4614 // Two integer ALU reg operations
  4615 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4616     instruction_count(2);
  4617     dst   : E(write);
  4618     src   : R(read);
  4619     A0    : R;
  4620     A1    : R;
  4621 %}
  4623 // Two integer ALU reg operations
  4624 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4625     instruction_count(2); may_have_no_code;
  4626     dst   : E(write);
  4627     src   : R(read);
  4628     A0    : R;
  4629     A1    : R;
  4630 %}
  4632 // Integer ALU imm operation
  4633 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4634     single_instruction;
  4635     dst   : E(write);
  4636     IALU  : R;
  4637 %}
  4639 // Integer ALU reg-reg with carry operation
  4640 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4641     single_instruction;
  4642     dst   : E(write);
  4643     src1  : R(read);
  4644     src2  : R(read);
  4645     IALU  : R;
  4646 %}
  4648 // Integer ALU cc operation
  4649 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4650     single_instruction;
  4651     dst   : E(write);
  4652     cc    : R(read);
  4653     IALU  : R;
  4654 %}
  4656 // Integer ALU cc / second IALU operation
  4657 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4658     instruction_count(1); multiple_bundles;
  4659     dst   : E(write)+1;
  4660     src   : R(read);
  4661     IALU  : R;
  4662 %}
  4664 // Integer ALU cc / second IALU operation
  4665 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4666     instruction_count(1); multiple_bundles;
  4667     dst   : E(write)+1;
  4668     p     : R(read);
  4669     q     : R(read);
  4670     IALU  : R;
  4671 %}
  4673 // Integer ALU hi-lo-reg operation
  4674 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4675     instruction_count(1); multiple_bundles;
  4676     dst   : E(write)+1;
  4677     IALU  : R(2);
  4678 %}
  4680 // Float ALU hi-lo-reg operation (with temp)
  4681 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4682     instruction_count(1); multiple_bundles;
  4683     dst   : E(write)+1;
  4684     IALU  : R(2);
  4685 %}
  4687 // Long Constant
  4688 pipe_class loadConL( iRegL dst, immL src ) %{
  4689     instruction_count(2); multiple_bundles;
  4690     dst   : E(write)+1;
  4691     IALU  : R(2);
  4692     IALU  : R(2);
  4693 %}
  4695 // Pointer Constant
  4696 pipe_class loadConP( iRegP dst, immP src ) %{
  4697     instruction_count(0); multiple_bundles;
  4698     fixed_latency(6);
  4699 %}
  4701 // Polling Address
  4702 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4703 #ifdef _LP64
  4704     instruction_count(0); multiple_bundles;
  4705     fixed_latency(6);
  4706 #else
  4707     dst   : E(write);
  4708     IALU  : R;
  4709 #endif
  4710 %}
  4712 // Long Constant small
  4713 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4714     instruction_count(2);
  4715     dst   : E(write);
  4716     IALU  : R;
  4717     IALU  : R;
  4718 %}
  4720 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4721 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4722     instruction_count(1); multiple_bundles;
  4723     src   : R(read);
  4724     dst   : M(write)+1;
  4725     IALU  : R;
  4726     MS    : E;
  4727 %}
  4729 // Integer ALU nop operation
  4730 pipe_class ialu_nop() %{
  4731     single_instruction;
  4732     IALU  : R;
  4733 %}
  4735 // Integer ALU nop operation
  4736 pipe_class ialu_nop_A0() %{
  4737     single_instruction;
  4738     A0    : R;
  4739 %}
  4741 // Integer ALU nop operation
  4742 pipe_class ialu_nop_A1() %{
  4743     single_instruction;
  4744     A1    : R;
  4745 %}
  4747 // Integer Multiply reg-reg operation
  4748 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4749     single_instruction;
  4750     dst   : E(write);
  4751     src1  : R(read);
  4752     src2  : R(read);
  4753     MS    : R(5);
  4754 %}
  4756 // Integer Multiply reg-imm operation
  4757 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4758     single_instruction;
  4759     dst   : E(write);
  4760     src1  : R(read);
  4761     MS    : R(5);
  4762 %}
  4764 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4765     single_instruction;
  4766     dst   : E(write)+4;
  4767     src1  : R(read);
  4768     src2  : R(read);
  4769     MS    : R(6);
  4770 %}
  4772 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4773     single_instruction;
  4774     dst   : E(write)+4;
  4775     src1  : R(read);
  4776     MS    : R(6);
  4777 %}
  4779 // Integer Divide reg-reg
  4780 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4781     instruction_count(1); multiple_bundles;
  4782     dst   : E(write);
  4783     temp  : E(write);
  4784     src1  : R(read);
  4785     src2  : R(read);
  4786     temp  : R(read);
  4787     MS    : R(38);
  4788 %}
  4790 // Integer Divide reg-imm
  4791 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4792     instruction_count(1); multiple_bundles;
  4793     dst   : E(write);
  4794     temp  : E(write);
  4795     src1  : R(read);
  4796     temp  : R(read);
  4797     MS    : R(38);
  4798 %}
  4800 // Long Divide
  4801 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4802     dst  : E(write)+71;
  4803     src1 : R(read);
  4804     src2 : R(read)+1;
  4805     MS   : R(70);
  4806 %}
  4808 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4809     dst  : E(write)+71;
  4810     src1 : R(read);
  4811     MS   : R(70);
  4812 %}
  4814 // Floating Point Add Float
  4815 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4816     single_instruction;
  4817     dst   : X(write);
  4818     src1  : E(read);
  4819     src2  : E(read);
  4820     FA    : R;
  4821 %}
  4823 // Floating Point Add Double
  4824 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4825     single_instruction;
  4826     dst   : X(write);
  4827     src1  : E(read);
  4828     src2  : E(read);
  4829     FA    : R;
  4830 %}
  4832 // Floating Point Conditional Move based on integer flags
  4833 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4834     single_instruction;
  4835     dst   : X(write);
  4836     src   : E(read);
  4837     cr    : R(read);
  4838     FA    : R(2);
  4839     BR    : R(2);
  4840 %}
  4842 // Floating Point Conditional Move based on integer flags
  4843 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4844     single_instruction;
  4845     dst   : X(write);
  4846     src   : E(read);
  4847     cr    : R(read);
  4848     FA    : R(2);
  4849     BR    : R(2);
  4850 %}
  4852 // Floating Point Multiply Float
  4853 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4854     single_instruction;
  4855     dst   : X(write);
  4856     src1  : E(read);
  4857     src2  : E(read);
  4858     FM    : R;
  4859 %}
  4861 // Floating Point Multiply Double
  4862 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4863     single_instruction;
  4864     dst   : X(write);
  4865     src1  : E(read);
  4866     src2  : E(read);
  4867     FM    : R;
  4868 %}
  4870 // Floating Point Divide Float
  4871 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4872     single_instruction;
  4873     dst   : X(write);
  4874     src1  : E(read);
  4875     src2  : E(read);
  4876     FM    : R;
  4877     FDIV  : C(14);
  4878 %}
  4880 // Floating Point Divide Double
  4881 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4882     single_instruction;
  4883     dst   : X(write);
  4884     src1  : E(read);
  4885     src2  : E(read);
  4886     FM    : R;
  4887     FDIV  : C(17);
  4888 %}
  4890 // Floating Point Move/Negate/Abs Float
  4891 pipe_class faddF_reg(regF dst, regF src) %{
  4892     single_instruction;
  4893     dst   : W(write);
  4894     src   : E(read);
  4895     FA    : R(1);
  4896 %}
  4898 // Floating Point Move/Negate/Abs Double
  4899 pipe_class faddD_reg(regD dst, regD src) %{
  4900     single_instruction;
  4901     dst   : W(write);
  4902     src   : E(read);
  4903     FA    : R;
  4904 %}
  4906 // Floating Point Convert F->D
  4907 pipe_class fcvtF2D(regD dst, regF src) %{
  4908     single_instruction;
  4909     dst   : X(write);
  4910     src   : E(read);
  4911     FA    : R;
  4912 %}
  4914 // Floating Point Convert I->D
  4915 pipe_class fcvtI2D(regD dst, regF src) %{
  4916     single_instruction;
  4917     dst   : X(write);
  4918     src   : E(read);
  4919     FA    : R;
  4920 %}
  4922 // Floating Point Convert LHi->D
  4923 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4924     single_instruction;
  4925     dst   : X(write);
  4926     src   : E(read);
  4927     FA    : R;
  4928 %}
  4930 // Floating Point Convert L->D
  4931 pipe_class fcvtL2D(regD dst, regF src) %{
  4932     single_instruction;
  4933     dst   : X(write);
  4934     src   : E(read);
  4935     FA    : R;
  4936 %}
  4938 // Floating Point Convert L->F
  4939 pipe_class fcvtL2F(regD dst, regF src) %{
  4940     single_instruction;
  4941     dst   : X(write);
  4942     src   : E(read);
  4943     FA    : R;
  4944 %}
  4946 // Floating Point Convert D->F
  4947 pipe_class fcvtD2F(regD dst, regF src) %{
  4948     single_instruction;
  4949     dst   : X(write);
  4950     src   : E(read);
  4951     FA    : R;
  4952 %}
  4954 // Floating Point Convert I->L
  4955 pipe_class fcvtI2L(regD dst, regF src) %{
  4956     single_instruction;
  4957     dst   : X(write);
  4958     src   : E(read);
  4959     FA    : R;
  4960 %}
  4962 // Floating Point Convert D->F
  4963 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4964     instruction_count(1); multiple_bundles;
  4965     dst   : X(write)+6;
  4966     src   : E(read);
  4967     FA    : R;
  4968 %}
  4970 // Floating Point Convert D->L
  4971 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4972     instruction_count(1); multiple_bundles;
  4973     dst   : X(write)+6;
  4974     src   : E(read);
  4975     FA    : R;
  4976 %}
  4978 // Floating Point Convert F->I
  4979 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4980     instruction_count(1); multiple_bundles;
  4981     dst   : X(write)+6;
  4982     src   : E(read);
  4983     FA    : R;
  4984 %}
  4986 // Floating Point Convert F->L
  4987 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4988     instruction_count(1); multiple_bundles;
  4989     dst   : X(write)+6;
  4990     src   : E(read);
  4991     FA    : R;
  4992 %}
  4994 // Floating Point Convert I->F
  4995 pipe_class fcvtI2F(regF dst, regF src) %{
  4996     single_instruction;
  4997     dst   : X(write);
  4998     src   : E(read);
  4999     FA    : R;
  5000 %}
  5002 // Floating Point Compare
  5003 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5004     single_instruction;
  5005     cr    : X(write);
  5006     src1  : E(read);
  5007     src2  : E(read);
  5008     FA    : R;
  5009 %}
  5011 // Floating Point Compare
  5012 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5013     single_instruction;
  5014     cr    : X(write);
  5015     src1  : E(read);
  5016     src2  : E(read);
  5017     FA    : R;
  5018 %}
  5020 // Floating Add Nop
  5021 pipe_class fadd_nop() %{
  5022     single_instruction;
  5023     FA  : R;
  5024 %}
  5026 // Integer Store to Memory
  5027 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5028     single_instruction;
  5029     mem   : R(read);
  5030     src   : C(read);
  5031     MS    : R;
  5032 %}
  5034 // Integer Store to Memory
  5035 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5036     single_instruction;
  5037     mem   : R(read);
  5038     src   : C(read);
  5039     MS    : R;
  5040 %}
  5042 // Integer Store Zero to Memory
  5043 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5044     single_instruction;
  5045     mem   : R(read);
  5046     MS    : R;
  5047 %}
  5049 // Special Stack Slot Store
  5050 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5051     single_instruction;
  5052     stkSlot : R(read);
  5053     src     : C(read);
  5054     MS      : R;
  5055 %}
  5057 // Special Stack Slot Store
  5058 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5059     instruction_count(2); multiple_bundles;
  5060     stkSlot : R(read);
  5061     src     : C(read);
  5062     MS      : R(2);
  5063 %}
  5065 // Float Store
  5066 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5067     single_instruction;
  5068     mem : R(read);
  5069     src : C(read);
  5070     MS  : R;
  5071 %}
  5073 // Float Store
  5074 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5075     single_instruction;
  5076     mem : R(read);
  5077     MS  : R;
  5078 %}
  5080 // Double Store
  5081 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5082     instruction_count(1);
  5083     mem : R(read);
  5084     src : C(read);
  5085     MS  : R;
  5086 %}
  5088 // Double Store
  5089 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5090     single_instruction;
  5091     mem : R(read);
  5092     MS  : R;
  5093 %}
  5095 // Special Stack Slot Float Store
  5096 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5097     single_instruction;
  5098     stkSlot : R(read);
  5099     src     : C(read);
  5100     MS      : R;
  5101 %}
  5103 // Special Stack Slot Double Store
  5104 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5105     single_instruction;
  5106     stkSlot : R(read);
  5107     src     : C(read);
  5108     MS      : R;
  5109 %}
  5111 // Integer Load (when sign bit propagation not needed)
  5112 pipe_class iload_mem(iRegI dst, memory mem) %{
  5113     single_instruction;
  5114     mem : R(read);
  5115     dst : C(write);
  5116     MS  : R;
  5117 %}
  5119 // Integer Load from stack operand
  5120 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5121     single_instruction;
  5122     mem : R(read);
  5123     dst : C(write);
  5124     MS  : R;
  5125 %}
  5127 // Integer Load (when sign bit propagation or masking is needed)
  5128 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5129     single_instruction;
  5130     mem : R(read);
  5131     dst : M(write);
  5132     MS  : R;
  5133 %}
  5135 // Float Load
  5136 pipe_class floadF_mem(regF dst, memory mem) %{
  5137     single_instruction;
  5138     mem : R(read);
  5139     dst : M(write);
  5140     MS  : R;
  5141 %}
  5143 // Float Load
  5144 pipe_class floadD_mem(regD dst, memory mem) %{
  5145     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5146     mem : R(read);
  5147     dst : M(write);
  5148     MS  : R;
  5149 %}
  5151 // Float Load
  5152 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5153     single_instruction;
  5154     stkSlot : R(read);
  5155     dst : M(write);
  5156     MS  : R;
  5157 %}
  5159 // Float Load
  5160 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5161     single_instruction;
  5162     stkSlot : R(read);
  5163     dst : M(write);
  5164     MS  : R;
  5165 %}
  5167 // Memory Nop
  5168 pipe_class mem_nop() %{
  5169     single_instruction;
  5170     MS  : R;
  5171 %}
  5173 pipe_class sethi(iRegP dst, immI src) %{
  5174     single_instruction;
  5175     dst  : E(write);
  5176     IALU : R;
  5177 %}
  5179 pipe_class loadPollP(iRegP poll) %{
  5180     single_instruction;
  5181     poll : R(read);
  5182     MS   : R;
  5183 %}
  5185 pipe_class br(Universe br, label labl) %{
  5186     single_instruction_with_delay_slot;
  5187     BR  : R;
  5188 %}
  5190 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5191     single_instruction_with_delay_slot;
  5192     cr    : E(read);
  5193     BR    : R;
  5194 %}
  5196 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5197     single_instruction_with_delay_slot;
  5198     op1 : E(read);
  5199     BR  : R;
  5200     MS  : R;
  5201 %}
  5203 // Compare and branch
  5204 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5205     instruction_count(2); has_delay_slot;
  5206     cr    : E(write);
  5207     src1  : R(read);
  5208     src2  : R(read);
  5209     IALU  : R;
  5210     BR    : R;
  5211 %}
  5213 // Compare and branch
  5214 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5215     instruction_count(2); has_delay_slot;
  5216     cr    : E(write);
  5217     src1  : R(read);
  5218     IALU  : R;
  5219     BR    : R;
  5220 %}
  5222 // Compare and branch using cbcond
  5223 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5224     single_instruction;
  5225     src1  : E(read);
  5226     src2  : E(read);
  5227     IALU  : R;
  5228     BR    : R;
  5229 %}
  5231 // Compare and branch using cbcond
  5232 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5233     single_instruction;
  5234     src1  : E(read);
  5235     IALU  : R;
  5236     BR    : R;
  5237 %}
  5239 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5240     single_instruction_with_delay_slot;
  5241     cr    : E(read);
  5242     BR    : R;
  5243 %}
  5245 pipe_class br_nop() %{
  5246     single_instruction;
  5247     BR  : R;
  5248 %}
  5250 pipe_class simple_call(method meth) %{
  5251     instruction_count(2); multiple_bundles; force_serialization;
  5252     fixed_latency(100);
  5253     BR  : R(1);
  5254     MS  : R(1);
  5255     A0  : R(1);
  5256 %}
  5258 pipe_class compiled_call(method meth) %{
  5259     instruction_count(1); multiple_bundles; force_serialization;
  5260     fixed_latency(100);
  5261     MS  : R(1);
  5262 %}
  5264 pipe_class call(method meth) %{
  5265     instruction_count(0); multiple_bundles; force_serialization;
  5266     fixed_latency(100);
  5267 %}
  5269 pipe_class tail_call(Universe ignore, label labl) %{
  5270     single_instruction; has_delay_slot;
  5271     fixed_latency(100);
  5272     BR  : R(1);
  5273     MS  : R(1);
  5274 %}
  5276 pipe_class ret(Universe ignore) %{
  5277     single_instruction; has_delay_slot;
  5278     BR  : R(1);
  5279     MS  : R(1);
  5280 %}
  5282 pipe_class ret_poll(g3RegP poll) %{
  5283     instruction_count(3); has_delay_slot;
  5284     poll : E(read);
  5285     MS   : R;
  5286 %}
  5288 // The real do-nothing guy
  5289 pipe_class empty( ) %{
  5290     instruction_count(0);
  5291 %}
  5293 pipe_class long_memory_op() %{
  5294     instruction_count(0); multiple_bundles; force_serialization;
  5295     fixed_latency(25);
  5296     MS  : R(1);
  5297 %}
  5299 // Check-cast
  5300 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5301     array : R(read);
  5302     match  : R(read);
  5303     IALU   : R(2);
  5304     BR     : R(2);
  5305     MS     : R;
  5306 %}
  5308 // Convert FPU flags into +1,0,-1
  5309 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5310     src1  : E(read);
  5311     src2  : E(read);
  5312     dst   : E(write);
  5313     FA    : R;
  5314     MS    : R(2);
  5315     BR    : R(2);
  5316 %}
  5318 // Compare for p < q, and conditionally add y
  5319 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5320     p     : E(read);
  5321     q     : E(read);
  5322     y     : E(read);
  5323     IALU  : R(3)
  5324 %}
  5326 // Perform a compare, then move conditionally in a branch delay slot.
  5327 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5328     src2   : E(read);
  5329     srcdst : E(read);
  5330     IALU   : R;
  5331     BR     : R;
  5332 %}
  5334 // Define the class for the Nop node
  5335 define %{
  5336    MachNop = ialu_nop;
  5337 %}
  5339 %}
  5341 //----------INSTRUCTIONS-------------------------------------------------------
  5343 //------------Special Stack Slot instructions - no match rules-----------------
  5344 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5345   // No match rule to avoid chain rule match.
  5346   effect(DEF dst, USE src);
  5347   ins_cost(MEMORY_REF_COST);
  5348   size(4);
  5349   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5350   opcode(Assembler::ldf_op3);
  5351   ins_encode(simple_form3_mem_reg(src, dst));
  5352   ins_pipe(floadF_stk);
  5353 %}
  5355 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5356   // No match rule to avoid chain rule match.
  5357   effect(DEF dst, USE src);
  5358   ins_cost(MEMORY_REF_COST);
  5359   size(4);
  5360   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5361   opcode(Assembler::lddf_op3);
  5362   ins_encode(simple_form3_mem_reg(src, dst));
  5363   ins_pipe(floadD_stk);
  5364 %}
  5366 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5367   // No match rule to avoid chain rule match.
  5368   effect(DEF dst, USE src);
  5369   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5371   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5372   opcode(Assembler::stf_op3);
  5373   ins_encode(simple_form3_mem_reg(dst, src));
  5374   ins_pipe(fstoreF_stk_reg);
  5375 %}
  5377 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5378   // No match rule to avoid chain rule match.
  5379   effect(DEF dst, USE src);
  5380   ins_cost(MEMORY_REF_COST);
  5381   size(4);
  5382   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5383   opcode(Assembler::stdf_op3);
  5384   ins_encode(simple_form3_mem_reg(dst, src));
  5385   ins_pipe(fstoreD_stk_reg);
  5386 %}
  5388 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5389   effect(DEF dst, USE src);
  5390   ins_cost(MEMORY_REF_COST*2);
  5391   size(8);
  5392   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5393             "STW    R_G0,$dst.lo" %}
  5394   opcode(Assembler::stw_op3);
  5395   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5396   ins_pipe(lstoreI_stk_reg);
  5397 %}
  5399 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5400   // No match rule to avoid chain rule match.
  5401   effect(DEF dst, USE src);
  5402   ins_cost(MEMORY_REF_COST);
  5403   size(4);
  5404   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5405   opcode(Assembler::stx_op3);
  5406   ins_encode(simple_form3_mem_reg( dst, src ) );
  5407   ins_pipe(istore_stk_reg);
  5408 %}
  5410 //---------- Chain stack slots between similar types --------
  5412 // Load integer from stack slot
  5413 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5414   match(Set dst src);
  5415   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "LDUW   $src,$dst\t!stk" %}
  5419   opcode(Assembler::lduw_op3);
  5420   ins_encode(simple_form3_mem_reg( src, dst ) );
  5421   ins_pipe(iload_mem);
  5422 %}
  5424 // Store integer to stack slot
  5425 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5426   match(Set dst src);
  5427   ins_cost(MEMORY_REF_COST);
  5429   size(4);
  5430   format %{ "STW    $src,$dst\t!stk" %}
  5431   opcode(Assembler::stw_op3);
  5432   ins_encode(simple_form3_mem_reg( dst, src ) );
  5433   ins_pipe(istore_mem_reg);
  5434 %}
  5436 // Load long from stack slot
  5437 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5438   match(Set dst src);
  5440   ins_cost(MEMORY_REF_COST);
  5441   size(4);
  5442   format %{ "LDX    $src,$dst\t! long" %}
  5443   opcode(Assembler::ldx_op3);
  5444   ins_encode(simple_form3_mem_reg( src, dst ) );
  5445   ins_pipe(iload_mem);
  5446 %}
  5448 // Store long to stack slot
  5449 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5450   match(Set dst src);
  5452   ins_cost(MEMORY_REF_COST);
  5453   size(4);
  5454   format %{ "STX    $src,$dst\t! long" %}
  5455   opcode(Assembler::stx_op3);
  5456   ins_encode(simple_form3_mem_reg( dst, src ) );
  5457   ins_pipe(istore_mem_reg);
  5458 %}
  5460 #ifdef _LP64
  5461 // Load pointer from stack slot, 64-bit encoding
  5462 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5463   match(Set dst src);
  5464   ins_cost(MEMORY_REF_COST);
  5465   size(4);
  5466   format %{ "LDX    $src,$dst\t!ptr" %}
  5467   opcode(Assembler::ldx_op3);
  5468   ins_encode(simple_form3_mem_reg( src, dst ) );
  5469   ins_pipe(iload_mem);
  5470 %}
  5472 // Store pointer to stack slot
  5473 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5474   match(Set dst src);
  5475   ins_cost(MEMORY_REF_COST);
  5476   size(4);
  5477   format %{ "STX    $src,$dst\t!ptr" %}
  5478   opcode(Assembler::stx_op3);
  5479   ins_encode(simple_form3_mem_reg( dst, src ) );
  5480   ins_pipe(istore_mem_reg);
  5481 %}
  5482 #else // _LP64
  5483 // Load pointer from stack slot, 32-bit encoding
  5484 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5485   match(Set dst src);
  5486   ins_cost(MEMORY_REF_COST);
  5487   format %{ "LDUW   $src,$dst\t!ptr" %}
  5488   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5489   ins_encode(simple_form3_mem_reg( src, dst ) );
  5490   ins_pipe(iload_mem);
  5491 %}
  5493 // Store pointer to stack slot
  5494 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5495   match(Set dst src);
  5496   ins_cost(MEMORY_REF_COST);
  5497   format %{ "STW    $src,$dst\t!ptr" %}
  5498   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5499   ins_encode(simple_form3_mem_reg( dst, src ) );
  5500   ins_pipe(istore_mem_reg);
  5501 %}
  5502 #endif // _LP64
  5504 //------------Special Nop instructions for bundling - no match rules-----------
  5505 // Nop using the A0 functional unit
  5506 instruct Nop_A0() %{
  5507   ins_cost(0);
  5509   format %{ "NOP    ! Alu Pipeline" %}
  5510   opcode(Assembler::or_op3, Assembler::arith_op);
  5511   ins_encode( form2_nop() );
  5512   ins_pipe(ialu_nop_A0);
  5513 %}
  5515 // Nop using the A1 functional unit
  5516 instruct Nop_A1( ) %{
  5517   ins_cost(0);
  5519   format %{ "NOP    ! Alu Pipeline" %}
  5520   opcode(Assembler::or_op3, Assembler::arith_op);
  5521   ins_encode( form2_nop() );
  5522   ins_pipe(ialu_nop_A1);
  5523 %}
  5525 // Nop using the memory functional unit
  5526 instruct Nop_MS( ) %{
  5527   ins_cost(0);
  5529   format %{ "NOP    ! Memory Pipeline" %}
  5530   ins_encode( emit_mem_nop );
  5531   ins_pipe(mem_nop);
  5532 %}
  5534 // Nop using the floating add functional unit
  5535 instruct Nop_FA( ) %{
  5536   ins_cost(0);
  5538   format %{ "NOP    ! Floating Add Pipeline" %}
  5539   ins_encode( emit_fadd_nop );
  5540   ins_pipe(fadd_nop);
  5541 %}
  5543 // Nop using the branch functional unit
  5544 instruct Nop_BR( ) %{
  5545   ins_cost(0);
  5547   format %{ "NOP    ! Branch Pipeline" %}
  5548   ins_encode( emit_br_nop );
  5549   ins_pipe(br_nop);
  5550 %}
  5552 //----------Load/Store/Move Instructions---------------------------------------
  5553 //----------Load Instructions--------------------------------------------------
  5554 // Load Byte (8bit signed)
  5555 instruct loadB(iRegI dst, memory mem) %{
  5556   match(Set dst (LoadB mem));
  5557   ins_cost(MEMORY_REF_COST);
  5559   size(4);
  5560   format %{ "LDSB   $mem,$dst\t! byte" %}
  5561   ins_encode %{
  5562     __ ldsb($mem$$Address, $dst$$Register);
  5563   %}
  5564   ins_pipe(iload_mask_mem);
  5565 %}
  5567 // Load Byte (8bit signed) into a Long Register
  5568 instruct loadB2L(iRegL dst, memory mem) %{
  5569   match(Set dst (ConvI2L (LoadB mem)));
  5570   ins_cost(MEMORY_REF_COST);
  5572   size(4);
  5573   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5574   ins_encode %{
  5575     __ ldsb($mem$$Address, $dst$$Register);
  5576   %}
  5577   ins_pipe(iload_mask_mem);
  5578 %}
  5580 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5581 instruct loadUB(iRegI dst, memory mem) %{
  5582   match(Set dst (LoadUB mem));
  5583   ins_cost(MEMORY_REF_COST);
  5585   size(4);
  5586   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5587   ins_encode %{
  5588     __ ldub($mem$$Address, $dst$$Register);
  5589   %}
  5590   ins_pipe(iload_mem);
  5591 %}
  5593 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5594 instruct loadUB2L(iRegL dst, memory mem) %{
  5595   match(Set dst (ConvI2L (LoadUB mem)));
  5596   ins_cost(MEMORY_REF_COST);
  5598   size(4);
  5599   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5600   ins_encode %{
  5601     __ ldub($mem$$Address, $dst$$Register);
  5602   %}
  5603   ins_pipe(iload_mem);
  5604 %}
  5606 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5607 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5608   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5609   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5611   size(2*4);
  5612   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5613             "AND    $dst,$mask,$dst" %}
  5614   ins_encode %{
  5615     __ ldub($mem$$Address, $dst$$Register);
  5616     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5617   %}
  5618   ins_pipe(iload_mem);
  5619 %}
  5621 // Load Short (16bit signed)
  5622 instruct loadS(iRegI dst, memory mem) %{
  5623   match(Set dst (LoadS mem));
  5624   ins_cost(MEMORY_REF_COST);
  5626   size(4);
  5627   format %{ "LDSH   $mem,$dst\t! short" %}
  5628   ins_encode %{
  5629     __ ldsh($mem$$Address, $dst$$Register);
  5630   %}
  5631   ins_pipe(iload_mask_mem);
  5632 %}
  5634 // Load Short (16 bit signed) to Byte (8 bit signed)
  5635 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5636   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5637   ins_cost(MEMORY_REF_COST);
  5639   size(4);
  5641   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5642   ins_encode %{
  5643     __ ldsb($mem$$Address, $dst$$Register, 1);
  5644   %}
  5645   ins_pipe(iload_mask_mem);
  5646 %}
  5648 // Load Short (16bit signed) into a Long Register
  5649 instruct loadS2L(iRegL dst, memory mem) %{
  5650   match(Set dst (ConvI2L (LoadS mem)));
  5651   ins_cost(MEMORY_REF_COST);
  5653   size(4);
  5654   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5655   ins_encode %{
  5656     __ ldsh($mem$$Address, $dst$$Register);
  5657   %}
  5658   ins_pipe(iload_mask_mem);
  5659 %}
  5661 // Load Unsigned Short/Char (16bit UNsigned)
  5662 instruct loadUS(iRegI dst, memory mem) %{
  5663   match(Set dst (LoadUS mem));
  5664   ins_cost(MEMORY_REF_COST);
  5666   size(4);
  5667   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5668   ins_encode %{
  5669     __ lduh($mem$$Address, $dst$$Register);
  5670   %}
  5671   ins_pipe(iload_mem);
  5672 %}
  5674 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5675 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5676   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5677   ins_cost(MEMORY_REF_COST);
  5679   size(4);
  5680   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5681   ins_encode %{
  5682     __ ldsb($mem$$Address, $dst$$Register, 1);
  5683   %}
  5684   ins_pipe(iload_mask_mem);
  5685 %}
  5687 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5688 instruct loadUS2L(iRegL dst, memory mem) %{
  5689   match(Set dst (ConvI2L (LoadUS mem)));
  5690   ins_cost(MEMORY_REF_COST);
  5692   size(4);
  5693   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5694   ins_encode %{
  5695     __ lduh($mem$$Address, $dst$$Register);
  5696   %}
  5697   ins_pipe(iload_mem);
  5698 %}
  5700 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5701 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5702   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5703   ins_cost(MEMORY_REF_COST);
  5705   size(4);
  5706   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5707   ins_encode %{
  5708     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5709   %}
  5710   ins_pipe(iload_mem);
  5711 %}
  5713 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5714 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5715   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5716   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5718   size(2*4);
  5719   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5720             "AND    $dst,$mask,$dst" %}
  5721   ins_encode %{
  5722     Register Rdst = $dst$$Register;
  5723     __ lduh($mem$$Address, Rdst);
  5724     __ and3(Rdst, $mask$$constant, Rdst);
  5725   %}
  5726   ins_pipe(iload_mem);
  5727 %}
  5729 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5730 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5731   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5732   effect(TEMP dst, TEMP tmp);
  5733   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5735   size((3+1)*4);  // set may use two instructions.
  5736   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5737             "SET    $mask,$tmp\n\t"
  5738             "AND    $dst,$tmp,$dst" %}
  5739   ins_encode %{
  5740     Register Rdst = $dst$$Register;
  5741     Register Rtmp = $tmp$$Register;
  5742     __ lduh($mem$$Address, Rdst);
  5743     __ set($mask$$constant, Rtmp);
  5744     __ and3(Rdst, Rtmp, Rdst);
  5745   %}
  5746   ins_pipe(iload_mem);
  5747 %}
  5749 // Load Integer
  5750 instruct loadI(iRegI dst, memory mem) %{
  5751   match(Set dst (LoadI mem));
  5752   ins_cost(MEMORY_REF_COST);
  5754   size(4);
  5755   format %{ "LDUW   $mem,$dst\t! int" %}
  5756   ins_encode %{
  5757     __ lduw($mem$$Address, $dst$$Register);
  5758   %}
  5759   ins_pipe(iload_mem);
  5760 %}
  5762 // Load Integer to Byte (8 bit signed)
  5763 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5764   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5765   ins_cost(MEMORY_REF_COST);
  5767   size(4);
  5769   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5770   ins_encode %{
  5771     __ ldsb($mem$$Address, $dst$$Register, 3);
  5772   %}
  5773   ins_pipe(iload_mask_mem);
  5774 %}
  5776 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5777 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5778   match(Set dst (AndI (LoadI mem) mask));
  5779   ins_cost(MEMORY_REF_COST);
  5781   size(4);
  5783   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5784   ins_encode %{
  5785     __ ldub($mem$$Address, $dst$$Register, 3);
  5786   %}
  5787   ins_pipe(iload_mask_mem);
  5788 %}
  5790 // Load Integer to Short (16 bit signed)
  5791 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5792   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5793   ins_cost(MEMORY_REF_COST);
  5795   size(4);
  5797   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5798   ins_encode %{
  5799     __ ldsh($mem$$Address, $dst$$Register, 2);
  5800   %}
  5801   ins_pipe(iload_mask_mem);
  5802 %}
  5804 // Load Integer to Unsigned Short (16 bit UNsigned)
  5805 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5806   match(Set dst (AndI (LoadI mem) mask));
  5807   ins_cost(MEMORY_REF_COST);
  5809   size(4);
  5811   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5812   ins_encode %{
  5813     __ lduh($mem$$Address, $dst$$Register, 2);
  5814   %}
  5815   ins_pipe(iload_mask_mem);
  5816 %}
  5818 // Load Integer into a Long Register
  5819 instruct loadI2L(iRegL dst, memory mem) %{
  5820   match(Set dst (ConvI2L (LoadI mem)));
  5821   ins_cost(MEMORY_REF_COST);
  5823   size(4);
  5824   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5825   ins_encode %{
  5826     __ ldsw($mem$$Address, $dst$$Register);
  5827   %}
  5828   ins_pipe(iload_mask_mem);
  5829 %}
  5831 // Load Integer with mask 0xFF into a Long Register
  5832 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5833   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5834   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5837   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5838   ins_encode %{
  5839     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5840   %}
  5841   ins_pipe(iload_mem);
  5842 %}
  5844 // Load Integer with mask 0xFFFF into a Long Register
  5845 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5846   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5847   ins_cost(MEMORY_REF_COST);
  5849   size(4);
  5850   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5851   ins_encode %{
  5852     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5853   %}
  5854   ins_pipe(iload_mem);
  5855 %}
  5857 // Load Integer with a 13-bit mask into a Long Register
  5858 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5859   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5860   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5862   size(2*4);
  5863   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5864             "AND    $dst,$mask,$dst" %}
  5865   ins_encode %{
  5866     Register Rdst = $dst$$Register;
  5867     __ lduw($mem$$Address, Rdst);
  5868     __ and3(Rdst, $mask$$constant, Rdst);
  5869   %}
  5870   ins_pipe(iload_mem);
  5871 %}
  5873 // Load Integer with a 32-bit mask into a Long Register
  5874 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5875   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5876   effect(TEMP dst, TEMP tmp);
  5877   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5879   size((3+1)*4);  // set may use two instructions.
  5880   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5881             "SET    $mask,$tmp\n\t"
  5882             "AND    $dst,$tmp,$dst" %}
  5883   ins_encode %{
  5884     Register Rdst = $dst$$Register;
  5885     Register Rtmp = $tmp$$Register;
  5886     __ lduw($mem$$Address, Rdst);
  5887     __ set($mask$$constant, Rtmp);
  5888     __ and3(Rdst, Rtmp, Rdst);
  5889   %}
  5890   ins_pipe(iload_mem);
  5891 %}
  5893 // Load Unsigned Integer into a Long Register
  5894 instruct loadUI2L(iRegL dst, memory mem) %{
  5895   match(Set dst (LoadUI2L mem));
  5896   ins_cost(MEMORY_REF_COST);
  5898   size(4);
  5899   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5900   ins_encode %{
  5901     __ lduw($mem$$Address, $dst$$Register);
  5902   %}
  5903   ins_pipe(iload_mem);
  5904 %}
  5906 // Load Long - aligned
  5907 instruct loadL(iRegL dst, memory mem ) %{
  5908   match(Set dst (LoadL mem));
  5909   ins_cost(MEMORY_REF_COST);
  5911   size(4);
  5912   format %{ "LDX    $mem,$dst\t! long" %}
  5913   ins_encode %{
  5914     __ ldx($mem$$Address, $dst$$Register);
  5915   %}
  5916   ins_pipe(iload_mem);
  5917 %}
  5919 // Load Long - UNaligned
  5920 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5921   match(Set dst (LoadL_unaligned mem));
  5922   effect(KILL tmp);
  5923   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5924   size(16);
  5925   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5926           "\tLDUW   $mem  ,$dst\n"
  5927           "\tSLLX   #32, $dst, $dst\n"
  5928           "\tOR     $dst, R_O7, $dst" %}
  5929   opcode(Assembler::lduw_op3);
  5930   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5931   ins_pipe(iload_mem);
  5932 %}
  5934 // Load Aligned Packed Byte into a Double Register
  5935 instruct loadA8B(regD dst, memory mem) %{
  5936   match(Set dst (Load8B mem));
  5937   ins_cost(MEMORY_REF_COST);
  5938   size(4);
  5939   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5940   opcode(Assembler::lddf_op3);
  5941   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5942   ins_pipe(floadD_mem);
  5943 %}
  5945 // Load Aligned Packed Char into a Double Register
  5946 instruct loadA4C(regD dst, memory mem) %{
  5947   match(Set dst (Load4C mem));
  5948   ins_cost(MEMORY_REF_COST);
  5949   size(4);
  5950   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5951   opcode(Assembler::lddf_op3);
  5952   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5953   ins_pipe(floadD_mem);
  5954 %}
  5956 // Load Aligned Packed Short into a Double Register
  5957 instruct loadA4S(regD dst, memory mem) %{
  5958   match(Set dst (Load4S mem));
  5959   ins_cost(MEMORY_REF_COST);
  5960   size(4);
  5961   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5962   opcode(Assembler::lddf_op3);
  5963   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5964   ins_pipe(floadD_mem);
  5965 %}
  5967 // Load Aligned Packed Int into a Double Register
  5968 instruct loadA2I(regD dst, memory mem) %{
  5969   match(Set dst (Load2I mem));
  5970   ins_cost(MEMORY_REF_COST);
  5971   size(4);
  5972   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5973   opcode(Assembler::lddf_op3);
  5974   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5975   ins_pipe(floadD_mem);
  5976 %}
  5978 // Load Range
  5979 instruct loadRange(iRegI dst, memory mem) %{
  5980   match(Set dst (LoadRange mem));
  5981   ins_cost(MEMORY_REF_COST);
  5983   size(4);
  5984   format %{ "LDUW   $mem,$dst\t! range" %}
  5985   opcode(Assembler::lduw_op3);
  5986   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5987   ins_pipe(iload_mem);
  5988 %}
  5990 // Load Integer into %f register (for fitos/fitod)
  5991 instruct loadI_freg(regF dst, memory mem) %{
  5992   match(Set dst (LoadI mem));
  5993   ins_cost(MEMORY_REF_COST);
  5994   size(4);
  5996   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5997   opcode(Assembler::ldf_op3);
  5998   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5999   ins_pipe(floadF_mem);
  6000 %}
  6002 // Load Pointer
  6003 instruct loadP(iRegP dst, memory mem) %{
  6004   match(Set dst (LoadP mem));
  6005   ins_cost(MEMORY_REF_COST);
  6006   size(4);
  6008 #ifndef _LP64
  6009   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6010   ins_encode %{
  6011     __ lduw($mem$$Address, $dst$$Register);
  6012   %}
  6013 #else
  6014   format %{ "LDX    $mem,$dst\t! ptr" %}
  6015   ins_encode %{
  6016     __ ldx($mem$$Address, $dst$$Register);
  6017   %}
  6018 #endif
  6019   ins_pipe(iload_mem);
  6020 %}
  6022 // Load Compressed Pointer
  6023 instruct loadN(iRegN dst, memory mem) %{
  6024   match(Set dst (LoadN mem));
  6025   ins_cost(MEMORY_REF_COST);
  6026   size(4);
  6028   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6029   ins_encode %{
  6030     __ lduw($mem$$Address, $dst$$Register);
  6031   %}
  6032   ins_pipe(iload_mem);
  6033 %}
  6035 // Load Klass Pointer
  6036 instruct loadKlass(iRegP dst, memory mem) %{
  6037   match(Set dst (LoadKlass mem));
  6038   ins_cost(MEMORY_REF_COST);
  6039   size(4);
  6041 #ifndef _LP64
  6042   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6043   ins_encode %{
  6044     __ lduw($mem$$Address, $dst$$Register);
  6045   %}
  6046 #else
  6047   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6048   ins_encode %{
  6049     __ ldx($mem$$Address, $dst$$Register);
  6050   %}
  6051 #endif
  6052   ins_pipe(iload_mem);
  6053 %}
  6055 // Load narrow Klass Pointer
  6056 instruct loadNKlass(iRegN dst, memory mem) %{
  6057   match(Set dst (LoadNKlass mem));
  6058   ins_cost(MEMORY_REF_COST);
  6059   size(4);
  6061   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6062   ins_encode %{
  6063     __ lduw($mem$$Address, $dst$$Register);
  6064   %}
  6065   ins_pipe(iload_mem);
  6066 %}
  6068 // Load Double
  6069 instruct loadD(regD dst, memory mem) %{
  6070   match(Set dst (LoadD mem));
  6071   ins_cost(MEMORY_REF_COST);
  6073   size(4);
  6074   format %{ "LDDF   $mem,$dst" %}
  6075   opcode(Assembler::lddf_op3);
  6076   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6077   ins_pipe(floadD_mem);
  6078 %}
  6080 // Load Double - UNaligned
  6081 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6082   match(Set dst (LoadD_unaligned mem));
  6083   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6084   size(8);
  6085   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6086           "\tLDF    $mem+4,$dst.lo\t!" %}
  6087   opcode(Assembler::ldf_op3);
  6088   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6089   ins_pipe(iload_mem);
  6090 %}
  6092 // Load Float
  6093 instruct loadF(regF dst, memory mem) %{
  6094   match(Set dst (LoadF mem));
  6095   ins_cost(MEMORY_REF_COST);
  6097   size(4);
  6098   format %{ "LDF    $mem,$dst" %}
  6099   opcode(Assembler::ldf_op3);
  6100   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6101   ins_pipe(floadF_mem);
  6102 %}
  6104 // Load Constant
  6105 instruct loadConI( iRegI dst, immI src ) %{
  6106   match(Set dst src);
  6107   ins_cost(DEFAULT_COST * 3/2);
  6108   format %{ "SET    $src,$dst" %}
  6109   ins_encode( Set32(src, dst) );
  6110   ins_pipe(ialu_hi_lo_reg);
  6111 %}
  6113 instruct loadConI13( iRegI dst, immI13 src ) %{
  6114   match(Set dst src);
  6116   size(4);
  6117   format %{ "MOV    $src,$dst" %}
  6118   ins_encode( Set13( src, dst ) );
  6119   ins_pipe(ialu_imm);
  6120 %}
  6122 #ifndef _LP64
  6123 instruct loadConP(iRegP dst, immP con) %{
  6124   match(Set dst con);
  6125   ins_cost(DEFAULT_COST * 3/2);
  6126   format %{ "SET    $con,$dst\t!ptr" %}
  6127   ins_encode %{
  6128     // [RGV] This next line should be generated from ADLC
  6129     if (_opnds[1]->constant_is_oop()) {
  6130       intptr_t val = $con$$constant;
  6131       __ set_oop_constant((jobject) val, $dst$$Register);
  6132     } else {          // non-oop pointers, e.g. card mark base, heap top
  6133       __ set($con$$constant, $dst$$Register);
  6135   %}
  6136   ins_pipe(loadConP);
  6137 %}
  6138 #else
  6139 instruct loadConP_set(iRegP dst, immP_set con) %{
  6140   match(Set dst con);
  6141   ins_cost(DEFAULT_COST * 3/2);
  6142   format %{ "SET    $con,$dst\t! ptr" %}
  6143   ins_encode %{
  6144     // [RGV] This next line should be generated from ADLC
  6145     if (_opnds[1]->constant_is_oop()) {
  6146       intptr_t val = $con$$constant;
  6147       __ set_oop_constant((jobject) val, $dst$$Register);
  6148     } else {          // non-oop pointers, e.g. card mark base, heap top
  6149       __ set($con$$constant, $dst$$Register);
  6151   %}
  6152   ins_pipe(loadConP);
  6153 %}
  6155 instruct loadConP_load(iRegP dst, immP_load con) %{
  6156   match(Set dst con);
  6157   ins_cost(MEMORY_REF_COST);
  6158   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6159   ins_encode %{
  6160     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6161     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6162   %}
  6163   ins_pipe(loadConP);
  6164 %}
  6166 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6167   match(Set dst con);
  6168   ins_cost(DEFAULT_COST * 3/2);
  6169   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6170   ins_encode %{
  6171     __ set($con$$constant, $dst$$Register);
  6172   %}
  6173   ins_pipe(loadConP);
  6174 %}
  6175 #endif // _LP64
  6177 instruct loadConP0(iRegP dst, immP0 src) %{
  6178   match(Set dst src);
  6180   size(4);
  6181   format %{ "CLR    $dst\t!ptr" %}
  6182   ins_encode %{
  6183     __ clr($dst$$Register);
  6184   %}
  6185   ins_pipe(ialu_imm);
  6186 %}
  6188 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6189   match(Set dst src);
  6190   ins_cost(DEFAULT_COST);
  6191   format %{ "SET    $src,$dst\t!ptr" %}
  6192   ins_encode %{
  6193     AddressLiteral polling_page(os::get_polling_page());
  6194     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6195   %}
  6196   ins_pipe(loadConP_poll);
  6197 %}
  6199 instruct loadConN0(iRegN dst, immN0 src) %{
  6200   match(Set dst src);
  6202   size(4);
  6203   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6204   ins_encode %{
  6205     __ clr($dst$$Register);
  6206   %}
  6207   ins_pipe(ialu_imm);
  6208 %}
  6210 instruct loadConN(iRegN dst, immN src) %{
  6211   match(Set dst src);
  6212   ins_cost(DEFAULT_COST * 3/2);
  6213   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6214   ins_encode %{
  6215     Register dst = $dst$$Register;
  6216     __ set_narrow_oop((jobject)$src$$constant, dst);
  6217   %}
  6218   ins_pipe(ialu_hi_lo_reg);
  6219 %}
  6221 // Materialize long value (predicated by immL_cheap).
  6222 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6223   match(Set dst con);
  6224   effect(KILL tmp);
  6225   ins_cost(DEFAULT_COST * 3);
  6226   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6227   ins_encode %{
  6228     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6229   %}
  6230   ins_pipe(loadConL);
  6231 %}
  6233 // Load long value from constant table (predicated by immL_expensive).
  6234 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6235   match(Set dst con);
  6236   ins_cost(MEMORY_REF_COST);
  6237   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6238   ins_encode %{
  6239       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6240     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6241   %}
  6242   ins_pipe(loadConL);
  6243 %}
  6245 instruct loadConL0( iRegL dst, immL0 src ) %{
  6246   match(Set dst src);
  6247   ins_cost(DEFAULT_COST);
  6248   size(4);
  6249   format %{ "CLR    $dst\t! long" %}
  6250   ins_encode( Set13( src, dst ) );
  6251   ins_pipe(ialu_imm);
  6252 %}
  6254 instruct loadConL13( iRegL dst, immL13 src ) %{
  6255   match(Set dst src);
  6256   ins_cost(DEFAULT_COST * 2);
  6258   size(4);
  6259   format %{ "MOV    $src,$dst\t! long" %}
  6260   ins_encode( Set13( src, dst ) );
  6261   ins_pipe(ialu_imm);
  6262 %}
  6264 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6265   match(Set dst con);
  6266   effect(KILL tmp);
  6267   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6268   ins_encode %{
  6269       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6270     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6271   %}
  6272   ins_pipe(loadConFD);
  6273 %}
  6275 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6276   match(Set dst con);
  6277   effect(KILL tmp);
  6278   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6279   ins_encode %{
  6280     // XXX This is a quick fix for 6833573.
  6281     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6282     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6283     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6284   %}
  6285   ins_pipe(loadConFD);
  6286 %}
  6288 // Prefetch instructions.
  6289 // Must be safe to execute with invalid address (cannot fault).
  6291 instruct prefetchr( memory mem ) %{
  6292   match( PrefetchRead mem );
  6293   ins_cost(MEMORY_REF_COST);
  6294   size(4);
  6296   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6297   opcode(Assembler::prefetch_op3);
  6298   ins_encode( form3_mem_prefetch_read( mem ) );
  6299   ins_pipe(iload_mem);
  6300 %}
  6302 instruct prefetchw( memory mem ) %{
  6303   match( PrefetchWrite mem );
  6304   ins_cost(MEMORY_REF_COST);
  6305   size(4);
  6307   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6308   opcode(Assembler::prefetch_op3);
  6309   ins_encode( form3_mem_prefetch_write( mem ) );
  6310   ins_pipe(iload_mem);
  6311 %}
  6313 // Prefetch instructions for allocation.
  6315 instruct prefetchAlloc( memory mem ) %{
  6316   predicate(AllocatePrefetchInstr == 0);
  6317   match( PrefetchAllocation mem );
  6318   ins_cost(MEMORY_REF_COST);
  6319   size(4);
  6321   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6322   opcode(Assembler::prefetch_op3);
  6323   ins_encode( form3_mem_prefetch_write( mem ) );
  6324   ins_pipe(iload_mem);
  6325 %}
  6327 // Use BIS instruction to prefetch for allocation.
  6328 // Could fault, need space at the end of TLAB.
  6329 instruct prefetchAlloc_bis( iRegP dst ) %{
  6330   predicate(AllocatePrefetchInstr == 1);
  6331   match( PrefetchAllocation dst );
  6332   ins_cost(MEMORY_REF_COST);
  6333   size(4);
  6335   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6336   ins_encode %{
  6337     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6338   %}
  6339   ins_pipe(istore_mem_reg);
  6340 %}
  6342 // Next code is used for finding next cache line address to prefetch.
  6343 #ifndef _LP64
  6344 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6345   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6346   ins_cost(DEFAULT_COST);
  6347   size(4);
  6349   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6350   ins_encode %{
  6351     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6352   %}
  6353   ins_pipe(ialu_reg_imm);
  6354 %}
  6355 #else
  6356 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6357   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6358   ins_cost(DEFAULT_COST);
  6359   size(4);
  6361   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6362   ins_encode %{
  6363     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6364   %}
  6365   ins_pipe(ialu_reg_imm);
  6366 %}
  6367 #endif
  6369 //----------Store Instructions-------------------------------------------------
  6370 // Store Byte
  6371 instruct storeB(memory mem, iRegI src) %{
  6372   match(Set mem (StoreB mem src));
  6373   ins_cost(MEMORY_REF_COST);
  6375   size(4);
  6376   format %{ "STB    $src,$mem\t! byte" %}
  6377   opcode(Assembler::stb_op3);
  6378   ins_encode(simple_form3_mem_reg( mem, src ) );
  6379   ins_pipe(istore_mem_reg);
  6380 %}
  6382 instruct storeB0(memory mem, immI0 src) %{
  6383   match(Set mem (StoreB mem src));
  6384   ins_cost(MEMORY_REF_COST);
  6386   size(4);
  6387   format %{ "STB    $src,$mem\t! byte" %}
  6388   opcode(Assembler::stb_op3);
  6389   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6390   ins_pipe(istore_mem_zero);
  6391 %}
  6393 instruct storeCM0(memory mem, immI0 src) %{
  6394   match(Set mem (StoreCM mem src));
  6395   ins_cost(MEMORY_REF_COST);
  6397   size(4);
  6398   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6399   opcode(Assembler::stb_op3);
  6400   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6401   ins_pipe(istore_mem_zero);
  6402 %}
  6404 // Store Char/Short
  6405 instruct storeC(memory mem, iRegI src) %{
  6406   match(Set mem (StoreC mem src));
  6407   ins_cost(MEMORY_REF_COST);
  6409   size(4);
  6410   format %{ "STH    $src,$mem\t! short" %}
  6411   opcode(Assembler::sth_op3);
  6412   ins_encode(simple_form3_mem_reg( mem, src ) );
  6413   ins_pipe(istore_mem_reg);
  6414 %}
  6416 instruct storeC0(memory mem, immI0 src) %{
  6417   match(Set mem (StoreC mem src));
  6418   ins_cost(MEMORY_REF_COST);
  6420   size(4);
  6421   format %{ "STH    $src,$mem\t! short" %}
  6422   opcode(Assembler::sth_op3);
  6423   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6424   ins_pipe(istore_mem_zero);
  6425 %}
  6427 // Store Integer
  6428 instruct storeI(memory mem, iRegI src) %{
  6429   match(Set mem (StoreI mem src));
  6430   ins_cost(MEMORY_REF_COST);
  6432   size(4);
  6433   format %{ "STW    $src,$mem" %}
  6434   opcode(Assembler::stw_op3);
  6435   ins_encode(simple_form3_mem_reg( mem, src ) );
  6436   ins_pipe(istore_mem_reg);
  6437 %}
  6439 // Store Long
  6440 instruct storeL(memory mem, iRegL src) %{
  6441   match(Set mem (StoreL mem src));
  6442   ins_cost(MEMORY_REF_COST);
  6443   size(4);
  6444   format %{ "STX    $src,$mem\t! long" %}
  6445   opcode(Assembler::stx_op3);
  6446   ins_encode(simple_form3_mem_reg( mem, src ) );
  6447   ins_pipe(istore_mem_reg);
  6448 %}
  6450 instruct storeI0(memory mem, immI0 src) %{
  6451   match(Set mem (StoreI mem src));
  6452   ins_cost(MEMORY_REF_COST);
  6454   size(4);
  6455   format %{ "STW    $src,$mem" %}
  6456   opcode(Assembler::stw_op3);
  6457   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6458   ins_pipe(istore_mem_zero);
  6459 %}
  6461 instruct storeL0(memory mem, immL0 src) %{
  6462   match(Set mem (StoreL mem src));
  6463   ins_cost(MEMORY_REF_COST);
  6465   size(4);
  6466   format %{ "STX    $src,$mem" %}
  6467   opcode(Assembler::stx_op3);
  6468   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6469   ins_pipe(istore_mem_zero);
  6470 %}
  6472 // Store Integer from float register (used after fstoi)
  6473 instruct storeI_Freg(memory mem, regF src) %{
  6474   match(Set mem (StoreI mem src));
  6475   ins_cost(MEMORY_REF_COST);
  6477   size(4);
  6478   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6479   opcode(Assembler::stf_op3);
  6480   ins_encode(simple_form3_mem_reg( mem, src ) );
  6481   ins_pipe(fstoreF_mem_reg);
  6482 %}
  6484 // Store Pointer
  6485 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6486   match(Set dst (StoreP dst src));
  6487   ins_cost(MEMORY_REF_COST);
  6488   size(4);
  6490 #ifndef _LP64
  6491   format %{ "STW    $src,$dst\t! ptr" %}
  6492   opcode(Assembler::stw_op3, 0, REGP_OP);
  6493 #else
  6494   format %{ "STX    $src,$dst\t! ptr" %}
  6495   opcode(Assembler::stx_op3, 0, REGP_OP);
  6496 #endif
  6497   ins_encode( form3_mem_reg( dst, src ) );
  6498   ins_pipe(istore_mem_spORreg);
  6499 %}
  6501 instruct storeP0(memory dst, immP0 src) %{
  6502   match(Set dst (StoreP dst src));
  6503   ins_cost(MEMORY_REF_COST);
  6504   size(4);
  6506 #ifndef _LP64
  6507   format %{ "STW    $src,$dst\t! ptr" %}
  6508   opcode(Assembler::stw_op3, 0, REGP_OP);
  6509 #else
  6510   format %{ "STX    $src,$dst\t! ptr" %}
  6511   opcode(Assembler::stx_op3, 0, REGP_OP);
  6512 #endif
  6513   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6514   ins_pipe(istore_mem_zero);
  6515 %}
  6517 // Store Compressed Pointer
  6518 instruct storeN(memory dst, iRegN src) %{
  6519    match(Set dst (StoreN dst src));
  6520    ins_cost(MEMORY_REF_COST);
  6521    size(4);
  6523    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6524    ins_encode %{
  6525      Register base = as_Register($dst$$base);
  6526      Register index = as_Register($dst$$index);
  6527      Register src = $src$$Register;
  6528      if (index != G0) {
  6529        __ stw(src, base, index);
  6530      } else {
  6531        __ stw(src, base, $dst$$disp);
  6533    %}
  6534    ins_pipe(istore_mem_spORreg);
  6535 %}
  6537 instruct storeN0(memory dst, immN0 src) %{
  6538    match(Set dst (StoreN dst src));
  6539    ins_cost(MEMORY_REF_COST);
  6540    size(4);
  6542    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6543    ins_encode %{
  6544      Register base = as_Register($dst$$base);
  6545      Register index = as_Register($dst$$index);
  6546      if (index != G0) {
  6547        __ stw(0, base, index);
  6548      } else {
  6549        __ stw(0, base, $dst$$disp);
  6551    %}
  6552    ins_pipe(istore_mem_zero);
  6553 %}
  6555 // Store Double
  6556 instruct storeD( memory mem, regD src) %{
  6557   match(Set mem (StoreD mem src));
  6558   ins_cost(MEMORY_REF_COST);
  6560   size(4);
  6561   format %{ "STDF   $src,$mem" %}
  6562   opcode(Assembler::stdf_op3);
  6563   ins_encode(simple_form3_mem_reg( mem, src ) );
  6564   ins_pipe(fstoreD_mem_reg);
  6565 %}
  6567 instruct storeD0( memory mem, immD0 src) %{
  6568   match(Set mem (StoreD mem src));
  6569   ins_cost(MEMORY_REF_COST);
  6571   size(4);
  6572   format %{ "STX    $src,$mem" %}
  6573   opcode(Assembler::stx_op3);
  6574   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6575   ins_pipe(fstoreD_mem_zero);
  6576 %}
  6578 // Store Float
  6579 instruct storeF( memory mem, regF src) %{
  6580   match(Set mem (StoreF mem src));
  6581   ins_cost(MEMORY_REF_COST);
  6583   size(4);
  6584   format %{ "STF    $src,$mem" %}
  6585   opcode(Assembler::stf_op3);
  6586   ins_encode(simple_form3_mem_reg( mem, src ) );
  6587   ins_pipe(fstoreF_mem_reg);
  6588 %}
  6590 instruct storeF0( memory mem, immF0 src) %{
  6591   match(Set mem (StoreF mem src));
  6592   ins_cost(MEMORY_REF_COST);
  6594   size(4);
  6595   format %{ "STW    $src,$mem\t! storeF0" %}
  6596   opcode(Assembler::stw_op3);
  6597   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6598   ins_pipe(fstoreF_mem_zero);
  6599 %}
  6601 // Store Aligned Packed Bytes in Double register to memory
  6602 instruct storeA8B(memory mem, regD src) %{
  6603   match(Set mem (Store8B mem src));
  6604   ins_cost(MEMORY_REF_COST);
  6605   size(4);
  6606   format %{ "STDF   $src,$mem\t! packed8B" %}
  6607   opcode(Assembler::stdf_op3);
  6608   ins_encode(simple_form3_mem_reg( mem, src ) );
  6609   ins_pipe(fstoreD_mem_reg);
  6610 %}
  6612 // Convert oop pointer into compressed form
  6613 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6614   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6615   match(Set dst (EncodeP src));
  6616   format %{ "encode_heap_oop $src, $dst" %}
  6617   ins_encode %{
  6618     __ encode_heap_oop($src$$Register, $dst$$Register);
  6619   %}
  6620   ins_pipe(ialu_reg);
  6621 %}
  6623 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6624   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6625   match(Set dst (EncodeP src));
  6626   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6627   ins_encode %{
  6628     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6629   %}
  6630   ins_pipe(ialu_reg);
  6631 %}
  6633 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6634   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6635             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6636   match(Set dst (DecodeN src));
  6637   format %{ "decode_heap_oop $src, $dst" %}
  6638   ins_encode %{
  6639     __ decode_heap_oop($src$$Register, $dst$$Register);
  6640   %}
  6641   ins_pipe(ialu_reg);
  6642 %}
  6644 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6645   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6646             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6647   match(Set dst (DecodeN src));
  6648   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6649   ins_encode %{
  6650     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6651   %}
  6652   ins_pipe(ialu_reg);
  6653 %}
  6656 // Store Zero into Aligned Packed Bytes
  6657 instruct storeA8B0(memory mem, immI0 zero) %{
  6658   match(Set mem (Store8B mem zero));
  6659   ins_cost(MEMORY_REF_COST);
  6660   size(4);
  6661   format %{ "STX    $zero,$mem\t! packed8B" %}
  6662   opcode(Assembler::stx_op3);
  6663   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6664   ins_pipe(fstoreD_mem_zero);
  6665 %}
  6667 // Store Aligned Packed Chars/Shorts in Double register to memory
  6668 instruct storeA4C(memory mem, regD src) %{
  6669   match(Set mem (Store4C mem src));
  6670   ins_cost(MEMORY_REF_COST);
  6671   size(4);
  6672   format %{ "STDF   $src,$mem\t! packed4C" %}
  6673   opcode(Assembler::stdf_op3);
  6674   ins_encode(simple_form3_mem_reg( mem, src ) );
  6675   ins_pipe(fstoreD_mem_reg);
  6676 %}
  6678 // Store Zero into Aligned Packed Chars/Shorts
  6679 instruct storeA4C0(memory mem, immI0 zero) %{
  6680   match(Set mem (Store4C mem (Replicate4C zero)));
  6681   ins_cost(MEMORY_REF_COST);
  6682   size(4);
  6683   format %{ "STX    $zero,$mem\t! packed4C" %}
  6684   opcode(Assembler::stx_op3);
  6685   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6686   ins_pipe(fstoreD_mem_zero);
  6687 %}
  6689 // Store Aligned Packed Ints in Double register to memory
  6690 instruct storeA2I(memory mem, regD src) %{
  6691   match(Set mem (Store2I mem src));
  6692   ins_cost(MEMORY_REF_COST);
  6693   size(4);
  6694   format %{ "STDF   $src,$mem\t! packed2I" %}
  6695   opcode(Assembler::stdf_op3);
  6696   ins_encode(simple_form3_mem_reg( mem, src ) );
  6697   ins_pipe(fstoreD_mem_reg);
  6698 %}
  6700 // Store Zero into Aligned Packed Ints
  6701 instruct storeA2I0(memory mem, immI0 zero) %{
  6702   match(Set mem (Store2I mem zero));
  6703   ins_cost(MEMORY_REF_COST);
  6704   size(4);
  6705   format %{ "STX    $zero,$mem\t! packed2I" %}
  6706   opcode(Assembler::stx_op3);
  6707   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6708   ins_pipe(fstoreD_mem_zero);
  6709 %}
  6712 //----------MemBar Instructions-----------------------------------------------
  6713 // Memory barrier flavors
  6715 instruct membar_acquire() %{
  6716   match(MemBarAcquire);
  6717   ins_cost(4*MEMORY_REF_COST);
  6719   size(0);
  6720   format %{ "MEMBAR-acquire" %}
  6721   ins_encode( enc_membar_acquire );
  6722   ins_pipe(long_memory_op);
  6723 %}
  6725 instruct membar_acquire_lock() %{
  6726   match(MemBarAcquireLock);
  6727   ins_cost(0);
  6729   size(0);
  6730   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6731   ins_encode( );
  6732   ins_pipe(empty);
  6733 %}
  6735 instruct membar_release() %{
  6736   match(MemBarRelease);
  6737   ins_cost(4*MEMORY_REF_COST);
  6739   size(0);
  6740   format %{ "MEMBAR-release" %}
  6741   ins_encode( enc_membar_release );
  6742   ins_pipe(long_memory_op);
  6743 %}
  6745 instruct membar_release_lock() %{
  6746   match(MemBarReleaseLock);
  6747   ins_cost(0);
  6749   size(0);
  6750   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6751   ins_encode( );
  6752   ins_pipe(empty);
  6753 %}
  6755 instruct membar_volatile() %{
  6756   match(MemBarVolatile);
  6757   ins_cost(4*MEMORY_REF_COST);
  6759   size(4);
  6760   format %{ "MEMBAR-volatile" %}
  6761   ins_encode( enc_membar_volatile );
  6762   ins_pipe(long_memory_op);
  6763 %}
  6765 instruct unnecessary_membar_volatile() %{
  6766   match(MemBarVolatile);
  6767   predicate(Matcher::post_store_load_barrier(n));
  6768   ins_cost(0);
  6770   size(0);
  6771   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6772   ins_encode( );
  6773   ins_pipe(empty);
  6774 %}
  6776 instruct membar_storestore() %{
  6777   match(MemBarStoreStore);
  6778   ins_cost(0);
  6780   size(0);
  6781   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6782   ins_encode( );
  6783   ins_pipe(empty);
  6784 %}
  6786 //----------Register Move Instructions-----------------------------------------
  6787 instruct roundDouble_nop(regD dst) %{
  6788   match(Set dst (RoundDouble dst));
  6789   ins_cost(0);
  6790   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6791   ins_encode( );
  6792   ins_pipe(empty);
  6793 %}
  6796 instruct roundFloat_nop(regF dst) %{
  6797   match(Set dst (RoundFloat dst));
  6798   ins_cost(0);
  6799   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6800   ins_encode( );
  6801   ins_pipe(empty);
  6802 %}
  6805 // Cast Index to Pointer for unsafe natives
  6806 instruct castX2P(iRegX src, iRegP dst) %{
  6807   match(Set dst (CastX2P src));
  6809   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6810   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6811   ins_pipe(ialu_reg);
  6812 %}
  6814 // Cast Pointer to Index for unsafe natives
  6815 instruct castP2X(iRegP src, iRegX dst) %{
  6816   match(Set dst (CastP2X src));
  6818   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6819   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6820   ins_pipe(ialu_reg);
  6821 %}
  6823 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6824   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6825   match(Set stkSlot src);   // chain rule
  6826   ins_cost(MEMORY_REF_COST);
  6827   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6828   opcode(Assembler::stdf_op3);
  6829   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6830   ins_pipe(fstoreD_stk_reg);
  6831 %}
  6833 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6834   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6835   match(Set dst stkSlot);   // chain rule
  6836   ins_cost(MEMORY_REF_COST);
  6837   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6838   opcode(Assembler::lddf_op3);
  6839   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6840   ins_pipe(floadD_stk);
  6841 %}
  6843 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6844   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6845   match(Set stkSlot src);   // chain rule
  6846   ins_cost(MEMORY_REF_COST);
  6847   format %{ "STF   $src,$stkSlot\t!stk" %}
  6848   opcode(Assembler::stf_op3);
  6849   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6850   ins_pipe(fstoreF_stk_reg);
  6851 %}
  6853 //----------Conditional Move---------------------------------------------------
  6854 // Conditional move
  6855 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6856   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6857   ins_cost(150);
  6858   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6860   ins_pipe(ialu_reg);
  6861 %}
  6863 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6864   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6865   ins_cost(140);
  6866   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6867   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6868   ins_pipe(ialu_imm);
  6869 %}
  6871 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6872   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6873   ins_cost(150);
  6874   size(4);
  6875   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6876   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6877   ins_pipe(ialu_reg);
  6878 %}
  6880 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6881   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6882   ins_cost(140);
  6883   size(4);
  6884   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6885   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6886   ins_pipe(ialu_imm);
  6887 %}
  6889 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6890   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6891   ins_cost(150);
  6892   size(4);
  6893   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6894   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6895   ins_pipe(ialu_reg);
  6896 %}
  6898 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6899   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6900   ins_cost(140);
  6901   size(4);
  6902   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6903   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6904   ins_pipe(ialu_imm);
  6905 %}
  6907 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6908   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6909   ins_cost(150);
  6910   size(4);
  6911   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6912   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6913   ins_pipe(ialu_reg);
  6914 %}
  6916 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6917   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6918   ins_cost(140);
  6919   size(4);
  6920   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6921   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6922   ins_pipe(ialu_imm);
  6923 %}
  6925 // Conditional move for RegN. Only cmov(reg,reg).
  6926 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6927   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6928   ins_cost(150);
  6929   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6930   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6931   ins_pipe(ialu_reg);
  6932 %}
  6934 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6935 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6936   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6937   ins_cost(150);
  6938   size(4);
  6939   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6940   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6941   ins_pipe(ialu_reg);
  6942 %}
  6944 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6945 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6946   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6947   ins_cost(150);
  6948   size(4);
  6949   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6950   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6951   ins_pipe(ialu_reg);
  6952 %}
  6954 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6955   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6956   ins_cost(150);
  6957   size(4);
  6958   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6959   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6960   ins_pipe(ialu_reg);
  6961 %}
  6963 // Conditional move
  6964 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6965   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6966   ins_cost(150);
  6967   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6968   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6969   ins_pipe(ialu_reg);
  6970 %}
  6972 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6973   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6974   ins_cost(140);
  6975   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6976   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6977   ins_pipe(ialu_imm);
  6978 %}
  6980 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6981 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6982   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6983   ins_cost(150);
  6985   size(4);
  6986   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6987   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6988   ins_pipe(ialu_reg);
  6989 %}
  6991 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6992   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6993   ins_cost(150);
  6995   size(4);
  6996   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6997   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6998   ins_pipe(ialu_reg);
  6999 %}
  7001 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  7002   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7003   ins_cost(140);
  7005   size(4);
  7006   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7007   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7008   ins_pipe(ialu_imm);
  7009 %}
  7011 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  7012   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7013   ins_cost(140);
  7015   size(4);
  7016   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7017   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7018   ins_pipe(ialu_imm);
  7019 %}
  7021 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  7022   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7023   ins_cost(150);
  7024   size(4);
  7025   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7026   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7027   ins_pipe(ialu_imm);
  7028 %}
  7030 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  7031   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7032   ins_cost(140);
  7033   size(4);
  7034   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7035   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  7036   ins_pipe(ialu_imm);
  7037 %}
  7039 // Conditional move
  7040 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7041   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7042   ins_cost(150);
  7043   opcode(0x101);
  7044   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7045   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7046   ins_pipe(int_conditional_float_move);
  7047 %}
  7049 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7050   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7051   ins_cost(150);
  7053   size(4);
  7054   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7055   opcode(0x101);
  7056   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7057   ins_pipe(int_conditional_float_move);
  7058 %}
  7060 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7061   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7062   ins_cost(150);
  7064   size(4);
  7065   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7066   opcode(0x101);
  7067   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7068   ins_pipe(int_conditional_float_move);
  7069 %}
  7071 // Conditional move,
  7072 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7073   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7074   ins_cost(150);
  7075   size(4);
  7076   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7077   opcode(0x1);
  7078   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7079   ins_pipe(int_conditional_double_move);
  7080 %}
  7082 // Conditional move
  7083 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7084   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7085   ins_cost(150);
  7086   size(4);
  7087   opcode(0x102);
  7088   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7089   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7090   ins_pipe(int_conditional_double_move);
  7091 %}
  7093 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7094   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7095   ins_cost(150);
  7097   size(4);
  7098   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7099   opcode(0x102);
  7100   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7101   ins_pipe(int_conditional_double_move);
  7102 %}
  7104 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7105   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7106   ins_cost(150);
  7108   size(4);
  7109   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7110   opcode(0x102);
  7111   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7112   ins_pipe(int_conditional_double_move);
  7113 %}
  7115 // Conditional move,
  7116 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7117   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7118   ins_cost(150);
  7119   size(4);
  7120   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7121   opcode(0x2);
  7122   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7123   ins_pipe(int_conditional_double_move);
  7124 %}
  7126 // Conditional move
  7127 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7128   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7129   ins_cost(150);
  7130   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7131   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7132   ins_pipe(ialu_reg);
  7133 %}
  7135 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7136   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7137   ins_cost(140);
  7138   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7139   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7140   ins_pipe(ialu_imm);
  7141 %}
  7143 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7144   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7145   ins_cost(150);
  7147   size(4);
  7148   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7149   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7150   ins_pipe(ialu_reg);
  7151 %}
  7154 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7155   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7156   ins_cost(150);
  7158   size(4);
  7159   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7160   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7161   ins_pipe(ialu_reg);
  7162 %}
  7165 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7166   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7167   ins_cost(150);
  7169   size(4);
  7170   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7171   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7172   ins_pipe(ialu_reg);
  7173 %}
  7177 //----------OS and Locking Instructions----------------------------------------
  7179 // This name is KNOWN by the ADLC and cannot be changed.
  7180 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7181 // for this guy.
  7182 instruct tlsLoadP(g2RegP dst) %{
  7183   match(Set dst (ThreadLocal));
  7185   size(0);
  7186   ins_cost(0);
  7187   format %{ "# TLS is in G2" %}
  7188   ins_encode( /*empty encoding*/ );
  7189   ins_pipe(ialu_none);
  7190 %}
  7192 instruct checkCastPP( iRegP dst ) %{
  7193   match(Set dst (CheckCastPP dst));
  7195   size(0);
  7196   format %{ "# checkcastPP of $dst" %}
  7197   ins_encode( /*empty encoding*/ );
  7198   ins_pipe(empty);
  7199 %}
  7202 instruct castPP( iRegP dst ) %{
  7203   match(Set dst (CastPP dst));
  7204   format %{ "# castPP of $dst" %}
  7205   ins_encode( /*empty encoding*/ );
  7206   ins_pipe(empty);
  7207 %}
  7209 instruct castII( iRegI dst ) %{
  7210   match(Set dst (CastII dst));
  7211   format %{ "# castII of $dst" %}
  7212   ins_encode( /*empty encoding*/ );
  7213   ins_cost(0);
  7214   ins_pipe(empty);
  7215 %}
  7217 //----------Arithmetic Instructions--------------------------------------------
  7218 // Addition Instructions
  7219 // Register Addition
  7220 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7221   match(Set dst (AddI src1 src2));
  7223   size(4);
  7224   format %{ "ADD    $src1,$src2,$dst" %}
  7225   ins_encode %{
  7226     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7227   %}
  7228   ins_pipe(ialu_reg_reg);
  7229 %}
  7231 // Immediate Addition
  7232 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7233   match(Set dst (AddI src1 src2));
  7235   size(4);
  7236   format %{ "ADD    $src1,$src2,$dst" %}
  7237   opcode(Assembler::add_op3, Assembler::arith_op);
  7238   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7239   ins_pipe(ialu_reg_imm);
  7240 %}
  7242 // Pointer Register Addition
  7243 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7244   match(Set dst (AddP src1 src2));
  7246   size(4);
  7247   format %{ "ADD    $src1,$src2,$dst" %}
  7248   opcode(Assembler::add_op3, Assembler::arith_op);
  7249   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7250   ins_pipe(ialu_reg_reg);
  7251 %}
  7253 // Pointer Immediate Addition
  7254 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7255   match(Set dst (AddP src1 src2));
  7257   size(4);
  7258   format %{ "ADD    $src1,$src2,$dst" %}
  7259   opcode(Assembler::add_op3, Assembler::arith_op);
  7260   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7261   ins_pipe(ialu_reg_imm);
  7262 %}
  7264 // Long Addition
  7265 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7266   match(Set dst (AddL src1 src2));
  7268   size(4);
  7269   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7270   opcode(Assembler::add_op3, Assembler::arith_op);
  7271   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7272   ins_pipe(ialu_reg_reg);
  7273 %}
  7275 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7276   match(Set dst (AddL src1 con));
  7278   size(4);
  7279   format %{ "ADD    $src1,$con,$dst" %}
  7280   opcode(Assembler::add_op3, Assembler::arith_op);
  7281   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7282   ins_pipe(ialu_reg_imm);
  7283 %}
  7285 //----------Conditional_store--------------------------------------------------
  7286 // Conditional-store of the updated heap-top.
  7287 // Used during allocation of the shared heap.
  7288 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7290 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7291 instruct loadPLocked(iRegP dst, memory mem) %{
  7292   match(Set dst (LoadPLocked mem));
  7293   ins_cost(MEMORY_REF_COST);
  7295 #ifndef _LP64
  7296   size(4);
  7297   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7298   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7299 #else
  7300   format %{ "LDX    $mem,$dst\t! ptr" %}
  7301   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7302 #endif
  7303   ins_encode( form3_mem_reg( mem, dst ) );
  7304   ins_pipe(iload_mem);
  7305 %}
  7307 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7308 instruct loadLLocked(iRegL dst, memory mem) %{
  7309   match(Set dst (LoadLLocked mem));
  7310   ins_cost(MEMORY_REF_COST);
  7311   size(4);
  7312   format %{ "LDX    $mem,$dst\t! long" %}
  7313   opcode(Assembler::ldx_op3);
  7314   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7315   ins_pipe(iload_mem);
  7316 %}
  7318 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7319   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7320   effect( KILL newval );
  7321   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7322             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7323   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7324   ins_pipe( long_memory_op );
  7325 %}
  7327 // Conditional-store of an int value.
  7328 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7329   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7330   effect( KILL newval );
  7331   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7332             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7333   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7334   ins_pipe( long_memory_op );
  7335 %}
  7337 // Conditional-store of a long value.
  7338 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7339   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7340   effect( KILL newval );
  7341   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7342             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7343   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7344   ins_pipe( long_memory_op );
  7345 %}
  7347 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7349 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7350   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7351   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7352   format %{
  7353             "MOV    $newval,O7\n\t"
  7354             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7355             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7356             "MOV    1,$res\n\t"
  7357             "MOVne  xcc,R_G0,$res"
  7358   %}
  7359   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7360               enc_lflags_ne_to_boolean(res) );
  7361   ins_pipe( long_memory_op );
  7362 %}
  7365 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7366   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7367   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7368   format %{
  7369             "MOV    $newval,O7\n\t"
  7370             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7371             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7372             "MOV    1,$res\n\t"
  7373             "MOVne  icc,R_G0,$res"
  7374   %}
  7375   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7376               enc_iflags_ne_to_boolean(res) );
  7377   ins_pipe( long_memory_op );
  7378 %}
  7380 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7381   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7382   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7383   format %{
  7384             "MOV    $newval,O7\n\t"
  7385             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7386             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7387             "MOV    1,$res\n\t"
  7388             "MOVne  xcc,R_G0,$res"
  7389   %}
  7390 #ifdef _LP64
  7391   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7392               enc_lflags_ne_to_boolean(res) );
  7393 #else
  7394   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7395               enc_iflags_ne_to_boolean(res) );
  7396 #endif
  7397   ins_pipe( long_memory_op );
  7398 %}
  7400 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7401   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7402   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7403   format %{
  7404             "MOV    $newval,O7\n\t"
  7405             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7406             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7407             "MOV    1,$res\n\t"
  7408             "MOVne  icc,R_G0,$res"
  7409   %}
  7410   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7411               enc_iflags_ne_to_boolean(res) );
  7412   ins_pipe( long_memory_op );
  7413 %}
  7415 //---------------------
  7416 // Subtraction Instructions
  7417 // Register Subtraction
  7418 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7419   match(Set dst (SubI src1 src2));
  7421   size(4);
  7422   format %{ "SUB    $src1,$src2,$dst" %}
  7423   opcode(Assembler::sub_op3, Assembler::arith_op);
  7424   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7425   ins_pipe(ialu_reg_reg);
  7426 %}
  7428 // Immediate Subtraction
  7429 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7430   match(Set dst (SubI src1 src2));
  7432   size(4);
  7433   format %{ "SUB    $src1,$src2,$dst" %}
  7434   opcode(Assembler::sub_op3, Assembler::arith_op);
  7435   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7436   ins_pipe(ialu_reg_imm);
  7437 %}
  7439 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7440   match(Set dst (SubI zero src2));
  7442   size(4);
  7443   format %{ "NEG    $src2,$dst" %}
  7444   opcode(Assembler::sub_op3, Assembler::arith_op);
  7445   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7446   ins_pipe(ialu_zero_reg);
  7447 %}
  7449 // Long subtraction
  7450 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7451   match(Set dst (SubL src1 src2));
  7453   size(4);
  7454   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7455   opcode(Assembler::sub_op3, Assembler::arith_op);
  7456   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7457   ins_pipe(ialu_reg_reg);
  7458 %}
  7460 // Immediate Subtraction
  7461 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7462   match(Set dst (SubL src1 con));
  7464   size(4);
  7465   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7466   opcode(Assembler::sub_op3, Assembler::arith_op);
  7467   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7468   ins_pipe(ialu_reg_imm);
  7469 %}
  7471 // Long negation
  7472 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7473   match(Set dst (SubL zero src2));
  7475   size(4);
  7476   format %{ "NEG    $src2,$dst\t! long" %}
  7477   opcode(Assembler::sub_op3, Assembler::arith_op);
  7478   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7479   ins_pipe(ialu_zero_reg);
  7480 %}
  7482 // Multiplication Instructions
  7483 // Integer Multiplication
  7484 // Register Multiplication
  7485 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7486   match(Set dst (MulI src1 src2));
  7488   size(4);
  7489   format %{ "MULX   $src1,$src2,$dst" %}
  7490   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7491   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7492   ins_pipe(imul_reg_reg);
  7493 %}
  7495 // Immediate Multiplication
  7496 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7497   match(Set dst (MulI src1 src2));
  7499   size(4);
  7500   format %{ "MULX   $src1,$src2,$dst" %}
  7501   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7502   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7503   ins_pipe(imul_reg_imm);
  7504 %}
  7506 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7507   match(Set dst (MulL src1 src2));
  7508   ins_cost(DEFAULT_COST * 5);
  7509   size(4);
  7510   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7511   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7512   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7513   ins_pipe(mulL_reg_reg);
  7514 %}
  7516 // Immediate Multiplication
  7517 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7518   match(Set dst (MulL src1 src2));
  7519   ins_cost(DEFAULT_COST * 5);
  7520   size(4);
  7521   format %{ "MULX   $src1,$src2,$dst" %}
  7522   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7523   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7524   ins_pipe(mulL_reg_imm);
  7525 %}
  7527 // Integer Division
  7528 // Register Division
  7529 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7530   match(Set dst (DivI src1 src2));
  7531   ins_cost((2+71)*DEFAULT_COST);
  7533   format %{ "SRA     $src2,0,$src2\n\t"
  7534             "SRA     $src1,0,$src1\n\t"
  7535             "SDIVX   $src1,$src2,$dst" %}
  7536   ins_encode( idiv_reg( src1, src2, dst ) );
  7537   ins_pipe(sdiv_reg_reg);
  7538 %}
  7540 // Immediate Division
  7541 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7542   match(Set dst (DivI src1 src2));
  7543   ins_cost((2+71)*DEFAULT_COST);
  7545   format %{ "SRA     $src1,0,$src1\n\t"
  7546             "SDIVX   $src1,$src2,$dst" %}
  7547   ins_encode( idiv_imm( src1, src2, dst ) );
  7548   ins_pipe(sdiv_reg_imm);
  7549 %}
  7551 //----------Div-By-10-Expansion------------------------------------------------
  7552 // Extract hi bits of a 32x32->64 bit multiply.
  7553 // Expand rule only, not matched
  7554 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7555   effect( DEF dst, USE src1, USE src2 );
  7556   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7557             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7558   ins_encode( enc_mul_hi(dst,src1,src2));
  7559   ins_pipe(sdiv_reg_reg);
  7560 %}
  7562 // Magic constant, reciprocal of 10
  7563 instruct loadConI_x66666667(iRegIsafe dst) %{
  7564   effect( DEF dst );
  7566   size(8);
  7567   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7568   ins_encode( Set32(0x66666667, dst) );
  7569   ins_pipe(ialu_hi_lo_reg);
  7570 %}
  7572 // Register Shift Right Arithmetic Long by 32-63
  7573 instruct sra_31( iRegI dst, iRegI src ) %{
  7574   effect( DEF dst, USE src );
  7575   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7576   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7577   ins_pipe(ialu_reg_reg);
  7578 %}
  7580 // Arithmetic Shift Right by 8-bit immediate
  7581 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7582   effect( DEF dst, USE src );
  7583   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7584   opcode(Assembler::sra_op3, Assembler::arith_op);
  7585   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7586   ins_pipe(ialu_reg_imm);
  7587 %}
  7589 // Integer DIV with 10
  7590 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7591   match(Set dst (DivI src div));
  7592   ins_cost((6+6)*DEFAULT_COST);
  7593   expand %{
  7594     iRegIsafe tmp1;               // Killed temps;
  7595     iRegIsafe tmp2;               // Killed temps;
  7596     iRegI tmp3;                   // Killed temps;
  7597     iRegI tmp4;                   // Killed temps;
  7598     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7599     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7600     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7601     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7602     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7603   %}
  7604 %}
  7606 // Register Long Division
  7607 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7608   match(Set dst (DivL src1 src2));
  7609   ins_cost(DEFAULT_COST*71);
  7610   size(4);
  7611   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7612   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7613   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7614   ins_pipe(divL_reg_reg);
  7615 %}
  7617 // Register Long Division
  7618 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7619   match(Set dst (DivL src1 src2));
  7620   ins_cost(DEFAULT_COST*71);
  7621   size(4);
  7622   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7623   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7624   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7625   ins_pipe(divL_reg_imm);
  7626 %}
  7628 // Integer Remainder
  7629 // Register Remainder
  7630 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7631   match(Set dst (ModI src1 src2));
  7632   effect( KILL ccr, KILL temp);
  7634   format %{ "SREM   $src1,$src2,$dst" %}
  7635   ins_encode( irem_reg(src1, src2, dst, temp) );
  7636   ins_pipe(sdiv_reg_reg);
  7637 %}
  7639 // Immediate Remainder
  7640 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7641   match(Set dst (ModI src1 src2));
  7642   effect( KILL ccr, KILL temp);
  7644   format %{ "SREM   $src1,$src2,$dst" %}
  7645   ins_encode( irem_imm(src1, src2, dst, temp) );
  7646   ins_pipe(sdiv_reg_imm);
  7647 %}
  7649 // Register Long Remainder
  7650 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7651   effect(DEF dst, USE src1, USE src2);
  7652   size(4);
  7653   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7654   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7655   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7656   ins_pipe(divL_reg_reg);
  7657 %}
  7659 // Register Long Division
  7660 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7661   effect(DEF dst, USE src1, USE src2);
  7662   size(4);
  7663   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7664   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7665   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7666   ins_pipe(divL_reg_imm);
  7667 %}
  7669 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7670   effect(DEF dst, USE src1, USE src2);
  7671   size(4);
  7672   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7673   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7674   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7675   ins_pipe(mulL_reg_reg);
  7676 %}
  7678 // Immediate Multiplication
  7679 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7680   effect(DEF dst, USE src1, USE src2);
  7681   size(4);
  7682   format %{ "MULX   $src1,$src2,$dst" %}
  7683   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7684   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7685   ins_pipe(mulL_reg_imm);
  7686 %}
  7688 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7689   effect(DEF dst, USE src1, USE src2);
  7690   size(4);
  7691   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7692   opcode(Assembler::sub_op3, Assembler::arith_op);
  7693   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7694   ins_pipe(ialu_reg_reg);
  7695 %}
  7697 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7698   effect(DEF dst, USE src1, USE src2);
  7699   size(4);
  7700   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7701   opcode(Assembler::sub_op3, Assembler::arith_op);
  7702   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7703   ins_pipe(ialu_reg_reg);
  7704 %}
  7706 // Register Long Remainder
  7707 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7708   match(Set dst (ModL src1 src2));
  7709   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7710   expand %{
  7711     iRegL tmp1;
  7712     iRegL tmp2;
  7713     divL_reg_reg_1(tmp1, src1, src2);
  7714     mulL_reg_reg_1(tmp2, tmp1, src2);
  7715     subL_reg_reg_1(dst,  src1, tmp2);
  7716   %}
  7717 %}
  7719 // Register Long Remainder
  7720 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7721   match(Set dst (ModL src1 src2));
  7722   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7723   expand %{
  7724     iRegL tmp1;
  7725     iRegL tmp2;
  7726     divL_reg_imm13_1(tmp1, src1, src2);
  7727     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7728     subL_reg_reg_2  (dst,  src1, tmp2);
  7729   %}
  7730 %}
  7732 // Integer Shift Instructions
  7733 // Register Shift Left
  7734 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7735   match(Set dst (LShiftI src1 src2));
  7737   size(4);
  7738   format %{ "SLL    $src1,$src2,$dst" %}
  7739   opcode(Assembler::sll_op3, Assembler::arith_op);
  7740   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7741   ins_pipe(ialu_reg_reg);
  7742 %}
  7744 // Register Shift Left Immediate
  7745 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7746   match(Set dst (LShiftI src1 src2));
  7748   size(4);
  7749   format %{ "SLL    $src1,$src2,$dst" %}
  7750   opcode(Assembler::sll_op3, Assembler::arith_op);
  7751   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7752   ins_pipe(ialu_reg_imm);
  7753 %}
  7755 // Register Shift Left
  7756 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7757   match(Set dst (LShiftL src1 src2));
  7759   size(4);
  7760   format %{ "SLLX   $src1,$src2,$dst" %}
  7761   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7762   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7763   ins_pipe(ialu_reg_reg);
  7764 %}
  7766 // Register Shift Left Immediate
  7767 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7768   match(Set dst (LShiftL src1 src2));
  7770   size(4);
  7771   format %{ "SLLX   $src1,$src2,$dst" %}
  7772   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7773   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7774   ins_pipe(ialu_reg_imm);
  7775 %}
  7777 // Register Arithmetic Shift Right
  7778 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7779   match(Set dst (RShiftI src1 src2));
  7780   size(4);
  7781   format %{ "SRA    $src1,$src2,$dst" %}
  7782   opcode(Assembler::sra_op3, Assembler::arith_op);
  7783   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7784   ins_pipe(ialu_reg_reg);
  7785 %}
  7787 // Register Arithmetic Shift Right Immediate
  7788 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7789   match(Set dst (RShiftI src1 src2));
  7791   size(4);
  7792   format %{ "SRA    $src1,$src2,$dst" %}
  7793   opcode(Assembler::sra_op3, Assembler::arith_op);
  7794   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7795   ins_pipe(ialu_reg_imm);
  7796 %}
  7798 // Register Shift Right Arithmatic Long
  7799 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7800   match(Set dst (RShiftL src1 src2));
  7802   size(4);
  7803   format %{ "SRAX   $src1,$src2,$dst" %}
  7804   opcode(Assembler::srax_op3, Assembler::arith_op);
  7805   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7806   ins_pipe(ialu_reg_reg);
  7807 %}
  7809 // Register Shift Left Immediate
  7810 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7811   match(Set dst (RShiftL src1 src2));
  7813   size(4);
  7814   format %{ "SRAX   $src1,$src2,$dst" %}
  7815   opcode(Assembler::srax_op3, Assembler::arith_op);
  7816   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7817   ins_pipe(ialu_reg_imm);
  7818 %}
  7820 // Register Shift Right
  7821 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7822   match(Set dst (URShiftI src1 src2));
  7824   size(4);
  7825   format %{ "SRL    $src1,$src2,$dst" %}
  7826   opcode(Assembler::srl_op3, Assembler::arith_op);
  7827   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7828   ins_pipe(ialu_reg_reg);
  7829 %}
  7831 // Register Shift Right Immediate
  7832 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7833   match(Set dst (URShiftI src1 src2));
  7835   size(4);
  7836   format %{ "SRL    $src1,$src2,$dst" %}
  7837   opcode(Assembler::srl_op3, Assembler::arith_op);
  7838   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7839   ins_pipe(ialu_reg_imm);
  7840 %}
  7842 // Register Shift Right
  7843 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7844   match(Set dst (URShiftL src1 src2));
  7846   size(4);
  7847   format %{ "SRLX   $src1,$src2,$dst" %}
  7848   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7849   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7850   ins_pipe(ialu_reg_reg);
  7851 %}
  7853 // Register Shift Right Immediate
  7854 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7855   match(Set dst (URShiftL src1 src2));
  7857   size(4);
  7858   format %{ "SRLX   $src1,$src2,$dst" %}
  7859   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7860   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7861   ins_pipe(ialu_reg_imm);
  7862 %}
  7864 // Register Shift Right Immediate with a CastP2X
  7865 #ifdef _LP64
  7866 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7867   match(Set dst (URShiftL (CastP2X src1) src2));
  7868   size(4);
  7869   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7870   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7871   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7872   ins_pipe(ialu_reg_imm);
  7873 %}
  7874 #else
  7875 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7876   match(Set dst (URShiftI (CastP2X src1) src2));
  7877   size(4);
  7878   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7879   opcode(Assembler::srl_op3, Assembler::arith_op);
  7880   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7881   ins_pipe(ialu_reg_imm);
  7882 %}
  7883 #endif
  7886 //----------Floating Point Arithmetic Instructions-----------------------------
  7888 //  Add float single precision
  7889 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7890   match(Set dst (AddF src1 src2));
  7892   size(4);
  7893   format %{ "FADDS  $src1,$src2,$dst" %}
  7894   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7895   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7896   ins_pipe(faddF_reg_reg);
  7897 %}
  7899 //  Add float double precision
  7900 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7901   match(Set dst (AddD src1 src2));
  7903   size(4);
  7904   format %{ "FADDD  $src1,$src2,$dst" %}
  7905   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7906   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7907   ins_pipe(faddD_reg_reg);
  7908 %}
  7910 //  Sub float single precision
  7911 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7912   match(Set dst (SubF src1 src2));
  7914   size(4);
  7915   format %{ "FSUBS  $src1,$src2,$dst" %}
  7916   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7917   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7918   ins_pipe(faddF_reg_reg);
  7919 %}
  7921 //  Sub float double precision
  7922 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7923   match(Set dst (SubD src1 src2));
  7925   size(4);
  7926   format %{ "FSUBD  $src1,$src2,$dst" %}
  7927   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7928   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7929   ins_pipe(faddD_reg_reg);
  7930 %}
  7932 //  Mul float single precision
  7933 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7934   match(Set dst (MulF src1 src2));
  7936   size(4);
  7937   format %{ "FMULS  $src1,$src2,$dst" %}
  7938   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7939   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7940   ins_pipe(fmulF_reg_reg);
  7941 %}
  7943 //  Mul float double precision
  7944 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7945   match(Set dst (MulD src1 src2));
  7947   size(4);
  7948   format %{ "FMULD  $src1,$src2,$dst" %}
  7949   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7950   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7951   ins_pipe(fmulD_reg_reg);
  7952 %}
  7954 //  Div float single precision
  7955 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7956   match(Set dst (DivF src1 src2));
  7958   size(4);
  7959   format %{ "FDIVS  $src1,$src2,$dst" %}
  7960   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7961   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7962   ins_pipe(fdivF_reg_reg);
  7963 %}
  7965 //  Div float double precision
  7966 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7967   match(Set dst (DivD src1 src2));
  7969   size(4);
  7970   format %{ "FDIVD  $src1,$src2,$dst" %}
  7971   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7972   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7973   ins_pipe(fdivD_reg_reg);
  7974 %}
  7976 //  Absolute float double precision
  7977 instruct absD_reg(regD dst, regD src) %{
  7978   match(Set dst (AbsD src));
  7980   format %{ "FABSd  $src,$dst" %}
  7981   ins_encode(fabsd(dst, src));
  7982   ins_pipe(faddD_reg);
  7983 %}
  7985 //  Absolute float single precision
  7986 instruct absF_reg(regF dst, regF src) %{
  7987   match(Set dst (AbsF src));
  7989   format %{ "FABSs  $src,$dst" %}
  7990   ins_encode(fabss(dst, src));
  7991   ins_pipe(faddF_reg);
  7992 %}
  7994 instruct negF_reg(regF dst, regF src) %{
  7995   match(Set dst (NegF src));
  7997   size(4);
  7998   format %{ "FNEGs  $src,$dst" %}
  7999   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  8000   ins_encode(form3_opf_rs2F_rdF(src, dst));
  8001   ins_pipe(faddF_reg);
  8002 %}
  8004 instruct negD_reg(regD dst, regD src) %{
  8005   match(Set dst (NegD src));
  8007   format %{ "FNEGd  $src,$dst" %}
  8008   ins_encode(fnegd(dst, src));
  8009   ins_pipe(faddD_reg);
  8010 %}
  8012 //  Sqrt float double precision
  8013 instruct sqrtF_reg_reg(regF dst, regF src) %{
  8014   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8016   size(4);
  8017   format %{ "FSQRTS $src,$dst" %}
  8018   ins_encode(fsqrts(dst, src));
  8019   ins_pipe(fdivF_reg_reg);
  8020 %}
  8022 //  Sqrt float double precision
  8023 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8024   match(Set dst (SqrtD src));
  8026   size(4);
  8027   format %{ "FSQRTD $src,$dst" %}
  8028   ins_encode(fsqrtd(dst, src));
  8029   ins_pipe(fdivD_reg_reg);
  8030 %}
  8032 //----------Logical Instructions-----------------------------------------------
  8033 // And Instructions
  8034 // Register And
  8035 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8036   match(Set dst (AndI src1 src2));
  8038   size(4);
  8039   format %{ "AND    $src1,$src2,$dst" %}
  8040   opcode(Assembler::and_op3, Assembler::arith_op);
  8041   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8042   ins_pipe(ialu_reg_reg);
  8043 %}
  8045 // Immediate And
  8046 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8047   match(Set dst (AndI src1 src2));
  8049   size(4);
  8050   format %{ "AND    $src1,$src2,$dst" %}
  8051   opcode(Assembler::and_op3, Assembler::arith_op);
  8052   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8053   ins_pipe(ialu_reg_imm);
  8054 %}
  8056 // Register And Long
  8057 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8058   match(Set dst (AndL src1 src2));
  8060   ins_cost(DEFAULT_COST);
  8061   size(4);
  8062   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8063   opcode(Assembler::and_op3, Assembler::arith_op);
  8064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8065   ins_pipe(ialu_reg_reg);
  8066 %}
  8068 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8069   match(Set dst (AndL src1 con));
  8071   ins_cost(DEFAULT_COST);
  8072   size(4);
  8073   format %{ "AND    $src1,$con,$dst\t! long" %}
  8074   opcode(Assembler::and_op3, Assembler::arith_op);
  8075   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8076   ins_pipe(ialu_reg_imm);
  8077 %}
  8079 // Or Instructions
  8080 // Register Or
  8081 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8082   match(Set dst (OrI src1 src2));
  8084   size(4);
  8085   format %{ "OR     $src1,$src2,$dst" %}
  8086   opcode(Assembler::or_op3, Assembler::arith_op);
  8087   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8088   ins_pipe(ialu_reg_reg);
  8089 %}
  8091 // Immediate Or
  8092 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8093   match(Set dst (OrI src1 src2));
  8095   size(4);
  8096   format %{ "OR     $src1,$src2,$dst" %}
  8097   opcode(Assembler::or_op3, Assembler::arith_op);
  8098   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8099   ins_pipe(ialu_reg_imm);
  8100 %}
  8102 // Register Or Long
  8103 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8104   match(Set dst (OrL src1 src2));
  8106   ins_cost(DEFAULT_COST);
  8107   size(4);
  8108   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8109   opcode(Assembler::or_op3, Assembler::arith_op);
  8110   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8111   ins_pipe(ialu_reg_reg);
  8112 %}
  8114 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8115   match(Set dst (OrL src1 con));
  8116   ins_cost(DEFAULT_COST*2);
  8118   ins_cost(DEFAULT_COST);
  8119   size(4);
  8120   format %{ "OR     $src1,$con,$dst\t! long" %}
  8121   opcode(Assembler::or_op3, Assembler::arith_op);
  8122   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8123   ins_pipe(ialu_reg_imm);
  8124 %}
  8126 #ifndef _LP64
  8128 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8129 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8130   match(Set dst (OrI src1 (CastP2X src2)));
  8132   size(4);
  8133   format %{ "OR     $src1,$src2,$dst" %}
  8134   opcode(Assembler::or_op3, Assembler::arith_op);
  8135   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8136   ins_pipe(ialu_reg_reg);
  8137 %}
  8139 #else
  8141 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8142   match(Set dst (OrL src1 (CastP2X src2)));
  8144   ins_cost(DEFAULT_COST);
  8145   size(4);
  8146   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8147   opcode(Assembler::or_op3, Assembler::arith_op);
  8148   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8149   ins_pipe(ialu_reg_reg);
  8150 %}
  8152 #endif
  8154 // Xor Instructions
  8155 // Register Xor
  8156 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8157   match(Set dst (XorI src1 src2));
  8159   size(4);
  8160   format %{ "XOR    $src1,$src2,$dst" %}
  8161   opcode(Assembler::xor_op3, Assembler::arith_op);
  8162   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8163   ins_pipe(ialu_reg_reg);
  8164 %}
  8166 // Immediate Xor
  8167 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8168   match(Set dst (XorI src1 src2));
  8170   size(4);
  8171   format %{ "XOR    $src1,$src2,$dst" %}
  8172   opcode(Assembler::xor_op3, Assembler::arith_op);
  8173   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8174   ins_pipe(ialu_reg_imm);
  8175 %}
  8177 // Register Xor Long
  8178 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8179   match(Set dst (XorL src1 src2));
  8181   ins_cost(DEFAULT_COST);
  8182   size(4);
  8183   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8184   opcode(Assembler::xor_op3, Assembler::arith_op);
  8185   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8186   ins_pipe(ialu_reg_reg);
  8187 %}
  8189 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8190   match(Set dst (XorL src1 con));
  8192   ins_cost(DEFAULT_COST);
  8193   size(4);
  8194   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8195   opcode(Assembler::xor_op3, Assembler::arith_op);
  8196   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8197   ins_pipe(ialu_reg_imm);
  8198 %}
  8200 //----------Convert to Boolean-------------------------------------------------
  8201 // Nice hack for 32-bit tests but doesn't work for
  8202 // 64-bit pointers.
  8203 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8204   match(Set dst (Conv2B src));
  8205   effect( KILL ccr );
  8206   ins_cost(DEFAULT_COST*2);
  8207   format %{ "CMP    R_G0,$src\n\t"
  8208             "ADDX   R_G0,0,$dst" %}
  8209   ins_encode( enc_to_bool( src, dst ) );
  8210   ins_pipe(ialu_reg_ialu);
  8211 %}
  8213 #ifndef _LP64
  8214 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8215   match(Set dst (Conv2B src));
  8216   effect( KILL ccr );
  8217   ins_cost(DEFAULT_COST*2);
  8218   format %{ "CMP    R_G0,$src\n\t"
  8219             "ADDX   R_G0,0,$dst" %}
  8220   ins_encode( enc_to_bool( src, dst ) );
  8221   ins_pipe(ialu_reg_ialu);
  8222 %}
  8223 #else
  8224 instruct convP2B( iRegI dst, iRegP src ) %{
  8225   match(Set dst (Conv2B src));
  8226   ins_cost(DEFAULT_COST*2);
  8227   format %{ "MOV    $src,$dst\n\t"
  8228             "MOVRNZ $src,1,$dst" %}
  8229   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8230   ins_pipe(ialu_clr_and_mover);
  8231 %}
  8232 #endif
  8234 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8235   match(Set dst (CmpLTMask src zero));
  8236   effect(KILL ccr);
  8237   size(4);
  8238   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8239   ins_encode %{
  8240     __ sra($src$$Register, 31, $dst$$Register);
  8241   %}
  8242   ins_pipe(ialu_reg_imm);
  8243 %}
  8245 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8246   match(Set dst (CmpLTMask p q));
  8247   effect( KILL ccr );
  8248   ins_cost(DEFAULT_COST*4);
  8249   format %{ "CMP    $p,$q\n\t"
  8250             "MOV    #0,$dst\n\t"
  8251             "BLT,a  .+8\n\t"
  8252             "MOV    #-1,$dst" %}
  8253   ins_encode( enc_ltmask(p,q,dst) );
  8254   ins_pipe(ialu_reg_reg_ialu);
  8255 %}
  8257 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8258   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8259   effect(KILL ccr, TEMP tmp);
  8260   ins_cost(DEFAULT_COST*3);
  8262   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8263             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8264             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8265   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8266   ins_pipe( cadd_cmpltmask );
  8267 %}
  8270 //-----------------------------------------------------------------
  8271 // Direct raw moves between float and general registers using VIS3.
  8273 //  ins_pipe(faddF_reg);
  8274 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8275   predicate(UseVIS >= 3);
  8276   match(Set dst (MoveF2I src));
  8278   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8279   ins_encode %{
  8280     __ movstouw($src$$FloatRegister, $dst$$Register);
  8281   %}
  8282   ins_pipe(ialu_reg_reg);
  8283 %}
  8285 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8286   predicate(UseVIS >= 3);
  8287   match(Set dst (MoveI2F src));
  8289   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8290   ins_encode %{
  8291     __ movwtos($src$$Register, $dst$$FloatRegister);
  8292   %}
  8293   ins_pipe(ialu_reg_reg);
  8294 %}
  8296 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8297   predicate(UseVIS >= 3);
  8298   match(Set dst (MoveD2L src));
  8300   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8301   ins_encode %{
  8302     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8303   %}
  8304   ins_pipe(ialu_reg_reg);
  8305 %}
  8307 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8308   predicate(UseVIS >= 3);
  8309   match(Set dst (MoveL2D src));
  8311   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8312   ins_encode %{
  8313     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8314   %}
  8315   ins_pipe(ialu_reg_reg);
  8316 %}
  8319 // Raw moves between float and general registers using stack.
  8321 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8322   match(Set dst (MoveF2I src));
  8323   effect(DEF dst, USE src);
  8324   ins_cost(MEMORY_REF_COST);
  8326   size(4);
  8327   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8328   opcode(Assembler::lduw_op3);
  8329   ins_encode(simple_form3_mem_reg( src, dst ) );
  8330   ins_pipe(iload_mem);
  8331 %}
  8333 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8334   match(Set dst (MoveI2F src));
  8335   effect(DEF dst, USE src);
  8336   ins_cost(MEMORY_REF_COST);
  8338   size(4);
  8339   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8340   opcode(Assembler::ldf_op3);
  8341   ins_encode(simple_form3_mem_reg(src, dst));
  8342   ins_pipe(floadF_stk);
  8343 %}
  8345 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8346   match(Set dst (MoveD2L src));
  8347   effect(DEF dst, USE src);
  8348   ins_cost(MEMORY_REF_COST);
  8350   size(4);
  8351   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8352   opcode(Assembler::ldx_op3);
  8353   ins_encode(simple_form3_mem_reg( src, dst ) );
  8354   ins_pipe(iload_mem);
  8355 %}
  8357 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8358   match(Set dst (MoveL2D src));
  8359   effect(DEF dst, USE src);
  8360   ins_cost(MEMORY_REF_COST);
  8362   size(4);
  8363   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8364   opcode(Assembler::lddf_op3);
  8365   ins_encode(simple_form3_mem_reg(src, dst));
  8366   ins_pipe(floadD_stk);
  8367 %}
  8369 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8370   match(Set dst (MoveF2I src));
  8371   effect(DEF dst, USE src);
  8372   ins_cost(MEMORY_REF_COST);
  8374   size(4);
  8375   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8376   opcode(Assembler::stf_op3);
  8377   ins_encode(simple_form3_mem_reg(dst, src));
  8378   ins_pipe(fstoreF_stk_reg);
  8379 %}
  8381 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8382   match(Set dst (MoveI2F src));
  8383   effect(DEF dst, USE src);
  8384   ins_cost(MEMORY_REF_COST);
  8386   size(4);
  8387   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8388   opcode(Assembler::stw_op3);
  8389   ins_encode(simple_form3_mem_reg( dst, src ) );
  8390   ins_pipe(istore_mem_reg);
  8391 %}
  8393 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8394   match(Set dst (MoveD2L src));
  8395   effect(DEF dst, USE src);
  8396   ins_cost(MEMORY_REF_COST);
  8398   size(4);
  8399   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8400   opcode(Assembler::stdf_op3);
  8401   ins_encode(simple_form3_mem_reg(dst, src));
  8402   ins_pipe(fstoreD_stk_reg);
  8403 %}
  8405 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8406   match(Set dst (MoveL2D src));
  8407   effect(DEF dst, USE src);
  8408   ins_cost(MEMORY_REF_COST);
  8410   size(4);
  8411   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8412   opcode(Assembler::stx_op3);
  8413   ins_encode(simple_form3_mem_reg( dst, src ) );
  8414   ins_pipe(istore_mem_reg);
  8415 %}
  8418 //----------Arithmetic Conversion Instructions---------------------------------
  8419 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8421 instruct convD2F_reg(regF dst, regD src) %{
  8422   match(Set dst (ConvD2F src));
  8423   size(4);
  8424   format %{ "FDTOS  $src,$dst" %}
  8425   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8426   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8427   ins_pipe(fcvtD2F);
  8428 %}
  8431 // Convert a double to an int in a float register.
  8432 // If the double is a NAN, stuff a zero in instead.
  8433 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8434   effect(DEF dst, USE src, KILL fcc0);
  8435   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8436             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8437             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8438             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8439             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8440       "skip:" %}
  8441   ins_encode(form_d2i_helper(src,dst));
  8442   ins_pipe(fcvtD2I);
  8443 %}
  8445 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8446   match(Set dst (ConvD2I src));
  8447   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8448   expand %{
  8449     regF tmp;
  8450     convD2I_helper(tmp, src);
  8451     regF_to_stkI(dst, tmp);
  8452   %}
  8453 %}
  8455 instruct convD2I_reg(iRegI dst, regD src) %{
  8456   predicate(UseVIS >= 3);
  8457   match(Set dst (ConvD2I src));
  8458   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8459   expand %{
  8460     regF tmp;
  8461     convD2I_helper(tmp, src);
  8462     MoveF2I_reg_reg(dst, tmp);
  8463   %}
  8464 %}
  8467 // Convert a double to a long in a double register.
  8468 // If the double is a NAN, stuff a zero in instead.
  8469 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8470   effect(DEF dst, USE src, KILL fcc0);
  8471   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8472             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8473             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8474             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8475             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8476       "skip:" %}
  8477   ins_encode(form_d2l_helper(src,dst));
  8478   ins_pipe(fcvtD2L);
  8479 %}
  8481 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8482   match(Set dst (ConvD2L src));
  8483   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8484   expand %{
  8485     regD tmp;
  8486     convD2L_helper(tmp, src);
  8487     regD_to_stkL(dst, tmp);
  8488   %}
  8489 %}
  8491 instruct convD2L_reg(iRegL dst, regD src) %{
  8492   predicate(UseVIS >= 3);
  8493   match(Set dst (ConvD2L src));
  8494   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8495   expand %{
  8496     regD tmp;
  8497     convD2L_helper(tmp, src);
  8498     MoveD2L_reg_reg(dst, tmp);
  8499   %}
  8500 %}
  8503 instruct convF2D_reg(regD dst, regF src) %{
  8504   match(Set dst (ConvF2D src));
  8505   format %{ "FSTOD  $src,$dst" %}
  8506   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8507   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8508   ins_pipe(fcvtF2D);
  8509 %}
  8512 // Convert a float to an int in a float register.
  8513 // If the float is a NAN, stuff a zero in instead.
  8514 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8515   effect(DEF dst, USE src, KILL fcc0);
  8516   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8517             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8518             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8519             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8520             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8521       "skip:" %}
  8522   ins_encode(form_f2i_helper(src,dst));
  8523   ins_pipe(fcvtF2I);
  8524 %}
  8526 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8527   match(Set dst (ConvF2I src));
  8528   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8529   expand %{
  8530     regF tmp;
  8531     convF2I_helper(tmp, src);
  8532     regF_to_stkI(dst, tmp);
  8533   %}
  8534 %}
  8536 instruct convF2I_reg(iRegI dst, regF src) %{
  8537   predicate(UseVIS >= 3);
  8538   match(Set dst (ConvF2I src));
  8539   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8540   expand %{
  8541     regF tmp;
  8542     convF2I_helper(tmp, src);
  8543     MoveF2I_reg_reg(dst, tmp);
  8544   %}
  8545 %}
  8548 // Convert a float to a long in a float register.
  8549 // If the float is a NAN, stuff a zero in instead.
  8550 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8551   effect(DEF dst, USE src, KILL fcc0);
  8552   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8553             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8554             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8555             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8556             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8557       "skip:" %}
  8558   ins_encode(form_f2l_helper(src,dst));
  8559   ins_pipe(fcvtF2L);
  8560 %}
  8562 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8563   match(Set dst (ConvF2L src));
  8564   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8565   expand %{
  8566     regD tmp;
  8567     convF2L_helper(tmp, src);
  8568     regD_to_stkL(dst, tmp);
  8569   %}
  8570 %}
  8572 instruct convF2L_reg(iRegL dst, regF src) %{
  8573   predicate(UseVIS >= 3);
  8574   match(Set dst (ConvF2L src));
  8575   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8576   expand %{
  8577     regD tmp;
  8578     convF2L_helper(tmp, src);
  8579     MoveD2L_reg_reg(dst, tmp);
  8580   %}
  8581 %}
  8584 instruct convI2D_helper(regD dst, regF tmp) %{
  8585   effect(USE tmp, DEF dst);
  8586   format %{ "FITOD  $tmp,$dst" %}
  8587   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8588   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8589   ins_pipe(fcvtI2D);
  8590 %}
  8592 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8593   match(Set dst (ConvI2D src));
  8594   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8595   expand %{
  8596     regF tmp;
  8597     stkI_to_regF(tmp, src);
  8598     convI2D_helper(dst, tmp);
  8599   %}
  8600 %}
  8602 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8603   predicate(UseVIS >= 3);
  8604   match(Set dst (ConvI2D src));
  8605   expand %{
  8606     regF tmp;
  8607     MoveI2F_reg_reg(tmp, src);
  8608     convI2D_helper(dst, tmp);
  8609   %}
  8610 %}
  8612 instruct convI2D_mem(regD_low dst, memory mem) %{
  8613   match(Set dst (ConvI2D (LoadI mem)));
  8614   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8615   size(8);
  8616   format %{ "LDF    $mem,$dst\n\t"
  8617             "FITOD  $dst,$dst" %}
  8618   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8619   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8620   ins_pipe(floadF_mem);
  8621 %}
  8624 instruct convI2F_helper(regF dst, regF tmp) %{
  8625   effect(DEF dst, USE tmp);
  8626   format %{ "FITOS  $tmp,$dst" %}
  8627   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8628   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8629   ins_pipe(fcvtI2F);
  8630 %}
  8632 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8633   match(Set dst (ConvI2F src));
  8634   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8635   expand %{
  8636     regF tmp;
  8637     stkI_to_regF(tmp,src);
  8638     convI2F_helper(dst, tmp);
  8639   %}
  8640 %}
  8642 instruct convI2F_reg(regF dst, iRegI src) %{
  8643   predicate(UseVIS >= 3);
  8644   match(Set dst (ConvI2F src));
  8645   ins_cost(DEFAULT_COST);
  8646   expand %{
  8647     regF tmp;
  8648     MoveI2F_reg_reg(tmp, src);
  8649     convI2F_helper(dst, tmp);
  8650   %}
  8651 %}
  8653 instruct convI2F_mem( regF dst, memory mem ) %{
  8654   match(Set dst (ConvI2F (LoadI mem)));
  8655   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8656   size(8);
  8657   format %{ "LDF    $mem,$dst\n\t"
  8658             "FITOS  $dst,$dst" %}
  8659   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8660   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8661   ins_pipe(floadF_mem);
  8662 %}
  8665 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8666   match(Set dst (ConvI2L src));
  8667   size(4);
  8668   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8669   opcode(Assembler::sra_op3, Assembler::arith_op);
  8670   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8671   ins_pipe(ialu_reg_reg);
  8672 %}
  8674 // Zero-extend convert int to long
  8675 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8676   match(Set dst (AndL (ConvI2L src) mask) );
  8677   size(4);
  8678   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8679   opcode(Assembler::srl_op3, Assembler::arith_op);
  8680   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8681   ins_pipe(ialu_reg_reg);
  8682 %}
  8684 // Zero-extend long
  8685 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8686   match(Set dst (AndL src mask) );
  8687   size(4);
  8688   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8689   opcode(Assembler::srl_op3, Assembler::arith_op);
  8690   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8691   ins_pipe(ialu_reg_reg);
  8692 %}
  8695 //-----------
  8696 // Long to Double conversion using V8 opcodes.
  8697 // Still useful because cheetah traps and becomes
  8698 // amazingly slow for some common numbers.
  8700 // Magic constant, 0x43300000
  8701 instruct loadConI_x43300000(iRegI dst) %{
  8702   effect(DEF dst);
  8703   size(4);
  8704   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8705   ins_encode(SetHi22(0x43300000, dst));
  8706   ins_pipe(ialu_none);
  8707 %}
  8709 // Magic constant, 0x41f00000
  8710 instruct loadConI_x41f00000(iRegI dst) %{
  8711   effect(DEF dst);
  8712   size(4);
  8713   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8714   ins_encode(SetHi22(0x41f00000, dst));
  8715   ins_pipe(ialu_none);
  8716 %}
  8718 // Construct a double from two float halves
  8719 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8720   effect(DEF dst, USE src1, USE src2);
  8721   size(8);
  8722   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8723             "FMOVS  $src2.lo,$dst.lo" %}
  8724   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8725   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8726   ins_pipe(faddD_reg_reg);
  8727 %}
  8729 // Convert integer in high half of a double register (in the lower half of
  8730 // the double register file) to double
  8731 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8732   effect(DEF dst, USE src);
  8733   size(4);
  8734   format %{ "FITOD  $src,$dst" %}
  8735   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8736   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8737   ins_pipe(fcvtLHi2D);
  8738 %}
  8740 // Add float double precision
  8741 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8742   effect(DEF dst, USE src1, USE src2);
  8743   size(4);
  8744   format %{ "FADDD  $src1,$src2,$dst" %}
  8745   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8746   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8747   ins_pipe(faddD_reg_reg);
  8748 %}
  8750 // Sub float double precision
  8751 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8752   effect(DEF dst, USE src1, USE src2);
  8753   size(4);
  8754   format %{ "FSUBD  $src1,$src2,$dst" %}
  8755   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8756   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8757   ins_pipe(faddD_reg_reg);
  8758 %}
  8760 // Mul float double precision
  8761 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8762   effect(DEF dst, USE src1, USE src2);
  8763   size(4);
  8764   format %{ "FMULD  $src1,$src2,$dst" %}
  8765   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8766   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8767   ins_pipe(fmulD_reg_reg);
  8768 %}
  8770 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8771   match(Set dst (ConvL2D src));
  8772   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8774   expand %{
  8775     regD_low   tmpsrc;
  8776     iRegI      ix43300000;
  8777     iRegI      ix41f00000;
  8778     stackSlotL lx43300000;
  8779     stackSlotL lx41f00000;
  8780     regD_low   dx43300000;
  8781     regD       dx41f00000;
  8782     regD       tmp1;
  8783     regD_low   tmp2;
  8784     regD       tmp3;
  8785     regD       tmp4;
  8787     stkL_to_regD(tmpsrc, src);
  8789     loadConI_x43300000(ix43300000);
  8790     loadConI_x41f00000(ix41f00000);
  8791     regI_to_stkLHi(lx43300000, ix43300000);
  8792     regI_to_stkLHi(lx41f00000, ix41f00000);
  8793     stkL_to_regD(dx43300000, lx43300000);
  8794     stkL_to_regD(dx41f00000, lx41f00000);
  8796     convI2D_regDHi_regD(tmp1, tmpsrc);
  8797     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8798     subD_regD_regD(tmp3, tmp2, dx43300000);
  8799     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8800     addD_regD_regD(dst, tmp3, tmp4);
  8801   %}
  8802 %}
  8804 // Long to Double conversion using fast fxtof
  8805 instruct convL2D_helper(regD dst, regD tmp) %{
  8806   effect(DEF dst, USE tmp);
  8807   size(4);
  8808   format %{ "FXTOD  $tmp,$dst" %}
  8809   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8810   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8811   ins_pipe(fcvtL2D);
  8812 %}
  8814 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8815   predicate(VM_Version::has_fast_fxtof());
  8816   match(Set dst (ConvL2D src));
  8817   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8818   expand %{
  8819     regD tmp;
  8820     stkL_to_regD(tmp, src);
  8821     convL2D_helper(dst, tmp);
  8822   %}
  8823 %}
  8825 instruct convL2D_reg(regD dst, iRegL src) %{
  8826   predicate(UseVIS >= 3);
  8827   match(Set dst (ConvL2D src));
  8828   expand %{
  8829     regD tmp;
  8830     MoveL2D_reg_reg(tmp, src);
  8831     convL2D_helper(dst, tmp);
  8832   %}
  8833 %}
  8835 // Long to Float conversion using fast fxtof
  8836 instruct convL2F_helper(regF dst, regD tmp) %{
  8837   effect(DEF dst, USE tmp);
  8838   size(4);
  8839   format %{ "FXTOS  $tmp,$dst" %}
  8840   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8841   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8842   ins_pipe(fcvtL2F);
  8843 %}
  8845 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8846   match(Set dst (ConvL2F src));
  8847   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8848   expand %{
  8849     regD tmp;
  8850     stkL_to_regD(tmp, src);
  8851     convL2F_helper(dst, tmp);
  8852   %}
  8853 %}
  8855 instruct convL2F_reg(regF dst, iRegL src) %{
  8856   predicate(UseVIS >= 3);
  8857   match(Set dst (ConvL2F src));
  8858   ins_cost(DEFAULT_COST);
  8859   expand %{
  8860     regD tmp;
  8861     MoveL2D_reg_reg(tmp, src);
  8862     convL2F_helper(dst, tmp);
  8863   %}
  8864 %}
  8866 //-----------
  8868 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8869   match(Set dst (ConvL2I src));
  8870 #ifndef _LP64
  8871   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8872   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8873   ins_pipe(ialu_move_reg_I_to_L);
  8874 #else
  8875   size(4);
  8876   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8877   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8878   ins_pipe(ialu_reg);
  8879 #endif
  8880 %}
  8882 // Register Shift Right Immediate
  8883 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8884   match(Set dst (ConvL2I (RShiftL src cnt)));
  8886   size(4);
  8887   format %{ "SRAX   $src,$cnt,$dst" %}
  8888   opcode(Assembler::srax_op3, Assembler::arith_op);
  8889   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8890   ins_pipe(ialu_reg_imm);
  8891 %}
  8893 // Replicate scalar to packed byte values in Double register
  8894 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8895   effect(DEF dst, USE src);
  8896   format %{ "SLLX  $src,56,$dst\n\t"
  8897             "SRLX  $dst, 8,O7\n\t"
  8898             "OR    $dst,O7,$dst\n\t"
  8899             "SRLX  $dst,16,O7\n\t"
  8900             "OR    $dst,O7,$dst\n\t"
  8901             "SRLX  $dst,32,O7\n\t"
  8902             "OR    $dst,O7,$dst\t! replicate8B" %}
  8903   ins_encode( enc_repl8b(src, dst));
  8904   ins_pipe(ialu_reg);
  8905 %}
  8907 // Replicate scalar to packed byte values in Double register
  8908 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8909   match(Set dst (Replicate8B src));
  8910   expand %{
  8911     iRegL tmp;
  8912     Repl8B_reg_helper(tmp, src);
  8913     regL_to_stkD(dst, tmp);
  8914   %}
  8915 %}
  8917 // Replicate scalar constant to packed byte values in Double register
  8918 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8919   match(Set dst (Replicate8B con));
  8920   effect(KILL tmp);
  8921   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8922   ins_encode %{
  8923     // XXX This is a quick fix for 6833573.
  8924     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8925     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8926     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8927   %}
  8928   ins_pipe(loadConFD);
  8929 %}
  8931 // Replicate scalar to packed char values into stack slot
  8932 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8933   effect(DEF dst, USE src);
  8934   format %{ "SLLX  $src,48,$dst\n\t"
  8935             "SRLX  $dst,16,O7\n\t"
  8936             "OR    $dst,O7,$dst\n\t"
  8937             "SRLX  $dst,32,O7\n\t"
  8938             "OR    $dst,O7,$dst\t! replicate4C" %}
  8939   ins_encode( enc_repl4s(src, dst) );
  8940   ins_pipe(ialu_reg);
  8941 %}
  8943 // Replicate scalar to packed char values into stack slot
  8944 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8945   match(Set dst (Replicate4C src));
  8946   expand %{
  8947     iRegL tmp;
  8948     Repl4C_reg_helper(tmp, src);
  8949     regL_to_stkD(dst, tmp);
  8950   %}
  8951 %}
  8953 // Replicate scalar constant to packed char values in Double register
  8954 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8955   match(Set dst (Replicate4C con));
  8956   effect(KILL tmp);
  8957   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8958   ins_encode %{
  8959     // XXX This is a quick fix for 6833573.
  8960     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8961     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8962     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8963   %}
  8964   ins_pipe(loadConFD);
  8965 %}
  8967 // Replicate scalar to packed short values into stack slot
  8968 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8969   effect(DEF dst, USE src);
  8970   format %{ "SLLX  $src,48,$dst\n\t"
  8971             "SRLX  $dst,16,O7\n\t"
  8972             "OR    $dst,O7,$dst\n\t"
  8973             "SRLX  $dst,32,O7\n\t"
  8974             "OR    $dst,O7,$dst\t! replicate4S" %}
  8975   ins_encode( enc_repl4s(src, dst) );
  8976   ins_pipe(ialu_reg);
  8977 %}
  8979 // Replicate scalar to packed short values into stack slot
  8980 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8981   match(Set dst (Replicate4S src));
  8982   expand %{
  8983     iRegL tmp;
  8984     Repl4S_reg_helper(tmp, src);
  8985     regL_to_stkD(dst, tmp);
  8986   %}
  8987 %}
  8989 // Replicate scalar constant to packed short values in Double register
  8990 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8991   match(Set dst (Replicate4S con));
  8992   effect(KILL tmp);
  8993   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8994   ins_encode %{
  8995     // XXX This is a quick fix for 6833573.
  8996     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8997     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8998     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8999   %}
  9000   ins_pipe(loadConFD);
  9001 %}
  9003 // Replicate scalar to packed int values in Double register
  9004 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  9005   effect(DEF dst, USE src);
  9006   format %{ "SLLX  $src,32,$dst\n\t"
  9007             "SRLX  $dst,32,O7\n\t"
  9008             "OR    $dst,O7,$dst\t! replicate2I" %}
  9009   ins_encode( enc_repl2i(src, dst));
  9010   ins_pipe(ialu_reg);
  9011 %}
  9013 // Replicate scalar to packed int values in Double register
  9014 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  9015   match(Set dst (Replicate2I src));
  9016   expand %{
  9017     iRegL tmp;
  9018     Repl2I_reg_helper(tmp, src);
  9019     regL_to_stkD(dst, tmp);
  9020   %}
  9021 %}
  9023 // Replicate scalar zero constant to packed int values in Double register
  9024 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  9025   match(Set dst (Replicate2I con));
  9026   effect(KILL tmp);
  9027   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  9028   ins_encode %{
  9029     // XXX This is a quick fix for 6833573.
  9030     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  9031     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  9032     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  9033   %}
  9034   ins_pipe(loadConFD);
  9035 %}
  9037 //----------Control Flow Instructions------------------------------------------
  9038 // Compare Instructions
  9039 // Compare Integers
  9040 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  9041   match(Set icc (CmpI op1 op2));
  9042   effect( DEF icc, USE op1, USE op2 );
  9044   size(4);
  9045   format %{ "CMP    $op1,$op2" %}
  9046   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9047   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9048   ins_pipe(ialu_cconly_reg_reg);
  9049 %}
  9051 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  9052   match(Set icc (CmpU op1 op2));
  9054   size(4);
  9055   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9056   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9057   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9058   ins_pipe(ialu_cconly_reg_reg);
  9059 %}
  9061 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  9062   match(Set icc (CmpI op1 op2));
  9063   effect( DEF icc, USE op1 );
  9065   size(4);
  9066   format %{ "CMP    $op1,$op2" %}
  9067   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9068   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9069   ins_pipe(ialu_cconly_reg_imm);
  9070 %}
  9072 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  9073   match(Set icc (CmpI (AndI op1 op2) zero));
  9075   size(4);
  9076   format %{ "BTST   $op2,$op1" %}
  9077   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9078   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9079   ins_pipe(ialu_cconly_reg_reg_zero);
  9080 %}
  9082 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  9083   match(Set icc (CmpI (AndI op1 op2) zero));
  9085   size(4);
  9086   format %{ "BTST   $op2,$op1" %}
  9087   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9088   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9089   ins_pipe(ialu_cconly_reg_imm_zero);
  9090 %}
  9092 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  9093   match(Set xcc (CmpL op1 op2));
  9094   effect( DEF xcc, USE op1, USE op2 );
  9096   size(4);
  9097   format %{ "CMP    $op1,$op2\t\t! long" %}
  9098   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9099   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9100   ins_pipe(ialu_cconly_reg_reg);
  9101 %}
  9103 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9104   match(Set xcc (CmpL op1 con));
  9105   effect( DEF xcc, USE op1, USE con );
  9107   size(4);
  9108   format %{ "CMP    $op1,$con\t\t! long" %}
  9109   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9110   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9111   ins_pipe(ialu_cconly_reg_reg);
  9112 %}
  9114 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9115   match(Set xcc (CmpL (AndL op1 op2) zero));
  9116   effect( DEF xcc, USE op1, USE op2 );
  9118   size(4);
  9119   format %{ "BTST   $op1,$op2\t\t! long" %}
  9120   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9121   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9122   ins_pipe(ialu_cconly_reg_reg);
  9123 %}
  9125 // useful for checking the alignment of a pointer:
  9126 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9127   match(Set xcc (CmpL (AndL op1 con) zero));
  9128   effect( DEF xcc, USE op1, USE con );
  9130   size(4);
  9131   format %{ "BTST   $op1,$con\t\t! long" %}
  9132   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9133   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9134   ins_pipe(ialu_cconly_reg_reg);
  9135 %}
  9137 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9138   match(Set icc (CmpU op1 op2));
  9140   size(4);
  9141   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9142   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9143   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9144   ins_pipe(ialu_cconly_reg_imm);
  9145 %}
  9147 // Compare Pointers
  9148 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9149   match(Set pcc (CmpP op1 op2));
  9151   size(4);
  9152   format %{ "CMP    $op1,$op2\t! ptr" %}
  9153   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9154   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9155   ins_pipe(ialu_cconly_reg_reg);
  9156 %}
  9158 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9159   match(Set pcc (CmpP op1 op2));
  9161   size(4);
  9162   format %{ "CMP    $op1,$op2\t! ptr" %}
  9163   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9164   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9165   ins_pipe(ialu_cconly_reg_imm);
  9166 %}
  9168 // Compare Narrow oops
  9169 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9170   match(Set icc (CmpN op1 op2));
  9172   size(4);
  9173   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9174   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9175   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9176   ins_pipe(ialu_cconly_reg_reg);
  9177 %}
  9179 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9180   match(Set icc (CmpN op1 op2));
  9182   size(4);
  9183   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9184   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9185   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9186   ins_pipe(ialu_cconly_reg_imm);
  9187 %}
  9189 //----------Max and Min--------------------------------------------------------
  9190 // Min Instructions
  9191 // Conditional move for min
  9192 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9193   effect( USE_DEF op2, USE op1, USE icc );
  9195   size(4);
  9196   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9197   opcode(Assembler::less);
  9198   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9199   ins_pipe(ialu_reg_flags);
  9200 %}
  9202 // Min Register with Register.
  9203 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9204   match(Set op2 (MinI op1 op2));
  9205   ins_cost(DEFAULT_COST*2);
  9206   expand %{
  9207     flagsReg icc;
  9208     compI_iReg(icc,op1,op2);
  9209     cmovI_reg_lt(op2,op1,icc);
  9210   %}
  9211 %}
  9213 // Max Instructions
  9214 // Conditional move for max
  9215 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9216   effect( USE_DEF op2, USE op1, USE icc );
  9217   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9218   opcode(Assembler::greater);
  9219   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9220   ins_pipe(ialu_reg_flags);
  9221 %}
  9223 // Max Register with Register
  9224 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9225   match(Set op2 (MaxI op1 op2));
  9226   ins_cost(DEFAULT_COST*2);
  9227   expand %{
  9228     flagsReg icc;
  9229     compI_iReg(icc,op1,op2);
  9230     cmovI_reg_gt(op2,op1,icc);
  9231   %}
  9232 %}
  9235 //----------Float Compares----------------------------------------------------
  9236 // Compare floating, generate condition code
  9237 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9238   match(Set fcc (CmpF src1 src2));
  9240   size(4);
  9241   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9242   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9243   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9244   ins_pipe(faddF_fcc_reg_reg_zero);
  9245 %}
  9247 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9248   match(Set fcc (CmpD src1 src2));
  9250   size(4);
  9251   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9252   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9253   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9254   ins_pipe(faddD_fcc_reg_reg_zero);
  9255 %}
  9258 // Compare floating, generate -1,0,1
  9259 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9260   match(Set dst (CmpF3 src1 src2));
  9261   effect(KILL fcc0);
  9262   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9263   format %{ "fcmpl  $dst,$src1,$src2" %}
  9264   // Primary = float
  9265   opcode( true );
  9266   ins_encode( floating_cmp( dst, src1, src2 ) );
  9267   ins_pipe( floating_cmp );
  9268 %}
  9270 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9271   match(Set dst (CmpD3 src1 src2));
  9272   effect(KILL fcc0);
  9273   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9274   format %{ "dcmpl  $dst,$src1,$src2" %}
  9275   // Primary = double (not float)
  9276   opcode( false );
  9277   ins_encode( floating_cmp( dst, src1, src2 ) );
  9278   ins_pipe( floating_cmp );
  9279 %}
  9281 //----------Branches---------------------------------------------------------
  9282 // Jump
  9283 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9284 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9285   match(Jump switch_val);
  9286   effect(TEMP table);
  9288   ins_cost(350);
  9290   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9291              "LD     [O7 + $switch_val], O7\n\t"
  9292              "JUMP   O7" %}
  9293   ins_encode %{
  9294     // Calculate table address into a register.
  9295     Register table_reg;
  9296     Register label_reg = O7;
  9297     // If we are calculating the size of this instruction don't trust
  9298     // zero offsets because they might change when
  9299     // MachConstantBaseNode decides to optimize the constant table
  9300     // base.
  9301     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9302       table_reg = $constanttablebase;
  9303     } else {
  9304       table_reg = O7;
  9305       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9306       __ add($constanttablebase, con_offset, table_reg);
  9309     // Jump to base address + switch value
  9310     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9311     __ jmp(label_reg, G0);
  9312     __ delayed()->nop();
  9313   %}
  9314   ins_pipe(ialu_reg_reg);
  9315 %}
  9317 // Direct Branch.  Use V8 version with longer range.
  9318 instruct branch(label labl) %{
  9319   match(Goto);
  9320   effect(USE labl);
  9322   size(8);
  9323   ins_cost(BRANCH_COST);
  9324   format %{ "BA     $labl" %}
  9325   ins_encode %{
  9326     Label* L = $labl$$label;
  9327     __ ba(*L);
  9328     __ delayed()->nop();
  9329   %}
  9330   ins_pipe(br);
  9331 %}
  9333 // Direct Branch, short with no delay slot
  9334 instruct branch_short(label labl) %{
  9335   match(Goto);
  9336   predicate(UseCBCond);
  9337   effect(USE labl);
  9339   size(4);
  9340   ins_cost(BRANCH_COST);
  9341   format %{ "BA     $labl\t! short branch" %}
  9342   ins_encode %{ 
  9343     Label* L = $labl$$label;
  9344     assert(__ use_cbcond(*L), "back to back cbcond");
  9345     __ ba_short(*L);
  9346   %}
  9347   ins_short_branch(1);
  9348   ins_avoid_back_to_back(1);
  9349   ins_pipe(cbcond_reg_imm);
  9350 %}
  9352 // Conditional Direct Branch
  9353 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9354   match(If cmp icc);
  9355   effect(USE labl);
  9357   size(8);
  9358   ins_cost(BRANCH_COST);
  9359   format %{ "BP$cmp   $icc,$labl" %}
  9360   // Prim = bits 24-22, Secnd = bits 31-30
  9361   ins_encode( enc_bp( labl, cmp, icc ) );
  9362   ins_pipe(br_cc);
  9363 %}
  9365 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9366   match(If cmp icc);
  9367   effect(USE labl);
  9369   ins_cost(BRANCH_COST);
  9370   format %{ "BP$cmp  $icc,$labl" %}
  9371   // Prim = bits 24-22, Secnd = bits 31-30
  9372   ins_encode( enc_bp( labl, cmp, icc ) );
  9373   ins_pipe(br_cc);
  9374 %}
  9376 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9377   match(If cmp pcc);
  9378   effect(USE labl);
  9380   size(8);
  9381   ins_cost(BRANCH_COST);
  9382   format %{ "BP$cmp  $pcc,$labl" %}
  9383   ins_encode %{
  9384     Label* L = $labl$$label;
  9385     Assembler::Predict predict_taken =
  9386       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9388     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9389     __ delayed()->nop();
  9390   %}
  9391   ins_pipe(br_cc);
  9392 %}
  9394 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9395   match(If cmp fcc);
  9396   effect(USE labl);
  9398   size(8);
  9399   ins_cost(BRANCH_COST);
  9400   format %{ "FBP$cmp $fcc,$labl" %}
  9401   ins_encode %{
  9402     Label* L = $labl$$label;
  9403     Assembler::Predict predict_taken =
  9404       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9406     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9407     __ delayed()->nop();
  9408   %}
  9409   ins_pipe(br_fcc);
  9410 %}
  9412 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9413   match(CountedLoopEnd cmp icc);
  9414   effect(USE labl);
  9416   size(8);
  9417   ins_cost(BRANCH_COST);
  9418   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9419   // Prim = bits 24-22, Secnd = bits 31-30
  9420   ins_encode( enc_bp( labl, cmp, icc ) );
  9421   ins_pipe(br_cc);
  9422 %}
  9424 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9425   match(CountedLoopEnd cmp icc);
  9426   effect(USE labl);
  9428   size(8);
  9429   ins_cost(BRANCH_COST);
  9430   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9431   // Prim = bits 24-22, Secnd = bits 31-30
  9432   ins_encode( enc_bp( labl, cmp, icc ) );
  9433   ins_pipe(br_cc);
  9434 %}
  9436 // Compare and branch instructions
  9437 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9438   match(If cmp (CmpI op1 op2));
  9439   effect(USE labl, KILL icc);
  9441   size(12);
  9442   ins_cost(BRANCH_COST);
  9443   format %{ "CMP    $op1,$op2\t! int\n\t"
  9444             "BP$cmp   $labl" %}
  9445   ins_encode %{
  9446     Label* L = $labl$$label;
  9447     Assembler::Predict predict_taken =
  9448       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9449     __ cmp($op1$$Register, $op2$$Register);
  9450     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9451     __ delayed()->nop();
  9452   %}
  9453   ins_pipe(cmp_br_reg_reg);
  9454 %}
  9456 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9457   match(If cmp (CmpI op1 op2));
  9458   effect(USE labl, KILL icc);
  9460   size(12);
  9461   ins_cost(BRANCH_COST);
  9462   format %{ "CMP    $op1,$op2\t! int\n\t"
  9463             "BP$cmp   $labl" %}
  9464   ins_encode %{
  9465     Label* L = $labl$$label;
  9466     Assembler::Predict predict_taken =
  9467       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9468     __ cmp($op1$$Register, $op2$$constant);
  9469     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9470     __ delayed()->nop();
  9471   %}
  9472   ins_pipe(cmp_br_reg_imm);
  9473 %}
  9475 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9476   match(If cmp (CmpU op1 op2));
  9477   effect(USE labl, KILL icc);
  9479   size(12);
  9480   ins_cost(BRANCH_COST);
  9481   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9482             "BP$cmp  $labl" %}
  9483   ins_encode %{
  9484     Label* L = $labl$$label;
  9485     Assembler::Predict predict_taken =
  9486       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9487     __ cmp($op1$$Register, $op2$$Register);
  9488     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9489     __ delayed()->nop();
  9490   %}
  9491   ins_pipe(cmp_br_reg_reg);
  9492 %}
  9494 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9495   match(If cmp (CmpU op1 op2));
  9496   effect(USE labl, KILL icc);
  9498   size(12);
  9499   ins_cost(BRANCH_COST);
  9500   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9501             "BP$cmp  $labl" %}
  9502   ins_encode %{
  9503     Label* L = $labl$$label;
  9504     Assembler::Predict predict_taken =
  9505       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9506     __ cmp($op1$$Register, $op2$$constant);
  9507     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9508     __ delayed()->nop();
  9509   %}
  9510   ins_pipe(cmp_br_reg_imm);
  9511 %}
  9513 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9514   match(If cmp (CmpL op1 op2));
  9515   effect(USE labl, KILL xcc);
  9517   size(12);
  9518   ins_cost(BRANCH_COST);
  9519   format %{ "CMP    $op1,$op2\t! long\n\t"
  9520             "BP$cmp   $labl" %}
  9521   ins_encode %{
  9522     Label* L = $labl$$label;
  9523     Assembler::Predict predict_taken =
  9524       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9525     __ cmp($op1$$Register, $op2$$Register);
  9526     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9527     __ delayed()->nop();
  9528   %}
  9529   ins_pipe(cmp_br_reg_reg);
  9530 %}
  9532 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9533   match(If cmp (CmpL op1 op2));
  9534   effect(USE labl, KILL xcc);
  9536   size(12);
  9537   ins_cost(BRANCH_COST);
  9538   format %{ "CMP    $op1,$op2\t! long\n\t"
  9539             "BP$cmp   $labl" %}
  9540   ins_encode %{
  9541     Label* L = $labl$$label;
  9542     Assembler::Predict predict_taken =
  9543       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9544     __ cmp($op1$$Register, $op2$$constant);
  9545     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9546     __ delayed()->nop();
  9547   %}
  9548   ins_pipe(cmp_br_reg_imm);
  9549 %}
  9551 // Compare Pointers and branch
  9552 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9553   match(If cmp (CmpP op1 op2));
  9554   effect(USE labl, KILL pcc);
  9556   size(12);
  9557   ins_cost(BRANCH_COST);
  9558   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9559             "B$cmp   $labl" %}
  9560   ins_encode %{
  9561     Label* L = $labl$$label;
  9562     Assembler::Predict predict_taken =
  9563       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9564     __ cmp($op1$$Register, $op2$$Register);
  9565     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9566     __ delayed()->nop();
  9567   %}
  9568   ins_pipe(cmp_br_reg_reg);
  9569 %}
  9571 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9572   match(If cmp (CmpP op1 null));
  9573   effect(USE labl, KILL pcc);
  9575   size(12);
  9576   ins_cost(BRANCH_COST);
  9577   format %{ "CMP    $op1,0\t! ptr\n\t"
  9578             "B$cmp   $labl" %}
  9579   ins_encode %{
  9580     Label* L = $labl$$label;
  9581     Assembler::Predict predict_taken =
  9582       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9583     __ cmp($op1$$Register, G0);
  9584     // bpr() is not used here since it has shorter distance.
  9585     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9586     __ delayed()->nop();
  9587   %}
  9588   ins_pipe(cmp_br_reg_reg);
  9589 %}
  9591 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9592   match(If cmp (CmpN op1 op2));
  9593   effect(USE labl, KILL icc);
  9595   size(12);
  9596   ins_cost(BRANCH_COST);
  9597   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9598             "BP$cmp   $labl" %}
  9599   ins_encode %{
  9600     Label* L = $labl$$label;
  9601     Assembler::Predict predict_taken =
  9602       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9603     __ cmp($op1$$Register, $op2$$Register);
  9604     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9605     __ delayed()->nop();
  9606   %}
  9607   ins_pipe(cmp_br_reg_reg);
  9608 %}
  9610 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9611   match(If cmp (CmpN op1 null));
  9612   effect(USE labl, KILL icc);
  9614   size(12);
  9615   ins_cost(BRANCH_COST);
  9616   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9617             "BP$cmp   $labl" %}
  9618   ins_encode %{
  9619     Label* L = $labl$$label;
  9620     Assembler::Predict predict_taken =
  9621       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9622     __ cmp($op1$$Register, G0);
  9623     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9624     __ delayed()->nop();
  9625   %}
  9626   ins_pipe(cmp_br_reg_reg);
  9627 %}
  9629 // Loop back branch
  9630 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9631   match(CountedLoopEnd cmp (CmpI op1 op2));
  9632   effect(USE labl, KILL icc);
  9634   size(12);
  9635   ins_cost(BRANCH_COST);
  9636   format %{ "CMP    $op1,$op2\t! int\n\t"
  9637             "BP$cmp   $labl\t! Loop end" %}
  9638   ins_encode %{
  9639     Label* L = $labl$$label;
  9640     Assembler::Predict predict_taken =
  9641       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9642     __ cmp($op1$$Register, $op2$$Register);
  9643     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9644     __ delayed()->nop();
  9645   %}
  9646   ins_pipe(cmp_br_reg_reg);
  9647 %}
  9649 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9650   match(CountedLoopEnd cmp (CmpI op1 op2));
  9651   effect(USE labl, KILL icc);
  9653   size(12);
  9654   ins_cost(BRANCH_COST);
  9655   format %{ "CMP    $op1,$op2\t! int\n\t"
  9656             "BP$cmp   $labl\t! Loop end" %}
  9657   ins_encode %{
  9658     Label* L = $labl$$label;
  9659     Assembler::Predict predict_taken =
  9660       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9661     __ cmp($op1$$Register, $op2$$constant);
  9662     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9663     __ delayed()->nop();
  9664   %}
  9665   ins_pipe(cmp_br_reg_imm);
  9666 %}
  9668 // Short compare and branch instructions
  9669 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9670   match(If cmp (CmpI op1 op2));
  9671   predicate(UseCBCond);
  9672   effect(USE labl, KILL icc);
  9674   size(4);
  9675   ins_cost(BRANCH_COST);
  9676   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9677   ins_encode %{
  9678     Label* L = $labl$$label;
  9679     assert(__ use_cbcond(*L), "back to back cbcond");
  9680     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9681   %}
  9682   ins_short_branch(1);
  9683   ins_avoid_back_to_back(1);
  9684   ins_pipe(cbcond_reg_reg);
  9685 %}
  9687 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9688   match(If cmp (CmpI op1 op2));
  9689   predicate(UseCBCond);
  9690   effect(USE labl, KILL icc);
  9692   size(4);
  9693   ins_cost(BRANCH_COST);
  9694   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9695   ins_encode %{
  9696     Label* L = $labl$$label;
  9697     assert(__ use_cbcond(*L), "back to back cbcond");
  9698     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9699   %}
  9700   ins_short_branch(1);
  9701   ins_avoid_back_to_back(1);
  9702   ins_pipe(cbcond_reg_imm);
  9703 %}
  9705 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9706   match(If cmp (CmpU op1 op2));
  9707   predicate(UseCBCond);
  9708   effect(USE labl, KILL icc);
  9710   size(4);
  9711   ins_cost(BRANCH_COST);
  9712   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9713   ins_encode %{
  9714     Label* L = $labl$$label;
  9715     assert(__ use_cbcond(*L), "back to back cbcond");
  9716     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9717   %}
  9718   ins_short_branch(1);
  9719   ins_avoid_back_to_back(1);
  9720   ins_pipe(cbcond_reg_reg);
  9721 %}
  9723 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9724   match(If cmp (CmpU op1 op2));
  9725   predicate(UseCBCond);
  9726   effect(USE labl, KILL icc);
  9728   size(4);
  9729   ins_cost(BRANCH_COST);
  9730   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9731   ins_encode %{
  9732     Label* L = $labl$$label;
  9733     assert(__ use_cbcond(*L), "back to back cbcond");
  9734     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9735   %}
  9736   ins_short_branch(1);
  9737   ins_avoid_back_to_back(1);
  9738   ins_pipe(cbcond_reg_imm);
  9739 %}
  9741 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9742   match(If cmp (CmpL op1 op2));
  9743   predicate(UseCBCond);
  9744   effect(USE labl, KILL xcc);
  9746   size(4);
  9747   ins_cost(BRANCH_COST);
  9748   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9749   ins_encode %{
  9750     Label* L = $labl$$label;
  9751     assert(__ use_cbcond(*L), "back to back cbcond");
  9752     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9753   %}
  9754   ins_short_branch(1);
  9755   ins_avoid_back_to_back(1);
  9756   ins_pipe(cbcond_reg_reg);
  9757 %}
  9759 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9760   match(If cmp (CmpL op1 op2));
  9761   predicate(UseCBCond);
  9762   effect(USE labl, KILL xcc);
  9764   size(4);
  9765   ins_cost(BRANCH_COST);
  9766   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9767   ins_encode %{
  9768     Label* L = $labl$$label;
  9769     assert(__ use_cbcond(*L), "back to back cbcond");
  9770     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9771   %}
  9772   ins_short_branch(1);
  9773   ins_avoid_back_to_back(1);
  9774   ins_pipe(cbcond_reg_imm);
  9775 %}
  9777 // Compare Pointers and branch
  9778 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9779   match(If cmp (CmpP op1 op2));
  9780   predicate(UseCBCond);
  9781   effect(USE labl, KILL pcc);
  9783   size(4);
  9784   ins_cost(BRANCH_COST);
  9785 #ifdef _LP64
  9786   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9787 #else
  9788   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9789 #endif
  9790   ins_encode %{
  9791     Label* L = $labl$$label;
  9792     assert(__ use_cbcond(*L), "back to back cbcond");
  9793     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9794   %}
  9795   ins_short_branch(1);
  9796   ins_avoid_back_to_back(1);
  9797   ins_pipe(cbcond_reg_reg);
  9798 %}
  9800 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9801   match(If cmp (CmpP op1 null));
  9802   predicate(UseCBCond);
  9803   effect(USE labl, KILL pcc);
  9805   size(4);
  9806   ins_cost(BRANCH_COST);
  9807 #ifdef _LP64
  9808   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9809 #else
  9810   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9811 #endif
  9812   ins_encode %{
  9813     Label* L = $labl$$label;
  9814     assert(__ use_cbcond(*L), "back to back cbcond");
  9815     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9816   %}
  9817   ins_short_branch(1);
  9818   ins_avoid_back_to_back(1);
  9819   ins_pipe(cbcond_reg_reg);
  9820 %}
  9822 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9823   match(If cmp (CmpN op1 op2));
  9824   predicate(UseCBCond);
  9825   effect(USE labl, KILL icc);
  9827   size(4);
  9828   ins_cost(BRANCH_COST);
  9829   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9830   ins_encode %{
  9831     Label* L = $labl$$label;
  9832     assert(__ use_cbcond(*L), "back to back cbcond");
  9833     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9834   %}
  9835   ins_short_branch(1);
  9836   ins_avoid_back_to_back(1);
  9837   ins_pipe(cbcond_reg_reg);
  9838 %}
  9840 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9841   match(If cmp (CmpN op1 null));
  9842   predicate(UseCBCond);
  9843   effect(USE labl, KILL icc);
  9845   size(4);
  9846   ins_cost(BRANCH_COST);
  9847   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9848   ins_encode %{
  9849     Label* L = $labl$$label;
  9850     assert(__ use_cbcond(*L), "back to back cbcond");
  9851     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9852   %}
  9853   ins_short_branch(1);
  9854   ins_avoid_back_to_back(1);
  9855   ins_pipe(cbcond_reg_reg);
  9856 %}
  9858 // Loop back branch
  9859 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9860   match(CountedLoopEnd cmp (CmpI op1 op2));
  9861   predicate(UseCBCond);
  9862   effect(USE labl, KILL icc);
  9864   size(4);
  9865   ins_cost(BRANCH_COST);
  9866   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9867   ins_encode %{
  9868     Label* L = $labl$$label;
  9869     assert(__ use_cbcond(*L), "back to back cbcond");
  9870     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9871   %}
  9872   ins_short_branch(1);
  9873   ins_avoid_back_to_back(1);
  9874   ins_pipe(cbcond_reg_reg);
  9875 %}
  9877 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9878   match(CountedLoopEnd cmp (CmpI op1 op2));
  9879   predicate(UseCBCond);
  9880   effect(USE labl, KILL icc);
  9882   size(4);
  9883   ins_cost(BRANCH_COST);
  9884   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9885   ins_encode %{
  9886     Label* L = $labl$$label;
  9887     assert(__ use_cbcond(*L), "back to back cbcond");
  9888     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9889   %}
  9890   ins_short_branch(1);
  9891   ins_avoid_back_to_back(1);
  9892   ins_pipe(cbcond_reg_imm);
  9893 %}
  9895 // Branch-on-register tests all 64 bits.  We assume that values
  9896 // in 64-bit registers always remains zero or sign extended
  9897 // unless our code munges the high bits.  Interrupts can chop
  9898 // the high order bits to zero or sign at any time.
  9899 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9900   match(If cmp (CmpI op1 zero));
  9901   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9902   effect(USE labl);
  9904   size(8);
  9905   ins_cost(BRANCH_COST);
  9906   format %{ "BR$cmp   $op1,$labl" %}
  9907   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9908   ins_pipe(br_reg);
  9909 %}
  9911 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9912   match(If cmp (CmpP op1 null));
  9913   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9914   effect(USE labl);
  9916   size(8);
  9917   ins_cost(BRANCH_COST);
  9918   format %{ "BR$cmp   $op1,$labl" %}
  9919   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9920   ins_pipe(br_reg);
  9921 %}
  9923 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9924   match(If cmp (CmpL op1 zero));
  9925   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9926   effect(USE labl);
  9928   size(8);
  9929   ins_cost(BRANCH_COST);
  9930   format %{ "BR$cmp   $op1,$labl" %}
  9931   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9932   ins_pipe(br_reg);
  9933 %}
  9936 // ============================================================================
  9937 // Long Compare
  9938 //
  9939 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9940 // is tricky.  The flavor of compare used depends on whether we are testing
  9941 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9942 // The GE test is the negated LT test.  The LE test can be had by commuting
  9943 // the operands (yielding a GE test) and then negating; negate again for the
  9944 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9945 // NE test is negated from that.
  9947 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9948 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9949 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9950 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9951 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9952 // foo match ends up with the wrong leaf.  One fix is to not match both
  9953 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9954 // both forms beat the trinary form of long-compare and both are very useful
  9955 // on Intel which has so few registers.
  9957 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9958   match(If cmp xcc);
  9959   effect(USE labl);
  9961   size(8);
  9962   ins_cost(BRANCH_COST);
  9963   format %{ "BP$cmp   $xcc,$labl" %}
  9964   ins_encode %{
  9965     Label* L = $labl$$label;
  9966     Assembler::Predict predict_taken =
  9967       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9969     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9970     __ delayed()->nop();
  9971   %}
  9972   ins_pipe(br_cc);
  9973 %}
  9975 // Manifest a CmpL3 result in an integer register.  Very painful.
  9976 // This is the test to avoid.
  9977 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9978   match(Set dst (CmpL3 src1 src2) );
  9979   effect( KILL ccr );
  9980   ins_cost(6*DEFAULT_COST);
  9981   size(24);
  9982   format %{ "CMP    $src1,$src2\t\t! long\n"
  9983           "\tBLT,a,pn done\n"
  9984           "\tMOV    -1,$dst\t! delay slot\n"
  9985           "\tBGT,a,pn done\n"
  9986           "\tMOV    1,$dst\t! delay slot\n"
  9987           "\tCLR    $dst\n"
  9988     "done:"     %}
  9989   ins_encode( cmpl_flag(src1,src2,dst) );
  9990   ins_pipe(cmpL_reg);
  9991 %}
  9993 // Conditional move
  9994 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9995   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9996   ins_cost(150);
  9997   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9998   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9999   ins_pipe(ialu_reg);
 10000 %}
 10002 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
 10003   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
 10004   ins_cost(140);
 10005   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
 10006   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10007   ins_pipe(ialu_imm);
 10008 %}
 10010 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
 10011   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
 10012   ins_cost(150);
 10013   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10014   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10015   ins_pipe(ialu_reg);
 10016 %}
 10018 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
 10019   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
 10020   ins_cost(140);
 10021   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10022   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10023   ins_pipe(ialu_imm);
 10024 %}
 10026 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
 10027   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
 10028   ins_cost(150);
 10029   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10030   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10031   ins_pipe(ialu_reg);
 10032 %}
 10034 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
 10035   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
 10036   ins_cost(150);
 10037   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10038   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10039   ins_pipe(ialu_reg);
 10040 %}
 10042 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
 10043   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
 10044   ins_cost(140);
 10045   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10046   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10047   ins_pipe(ialu_imm);
 10048 %}
 10050 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
 10051   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
 10052   ins_cost(150);
 10053   opcode(0x101);
 10054   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
 10055   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10056   ins_pipe(int_conditional_float_move);
 10057 %}
 10059 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
 10060   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
 10061   ins_cost(150);
 10062   opcode(0x102);
 10063   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
 10064   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10065   ins_pipe(int_conditional_float_move);
 10066 %}
 10068 // ============================================================================
 10069 // Safepoint Instruction
 10070 instruct safePoint_poll(iRegP poll) %{
 10071   match(SafePoint poll);
 10072   effect(USE poll);
 10074   size(4);
 10075 #ifdef _LP64
 10076   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
 10077 #else
 10078   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
 10079 #endif
 10080   ins_encode %{
 10081     __ relocate(relocInfo::poll_type);
 10082     __ ld_ptr($poll$$Register, 0, G0);
 10083   %}
 10084   ins_pipe(loadPollP);
 10085 %}
 10087 // ============================================================================
 10088 // Call Instructions
 10089 // Call Java Static Instruction
 10090 instruct CallStaticJavaDirect( method meth ) %{
 10091   match(CallStaticJava);
 10092   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10093   effect(USE meth);
 10095   size(8);
 10096   ins_cost(CALL_COST);
 10097   format %{ "CALL,static  ; NOP ==> " %}
 10098   ins_encode( Java_Static_Call( meth ), call_epilog );
 10099   ins_pipe(simple_call);
 10100 %}
 10102 // Call Java Static Instruction (method handle version)
 10103 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10104   match(CallStaticJava);
 10105   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10106   effect(USE meth, KILL l7_mh_SP_save);
 10108   size(16);
 10109   ins_cost(CALL_COST);
 10110   format %{ "CALL,static/MethodHandle" %}
 10111   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10112   ins_pipe(simple_call);
 10113 %}
 10115 // Call Java Dynamic Instruction
 10116 instruct CallDynamicJavaDirect( method meth ) %{
 10117   match(CallDynamicJava);
 10118   effect(USE meth);
 10120   ins_cost(CALL_COST);
 10121   format %{ "SET    (empty),R_G5\n\t"
 10122             "CALL,dynamic  ; NOP ==> " %}
 10123   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10124   ins_pipe(call);
 10125 %}
 10127 // Call Runtime Instruction
 10128 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10129   match(CallRuntime);
 10130   effect(USE meth, KILL l7);
 10131   ins_cost(CALL_COST);
 10132   format %{ "CALL,runtime" %}
 10133   ins_encode( Java_To_Runtime( meth ),
 10134               call_epilog, adjust_long_from_native_call );
 10135   ins_pipe(simple_call);
 10136 %}
 10138 // Call runtime without safepoint - same as CallRuntime
 10139 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10140   match(CallLeaf);
 10141   effect(USE meth, KILL l7);
 10142   ins_cost(CALL_COST);
 10143   format %{ "CALL,runtime leaf" %}
 10144   ins_encode( Java_To_Runtime( meth ),
 10145               call_epilog,
 10146               adjust_long_from_native_call );
 10147   ins_pipe(simple_call);
 10148 %}
 10150 // Call runtime without safepoint - same as CallLeaf
 10151 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10152   match(CallLeafNoFP);
 10153   effect(USE meth, KILL l7);
 10154   ins_cost(CALL_COST);
 10155   format %{ "CALL,runtime leaf nofp" %}
 10156   ins_encode( Java_To_Runtime( meth ),
 10157               call_epilog,
 10158               adjust_long_from_native_call );
 10159   ins_pipe(simple_call);
 10160 %}
 10162 // Tail Call; Jump from runtime stub to Java code.
 10163 // Also known as an 'interprocedural jump'.
 10164 // Target of jump will eventually return to caller.
 10165 // TailJump below removes the return address.
 10166 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10167   match(TailCall jump_target method_oop );
 10169   ins_cost(CALL_COST);
 10170   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10171   ins_encode(form_jmpl(jump_target));
 10172   ins_pipe(tail_call);
 10173 %}
 10176 // Return Instruction
 10177 instruct Ret() %{
 10178   match(Return);
 10180   // The epilogue node did the ret already.
 10181   size(0);
 10182   format %{ "! return" %}
 10183   ins_encode();
 10184   ins_pipe(empty);
 10185 %}
 10188 // Tail Jump; remove the return address; jump to target.
 10189 // TailCall above leaves the return address around.
 10190 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10191 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10192 // "restore" before this instruction (in Epilogue), we need to materialize it
 10193 // in %i0.
 10194 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10195   match( TailJump jump_target ex_oop );
 10196   ins_cost(CALL_COST);
 10197   format %{ "! discard R_O7\n\t"
 10198             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10199   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10200   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10201   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10202   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10203   ins_pipe(tail_call);
 10204 %}
 10206 // Create exception oop: created by stack-crawling runtime code.
 10207 // Created exception is now available to this handler, and is setup
 10208 // just prior to jumping to this handler.  No code emitted.
 10209 instruct CreateException( o0RegP ex_oop )
 10210 %{
 10211   match(Set ex_oop (CreateEx));
 10212   ins_cost(0);
 10214   size(0);
 10215   // use the following format syntax
 10216   format %{ "! exception oop is in R_O0; no code emitted" %}
 10217   ins_encode();
 10218   ins_pipe(empty);
 10219 %}
 10222 // Rethrow exception:
 10223 // The exception oop will come in the first argument position.
 10224 // Then JUMP (not call) to the rethrow stub code.
 10225 instruct RethrowException()
 10226 %{
 10227   match(Rethrow);
 10228   ins_cost(CALL_COST);
 10230   // use the following format syntax
 10231   format %{ "Jmp    rethrow_stub" %}
 10232   ins_encode(enc_rethrow);
 10233   ins_pipe(tail_call);
 10234 %}
 10237 // Die now
 10238 instruct ShouldNotReachHere( )
 10239 %{
 10240   match(Halt);
 10241   ins_cost(CALL_COST);
 10243   size(4);
 10244   // Use the following format syntax
 10245   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10246   ins_encode( form2_illtrap() );
 10247   ins_pipe(tail_call);
 10248 %}
 10250 // ============================================================================
 10251 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10252 // array for an instance of the superklass.  Set a hidden internal cache on a
 10253 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10254 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10255 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10256   match(Set index (PartialSubtypeCheck sub super));
 10257   effect( KILL pcc, KILL o7 );
 10258   ins_cost(DEFAULT_COST*10);
 10259   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10260   ins_encode( enc_PartialSubtypeCheck() );
 10261   ins_pipe(partial_subtype_check_pipe);
 10262 %}
 10264 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10265   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10266   effect( KILL idx, KILL o7 );
 10267   ins_cost(DEFAULT_COST*10);
 10268   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10269   ins_encode( enc_PartialSubtypeCheck() );
 10270   ins_pipe(partial_subtype_check_pipe);
 10271 %}
 10274 // ============================================================================
 10275 // inlined locking and unlocking
 10277 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10278   match(Set pcc (FastLock object box));
 10280   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10281   ins_cost(100);
 10283   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10284   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10285   ins_pipe(long_memory_op);
 10286 %}
 10289 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10290   match(Set pcc (FastUnlock object box));
 10291   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10292   ins_cost(100);
 10294   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10295   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10296   ins_pipe(long_memory_op);
 10297 %}
 10299 // The encodings are generic.
 10300 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10301   predicate(!use_block_zeroing(n->in(2)) );
 10302   match(Set dummy (ClearArray cnt base));
 10303   effect(TEMP temp, KILL ccr);
 10304   ins_cost(300);
 10305   format %{ "MOV    $cnt,$temp\n"
 10306     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10307     "        BRge   loop\t\t! Clearing loop\n"
 10308     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10310   ins_encode %{
 10311     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10312     Register nof_bytes_arg    = $cnt$$Register;
 10313     Register nof_bytes_tmp    = $temp$$Register;
 10314     Register base_pointer_arg = $base$$Register;
 10316     Label loop;
 10317     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10319     // Loop and clear, walking backwards through the array.
 10320     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10321     __ bind(loop);
 10322     __ deccc(nof_bytes_tmp, 8);
 10323     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10324     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10325     // %%%% this mini-loop must not cross a cache boundary!
 10326   %}
 10327   ins_pipe(long_memory_op);
 10328 %}
 10330 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10331   predicate(use_block_zeroing(n->in(2)));
 10332   match(Set dummy (ClearArray cnt base));
 10333   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10334   ins_cost(300);
 10335   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10337   ins_encode %{
 10339     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10340     Register to    = $base$$Register;
 10341     Register count = $cnt$$Register;
 10343     Label Ldone;
 10344     __ nop(); // Separate short branches
 10345     // Use BIS for zeroing (temp is not used).
 10346     __ bis_zeroing(to, count, G0, Ldone);
 10347     __ bind(Ldone);
 10349   %}
 10350   ins_pipe(long_memory_op);
 10351 %}
 10353 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10354   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10355   match(Set dummy (ClearArray cnt base));
 10356   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10357   ins_cost(300);
 10358   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10360   ins_encode %{
 10362     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10363     Register to    = $base$$Register;
 10364     Register count = $cnt$$Register;
 10365     Register temp  = $tmp$$Register;
 10367     Label Ldone;
 10368     __ nop(); // Separate short branches
 10369     // Use BIS for zeroing
 10370     __ bis_zeroing(to, count, temp, Ldone);
 10371     __ bind(Ldone);
 10373   %}
 10374   ins_pipe(long_memory_op);
 10375 %}
 10377 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10378                         o7RegI tmp, flagsReg ccr) %{
 10379   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10380   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10381   ins_cost(300);
 10382   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10383   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10384   ins_pipe(long_memory_op);
 10385 %}
 10387 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10388                        o7RegI tmp, flagsReg ccr) %{
 10389   match(Set result (StrEquals (Binary str1 str2) cnt));
 10390   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10391   ins_cost(300);
 10392   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10393   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10394   ins_pipe(long_memory_op);
 10395 %}
 10397 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10398                       o7RegI tmp2, flagsReg ccr) %{
 10399   match(Set result (AryEq ary1 ary2));
 10400   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10401   ins_cost(300);
 10402   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10403   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10404   ins_pipe(long_memory_op);
 10405 %}
 10408 //---------- Zeros Count Instructions ------------------------------------------
 10410 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10411   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10412   match(Set dst (CountLeadingZerosI src));
 10413   effect(TEMP dst, TEMP tmp, KILL cr);
 10415   // x |= (x >> 1);
 10416   // x |= (x >> 2);
 10417   // x |= (x >> 4);
 10418   // x |= (x >> 8);
 10419   // x |= (x >> 16);
 10420   // return (WORDBITS - popc(x));
 10421   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10422             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10423             "OR      $dst,$tmp,$dst\n\t"
 10424             "SRL     $dst,2,$tmp\n\t"
 10425             "OR      $dst,$tmp,$dst\n\t"
 10426             "SRL     $dst,4,$tmp\n\t"
 10427             "OR      $dst,$tmp,$dst\n\t"
 10428             "SRL     $dst,8,$tmp\n\t"
 10429             "OR      $dst,$tmp,$dst\n\t"
 10430             "SRL     $dst,16,$tmp\n\t"
 10431             "OR      $dst,$tmp,$dst\n\t"
 10432             "POPC    $dst,$dst\n\t"
 10433             "MOV     32,$tmp\n\t"
 10434             "SUB     $tmp,$dst,$dst" %}
 10435   ins_encode %{
 10436     Register Rdst = $dst$$Register;
 10437     Register Rsrc = $src$$Register;
 10438     Register Rtmp = $tmp$$Register;
 10439     __ srl(Rsrc, 1,    Rtmp);
 10440     __ srl(Rsrc, 0,    Rdst);
 10441     __ or3(Rdst, Rtmp, Rdst);
 10442     __ srl(Rdst, 2,    Rtmp);
 10443     __ or3(Rdst, Rtmp, Rdst);
 10444     __ srl(Rdst, 4,    Rtmp);
 10445     __ or3(Rdst, Rtmp, Rdst);
 10446     __ srl(Rdst, 8,    Rtmp);
 10447     __ or3(Rdst, Rtmp, Rdst);
 10448     __ srl(Rdst, 16,   Rtmp);
 10449     __ or3(Rdst, Rtmp, Rdst);
 10450     __ popc(Rdst, Rdst);
 10451     __ mov(BitsPerInt, Rtmp);
 10452     __ sub(Rtmp, Rdst, Rdst);
 10453   %}
 10454   ins_pipe(ialu_reg);
 10455 %}
 10457 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10458   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10459   match(Set dst (CountLeadingZerosL src));
 10460   effect(TEMP dst, TEMP tmp, KILL cr);
 10462   // x |= (x >> 1);
 10463   // x |= (x >> 2);
 10464   // x |= (x >> 4);
 10465   // x |= (x >> 8);
 10466   // x |= (x >> 16);
 10467   // x |= (x >> 32);
 10468   // return (WORDBITS - popc(x));
 10469   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10470             "OR      $src,$tmp,$dst\n\t"
 10471             "SRLX    $dst,2,$tmp\n\t"
 10472             "OR      $dst,$tmp,$dst\n\t"
 10473             "SRLX    $dst,4,$tmp\n\t"
 10474             "OR      $dst,$tmp,$dst\n\t"
 10475             "SRLX    $dst,8,$tmp\n\t"
 10476             "OR      $dst,$tmp,$dst\n\t"
 10477             "SRLX    $dst,16,$tmp\n\t"
 10478             "OR      $dst,$tmp,$dst\n\t"
 10479             "SRLX    $dst,32,$tmp\n\t"
 10480             "OR      $dst,$tmp,$dst\n\t"
 10481             "POPC    $dst,$dst\n\t"
 10482             "MOV     64,$tmp\n\t"
 10483             "SUB     $tmp,$dst,$dst" %}
 10484   ins_encode %{
 10485     Register Rdst = $dst$$Register;
 10486     Register Rsrc = $src$$Register;
 10487     Register Rtmp = $tmp$$Register;
 10488     __ srlx(Rsrc, 1,    Rtmp);
 10489     __ or3( Rsrc, Rtmp, Rdst);
 10490     __ srlx(Rdst, 2,    Rtmp);
 10491     __ or3( Rdst, Rtmp, Rdst);
 10492     __ srlx(Rdst, 4,    Rtmp);
 10493     __ or3( Rdst, Rtmp, Rdst);
 10494     __ srlx(Rdst, 8,    Rtmp);
 10495     __ or3( Rdst, Rtmp, Rdst);
 10496     __ srlx(Rdst, 16,   Rtmp);
 10497     __ or3( Rdst, Rtmp, Rdst);
 10498     __ srlx(Rdst, 32,   Rtmp);
 10499     __ or3( Rdst, Rtmp, Rdst);
 10500     __ popc(Rdst, Rdst);
 10501     __ mov(BitsPerLong, Rtmp);
 10502     __ sub(Rtmp, Rdst, Rdst);
 10503   %}
 10504   ins_pipe(ialu_reg);
 10505 %}
 10507 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10508   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10509   match(Set dst (CountTrailingZerosI src));
 10510   effect(TEMP dst, KILL cr);
 10512   // return popc(~x & (x - 1));
 10513   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10514             "ANDN    $dst,$src,$dst\n\t"
 10515             "SRL     $dst,R_G0,$dst\n\t"
 10516             "POPC    $dst,$dst" %}
 10517   ins_encode %{
 10518     Register Rdst = $dst$$Register;
 10519     Register Rsrc = $src$$Register;
 10520     __ sub(Rsrc, 1, Rdst);
 10521     __ andn(Rdst, Rsrc, Rdst);
 10522     __ srl(Rdst, G0, Rdst);
 10523     __ popc(Rdst, Rdst);
 10524   %}
 10525   ins_pipe(ialu_reg);
 10526 %}
 10528 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10529   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10530   match(Set dst (CountTrailingZerosL src));
 10531   effect(TEMP dst, KILL cr);
 10533   // return popc(~x & (x - 1));
 10534   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10535             "ANDN    $dst,$src,$dst\n\t"
 10536             "POPC    $dst,$dst" %}
 10537   ins_encode %{
 10538     Register Rdst = $dst$$Register;
 10539     Register Rsrc = $src$$Register;
 10540     __ sub(Rsrc, 1, Rdst);
 10541     __ andn(Rdst, Rsrc, Rdst);
 10542     __ popc(Rdst, Rdst);
 10543   %}
 10544   ins_pipe(ialu_reg);
 10545 %}
 10548 //---------- Population Count Instructions -------------------------------------
 10550 instruct popCountI(iRegI dst, iRegI src) %{
 10551   predicate(UsePopCountInstruction);
 10552   match(Set dst (PopCountI src));
 10554   format %{ "POPC   $src, $dst" %}
 10555   ins_encode %{
 10556     __ popc($src$$Register, $dst$$Register);
 10557   %}
 10558   ins_pipe(ialu_reg);
 10559 %}
 10561 // Note: Long.bitCount(long) returns an int.
 10562 instruct popCountL(iRegI dst, iRegL src) %{
 10563   predicate(UsePopCountInstruction);
 10564   match(Set dst (PopCountL src));
 10566   format %{ "POPC   $src, $dst" %}
 10567   ins_encode %{
 10568     __ popc($src$$Register, $dst$$Register);
 10569   %}
 10570   ins_pipe(ialu_reg);
 10571 %}
 10574 // ============================================================================
 10575 //------------Bytes reverse--------------------------------------------------
 10577 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10578   match(Set dst (ReverseBytesI src));
 10580   // Op cost is artificially doubled to make sure that load or store
 10581   // instructions are preferred over this one which requires a spill
 10582   // onto a stack slot.
 10583   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10584   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10586   ins_encode %{
 10587     __ set($src$$disp + STACK_BIAS, O7);
 10588     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10589   %}
 10590   ins_pipe( iload_mem );
 10591 %}
 10593 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10594   match(Set dst (ReverseBytesL src));
 10596   // Op cost is artificially doubled to make sure that load or store
 10597   // instructions are preferred over this one which requires a spill
 10598   // onto a stack slot.
 10599   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10600   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10602   ins_encode %{
 10603     __ set($src$$disp + STACK_BIAS, O7);
 10604     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10605   %}
 10606   ins_pipe( iload_mem );
 10607 %}
 10609 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10610   match(Set dst (ReverseBytesUS src));
 10612   // Op cost is artificially doubled to make sure that load or store
 10613   // instructions are preferred over this one which requires a spill
 10614   // onto a stack slot.
 10615   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10616   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10618   ins_encode %{
 10619     // the value was spilled as an int so bias the load
 10620     __ set($src$$disp + STACK_BIAS + 2, O7);
 10621     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10622   %}
 10623   ins_pipe( iload_mem );
 10624 %}
 10626 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10627   match(Set dst (ReverseBytesS src));
 10629   // Op cost is artificially doubled to make sure that load or store
 10630   // instructions are preferred over this one which requires a spill
 10631   // onto a stack slot.
 10632   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10633   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10635   ins_encode %{
 10636     // the value was spilled as an int so bias the load
 10637     __ set($src$$disp + STACK_BIAS + 2, O7);
 10638     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10639   %}
 10640   ins_pipe( iload_mem );
 10641 %}
 10643 // Load Integer reversed byte order
 10644 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10645   match(Set dst (ReverseBytesI (LoadI src)));
 10647   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10648   size(4);
 10649   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10651   ins_encode %{
 10652     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10653   %}
 10654   ins_pipe(iload_mem);
 10655 %}
 10657 // Load Long - aligned and reversed
 10658 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10659   match(Set dst (ReverseBytesL (LoadL src)));
 10661   ins_cost(MEMORY_REF_COST);
 10662   size(4);
 10663   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10665   ins_encode %{
 10666     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10667   %}
 10668   ins_pipe(iload_mem);
 10669 %}
 10671 // Load unsigned short / char reversed byte order
 10672 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10673   match(Set dst (ReverseBytesUS (LoadUS src)));
 10675   ins_cost(MEMORY_REF_COST);
 10676   size(4);
 10677   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10679   ins_encode %{
 10680     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10681   %}
 10682   ins_pipe(iload_mem);
 10683 %}
 10685 // Load short reversed byte order
 10686 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10687   match(Set dst (ReverseBytesS (LoadS src)));
 10689   ins_cost(MEMORY_REF_COST);
 10690   size(4);
 10691   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10693   ins_encode %{
 10694     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10695   %}
 10696   ins_pipe(iload_mem);
 10697 %}
 10699 // Store Integer reversed byte order
 10700 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10701   match(Set dst (StoreI dst (ReverseBytesI src)));
 10703   ins_cost(MEMORY_REF_COST);
 10704   size(4);
 10705   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10707   ins_encode %{
 10708     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10709   %}
 10710   ins_pipe(istore_mem_reg);
 10711 %}
 10713 // Store Long reversed byte order
 10714 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10715   match(Set dst (StoreL dst (ReverseBytesL src)));
 10717   ins_cost(MEMORY_REF_COST);
 10718   size(4);
 10719   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10721   ins_encode %{
 10722     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10723   %}
 10724   ins_pipe(istore_mem_reg);
 10725 %}
 10727 // Store unsighed short/char reversed byte order
 10728 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10729   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10731   ins_cost(MEMORY_REF_COST);
 10732   size(4);
 10733   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10735   ins_encode %{
 10736     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10737   %}
 10738   ins_pipe(istore_mem_reg);
 10739 %}
 10741 // Store short reversed byte order
 10742 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10743   match(Set dst (StoreC dst (ReverseBytesS src)));
 10745   ins_cost(MEMORY_REF_COST);
 10746   size(4);
 10747   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10749   ins_encode %{
 10750     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10751   %}
 10752   ins_pipe(istore_mem_reg);
 10753 %}
 10755 //----------PEEPHOLE RULES-----------------------------------------------------
 10756 // These must follow all instruction definitions as they use the names
 10757 // defined in the instructions definitions.
 10758 //
 10759 // peepmatch ( root_instr_name [preceding_instruction]* );
 10760 //
 10761 // peepconstraint %{
 10762 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10763 //  [, ...] );
 10764 // // instruction numbers are zero-based using left to right order in peepmatch
 10765 //
 10766 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10767 // // provide an instruction_number.operand_name for each operand that appears
 10768 // // in the replacement instruction's match rule
 10769 //
 10770 // ---------VM FLAGS---------------------------------------------------------
 10771 //
 10772 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10773 //
 10774 // Each peephole rule is given an identifying number starting with zero and
 10775 // increasing by one in the order seen by the parser.  An individual peephole
 10776 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10777 // on the command-line.
 10778 //
 10779 // ---------CURRENT LIMITATIONS----------------------------------------------
 10780 //
 10781 // Only match adjacent instructions in same basic block
 10782 // Only equality constraints
 10783 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10784 // Only one replacement instruction
 10785 //
 10786 // ---------EXAMPLE----------------------------------------------------------
 10787 //
 10788 // // pertinent parts of existing instructions in architecture description
 10789 // instruct movI(eRegI dst, eRegI src) %{
 10790 //   match(Set dst (CopyI src));
 10791 // %}
 10792 //
 10793 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10794 //   match(Set dst (AddI dst src));
 10795 //   effect(KILL cr);
 10796 // %}
 10797 //
 10798 // // Change (inc mov) to lea
 10799 // peephole %{
 10800 //   // increment preceeded by register-register move
 10801 //   peepmatch ( incI_eReg movI );
 10802 //   // require that the destination register of the increment
 10803 //   // match the destination register of the move
 10804 //   peepconstraint ( 0.dst == 1.dst );
 10805 //   // construct a replacement instruction that sets
 10806 //   // the destination to ( move's source register + one )
 10807 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10808 // %}
 10809 //
 10811 // // Change load of spilled value to only a spill
 10812 // instruct storeI(memory mem, eRegI src) %{
 10813 //   match(Set mem (StoreI mem src));
 10814 // %}
 10815 //
 10816 // instruct loadI(eRegI dst, memory mem) %{
 10817 //   match(Set dst (LoadI mem));
 10818 // %}
 10819 //
 10820 // peephole %{
 10821 //   peepmatch ( loadI storeI );
 10822 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10823 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10824 // %}
 10826 //----------SMARTSPILL RULES---------------------------------------------------
 10827 // These must follow all instruction definitions as they use the names
 10828 // defined in the instructions definitions.
 10829 //
 10830 // SPARC will probably not have any of these rules due to RISC instruction set.
 10832 //----------PIPELINE-----------------------------------------------------------
 10833 // Rules which define the behavior of the target architectures pipeline.

mercurial