src/cpu/sparc/vm/sparc.ad

Mon, 12 Mar 2012 15:28:07 -0700

author
never
date
Mon, 12 Mar 2012 15:28:07 -0700
changeset 3637
61b82be3b1ff
parent 3406
e9a5e0a812c8
child 3846
8b0a4867acf0
permissions
-rw-r--r--

7152957: VM crashes with assert(false) failed: bad AD file
Reviewed-by: kvn, never
Contributed-by: nils.eliasson@oracle.com

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   int bit_width = width * 8;
   682   jlong elt_val = con;
   683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   684   jlong val = elt_val;
   685   for (int i = 0; i < count - 1; i++) {
   686     val <<= bit_width;
   687     val |= elt_val;
   688   }
   689   jdouble dval = *((jdouble*) &val);  // coerce to double type
   690   return dval;
   691 }
   693 // Standard Sparc opcode form2 field breakdown
   694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   696   int op = (f30 << 30) |
   697            (f29 << 29) |
   698            (f25 << 25) |
   699            (f22 << 22) |
   700            (f20 << 20) |
   701            (f19 << 19) |
   702            (f0  <<  0);
   703   cbuf.insts()->emit_int32(op);
   704 }
   706 // Standard Sparc opcode form2 field breakdown
   707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   708   f0 >>= 10;           // Drop 10 bits
   709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   710   int op = (f30 << 30) |
   711            (f25 << 25) |
   712            (f22 << 22) |
   713            (f0  <<  0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 // Standard Sparc opcode form3 field breakdown
   718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   719   int op = (f30 << 30) |
   720            (f25 << 25) |
   721            (f19 << 19) |
   722            (f14 << 14) |
   723            (f5  <<  5) |
   724            (f0  <<  0);
   725   cbuf.insts()->emit_int32(op);
   726 }
   728 // Standard Sparc opcode form3 field breakdown
   729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   730   simm13 &= (1<<13)-1; // Mask to 13 bits
   731   int op = (f30 << 30) |
   732            (f25 << 25) |
   733            (f19 << 19) |
   734            (f14 << 14) |
   735            (1   << 13) | // bit to indicate immediate-mode
   736            (simm13<<0);
   737   cbuf.insts()->emit_int32(op);
   738 }
   740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   741   simm10 &= (1<<10)-1; // Mask to 10 bits
   742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   743 }
   745 #ifdef ASSERT
   746 // Helper function for VerifyOops in emit_form3_mem_reg
   747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   748   warning("VerifyOops encountered unexpected instruction:");
   749   n->dump(2);
   750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   751 }
   752 #endif
   755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   758 #ifdef ASSERT
   759   // The following code implements the +VerifyOops feature.
   760   // It verifies oop values which are loaded into or stored out of
   761   // the current method activation.  +VerifyOops complements techniques
   762   // like ScavengeALot, because it eagerly inspects oops in transit,
   763   // as they enter or leave the stack, as opposed to ScavengeALot,
   764   // which inspects oops "at rest", in the stack or heap, at safepoints.
   765   // For this reason, +VerifyOops can sometimes detect bugs very close
   766   // to their point of creation.  It can also serve as a cross-check
   767   // on the validity of oop maps, when used toegether with ScavengeALot.
   769   // It would be good to verify oops at other points, especially
   770   // when an oop is used as a base pointer for a load or store.
   771   // This is presently difficult, because it is hard to know when
   772   // a base address is biased or not.  (If we had such information,
   773   // it would be easy and useful to make a two-argument version of
   774   // verify_oop which unbiases the base, and performs verification.)
   776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   777   bool is_verified_oop_base  = false;
   778   bool is_verified_oop_load  = false;
   779   bool is_verified_oop_store = false;
   780   int tmp_enc = -1;
   781   if (VerifyOops && src1_enc != R_SP_enc) {
   782     // classify the op, mainly for an assert check
   783     int st_op = 0, ld_op = 0;
   784     switch (primary) {
   785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   789     case Assembler::std_op3:  st_op = Op_StoreL; break;
   790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   805     default: ShouldNotReachHere();
   806     }
   807     if (tertiary == REGP_OP) {
   808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   810       else                          ShouldNotReachHere();
   811       if (st_op) {
   812         // a store
   813         // inputs are (0:control, 1:memory, 2:address, 3:value)
   814         Node* n2 = n->in(3);
   815         if (n2 != NULL) {
   816           const Type* t = n2->bottom_type();
   817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818         }
   819       } else {
   820         // a load
   821         const Type* t = n->bottom_type();
   822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823       }
   824     }
   826     if (ld_op) {
   827       // a Load
   828       // inputs are (0:control, 1:memory, 2:address)
   829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   843           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   845           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   846           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   847           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   848           !(n->rule() == loadUB_rule)) {
   849         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   850       }
   851     } else if (st_op) {
   852       // a Store
   853       // inputs are (0:control, 1:memory, 2:address, 3:value)
   854       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   855           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   856           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   857           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   858           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   860           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   862           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   863         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   864       }
   865     }
   867     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   868       Node* addr = n->in(2);
   869       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   870         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   871         if (atype != NULL) {
   872           intptr_t offset = get_offset_from_base(n, atype, disp32);
   873           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   874           if (offset != offset_2) {
   875             get_offset_from_base(n, atype, disp32);
   876             get_offset_from_base_2(n, atype, disp32);
   877           }
   878           assert(offset == offset_2, "different offsets");
   879           if (offset == disp32) {
   880             // we now know that src1 is a true oop pointer
   881             is_verified_oop_base = true;
   882             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   883               if( primary == Assembler::ldd_op3 ) {
   884                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   885               } else {
   886                 tmp_enc = dst_enc;
   887                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   888                 assert(src1_enc != dst_enc, "");
   889               }
   890             }
   891           }
   892           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   893                        || offset == oopDesc::mark_offset_in_bytes())) {
   894                       // loading the mark should not be allowed either, but
   895                       // we don't check this since it conflicts with InlineObjectHash
   896                       // usage of LoadINode to get the mark. We could keep the
   897                       // check if we create a new LoadMarkNode
   898             // but do not verify the object before its header is initialized
   899             ShouldNotReachHere();
   900           }
   901         }
   902       }
   903     }
   904   }
   905 #endif
   907   uint instr;
   908   instr = (Assembler::ldst_op << 30)
   909         | (dst_enc        << 25)
   910         | (primary        << 19)
   911         | (src1_enc       << 14);
   913   uint index = src2_enc;
   914   int disp = disp32;
   916   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   917     disp += STACK_BIAS;
   919   // We should have a compiler bailout here rather than a guarantee.
   920   // Better yet would be some mechanism to handle variable-size matches correctly.
   921   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   923   if( disp == 0 ) {
   924     // use reg-reg form
   925     // bit 13 is already zero
   926     instr |= index;
   927   } else {
   928     // use reg-imm form
   929     instr |= 0x00002000;          // set bit 13 to one
   930     instr |= disp & 0x1FFF;
   931   }
   933   cbuf.insts()->emit_int32(instr);
   935 #ifdef ASSERT
   936   {
   937     MacroAssembler _masm(&cbuf);
   938     if (is_verified_oop_base) {
   939       __ verify_oop(reg_to_register_object(src1_enc));
   940     }
   941     if (is_verified_oop_store) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944     if (tmp_enc != -1) {
   945       __ mov(O7, reg_to_register_object(tmp_enc));
   946     }
   947     if (is_verified_oop_load) {
   948       __ verify_oop(reg_to_register_object(dst_enc));
   949     }
   950   }
   951 #endif
   952 }
   954 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   955   // The method which records debug information at every safepoint
   956   // expects the call to be the first instruction in the snippet as
   957   // it creates a PcDesc structure which tracks the offset of a call
   958   // from the start of the codeBlob. This offset is computed as
   959   // code_end() - code_begin() of the code which has been emitted
   960   // so far.
   961   // In this particular case we have skirted around the problem by
   962   // putting the "mov" instruction in the delay slot but the problem
   963   // may bite us again at some other point and a cleaner/generic
   964   // solution using relocations would be needed.
   965   MacroAssembler _masm(&cbuf);
   966   __ set_inst_mark();
   968   // We flush the current window just so that there is a valid stack copy
   969   // the fact that the current window becomes active again instantly is
   970   // not a problem there is nothing live in it.
   972 #ifdef ASSERT
   973   int startpos = __ offset();
   974 #endif /* ASSERT */
   976   __ call((address)entry_point, rtype);
   978   if (preserve_g2)   __ delayed()->mov(G2, L7);
   979   else __ delayed()->nop();
   981   if (preserve_g2)   __ mov(L7, G2);
   983 #ifdef ASSERT
   984   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   985 #ifdef _LP64
   986     // Trash argument dump slots.
   987     __ set(0xb0b8ac0db0b8ac0d, G1);
   988     __ mov(G1, G5);
   989     __ stx(G1, SP, STACK_BIAS + 0x80);
   990     __ stx(G1, SP, STACK_BIAS + 0x88);
   991     __ stx(G1, SP, STACK_BIAS + 0x90);
   992     __ stx(G1, SP, STACK_BIAS + 0x98);
   993     __ stx(G1, SP, STACK_BIAS + 0xA0);
   994     __ stx(G1, SP, STACK_BIAS + 0xA8);
   995 #else // _LP64
   996     // this is also a native call, so smash the first 7 stack locations,
   997     // and the various registers
   999     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1000     // while [SP+0x44..0x58] are the argument dump slots.
  1001     __ set((intptr_t)0xbaadf00d, G1);
  1002     __ mov(G1, G5);
  1003     __ sllx(G1, 32, G1);
  1004     __ or3(G1, G5, G1);
  1005     __ mov(G1, G5);
  1006     __ stx(G1, SP, 0x40);
  1007     __ stx(G1, SP, 0x48);
  1008     __ stx(G1, SP, 0x50);
  1009     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1010 #endif // _LP64
  1012 #endif /*ASSERT*/
  1015 //=============================================================================
  1016 // REQUIRED FUNCTIONALITY for encoding
  1017 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1018 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1021 //=============================================================================
  1022 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1024 int Compile::ConstantTable::calculate_table_base_offset() const {
  1025   if (UseRDPCForConstantTableBase) {
  1026     // The table base offset might be less but then it fits into
  1027     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1028     return Assembler::min_simm13();
  1029   } else {
  1030     int offset = -(size() / 2);
  1031     if (!Assembler::is_simm13(offset)) {
  1032       offset = Assembler::min_simm13();
  1034     return offset;
  1038 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1039   Compile* C = ra_->C;
  1040   Compile::ConstantTable& constant_table = C->constant_table();
  1041   MacroAssembler _masm(&cbuf);
  1043   Register r = as_Register(ra_->get_encode(this));
  1044   CodeSection* consts_section = __ code()->consts();
  1045   int consts_size = consts_section->align_at_start(consts_section->size());
  1046   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1048   if (UseRDPCForConstantTableBase) {
  1049     // For the following RDPC logic to work correctly the consts
  1050     // section must be allocated right before the insts section.  This
  1051     // assert checks for that.  The layout and the SECT_* constants
  1052     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1053     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1054     int insts_offset = __ offset();
  1056     // Layout:
  1057     //
  1058     // |----------- consts section ------------|----------- insts section -----------...
  1059     // |------ constant table -----|- padding -|------------------x----
  1060     //                                                            \ current PC (RDPC instruction)
  1061     // |<------------- consts_size ----------->|<- insts_offset ->|
  1062     //                                                            \ table base
  1063     // The table base offset is later added to the load displacement
  1064     // so it has to be negative.
  1065     int table_base_offset = -(consts_size + insts_offset);
  1066     int disp;
  1068     // If the displacement from the current PC to the constant table
  1069     // base fits into simm13 we set the constant table base to the
  1070     // current PC.
  1071     if (Assembler::is_simm13(table_base_offset)) {
  1072       constant_table.set_table_base_offset(table_base_offset);
  1073       disp = 0;
  1074     } else {
  1075       // Otherwise we set the constant table base offset to the
  1076       // maximum negative displacement of load instructions to keep
  1077       // the disp as small as possible:
  1078       //
  1079       // |<------------- consts_size ----------->|<- insts_offset ->|
  1080       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1081       //                                  \ table base
  1082       table_base_offset = Assembler::min_simm13();
  1083       constant_table.set_table_base_offset(table_base_offset);
  1084       disp = (consts_size + insts_offset) + table_base_offset;
  1087     __ rdpc(r);
  1089     if (disp != 0) {
  1090       assert(r != O7, "need temporary");
  1091       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1094   else {
  1095     // Materialize the constant table base.
  1096     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1097     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1098     AddressLiteral base(baseaddr, rspec);
  1099     __ set(base, r);
  1103 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1104   if (UseRDPCForConstantTableBase) {
  1105     // This is really the worst case but generally it's only 1 instruction.
  1106     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1107   } else {
  1108     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1112 #ifndef PRODUCT
  1113 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1114   char reg[128];
  1115   ra_->dump_register(this, reg);
  1116   if (UseRDPCForConstantTableBase) {
  1117     st->print("RDPC   %s\t! constant table base", reg);
  1118   } else {
  1119     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1122 #endif
  1125 //=============================================================================
  1127 #ifndef PRODUCT
  1128 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1129   Compile* C = ra_->C;
  1131   for (int i = 0; i < OptoPrologueNops; i++) {
  1132     st->print_cr("NOP"); st->print("\t");
  1135   if( VerifyThread ) {
  1136     st->print_cr("Verify_Thread"); st->print("\t");
  1139   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1141   // Calls to C2R adapters often do not accept exceptional returns.
  1142   // We require that their callers must bang for them.  But be careful, because
  1143   // some VM calls (such as call site linkage) can use several kilobytes of
  1144   // stack.  But the stack safety zone should account for that.
  1145   // See bugs 4446381, 4468289, 4497237.
  1146   if (C->need_stack_bang(framesize)) {
  1147     st->print_cr("! stack bang"); st->print("\t");
  1150   if (Assembler::is_simm13(-framesize)) {
  1151     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1152   } else {
  1153     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1154     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1155     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1159 #endif
  1161 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1162   Compile* C = ra_->C;
  1163   MacroAssembler _masm(&cbuf);
  1165   for (int i = 0; i < OptoPrologueNops; i++) {
  1166     __ nop();
  1169   __ verify_thread();
  1171   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1172   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1173   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1175   // Calls to C2R adapters often do not accept exceptional returns.
  1176   // We require that their callers must bang for them.  But be careful, because
  1177   // some VM calls (such as call site linkage) can use several kilobytes of
  1178   // stack.  But the stack safety zone should account for that.
  1179   // See bugs 4446381, 4468289, 4497237.
  1180   if (C->need_stack_bang(framesize)) {
  1181     __ generate_stack_overflow_check(framesize);
  1184   if (Assembler::is_simm13(-framesize)) {
  1185     __ save(SP, -framesize, SP);
  1186   } else {
  1187     __ sethi(-framesize & ~0x3ff, G3);
  1188     __ add(G3, -framesize & 0x3ff, G3);
  1189     __ save(SP, G3, SP);
  1191   C->set_frame_complete( __ offset() );
  1193   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1194     // NOTE: We set the table base offset here because users might be
  1195     // emitted before MachConstantBaseNode.
  1196     Compile::ConstantTable& constant_table = C->constant_table();
  1197     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1201 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1202   return MachNode::size(ra_);
  1205 int MachPrologNode::reloc() const {
  1206   return 10; // a large enough number
  1209 //=============================================================================
  1210 #ifndef PRODUCT
  1211 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1212   Compile* C = ra_->C;
  1214   if( do_polling() && ra_->C->is_method_compilation() ) {
  1215     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1216 #ifdef _LP64
  1217     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1218 #else
  1219     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1220 #endif
  1223   if( do_polling() )
  1224     st->print("RET\n\t");
  1226   st->print("RESTORE");
  1228 #endif
  1230 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1231   MacroAssembler _masm(&cbuf);
  1232   Compile* C = ra_->C;
  1234   __ verify_thread();
  1236   // If this does safepoint polling, then do it here
  1237   if( do_polling() && ra_->C->is_method_compilation() ) {
  1238     AddressLiteral polling_page(os::get_polling_page());
  1239     __ sethi(polling_page, L0);
  1240     __ relocate(relocInfo::poll_return_type);
  1241     __ ld_ptr( L0, 0, G0 );
  1244   // If this is a return, then stuff the restore in the delay slot
  1245   if( do_polling() ) {
  1246     __ ret();
  1247     __ delayed()->restore();
  1248   } else {
  1249     __ restore();
  1253 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1254   return MachNode::size(ra_);
  1257 int MachEpilogNode::reloc() const {
  1258   return 16; // a large enough number
  1261 const Pipeline * MachEpilogNode::pipeline() const {
  1262   return MachNode::pipeline_class();
  1265 int MachEpilogNode::safepoint_offset() const {
  1266   assert( do_polling(), "no return for this epilog node");
  1267   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1270 //=============================================================================
  1272 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1273 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1274 static enum RC rc_class( OptoReg::Name reg ) {
  1275   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1276   if (OptoReg::is_stack(reg)) return rc_stack;
  1277   VMReg r = OptoReg::as_VMReg(reg);
  1278   if (r->is_Register()) return rc_int;
  1279   assert(r->is_FloatRegister(), "must be");
  1280   return rc_float;
  1283 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1284   if( cbuf ) {
  1285     // Better yet would be some mechanism to handle variable-size matches correctly
  1286     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1287       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1288     } else {
  1289       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1292 #ifndef PRODUCT
  1293   else if( !do_size ) {
  1294     if( size != 0 ) st->print("\n\t");
  1295     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1296     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1298 #endif
  1299   return size+4;
  1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1304 #ifndef PRODUCT
  1305   else if( !do_size ) {
  1306     if( size != 0 ) st->print("\n\t");
  1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1309 #endif
  1310   return size+4;
  1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1314                                         PhaseRegAlloc *ra_,
  1315                                         bool do_size,
  1316                                         outputStream* st ) const {
  1317   // Get registers to move
  1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1323   enum RC src_second_rc = rc_class(src_second);
  1324   enum RC src_first_rc = rc_class(src_first);
  1325   enum RC dst_second_rc = rc_class(dst_second);
  1326   enum RC dst_first_rc = rc_class(dst_first);
  1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1330   // Generate spill code!
  1331   int size = 0;
  1333   if( src_first == dst_first && src_second == dst_second )
  1334     return size;            // Self copy, no move
  1336   // --------------------------------------
  1337   // Check for mem-mem move.  Load into unused float registers and fall into
  1338   // the float-store case.
  1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1340     int offset = ra_->reg2offset(src_first);
  1341     // Further check for aligned-adjacent pair, so we can use a double load
  1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1343       src_second    = OptoReg::Name(R_F31_num);
  1344       src_second_rc = rc_float;
  1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1346     } else {
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1349     src_first    = OptoReg::Name(R_F30_num);
  1350     src_first_rc = rc_float;
  1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1354     int offset = ra_->reg2offset(src_second);
  1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1356     src_second    = OptoReg::Name(R_F31_num);
  1357     src_second_rc = rc_float;
  1360   // --------------------------------------
  1361   // Check for float->int copy; requires a trip through memory
  1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1363     int offset = frame::register_save_words*wordSize;
  1364     if (cbuf) {
  1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1370 #ifndef PRODUCT
  1371     else if (!do_size) {
  1372       if (size != 0) st->print("\n\t");
  1373       st->print(  "SUB    R_SP,16,R_SP\n");
  1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1376       st->print("\tADD    R_SP,16,R_SP\n");
  1378 #endif
  1379     size += 16;
  1382   // Check for float->int copy on T4
  1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1384     // Further check for aligned-adjacent pair, so we can use a double move
  1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1389   // Check for int->float copy on T4
  1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1391     // Further check for aligned-adjacent pair, so we can use a double move
  1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1397   // --------------------------------------
  1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1401   // there.  Misaligned sources only come from native-long-returns (handled
  1402   // special below).
  1403 #ifndef _LP64
  1404   if( src_first_rc == rc_int &&     // source is already big-endian
  1405       src_second_rc != rc_bad &&    // 64-bit move
  1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1408     // Do the big-endian flop.
  1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1412 #endif
  1414   // --------------------------------------
  1415   // Check for integer reg-reg copy
  1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1417 #ifndef _LP64
  1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1421       //       operand contains the least significant word of the 64-bit value and vice versa.
  1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1425       if( cbuf ) {
  1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1429 #ifndef PRODUCT
  1430       } else if( !do_size ) {
  1431         if( size != 0 ) st->print("\n\t");
  1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1435 #endif
  1437       return size+12;
  1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1440       // returning a long value in I0/I1
  1441       // a SpillCopy must be able to target a return instruction's reg_class
  1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1444       //       operand contains the least significant word of the 64-bit value and vice versa.
  1445       OptoReg::Name tdest = dst_first;
  1447       if (src_first == dst_first) {
  1448         tdest = OptoReg::Name(R_O7_num);
  1449         size += 4;
  1452       if( cbuf ) {
  1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1455         // ShrL_reg_imm6
  1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1457         // ShrR_reg_imm6  src, 0, dst
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1459         if (tdest != dst_first) {
  1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1463 #ifndef PRODUCT
  1464       else if( !do_size ) {
  1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1468         if (tdest != dst_first) {
  1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1472 #endif // PRODUCT
  1473       return size+8;
  1475 #endif // !_LP64
  1476     // Else normal reg-reg copy
  1477     assert( src_second != dst_first, "smashed second before evacuating it" );
  1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1480     // This moves an aligned adjacent pair.
  1481     // See if we are done.
  1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1483       return size;
  1486   // Check for integer store
  1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1488     int offset = ra_->reg2offset(dst_first);
  1489     // Further check for aligned-adjacent pair, so we can use a double store
  1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1495   // Check for integer load
  1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1497     int offset = ra_->reg2offset(src_first);
  1498     // Further check for aligned-adjacent pair, so we can use a double load
  1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1504   // Check for float reg-reg copy
  1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1506     // Further check for aligned-adjacent pair, so we can use a double move
  1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1512   // Check for float store
  1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1514     int offset = ra_->reg2offset(dst_first);
  1515     // Further check for aligned-adjacent pair, so we can use a double store
  1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1521   // Check for float load
  1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1523     int offset = ra_->reg2offset(src_first);
  1524     // Further check for aligned-adjacent pair, so we can use a double load
  1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1530   // --------------------------------------------------------------------
  1531   // Check for hi bits still needing moving.  Only happens for misaligned
  1532   // arguments to native calls.
  1533   if( src_second == dst_second )
  1534     return size;               // Self copy; no move
  1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1537 #ifndef _LP64
  1538   // In the LP64 build, all registers can be moved as aligned/adjacent
  1539   // pairs, so there's never any need to move the high bits separately.
  1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1541   // all sorts of silly alignment problems.
  1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1544   // 32-bits of a 64-bit register, but are needed in low bits of another
  1545   // register (else it's a hi-bits-to-hi-bits copy which should have
  1546   // happened already as part of a 64-bit move)
  1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1550     // Shift src_second down to dst_second's low bits.
  1551     if( cbuf ) {
  1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1553 #ifndef PRODUCT
  1554     } else if( !do_size ) {
  1555       if( size != 0 ) st->print("\n\t");
  1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1557 #endif
  1559     return size+4;
  1562   // Check for high word integer store.  Must down-shift the hi bits
  1563   // into a temp register, then fall into the case of storing int bits.
  1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1565     // Shift src_second down to dst_second's low bits.
  1566     if( cbuf ) {
  1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1568 #ifndef PRODUCT
  1569     } else if( !do_size ) {
  1570       if( size != 0 ) st->print("\n\t");
  1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1572 #endif
  1574     size+=4;
  1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1578   // Check for high word integer load
  1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1582   // Check for high word integer store
  1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1586   // Check for high word float store
  1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1590 #endif // !_LP64
  1592   Unimplemented();
  1595 #ifndef PRODUCT
  1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1597   implementation( NULL, ra_, false, st );
  1599 #endif
  1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1602   implementation( &cbuf, ra_, false, NULL );
  1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1606   return implementation( NULL, ra_, true, NULL );
  1609 //=============================================================================
  1610 #ifndef PRODUCT
  1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1614 #endif
  1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1617   MacroAssembler _masm(&cbuf);
  1618   for(int i = 0; i < _count; i += 1) {
  1619     __ nop();
  1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1624   return 4 * _count;
  1628 //=============================================================================
  1629 #ifndef PRODUCT
  1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1632   int reg = ra_->get_reg_first(this);
  1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1635 #endif
  1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1638   MacroAssembler _masm(&cbuf);
  1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1640   int reg = ra_->get_encode(this);
  1642   if (Assembler::is_simm13(offset)) {
  1643      __ add(SP, offset, reg_to_register_object(reg));
  1644   } else {
  1645      __ set(offset, O7);
  1646      __ add(SP, O7, reg_to_register_object(reg));
  1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1652   assert(ra_ == ra_->C->regalloc(), "sanity");
  1653   return ra_->C->scratch_emit_size(this);
  1656 //=============================================================================
  1658 // emit call stub, compiled java to interpretor
  1659 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1661   // Stub is fixed up when the corresponding call is converted from calling
  1662   // compiled code to calling interpreted code.
  1663   // set (empty), G5
  1664   // jmp -1
  1666   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1668   MacroAssembler _masm(&cbuf);
  1670   address base =
  1671   __ start_a_stub(Compile::MAX_stubs_size);
  1672   if (base == NULL)  return;  // CodeBuffer::expand failed
  1674   // static stub relocation stores the instruction address of the call
  1675   __ relocate(static_stub_Relocation::spec(mark));
  1677   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1679   __ set_inst_mark();
  1680   AddressLiteral addrlit(-1);
  1681   __ JUMP(addrlit, G3, 0);
  1683   __ delayed()->nop();
  1685   // Update current stubs pointer and restore code_end.
  1686   __ end_a_stub();
  1689 // size of call stub, compiled java to interpretor
  1690 uint size_java_to_interp() {
  1691   // This doesn't need to be accurate but it must be larger or equal to
  1692   // the real size of the stub.
  1693   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1694           NativeJump::instruction_size + // sethi; jmp; nop
  1695           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1697 // relocation entries for call stub, compiled java to interpretor
  1698 uint reloc_java_to_interp() {
  1699   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1703 //=============================================================================
  1704 #ifndef PRODUCT
  1705 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1706   st->print_cr("\nUEP:");
  1707 #ifdef    _LP64
  1708   if (UseCompressedOops) {
  1709     assert(Universe::heap() != NULL, "java heap should be initialized");
  1710     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1711     st->print_cr("\tSLL    R_G5,3,R_G5");
  1712     if (Universe::narrow_oop_base() != NULL)
  1713       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1714   } else {
  1715     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1717   st->print_cr("\tCMP    R_G5,R_G3" );
  1718   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1719 #else  // _LP64
  1720   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1721   st->print_cr("\tCMP    R_G5,R_G3" );
  1722   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1723 #endif // _LP64
  1725 #endif
  1727 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1728   MacroAssembler _masm(&cbuf);
  1729   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1730   Register temp_reg   = G3;
  1731   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1733   // Load klass from receiver
  1734   __ load_klass(O0, temp_reg);
  1735   // Compare against expected klass
  1736   __ cmp(temp_reg, G5_ic_reg);
  1737   // Branch to miss code, checks xcc or icc depending
  1738   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1741 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1742   return MachNode::size(ra_);
  1746 //=============================================================================
  1748 uint size_exception_handler() {
  1749   if (TraceJumps) {
  1750     return (400); // just a guess
  1752   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1755 uint size_deopt_handler() {
  1756   if (TraceJumps) {
  1757     return (400); // just a guess
  1759   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1762 // Emit exception handler code.
  1763 int emit_exception_handler(CodeBuffer& cbuf) {
  1764   Register temp_reg = G3;
  1765   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1766   MacroAssembler _masm(&cbuf);
  1768   address base =
  1769   __ start_a_stub(size_exception_handler());
  1770   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1772   int offset = __ offset();
  1774   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1775   __ delayed()->nop();
  1777   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1779   __ end_a_stub();
  1781   return offset;
  1784 int emit_deopt_handler(CodeBuffer& cbuf) {
  1785   // Can't use any of the current frame's registers as we may have deopted
  1786   // at a poll and everything (including G3) can be live.
  1787   Register temp_reg = L0;
  1788   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1789   MacroAssembler _masm(&cbuf);
  1791   address base =
  1792   __ start_a_stub(size_deopt_handler());
  1793   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1795   int offset = __ offset();
  1796   __ save_frame(0);
  1797   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1798   __ delayed()->restore();
  1800   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1802   __ end_a_stub();
  1803   return offset;
  1807 // Given a register encoding, produce a Integer Register object
  1808 static Register reg_to_register_object(int register_encoding) {
  1809   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1810   return as_Register(register_encoding);
  1813 // Given a register encoding, produce a single-precision Float Register object
  1814 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1815   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1816   return as_SingleFloatRegister(register_encoding);
  1819 // Given a register encoding, produce a double-precision Float Register object
  1820 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1821   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1822   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1823   return as_DoubleFloatRegister(register_encoding);
  1826 const bool Matcher::match_rule_supported(int opcode) {
  1827   if (!has_match_rule(opcode))
  1828     return false;
  1830   switch (opcode) {
  1831   case Op_CountLeadingZerosI:
  1832   case Op_CountLeadingZerosL:
  1833   case Op_CountTrailingZerosI:
  1834   case Op_CountTrailingZerosL:
  1835   case Op_PopCountI:
  1836   case Op_PopCountL:
  1837     if (!UsePopCountInstruction)
  1838       return false;
  1839     break;
  1842   return true;  // Per default match rules are supported.
  1845 int Matcher::regnum_to_fpu_offset(int regnum) {
  1846   return regnum - 32; // The FP registers are in the second chunk
  1849 #ifdef ASSERT
  1850 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1851 #endif
  1853 // Vector width in bytes
  1854 const uint Matcher::vector_width_in_bytes(void) {
  1855   return 8;
  1858 // Vector ideal reg
  1859 const uint Matcher::vector_ideal_reg(void) {
  1860   return Op_RegD;
  1863 // USII supports fxtof through the whole range of number, USIII doesn't
  1864 const bool Matcher::convL2FSupported(void) {
  1865   return VM_Version::has_fast_fxtof();
  1868 // Is this branch offset short enough that a short branch can be used?
  1869 //
  1870 // NOTE: If the platform does not provide any short branch variants, then
  1871 //       this method should return false for offset 0.
  1872 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1873   // The passed offset is relative to address of the branch.
  1874   // Don't need to adjust the offset.
  1875   return UseCBCond && Assembler::is_simm12(offset);
  1878 const bool Matcher::isSimpleConstant64(jlong value) {
  1879   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1880   // Depends on optimizations in MacroAssembler::setx.
  1881   int hi = (int)(value >> 32);
  1882   int lo = (int)(value & ~0);
  1883   return (hi == 0) || (hi == -1) || (lo == 0);
  1886 // No scaling for the parameter the ClearArray node.
  1887 const bool Matcher::init_array_count_is_in_bytes = true;
  1889 // Threshold size for cleararray.
  1890 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1892 // No additional cost for CMOVL.
  1893 const int Matcher::long_cmove_cost() { return 0; }
  1895 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1896 const int Matcher::float_cmove_cost() {
  1897   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1900 // Should the Matcher clone shifts on addressing modes, expecting them to
  1901 // be subsumed into complex addressing expressions or compute them into
  1902 // registers?  True for Intel but false for most RISCs
  1903 const bool Matcher::clone_shift_expressions = false;
  1905 // Do we need to mask the count passed to shift instructions or does
  1906 // the cpu only look at the lower 5/6 bits anyway?
  1907 const bool Matcher::need_masked_shift_count = false;
  1909 bool Matcher::narrow_oop_use_complex_address() {
  1910   NOT_LP64(ShouldNotCallThis());
  1911   assert(UseCompressedOops, "only for compressed oops code");
  1912   return false;
  1915 // Is it better to copy float constants, or load them directly from memory?
  1916 // Intel can load a float constant from a direct address, requiring no
  1917 // extra registers.  Most RISCs will have to materialize an address into a
  1918 // register first, so they would do better to copy the constant from stack.
  1919 const bool Matcher::rematerialize_float_constants = false;
  1921 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1922 // needed.  Else we split the double into 2 integer pieces and move it
  1923 // piece-by-piece.  Only happens when passing doubles into C code as the
  1924 // Java calling convention forces doubles to be aligned.
  1925 #ifdef _LP64
  1926 const bool Matcher::misaligned_doubles_ok = true;
  1927 #else
  1928 const bool Matcher::misaligned_doubles_ok = false;
  1929 #endif
  1931 // No-op on SPARC.
  1932 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1935 // Advertise here if the CPU requires explicit rounding operations
  1936 // to implement the UseStrictFP mode.
  1937 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1939 // Are floats conerted to double when stored to stack during deoptimization?
  1940 // Sparc does not handle callee-save floats.
  1941 bool Matcher::float_in_double() { return false; }
  1943 // Do ints take an entire long register or just half?
  1944 // Note that we if-def off of _LP64.
  1945 // The relevant question is how the int is callee-saved.  In _LP64
  1946 // the whole long is written but de-opt'ing will have to extract
  1947 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1948 #ifdef _LP64
  1949 const bool Matcher::int_in_long = true;
  1950 #else
  1951 const bool Matcher::int_in_long = false;
  1952 #endif
  1954 // Return whether or not this register is ever used as an argument.  This
  1955 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1956 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1957 // arguments in those registers not be available to the callee.
  1958 bool Matcher::can_be_java_arg( int reg ) {
  1959   // Standard sparc 6 args in registers
  1960   if( reg == R_I0_num ||
  1961       reg == R_I1_num ||
  1962       reg == R_I2_num ||
  1963       reg == R_I3_num ||
  1964       reg == R_I4_num ||
  1965       reg == R_I5_num ) return true;
  1966 #ifdef _LP64
  1967   // 64-bit builds can pass 64-bit pointers and longs in
  1968   // the high I registers
  1969   if( reg == R_I0H_num ||
  1970       reg == R_I1H_num ||
  1971       reg == R_I2H_num ||
  1972       reg == R_I3H_num ||
  1973       reg == R_I4H_num ||
  1974       reg == R_I5H_num ) return true;
  1976   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1977     return true;
  1980 #else
  1981   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1982   // Longs cannot be passed in O regs, because O regs become I regs
  1983   // after a 'save' and I regs get their high bits chopped off on
  1984   // interrupt.
  1985   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1986   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1987 #endif
  1988   // A few float args in registers
  1989   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1991   return false;
  1994 bool Matcher::is_spillable_arg( int reg ) {
  1995   return can_be_java_arg(reg);
  1998 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1999   // Use hardware SDIVX instruction when it is
  2000   // faster than a code which use multiply.
  2001   return VM_Version::has_fast_idiv();
  2004 // Register for DIVI projection of divmodI
  2005 RegMask Matcher::divI_proj_mask() {
  2006   ShouldNotReachHere();
  2007   return RegMask();
  2010 // Register for MODI projection of divmodI
  2011 RegMask Matcher::modI_proj_mask() {
  2012   ShouldNotReachHere();
  2013   return RegMask();
  2016 // Register for DIVL projection of divmodL
  2017 RegMask Matcher::divL_proj_mask() {
  2018   ShouldNotReachHere();
  2019   return RegMask();
  2022 // Register for MODL projection of divmodL
  2023 RegMask Matcher::modL_proj_mask() {
  2024   ShouldNotReachHere();
  2025   return RegMask();
  2028 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2029   return L7_REGP_mask();
  2032 %}
  2035 // The intptr_t operand types, defined by textual substitution.
  2036 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2037 #ifdef _LP64
  2038 #define immX      immL
  2039 #define immX13    immL13
  2040 #define immX13m7  immL13m7
  2041 #define iRegX     iRegL
  2042 #define g1RegX    g1RegL
  2043 #else
  2044 #define immX      immI
  2045 #define immX13    immI13
  2046 #define immX13m7  immI13m7
  2047 #define iRegX     iRegI
  2048 #define g1RegX    g1RegI
  2049 #endif
  2051 //----------ENCODING BLOCK-----------------------------------------------------
  2052 // This block specifies the encoding classes used by the compiler to output
  2053 // byte streams.  Encoding classes are parameterized macros used by
  2054 // Machine Instruction Nodes in order to generate the bit encoding of the
  2055 // instruction.  Operands specify their base encoding interface with the
  2056 // interface keyword.  There are currently supported four interfaces,
  2057 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2058 // operand to generate a function which returns its register number when
  2059 // queried.   CONST_INTER causes an operand to generate a function which
  2060 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2061 // operand to generate four functions which return the Base Register, the
  2062 // Index Register, the Scale Value, and the Offset Value of the operand when
  2063 // queried.  COND_INTER causes an operand to generate six functions which
  2064 // return the encoding code (ie - encoding bits for the instruction)
  2065 // associated with each basic boolean condition for a conditional instruction.
  2066 //
  2067 // Instructions specify two basic values for encoding.  Again, a function
  2068 // is available to check if the constant displacement is an oop. They use the
  2069 // ins_encode keyword to specify their encoding classes (which must be
  2070 // a sequence of enc_class names, and their parameters, specified in
  2071 // the encoding block), and they use the
  2072 // opcode keyword to specify, in order, their primary, secondary, and
  2073 // tertiary opcode.  Only the opcode sections which a particular instruction
  2074 // needs for encoding need to be specified.
  2075 encode %{
  2076   enc_class enc_untested %{
  2077 #ifdef ASSERT
  2078     MacroAssembler _masm(&cbuf);
  2079     __ untested("encoding");
  2080 #endif
  2081   %}
  2083   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2084     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2085                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2086   %}
  2088   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2089     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2090                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2091   %}
  2093   enc_class form3_mem_prefetch_read( memory mem ) %{
  2094     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2095                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2096   %}
  2098   enc_class form3_mem_prefetch_write( memory mem ) %{
  2099     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2100                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2101   %}
  2103   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2104     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2105     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2106     guarantee($mem$$index == R_G0_enc, "double index?");
  2107     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2108     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2109     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2110     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2111   %}
  2113   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2114     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2115     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2116     guarantee($mem$$index == R_G0_enc, "double index?");
  2117     // Load long with 2 instructions
  2118     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2119     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2120   %}
  2122   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2123   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2124     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2125     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2126   %}
  2128   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2129     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2130     if( $rs2$$reg != $rd$$reg )
  2131       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2132   %}
  2134   // Target lo half of long
  2135   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2136     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2137     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2138       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2139   %}
  2141   // Source lo half of long
  2142   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2143     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2144     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2145       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2146   %}
  2148   // Target hi half of long
  2149   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2150     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2151   %}
  2153   // Source lo half of long, and leave it sign extended.
  2154   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2155     // Sign extend low half
  2156     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2157   %}
  2159   // Source hi half of long, and leave it sign extended.
  2160   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2161     // Shift high half to low half
  2162     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2163   %}
  2165   // Source hi half of long
  2166   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2167     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2168     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2169       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2170   %}
  2172   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2173     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2174   %}
  2176   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2177     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2178     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2179   %}
  2181   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2182     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2183     // clear if nothing else is happening
  2184     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2185     // blt,a,pn done
  2186     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2187     // mov dst,-1 in delay slot
  2188     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2189   %}
  2191   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2192     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2193   %}
  2195   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2196     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2197   %}
  2199   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2200     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2201   %}
  2203   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2204     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2205   %}
  2207   enc_class move_return_pc_to_o1() %{
  2208     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2209   %}
  2211 #ifdef _LP64
  2212   /* %%% merge with enc_to_bool */
  2213   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2214     MacroAssembler _masm(&cbuf);
  2216     Register   src_reg = reg_to_register_object($src$$reg);
  2217     Register   dst_reg = reg_to_register_object($dst$$reg);
  2218     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2219   %}
  2220 #endif
  2222   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2223     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2224     MacroAssembler _masm(&cbuf);
  2226     Register   p_reg = reg_to_register_object($p$$reg);
  2227     Register   q_reg = reg_to_register_object($q$$reg);
  2228     Register   y_reg = reg_to_register_object($y$$reg);
  2229     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2231     __ subcc( p_reg, q_reg,   p_reg );
  2232     __ add  ( p_reg, y_reg, tmp_reg );
  2233     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2234   %}
  2236   enc_class form_d2i_helper(regD src, regF dst) %{
  2237     // fcmp %fcc0,$src,$src
  2238     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2239     // branch %fcc0 not-nan, predict taken
  2240     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2241     // fdtoi $src,$dst
  2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2243     // fitos $dst,$dst (if nan)
  2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2245     // clear $dst (if nan)
  2246     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2247     // carry on here...
  2248   %}
  2250   enc_class form_d2l_helper(regD src, regD dst) %{
  2251     // fcmp %fcc0,$src,$src  check for NAN
  2252     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2253     // branch %fcc0 not-nan, predict taken
  2254     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2255     // fdtox $src,$dst   convert in delay slot
  2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2257     // fxtod $dst,$dst  (if nan)
  2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2259     // clear $dst (if nan)
  2260     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2261     // carry on here...
  2262   %}
  2264   enc_class form_f2i_helper(regF src, regF dst) %{
  2265     // fcmps %fcc0,$src,$src
  2266     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2267     // branch %fcc0 not-nan, predict taken
  2268     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2269     // fstoi $src,$dst
  2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2271     // fitos $dst,$dst (if nan)
  2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2273     // clear $dst (if nan)
  2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2275     // carry on here...
  2276   %}
  2278   enc_class form_f2l_helper(regF src, regD dst) %{
  2279     // fcmps %fcc0,$src,$src
  2280     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2281     // branch %fcc0 not-nan, predict taken
  2282     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2283     // fstox $src,$dst
  2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2285     // fxtod $dst,$dst (if nan)
  2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2287     // clear $dst (if nan)
  2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2289     // carry on here...
  2290   %}
  2292   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2293   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2294   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2295   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2297   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2299   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2300   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2302   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2303     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2304   %}
  2306   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2307     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2308   %}
  2310   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2311     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2312   %}
  2314   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2315     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2316   %}
  2318   enc_class form3_convI2F(regF rs2, regF rd) %{
  2319     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2320   %}
  2322   // Encloding class for traceable jumps
  2323   enc_class form_jmpl(g3RegP dest) %{
  2324     emit_jmpl(cbuf, $dest$$reg);
  2325   %}
  2327   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2328     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2329   %}
  2331   enc_class form2_nop() %{
  2332     emit_nop(cbuf);
  2333   %}
  2335   enc_class form2_illtrap() %{
  2336     emit_illtrap(cbuf);
  2337   %}
  2340   // Compare longs and convert into -1, 0, 1.
  2341   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2342     // CMP $src1,$src2
  2343     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2344     // blt,a,pn done
  2345     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2346     // mov dst,-1 in delay slot
  2347     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2348     // bgt,a,pn done
  2349     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2350     // mov dst,1 in delay slot
  2351     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2352     // CLR    $dst
  2353     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2354   %}
  2356   enc_class enc_PartialSubtypeCheck() %{
  2357     MacroAssembler _masm(&cbuf);
  2358     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2359     __ delayed()->nop();
  2360   %}
  2362   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2363     MacroAssembler _masm(&cbuf);
  2364     Label* L = $labl$$label;
  2365     Assembler::Predict predict_taken =
  2366       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2368     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2369     __ delayed()->nop();
  2370   %}
  2372   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2373     MacroAssembler _masm(&cbuf);
  2374     Label* L = $labl$$label;
  2375     Assembler::Predict predict_taken =
  2376       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2378     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2379     __ delayed()->nop();
  2380   %}
  2382   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2383     int op = (Assembler::arith_op << 30) |
  2384              ($dst$$reg << 25) |
  2385              (Assembler::movcc_op3 << 19) |
  2386              (1 << 18) |                    // cc2 bit for 'icc'
  2387              ($cmp$$cmpcode << 14) |
  2388              (0 << 13) |                    // select register move
  2389              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2390              ($src$$reg << 0);
  2391     cbuf.insts()->emit_int32(op);
  2392   %}
  2394   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2395     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2396     int op = (Assembler::arith_op << 30) |
  2397              ($dst$$reg << 25) |
  2398              (Assembler::movcc_op3 << 19) |
  2399              (1 << 18) |                    // cc2 bit for 'icc'
  2400              ($cmp$$cmpcode << 14) |
  2401              (1 << 13) |                    // select immediate move
  2402              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2403              (simm11 << 0);
  2404     cbuf.insts()->emit_int32(op);
  2405   %}
  2407   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2408     int op = (Assembler::arith_op << 30) |
  2409              ($dst$$reg << 25) |
  2410              (Assembler::movcc_op3 << 19) |
  2411              (0 << 18) |                    // cc2 bit for 'fccX'
  2412              ($cmp$$cmpcode << 14) |
  2413              (0 << 13) |                    // select register move
  2414              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2415              ($src$$reg << 0);
  2416     cbuf.insts()->emit_int32(op);
  2417   %}
  2419   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2420     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2421     int op = (Assembler::arith_op << 30) |
  2422              ($dst$$reg << 25) |
  2423              (Assembler::movcc_op3 << 19) |
  2424              (0 << 18) |                    // cc2 bit for 'fccX'
  2425              ($cmp$$cmpcode << 14) |
  2426              (1 << 13) |                    // select immediate move
  2427              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2428              (simm11 << 0);
  2429     cbuf.insts()->emit_int32(op);
  2430   %}
  2432   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2433     int op = (Assembler::arith_op << 30) |
  2434              ($dst$$reg << 25) |
  2435              (Assembler::fpop2_op3 << 19) |
  2436              (0 << 18) |
  2437              ($cmp$$cmpcode << 14) |
  2438              (1 << 13) |                    // select register move
  2439              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2440              ($primary << 5) |              // select single, double or quad
  2441              ($src$$reg << 0);
  2442     cbuf.insts()->emit_int32(op);
  2443   %}
  2445   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2446     int op = (Assembler::arith_op << 30) |
  2447              ($dst$$reg << 25) |
  2448              (Assembler::fpop2_op3 << 19) |
  2449              (0 << 18) |
  2450              ($cmp$$cmpcode << 14) |
  2451              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2452              ($primary << 5) |              // select single, double or quad
  2453              ($src$$reg << 0);
  2454     cbuf.insts()->emit_int32(op);
  2455   %}
  2457   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2458   // the condition comes from opcode-field instead of an argument.
  2459   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2460     int op = (Assembler::arith_op << 30) |
  2461              ($dst$$reg << 25) |
  2462              (Assembler::movcc_op3 << 19) |
  2463              (1 << 18) |                    // cc2 bit for 'icc'
  2464              ($primary << 14) |
  2465              (0 << 13) |                    // select register move
  2466              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2467              ($src$$reg << 0);
  2468     cbuf.insts()->emit_int32(op);
  2469   %}
  2471   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2472     int op = (Assembler::arith_op << 30) |
  2473              ($dst$$reg << 25) |
  2474              (Assembler::movcc_op3 << 19) |
  2475              (6 << 16) |                    // cc2 bit for 'xcc'
  2476              ($primary << 14) |
  2477              (0 << 13) |                    // select register move
  2478              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2479              ($src$$reg << 0);
  2480     cbuf.insts()->emit_int32(op);
  2481   %}
  2483   enc_class Set13( immI13 src, iRegI rd ) %{
  2484     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2485   %}
  2487   enc_class SetHi22( immI src, iRegI rd ) %{
  2488     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2489   %}
  2491   enc_class Set32( immI src, iRegI rd ) %{
  2492     MacroAssembler _masm(&cbuf);
  2493     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2494   %}
  2496   enc_class call_epilog %{
  2497     if( VerifyStackAtCalls ) {
  2498       MacroAssembler _masm(&cbuf);
  2499       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2500       Register temp_reg = G3;
  2501       __ add(SP, framesize, temp_reg);
  2502       __ cmp(temp_reg, FP);
  2503       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2505   %}
  2507   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2508   // to G1 so the register allocator will not have to deal with the misaligned register
  2509   // pair.
  2510   enc_class adjust_long_from_native_call %{
  2511 #ifndef _LP64
  2512     if (returns_long()) {
  2513       //    sllx  O0,32,O0
  2514       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2515       //    srl   O1,0,O1
  2516       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2517       //    or    O0,O1,G1
  2518       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2520 #endif
  2521   %}
  2523   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2524     // CALL directly to the runtime
  2525     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2526     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2527                     /*preserve_g2=*/true);
  2528   %}
  2530   enc_class preserve_SP %{
  2531     MacroAssembler _masm(&cbuf);
  2532     __ mov(SP, L7_mh_SP_save);
  2533   %}
  2535   enc_class restore_SP %{
  2536     MacroAssembler _masm(&cbuf);
  2537     __ mov(L7_mh_SP_save, SP);
  2538   %}
  2540   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2541     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2542     // who we intended to call.
  2543     if ( !_method ) {
  2544       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2545     } else if (_optimized_virtual) {
  2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2547     } else {
  2548       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2550     if( _method ) {  // Emit stub for static call
  2551       emit_java_to_interp(cbuf);
  2553   %}
  2555   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2556     MacroAssembler _masm(&cbuf);
  2557     __ set_inst_mark();
  2558     int vtable_index = this->_vtable_index;
  2559     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2560     if (vtable_index < 0) {
  2561       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2562       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2563       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2564       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2565       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2566       // !!!!!
  2567       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2568       // emit_call_dynamic_prologue( cbuf );
  2569       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2571       address  virtual_call_oop_addr = __ inst_mark();
  2572       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2573       // who we intended to call.
  2574       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2575       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2576     } else {
  2577       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2578       // Just go thru the vtable
  2579       // get receiver klass (receiver already checked for non-null)
  2580       // If we end up going thru a c2i adapter interpreter expects method in G5
  2581       int off = __ offset();
  2582       __ load_klass(O0, G3_scratch);
  2583       int klass_load_size;
  2584       if (UseCompressedOops) {
  2585         assert(Universe::heap() != NULL, "java heap should be initialized");
  2586         if (Universe::narrow_oop_base() == NULL)
  2587           klass_load_size = 2*BytesPerInstWord;
  2588         else
  2589           klass_load_size = 3*BytesPerInstWord;
  2590       } else {
  2591         klass_load_size = 1*BytesPerInstWord;
  2593       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2594       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2595       if (Assembler::is_simm13(v_off)) {
  2596         __ ld_ptr(G3, v_off, G5_method);
  2597       } else {
  2598         // Generate 2 instructions
  2599         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2600         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2601         // ld_ptr, set_hi, set
  2602         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2603                "Unexpected instruction size(s)");
  2604         __ ld_ptr(G3, G5_method, G5_method);
  2606       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2607       // However it may very well end up in handle_wrong_method if the
  2608       // method is abstract for the particular class.
  2609       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2610       // jump to target (either compiled code or c2iadapter)
  2611       __ jmpl(G3_scratch, G0, O7);
  2612       __ delayed()->nop();
  2614   %}
  2616   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2617     MacroAssembler _masm(&cbuf);
  2619     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2620     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2621                               // we might be calling a C2I adapter which needs it.
  2623     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2624     // Load nmethod
  2625     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2627     // CALL to compiled java, indirect the contents of G3
  2628     __ set_inst_mark();
  2629     __ callr(temp_reg, G0);
  2630     __ delayed()->nop();
  2631   %}
  2633 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2634     MacroAssembler _masm(&cbuf);
  2635     Register Rdividend = reg_to_register_object($src1$$reg);
  2636     Register Rdivisor = reg_to_register_object($src2$$reg);
  2637     Register Rresult = reg_to_register_object($dst$$reg);
  2639     __ sra(Rdivisor, 0, Rdivisor);
  2640     __ sra(Rdividend, 0, Rdividend);
  2641     __ sdivx(Rdividend, Rdivisor, Rresult);
  2642 %}
  2644 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2645     MacroAssembler _masm(&cbuf);
  2647     Register Rdividend = reg_to_register_object($src1$$reg);
  2648     int divisor = $imm$$constant;
  2649     Register Rresult = reg_to_register_object($dst$$reg);
  2651     __ sra(Rdividend, 0, Rdividend);
  2652     __ sdivx(Rdividend, divisor, Rresult);
  2653 %}
  2655 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2656     MacroAssembler _masm(&cbuf);
  2657     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2658     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2659     Register Rdst  = reg_to_register_object($dst$$reg);
  2661     __ sra( Rsrc1, 0, Rsrc1 );
  2662     __ sra( Rsrc2, 0, Rsrc2 );
  2663     __ mulx( Rsrc1, Rsrc2, Rdst );
  2664     __ srlx( Rdst, 32, Rdst );
  2665 %}
  2667 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2668     MacroAssembler _masm(&cbuf);
  2669     Register Rdividend = reg_to_register_object($src1$$reg);
  2670     Register Rdivisor = reg_to_register_object($src2$$reg);
  2671     Register Rresult = reg_to_register_object($dst$$reg);
  2672     Register Rscratch = reg_to_register_object($scratch$$reg);
  2674     assert(Rdividend != Rscratch, "");
  2675     assert(Rdivisor  != Rscratch, "");
  2677     __ sra(Rdividend, 0, Rdividend);
  2678     __ sra(Rdivisor, 0, Rdivisor);
  2679     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2680     __ mulx(Rscratch, Rdivisor, Rscratch);
  2681     __ sub(Rdividend, Rscratch, Rresult);
  2682 %}
  2684 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2685     MacroAssembler _masm(&cbuf);
  2687     Register Rdividend = reg_to_register_object($src1$$reg);
  2688     int divisor = $imm$$constant;
  2689     Register Rresult = reg_to_register_object($dst$$reg);
  2690     Register Rscratch = reg_to_register_object($scratch$$reg);
  2692     assert(Rdividend != Rscratch, "");
  2694     __ sra(Rdividend, 0, Rdividend);
  2695     __ sdivx(Rdividend, divisor, Rscratch);
  2696     __ mulx(Rscratch, divisor, Rscratch);
  2697     __ sub(Rdividend, Rscratch, Rresult);
  2698 %}
  2700 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2701     MacroAssembler _masm(&cbuf);
  2703     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2704     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2706     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2707 %}
  2709 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2710     MacroAssembler _masm(&cbuf);
  2712     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2713     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2715     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2716 %}
  2718 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2719     MacroAssembler _masm(&cbuf);
  2721     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2722     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2724     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2725 %}
  2727 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2728     MacroAssembler _masm(&cbuf);
  2730     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2731     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2733     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2734 %}
  2736 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2737     MacroAssembler _masm(&cbuf);
  2739     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2740     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2742     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2743 %}
  2745 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2746     MacroAssembler _masm(&cbuf);
  2748     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2749     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2751     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2752 %}
  2754 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2755     MacroAssembler _masm(&cbuf);
  2757     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2758     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2760     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2761 %}
  2763 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2764     MacroAssembler _masm(&cbuf);
  2766     Register Roop  = reg_to_register_object($oop$$reg);
  2767     Register Rbox  = reg_to_register_object($box$$reg);
  2768     Register Rscratch = reg_to_register_object($scratch$$reg);
  2769     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2771     assert(Roop  != Rscratch, "");
  2772     assert(Roop  != Rmark, "");
  2773     assert(Rbox  != Rscratch, "");
  2774     assert(Rbox  != Rmark, "");
  2776     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2777 %}
  2779 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2780     MacroAssembler _masm(&cbuf);
  2782     Register Roop  = reg_to_register_object($oop$$reg);
  2783     Register Rbox  = reg_to_register_object($box$$reg);
  2784     Register Rscratch = reg_to_register_object($scratch$$reg);
  2785     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2787     assert(Roop  != Rscratch, "");
  2788     assert(Roop  != Rmark, "");
  2789     assert(Rbox  != Rscratch, "");
  2790     assert(Rbox  != Rmark, "");
  2792     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2793   %}
  2795   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2796     MacroAssembler _masm(&cbuf);
  2797     Register Rmem = reg_to_register_object($mem$$reg);
  2798     Register Rold = reg_to_register_object($old$$reg);
  2799     Register Rnew = reg_to_register_object($new$$reg);
  2801     // casx_under_lock picks 1 of 3 encodings:
  2802     // For 32-bit pointers you get a 32-bit CAS
  2803     // For 64-bit pointers you get a 64-bit CASX
  2804     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2805     __ cmp( Rold, Rnew );
  2806   %}
  2808   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2809     Register Rmem = reg_to_register_object($mem$$reg);
  2810     Register Rold = reg_to_register_object($old$$reg);
  2811     Register Rnew = reg_to_register_object($new$$reg);
  2813     MacroAssembler _masm(&cbuf);
  2814     __ mov(Rnew, O7);
  2815     __ casx(Rmem, Rold, O7);
  2816     __ cmp( Rold, O7 );
  2817   %}
  2819   // raw int cas, used for compareAndSwap
  2820   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2821     Register Rmem = reg_to_register_object($mem$$reg);
  2822     Register Rold = reg_to_register_object($old$$reg);
  2823     Register Rnew = reg_to_register_object($new$$reg);
  2825     MacroAssembler _masm(&cbuf);
  2826     __ mov(Rnew, O7);
  2827     __ cas(Rmem, Rold, O7);
  2828     __ cmp( Rold, O7 );
  2829   %}
  2831   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2832     Register Rres = reg_to_register_object($res$$reg);
  2834     MacroAssembler _masm(&cbuf);
  2835     __ mov(1, Rres);
  2836     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2837   %}
  2839   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2840     Register Rres = reg_to_register_object($res$$reg);
  2842     MacroAssembler _masm(&cbuf);
  2843     __ mov(1, Rres);
  2844     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2845   %}
  2847   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2848     MacroAssembler _masm(&cbuf);
  2849     Register Rdst = reg_to_register_object($dst$$reg);
  2850     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2851                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2852     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2853                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2855     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2856     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2857   %}
  2860   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2861     Label Ldone, Lloop;
  2862     MacroAssembler _masm(&cbuf);
  2864     Register   str1_reg = reg_to_register_object($str1$$reg);
  2865     Register   str2_reg = reg_to_register_object($str2$$reg);
  2866     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2867     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2868     Register result_reg = reg_to_register_object($result$$reg);
  2870     assert(result_reg != str1_reg &&
  2871            result_reg != str2_reg &&
  2872            result_reg != cnt1_reg &&
  2873            result_reg != cnt2_reg ,
  2874            "need different registers");
  2876     // Compute the minimum of the string lengths(str1_reg) and the
  2877     // difference of the string lengths (stack)
  2879     // See if the lengths are different, and calculate min in str1_reg.
  2880     // Stash diff in O7 in case we need it for a tie-breaker.
  2881     Label Lskip;
  2882     __ subcc(cnt1_reg, cnt2_reg, O7);
  2883     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2884     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2885     // cnt2 is shorter, so use its count:
  2886     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2887     __ bind(Lskip);
  2889     // reallocate cnt1_reg, cnt2_reg, result_reg
  2890     // Note:  limit_reg holds the string length pre-scaled by 2
  2891     Register limit_reg =   cnt1_reg;
  2892     Register  chr2_reg =   cnt2_reg;
  2893     Register  chr1_reg = result_reg;
  2894     // str{12} are the base pointers
  2896     // Is the minimum length zero?
  2897     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2898     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2899     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2901     // Load first characters
  2902     __ lduh(str1_reg, 0, chr1_reg);
  2903     __ lduh(str2_reg, 0, chr2_reg);
  2905     // Compare first characters
  2906     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2907     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2908     assert(chr1_reg == result_reg, "result must be pre-placed");
  2909     __ delayed()->nop();
  2912       // Check after comparing first character to see if strings are equivalent
  2913       Label LSkip2;
  2914       // Check if the strings start at same location
  2915       __ cmp(str1_reg, str2_reg);
  2916       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2917       __ delayed()->nop();
  2919       // Check if the length difference is zero (in O7)
  2920       __ cmp(G0, O7);
  2921       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2922       __ delayed()->mov(G0, result_reg);  // result is zero
  2924       // Strings might not be equal
  2925       __ bind(LSkip2);
  2928     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2929     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2930     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2932     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2933     __ add(str1_reg, limit_reg, str1_reg);
  2934     __ add(str2_reg, limit_reg, str2_reg);
  2935     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2937     // Compare the rest of the characters
  2938     __ lduh(str1_reg, limit_reg, chr1_reg);
  2939     __ bind(Lloop);
  2940     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2941     __ lduh(str2_reg, limit_reg, chr2_reg);
  2942     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2943     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2944     assert(chr1_reg == result_reg, "result must be pre-placed");
  2945     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2946     // annul LDUH if branch is not taken to prevent access past end of string
  2947     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2948     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2950     // If strings are equal up to min length, return the length difference.
  2951     __ mov(O7, result_reg);
  2953     // Otherwise, return the difference between the first mismatched chars.
  2954     __ bind(Ldone);
  2955   %}
  2957 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2958     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2959     MacroAssembler _masm(&cbuf);
  2961     Register   str1_reg = reg_to_register_object($str1$$reg);
  2962     Register   str2_reg = reg_to_register_object($str2$$reg);
  2963     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2964     Register   tmp1_reg = O7;
  2965     Register result_reg = reg_to_register_object($result$$reg);
  2967     assert(result_reg != str1_reg &&
  2968            result_reg != str2_reg &&
  2969            result_reg !=  cnt_reg &&
  2970            result_reg != tmp1_reg ,
  2971            "need different registers");
  2973     __ cmp(str1_reg, str2_reg); //same char[] ?
  2974     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2975     __ delayed()->add(G0, 1, result_reg);
  2977     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2978     __ delayed()->add(G0, 1, result_reg); // count == 0
  2980     //rename registers
  2981     Register limit_reg =    cnt_reg;
  2982     Register  chr1_reg = result_reg;
  2983     Register  chr2_reg =   tmp1_reg;
  2985     //check for alignment and position the pointers to the ends
  2986     __ or3(str1_reg, str2_reg, chr1_reg);
  2987     __ andcc(chr1_reg, 0x3, chr1_reg);
  2988     // notZero means at least one not 4-byte aligned.
  2989     // We could optimize the case when both arrays are not aligned
  2990     // but it is not frequent case and it requires additional checks.
  2991     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2992     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2994     // Compare char[] arrays aligned to 4 bytes.
  2995     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2996                           chr1_reg, chr2_reg, Ldone);
  2997     __ ba(Ldone);
  2998     __ delayed()->add(G0, 1, result_reg);
  3000     // char by char compare
  3001     __ bind(Lchar);
  3002     __ add(str1_reg, limit_reg, str1_reg);
  3003     __ add(str2_reg, limit_reg, str2_reg);
  3004     __ neg(limit_reg); //negate count
  3006     __ lduh(str1_reg, limit_reg, chr1_reg);
  3007     // Lchar_loop
  3008     __ bind(Lchar_loop);
  3009     __ lduh(str2_reg, limit_reg, chr2_reg);
  3010     __ cmp(chr1_reg, chr2_reg);
  3011     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3012     __ delayed()->mov(G0, result_reg); //not equal
  3013     __ inccc(limit_reg, sizeof(jchar));
  3014     // annul LDUH if branch is not taken to prevent access past end of string
  3015     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3016     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3018     __ add(G0, 1, result_reg);  //equal
  3020     __ bind(Ldone);
  3021   %}
  3023 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3024     Label Lvector, Ldone, Lloop;
  3025     MacroAssembler _masm(&cbuf);
  3027     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3028     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3029     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3030     Register   tmp2_reg = O7;
  3031     Register result_reg = reg_to_register_object($result$$reg);
  3033     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3034     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3036     // return true if the same array
  3037     __ cmp(ary1_reg, ary2_reg);
  3038     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3039     __ delayed()->add(G0, 1, result_reg); // equal
  3041     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3042     __ delayed()->mov(G0, result_reg);    // not equal
  3044     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3045     __ delayed()->mov(G0, result_reg);    // not equal
  3047     //load the lengths of arrays
  3048     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3049     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3051     // return false if the two arrays are not equal length
  3052     __ cmp(tmp1_reg, tmp2_reg);
  3053     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3054     __ delayed()->mov(G0, result_reg);     // not equal
  3056     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3057     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3059     // load array addresses
  3060     __ add(ary1_reg, base_offset, ary1_reg);
  3061     __ add(ary2_reg, base_offset, ary2_reg);
  3063     // renaming registers
  3064     Register chr1_reg  =  result_reg; // for characters in ary1
  3065     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3066     Register limit_reg =  tmp1_reg;   // length
  3068     // set byte count
  3069     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3071     // Compare char[] arrays aligned to 4 bytes.
  3072     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3073                           chr1_reg, chr2_reg, Ldone);
  3074     __ add(G0, 1, result_reg); // equals
  3076     __ bind(Ldone);
  3077   %}
  3079   enc_class enc_rethrow() %{
  3080     cbuf.set_insts_mark();
  3081     Register temp_reg = G3;
  3082     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3083     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3084     MacroAssembler _masm(&cbuf);
  3085 #ifdef ASSERT
  3086     __ save_frame(0);
  3087     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3088     __ sethi(last_rethrow_addrlit, L1);
  3089     Address addr(L1, last_rethrow_addrlit.low10());
  3090     __ get_pc(L2);
  3091     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3092     __ st_ptr(L2, addr);
  3093     __ restore();
  3094 #endif
  3095     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3096     __ delayed()->nop();
  3097   %}
  3099   enc_class emit_mem_nop() %{
  3100     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3101     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3102   %}
  3104   enc_class emit_fadd_nop() %{
  3105     // Generates the instruction FMOVS f31,f31
  3106     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3107   %}
  3109   enc_class emit_br_nop() %{
  3110     // Generates the instruction BPN,PN .
  3111     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3112   %}
  3114   enc_class enc_membar_acquire %{
  3115     MacroAssembler _masm(&cbuf);
  3116     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3117   %}
  3119   enc_class enc_membar_release %{
  3120     MacroAssembler _masm(&cbuf);
  3121     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3122   %}
  3124   enc_class enc_membar_volatile %{
  3125     MacroAssembler _masm(&cbuf);
  3126     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3127   %}
  3129   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3130     MacroAssembler _masm(&cbuf);
  3131     Register src_reg = reg_to_register_object($src$$reg);
  3132     Register dst_reg = reg_to_register_object($dst$$reg);
  3133     __ sllx(src_reg, 56, dst_reg);
  3134     __ srlx(dst_reg,  8, O7);
  3135     __ or3 (dst_reg, O7, dst_reg);
  3136     __ srlx(dst_reg, 16, O7);
  3137     __ or3 (dst_reg, O7, dst_reg);
  3138     __ srlx(dst_reg, 32, O7);
  3139     __ or3 (dst_reg, O7, dst_reg);
  3140   %}
  3142   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3143     MacroAssembler _masm(&cbuf);
  3144     Register src_reg = reg_to_register_object($src$$reg);
  3145     Register dst_reg = reg_to_register_object($dst$$reg);
  3146     __ sll(src_reg, 24, dst_reg);
  3147     __ srl(dst_reg,  8, O7);
  3148     __ or3(dst_reg, O7, dst_reg);
  3149     __ srl(dst_reg, 16, O7);
  3150     __ or3(dst_reg, O7, dst_reg);
  3151   %}
  3153   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3154     MacroAssembler _masm(&cbuf);
  3155     Register src_reg = reg_to_register_object($src$$reg);
  3156     Register dst_reg = reg_to_register_object($dst$$reg);
  3157     __ sllx(src_reg, 48, dst_reg);
  3158     __ srlx(dst_reg, 16, O7);
  3159     __ or3 (dst_reg, O7, dst_reg);
  3160     __ srlx(dst_reg, 32, O7);
  3161     __ or3 (dst_reg, O7, dst_reg);
  3162   %}
  3164   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3165     MacroAssembler _masm(&cbuf);
  3166     Register src_reg = reg_to_register_object($src$$reg);
  3167     Register dst_reg = reg_to_register_object($dst$$reg);
  3168     __ sllx(src_reg, 32, dst_reg);
  3169     __ srlx(dst_reg, 32, O7);
  3170     __ or3 (dst_reg, O7, dst_reg);
  3171   %}
  3173 %}
  3175 //----------FRAME--------------------------------------------------------------
  3176 // Definition of frame structure and management information.
  3177 //
  3178 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3179 //                             |   (to get allocators register number
  3180 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3181 //  r   CALLER     |        |
  3182 //  o     |        +--------+      pad to even-align allocators stack-slot
  3183 //  w     V        |  pad0  |        numbers; owned by CALLER
  3184 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3185 //  h     ^        |   in   |  5
  3186 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3187 //  |     |        |        |  3
  3188 //  |     |        +--------+
  3189 //  V     |        | old out|      Empty on Intel, window on Sparc
  3190 //        |    old |preserve|      Must be even aligned.
  3191 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3192 //        |        |   in   |  3   area for Intel ret address
  3193 //     Owned by    |preserve|      Empty on Sparc.
  3194 //       SELF      +--------+
  3195 //        |        |  pad2  |  2   pad to align old SP
  3196 //        |        +--------+  1
  3197 //        |        | locks  |  0
  3198 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3199 //        |        |  pad1  | 11   pad to align new SP
  3200 //        |        +--------+
  3201 //        |        |        | 10
  3202 //        |        | spills |  9   spills
  3203 //        V        |        |  8   (pad0 slot for callee)
  3204 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3205 //        ^        |  out   |  7
  3206 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3207 //     Owned by    +--------+
  3208 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3209 //        |    new |preserve|      Must be even-aligned.
  3210 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3211 //        |        |        |
  3212 //
  3213 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3214 //         known from SELF's arguments and the Java calling convention.
  3215 //         Region 6-7 is determined per call site.
  3216 // Note 2: If the calling convention leaves holes in the incoming argument
  3217 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3218 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3219 //         incoming area, as the Java calling convention is completely under
  3220 //         the control of the AD file.  Doubles can be sorted and packed to
  3221 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3222 //         varargs C calling conventions.
  3223 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3224 //         even aligned with pad0 as needed.
  3225 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3226 //         region 6-11 is even aligned; it may be padded out more so that
  3227 //         the region from SP to FP meets the minimum stack alignment.
  3229 frame %{
  3230   // What direction does stack grow in (assumed to be same for native & Java)
  3231   stack_direction(TOWARDS_LOW);
  3233   // These two registers define part of the calling convention
  3234   // between compiled code and the interpreter.
  3235   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3236   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3238   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3239   cisc_spilling_operand_name(indOffset);
  3241   // Number of stack slots consumed by a Monitor enter
  3242 #ifdef _LP64
  3243   sync_stack_slots(2);
  3244 #else
  3245   sync_stack_slots(1);
  3246 #endif
  3248   // Compiled code's Frame Pointer
  3249   frame_pointer(R_SP);
  3251   // Stack alignment requirement
  3252   stack_alignment(StackAlignmentInBytes);
  3253   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3254   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3256   // Number of stack slots between incoming argument block and the start of
  3257   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3258   // EPILOG must remove this many slots.
  3259   in_preserve_stack_slots(0);
  3261   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3262   // for calls to C.  Supports the var-args backing area for register parms.
  3263   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3264 #ifdef _LP64
  3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3266   varargs_C_out_slots_killed(12);
  3267 #else
  3268   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3269   varargs_C_out_slots_killed( 7);
  3270 #endif
  3272   // The after-PROLOG location of the return address.  Location of
  3273   // return address specifies a type (REG or STACK) and a number
  3274   // representing the register number (i.e. - use a register name) or
  3275   // stack slot.
  3276   return_addr(REG R_I7);          // Ret Addr is in register I7
  3278   // Body of function which returns an OptoRegs array locating
  3279   // arguments either in registers or in stack slots for calling
  3280   // java
  3281   calling_convention %{
  3282     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3284   %}
  3286   // Body of function which returns an OptoRegs array locating
  3287   // arguments either in registers or in stack slots for callin
  3288   // C.
  3289   c_calling_convention %{
  3290     // This is obviously always outgoing
  3291     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3292   %}
  3294   // Location of native (C/C++) and interpreter return values.  This is specified to
  3295   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3296   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3297   // to and from the register pairs is done by the appropriate call and epilog
  3298   // opcodes.  This simplifies the register allocator.
  3299   c_return_value %{
  3300     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3301 #ifdef     _LP64
  3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3306 #else  // !_LP64
  3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3311 #endif
  3312     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3313                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3314   %}
  3316   // Location of compiled Java return values.  Same as C
  3317   return_value %{
  3318     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3319 #ifdef     _LP64
  3320     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3321     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3322     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3323     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3324 #else  // !_LP64
  3325     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3326     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3327     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3328     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3329 #endif
  3330     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3331                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3332   %}
  3334 %}
  3337 //----------ATTRIBUTES---------------------------------------------------------
  3338 //----------Operand Attributes-------------------------------------------------
  3339 op_attrib op_cost(1);          // Required cost attribute
  3341 //----------Instruction Attributes---------------------------------------------
  3342 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3343 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3344 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3345 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3346                                    // non-matching short branch variant of some
  3347                                                             // long branch?
  3349 //----------OPERANDS-----------------------------------------------------------
  3350 // Operand definitions must precede instruction definitions for correct parsing
  3351 // in the ADLC because operands constitute user defined types which are used in
  3352 // instruction definitions.
  3354 //----------Simple Operands----------------------------------------------------
  3355 // Immediate Operands
  3356 // Integer Immediate: 32-bit
  3357 operand immI() %{
  3358   match(ConI);
  3360   op_cost(0);
  3361   // formats are generated automatically for constants and base registers
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Integer Immediate: 8-bit
  3367 operand immI8() %{
  3368   predicate(Assembler::is_simm8(n->get_int()));
  3369   match(ConI);
  3370   op_cost(0);
  3371   format %{ %}
  3372   interface(CONST_INTER);
  3373 %}
  3375 // Integer Immediate: 13-bit
  3376 operand immI13() %{
  3377   predicate(Assembler::is_simm13(n->get_int()));
  3378   match(ConI);
  3379   op_cost(0);
  3381   format %{ %}
  3382   interface(CONST_INTER);
  3383 %}
  3385 // Integer Immediate: 13-bit minus 7
  3386 operand immI13m7() %{
  3387   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3388   match(ConI);
  3389   op_cost(0);
  3391   format %{ %}
  3392   interface(CONST_INTER);
  3393 %}
  3395 // Integer Immediate: 16-bit
  3396 operand immI16() %{
  3397   predicate(Assembler::is_simm16(n->get_int()));
  3398   match(ConI);
  3399   op_cost(0);
  3400   format %{ %}
  3401   interface(CONST_INTER);
  3402 %}
  3404 // Unsigned (positive) Integer Immediate: 13-bit
  3405 operand immU13() %{
  3406   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3407   match(ConI);
  3408   op_cost(0);
  3410   format %{ %}
  3411   interface(CONST_INTER);
  3412 %}
  3414 // Integer Immediate: 6-bit
  3415 operand immU6() %{
  3416   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3417   match(ConI);
  3418   op_cost(0);
  3419   format %{ %}
  3420   interface(CONST_INTER);
  3421 %}
  3423 // Integer Immediate: 11-bit
  3424 operand immI11() %{
  3425   predicate(Assembler::is_simm11(n->get_int()));
  3426   match(ConI);
  3427   op_cost(0);
  3428   format %{ %}
  3429   interface(CONST_INTER);
  3430 %}
  3432 // Integer Immediate: 5-bit
  3433 operand immI5() %{
  3434   predicate(Assembler::is_simm5(n->get_int()));
  3435   match(ConI);
  3436   op_cost(0);
  3437   format %{ %}
  3438   interface(CONST_INTER);
  3439 %}
  3441 // Integer Immediate: 0-bit
  3442 operand immI0() %{
  3443   predicate(n->get_int() == 0);
  3444   match(ConI);
  3445   op_cost(0);
  3447   format %{ %}
  3448   interface(CONST_INTER);
  3449 %}
  3451 // Integer Immediate: the value 10
  3452 operand immI10() %{
  3453   predicate(n->get_int() == 10);
  3454   match(ConI);
  3455   op_cost(0);
  3457   format %{ %}
  3458   interface(CONST_INTER);
  3459 %}
  3461 // Integer Immediate: the values 0-31
  3462 operand immU5() %{
  3463   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3464   match(ConI);
  3465   op_cost(0);
  3467   format %{ %}
  3468   interface(CONST_INTER);
  3469 %}
  3471 // Integer Immediate: the values 1-31
  3472 operand immI_1_31() %{
  3473   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3474   match(ConI);
  3475   op_cost(0);
  3477   format %{ %}
  3478   interface(CONST_INTER);
  3479 %}
  3481 // Integer Immediate: the values 32-63
  3482 operand immI_32_63() %{
  3483   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3484   match(ConI);
  3485   op_cost(0);
  3487   format %{ %}
  3488   interface(CONST_INTER);
  3489 %}
  3491 // Immediates for special shifts (sign extend)
  3493 // Integer Immediate: the value 16
  3494 operand immI_16() %{
  3495   predicate(n->get_int() == 16);
  3496   match(ConI);
  3497   op_cost(0);
  3499   format %{ %}
  3500   interface(CONST_INTER);
  3501 %}
  3503 // Integer Immediate: the value 24
  3504 operand immI_24() %{
  3505   predicate(n->get_int() == 24);
  3506   match(ConI);
  3507   op_cost(0);
  3509   format %{ %}
  3510   interface(CONST_INTER);
  3511 %}
  3513 // Integer Immediate: the value 255
  3514 operand immI_255() %{
  3515   predicate( n->get_int() == 255 );
  3516   match(ConI);
  3517   op_cost(0);
  3519   format %{ %}
  3520   interface(CONST_INTER);
  3521 %}
  3523 // Integer Immediate: the value 65535
  3524 operand immI_65535() %{
  3525   predicate(n->get_int() == 65535);
  3526   match(ConI);
  3527   op_cost(0);
  3529   format %{ %}
  3530   interface(CONST_INTER);
  3531 %}
  3533 // Long Immediate: the value FF
  3534 operand immL_FF() %{
  3535   predicate( n->get_long() == 0xFFL );
  3536   match(ConL);
  3537   op_cost(0);
  3539   format %{ %}
  3540   interface(CONST_INTER);
  3541 %}
  3543 // Long Immediate: the value FFFF
  3544 operand immL_FFFF() %{
  3545   predicate( n->get_long() == 0xFFFFL );
  3546   match(ConL);
  3547   op_cost(0);
  3549   format %{ %}
  3550   interface(CONST_INTER);
  3551 %}
  3553 // Pointer Immediate: 32 or 64-bit
  3554 operand immP() %{
  3555   match(ConP);
  3557   op_cost(5);
  3558   // formats are generated automatically for constants and base registers
  3559   format %{ %}
  3560   interface(CONST_INTER);
  3561 %}
  3563 #ifdef _LP64
  3564 // Pointer Immediate: 64-bit
  3565 operand immP_set() %{
  3566   predicate(!VM_Version::is_niagara_plus());
  3567   match(ConP);
  3569   op_cost(5);
  3570   // formats are generated automatically for constants and base registers
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // Pointer Immediate: 64-bit
  3576 // From Niagara2 processors on a load should be better than materializing.
  3577 operand immP_load() %{
  3578   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3579   match(ConP);
  3581   op_cost(5);
  3582   // formats are generated automatically for constants and base registers
  3583   format %{ %}
  3584   interface(CONST_INTER);
  3585 %}
  3587 // Pointer Immediate: 64-bit
  3588 operand immP_no_oop_cheap() %{
  3589   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3590   match(ConP);
  3592   op_cost(5);
  3593   // formats are generated automatically for constants and base registers
  3594   format %{ %}
  3595   interface(CONST_INTER);
  3596 %}
  3597 #endif
  3599 operand immP13() %{
  3600   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3601   match(ConP);
  3602   op_cost(0);
  3604   format %{ %}
  3605   interface(CONST_INTER);
  3606 %}
  3608 operand immP0() %{
  3609   predicate(n->get_ptr() == 0);
  3610   match(ConP);
  3611   op_cost(0);
  3613   format %{ %}
  3614   interface(CONST_INTER);
  3615 %}
  3617 operand immP_poll() %{
  3618   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3619   match(ConP);
  3621   // formats are generated automatically for constants and base registers
  3622   format %{ %}
  3623   interface(CONST_INTER);
  3624 %}
  3626 // Pointer Immediate
  3627 operand immN()
  3628 %{
  3629   match(ConN);
  3631   op_cost(10);
  3632   format %{ %}
  3633   interface(CONST_INTER);
  3634 %}
  3636 // NULL Pointer Immediate
  3637 operand immN0()
  3638 %{
  3639   predicate(n->get_narrowcon() == 0);
  3640   match(ConN);
  3642   op_cost(0);
  3643   format %{ %}
  3644   interface(CONST_INTER);
  3645 %}
  3647 operand immL() %{
  3648   match(ConL);
  3649   op_cost(40);
  3650   // formats are generated automatically for constants and base registers
  3651   format %{ %}
  3652   interface(CONST_INTER);
  3653 %}
  3655 operand immL0() %{
  3656   predicate(n->get_long() == 0L);
  3657   match(ConL);
  3658   op_cost(0);
  3659   // formats are generated automatically for constants and base registers
  3660   format %{ %}
  3661   interface(CONST_INTER);
  3662 %}
  3664 // Integer Immediate: 5-bit
  3665 operand immL5() %{
  3666   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3667   match(ConL);
  3668   op_cost(0);
  3669   format %{ %}
  3670   interface(CONST_INTER);
  3671 %}
  3673 // Long Immediate: 13-bit
  3674 operand immL13() %{
  3675   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3676   match(ConL);
  3677   op_cost(0);
  3679   format %{ %}
  3680   interface(CONST_INTER);
  3681 %}
  3683 // Long Immediate: 13-bit minus 7
  3684 operand immL13m7() %{
  3685   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3686   match(ConL);
  3687   op_cost(0);
  3689   format %{ %}
  3690   interface(CONST_INTER);
  3691 %}
  3693 // Long Immediate: low 32-bit mask
  3694 operand immL_32bits() %{
  3695   predicate(n->get_long() == 0xFFFFFFFFL);
  3696   match(ConL);
  3697   op_cost(0);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 // Long Immediate: cheap (materialize in <= 3 instructions)
  3704 operand immL_cheap() %{
  3705   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3706   match(ConL);
  3707   op_cost(0);
  3709   format %{ %}
  3710   interface(CONST_INTER);
  3711 %}
  3713 // Long Immediate: expensive (materialize in > 3 instructions)
  3714 operand immL_expensive() %{
  3715   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3716   match(ConL);
  3717   op_cost(0);
  3719   format %{ %}
  3720   interface(CONST_INTER);
  3721 %}
  3723 // Double Immediate
  3724 operand immD() %{
  3725   match(ConD);
  3727   op_cost(40);
  3728   format %{ %}
  3729   interface(CONST_INTER);
  3730 %}
  3732 operand immD0() %{
  3733 #ifdef _LP64
  3734   // on 64-bit architectures this comparision is faster
  3735   predicate(jlong_cast(n->getd()) == 0);
  3736 #else
  3737   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3738 #endif
  3739   match(ConD);
  3741   op_cost(0);
  3742   format %{ %}
  3743   interface(CONST_INTER);
  3744 %}
  3746 // Float Immediate
  3747 operand immF() %{
  3748   match(ConF);
  3750   op_cost(20);
  3751   format %{ %}
  3752   interface(CONST_INTER);
  3753 %}
  3755 // Float Immediate: 0
  3756 operand immF0() %{
  3757   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3758   match(ConF);
  3760   op_cost(0);
  3761   format %{ %}
  3762   interface(CONST_INTER);
  3763 %}
  3765 // Integer Register Operands
  3766 // Integer Register
  3767 operand iRegI() %{
  3768   constraint(ALLOC_IN_RC(int_reg));
  3769   match(RegI);
  3771   match(notemp_iRegI);
  3772   match(g1RegI);
  3773   match(o0RegI);
  3774   match(iRegIsafe);
  3776   format %{ %}
  3777   interface(REG_INTER);
  3778 %}
  3780 operand notemp_iRegI() %{
  3781   constraint(ALLOC_IN_RC(notemp_int_reg));
  3782   match(RegI);
  3784   match(o0RegI);
  3786   format %{ %}
  3787   interface(REG_INTER);
  3788 %}
  3790 operand o0RegI() %{
  3791   constraint(ALLOC_IN_RC(o0_regI));
  3792   match(iRegI);
  3794   format %{ %}
  3795   interface(REG_INTER);
  3796 %}
  3798 // Pointer Register
  3799 operand iRegP() %{
  3800   constraint(ALLOC_IN_RC(ptr_reg));
  3801   match(RegP);
  3803   match(lock_ptr_RegP);
  3804   match(g1RegP);
  3805   match(g2RegP);
  3806   match(g3RegP);
  3807   match(g4RegP);
  3808   match(i0RegP);
  3809   match(o0RegP);
  3810   match(o1RegP);
  3811   match(l7RegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand sp_ptr_RegP() %{
  3818   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3819   match(RegP);
  3820   match(iRegP);
  3822   format %{ %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand lock_ptr_RegP() %{
  3827   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3828   match(RegP);
  3829   match(i0RegP);
  3830   match(o0RegP);
  3831   match(o1RegP);
  3832   match(l7RegP);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3838 operand g1RegP() %{
  3839   constraint(ALLOC_IN_RC(g1_regP));
  3840   match(iRegP);
  3842   format %{ %}
  3843   interface(REG_INTER);
  3844 %}
  3846 operand g2RegP() %{
  3847   constraint(ALLOC_IN_RC(g2_regP));
  3848   match(iRegP);
  3850   format %{ %}
  3851   interface(REG_INTER);
  3852 %}
  3854 operand g3RegP() %{
  3855   constraint(ALLOC_IN_RC(g3_regP));
  3856   match(iRegP);
  3858   format %{ %}
  3859   interface(REG_INTER);
  3860 %}
  3862 operand g1RegI() %{
  3863   constraint(ALLOC_IN_RC(g1_regI));
  3864   match(iRegI);
  3866   format %{ %}
  3867   interface(REG_INTER);
  3868 %}
  3870 operand g3RegI() %{
  3871   constraint(ALLOC_IN_RC(g3_regI));
  3872   match(iRegI);
  3874   format %{ %}
  3875   interface(REG_INTER);
  3876 %}
  3878 operand g4RegI() %{
  3879   constraint(ALLOC_IN_RC(g4_regI));
  3880   match(iRegI);
  3882   format %{ %}
  3883   interface(REG_INTER);
  3884 %}
  3886 operand g4RegP() %{
  3887   constraint(ALLOC_IN_RC(g4_regP));
  3888   match(iRegP);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 operand i0RegP() %{
  3895   constraint(ALLOC_IN_RC(i0_regP));
  3896   match(iRegP);
  3898   format %{ %}
  3899   interface(REG_INTER);
  3900 %}
  3902 operand o0RegP() %{
  3903   constraint(ALLOC_IN_RC(o0_regP));
  3904   match(iRegP);
  3906   format %{ %}
  3907   interface(REG_INTER);
  3908 %}
  3910 operand o1RegP() %{
  3911   constraint(ALLOC_IN_RC(o1_regP));
  3912   match(iRegP);
  3914   format %{ %}
  3915   interface(REG_INTER);
  3916 %}
  3918 operand o2RegP() %{
  3919   constraint(ALLOC_IN_RC(o2_regP));
  3920   match(iRegP);
  3922   format %{ %}
  3923   interface(REG_INTER);
  3924 %}
  3926 operand o7RegP() %{
  3927   constraint(ALLOC_IN_RC(o7_regP));
  3928   match(iRegP);
  3930   format %{ %}
  3931   interface(REG_INTER);
  3932 %}
  3934 operand l7RegP() %{
  3935   constraint(ALLOC_IN_RC(l7_regP));
  3936   match(iRegP);
  3938   format %{ %}
  3939   interface(REG_INTER);
  3940 %}
  3942 operand o7RegI() %{
  3943   constraint(ALLOC_IN_RC(o7_regI));
  3944   match(iRegI);
  3946   format %{ %}
  3947   interface(REG_INTER);
  3948 %}
  3950 operand iRegN() %{
  3951   constraint(ALLOC_IN_RC(int_reg));
  3952   match(RegN);
  3954   format %{ %}
  3955   interface(REG_INTER);
  3956 %}
  3958 // Long Register
  3959 operand iRegL() %{
  3960   constraint(ALLOC_IN_RC(long_reg));
  3961   match(RegL);
  3963   format %{ %}
  3964   interface(REG_INTER);
  3965 %}
  3967 operand o2RegL() %{
  3968   constraint(ALLOC_IN_RC(o2_regL));
  3969   match(iRegL);
  3971   format %{ %}
  3972   interface(REG_INTER);
  3973 %}
  3975 operand o7RegL() %{
  3976   constraint(ALLOC_IN_RC(o7_regL));
  3977   match(iRegL);
  3979   format %{ %}
  3980   interface(REG_INTER);
  3981 %}
  3983 operand g1RegL() %{
  3984   constraint(ALLOC_IN_RC(g1_regL));
  3985   match(iRegL);
  3987   format %{ %}
  3988   interface(REG_INTER);
  3989 %}
  3991 operand g3RegL() %{
  3992   constraint(ALLOC_IN_RC(g3_regL));
  3993   match(iRegL);
  3995   format %{ %}
  3996   interface(REG_INTER);
  3997 %}
  3999 // Int Register safe
  4000 // This is 64bit safe
  4001 operand iRegIsafe() %{
  4002   constraint(ALLOC_IN_RC(long_reg));
  4004   match(iRegI);
  4006   format %{ %}
  4007   interface(REG_INTER);
  4008 %}
  4010 // Condition Code Flag Register
  4011 operand flagsReg() %{
  4012   constraint(ALLOC_IN_RC(int_flags));
  4013   match(RegFlags);
  4015   format %{ "ccr" %} // both ICC and XCC
  4016   interface(REG_INTER);
  4017 %}
  4019 // Condition Code Register, unsigned comparisons.
  4020 operand flagsRegU() %{
  4021   constraint(ALLOC_IN_RC(int_flags));
  4022   match(RegFlags);
  4024   format %{ "icc_U" %}
  4025   interface(REG_INTER);
  4026 %}
  4028 // Condition Code Register, pointer comparisons.
  4029 operand flagsRegP() %{
  4030   constraint(ALLOC_IN_RC(int_flags));
  4031   match(RegFlags);
  4033 #ifdef _LP64
  4034   format %{ "xcc_P" %}
  4035 #else
  4036   format %{ "icc_P" %}
  4037 #endif
  4038   interface(REG_INTER);
  4039 %}
  4041 // Condition Code Register, long comparisons.
  4042 operand flagsRegL() %{
  4043   constraint(ALLOC_IN_RC(int_flags));
  4044   match(RegFlags);
  4046   format %{ "xcc_L" %}
  4047   interface(REG_INTER);
  4048 %}
  4050 // Condition Code Register, floating comparisons, unordered same as "less".
  4051 operand flagsRegF() %{
  4052   constraint(ALLOC_IN_RC(float_flags));
  4053   match(RegFlags);
  4054   match(flagsRegF0);
  4056   format %{ %}
  4057   interface(REG_INTER);
  4058 %}
  4060 operand flagsRegF0() %{
  4061   constraint(ALLOC_IN_RC(float_flag0));
  4062   match(RegFlags);
  4064   format %{ %}
  4065   interface(REG_INTER);
  4066 %}
  4069 // Condition Code Flag Register used by long compare
  4070 operand flagsReg_long_LTGE() %{
  4071   constraint(ALLOC_IN_RC(int_flags));
  4072   match(RegFlags);
  4073   format %{ "icc_LTGE" %}
  4074   interface(REG_INTER);
  4075 %}
  4076 operand flagsReg_long_EQNE() %{
  4077   constraint(ALLOC_IN_RC(int_flags));
  4078   match(RegFlags);
  4079   format %{ "icc_EQNE" %}
  4080   interface(REG_INTER);
  4081 %}
  4082 operand flagsReg_long_LEGT() %{
  4083   constraint(ALLOC_IN_RC(int_flags));
  4084   match(RegFlags);
  4085   format %{ "icc_LEGT" %}
  4086   interface(REG_INTER);
  4087 %}
  4090 operand regD() %{
  4091   constraint(ALLOC_IN_RC(dflt_reg));
  4092   match(RegD);
  4094   match(regD_low);
  4096   format %{ %}
  4097   interface(REG_INTER);
  4098 %}
  4100 operand regF() %{
  4101   constraint(ALLOC_IN_RC(sflt_reg));
  4102   match(RegF);
  4104   format %{ %}
  4105   interface(REG_INTER);
  4106 %}
  4108 operand regD_low() %{
  4109   constraint(ALLOC_IN_RC(dflt_low_reg));
  4110   match(regD);
  4112   format %{ %}
  4113   interface(REG_INTER);
  4114 %}
  4116 // Special Registers
  4118 // Method Register
  4119 operand inline_cache_regP(iRegP reg) %{
  4120   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4121   match(reg);
  4122   format %{ %}
  4123   interface(REG_INTER);
  4124 %}
  4126 operand interpreter_method_oop_regP(iRegP reg) %{
  4127   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4128   match(reg);
  4129   format %{ %}
  4130   interface(REG_INTER);
  4131 %}
  4134 //----------Complex Operands---------------------------------------------------
  4135 // Indirect Memory Reference
  4136 operand indirect(sp_ptr_RegP reg) %{
  4137   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4138   match(reg);
  4140   op_cost(100);
  4141   format %{ "[$reg]" %}
  4142   interface(MEMORY_INTER) %{
  4143     base($reg);
  4144     index(0x0);
  4145     scale(0x0);
  4146     disp(0x0);
  4147   %}
  4148 %}
  4150 // Indirect with simm13 Offset
  4151 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4152   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4153   match(AddP reg offset);
  4155   op_cost(100);
  4156   format %{ "[$reg + $offset]" %}
  4157   interface(MEMORY_INTER) %{
  4158     base($reg);
  4159     index(0x0);
  4160     scale(0x0);
  4161     disp($offset);
  4162   %}
  4163 %}
  4165 // Indirect with simm13 Offset minus 7
  4166 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4167   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4168   match(AddP reg offset);
  4170   op_cost(100);
  4171   format %{ "[$reg + $offset]" %}
  4172   interface(MEMORY_INTER) %{
  4173     base($reg);
  4174     index(0x0);
  4175     scale(0x0);
  4176     disp($offset);
  4177   %}
  4178 %}
  4180 // Note:  Intel has a swapped version also, like this:
  4181 //operand indOffsetX(iRegI reg, immP offset) %{
  4182 //  constraint(ALLOC_IN_RC(int_reg));
  4183 //  match(AddP offset reg);
  4184 //
  4185 //  op_cost(100);
  4186 //  format %{ "[$reg + $offset]" %}
  4187 //  interface(MEMORY_INTER) %{
  4188 //    base($reg);
  4189 //    index(0x0);
  4190 //    scale(0x0);
  4191 //    disp($offset);
  4192 //  %}
  4193 //%}
  4194 //// However, it doesn't make sense for SPARC, since
  4195 // we have no particularly good way to embed oops in
  4196 // single instructions.
  4198 // Indirect with Register Index
  4199 operand indIndex(iRegP addr, iRegX index) %{
  4200   constraint(ALLOC_IN_RC(ptr_reg));
  4201   match(AddP addr index);
  4203   op_cost(100);
  4204   format %{ "[$addr + $index]" %}
  4205   interface(MEMORY_INTER) %{
  4206     base($addr);
  4207     index($index);
  4208     scale(0x0);
  4209     disp(0x0);
  4210   %}
  4211 %}
  4213 //----------Special Memory Operands--------------------------------------------
  4214 // Stack Slot Operand - This operand is used for loading and storing temporary
  4215 //                      values on the stack where a match requires a value to
  4216 //                      flow through memory.
  4217 operand stackSlotI(sRegI reg) %{
  4218   constraint(ALLOC_IN_RC(stack_slots));
  4219   op_cost(100);
  4220   //match(RegI);
  4221   format %{ "[$reg]" %}
  4222   interface(MEMORY_INTER) %{
  4223     base(0xE);   // R_SP
  4224     index(0x0);
  4225     scale(0x0);
  4226     disp($reg);  // Stack Offset
  4227   %}
  4228 %}
  4230 operand stackSlotP(sRegP reg) %{
  4231   constraint(ALLOC_IN_RC(stack_slots));
  4232   op_cost(100);
  4233   //match(RegP);
  4234   format %{ "[$reg]" %}
  4235   interface(MEMORY_INTER) %{
  4236     base(0xE);   // R_SP
  4237     index(0x0);
  4238     scale(0x0);
  4239     disp($reg);  // Stack Offset
  4240   %}
  4241 %}
  4243 operand stackSlotF(sRegF reg) %{
  4244   constraint(ALLOC_IN_RC(stack_slots));
  4245   op_cost(100);
  4246   //match(RegF);
  4247   format %{ "[$reg]" %}
  4248   interface(MEMORY_INTER) %{
  4249     base(0xE);   // R_SP
  4250     index(0x0);
  4251     scale(0x0);
  4252     disp($reg);  // Stack Offset
  4253   %}
  4254 %}
  4255 operand stackSlotD(sRegD reg) %{
  4256   constraint(ALLOC_IN_RC(stack_slots));
  4257   op_cost(100);
  4258   //match(RegD);
  4259   format %{ "[$reg]" %}
  4260   interface(MEMORY_INTER) %{
  4261     base(0xE);   // R_SP
  4262     index(0x0);
  4263     scale(0x0);
  4264     disp($reg);  // Stack Offset
  4265   %}
  4266 %}
  4267 operand stackSlotL(sRegL reg) %{
  4268   constraint(ALLOC_IN_RC(stack_slots));
  4269   op_cost(100);
  4270   //match(RegL);
  4271   format %{ "[$reg]" %}
  4272   interface(MEMORY_INTER) %{
  4273     base(0xE);   // R_SP
  4274     index(0x0);
  4275     scale(0x0);
  4276     disp($reg);  // Stack Offset
  4277   %}
  4278 %}
  4280 // Operands for expressing Control Flow
  4281 // NOTE:  Label is a predefined operand which should not be redefined in
  4282 //        the AD file.  It is generically handled within the ADLC.
  4284 //----------Conditional Branch Operands----------------------------------------
  4285 // Comparison Op  - This is the operation of the comparison, and is limited to
  4286 //                  the following set of codes:
  4287 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4288 //
  4289 // Other attributes of the comparison, such as unsignedness, are specified
  4290 // by the comparison instruction that sets a condition code flags register.
  4291 // That result is represented by a flags operand whose subtype is appropriate
  4292 // to the unsignedness (etc.) of the comparison.
  4293 //
  4294 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4295 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4296 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4298 operand cmpOp() %{
  4299   match(Bool);
  4301   format %{ "" %}
  4302   interface(COND_INTER) %{
  4303     equal(0x1);
  4304     not_equal(0x9);
  4305     less(0x3);
  4306     greater_equal(0xB);
  4307     less_equal(0x2);
  4308     greater(0xA);
  4309   %}
  4310 %}
  4312 // Comparison Op, unsigned
  4313 operand cmpOpU() %{
  4314   match(Bool);
  4316   format %{ "u" %}
  4317   interface(COND_INTER) %{
  4318     equal(0x1);
  4319     not_equal(0x9);
  4320     less(0x5);
  4321     greater_equal(0xD);
  4322     less_equal(0x4);
  4323     greater(0xC);
  4324   %}
  4325 %}
  4327 // Comparison Op, pointer (same as unsigned)
  4328 operand cmpOpP() %{
  4329   match(Bool);
  4331   format %{ "p" %}
  4332   interface(COND_INTER) %{
  4333     equal(0x1);
  4334     not_equal(0x9);
  4335     less(0x5);
  4336     greater_equal(0xD);
  4337     less_equal(0x4);
  4338     greater(0xC);
  4339   %}
  4340 %}
  4342 // Comparison Op, branch-register encoding
  4343 operand cmpOp_reg() %{
  4344   match(Bool);
  4346   format %{ "" %}
  4347   interface(COND_INTER) %{
  4348     equal        (0x1);
  4349     not_equal    (0x5);
  4350     less         (0x3);
  4351     greater_equal(0x7);
  4352     less_equal   (0x2);
  4353     greater      (0x6);
  4354   %}
  4355 %}
  4357 // Comparison Code, floating, unordered same as less
  4358 operand cmpOpF() %{
  4359   match(Bool);
  4361   format %{ "fl" %}
  4362   interface(COND_INTER) %{
  4363     equal(0x9);
  4364     not_equal(0x1);
  4365     less(0x3);
  4366     greater_equal(0xB);
  4367     less_equal(0xE);
  4368     greater(0x6);
  4369   %}
  4370 %}
  4372 // Used by long compare
  4373 operand cmpOp_commute() %{
  4374   match(Bool);
  4376   format %{ "" %}
  4377   interface(COND_INTER) %{
  4378     equal(0x1);
  4379     not_equal(0x9);
  4380     less(0xA);
  4381     greater_equal(0x2);
  4382     less_equal(0xB);
  4383     greater(0x3);
  4384   %}
  4385 %}
  4387 //----------OPERAND CLASSES----------------------------------------------------
  4388 // Operand Classes are groups of operands that are used to simplify
  4389 // instruction definitions by not requiring the AD writer to specify separate
  4390 // instructions for every form of operand when the instruction accepts
  4391 // multiple operand types with the same basic encoding and format.  The classic
  4392 // case of this is memory operands.
  4393 opclass memory( indirect, indOffset13, indIndex );
  4394 opclass indIndexMemory( indIndex );
  4396 //----------PIPELINE-----------------------------------------------------------
  4397 pipeline %{
  4399 //----------ATTRIBUTES---------------------------------------------------------
  4400 attributes %{
  4401   fixed_size_instructions;           // Fixed size instructions
  4402   branch_has_delay_slot;             // Branch has delay slot following
  4403   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4404   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4405   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4406   instruction_fetch_units = 1;       // of 16 bytes
  4408   // List of nop instructions
  4409   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4410 %}
  4412 //----------RESOURCES----------------------------------------------------------
  4413 // Resources are the functional units available to the machine
  4414 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4416 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4417 // Pipeline Description specifies the stages in the machine's pipeline
  4419 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4421 //----------PIPELINE CLASSES---------------------------------------------------
  4422 // Pipeline Classes describe the stages in which input and output are
  4423 // referenced by the hardware pipeline.
  4425 // Integer ALU reg-reg operation
  4426 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4427     single_instruction;
  4428     dst   : E(write);
  4429     src1  : R(read);
  4430     src2  : R(read);
  4431     IALU  : R;
  4432 %}
  4434 // Integer ALU reg-reg long operation
  4435 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4436     instruction_count(2);
  4437     dst   : E(write);
  4438     src1  : R(read);
  4439     src2  : R(read);
  4440     IALU  : R;
  4441     IALU  : R;
  4442 %}
  4444 // Integer ALU reg-reg long dependent operation
  4445 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4446     instruction_count(1); multiple_bundles;
  4447     dst   : E(write);
  4448     src1  : R(read);
  4449     src2  : R(read);
  4450     cr    : E(write);
  4451     IALU  : R(2);
  4452 %}
  4454 // Integer ALU reg-imm operaion
  4455 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4456     single_instruction;
  4457     dst   : E(write);
  4458     src1  : R(read);
  4459     IALU  : R;
  4460 %}
  4462 // Integer ALU reg-reg operation with condition code
  4463 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4464     single_instruction;
  4465     dst   : E(write);
  4466     cr    : E(write);
  4467     src1  : R(read);
  4468     src2  : R(read);
  4469     IALU  : R;
  4470 %}
  4472 // Integer ALU reg-imm operation with condition code
  4473 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4474     single_instruction;
  4475     dst   : E(write);
  4476     cr    : E(write);
  4477     src1  : R(read);
  4478     IALU  : R;
  4479 %}
  4481 // Integer ALU zero-reg operation
  4482 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4483     single_instruction;
  4484     dst   : E(write);
  4485     src2  : R(read);
  4486     IALU  : R;
  4487 %}
  4489 // Integer ALU zero-reg operation with condition code only
  4490 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4491     single_instruction;
  4492     cr    : E(write);
  4493     src   : R(read);
  4494     IALU  : R;
  4495 %}
  4497 // Integer ALU reg-reg operation with condition code only
  4498 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4499     single_instruction;
  4500     cr    : E(write);
  4501     src1  : R(read);
  4502     src2  : R(read);
  4503     IALU  : R;
  4504 %}
  4506 // Integer ALU reg-imm operation with condition code only
  4507 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4508     single_instruction;
  4509     cr    : E(write);
  4510     src1  : R(read);
  4511     IALU  : R;
  4512 %}
  4514 // Integer ALU reg-reg-zero operation with condition code only
  4515 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4516     single_instruction;
  4517     cr    : E(write);
  4518     src1  : R(read);
  4519     src2  : R(read);
  4520     IALU  : R;
  4521 %}
  4523 // Integer ALU reg-imm-zero operation with condition code only
  4524 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4525     single_instruction;
  4526     cr    : E(write);
  4527     src1  : R(read);
  4528     IALU  : R;
  4529 %}
  4531 // Integer ALU reg-reg operation with condition code, src1 modified
  4532 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4533     single_instruction;
  4534     cr    : E(write);
  4535     src1  : E(write);
  4536     src1  : R(read);
  4537     src2  : R(read);
  4538     IALU  : R;
  4539 %}
  4541 // Integer ALU reg-imm operation with condition code, src1 modified
  4542 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4543     single_instruction;
  4544     cr    : E(write);
  4545     src1  : E(write);
  4546     src1  : R(read);
  4547     IALU  : R;
  4548 %}
  4550 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4551     multiple_bundles;
  4552     dst   : E(write)+4;
  4553     cr    : E(write);
  4554     src1  : R(read);
  4555     src2  : R(read);
  4556     IALU  : R(3);
  4557     BR    : R(2);
  4558 %}
  4560 // Integer ALU operation
  4561 pipe_class ialu_none(iRegI dst) %{
  4562     single_instruction;
  4563     dst   : E(write);
  4564     IALU  : R;
  4565 %}
  4567 // Integer ALU reg operation
  4568 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4569     single_instruction; may_have_no_code;
  4570     dst   : E(write);
  4571     src   : R(read);
  4572     IALU  : R;
  4573 %}
  4575 // Integer ALU reg conditional operation
  4576 // This instruction has a 1 cycle stall, and cannot execute
  4577 // in the same cycle as the instruction setting the condition
  4578 // code. We kludge this by pretending to read the condition code
  4579 // 1 cycle earlier, and by marking the functional units as busy
  4580 // for 2 cycles with the result available 1 cycle later than
  4581 // is really the case.
  4582 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4583     single_instruction;
  4584     op2_out : C(write);
  4585     op1     : R(read);
  4586     cr      : R(read);       // This is really E, with a 1 cycle stall
  4587     BR      : R(2);
  4588     MS      : R(2);
  4589 %}
  4591 #ifdef _LP64
  4592 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4593     instruction_count(1); multiple_bundles;
  4594     dst     : C(write)+1;
  4595     src     : R(read)+1;
  4596     IALU    : R(1);
  4597     BR      : E(2);
  4598     MS      : E(2);
  4599 %}
  4600 #endif
  4602 // Integer ALU reg operation
  4603 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4604     single_instruction; may_have_no_code;
  4605     dst   : E(write);
  4606     src   : R(read);
  4607     IALU  : R;
  4608 %}
  4609 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4610     single_instruction; may_have_no_code;
  4611     dst   : E(write);
  4612     src   : R(read);
  4613     IALU  : R;
  4614 %}
  4616 // Two integer ALU reg operations
  4617 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4618     instruction_count(2);
  4619     dst   : E(write);
  4620     src   : R(read);
  4621     A0    : R;
  4622     A1    : R;
  4623 %}
  4625 // Two integer ALU reg operations
  4626 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4627     instruction_count(2); may_have_no_code;
  4628     dst   : E(write);
  4629     src   : R(read);
  4630     A0    : R;
  4631     A1    : R;
  4632 %}
  4634 // Integer ALU imm operation
  4635 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4636     single_instruction;
  4637     dst   : E(write);
  4638     IALU  : R;
  4639 %}
  4641 // Integer ALU reg-reg with carry operation
  4642 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4643     single_instruction;
  4644     dst   : E(write);
  4645     src1  : R(read);
  4646     src2  : R(read);
  4647     IALU  : R;
  4648 %}
  4650 // Integer ALU cc operation
  4651 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4652     single_instruction;
  4653     dst   : E(write);
  4654     cc    : R(read);
  4655     IALU  : R;
  4656 %}
  4658 // Integer ALU cc / second IALU operation
  4659 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4660     instruction_count(1); multiple_bundles;
  4661     dst   : E(write)+1;
  4662     src   : R(read);
  4663     IALU  : R;
  4664 %}
  4666 // Integer ALU cc / second IALU operation
  4667 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4668     instruction_count(1); multiple_bundles;
  4669     dst   : E(write)+1;
  4670     p     : R(read);
  4671     q     : R(read);
  4672     IALU  : R;
  4673 %}
  4675 // Integer ALU hi-lo-reg operation
  4676 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4677     instruction_count(1); multiple_bundles;
  4678     dst   : E(write)+1;
  4679     IALU  : R(2);
  4680 %}
  4682 // Float ALU hi-lo-reg operation (with temp)
  4683 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4684     instruction_count(1); multiple_bundles;
  4685     dst   : E(write)+1;
  4686     IALU  : R(2);
  4687 %}
  4689 // Long Constant
  4690 pipe_class loadConL( iRegL dst, immL src ) %{
  4691     instruction_count(2); multiple_bundles;
  4692     dst   : E(write)+1;
  4693     IALU  : R(2);
  4694     IALU  : R(2);
  4695 %}
  4697 // Pointer Constant
  4698 pipe_class loadConP( iRegP dst, immP src ) %{
  4699     instruction_count(0); multiple_bundles;
  4700     fixed_latency(6);
  4701 %}
  4703 // Polling Address
  4704 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4705 #ifdef _LP64
  4706     instruction_count(0); multiple_bundles;
  4707     fixed_latency(6);
  4708 #else
  4709     dst   : E(write);
  4710     IALU  : R;
  4711 #endif
  4712 %}
  4714 // Long Constant small
  4715 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4716     instruction_count(2);
  4717     dst   : E(write);
  4718     IALU  : R;
  4719     IALU  : R;
  4720 %}
  4722 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4723 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4724     instruction_count(1); multiple_bundles;
  4725     src   : R(read);
  4726     dst   : M(write)+1;
  4727     IALU  : R;
  4728     MS    : E;
  4729 %}
  4731 // Integer ALU nop operation
  4732 pipe_class ialu_nop() %{
  4733     single_instruction;
  4734     IALU  : R;
  4735 %}
  4737 // Integer ALU nop operation
  4738 pipe_class ialu_nop_A0() %{
  4739     single_instruction;
  4740     A0    : R;
  4741 %}
  4743 // Integer ALU nop operation
  4744 pipe_class ialu_nop_A1() %{
  4745     single_instruction;
  4746     A1    : R;
  4747 %}
  4749 // Integer Multiply reg-reg operation
  4750 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4751     single_instruction;
  4752     dst   : E(write);
  4753     src1  : R(read);
  4754     src2  : R(read);
  4755     MS    : R(5);
  4756 %}
  4758 // Integer Multiply reg-imm operation
  4759 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4760     single_instruction;
  4761     dst   : E(write);
  4762     src1  : R(read);
  4763     MS    : R(5);
  4764 %}
  4766 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4767     single_instruction;
  4768     dst   : E(write)+4;
  4769     src1  : R(read);
  4770     src2  : R(read);
  4771     MS    : R(6);
  4772 %}
  4774 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4775     single_instruction;
  4776     dst   : E(write)+4;
  4777     src1  : R(read);
  4778     MS    : R(6);
  4779 %}
  4781 // Integer Divide reg-reg
  4782 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4783     instruction_count(1); multiple_bundles;
  4784     dst   : E(write);
  4785     temp  : E(write);
  4786     src1  : R(read);
  4787     src2  : R(read);
  4788     temp  : R(read);
  4789     MS    : R(38);
  4790 %}
  4792 // Integer Divide reg-imm
  4793 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4794     instruction_count(1); multiple_bundles;
  4795     dst   : E(write);
  4796     temp  : E(write);
  4797     src1  : R(read);
  4798     temp  : R(read);
  4799     MS    : R(38);
  4800 %}
  4802 // Long Divide
  4803 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4804     dst  : E(write)+71;
  4805     src1 : R(read);
  4806     src2 : R(read)+1;
  4807     MS   : R(70);
  4808 %}
  4810 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4811     dst  : E(write)+71;
  4812     src1 : R(read);
  4813     MS   : R(70);
  4814 %}
  4816 // Floating Point Add Float
  4817 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4818     single_instruction;
  4819     dst   : X(write);
  4820     src1  : E(read);
  4821     src2  : E(read);
  4822     FA    : R;
  4823 %}
  4825 // Floating Point Add Double
  4826 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4827     single_instruction;
  4828     dst   : X(write);
  4829     src1  : E(read);
  4830     src2  : E(read);
  4831     FA    : R;
  4832 %}
  4834 // Floating Point Conditional Move based on integer flags
  4835 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4836     single_instruction;
  4837     dst   : X(write);
  4838     src   : E(read);
  4839     cr    : R(read);
  4840     FA    : R(2);
  4841     BR    : R(2);
  4842 %}
  4844 // Floating Point Conditional Move based on integer flags
  4845 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4846     single_instruction;
  4847     dst   : X(write);
  4848     src   : E(read);
  4849     cr    : R(read);
  4850     FA    : R(2);
  4851     BR    : R(2);
  4852 %}
  4854 // Floating Point Multiply Float
  4855 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4856     single_instruction;
  4857     dst   : X(write);
  4858     src1  : E(read);
  4859     src2  : E(read);
  4860     FM    : R;
  4861 %}
  4863 // Floating Point Multiply Double
  4864 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4865     single_instruction;
  4866     dst   : X(write);
  4867     src1  : E(read);
  4868     src2  : E(read);
  4869     FM    : R;
  4870 %}
  4872 // Floating Point Divide Float
  4873 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4874     single_instruction;
  4875     dst   : X(write);
  4876     src1  : E(read);
  4877     src2  : E(read);
  4878     FM    : R;
  4879     FDIV  : C(14);
  4880 %}
  4882 // Floating Point Divide Double
  4883 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4884     single_instruction;
  4885     dst   : X(write);
  4886     src1  : E(read);
  4887     src2  : E(read);
  4888     FM    : R;
  4889     FDIV  : C(17);
  4890 %}
  4892 // Floating Point Move/Negate/Abs Float
  4893 pipe_class faddF_reg(regF dst, regF src) %{
  4894     single_instruction;
  4895     dst   : W(write);
  4896     src   : E(read);
  4897     FA    : R(1);
  4898 %}
  4900 // Floating Point Move/Negate/Abs Double
  4901 pipe_class faddD_reg(regD dst, regD src) %{
  4902     single_instruction;
  4903     dst   : W(write);
  4904     src   : E(read);
  4905     FA    : R;
  4906 %}
  4908 // Floating Point Convert F->D
  4909 pipe_class fcvtF2D(regD dst, regF src) %{
  4910     single_instruction;
  4911     dst   : X(write);
  4912     src   : E(read);
  4913     FA    : R;
  4914 %}
  4916 // Floating Point Convert I->D
  4917 pipe_class fcvtI2D(regD dst, regF src) %{
  4918     single_instruction;
  4919     dst   : X(write);
  4920     src   : E(read);
  4921     FA    : R;
  4922 %}
  4924 // Floating Point Convert LHi->D
  4925 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4926     single_instruction;
  4927     dst   : X(write);
  4928     src   : E(read);
  4929     FA    : R;
  4930 %}
  4932 // Floating Point Convert L->D
  4933 pipe_class fcvtL2D(regD dst, regF src) %{
  4934     single_instruction;
  4935     dst   : X(write);
  4936     src   : E(read);
  4937     FA    : R;
  4938 %}
  4940 // Floating Point Convert L->F
  4941 pipe_class fcvtL2F(regD dst, regF src) %{
  4942     single_instruction;
  4943     dst   : X(write);
  4944     src   : E(read);
  4945     FA    : R;
  4946 %}
  4948 // Floating Point Convert D->F
  4949 pipe_class fcvtD2F(regD dst, regF src) %{
  4950     single_instruction;
  4951     dst   : X(write);
  4952     src   : E(read);
  4953     FA    : R;
  4954 %}
  4956 // Floating Point Convert I->L
  4957 pipe_class fcvtI2L(regD dst, regF src) %{
  4958     single_instruction;
  4959     dst   : X(write);
  4960     src   : E(read);
  4961     FA    : R;
  4962 %}
  4964 // Floating Point Convert D->F
  4965 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4966     instruction_count(1); multiple_bundles;
  4967     dst   : X(write)+6;
  4968     src   : E(read);
  4969     FA    : R;
  4970 %}
  4972 // Floating Point Convert D->L
  4973 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4974     instruction_count(1); multiple_bundles;
  4975     dst   : X(write)+6;
  4976     src   : E(read);
  4977     FA    : R;
  4978 %}
  4980 // Floating Point Convert F->I
  4981 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4982     instruction_count(1); multiple_bundles;
  4983     dst   : X(write)+6;
  4984     src   : E(read);
  4985     FA    : R;
  4986 %}
  4988 // Floating Point Convert F->L
  4989 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4990     instruction_count(1); multiple_bundles;
  4991     dst   : X(write)+6;
  4992     src   : E(read);
  4993     FA    : R;
  4994 %}
  4996 // Floating Point Convert I->F
  4997 pipe_class fcvtI2F(regF dst, regF src) %{
  4998     single_instruction;
  4999     dst   : X(write);
  5000     src   : E(read);
  5001     FA    : R;
  5002 %}
  5004 // Floating Point Compare
  5005 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5006     single_instruction;
  5007     cr    : X(write);
  5008     src1  : E(read);
  5009     src2  : E(read);
  5010     FA    : R;
  5011 %}
  5013 // Floating Point Compare
  5014 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5015     single_instruction;
  5016     cr    : X(write);
  5017     src1  : E(read);
  5018     src2  : E(read);
  5019     FA    : R;
  5020 %}
  5022 // Floating Add Nop
  5023 pipe_class fadd_nop() %{
  5024     single_instruction;
  5025     FA  : R;
  5026 %}
  5028 // Integer Store to Memory
  5029 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5030     single_instruction;
  5031     mem   : R(read);
  5032     src   : C(read);
  5033     MS    : R;
  5034 %}
  5036 // Integer Store to Memory
  5037 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5038     single_instruction;
  5039     mem   : R(read);
  5040     src   : C(read);
  5041     MS    : R;
  5042 %}
  5044 // Integer Store Zero to Memory
  5045 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5046     single_instruction;
  5047     mem   : R(read);
  5048     MS    : R;
  5049 %}
  5051 // Special Stack Slot Store
  5052 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5053     single_instruction;
  5054     stkSlot : R(read);
  5055     src     : C(read);
  5056     MS      : R;
  5057 %}
  5059 // Special Stack Slot Store
  5060 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5061     instruction_count(2); multiple_bundles;
  5062     stkSlot : R(read);
  5063     src     : C(read);
  5064     MS      : R(2);
  5065 %}
  5067 // Float Store
  5068 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5069     single_instruction;
  5070     mem : R(read);
  5071     src : C(read);
  5072     MS  : R;
  5073 %}
  5075 // Float Store
  5076 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5077     single_instruction;
  5078     mem : R(read);
  5079     MS  : R;
  5080 %}
  5082 // Double Store
  5083 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5084     instruction_count(1);
  5085     mem : R(read);
  5086     src : C(read);
  5087     MS  : R;
  5088 %}
  5090 // Double Store
  5091 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5092     single_instruction;
  5093     mem : R(read);
  5094     MS  : R;
  5095 %}
  5097 // Special Stack Slot Float Store
  5098 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5099     single_instruction;
  5100     stkSlot : R(read);
  5101     src     : C(read);
  5102     MS      : R;
  5103 %}
  5105 // Special Stack Slot Double Store
  5106 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5107     single_instruction;
  5108     stkSlot : R(read);
  5109     src     : C(read);
  5110     MS      : R;
  5111 %}
  5113 // Integer Load (when sign bit propagation not needed)
  5114 pipe_class iload_mem(iRegI dst, memory mem) %{
  5115     single_instruction;
  5116     mem : R(read);
  5117     dst : C(write);
  5118     MS  : R;
  5119 %}
  5121 // Integer Load from stack operand
  5122 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5123     single_instruction;
  5124     mem : R(read);
  5125     dst : C(write);
  5126     MS  : R;
  5127 %}
  5129 // Integer Load (when sign bit propagation or masking is needed)
  5130 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5131     single_instruction;
  5132     mem : R(read);
  5133     dst : M(write);
  5134     MS  : R;
  5135 %}
  5137 // Float Load
  5138 pipe_class floadF_mem(regF dst, memory mem) %{
  5139     single_instruction;
  5140     mem : R(read);
  5141     dst : M(write);
  5142     MS  : R;
  5143 %}
  5145 // Float Load
  5146 pipe_class floadD_mem(regD dst, memory mem) %{
  5147     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5148     mem : R(read);
  5149     dst : M(write);
  5150     MS  : R;
  5151 %}
  5153 // Float Load
  5154 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5155     single_instruction;
  5156     stkSlot : R(read);
  5157     dst : M(write);
  5158     MS  : R;
  5159 %}
  5161 // Float Load
  5162 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5163     single_instruction;
  5164     stkSlot : R(read);
  5165     dst : M(write);
  5166     MS  : R;
  5167 %}
  5169 // Memory Nop
  5170 pipe_class mem_nop() %{
  5171     single_instruction;
  5172     MS  : R;
  5173 %}
  5175 pipe_class sethi(iRegP dst, immI src) %{
  5176     single_instruction;
  5177     dst  : E(write);
  5178     IALU : R;
  5179 %}
  5181 pipe_class loadPollP(iRegP poll) %{
  5182     single_instruction;
  5183     poll : R(read);
  5184     MS   : R;
  5185 %}
  5187 pipe_class br(Universe br, label labl) %{
  5188     single_instruction_with_delay_slot;
  5189     BR  : R;
  5190 %}
  5192 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5193     single_instruction_with_delay_slot;
  5194     cr    : E(read);
  5195     BR    : R;
  5196 %}
  5198 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5199     single_instruction_with_delay_slot;
  5200     op1 : E(read);
  5201     BR  : R;
  5202     MS  : R;
  5203 %}
  5205 // Compare and branch
  5206 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5207     instruction_count(2); has_delay_slot;
  5208     cr    : E(write);
  5209     src1  : R(read);
  5210     src2  : R(read);
  5211     IALU  : R;
  5212     BR    : R;
  5213 %}
  5215 // Compare and branch
  5216 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5217     instruction_count(2); has_delay_slot;
  5218     cr    : E(write);
  5219     src1  : R(read);
  5220     IALU  : R;
  5221     BR    : R;
  5222 %}
  5224 // Compare and branch using cbcond
  5225 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5226     single_instruction;
  5227     src1  : E(read);
  5228     src2  : E(read);
  5229     IALU  : R;
  5230     BR    : R;
  5231 %}
  5233 // Compare and branch using cbcond
  5234 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5235     single_instruction;
  5236     src1  : E(read);
  5237     IALU  : R;
  5238     BR    : R;
  5239 %}
  5241 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5242     single_instruction_with_delay_slot;
  5243     cr    : E(read);
  5244     BR    : R;
  5245 %}
  5247 pipe_class br_nop() %{
  5248     single_instruction;
  5249     BR  : R;
  5250 %}
  5252 pipe_class simple_call(method meth) %{
  5253     instruction_count(2); multiple_bundles; force_serialization;
  5254     fixed_latency(100);
  5255     BR  : R(1);
  5256     MS  : R(1);
  5257     A0  : R(1);
  5258 %}
  5260 pipe_class compiled_call(method meth) %{
  5261     instruction_count(1); multiple_bundles; force_serialization;
  5262     fixed_latency(100);
  5263     MS  : R(1);
  5264 %}
  5266 pipe_class call(method meth) %{
  5267     instruction_count(0); multiple_bundles; force_serialization;
  5268     fixed_latency(100);
  5269 %}
  5271 pipe_class tail_call(Universe ignore, label labl) %{
  5272     single_instruction; has_delay_slot;
  5273     fixed_latency(100);
  5274     BR  : R(1);
  5275     MS  : R(1);
  5276 %}
  5278 pipe_class ret(Universe ignore) %{
  5279     single_instruction; has_delay_slot;
  5280     BR  : R(1);
  5281     MS  : R(1);
  5282 %}
  5284 pipe_class ret_poll(g3RegP poll) %{
  5285     instruction_count(3); has_delay_slot;
  5286     poll : E(read);
  5287     MS   : R;
  5288 %}
  5290 // The real do-nothing guy
  5291 pipe_class empty( ) %{
  5292     instruction_count(0);
  5293 %}
  5295 pipe_class long_memory_op() %{
  5296     instruction_count(0); multiple_bundles; force_serialization;
  5297     fixed_latency(25);
  5298     MS  : R(1);
  5299 %}
  5301 // Check-cast
  5302 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5303     array : R(read);
  5304     match  : R(read);
  5305     IALU   : R(2);
  5306     BR     : R(2);
  5307     MS     : R;
  5308 %}
  5310 // Convert FPU flags into +1,0,-1
  5311 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5312     src1  : E(read);
  5313     src2  : E(read);
  5314     dst   : E(write);
  5315     FA    : R;
  5316     MS    : R(2);
  5317     BR    : R(2);
  5318 %}
  5320 // Compare for p < q, and conditionally add y
  5321 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5322     p     : E(read);
  5323     q     : E(read);
  5324     y     : E(read);
  5325     IALU  : R(3)
  5326 %}
  5328 // Perform a compare, then move conditionally in a branch delay slot.
  5329 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5330     src2   : E(read);
  5331     srcdst : E(read);
  5332     IALU   : R;
  5333     BR     : R;
  5334 %}
  5336 // Define the class for the Nop node
  5337 define %{
  5338    MachNop = ialu_nop;
  5339 %}
  5341 %}
  5343 //----------INSTRUCTIONS-------------------------------------------------------
  5345 //------------Special Stack Slot instructions - no match rules-----------------
  5346 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5347   // No match rule to avoid chain rule match.
  5348   effect(DEF dst, USE src);
  5349   ins_cost(MEMORY_REF_COST);
  5350   size(4);
  5351   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5352   opcode(Assembler::ldf_op3);
  5353   ins_encode(simple_form3_mem_reg(src, dst));
  5354   ins_pipe(floadF_stk);
  5355 %}
  5357 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5358   // No match rule to avoid chain rule match.
  5359   effect(DEF dst, USE src);
  5360   ins_cost(MEMORY_REF_COST);
  5361   size(4);
  5362   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5363   opcode(Assembler::lddf_op3);
  5364   ins_encode(simple_form3_mem_reg(src, dst));
  5365   ins_pipe(floadD_stk);
  5366 %}
  5368 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5369   // No match rule to avoid chain rule match.
  5370   effect(DEF dst, USE src);
  5371   ins_cost(MEMORY_REF_COST);
  5372   size(4);
  5373   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5374   opcode(Assembler::stf_op3);
  5375   ins_encode(simple_form3_mem_reg(dst, src));
  5376   ins_pipe(fstoreF_stk_reg);
  5377 %}
  5379 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5380   // No match rule to avoid chain rule match.
  5381   effect(DEF dst, USE src);
  5382   ins_cost(MEMORY_REF_COST);
  5383   size(4);
  5384   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5385   opcode(Assembler::stdf_op3);
  5386   ins_encode(simple_form3_mem_reg(dst, src));
  5387   ins_pipe(fstoreD_stk_reg);
  5388 %}
  5390 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5391   effect(DEF dst, USE src);
  5392   ins_cost(MEMORY_REF_COST*2);
  5393   size(8);
  5394   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5395             "STW    R_G0,$dst.lo" %}
  5396   opcode(Assembler::stw_op3);
  5397   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5398   ins_pipe(lstoreI_stk_reg);
  5399 %}
  5401 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5402   // No match rule to avoid chain rule match.
  5403   effect(DEF dst, USE src);
  5404   ins_cost(MEMORY_REF_COST);
  5405   size(4);
  5406   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5407   opcode(Assembler::stx_op3);
  5408   ins_encode(simple_form3_mem_reg( dst, src ) );
  5409   ins_pipe(istore_stk_reg);
  5410 %}
  5412 //---------- Chain stack slots between similar types --------
  5414 // Load integer from stack slot
  5415 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5416   match(Set dst src);
  5417   ins_cost(MEMORY_REF_COST);
  5419   size(4);
  5420   format %{ "LDUW   $src,$dst\t!stk" %}
  5421   opcode(Assembler::lduw_op3);
  5422   ins_encode(simple_form3_mem_reg( src, dst ) );
  5423   ins_pipe(iload_mem);
  5424 %}
  5426 // Store integer to stack slot
  5427 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5428   match(Set dst src);
  5429   ins_cost(MEMORY_REF_COST);
  5431   size(4);
  5432   format %{ "STW    $src,$dst\t!stk" %}
  5433   opcode(Assembler::stw_op3);
  5434   ins_encode(simple_form3_mem_reg( dst, src ) );
  5435   ins_pipe(istore_mem_reg);
  5436 %}
  5438 // Load long from stack slot
  5439 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5440   match(Set dst src);
  5442   ins_cost(MEMORY_REF_COST);
  5443   size(4);
  5444   format %{ "LDX    $src,$dst\t! long" %}
  5445   opcode(Assembler::ldx_op3);
  5446   ins_encode(simple_form3_mem_reg( src, dst ) );
  5447   ins_pipe(iload_mem);
  5448 %}
  5450 // Store long to stack slot
  5451 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5452   match(Set dst src);
  5454   ins_cost(MEMORY_REF_COST);
  5455   size(4);
  5456   format %{ "STX    $src,$dst\t! long" %}
  5457   opcode(Assembler::stx_op3);
  5458   ins_encode(simple_form3_mem_reg( dst, src ) );
  5459   ins_pipe(istore_mem_reg);
  5460 %}
  5462 #ifdef _LP64
  5463 // Load pointer from stack slot, 64-bit encoding
  5464 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5465   match(Set dst src);
  5466   ins_cost(MEMORY_REF_COST);
  5467   size(4);
  5468   format %{ "LDX    $src,$dst\t!ptr" %}
  5469   opcode(Assembler::ldx_op3);
  5470   ins_encode(simple_form3_mem_reg( src, dst ) );
  5471   ins_pipe(iload_mem);
  5472 %}
  5474 // Store pointer to stack slot
  5475 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5476   match(Set dst src);
  5477   ins_cost(MEMORY_REF_COST);
  5478   size(4);
  5479   format %{ "STX    $src,$dst\t!ptr" %}
  5480   opcode(Assembler::stx_op3);
  5481   ins_encode(simple_form3_mem_reg( dst, src ) );
  5482   ins_pipe(istore_mem_reg);
  5483 %}
  5484 #else // _LP64
  5485 // Load pointer from stack slot, 32-bit encoding
  5486 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5487   match(Set dst src);
  5488   ins_cost(MEMORY_REF_COST);
  5489   format %{ "LDUW   $src,$dst\t!ptr" %}
  5490   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5491   ins_encode(simple_form3_mem_reg( src, dst ) );
  5492   ins_pipe(iload_mem);
  5493 %}
  5495 // Store pointer to stack slot
  5496 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5497   match(Set dst src);
  5498   ins_cost(MEMORY_REF_COST);
  5499   format %{ "STW    $src,$dst\t!ptr" %}
  5500   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5501   ins_encode(simple_form3_mem_reg( dst, src ) );
  5502   ins_pipe(istore_mem_reg);
  5503 %}
  5504 #endif // _LP64
  5506 //------------Special Nop instructions for bundling - no match rules-----------
  5507 // Nop using the A0 functional unit
  5508 instruct Nop_A0() %{
  5509   ins_cost(0);
  5511   format %{ "NOP    ! Alu Pipeline" %}
  5512   opcode(Assembler::or_op3, Assembler::arith_op);
  5513   ins_encode( form2_nop() );
  5514   ins_pipe(ialu_nop_A0);
  5515 %}
  5517 // Nop using the A1 functional unit
  5518 instruct Nop_A1( ) %{
  5519   ins_cost(0);
  5521   format %{ "NOP    ! Alu Pipeline" %}
  5522   opcode(Assembler::or_op3, Assembler::arith_op);
  5523   ins_encode( form2_nop() );
  5524   ins_pipe(ialu_nop_A1);
  5525 %}
  5527 // Nop using the memory functional unit
  5528 instruct Nop_MS( ) %{
  5529   ins_cost(0);
  5531   format %{ "NOP    ! Memory Pipeline" %}
  5532   ins_encode( emit_mem_nop );
  5533   ins_pipe(mem_nop);
  5534 %}
  5536 // Nop using the floating add functional unit
  5537 instruct Nop_FA( ) %{
  5538   ins_cost(0);
  5540   format %{ "NOP    ! Floating Add Pipeline" %}
  5541   ins_encode( emit_fadd_nop );
  5542   ins_pipe(fadd_nop);
  5543 %}
  5545 // Nop using the branch functional unit
  5546 instruct Nop_BR( ) %{
  5547   ins_cost(0);
  5549   format %{ "NOP    ! Branch Pipeline" %}
  5550   ins_encode( emit_br_nop );
  5551   ins_pipe(br_nop);
  5552 %}
  5554 //----------Load/Store/Move Instructions---------------------------------------
  5555 //----------Load Instructions--------------------------------------------------
  5556 // Load Byte (8bit signed)
  5557 instruct loadB(iRegI dst, memory mem) %{
  5558   match(Set dst (LoadB mem));
  5559   ins_cost(MEMORY_REF_COST);
  5561   size(4);
  5562   format %{ "LDSB   $mem,$dst\t! byte" %}
  5563   ins_encode %{
  5564     __ ldsb($mem$$Address, $dst$$Register);
  5565   %}
  5566   ins_pipe(iload_mask_mem);
  5567 %}
  5569 // Load Byte (8bit signed) into a Long Register
  5570 instruct loadB2L(iRegL dst, memory mem) %{
  5571   match(Set dst (ConvI2L (LoadB mem)));
  5572   ins_cost(MEMORY_REF_COST);
  5574   size(4);
  5575   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5576   ins_encode %{
  5577     __ ldsb($mem$$Address, $dst$$Register);
  5578   %}
  5579   ins_pipe(iload_mask_mem);
  5580 %}
  5582 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5583 instruct loadUB(iRegI dst, memory mem) %{
  5584   match(Set dst (LoadUB mem));
  5585   ins_cost(MEMORY_REF_COST);
  5587   size(4);
  5588   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5589   ins_encode %{
  5590     __ ldub($mem$$Address, $dst$$Register);
  5591   %}
  5592   ins_pipe(iload_mem);
  5593 %}
  5595 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5596 instruct loadUB2L(iRegL dst, memory mem) %{
  5597   match(Set dst (ConvI2L (LoadUB mem)));
  5598   ins_cost(MEMORY_REF_COST);
  5600   size(4);
  5601   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5602   ins_encode %{
  5603     __ ldub($mem$$Address, $dst$$Register);
  5604   %}
  5605   ins_pipe(iload_mem);
  5606 %}
  5608 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5609 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5610   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5611   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5613   size(2*4);
  5614   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5615             "AND    $dst,$mask,$dst" %}
  5616   ins_encode %{
  5617     __ ldub($mem$$Address, $dst$$Register);
  5618     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5619   %}
  5620   ins_pipe(iload_mem);
  5621 %}
  5623 // Load Short (16bit signed)
  5624 instruct loadS(iRegI dst, memory mem) %{
  5625   match(Set dst (LoadS mem));
  5626   ins_cost(MEMORY_REF_COST);
  5628   size(4);
  5629   format %{ "LDSH   $mem,$dst\t! short" %}
  5630   ins_encode %{
  5631     __ ldsh($mem$$Address, $dst$$Register);
  5632   %}
  5633   ins_pipe(iload_mask_mem);
  5634 %}
  5636 // Load Short (16 bit signed) to Byte (8 bit signed)
  5637 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5638   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5639   ins_cost(MEMORY_REF_COST);
  5641   size(4);
  5643   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5644   ins_encode %{
  5645     __ ldsb($mem$$Address, $dst$$Register, 1);
  5646   %}
  5647   ins_pipe(iload_mask_mem);
  5648 %}
  5650 // Load Short (16bit signed) into a Long Register
  5651 instruct loadS2L(iRegL dst, memory mem) %{
  5652   match(Set dst (ConvI2L (LoadS mem)));
  5653   ins_cost(MEMORY_REF_COST);
  5655   size(4);
  5656   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5657   ins_encode %{
  5658     __ ldsh($mem$$Address, $dst$$Register);
  5659   %}
  5660   ins_pipe(iload_mask_mem);
  5661 %}
  5663 // Load Unsigned Short/Char (16bit UNsigned)
  5664 instruct loadUS(iRegI dst, memory mem) %{
  5665   match(Set dst (LoadUS mem));
  5666   ins_cost(MEMORY_REF_COST);
  5668   size(4);
  5669   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5670   ins_encode %{
  5671     __ lduh($mem$$Address, $dst$$Register);
  5672   %}
  5673   ins_pipe(iload_mem);
  5674 %}
  5676 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5677 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5678   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5679   ins_cost(MEMORY_REF_COST);
  5681   size(4);
  5682   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5683   ins_encode %{
  5684     __ ldsb($mem$$Address, $dst$$Register, 1);
  5685   %}
  5686   ins_pipe(iload_mask_mem);
  5687 %}
  5689 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5690 instruct loadUS2L(iRegL dst, memory mem) %{
  5691   match(Set dst (ConvI2L (LoadUS mem)));
  5692   ins_cost(MEMORY_REF_COST);
  5694   size(4);
  5695   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5696   ins_encode %{
  5697     __ lduh($mem$$Address, $dst$$Register);
  5698   %}
  5699   ins_pipe(iload_mem);
  5700 %}
  5702 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5703 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5704   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5705   ins_cost(MEMORY_REF_COST);
  5707   size(4);
  5708   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5709   ins_encode %{
  5710     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5711   %}
  5712   ins_pipe(iload_mem);
  5713 %}
  5715 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5716 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5717   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5718   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5720   size(2*4);
  5721   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5722             "AND    $dst,$mask,$dst" %}
  5723   ins_encode %{
  5724     Register Rdst = $dst$$Register;
  5725     __ lduh($mem$$Address, Rdst);
  5726     __ and3(Rdst, $mask$$constant, Rdst);
  5727   %}
  5728   ins_pipe(iload_mem);
  5729 %}
  5731 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5732 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5733   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5734   effect(TEMP dst, TEMP tmp);
  5735   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5737   size((3+1)*4);  // set may use two instructions.
  5738   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5739             "SET    $mask,$tmp\n\t"
  5740             "AND    $dst,$tmp,$dst" %}
  5741   ins_encode %{
  5742     Register Rdst = $dst$$Register;
  5743     Register Rtmp = $tmp$$Register;
  5744     __ lduh($mem$$Address, Rdst);
  5745     __ set($mask$$constant, Rtmp);
  5746     __ and3(Rdst, Rtmp, Rdst);
  5747   %}
  5748   ins_pipe(iload_mem);
  5749 %}
  5751 // Load Integer
  5752 instruct loadI(iRegI dst, memory mem) %{
  5753   match(Set dst (LoadI mem));
  5754   ins_cost(MEMORY_REF_COST);
  5756   size(4);
  5757   format %{ "LDUW   $mem,$dst\t! int" %}
  5758   ins_encode %{
  5759     __ lduw($mem$$Address, $dst$$Register);
  5760   %}
  5761   ins_pipe(iload_mem);
  5762 %}
  5764 // Load Integer to Byte (8 bit signed)
  5765 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5766   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5767   ins_cost(MEMORY_REF_COST);
  5769   size(4);
  5771   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5772   ins_encode %{
  5773     __ ldsb($mem$$Address, $dst$$Register, 3);
  5774   %}
  5775   ins_pipe(iload_mask_mem);
  5776 %}
  5778 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5779 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5780   match(Set dst (AndI (LoadI mem) mask));
  5781   ins_cost(MEMORY_REF_COST);
  5783   size(4);
  5785   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5786   ins_encode %{
  5787     __ ldub($mem$$Address, $dst$$Register, 3);
  5788   %}
  5789   ins_pipe(iload_mask_mem);
  5790 %}
  5792 // Load Integer to Short (16 bit signed)
  5793 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5794   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5795   ins_cost(MEMORY_REF_COST);
  5797   size(4);
  5799   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5800   ins_encode %{
  5801     __ ldsh($mem$$Address, $dst$$Register, 2);
  5802   %}
  5803   ins_pipe(iload_mask_mem);
  5804 %}
  5806 // Load Integer to Unsigned Short (16 bit UNsigned)
  5807 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5808   match(Set dst (AndI (LoadI mem) mask));
  5809   ins_cost(MEMORY_REF_COST);
  5811   size(4);
  5813   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5814   ins_encode %{
  5815     __ lduh($mem$$Address, $dst$$Register, 2);
  5816   %}
  5817   ins_pipe(iload_mask_mem);
  5818 %}
  5820 // Load Integer into a Long Register
  5821 instruct loadI2L(iRegL dst, memory mem) %{
  5822   match(Set dst (ConvI2L (LoadI mem)));
  5823   ins_cost(MEMORY_REF_COST);
  5825   size(4);
  5826   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5827   ins_encode %{
  5828     __ ldsw($mem$$Address, $dst$$Register);
  5829   %}
  5830   ins_pipe(iload_mask_mem);
  5831 %}
  5833 // Load Integer with mask 0xFF into a Long Register
  5834 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5835   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5836   ins_cost(MEMORY_REF_COST);
  5838   size(4);
  5839   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5840   ins_encode %{
  5841     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5842   %}
  5843   ins_pipe(iload_mem);
  5844 %}
  5846 // Load Integer with mask 0xFFFF into a Long Register
  5847 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5848   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5849   ins_cost(MEMORY_REF_COST);
  5851   size(4);
  5852   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5853   ins_encode %{
  5854     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5855   %}
  5856   ins_pipe(iload_mem);
  5857 %}
  5859 // Load Integer with a 13-bit mask into a Long Register
  5860 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5861   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5862   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5864   size(2*4);
  5865   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5866             "AND    $dst,$mask,$dst" %}
  5867   ins_encode %{
  5868     Register Rdst = $dst$$Register;
  5869     __ lduw($mem$$Address, Rdst);
  5870     __ and3(Rdst, $mask$$constant, Rdst);
  5871   %}
  5872   ins_pipe(iload_mem);
  5873 %}
  5875 // Load Integer with a 32-bit mask into a Long Register
  5876 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5877   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5878   effect(TEMP dst, TEMP tmp);
  5879   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5881   size((3+1)*4);  // set may use two instructions.
  5882   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5883             "SET    $mask,$tmp\n\t"
  5884             "AND    $dst,$tmp,$dst" %}
  5885   ins_encode %{
  5886     Register Rdst = $dst$$Register;
  5887     Register Rtmp = $tmp$$Register;
  5888     __ lduw($mem$$Address, Rdst);
  5889     __ set($mask$$constant, Rtmp);
  5890     __ and3(Rdst, Rtmp, Rdst);
  5891   %}
  5892   ins_pipe(iload_mem);
  5893 %}
  5895 // Load Unsigned Integer into a Long Register
  5896 instruct loadUI2L(iRegL dst, memory mem) %{
  5897   match(Set dst (LoadUI2L mem));
  5898   ins_cost(MEMORY_REF_COST);
  5900   size(4);
  5901   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5902   ins_encode %{
  5903     __ lduw($mem$$Address, $dst$$Register);
  5904   %}
  5905   ins_pipe(iload_mem);
  5906 %}
  5908 // Load Long - aligned
  5909 instruct loadL(iRegL dst, memory mem ) %{
  5910   match(Set dst (LoadL mem));
  5911   ins_cost(MEMORY_REF_COST);
  5913   size(4);
  5914   format %{ "LDX    $mem,$dst\t! long" %}
  5915   ins_encode %{
  5916     __ ldx($mem$$Address, $dst$$Register);
  5917   %}
  5918   ins_pipe(iload_mem);
  5919 %}
  5921 // Load Long - UNaligned
  5922 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5923   match(Set dst (LoadL_unaligned mem));
  5924   effect(KILL tmp);
  5925   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5926   size(16);
  5927   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5928           "\tLDUW   $mem  ,$dst\n"
  5929           "\tSLLX   #32, $dst, $dst\n"
  5930           "\tOR     $dst, R_O7, $dst" %}
  5931   opcode(Assembler::lduw_op3);
  5932   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5933   ins_pipe(iload_mem);
  5934 %}
  5936 // Load Aligned Packed Byte into a Double Register
  5937 instruct loadA8B(regD dst, memory mem) %{
  5938   match(Set dst (Load8B mem));
  5939   ins_cost(MEMORY_REF_COST);
  5940   size(4);
  5941   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5942   opcode(Assembler::lddf_op3);
  5943   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5944   ins_pipe(floadD_mem);
  5945 %}
  5947 // Load Aligned Packed Char into a Double Register
  5948 instruct loadA4C(regD dst, memory mem) %{
  5949   match(Set dst (Load4C mem));
  5950   ins_cost(MEMORY_REF_COST);
  5951   size(4);
  5952   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5953   opcode(Assembler::lddf_op3);
  5954   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5955   ins_pipe(floadD_mem);
  5956 %}
  5958 // Load Aligned Packed Short into a Double Register
  5959 instruct loadA4S(regD dst, memory mem) %{
  5960   match(Set dst (Load4S mem));
  5961   ins_cost(MEMORY_REF_COST);
  5962   size(4);
  5963   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5964   opcode(Assembler::lddf_op3);
  5965   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5966   ins_pipe(floadD_mem);
  5967 %}
  5969 // Load Aligned Packed Int into a Double Register
  5970 instruct loadA2I(regD dst, memory mem) %{
  5971   match(Set dst (Load2I mem));
  5972   ins_cost(MEMORY_REF_COST);
  5973   size(4);
  5974   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5975   opcode(Assembler::lddf_op3);
  5976   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5977   ins_pipe(floadD_mem);
  5978 %}
  5980 // Load Range
  5981 instruct loadRange(iRegI dst, memory mem) %{
  5982   match(Set dst (LoadRange mem));
  5983   ins_cost(MEMORY_REF_COST);
  5985   size(4);
  5986   format %{ "LDUW   $mem,$dst\t! range" %}
  5987   opcode(Assembler::lduw_op3);
  5988   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5989   ins_pipe(iload_mem);
  5990 %}
  5992 // Load Integer into %f register (for fitos/fitod)
  5993 instruct loadI_freg(regF dst, memory mem) %{
  5994   match(Set dst (LoadI mem));
  5995   ins_cost(MEMORY_REF_COST);
  5996   size(4);
  5998   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5999   opcode(Assembler::ldf_op3);
  6000   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6001   ins_pipe(floadF_mem);
  6002 %}
  6004 // Load Pointer
  6005 instruct loadP(iRegP dst, memory mem) %{
  6006   match(Set dst (LoadP mem));
  6007   ins_cost(MEMORY_REF_COST);
  6008   size(4);
  6010 #ifndef _LP64
  6011   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6012   ins_encode %{
  6013     __ lduw($mem$$Address, $dst$$Register);
  6014   %}
  6015 #else
  6016   format %{ "LDX    $mem,$dst\t! ptr" %}
  6017   ins_encode %{
  6018     __ ldx($mem$$Address, $dst$$Register);
  6019   %}
  6020 #endif
  6021   ins_pipe(iload_mem);
  6022 %}
  6024 // Load Compressed Pointer
  6025 instruct loadN(iRegN dst, memory mem) %{
  6026   match(Set dst (LoadN mem));
  6027   ins_cost(MEMORY_REF_COST);
  6028   size(4);
  6030   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6031   ins_encode %{
  6032     __ lduw($mem$$Address, $dst$$Register);
  6033   %}
  6034   ins_pipe(iload_mem);
  6035 %}
  6037 // Load Klass Pointer
  6038 instruct loadKlass(iRegP dst, memory mem) %{
  6039   match(Set dst (LoadKlass mem));
  6040   ins_cost(MEMORY_REF_COST);
  6041   size(4);
  6043 #ifndef _LP64
  6044   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6045   ins_encode %{
  6046     __ lduw($mem$$Address, $dst$$Register);
  6047   %}
  6048 #else
  6049   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6050   ins_encode %{
  6051     __ ldx($mem$$Address, $dst$$Register);
  6052   %}
  6053 #endif
  6054   ins_pipe(iload_mem);
  6055 %}
  6057 // Load narrow Klass Pointer
  6058 instruct loadNKlass(iRegN dst, memory mem) %{
  6059   match(Set dst (LoadNKlass mem));
  6060   ins_cost(MEMORY_REF_COST);
  6061   size(4);
  6063   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6064   ins_encode %{
  6065     __ lduw($mem$$Address, $dst$$Register);
  6066   %}
  6067   ins_pipe(iload_mem);
  6068 %}
  6070 // Load Double
  6071 instruct loadD(regD dst, memory mem) %{
  6072   match(Set dst (LoadD mem));
  6073   ins_cost(MEMORY_REF_COST);
  6075   size(4);
  6076   format %{ "LDDF   $mem,$dst" %}
  6077   opcode(Assembler::lddf_op3);
  6078   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6079   ins_pipe(floadD_mem);
  6080 %}
  6082 // Load Double - UNaligned
  6083 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6084   match(Set dst (LoadD_unaligned mem));
  6085   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6086   size(8);
  6087   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6088           "\tLDF    $mem+4,$dst.lo\t!" %}
  6089   opcode(Assembler::ldf_op3);
  6090   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6091   ins_pipe(iload_mem);
  6092 %}
  6094 // Load Float
  6095 instruct loadF(regF dst, memory mem) %{
  6096   match(Set dst (LoadF mem));
  6097   ins_cost(MEMORY_REF_COST);
  6099   size(4);
  6100   format %{ "LDF    $mem,$dst" %}
  6101   opcode(Assembler::ldf_op3);
  6102   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6103   ins_pipe(floadF_mem);
  6104 %}
  6106 // Load Constant
  6107 instruct loadConI( iRegI dst, immI src ) %{
  6108   match(Set dst src);
  6109   ins_cost(DEFAULT_COST * 3/2);
  6110   format %{ "SET    $src,$dst" %}
  6111   ins_encode( Set32(src, dst) );
  6112   ins_pipe(ialu_hi_lo_reg);
  6113 %}
  6115 instruct loadConI13( iRegI dst, immI13 src ) %{
  6116   match(Set dst src);
  6118   size(4);
  6119   format %{ "MOV    $src,$dst" %}
  6120   ins_encode( Set13( src, dst ) );
  6121   ins_pipe(ialu_imm);
  6122 %}
  6124 #ifndef _LP64
  6125 instruct loadConP(iRegP dst, immP con) %{
  6126   match(Set dst con);
  6127   ins_cost(DEFAULT_COST * 3/2);
  6128   format %{ "SET    $con,$dst\t!ptr" %}
  6129   ins_encode %{
  6130     // [RGV] This next line should be generated from ADLC
  6131     if (_opnds[1]->constant_is_oop()) {
  6132       intptr_t val = $con$$constant;
  6133       __ set_oop_constant((jobject) val, $dst$$Register);
  6134     } else {          // non-oop pointers, e.g. card mark base, heap top
  6135       __ set($con$$constant, $dst$$Register);
  6137   %}
  6138   ins_pipe(loadConP);
  6139 %}
  6140 #else
  6141 instruct loadConP_set(iRegP dst, immP_set con) %{
  6142   match(Set dst con);
  6143   ins_cost(DEFAULT_COST * 3/2);
  6144   format %{ "SET    $con,$dst\t! ptr" %}
  6145   ins_encode %{
  6146     // [RGV] This next line should be generated from ADLC
  6147     if (_opnds[1]->constant_is_oop()) {
  6148       intptr_t val = $con$$constant;
  6149       __ set_oop_constant((jobject) val, $dst$$Register);
  6150     } else {          // non-oop pointers, e.g. card mark base, heap top
  6151       __ set($con$$constant, $dst$$Register);
  6153   %}
  6154   ins_pipe(loadConP);
  6155 %}
  6157 instruct loadConP_load(iRegP dst, immP_load con) %{
  6158   match(Set dst con);
  6159   ins_cost(MEMORY_REF_COST);
  6160   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6161   ins_encode %{
  6162     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6163     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6164   %}
  6165   ins_pipe(loadConP);
  6166 %}
  6168 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6169   match(Set dst con);
  6170   ins_cost(DEFAULT_COST * 3/2);
  6171   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6172   ins_encode %{
  6173     __ set($con$$constant, $dst$$Register);
  6174   %}
  6175   ins_pipe(loadConP);
  6176 %}
  6177 #endif // _LP64
  6179 instruct loadConP0(iRegP dst, immP0 src) %{
  6180   match(Set dst src);
  6182   size(4);
  6183   format %{ "CLR    $dst\t!ptr" %}
  6184   ins_encode %{
  6185     __ clr($dst$$Register);
  6186   %}
  6187   ins_pipe(ialu_imm);
  6188 %}
  6190 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6191   match(Set dst src);
  6192   ins_cost(DEFAULT_COST);
  6193   format %{ "SET    $src,$dst\t!ptr" %}
  6194   ins_encode %{
  6195     AddressLiteral polling_page(os::get_polling_page());
  6196     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6197   %}
  6198   ins_pipe(loadConP_poll);
  6199 %}
  6201 instruct loadConN0(iRegN dst, immN0 src) %{
  6202   match(Set dst src);
  6204   size(4);
  6205   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6206   ins_encode %{
  6207     __ clr($dst$$Register);
  6208   %}
  6209   ins_pipe(ialu_imm);
  6210 %}
  6212 instruct loadConN(iRegN dst, immN src) %{
  6213   match(Set dst src);
  6214   ins_cost(DEFAULT_COST * 3/2);
  6215   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6216   ins_encode %{
  6217     Register dst = $dst$$Register;
  6218     __ set_narrow_oop((jobject)$src$$constant, dst);
  6219   %}
  6220   ins_pipe(ialu_hi_lo_reg);
  6221 %}
  6223 // Materialize long value (predicated by immL_cheap).
  6224 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6225   match(Set dst con);
  6226   effect(KILL tmp);
  6227   ins_cost(DEFAULT_COST * 3);
  6228   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6229   ins_encode %{
  6230     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6231   %}
  6232   ins_pipe(loadConL);
  6233 %}
  6235 // Load long value from constant table (predicated by immL_expensive).
  6236 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6237   match(Set dst con);
  6238   ins_cost(MEMORY_REF_COST);
  6239   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6240   ins_encode %{
  6241       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6242     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6243   %}
  6244   ins_pipe(loadConL);
  6245 %}
  6247 instruct loadConL0( iRegL dst, immL0 src ) %{
  6248   match(Set dst src);
  6249   ins_cost(DEFAULT_COST);
  6250   size(4);
  6251   format %{ "CLR    $dst\t! long" %}
  6252   ins_encode( Set13( src, dst ) );
  6253   ins_pipe(ialu_imm);
  6254 %}
  6256 instruct loadConL13( iRegL dst, immL13 src ) %{
  6257   match(Set dst src);
  6258   ins_cost(DEFAULT_COST * 2);
  6260   size(4);
  6261   format %{ "MOV    $src,$dst\t! long" %}
  6262   ins_encode( Set13( src, dst ) );
  6263   ins_pipe(ialu_imm);
  6264 %}
  6266 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6267   match(Set dst con);
  6268   effect(KILL tmp);
  6269   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6270   ins_encode %{
  6271       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6272     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6273   %}
  6274   ins_pipe(loadConFD);
  6275 %}
  6277 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6278   match(Set dst con);
  6279   effect(KILL tmp);
  6280   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6281   ins_encode %{
  6282     // XXX This is a quick fix for 6833573.
  6283     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6284     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6285     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6286   %}
  6287   ins_pipe(loadConFD);
  6288 %}
  6290 // Prefetch instructions.
  6291 // Must be safe to execute with invalid address (cannot fault).
  6293 instruct prefetchr( memory mem ) %{
  6294   match( PrefetchRead mem );
  6295   ins_cost(MEMORY_REF_COST);
  6296   size(4);
  6298   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6299   opcode(Assembler::prefetch_op3);
  6300   ins_encode( form3_mem_prefetch_read( mem ) );
  6301   ins_pipe(iload_mem);
  6302 %}
  6304 instruct prefetchw( memory mem ) %{
  6305   match( PrefetchWrite mem );
  6306   ins_cost(MEMORY_REF_COST);
  6307   size(4);
  6309   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6310   opcode(Assembler::prefetch_op3);
  6311   ins_encode( form3_mem_prefetch_write( mem ) );
  6312   ins_pipe(iload_mem);
  6313 %}
  6315 // Prefetch instructions for allocation.
  6317 instruct prefetchAlloc( memory mem ) %{
  6318   predicate(AllocatePrefetchInstr == 0);
  6319   match( PrefetchAllocation mem );
  6320   ins_cost(MEMORY_REF_COST);
  6321   size(4);
  6323   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6324   opcode(Assembler::prefetch_op3);
  6325   ins_encode( form3_mem_prefetch_write( mem ) );
  6326   ins_pipe(iload_mem);
  6327 %}
  6329 // Use BIS instruction to prefetch for allocation.
  6330 // Could fault, need space at the end of TLAB.
  6331 instruct prefetchAlloc_bis( iRegP dst ) %{
  6332   predicate(AllocatePrefetchInstr == 1);
  6333   match( PrefetchAllocation dst );
  6334   ins_cost(MEMORY_REF_COST);
  6335   size(4);
  6337   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6338   ins_encode %{
  6339     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6340   %}
  6341   ins_pipe(istore_mem_reg);
  6342 %}
  6344 // Next code is used for finding next cache line address to prefetch.
  6345 #ifndef _LP64
  6346 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6347   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6348   ins_cost(DEFAULT_COST);
  6349   size(4);
  6351   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6352   ins_encode %{
  6353     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6354   %}
  6355   ins_pipe(ialu_reg_imm);
  6356 %}
  6357 #else
  6358 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6359   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6360   ins_cost(DEFAULT_COST);
  6361   size(4);
  6363   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6364   ins_encode %{
  6365     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6366   %}
  6367   ins_pipe(ialu_reg_imm);
  6368 %}
  6369 #endif
  6371 //----------Store Instructions-------------------------------------------------
  6372 // Store Byte
  6373 instruct storeB(memory mem, iRegI src) %{
  6374   match(Set mem (StoreB mem src));
  6375   ins_cost(MEMORY_REF_COST);
  6377   size(4);
  6378   format %{ "STB    $src,$mem\t! byte" %}
  6379   opcode(Assembler::stb_op3);
  6380   ins_encode(simple_form3_mem_reg( mem, src ) );
  6381   ins_pipe(istore_mem_reg);
  6382 %}
  6384 instruct storeB0(memory mem, immI0 src) %{
  6385   match(Set mem (StoreB mem src));
  6386   ins_cost(MEMORY_REF_COST);
  6388   size(4);
  6389   format %{ "STB    $src,$mem\t! byte" %}
  6390   opcode(Assembler::stb_op3);
  6391   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6392   ins_pipe(istore_mem_zero);
  6393 %}
  6395 instruct storeCM0(memory mem, immI0 src) %{
  6396   match(Set mem (StoreCM mem src));
  6397   ins_cost(MEMORY_REF_COST);
  6399   size(4);
  6400   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6401   opcode(Assembler::stb_op3);
  6402   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6403   ins_pipe(istore_mem_zero);
  6404 %}
  6406 // Store Char/Short
  6407 instruct storeC(memory mem, iRegI src) %{
  6408   match(Set mem (StoreC mem src));
  6409   ins_cost(MEMORY_REF_COST);
  6411   size(4);
  6412   format %{ "STH    $src,$mem\t! short" %}
  6413   opcode(Assembler::sth_op3);
  6414   ins_encode(simple_form3_mem_reg( mem, src ) );
  6415   ins_pipe(istore_mem_reg);
  6416 %}
  6418 instruct storeC0(memory mem, immI0 src) %{
  6419   match(Set mem (StoreC mem src));
  6420   ins_cost(MEMORY_REF_COST);
  6422   size(4);
  6423   format %{ "STH    $src,$mem\t! short" %}
  6424   opcode(Assembler::sth_op3);
  6425   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6426   ins_pipe(istore_mem_zero);
  6427 %}
  6429 // Store Integer
  6430 instruct storeI(memory mem, iRegI src) %{
  6431   match(Set mem (StoreI mem src));
  6432   ins_cost(MEMORY_REF_COST);
  6434   size(4);
  6435   format %{ "STW    $src,$mem" %}
  6436   opcode(Assembler::stw_op3);
  6437   ins_encode(simple_form3_mem_reg( mem, src ) );
  6438   ins_pipe(istore_mem_reg);
  6439 %}
  6441 // Store Long
  6442 instruct storeL(memory mem, iRegL src) %{
  6443   match(Set mem (StoreL mem src));
  6444   ins_cost(MEMORY_REF_COST);
  6445   size(4);
  6446   format %{ "STX    $src,$mem\t! long" %}
  6447   opcode(Assembler::stx_op3);
  6448   ins_encode(simple_form3_mem_reg( mem, src ) );
  6449   ins_pipe(istore_mem_reg);
  6450 %}
  6452 instruct storeI0(memory mem, immI0 src) %{
  6453   match(Set mem (StoreI mem src));
  6454   ins_cost(MEMORY_REF_COST);
  6456   size(4);
  6457   format %{ "STW    $src,$mem" %}
  6458   opcode(Assembler::stw_op3);
  6459   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6460   ins_pipe(istore_mem_zero);
  6461 %}
  6463 instruct storeL0(memory mem, immL0 src) %{
  6464   match(Set mem (StoreL mem src));
  6465   ins_cost(MEMORY_REF_COST);
  6467   size(4);
  6468   format %{ "STX    $src,$mem" %}
  6469   opcode(Assembler::stx_op3);
  6470   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6471   ins_pipe(istore_mem_zero);
  6472 %}
  6474 // Store Integer from float register (used after fstoi)
  6475 instruct storeI_Freg(memory mem, regF src) %{
  6476   match(Set mem (StoreI mem src));
  6477   ins_cost(MEMORY_REF_COST);
  6479   size(4);
  6480   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6481   opcode(Assembler::stf_op3);
  6482   ins_encode(simple_form3_mem_reg( mem, src ) );
  6483   ins_pipe(fstoreF_mem_reg);
  6484 %}
  6486 // Store Pointer
  6487 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6488   match(Set dst (StoreP dst src));
  6489   ins_cost(MEMORY_REF_COST);
  6490   size(4);
  6492 #ifndef _LP64
  6493   format %{ "STW    $src,$dst\t! ptr" %}
  6494   opcode(Assembler::stw_op3, 0, REGP_OP);
  6495 #else
  6496   format %{ "STX    $src,$dst\t! ptr" %}
  6497   opcode(Assembler::stx_op3, 0, REGP_OP);
  6498 #endif
  6499   ins_encode( form3_mem_reg( dst, src ) );
  6500   ins_pipe(istore_mem_spORreg);
  6501 %}
  6503 instruct storeP0(memory dst, immP0 src) %{
  6504   match(Set dst (StoreP dst src));
  6505   ins_cost(MEMORY_REF_COST);
  6506   size(4);
  6508 #ifndef _LP64
  6509   format %{ "STW    $src,$dst\t! ptr" %}
  6510   opcode(Assembler::stw_op3, 0, REGP_OP);
  6511 #else
  6512   format %{ "STX    $src,$dst\t! ptr" %}
  6513   opcode(Assembler::stx_op3, 0, REGP_OP);
  6514 #endif
  6515   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6516   ins_pipe(istore_mem_zero);
  6517 %}
  6519 // Store Compressed Pointer
  6520 instruct storeN(memory dst, iRegN src) %{
  6521    match(Set dst (StoreN dst src));
  6522    ins_cost(MEMORY_REF_COST);
  6523    size(4);
  6525    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6526    ins_encode %{
  6527      Register base = as_Register($dst$$base);
  6528      Register index = as_Register($dst$$index);
  6529      Register src = $src$$Register;
  6530      if (index != G0) {
  6531        __ stw(src, base, index);
  6532      } else {
  6533        __ stw(src, base, $dst$$disp);
  6535    %}
  6536    ins_pipe(istore_mem_spORreg);
  6537 %}
  6539 instruct storeN0(memory dst, immN0 src) %{
  6540    match(Set dst (StoreN dst src));
  6541    ins_cost(MEMORY_REF_COST);
  6542    size(4);
  6544    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6545    ins_encode %{
  6546      Register base = as_Register($dst$$base);
  6547      Register index = as_Register($dst$$index);
  6548      if (index != G0) {
  6549        __ stw(0, base, index);
  6550      } else {
  6551        __ stw(0, base, $dst$$disp);
  6553    %}
  6554    ins_pipe(istore_mem_zero);
  6555 %}
  6557 // Store Double
  6558 instruct storeD( memory mem, regD src) %{
  6559   match(Set mem (StoreD mem src));
  6560   ins_cost(MEMORY_REF_COST);
  6562   size(4);
  6563   format %{ "STDF   $src,$mem" %}
  6564   opcode(Assembler::stdf_op3);
  6565   ins_encode(simple_form3_mem_reg( mem, src ) );
  6566   ins_pipe(fstoreD_mem_reg);
  6567 %}
  6569 instruct storeD0( memory mem, immD0 src) %{
  6570   match(Set mem (StoreD mem src));
  6571   ins_cost(MEMORY_REF_COST);
  6573   size(4);
  6574   format %{ "STX    $src,$mem" %}
  6575   opcode(Assembler::stx_op3);
  6576   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6577   ins_pipe(fstoreD_mem_zero);
  6578 %}
  6580 // Store Float
  6581 instruct storeF( memory mem, regF src) %{
  6582   match(Set mem (StoreF mem src));
  6583   ins_cost(MEMORY_REF_COST);
  6585   size(4);
  6586   format %{ "STF    $src,$mem" %}
  6587   opcode(Assembler::stf_op3);
  6588   ins_encode(simple_form3_mem_reg( mem, src ) );
  6589   ins_pipe(fstoreF_mem_reg);
  6590 %}
  6592 instruct storeF0( memory mem, immF0 src) %{
  6593   match(Set mem (StoreF mem src));
  6594   ins_cost(MEMORY_REF_COST);
  6596   size(4);
  6597   format %{ "STW    $src,$mem\t! storeF0" %}
  6598   opcode(Assembler::stw_op3);
  6599   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6600   ins_pipe(fstoreF_mem_zero);
  6601 %}
  6603 // Store Aligned Packed Bytes in Double register to memory
  6604 instruct storeA8B(memory mem, regD src) %{
  6605   match(Set mem (Store8B mem src));
  6606   ins_cost(MEMORY_REF_COST);
  6607   size(4);
  6608   format %{ "STDF   $src,$mem\t! packed8B" %}
  6609   opcode(Assembler::stdf_op3);
  6610   ins_encode(simple_form3_mem_reg( mem, src ) );
  6611   ins_pipe(fstoreD_mem_reg);
  6612 %}
  6614 // Convert oop pointer into compressed form
  6615 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6616   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6617   match(Set dst (EncodeP src));
  6618   format %{ "encode_heap_oop $src, $dst" %}
  6619   ins_encode %{
  6620     __ encode_heap_oop($src$$Register, $dst$$Register);
  6621   %}
  6622   ins_pipe(ialu_reg);
  6623 %}
  6625 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6626   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6627   match(Set dst (EncodeP src));
  6628   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6629   ins_encode %{
  6630     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6631   %}
  6632   ins_pipe(ialu_reg);
  6633 %}
  6635 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6636   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6637             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6638   match(Set dst (DecodeN src));
  6639   format %{ "decode_heap_oop $src, $dst" %}
  6640   ins_encode %{
  6641     __ decode_heap_oop($src$$Register, $dst$$Register);
  6642   %}
  6643   ins_pipe(ialu_reg);
  6644 %}
  6646 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6647   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6648             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6649   match(Set dst (DecodeN src));
  6650   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6651   ins_encode %{
  6652     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6653   %}
  6654   ins_pipe(ialu_reg);
  6655 %}
  6658 // Store Zero into Aligned Packed Bytes
  6659 instruct storeA8B0(memory mem, immI0 zero) %{
  6660   match(Set mem (Store8B mem zero));
  6661   ins_cost(MEMORY_REF_COST);
  6662   size(4);
  6663   format %{ "STX    $zero,$mem\t! packed8B" %}
  6664   opcode(Assembler::stx_op3);
  6665   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6666   ins_pipe(fstoreD_mem_zero);
  6667 %}
  6669 // Store Aligned Packed Chars/Shorts in Double register to memory
  6670 instruct storeA4C(memory mem, regD src) %{
  6671   match(Set mem (Store4C mem src));
  6672   ins_cost(MEMORY_REF_COST);
  6673   size(4);
  6674   format %{ "STDF   $src,$mem\t! packed4C" %}
  6675   opcode(Assembler::stdf_op3);
  6676   ins_encode(simple_form3_mem_reg( mem, src ) );
  6677   ins_pipe(fstoreD_mem_reg);
  6678 %}
  6680 // Store Zero into Aligned Packed Chars/Shorts
  6681 instruct storeA4C0(memory mem, immI0 zero) %{
  6682   match(Set mem (Store4C mem (Replicate4C zero)));
  6683   ins_cost(MEMORY_REF_COST);
  6684   size(4);
  6685   format %{ "STX    $zero,$mem\t! packed4C" %}
  6686   opcode(Assembler::stx_op3);
  6687   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6688   ins_pipe(fstoreD_mem_zero);
  6689 %}
  6691 // Store Aligned Packed Ints in Double register to memory
  6692 instruct storeA2I(memory mem, regD src) %{
  6693   match(Set mem (Store2I mem src));
  6694   ins_cost(MEMORY_REF_COST);
  6695   size(4);
  6696   format %{ "STDF   $src,$mem\t! packed2I" %}
  6697   opcode(Assembler::stdf_op3);
  6698   ins_encode(simple_form3_mem_reg( mem, src ) );
  6699   ins_pipe(fstoreD_mem_reg);
  6700 %}
  6702 // Store Zero into Aligned Packed Ints
  6703 instruct storeA2I0(memory mem, immI0 zero) %{
  6704   match(Set mem (Store2I mem zero));
  6705   ins_cost(MEMORY_REF_COST);
  6706   size(4);
  6707   format %{ "STX    $zero,$mem\t! packed2I" %}
  6708   opcode(Assembler::stx_op3);
  6709   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6710   ins_pipe(fstoreD_mem_zero);
  6711 %}
  6714 //----------MemBar Instructions-----------------------------------------------
  6715 // Memory barrier flavors
  6717 instruct membar_acquire() %{
  6718   match(MemBarAcquire);
  6719   ins_cost(4*MEMORY_REF_COST);
  6721   size(0);
  6722   format %{ "MEMBAR-acquire" %}
  6723   ins_encode( enc_membar_acquire );
  6724   ins_pipe(long_memory_op);
  6725 %}
  6727 instruct membar_acquire_lock() %{
  6728   match(MemBarAcquireLock);
  6729   ins_cost(0);
  6731   size(0);
  6732   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6733   ins_encode( );
  6734   ins_pipe(empty);
  6735 %}
  6737 instruct membar_release() %{
  6738   match(MemBarRelease);
  6739   ins_cost(4*MEMORY_REF_COST);
  6741   size(0);
  6742   format %{ "MEMBAR-release" %}
  6743   ins_encode( enc_membar_release );
  6744   ins_pipe(long_memory_op);
  6745 %}
  6747 instruct membar_release_lock() %{
  6748   match(MemBarReleaseLock);
  6749   ins_cost(0);
  6751   size(0);
  6752   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6753   ins_encode( );
  6754   ins_pipe(empty);
  6755 %}
  6757 instruct membar_volatile() %{
  6758   match(MemBarVolatile);
  6759   ins_cost(4*MEMORY_REF_COST);
  6761   size(4);
  6762   format %{ "MEMBAR-volatile" %}
  6763   ins_encode( enc_membar_volatile );
  6764   ins_pipe(long_memory_op);
  6765 %}
  6767 instruct unnecessary_membar_volatile() %{
  6768   match(MemBarVolatile);
  6769   predicate(Matcher::post_store_load_barrier(n));
  6770   ins_cost(0);
  6772   size(0);
  6773   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6774   ins_encode( );
  6775   ins_pipe(empty);
  6776 %}
  6778 instruct membar_storestore() %{
  6779   match(MemBarStoreStore);
  6780   ins_cost(0);
  6782   size(0);
  6783   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6784   ins_encode( );
  6785   ins_pipe(empty);
  6786 %}
  6788 //----------Register Move Instructions-----------------------------------------
  6789 instruct roundDouble_nop(regD dst) %{
  6790   match(Set dst (RoundDouble dst));
  6791   ins_cost(0);
  6792   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6793   ins_encode( );
  6794   ins_pipe(empty);
  6795 %}
  6798 instruct roundFloat_nop(regF dst) %{
  6799   match(Set dst (RoundFloat dst));
  6800   ins_cost(0);
  6801   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6802   ins_encode( );
  6803   ins_pipe(empty);
  6804 %}
  6807 // Cast Index to Pointer for unsafe natives
  6808 instruct castX2P(iRegX src, iRegP dst) %{
  6809   match(Set dst (CastX2P src));
  6811   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6812   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6813   ins_pipe(ialu_reg);
  6814 %}
  6816 // Cast Pointer to Index for unsafe natives
  6817 instruct castP2X(iRegP src, iRegX dst) %{
  6818   match(Set dst (CastP2X src));
  6820   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6821   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6822   ins_pipe(ialu_reg);
  6823 %}
  6825 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6826   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6827   match(Set stkSlot src);   // chain rule
  6828   ins_cost(MEMORY_REF_COST);
  6829   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6830   opcode(Assembler::stdf_op3);
  6831   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6832   ins_pipe(fstoreD_stk_reg);
  6833 %}
  6835 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6836   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6837   match(Set dst stkSlot);   // chain rule
  6838   ins_cost(MEMORY_REF_COST);
  6839   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6840   opcode(Assembler::lddf_op3);
  6841   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6842   ins_pipe(floadD_stk);
  6843 %}
  6845 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6846   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6847   match(Set stkSlot src);   // chain rule
  6848   ins_cost(MEMORY_REF_COST);
  6849   format %{ "STF   $src,$stkSlot\t!stk" %}
  6850   opcode(Assembler::stf_op3);
  6851   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6852   ins_pipe(fstoreF_stk_reg);
  6853 %}
  6855 //----------Conditional Move---------------------------------------------------
  6856 // Conditional move
  6857 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6858   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6859   ins_cost(150);
  6860   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6861   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6862   ins_pipe(ialu_reg);
  6863 %}
  6865 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6866   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6867   ins_cost(140);
  6868   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6869   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6870   ins_pipe(ialu_imm);
  6871 %}
  6873 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6874   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6875   ins_cost(150);
  6876   size(4);
  6877   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6878   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6879   ins_pipe(ialu_reg);
  6880 %}
  6882 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6883   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6884   ins_cost(140);
  6885   size(4);
  6886   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6887   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6888   ins_pipe(ialu_imm);
  6889 %}
  6891 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6892   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6893   ins_cost(150);
  6894   size(4);
  6895   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6896   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6897   ins_pipe(ialu_reg);
  6898 %}
  6900 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6901   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6902   ins_cost(140);
  6903   size(4);
  6904   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6905   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6906   ins_pipe(ialu_imm);
  6907 %}
  6909 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6910   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6911   ins_cost(150);
  6912   size(4);
  6913   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6914   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6915   ins_pipe(ialu_reg);
  6916 %}
  6918 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6919   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6920   ins_cost(140);
  6921   size(4);
  6922   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6923   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6924   ins_pipe(ialu_imm);
  6925 %}
  6927 // Conditional move for RegN. Only cmov(reg,reg).
  6928 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6929   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6930   ins_cost(150);
  6931   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6932   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6933   ins_pipe(ialu_reg);
  6934 %}
  6936 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6937 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6938   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6939   ins_cost(150);
  6940   size(4);
  6941   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6942   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6943   ins_pipe(ialu_reg);
  6944 %}
  6946 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6947 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6948   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6949   ins_cost(150);
  6950   size(4);
  6951   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6952   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6953   ins_pipe(ialu_reg);
  6954 %}
  6956 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6957   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6958   ins_cost(150);
  6959   size(4);
  6960   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6961   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6962   ins_pipe(ialu_reg);
  6963 %}
  6965 // Conditional move
  6966 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6967   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6968   ins_cost(150);
  6969   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6970   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6971   ins_pipe(ialu_reg);
  6972 %}
  6974 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6975   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6976   ins_cost(140);
  6977   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6978   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6979   ins_pipe(ialu_imm);
  6980 %}
  6982 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6983 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6984   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6985   ins_cost(150);
  6987   size(4);
  6988   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6989   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6990   ins_pipe(ialu_reg);
  6991 %}
  6993 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6994   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6995   ins_cost(150);
  6997   size(4);
  6998   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6999   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7000   ins_pipe(ialu_reg);
  7001 %}
  7003 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  7004   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7005   ins_cost(140);
  7007   size(4);
  7008   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7009   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7010   ins_pipe(ialu_imm);
  7011 %}
  7013 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  7014   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7015   ins_cost(140);
  7017   size(4);
  7018   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7019   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7020   ins_pipe(ialu_imm);
  7021 %}
  7023 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  7024   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7025   ins_cost(150);
  7026   size(4);
  7027   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7028   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7029   ins_pipe(ialu_imm);
  7030 %}
  7032 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  7033   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7034   ins_cost(140);
  7035   size(4);
  7036   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7037   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  7038   ins_pipe(ialu_imm);
  7039 %}
  7041 // Conditional move
  7042 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7043   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7044   ins_cost(150);
  7045   opcode(0x101);
  7046   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7047   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7048   ins_pipe(int_conditional_float_move);
  7049 %}
  7051 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7052   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7053   ins_cost(150);
  7055   size(4);
  7056   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7057   opcode(0x101);
  7058   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7059   ins_pipe(int_conditional_float_move);
  7060 %}
  7062 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7063   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7064   ins_cost(150);
  7066   size(4);
  7067   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7068   opcode(0x101);
  7069   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7070   ins_pipe(int_conditional_float_move);
  7071 %}
  7073 // Conditional move,
  7074 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7075   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7076   ins_cost(150);
  7077   size(4);
  7078   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7079   opcode(0x1);
  7080   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7081   ins_pipe(int_conditional_double_move);
  7082 %}
  7084 // Conditional move
  7085 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7086   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7087   ins_cost(150);
  7088   size(4);
  7089   opcode(0x102);
  7090   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7091   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7092   ins_pipe(int_conditional_double_move);
  7093 %}
  7095 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7096   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7097   ins_cost(150);
  7099   size(4);
  7100   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7101   opcode(0x102);
  7102   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7103   ins_pipe(int_conditional_double_move);
  7104 %}
  7106 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7107   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7108   ins_cost(150);
  7110   size(4);
  7111   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7112   opcode(0x102);
  7113   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7114   ins_pipe(int_conditional_double_move);
  7115 %}
  7117 // Conditional move,
  7118 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7119   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7120   ins_cost(150);
  7121   size(4);
  7122   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7123   opcode(0x2);
  7124   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7125   ins_pipe(int_conditional_double_move);
  7126 %}
  7128 // Conditional move
  7129 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7130   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7131   ins_cost(150);
  7132   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7133   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7134   ins_pipe(ialu_reg);
  7135 %}
  7137 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7138   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7139   ins_cost(140);
  7140   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7141   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7142   ins_pipe(ialu_imm);
  7143 %}
  7145 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7146   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7147   ins_cost(150);
  7149   size(4);
  7150   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7151   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7152   ins_pipe(ialu_reg);
  7153 %}
  7156 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7157   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7158   ins_cost(150);
  7160   size(4);
  7161   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7162   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7163   ins_pipe(ialu_reg);
  7164 %}
  7167 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7168   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7169   ins_cost(150);
  7171   size(4);
  7172   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7173   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7174   ins_pipe(ialu_reg);
  7175 %}
  7179 //----------OS and Locking Instructions----------------------------------------
  7181 // This name is KNOWN by the ADLC and cannot be changed.
  7182 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7183 // for this guy.
  7184 instruct tlsLoadP(g2RegP dst) %{
  7185   match(Set dst (ThreadLocal));
  7187   size(0);
  7188   ins_cost(0);
  7189   format %{ "# TLS is in G2" %}
  7190   ins_encode( /*empty encoding*/ );
  7191   ins_pipe(ialu_none);
  7192 %}
  7194 instruct checkCastPP( iRegP dst ) %{
  7195   match(Set dst (CheckCastPP dst));
  7197   size(0);
  7198   format %{ "# checkcastPP of $dst" %}
  7199   ins_encode( /*empty encoding*/ );
  7200   ins_pipe(empty);
  7201 %}
  7204 instruct castPP( iRegP dst ) %{
  7205   match(Set dst (CastPP dst));
  7206   format %{ "# castPP of $dst" %}
  7207   ins_encode( /*empty encoding*/ );
  7208   ins_pipe(empty);
  7209 %}
  7211 instruct castII( iRegI dst ) %{
  7212   match(Set dst (CastII dst));
  7213   format %{ "# castII of $dst" %}
  7214   ins_encode( /*empty encoding*/ );
  7215   ins_cost(0);
  7216   ins_pipe(empty);
  7217 %}
  7219 //----------Arithmetic Instructions--------------------------------------------
  7220 // Addition Instructions
  7221 // Register Addition
  7222 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7223   match(Set dst (AddI src1 src2));
  7225   size(4);
  7226   format %{ "ADD    $src1,$src2,$dst" %}
  7227   ins_encode %{
  7228     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7229   %}
  7230   ins_pipe(ialu_reg_reg);
  7231 %}
  7233 // Immediate Addition
  7234 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7235   match(Set dst (AddI src1 src2));
  7237   size(4);
  7238   format %{ "ADD    $src1,$src2,$dst" %}
  7239   opcode(Assembler::add_op3, Assembler::arith_op);
  7240   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7241   ins_pipe(ialu_reg_imm);
  7242 %}
  7244 // Pointer Register Addition
  7245 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7246   match(Set dst (AddP src1 src2));
  7248   size(4);
  7249   format %{ "ADD    $src1,$src2,$dst" %}
  7250   opcode(Assembler::add_op3, Assembler::arith_op);
  7251   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7252   ins_pipe(ialu_reg_reg);
  7253 %}
  7255 // Pointer Immediate Addition
  7256 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7257   match(Set dst (AddP src1 src2));
  7259   size(4);
  7260   format %{ "ADD    $src1,$src2,$dst" %}
  7261   opcode(Assembler::add_op3, Assembler::arith_op);
  7262   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7263   ins_pipe(ialu_reg_imm);
  7264 %}
  7266 // Long Addition
  7267 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7268   match(Set dst (AddL src1 src2));
  7270   size(4);
  7271   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7272   opcode(Assembler::add_op3, Assembler::arith_op);
  7273   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7274   ins_pipe(ialu_reg_reg);
  7275 %}
  7277 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7278   match(Set dst (AddL src1 con));
  7280   size(4);
  7281   format %{ "ADD    $src1,$con,$dst" %}
  7282   opcode(Assembler::add_op3, Assembler::arith_op);
  7283   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7284   ins_pipe(ialu_reg_imm);
  7285 %}
  7287 //----------Conditional_store--------------------------------------------------
  7288 // Conditional-store of the updated heap-top.
  7289 // Used during allocation of the shared heap.
  7290 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7292 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7293 instruct loadPLocked(iRegP dst, memory mem) %{
  7294   match(Set dst (LoadPLocked mem));
  7295   ins_cost(MEMORY_REF_COST);
  7297 #ifndef _LP64
  7298   size(4);
  7299   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7300   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7301 #else
  7302   format %{ "LDX    $mem,$dst\t! ptr" %}
  7303   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7304 #endif
  7305   ins_encode( form3_mem_reg( mem, dst ) );
  7306   ins_pipe(iload_mem);
  7307 %}
  7309 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7310 instruct loadLLocked(iRegL dst, memory mem) %{
  7311   match(Set dst (LoadLLocked mem));
  7312   ins_cost(MEMORY_REF_COST);
  7313   size(4);
  7314   format %{ "LDX    $mem,$dst\t! long" %}
  7315   opcode(Assembler::ldx_op3);
  7316   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7317   ins_pipe(iload_mem);
  7318 %}
  7320 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7321   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7322   effect( KILL newval );
  7323   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7324             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7325   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7326   ins_pipe( long_memory_op );
  7327 %}
  7329 // Conditional-store of an int value.
  7330 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7331   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7332   effect( KILL newval );
  7333   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7334             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7335   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7336   ins_pipe( long_memory_op );
  7337 %}
  7339 // Conditional-store of a long value.
  7340 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7341   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7342   effect( KILL newval );
  7343   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7344             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7345   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7346   ins_pipe( long_memory_op );
  7347 %}
  7349 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7351 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7352   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7353   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7354   format %{
  7355             "MOV    $newval,O7\n\t"
  7356             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7357             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7358             "MOV    1,$res\n\t"
  7359             "MOVne  xcc,R_G0,$res"
  7360   %}
  7361   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7362               enc_lflags_ne_to_boolean(res) );
  7363   ins_pipe( long_memory_op );
  7364 %}
  7367 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7368   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7369   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7370   format %{
  7371             "MOV    $newval,O7\n\t"
  7372             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7373             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7374             "MOV    1,$res\n\t"
  7375             "MOVne  icc,R_G0,$res"
  7376   %}
  7377   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7378               enc_iflags_ne_to_boolean(res) );
  7379   ins_pipe( long_memory_op );
  7380 %}
  7382 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7383   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7384   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7385   format %{
  7386             "MOV    $newval,O7\n\t"
  7387             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7388             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7389             "MOV    1,$res\n\t"
  7390             "MOVne  xcc,R_G0,$res"
  7391   %}
  7392 #ifdef _LP64
  7393   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7394               enc_lflags_ne_to_boolean(res) );
  7395 #else
  7396   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7397               enc_iflags_ne_to_boolean(res) );
  7398 #endif
  7399   ins_pipe( long_memory_op );
  7400 %}
  7402 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7403   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7404   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7405   format %{
  7406             "MOV    $newval,O7\n\t"
  7407             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7408             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7409             "MOV    1,$res\n\t"
  7410             "MOVne  icc,R_G0,$res"
  7411   %}
  7412   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7413               enc_iflags_ne_to_boolean(res) );
  7414   ins_pipe( long_memory_op );
  7415 %}
  7417 //---------------------
  7418 // Subtraction Instructions
  7419 // Register Subtraction
  7420 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7421   match(Set dst (SubI src1 src2));
  7423   size(4);
  7424   format %{ "SUB    $src1,$src2,$dst" %}
  7425   opcode(Assembler::sub_op3, Assembler::arith_op);
  7426   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7427   ins_pipe(ialu_reg_reg);
  7428 %}
  7430 // Immediate Subtraction
  7431 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7432   match(Set dst (SubI src1 src2));
  7434   size(4);
  7435   format %{ "SUB    $src1,$src2,$dst" %}
  7436   opcode(Assembler::sub_op3, Assembler::arith_op);
  7437   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7438   ins_pipe(ialu_reg_imm);
  7439 %}
  7441 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7442   match(Set dst (SubI zero src2));
  7444   size(4);
  7445   format %{ "NEG    $src2,$dst" %}
  7446   opcode(Assembler::sub_op3, Assembler::arith_op);
  7447   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7448   ins_pipe(ialu_zero_reg);
  7449 %}
  7451 // Long subtraction
  7452 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7453   match(Set dst (SubL src1 src2));
  7455   size(4);
  7456   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7457   opcode(Assembler::sub_op3, Assembler::arith_op);
  7458   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7459   ins_pipe(ialu_reg_reg);
  7460 %}
  7462 // Immediate Subtraction
  7463 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7464   match(Set dst (SubL src1 con));
  7466   size(4);
  7467   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7468   opcode(Assembler::sub_op3, Assembler::arith_op);
  7469   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7470   ins_pipe(ialu_reg_imm);
  7471 %}
  7473 // Long negation
  7474 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7475   match(Set dst (SubL zero src2));
  7477   size(4);
  7478   format %{ "NEG    $src2,$dst\t! long" %}
  7479   opcode(Assembler::sub_op3, Assembler::arith_op);
  7480   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7481   ins_pipe(ialu_zero_reg);
  7482 %}
  7484 // Multiplication Instructions
  7485 // Integer Multiplication
  7486 // Register Multiplication
  7487 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7488   match(Set dst (MulI src1 src2));
  7490   size(4);
  7491   format %{ "MULX   $src1,$src2,$dst" %}
  7492   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7493   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7494   ins_pipe(imul_reg_reg);
  7495 %}
  7497 // Immediate Multiplication
  7498 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7499   match(Set dst (MulI src1 src2));
  7501   size(4);
  7502   format %{ "MULX   $src1,$src2,$dst" %}
  7503   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7504   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7505   ins_pipe(imul_reg_imm);
  7506 %}
  7508 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7509   match(Set dst (MulL src1 src2));
  7510   ins_cost(DEFAULT_COST * 5);
  7511   size(4);
  7512   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7513   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7514   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7515   ins_pipe(mulL_reg_reg);
  7516 %}
  7518 // Immediate Multiplication
  7519 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7520   match(Set dst (MulL src1 src2));
  7521   ins_cost(DEFAULT_COST * 5);
  7522   size(4);
  7523   format %{ "MULX   $src1,$src2,$dst" %}
  7524   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7525   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7526   ins_pipe(mulL_reg_imm);
  7527 %}
  7529 // Integer Division
  7530 // Register Division
  7531 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7532   match(Set dst (DivI src1 src2));
  7533   ins_cost((2+71)*DEFAULT_COST);
  7535   format %{ "SRA     $src2,0,$src2\n\t"
  7536             "SRA     $src1,0,$src1\n\t"
  7537             "SDIVX   $src1,$src2,$dst" %}
  7538   ins_encode( idiv_reg( src1, src2, dst ) );
  7539   ins_pipe(sdiv_reg_reg);
  7540 %}
  7542 // Immediate Division
  7543 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7544   match(Set dst (DivI src1 src2));
  7545   ins_cost((2+71)*DEFAULT_COST);
  7547   format %{ "SRA     $src1,0,$src1\n\t"
  7548             "SDIVX   $src1,$src2,$dst" %}
  7549   ins_encode( idiv_imm( src1, src2, dst ) );
  7550   ins_pipe(sdiv_reg_imm);
  7551 %}
  7553 //----------Div-By-10-Expansion------------------------------------------------
  7554 // Extract hi bits of a 32x32->64 bit multiply.
  7555 // Expand rule only, not matched
  7556 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7557   effect( DEF dst, USE src1, USE src2 );
  7558   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7559             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7560   ins_encode( enc_mul_hi(dst,src1,src2));
  7561   ins_pipe(sdiv_reg_reg);
  7562 %}
  7564 // Magic constant, reciprocal of 10
  7565 instruct loadConI_x66666667(iRegIsafe dst) %{
  7566   effect( DEF dst );
  7568   size(8);
  7569   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7570   ins_encode( Set32(0x66666667, dst) );
  7571   ins_pipe(ialu_hi_lo_reg);
  7572 %}
  7574 // Register Shift Right Arithmetic Long by 32-63
  7575 instruct sra_31( iRegI dst, iRegI src ) %{
  7576   effect( DEF dst, USE src );
  7577   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7578   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7579   ins_pipe(ialu_reg_reg);
  7580 %}
  7582 // Arithmetic Shift Right by 8-bit immediate
  7583 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7584   effect( DEF dst, USE src );
  7585   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7586   opcode(Assembler::sra_op3, Assembler::arith_op);
  7587   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7588   ins_pipe(ialu_reg_imm);
  7589 %}
  7591 // Integer DIV with 10
  7592 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7593   match(Set dst (DivI src div));
  7594   ins_cost((6+6)*DEFAULT_COST);
  7595   expand %{
  7596     iRegIsafe tmp1;               // Killed temps;
  7597     iRegIsafe tmp2;               // Killed temps;
  7598     iRegI tmp3;                   // Killed temps;
  7599     iRegI tmp4;                   // Killed temps;
  7600     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7601     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7602     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7603     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7604     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7605   %}
  7606 %}
  7608 // Register Long Division
  7609 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7610   match(Set dst (DivL src1 src2));
  7611   ins_cost(DEFAULT_COST*71);
  7612   size(4);
  7613   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7614   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7615   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7616   ins_pipe(divL_reg_reg);
  7617 %}
  7619 // Register Long Division
  7620 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7621   match(Set dst (DivL src1 src2));
  7622   ins_cost(DEFAULT_COST*71);
  7623   size(4);
  7624   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7625   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7626   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7627   ins_pipe(divL_reg_imm);
  7628 %}
  7630 // Integer Remainder
  7631 // Register Remainder
  7632 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7633   match(Set dst (ModI src1 src2));
  7634   effect( KILL ccr, KILL temp);
  7636   format %{ "SREM   $src1,$src2,$dst" %}
  7637   ins_encode( irem_reg(src1, src2, dst, temp) );
  7638   ins_pipe(sdiv_reg_reg);
  7639 %}
  7641 // Immediate Remainder
  7642 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7643   match(Set dst (ModI src1 src2));
  7644   effect( KILL ccr, KILL temp);
  7646   format %{ "SREM   $src1,$src2,$dst" %}
  7647   ins_encode( irem_imm(src1, src2, dst, temp) );
  7648   ins_pipe(sdiv_reg_imm);
  7649 %}
  7651 // Register Long Remainder
  7652 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7653   effect(DEF dst, USE src1, USE src2);
  7654   size(4);
  7655   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7656   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7658   ins_pipe(divL_reg_reg);
  7659 %}
  7661 // Register Long Division
  7662 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7663   effect(DEF dst, USE src1, USE src2);
  7664   size(4);
  7665   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7666   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7667   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7668   ins_pipe(divL_reg_imm);
  7669 %}
  7671 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7672   effect(DEF dst, USE src1, USE src2);
  7673   size(4);
  7674   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7675   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7676   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7677   ins_pipe(mulL_reg_reg);
  7678 %}
  7680 // Immediate Multiplication
  7681 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7682   effect(DEF dst, USE src1, USE src2);
  7683   size(4);
  7684   format %{ "MULX   $src1,$src2,$dst" %}
  7685   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7686   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7687   ins_pipe(mulL_reg_imm);
  7688 %}
  7690 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7691   effect(DEF dst, USE src1, USE src2);
  7692   size(4);
  7693   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7694   opcode(Assembler::sub_op3, Assembler::arith_op);
  7695   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7696   ins_pipe(ialu_reg_reg);
  7697 %}
  7699 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7700   effect(DEF dst, USE src1, USE src2);
  7701   size(4);
  7702   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7703   opcode(Assembler::sub_op3, Assembler::arith_op);
  7704   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7705   ins_pipe(ialu_reg_reg);
  7706 %}
  7708 // Register Long Remainder
  7709 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7710   match(Set dst (ModL src1 src2));
  7711   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7712   expand %{
  7713     iRegL tmp1;
  7714     iRegL tmp2;
  7715     divL_reg_reg_1(tmp1, src1, src2);
  7716     mulL_reg_reg_1(tmp2, tmp1, src2);
  7717     subL_reg_reg_1(dst,  src1, tmp2);
  7718   %}
  7719 %}
  7721 // Register Long Remainder
  7722 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7723   match(Set dst (ModL src1 src2));
  7724   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7725   expand %{
  7726     iRegL tmp1;
  7727     iRegL tmp2;
  7728     divL_reg_imm13_1(tmp1, src1, src2);
  7729     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7730     subL_reg_reg_2  (dst,  src1, tmp2);
  7731   %}
  7732 %}
  7734 // Integer Shift Instructions
  7735 // Register Shift Left
  7736 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7737   match(Set dst (LShiftI src1 src2));
  7739   size(4);
  7740   format %{ "SLL    $src1,$src2,$dst" %}
  7741   opcode(Assembler::sll_op3, Assembler::arith_op);
  7742   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7743   ins_pipe(ialu_reg_reg);
  7744 %}
  7746 // Register Shift Left Immediate
  7747 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7748   match(Set dst (LShiftI src1 src2));
  7750   size(4);
  7751   format %{ "SLL    $src1,$src2,$dst" %}
  7752   opcode(Assembler::sll_op3, Assembler::arith_op);
  7753   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7754   ins_pipe(ialu_reg_imm);
  7755 %}
  7757 // Register Shift Left
  7758 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7759   match(Set dst (LShiftL src1 src2));
  7761   size(4);
  7762   format %{ "SLLX   $src1,$src2,$dst" %}
  7763   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7764   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7765   ins_pipe(ialu_reg_reg);
  7766 %}
  7768 // Register Shift Left Immediate
  7769 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7770   match(Set dst (LShiftL src1 src2));
  7772   size(4);
  7773   format %{ "SLLX   $src1,$src2,$dst" %}
  7774   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7775   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7776   ins_pipe(ialu_reg_imm);
  7777 %}
  7779 // Register Arithmetic Shift Right
  7780 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7781   match(Set dst (RShiftI src1 src2));
  7782   size(4);
  7783   format %{ "SRA    $src1,$src2,$dst" %}
  7784   opcode(Assembler::sra_op3, Assembler::arith_op);
  7785   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7786   ins_pipe(ialu_reg_reg);
  7787 %}
  7789 // Register Arithmetic Shift Right Immediate
  7790 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7791   match(Set dst (RShiftI src1 src2));
  7793   size(4);
  7794   format %{ "SRA    $src1,$src2,$dst" %}
  7795   opcode(Assembler::sra_op3, Assembler::arith_op);
  7796   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7797   ins_pipe(ialu_reg_imm);
  7798 %}
  7800 // Register Shift Right Arithmatic Long
  7801 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7802   match(Set dst (RShiftL src1 src2));
  7804   size(4);
  7805   format %{ "SRAX   $src1,$src2,$dst" %}
  7806   opcode(Assembler::srax_op3, Assembler::arith_op);
  7807   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7808   ins_pipe(ialu_reg_reg);
  7809 %}
  7811 // Register Shift Left Immediate
  7812 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7813   match(Set dst (RShiftL src1 src2));
  7815   size(4);
  7816   format %{ "SRAX   $src1,$src2,$dst" %}
  7817   opcode(Assembler::srax_op3, Assembler::arith_op);
  7818   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7819   ins_pipe(ialu_reg_imm);
  7820 %}
  7822 // Register Shift Right
  7823 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7824   match(Set dst (URShiftI src1 src2));
  7826   size(4);
  7827   format %{ "SRL    $src1,$src2,$dst" %}
  7828   opcode(Assembler::srl_op3, Assembler::arith_op);
  7829   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7830   ins_pipe(ialu_reg_reg);
  7831 %}
  7833 // Register Shift Right Immediate
  7834 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7835   match(Set dst (URShiftI src1 src2));
  7837   size(4);
  7838   format %{ "SRL    $src1,$src2,$dst" %}
  7839   opcode(Assembler::srl_op3, Assembler::arith_op);
  7840   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7841   ins_pipe(ialu_reg_imm);
  7842 %}
  7844 // Register Shift Right
  7845 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7846   match(Set dst (URShiftL src1 src2));
  7848   size(4);
  7849   format %{ "SRLX   $src1,$src2,$dst" %}
  7850   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7851   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7852   ins_pipe(ialu_reg_reg);
  7853 %}
  7855 // Register Shift Right Immediate
  7856 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7857   match(Set dst (URShiftL src1 src2));
  7859   size(4);
  7860   format %{ "SRLX   $src1,$src2,$dst" %}
  7861   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7862   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7863   ins_pipe(ialu_reg_imm);
  7864 %}
  7866 // Register Shift Right Immediate with a CastP2X
  7867 #ifdef _LP64
  7868 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7869   match(Set dst (URShiftL (CastP2X src1) src2));
  7870   size(4);
  7871   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7872   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7873   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7874   ins_pipe(ialu_reg_imm);
  7875 %}
  7876 #else
  7877 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7878   match(Set dst (URShiftI (CastP2X src1) src2));
  7879   size(4);
  7880   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7881   opcode(Assembler::srl_op3, Assembler::arith_op);
  7882   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7883   ins_pipe(ialu_reg_imm);
  7884 %}
  7885 #endif
  7888 //----------Floating Point Arithmetic Instructions-----------------------------
  7890 //  Add float single precision
  7891 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7892   match(Set dst (AddF src1 src2));
  7894   size(4);
  7895   format %{ "FADDS  $src1,$src2,$dst" %}
  7896   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7897   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7898   ins_pipe(faddF_reg_reg);
  7899 %}
  7901 //  Add float double precision
  7902 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7903   match(Set dst (AddD src1 src2));
  7905   size(4);
  7906   format %{ "FADDD  $src1,$src2,$dst" %}
  7907   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7908   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7909   ins_pipe(faddD_reg_reg);
  7910 %}
  7912 //  Sub float single precision
  7913 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7914   match(Set dst (SubF src1 src2));
  7916   size(4);
  7917   format %{ "FSUBS  $src1,$src2,$dst" %}
  7918   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7919   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7920   ins_pipe(faddF_reg_reg);
  7921 %}
  7923 //  Sub float double precision
  7924 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7925   match(Set dst (SubD src1 src2));
  7927   size(4);
  7928   format %{ "FSUBD  $src1,$src2,$dst" %}
  7929   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7930   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7931   ins_pipe(faddD_reg_reg);
  7932 %}
  7934 //  Mul float single precision
  7935 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7936   match(Set dst (MulF src1 src2));
  7938   size(4);
  7939   format %{ "FMULS  $src1,$src2,$dst" %}
  7940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7941   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7942   ins_pipe(fmulF_reg_reg);
  7943 %}
  7945 //  Mul float double precision
  7946 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7947   match(Set dst (MulD src1 src2));
  7949   size(4);
  7950   format %{ "FMULD  $src1,$src2,$dst" %}
  7951   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7952   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7953   ins_pipe(fmulD_reg_reg);
  7954 %}
  7956 //  Div float single precision
  7957 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7958   match(Set dst (DivF src1 src2));
  7960   size(4);
  7961   format %{ "FDIVS  $src1,$src2,$dst" %}
  7962   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7963   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7964   ins_pipe(fdivF_reg_reg);
  7965 %}
  7967 //  Div float double precision
  7968 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7969   match(Set dst (DivD src1 src2));
  7971   size(4);
  7972   format %{ "FDIVD  $src1,$src2,$dst" %}
  7973   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7974   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7975   ins_pipe(fdivD_reg_reg);
  7976 %}
  7978 //  Absolute float double precision
  7979 instruct absD_reg(regD dst, regD src) %{
  7980   match(Set dst (AbsD src));
  7982   format %{ "FABSd  $src,$dst" %}
  7983   ins_encode(fabsd(dst, src));
  7984   ins_pipe(faddD_reg);
  7985 %}
  7987 //  Absolute float single precision
  7988 instruct absF_reg(regF dst, regF src) %{
  7989   match(Set dst (AbsF src));
  7991   format %{ "FABSs  $src,$dst" %}
  7992   ins_encode(fabss(dst, src));
  7993   ins_pipe(faddF_reg);
  7994 %}
  7996 instruct negF_reg(regF dst, regF src) %{
  7997   match(Set dst (NegF src));
  7999   size(4);
  8000   format %{ "FNEGs  $src,$dst" %}
  8001   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  8002   ins_encode(form3_opf_rs2F_rdF(src, dst));
  8003   ins_pipe(faddF_reg);
  8004 %}
  8006 instruct negD_reg(regD dst, regD src) %{
  8007   match(Set dst (NegD src));
  8009   format %{ "FNEGd  $src,$dst" %}
  8010   ins_encode(fnegd(dst, src));
  8011   ins_pipe(faddD_reg);
  8012 %}
  8014 //  Sqrt float double precision
  8015 instruct sqrtF_reg_reg(regF dst, regF src) %{
  8016   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8018   size(4);
  8019   format %{ "FSQRTS $src,$dst" %}
  8020   ins_encode(fsqrts(dst, src));
  8021   ins_pipe(fdivF_reg_reg);
  8022 %}
  8024 //  Sqrt float double precision
  8025 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8026   match(Set dst (SqrtD src));
  8028   size(4);
  8029   format %{ "FSQRTD $src,$dst" %}
  8030   ins_encode(fsqrtd(dst, src));
  8031   ins_pipe(fdivD_reg_reg);
  8032 %}
  8034 //----------Logical Instructions-----------------------------------------------
  8035 // And Instructions
  8036 // Register And
  8037 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8038   match(Set dst (AndI src1 src2));
  8040   size(4);
  8041   format %{ "AND    $src1,$src2,$dst" %}
  8042   opcode(Assembler::and_op3, Assembler::arith_op);
  8043   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8044   ins_pipe(ialu_reg_reg);
  8045 %}
  8047 // Immediate And
  8048 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8049   match(Set dst (AndI src1 src2));
  8051   size(4);
  8052   format %{ "AND    $src1,$src2,$dst" %}
  8053   opcode(Assembler::and_op3, Assembler::arith_op);
  8054   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8055   ins_pipe(ialu_reg_imm);
  8056 %}
  8058 // Register And Long
  8059 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8060   match(Set dst (AndL src1 src2));
  8062   ins_cost(DEFAULT_COST);
  8063   size(4);
  8064   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8065   opcode(Assembler::and_op3, Assembler::arith_op);
  8066   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8067   ins_pipe(ialu_reg_reg);
  8068 %}
  8070 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8071   match(Set dst (AndL src1 con));
  8073   ins_cost(DEFAULT_COST);
  8074   size(4);
  8075   format %{ "AND    $src1,$con,$dst\t! long" %}
  8076   opcode(Assembler::and_op3, Assembler::arith_op);
  8077   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8078   ins_pipe(ialu_reg_imm);
  8079 %}
  8081 // Or Instructions
  8082 // Register Or
  8083 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8084   match(Set dst (OrI src1 src2));
  8086   size(4);
  8087   format %{ "OR     $src1,$src2,$dst" %}
  8088   opcode(Assembler::or_op3, Assembler::arith_op);
  8089   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8090   ins_pipe(ialu_reg_reg);
  8091 %}
  8093 // Immediate Or
  8094 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8095   match(Set dst (OrI src1 src2));
  8097   size(4);
  8098   format %{ "OR     $src1,$src2,$dst" %}
  8099   opcode(Assembler::or_op3, Assembler::arith_op);
  8100   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8101   ins_pipe(ialu_reg_imm);
  8102 %}
  8104 // Register Or Long
  8105 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8106   match(Set dst (OrL src1 src2));
  8108   ins_cost(DEFAULT_COST);
  8109   size(4);
  8110   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8111   opcode(Assembler::or_op3, Assembler::arith_op);
  8112   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8113   ins_pipe(ialu_reg_reg);
  8114 %}
  8116 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8117   match(Set dst (OrL src1 con));
  8118   ins_cost(DEFAULT_COST*2);
  8120   ins_cost(DEFAULT_COST);
  8121   size(4);
  8122   format %{ "OR     $src1,$con,$dst\t! long" %}
  8123   opcode(Assembler::or_op3, Assembler::arith_op);
  8124   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8125   ins_pipe(ialu_reg_imm);
  8126 %}
  8128 #ifndef _LP64
  8130 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8131 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8132   match(Set dst (OrI src1 (CastP2X src2)));
  8134   size(4);
  8135   format %{ "OR     $src1,$src2,$dst" %}
  8136   opcode(Assembler::or_op3, Assembler::arith_op);
  8137   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8138   ins_pipe(ialu_reg_reg);
  8139 %}
  8141 #else
  8143 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8144   match(Set dst (OrL src1 (CastP2X src2)));
  8146   ins_cost(DEFAULT_COST);
  8147   size(4);
  8148   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8149   opcode(Assembler::or_op3, Assembler::arith_op);
  8150   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8151   ins_pipe(ialu_reg_reg);
  8152 %}
  8154 #endif
  8156 // Xor Instructions
  8157 // Register Xor
  8158 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8159   match(Set dst (XorI src1 src2));
  8161   size(4);
  8162   format %{ "XOR    $src1,$src2,$dst" %}
  8163   opcode(Assembler::xor_op3, Assembler::arith_op);
  8164   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8165   ins_pipe(ialu_reg_reg);
  8166 %}
  8168 // Immediate Xor
  8169 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8170   match(Set dst (XorI src1 src2));
  8172   size(4);
  8173   format %{ "XOR    $src1,$src2,$dst" %}
  8174   opcode(Assembler::xor_op3, Assembler::arith_op);
  8175   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8176   ins_pipe(ialu_reg_imm);
  8177 %}
  8179 // Register Xor Long
  8180 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8181   match(Set dst (XorL src1 src2));
  8183   ins_cost(DEFAULT_COST);
  8184   size(4);
  8185   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8186   opcode(Assembler::xor_op3, Assembler::arith_op);
  8187   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8188   ins_pipe(ialu_reg_reg);
  8189 %}
  8191 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8192   match(Set dst (XorL src1 con));
  8194   ins_cost(DEFAULT_COST);
  8195   size(4);
  8196   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8197   opcode(Assembler::xor_op3, Assembler::arith_op);
  8198   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8199   ins_pipe(ialu_reg_imm);
  8200 %}
  8202 //----------Convert to Boolean-------------------------------------------------
  8203 // Nice hack for 32-bit tests but doesn't work for
  8204 // 64-bit pointers.
  8205 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8206   match(Set dst (Conv2B src));
  8207   effect( KILL ccr );
  8208   ins_cost(DEFAULT_COST*2);
  8209   format %{ "CMP    R_G0,$src\n\t"
  8210             "ADDX   R_G0,0,$dst" %}
  8211   ins_encode( enc_to_bool( src, dst ) );
  8212   ins_pipe(ialu_reg_ialu);
  8213 %}
  8215 #ifndef _LP64
  8216 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8217   match(Set dst (Conv2B src));
  8218   effect( KILL ccr );
  8219   ins_cost(DEFAULT_COST*2);
  8220   format %{ "CMP    R_G0,$src\n\t"
  8221             "ADDX   R_G0,0,$dst" %}
  8222   ins_encode( enc_to_bool( src, dst ) );
  8223   ins_pipe(ialu_reg_ialu);
  8224 %}
  8225 #else
  8226 instruct convP2B( iRegI dst, iRegP src ) %{
  8227   match(Set dst (Conv2B src));
  8228   ins_cost(DEFAULT_COST*2);
  8229   format %{ "MOV    $src,$dst\n\t"
  8230             "MOVRNZ $src,1,$dst" %}
  8231   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8232   ins_pipe(ialu_clr_and_mover);
  8233 %}
  8234 #endif
  8236 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8237   match(Set dst (CmpLTMask src zero));
  8238   effect(KILL ccr);
  8239   size(4);
  8240   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8241   ins_encode %{
  8242     __ sra($src$$Register, 31, $dst$$Register);
  8243   %}
  8244   ins_pipe(ialu_reg_imm);
  8245 %}
  8247 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8248   match(Set dst (CmpLTMask p q));
  8249   effect( KILL ccr );
  8250   ins_cost(DEFAULT_COST*4);
  8251   format %{ "CMP    $p,$q\n\t"
  8252             "MOV    #0,$dst\n\t"
  8253             "BLT,a  .+8\n\t"
  8254             "MOV    #-1,$dst" %}
  8255   ins_encode( enc_ltmask(p,q,dst) );
  8256   ins_pipe(ialu_reg_reg_ialu);
  8257 %}
  8259 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8260   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8261   effect(KILL ccr, TEMP tmp);
  8262   ins_cost(DEFAULT_COST*3);
  8264   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8265             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8266             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8267   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8268   ins_pipe( cadd_cmpltmask );
  8269 %}
  8272 //-----------------------------------------------------------------
  8273 // Direct raw moves between float and general registers using VIS3.
  8275 //  ins_pipe(faddF_reg);
  8276 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8277   predicate(UseVIS >= 3);
  8278   match(Set dst (MoveF2I src));
  8280   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8281   ins_encode %{
  8282     __ movstouw($src$$FloatRegister, $dst$$Register);
  8283   %}
  8284   ins_pipe(ialu_reg_reg);
  8285 %}
  8287 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8288   predicate(UseVIS >= 3);
  8289   match(Set dst (MoveI2F src));
  8291   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8292   ins_encode %{
  8293     __ movwtos($src$$Register, $dst$$FloatRegister);
  8294   %}
  8295   ins_pipe(ialu_reg_reg);
  8296 %}
  8298 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8299   predicate(UseVIS >= 3);
  8300   match(Set dst (MoveD2L src));
  8302   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8303   ins_encode %{
  8304     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8305   %}
  8306   ins_pipe(ialu_reg_reg);
  8307 %}
  8309 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8310   predicate(UseVIS >= 3);
  8311   match(Set dst (MoveL2D src));
  8313   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8314   ins_encode %{
  8315     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8316   %}
  8317   ins_pipe(ialu_reg_reg);
  8318 %}
  8321 // Raw moves between float and general registers using stack.
  8323 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8324   match(Set dst (MoveF2I src));
  8325   effect(DEF dst, USE src);
  8326   ins_cost(MEMORY_REF_COST);
  8328   size(4);
  8329   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8330   opcode(Assembler::lduw_op3);
  8331   ins_encode(simple_form3_mem_reg( src, dst ) );
  8332   ins_pipe(iload_mem);
  8333 %}
  8335 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8336   match(Set dst (MoveI2F src));
  8337   effect(DEF dst, USE src);
  8338   ins_cost(MEMORY_REF_COST);
  8340   size(4);
  8341   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8342   opcode(Assembler::ldf_op3);
  8343   ins_encode(simple_form3_mem_reg(src, dst));
  8344   ins_pipe(floadF_stk);
  8345 %}
  8347 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8348   match(Set dst (MoveD2L src));
  8349   effect(DEF dst, USE src);
  8350   ins_cost(MEMORY_REF_COST);
  8352   size(4);
  8353   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8354   opcode(Assembler::ldx_op3);
  8355   ins_encode(simple_form3_mem_reg( src, dst ) );
  8356   ins_pipe(iload_mem);
  8357 %}
  8359 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8360   match(Set dst (MoveL2D src));
  8361   effect(DEF dst, USE src);
  8362   ins_cost(MEMORY_REF_COST);
  8364   size(4);
  8365   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8366   opcode(Assembler::lddf_op3);
  8367   ins_encode(simple_form3_mem_reg(src, dst));
  8368   ins_pipe(floadD_stk);
  8369 %}
  8371 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8372   match(Set dst (MoveF2I src));
  8373   effect(DEF dst, USE src);
  8374   ins_cost(MEMORY_REF_COST);
  8376   size(4);
  8377   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8378   opcode(Assembler::stf_op3);
  8379   ins_encode(simple_form3_mem_reg(dst, src));
  8380   ins_pipe(fstoreF_stk_reg);
  8381 %}
  8383 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8384   match(Set dst (MoveI2F src));
  8385   effect(DEF dst, USE src);
  8386   ins_cost(MEMORY_REF_COST);
  8388   size(4);
  8389   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8390   opcode(Assembler::stw_op3);
  8391   ins_encode(simple_form3_mem_reg( dst, src ) );
  8392   ins_pipe(istore_mem_reg);
  8393 %}
  8395 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8396   match(Set dst (MoveD2L src));
  8397   effect(DEF dst, USE src);
  8398   ins_cost(MEMORY_REF_COST);
  8400   size(4);
  8401   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8402   opcode(Assembler::stdf_op3);
  8403   ins_encode(simple_form3_mem_reg(dst, src));
  8404   ins_pipe(fstoreD_stk_reg);
  8405 %}
  8407 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8408   match(Set dst (MoveL2D src));
  8409   effect(DEF dst, USE src);
  8410   ins_cost(MEMORY_REF_COST);
  8412   size(4);
  8413   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8414   opcode(Assembler::stx_op3);
  8415   ins_encode(simple_form3_mem_reg( dst, src ) );
  8416   ins_pipe(istore_mem_reg);
  8417 %}
  8420 //----------Arithmetic Conversion Instructions---------------------------------
  8421 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8423 instruct convD2F_reg(regF dst, regD src) %{
  8424   match(Set dst (ConvD2F src));
  8425   size(4);
  8426   format %{ "FDTOS  $src,$dst" %}
  8427   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8428   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8429   ins_pipe(fcvtD2F);
  8430 %}
  8433 // Convert a double to an int in a float register.
  8434 // If the double is a NAN, stuff a zero in instead.
  8435 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8436   effect(DEF dst, USE src, KILL fcc0);
  8437   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8438             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8439             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8440             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8441             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8442       "skip:" %}
  8443   ins_encode(form_d2i_helper(src,dst));
  8444   ins_pipe(fcvtD2I);
  8445 %}
  8447 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8448   match(Set dst (ConvD2I src));
  8449   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8450   expand %{
  8451     regF tmp;
  8452     convD2I_helper(tmp, src);
  8453     regF_to_stkI(dst, tmp);
  8454   %}
  8455 %}
  8457 instruct convD2I_reg(iRegI dst, regD src) %{
  8458   predicate(UseVIS >= 3);
  8459   match(Set dst (ConvD2I src));
  8460   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8461   expand %{
  8462     regF tmp;
  8463     convD2I_helper(tmp, src);
  8464     MoveF2I_reg_reg(dst, tmp);
  8465   %}
  8466 %}
  8469 // Convert a double to a long in a double register.
  8470 // If the double is a NAN, stuff a zero in instead.
  8471 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8472   effect(DEF dst, USE src, KILL fcc0);
  8473   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8474             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8475             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8476             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8477             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8478       "skip:" %}
  8479   ins_encode(form_d2l_helper(src,dst));
  8480   ins_pipe(fcvtD2L);
  8481 %}
  8483 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8484   match(Set dst (ConvD2L src));
  8485   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8486   expand %{
  8487     regD tmp;
  8488     convD2L_helper(tmp, src);
  8489     regD_to_stkL(dst, tmp);
  8490   %}
  8491 %}
  8493 instruct convD2L_reg(iRegL dst, regD src) %{
  8494   predicate(UseVIS >= 3);
  8495   match(Set dst (ConvD2L src));
  8496   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8497   expand %{
  8498     regD tmp;
  8499     convD2L_helper(tmp, src);
  8500     MoveD2L_reg_reg(dst, tmp);
  8501   %}
  8502 %}
  8505 instruct convF2D_reg(regD dst, regF src) %{
  8506   match(Set dst (ConvF2D src));
  8507   format %{ "FSTOD  $src,$dst" %}
  8508   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8509   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8510   ins_pipe(fcvtF2D);
  8511 %}
  8514 // Convert a float to an int in a float register.
  8515 // If the float is a NAN, stuff a zero in instead.
  8516 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8517   effect(DEF dst, USE src, KILL fcc0);
  8518   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8519             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8520             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8521             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8522             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8523       "skip:" %}
  8524   ins_encode(form_f2i_helper(src,dst));
  8525   ins_pipe(fcvtF2I);
  8526 %}
  8528 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8529   match(Set dst (ConvF2I src));
  8530   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8531   expand %{
  8532     regF tmp;
  8533     convF2I_helper(tmp, src);
  8534     regF_to_stkI(dst, tmp);
  8535   %}
  8536 %}
  8538 instruct convF2I_reg(iRegI dst, regF src) %{
  8539   predicate(UseVIS >= 3);
  8540   match(Set dst (ConvF2I src));
  8541   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8542   expand %{
  8543     regF tmp;
  8544     convF2I_helper(tmp, src);
  8545     MoveF2I_reg_reg(dst, tmp);
  8546   %}
  8547 %}
  8550 // Convert a float to a long in a float register.
  8551 // If the float is a NAN, stuff a zero in instead.
  8552 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8553   effect(DEF dst, USE src, KILL fcc0);
  8554   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8555             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8556             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8557             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8558             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8559       "skip:" %}
  8560   ins_encode(form_f2l_helper(src,dst));
  8561   ins_pipe(fcvtF2L);
  8562 %}
  8564 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8565   match(Set dst (ConvF2L src));
  8566   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8567   expand %{
  8568     regD tmp;
  8569     convF2L_helper(tmp, src);
  8570     regD_to_stkL(dst, tmp);
  8571   %}
  8572 %}
  8574 instruct convF2L_reg(iRegL dst, regF src) %{
  8575   predicate(UseVIS >= 3);
  8576   match(Set dst (ConvF2L src));
  8577   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8578   expand %{
  8579     regD tmp;
  8580     convF2L_helper(tmp, src);
  8581     MoveD2L_reg_reg(dst, tmp);
  8582   %}
  8583 %}
  8586 instruct convI2D_helper(regD dst, regF tmp) %{
  8587   effect(USE tmp, DEF dst);
  8588   format %{ "FITOD  $tmp,$dst" %}
  8589   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8590   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8591   ins_pipe(fcvtI2D);
  8592 %}
  8594 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8595   match(Set dst (ConvI2D src));
  8596   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8597   expand %{
  8598     regF tmp;
  8599     stkI_to_regF(tmp, src);
  8600     convI2D_helper(dst, tmp);
  8601   %}
  8602 %}
  8604 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8605   predicate(UseVIS >= 3);
  8606   match(Set dst (ConvI2D src));
  8607   expand %{
  8608     regF tmp;
  8609     MoveI2F_reg_reg(tmp, src);
  8610     convI2D_helper(dst, tmp);
  8611   %}
  8612 %}
  8614 instruct convI2D_mem(regD_low dst, memory mem) %{
  8615   match(Set dst (ConvI2D (LoadI mem)));
  8616   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8617   size(8);
  8618   format %{ "LDF    $mem,$dst\n\t"
  8619             "FITOD  $dst,$dst" %}
  8620   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8621   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8622   ins_pipe(floadF_mem);
  8623 %}
  8626 instruct convI2F_helper(regF dst, regF tmp) %{
  8627   effect(DEF dst, USE tmp);
  8628   format %{ "FITOS  $tmp,$dst" %}
  8629   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8630   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8631   ins_pipe(fcvtI2F);
  8632 %}
  8634 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8635   match(Set dst (ConvI2F src));
  8636   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8637   expand %{
  8638     regF tmp;
  8639     stkI_to_regF(tmp,src);
  8640     convI2F_helper(dst, tmp);
  8641   %}
  8642 %}
  8644 instruct convI2F_reg(regF dst, iRegI src) %{
  8645   predicate(UseVIS >= 3);
  8646   match(Set dst (ConvI2F src));
  8647   ins_cost(DEFAULT_COST);
  8648   expand %{
  8649     regF tmp;
  8650     MoveI2F_reg_reg(tmp, src);
  8651     convI2F_helper(dst, tmp);
  8652   %}
  8653 %}
  8655 instruct convI2F_mem( regF dst, memory mem ) %{
  8656   match(Set dst (ConvI2F (LoadI mem)));
  8657   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8658   size(8);
  8659   format %{ "LDF    $mem,$dst\n\t"
  8660             "FITOS  $dst,$dst" %}
  8661   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8662   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8663   ins_pipe(floadF_mem);
  8664 %}
  8667 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8668   match(Set dst (ConvI2L src));
  8669   size(4);
  8670   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8671   opcode(Assembler::sra_op3, Assembler::arith_op);
  8672   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8673   ins_pipe(ialu_reg_reg);
  8674 %}
  8676 // Zero-extend convert int to long
  8677 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8678   match(Set dst (AndL (ConvI2L src) mask) );
  8679   size(4);
  8680   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8681   opcode(Assembler::srl_op3, Assembler::arith_op);
  8682   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8683   ins_pipe(ialu_reg_reg);
  8684 %}
  8686 // Zero-extend long
  8687 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8688   match(Set dst (AndL src mask) );
  8689   size(4);
  8690   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8691   opcode(Assembler::srl_op3, Assembler::arith_op);
  8692   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8693   ins_pipe(ialu_reg_reg);
  8694 %}
  8697 //-----------
  8698 // Long to Double conversion using V8 opcodes.
  8699 // Still useful because cheetah traps and becomes
  8700 // amazingly slow for some common numbers.
  8702 // Magic constant, 0x43300000
  8703 instruct loadConI_x43300000(iRegI dst) %{
  8704   effect(DEF dst);
  8705   size(4);
  8706   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8707   ins_encode(SetHi22(0x43300000, dst));
  8708   ins_pipe(ialu_none);
  8709 %}
  8711 // Magic constant, 0x41f00000
  8712 instruct loadConI_x41f00000(iRegI dst) %{
  8713   effect(DEF dst);
  8714   size(4);
  8715   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8716   ins_encode(SetHi22(0x41f00000, dst));
  8717   ins_pipe(ialu_none);
  8718 %}
  8720 // Construct a double from two float halves
  8721 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8722   effect(DEF dst, USE src1, USE src2);
  8723   size(8);
  8724   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8725             "FMOVS  $src2.lo,$dst.lo" %}
  8726   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8727   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8728   ins_pipe(faddD_reg_reg);
  8729 %}
  8731 // Convert integer in high half of a double register (in the lower half of
  8732 // the double register file) to double
  8733 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8734   effect(DEF dst, USE src);
  8735   size(4);
  8736   format %{ "FITOD  $src,$dst" %}
  8737   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8738   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8739   ins_pipe(fcvtLHi2D);
  8740 %}
  8742 // Add float double precision
  8743 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8744   effect(DEF dst, USE src1, USE src2);
  8745   size(4);
  8746   format %{ "FADDD  $src1,$src2,$dst" %}
  8747   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8748   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8749   ins_pipe(faddD_reg_reg);
  8750 %}
  8752 // Sub float double precision
  8753 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8754   effect(DEF dst, USE src1, USE src2);
  8755   size(4);
  8756   format %{ "FSUBD  $src1,$src2,$dst" %}
  8757   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8758   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8759   ins_pipe(faddD_reg_reg);
  8760 %}
  8762 // Mul float double precision
  8763 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8764   effect(DEF dst, USE src1, USE src2);
  8765   size(4);
  8766   format %{ "FMULD  $src1,$src2,$dst" %}
  8767   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8768   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8769   ins_pipe(fmulD_reg_reg);
  8770 %}
  8772 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8773   match(Set dst (ConvL2D src));
  8774   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8776   expand %{
  8777     regD_low   tmpsrc;
  8778     iRegI      ix43300000;
  8779     iRegI      ix41f00000;
  8780     stackSlotL lx43300000;
  8781     stackSlotL lx41f00000;
  8782     regD_low   dx43300000;
  8783     regD       dx41f00000;
  8784     regD       tmp1;
  8785     regD_low   tmp2;
  8786     regD       tmp3;
  8787     regD       tmp4;
  8789     stkL_to_regD(tmpsrc, src);
  8791     loadConI_x43300000(ix43300000);
  8792     loadConI_x41f00000(ix41f00000);
  8793     regI_to_stkLHi(lx43300000, ix43300000);
  8794     regI_to_stkLHi(lx41f00000, ix41f00000);
  8795     stkL_to_regD(dx43300000, lx43300000);
  8796     stkL_to_regD(dx41f00000, lx41f00000);
  8798     convI2D_regDHi_regD(tmp1, tmpsrc);
  8799     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8800     subD_regD_regD(tmp3, tmp2, dx43300000);
  8801     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8802     addD_regD_regD(dst, tmp3, tmp4);
  8803   %}
  8804 %}
  8806 // Long to Double conversion using fast fxtof
  8807 instruct convL2D_helper(regD dst, regD tmp) %{
  8808   effect(DEF dst, USE tmp);
  8809   size(4);
  8810   format %{ "FXTOD  $tmp,$dst" %}
  8811   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8812   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8813   ins_pipe(fcvtL2D);
  8814 %}
  8816 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8817   predicate(VM_Version::has_fast_fxtof());
  8818   match(Set dst (ConvL2D src));
  8819   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8820   expand %{
  8821     regD tmp;
  8822     stkL_to_regD(tmp, src);
  8823     convL2D_helper(dst, tmp);
  8824   %}
  8825 %}
  8827 instruct convL2D_reg(regD dst, iRegL src) %{
  8828   predicate(UseVIS >= 3);
  8829   match(Set dst (ConvL2D src));
  8830   expand %{
  8831     regD tmp;
  8832     MoveL2D_reg_reg(tmp, src);
  8833     convL2D_helper(dst, tmp);
  8834   %}
  8835 %}
  8837 // Long to Float conversion using fast fxtof
  8838 instruct convL2F_helper(regF dst, regD tmp) %{
  8839   effect(DEF dst, USE tmp);
  8840   size(4);
  8841   format %{ "FXTOS  $tmp,$dst" %}
  8842   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8843   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8844   ins_pipe(fcvtL2F);
  8845 %}
  8847 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8848   match(Set dst (ConvL2F src));
  8849   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8850   expand %{
  8851     regD tmp;
  8852     stkL_to_regD(tmp, src);
  8853     convL2F_helper(dst, tmp);
  8854   %}
  8855 %}
  8857 instruct convL2F_reg(regF dst, iRegL src) %{
  8858   predicate(UseVIS >= 3);
  8859   match(Set dst (ConvL2F src));
  8860   ins_cost(DEFAULT_COST);
  8861   expand %{
  8862     regD tmp;
  8863     MoveL2D_reg_reg(tmp, src);
  8864     convL2F_helper(dst, tmp);
  8865   %}
  8866 %}
  8868 //-----------
  8870 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8871   match(Set dst (ConvL2I src));
  8872 #ifndef _LP64
  8873   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8874   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8875   ins_pipe(ialu_move_reg_I_to_L);
  8876 #else
  8877   size(4);
  8878   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8879   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8880   ins_pipe(ialu_reg);
  8881 #endif
  8882 %}
  8884 // Register Shift Right Immediate
  8885 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8886   match(Set dst (ConvL2I (RShiftL src cnt)));
  8888   size(4);
  8889   format %{ "SRAX   $src,$cnt,$dst" %}
  8890   opcode(Assembler::srax_op3, Assembler::arith_op);
  8891   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8892   ins_pipe(ialu_reg_imm);
  8893 %}
  8895 // Replicate scalar to packed byte values in Double register
  8896 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8897   effect(DEF dst, USE src);
  8898   format %{ "SLLX  $src,56,$dst\n\t"
  8899             "SRLX  $dst, 8,O7\n\t"
  8900             "OR    $dst,O7,$dst\n\t"
  8901             "SRLX  $dst,16,O7\n\t"
  8902             "OR    $dst,O7,$dst\n\t"
  8903             "SRLX  $dst,32,O7\n\t"
  8904             "OR    $dst,O7,$dst\t! replicate8B" %}
  8905   ins_encode( enc_repl8b(src, dst));
  8906   ins_pipe(ialu_reg);
  8907 %}
  8909 // Replicate scalar to packed byte values in Double register
  8910 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8911   match(Set dst (Replicate8B src));
  8912   expand %{
  8913     iRegL tmp;
  8914     Repl8B_reg_helper(tmp, src);
  8915     regL_to_stkD(dst, tmp);
  8916   %}
  8917 %}
  8919 // Replicate scalar constant to packed byte values in Double register
  8920 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8921   match(Set dst (Replicate8B con));
  8922   effect(KILL tmp);
  8923   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8924   ins_encode %{
  8925     // XXX This is a quick fix for 6833573.
  8926     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8927     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8928     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8929   %}
  8930   ins_pipe(loadConFD);
  8931 %}
  8933 // Replicate scalar to packed char values into stack slot
  8934 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8935   effect(DEF dst, USE src);
  8936   format %{ "SLLX  $src,48,$dst\n\t"
  8937             "SRLX  $dst,16,O7\n\t"
  8938             "OR    $dst,O7,$dst\n\t"
  8939             "SRLX  $dst,32,O7\n\t"
  8940             "OR    $dst,O7,$dst\t! replicate4C" %}
  8941   ins_encode( enc_repl4s(src, dst) );
  8942   ins_pipe(ialu_reg);
  8943 %}
  8945 // Replicate scalar to packed char values into stack slot
  8946 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8947   match(Set dst (Replicate4C src));
  8948   expand %{
  8949     iRegL tmp;
  8950     Repl4C_reg_helper(tmp, src);
  8951     regL_to_stkD(dst, tmp);
  8952   %}
  8953 %}
  8955 // Replicate scalar constant to packed char values in Double register
  8956 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8957   match(Set dst (Replicate4C con));
  8958   effect(KILL tmp);
  8959   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8960   ins_encode %{
  8961     // XXX This is a quick fix for 6833573.
  8962     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8963     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8964     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8965   %}
  8966   ins_pipe(loadConFD);
  8967 %}
  8969 // Replicate scalar to packed short values into stack slot
  8970 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8971   effect(DEF dst, USE src);
  8972   format %{ "SLLX  $src,48,$dst\n\t"
  8973             "SRLX  $dst,16,O7\n\t"
  8974             "OR    $dst,O7,$dst\n\t"
  8975             "SRLX  $dst,32,O7\n\t"
  8976             "OR    $dst,O7,$dst\t! replicate4S" %}
  8977   ins_encode( enc_repl4s(src, dst) );
  8978   ins_pipe(ialu_reg);
  8979 %}
  8981 // Replicate scalar to packed short values into stack slot
  8982 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8983   match(Set dst (Replicate4S src));
  8984   expand %{
  8985     iRegL tmp;
  8986     Repl4S_reg_helper(tmp, src);
  8987     regL_to_stkD(dst, tmp);
  8988   %}
  8989 %}
  8991 // Replicate scalar constant to packed short values in Double register
  8992 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8993   match(Set dst (Replicate4S con));
  8994   effect(KILL tmp);
  8995   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8996   ins_encode %{
  8997     // XXX This is a quick fix for 6833573.
  8998     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8999     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  9000     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  9001   %}
  9002   ins_pipe(loadConFD);
  9003 %}
  9005 // Replicate scalar to packed int values in Double register
  9006 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  9007   effect(DEF dst, USE src);
  9008   format %{ "SLLX  $src,32,$dst\n\t"
  9009             "SRLX  $dst,32,O7\n\t"
  9010             "OR    $dst,O7,$dst\t! replicate2I" %}
  9011   ins_encode( enc_repl2i(src, dst));
  9012   ins_pipe(ialu_reg);
  9013 %}
  9015 // Replicate scalar to packed int values in Double register
  9016 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  9017   match(Set dst (Replicate2I src));
  9018   expand %{
  9019     iRegL tmp;
  9020     Repl2I_reg_helper(tmp, src);
  9021     regL_to_stkD(dst, tmp);
  9022   %}
  9023 %}
  9025 // Replicate scalar zero constant to packed int values in Double register
  9026 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  9027   match(Set dst (Replicate2I con));
  9028   effect(KILL tmp);
  9029   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  9030   ins_encode %{
  9031     // XXX This is a quick fix for 6833573.
  9032     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  9033     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  9034     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  9035   %}
  9036   ins_pipe(loadConFD);
  9037 %}
  9039 //----------Control Flow Instructions------------------------------------------
  9040 // Compare Instructions
  9041 // Compare Integers
  9042 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  9043   match(Set icc (CmpI op1 op2));
  9044   effect( DEF icc, USE op1, USE op2 );
  9046   size(4);
  9047   format %{ "CMP    $op1,$op2" %}
  9048   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9049   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9050   ins_pipe(ialu_cconly_reg_reg);
  9051 %}
  9053 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  9054   match(Set icc (CmpU op1 op2));
  9056   size(4);
  9057   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9058   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9059   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9060   ins_pipe(ialu_cconly_reg_reg);
  9061 %}
  9063 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  9064   match(Set icc (CmpI op1 op2));
  9065   effect( DEF icc, USE op1 );
  9067   size(4);
  9068   format %{ "CMP    $op1,$op2" %}
  9069   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9070   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9071   ins_pipe(ialu_cconly_reg_imm);
  9072 %}
  9074 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  9075   match(Set icc (CmpI (AndI op1 op2) zero));
  9077   size(4);
  9078   format %{ "BTST   $op2,$op1" %}
  9079   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9080   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9081   ins_pipe(ialu_cconly_reg_reg_zero);
  9082 %}
  9084 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  9085   match(Set icc (CmpI (AndI op1 op2) zero));
  9087   size(4);
  9088   format %{ "BTST   $op2,$op1" %}
  9089   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9090   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9091   ins_pipe(ialu_cconly_reg_imm_zero);
  9092 %}
  9094 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  9095   match(Set xcc (CmpL op1 op2));
  9096   effect( DEF xcc, USE op1, USE op2 );
  9098   size(4);
  9099   format %{ "CMP    $op1,$op2\t\t! long" %}
  9100   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9101   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9102   ins_pipe(ialu_cconly_reg_reg);
  9103 %}
  9105 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9106   match(Set xcc (CmpL op1 con));
  9107   effect( DEF xcc, USE op1, USE con );
  9109   size(4);
  9110   format %{ "CMP    $op1,$con\t\t! long" %}
  9111   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9112   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9113   ins_pipe(ialu_cconly_reg_reg);
  9114 %}
  9116 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9117   match(Set xcc (CmpL (AndL op1 op2) zero));
  9118   effect( DEF xcc, USE op1, USE op2 );
  9120   size(4);
  9121   format %{ "BTST   $op1,$op2\t\t! long" %}
  9122   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9123   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9124   ins_pipe(ialu_cconly_reg_reg);
  9125 %}
  9127 // useful for checking the alignment of a pointer:
  9128 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9129   match(Set xcc (CmpL (AndL op1 con) zero));
  9130   effect( DEF xcc, USE op1, USE con );
  9132   size(4);
  9133   format %{ "BTST   $op1,$con\t\t! long" %}
  9134   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9135   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9136   ins_pipe(ialu_cconly_reg_reg);
  9137 %}
  9139 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9140   match(Set icc (CmpU op1 op2));
  9142   size(4);
  9143   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9144   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9145   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9146   ins_pipe(ialu_cconly_reg_imm);
  9147 %}
  9149 // Compare Pointers
  9150 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9151   match(Set pcc (CmpP op1 op2));
  9153   size(4);
  9154   format %{ "CMP    $op1,$op2\t! ptr" %}
  9155   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9156   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9157   ins_pipe(ialu_cconly_reg_reg);
  9158 %}
  9160 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9161   match(Set pcc (CmpP op1 op2));
  9163   size(4);
  9164   format %{ "CMP    $op1,$op2\t! ptr" %}
  9165   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9166   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9167   ins_pipe(ialu_cconly_reg_imm);
  9168 %}
  9170 // Compare Narrow oops
  9171 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9172   match(Set icc (CmpN op1 op2));
  9174   size(4);
  9175   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9176   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9177   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9178   ins_pipe(ialu_cconly_reg_reg);
  9179 %}
  9181 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9182   match(Set icc (CmpN op1 op2));
  9184   size(4);
  9185   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9186   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9187   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9188   ins_pipe(ialu_cconly_reg_imm);
  9189 %}
  9191 //----------Max and Min--------------------------------------------------------
  9192 // Min Instructions
  9193 // Conditional move for min
  9194 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9195   effect( USE_DEF op2, USE op1, USE icc );
  9197   size(4);
  9198   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9199   opcode(Assembler::less);
  9200   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9201   ins_pipe(ialu_reg_flags);
  9202 %}
  9204 // Min Register with Register.
  9205 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9206   match(Set op2 (MinI op1 op2));
  9207   ins_cost(DEFAULT_COST*2);
  9208   expand %{
  9209     flagsReg icc;
  9210     compI_iReg(icc,op1,op2);
  9211     cmovI_reg_lt(op2,op1,icc);
  9212   %}
  9213 %}
  9215 // Max Instructions
  9216 // Conditional move for max
  9217 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9218   effect( USE_DEF op2, USE op1, USE icc );
  9219   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9220   opcode(Assembler::greater);
  9221   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9222   ins_pipe(ialu_reg_flags);
  9223 %}
  9225 // Max Register with Register
  9226 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9227   match(Set op2 (MaxI op1 op2));
  9228   ins_cost(DEFAULT_COST*2);
  9229   expand %{
  9230     flagsReg icc;
  9231     compI_iReg(icc,op1,op2);
  9232     cmovI_reg_gt(op2,op1,icc);
  9233   %}
  9234 %}
  9237 //----------Float Compares----------------------------------------------------
  9238 // Compare floating, generate condition code
  9239 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9240   match(Set fcc (CmpF src1 src2));
  9242   size(4);
  9243   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9244   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9245   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9246   ins_pipe(faddF_fcc_reg_reg_zero);
  9247 %}
  9249 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9250   match(Set fcc (CmpD src1 src2));
  9252   size(4);
  9253   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9254   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9255   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9256   ins_pipe(faddD_fcc_reg_reg_zero);
  9257 %}
  9260 // Compare floating, generate -1,0,1
  9261 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9262   match(Set dst (CmpF3 src1 src2));
  9263   effect(KILL fcc0);
  9264   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9265   format %{ "fcmpl  $dst,$src1,$src2" %}
  9266   // Primary = float
  9267   opcode( true );
  9268   ins_encode( floating_cmp( dst, src1, src2 ) );
  9269   ins_pipe( floating_cmp );
  9270 %}
  9272 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9273   match(Set dst (CmpD3 src1 src2));
  9274   effect(KILL fcc0);
  9275   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9276   format %{ "dcmpl  $dst,$src1,$src2" %}
  9277   // Primary = double (not float)
  9278   opcode( false );
  9279   ins_encode( floating_cmp( dst, src1, src2 ) );
  9280   ins_pipe( floating_cmp );
  9281 %}
  9283 //----------Branches---------------------------------------------------------
  9284 // Jump
  9285 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9286 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9287   match(Jump switch_val);
  9288   effect(TEMP table);
  9290   ins_cost(350);
  9292   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9293              "LD     [O7 + $switch_val], O7\n\t"
  9294              "JUMP   O7" %}
  9295   ins_encode %{
  9296     // Calculate table address into a register.
  9297     Register table_reg;
  9298     Register label_reg = O7;
  9299     // If we are calculating the size of this instruction don't trust
  9300     // zero offsets because they might change when
  9301     // MachConstantBaseNode decides to optimize the constant table
  9302     // base.
  9303     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9304       table_reg = $constanttablebase;
  9305     } else {
  9306       table_reg = O7;
  9307       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9308       __ add($constanttablebase, con_offset, table_reg);
  9311     // Jump to base address + switch value
  9312     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9313     __ jmp(label_reg, G0);
  9314     __ delayed()->nop();
  9315   %}
  9316   ins_pipe(ialu_reg_reg);
  9317 %}
  9319 // Direct Branch.  Use V8 version with longer range.
  9320 instruct branch(label labl) %{
  9321   match(Goto);
  9322   effect(USE labl);
  9324   size(8);
  9325   ins_cost(BRANCH_COST);
  9326   format %{ "BA     $labl" %}
  9327   ins_encode %{
  9328     Label* L = $labl$$label;
  9329     __ ba(*L);
  9330     __ delayed()->nop();
  9331   %}
  9332   ins_pipe(br);
  9333 %}
  9335 // Direct Branch, short with no delay slot
  9336 instruct branch_short(label labl) %{
  9337   match(Goto);
  9338   predicate(UseCBCond);
  9339   effect(USE labl);
  9341   size(4);
  9342   ins_cost(BRANCH_COST);
  9343   format %{ "BA     $labl\t! short branch" %}
  9344   ins_encode %{ 
  9345     Label* L = $labl$$label;
  9346     assert(__ use_cbcond(*L), "back to back cbcond");
  9347     __ ba_short(*L);
  9348   %}
  9349   ins_short_branch(1);
  9350   ins_avoid_back_to_back(1);
  9351   ins_pipe(cbcond_reg_imm);
  9352 %}
  9354 // Conditional Direct Branch
  9355 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9356   match(If cmp icc);
  9357   effect(USE labl);
  9359   size(8);
  9360   ins_cost(BRANCH_COST);
  9361   format %{ "BP$cmp   $icc,$labl" %}
  9362   // Prim = bits 24-22, Secnd = bits 31-30
  9363   ins_encode( enc_bp( labl, cmp, icc ) );
  9364   ins_pipe(br_cc);
  9365 %}
  9367 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9368   match(If cmp icc);
  9369   effect(USE labl);
  9371   ins_cost(BRANCH_COST);
  9372   format %{ "BP$cmp  $icc,$labl" %}
  9373   // Prim = bits 24-22, Secnd = bits 31-30
  9374   ins_encode( enc_bp( labl, cmp, icc ) );
  9375   ins_pipe(br_cc);
  9376 %}
  9378 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9379   match(If cmp pcc);
  9380   effect(USE labl);
  9382   size(8);
  9383   ins_cost(BRANCH_COST);
  9384   format %{ "BP$cmp  $pcc,$labl" %}
  9385   ins_encode %{
  9386     Label* L = $labl$$label;
  9387     Assembler::Predict predict_taken =
  9388       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9390     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9391     __ delayed()->nop();
  9392   %}
  9393   ins_pipe(br_cc);
  9394 %}
  9396 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9397   match(If cmp fcc);
  9398   effect(USE labl);
  9400   size(8);
  9401   ins_cost(BRANCH_COST);
  9402   format %{ "FBP$cmp $fcc,$labl" %}
  9403   ins_encode %{
  9404     Label* L = $labl$$label;
  9405     Assembler::Predict predict_taken =
  9406       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9408     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9409     __ delayed()->nop();
  9410   %}
  9411   ins_pipe(br_fcc);
  9412 %}
  9414 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9415   match(CountedLoopEnd cmp icc);
  9416   effect(USE labl);
  9418   size(8);
  9419   ins_cost(BRANCH_COST);
  9420   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9421   // Prim = bits 24-22, Secnd = bits 31-30
  9422   ins_encode( enc_bp( labl, cmp, icc ) );
  9423   ins_pipe(br_cc);
  9424 %}
  9426 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9427   match(CountedLoopEnd cmp icc);
  9428   effect(USE labl);
  9430   size(8);
  9431   ins_cost(BRANCH_COST);
  9432   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9433   // Prim = bits 24-22, Secnd = bits 31-30
  9434   ins_encode( enc_bp( labl, cmp, icc ) );
  9435   ins_pipe(br_cc);
  9436 %}
  9438 // Compare and branch instructions
  9439 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9440   match(If cmp (CmpI op1 op2));
  9441   effect(USE labl, KILL icc);
  9443   size(12);
  9444   ins_cost(BRANCH_COST);
  9445   format %{ "CMP    $op1,$op2\t! int\n\t"
  9446             "BP$cmp   $labl" %}
  9447   ins_encode %{
  9448     Label* L = $labl$$label;
  9449     Assembler::Predict predict_taken =
  9450       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9451     __ cmp($op1$$Register, $op2$$Register);
  9452     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9453     __ delayed()->nop();
  9454   %}
  9455   ins_pipe(cmp_br_reg_reg);
  9456 %}
  9458 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9459   match(If cmp (CmpI op1 op2));
  9460   effect(USE labl, KILL icc);
  9462   size(12);
  9463   ins_cost(BRANCH_COST);
  9464   format %{ "CMP    $op1,$op2\t! int\n\t"
  9465             "BP$cmp   $labl" %}
  9466   ins_encode %{
  9467     Label* L = $labl$$label;
  9468     Assembler::Predict predict_taken =
  9469       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9470     __ cmp($op1$$Register, $op2$$constant);
  9471     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9472     __ delayed()->nop();
  9473   %}
  9474   ins_pipe(cmp_br_reg_imm);
  9475 %}
  9477 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9478   match(If cmp (CmpU op1 op2));
  9479   effect(USE labl, KILL icc);
  9481   size(12);
  9482   ins_cost(BRANCH_COST);
  9483   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9484             "BP$cmp  $labl" %}
  9485   ins_encode %{
  9486     Label* L = $labl$$label;
  9487     Assembler::Predict predict_taken =
  9488       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9489     __ cmp($op1$$Register, $op2$$Register);
  9490     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9491     __ delayed()->nop();
  9492   %}
  9493   ins_pipe(cmp_br_reg_reg);
  9494 %}
  9496 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9497   match(If cmp (CmpU op1 op2));
  9498   effect(USE labl, KILL icc);
  9500   size(12);
  9501   ins_cost(BRANCH_COST);
  9502   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9503             "BP$cmp  $labl" %}
  9504   ins_encode %{
  9505     Label* L = $labl$$label;
  9506     Assembler::Predict predict_taken =
  9507       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9508     __ cmp($op1$$Register, $op2$$constant);
  9509     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9510     __ delayed()->nop();
  9511   %}
  9512   ins_pipe(cmp_br_reg_imm);
  9513 %}
  9515 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9516   match(If cmp (CmpL op1 op2));
  9517   effect(USE labl, KILL xcc);
  9519   size(12);
  9520   ins_cost(BRANCH_COST);
  9521   format %{ "CMP    $op1,$op2\t! long\n\t"
  9522             "BP$cmp   $labl" %}
  9523   ins_encode %{
  9524     Label* L = $labl$$label;
  9525     Assembler::Predict predict_taken =
  9526       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9527     __ cmp($op1$$Register, $op2$$Register);
  9528     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9529     __ delayed()->nop();
  9530   %}
  9531   ins_pipe(cmp_br_reg_reg);
  9532 %}
  9534 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9535   match(If cmp (CmpL op1 op2));
  9536   effect(USE labl, KILL xcc);
  9538   size(12);
  9539   ins_cost(BRANCH_COST);
  9540   format %{ "CMP    $op1,$op2\t! long\n\t"
  9541             "BP$cmp   $labl" %}
  9542   ins_encode %{
  9543     Label* L = $labl$$label;
  9544     Assembler::Predict predict_taken =
  9545       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9546     __ cmp($op1$$Register, $op2$$constant);
  9547     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9548     __ delayed()->nop();
  9549   %}
  9550   ins_pipe(cmp_br_reg_imm);
  9551 %}
  9553 // Compare Pointers and branch
  9554 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9555   match(If cmp (CmpP op1 op2));
  9556   effect(USE labl, KILL pcc);
  9558   size(12);
  9559   ins_cost(BRANCH_COST);
  9560   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9561             "B$cmp   $labl" %}
  9562   ins_encode %{
  9563     Label* L = $labl$$label;
  9564     Assembler::Predict predict_taken =
  9565       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9566     __ cmp($op1$$Register, $op2$$Register);
  9567     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9568     __ delayed()->nop();
  9569   %}
  9570   ins_pipe(cmp_br_reg_reg);
  9571 %}
  9573 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9574   match(If cmp (CmpP op1 null));
  9575   effect(USE labl, KILL pcc);
  9577   size(12);
  9578   ins_cost(BRANCH_COST);
  9579   format %{ "CMP    $op1,0\t! ptr\n\t"
  9580             "B$cmp   $labl" %}
  9581   ins_encode %{
  9582     Label* L = $labl$$label;
  9583     Assembler::Predict predict_taken =
  9584       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9585     __ cmp($op1$$Register, G0);
  9586     // bpr() is not used here since it has shorter distance.
  9587     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9588     __ delayed()->nop();
  9589   %}
  9590   ins_pipe(cmp_br_reg_reg);
  9591 %}
  9593 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9594   match(If cmp (CmpN op1 op2));
  9595   effect(USE labl, KILL icc);
  9597   size(12);
  9598   ins_cost(BRANCH_COST);
  9599   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9600             "BP$cmp   $labl" %}
  9601   ins_encode %{
  9602     Label* L = $labl$$label;
  9603     Assembler::Predict predict_taken =
  9604       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9605     __ cmp($op1$$Register, $op2$$Register);
  9606     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9607     __ delayed()->nop();
  9608   %}
  9609   ins_pipe(cmp_br_reg_reg);
  9610 %}
  9612 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9613   match(If cmp (CmpN op1 null));
  9614   effect(USE labl, KILL icc);
  9616   size(12);
  9617   ins_cost(BRANCH_COST);
  9618   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9619             "BP$cmp   $labl" %}
  9620   ins_encode %{
  9621     Label* L = $labl$$label;
  9622     Assembler::Predict predict_taken =
  9623       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9624     __ cmp($op1$$Register, G0);
  9625     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9626     __ delayed()->nop();
  9627   %}
  9628   ins_pipe(cmp_br_reg_reg);
  9629 %}
  9631 // Loop back branch
  9632 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9633   match(CountedLoopEnd cmp (CmpI op1 op2));
  9634   effect(USE labl, KILL icc);
  9636   size(12);
  9637   ins_cost(BRANCH_COST);
  9638   format %{ "CMP    $op1,$op2\t! int\n\t"
  9639             "BP$cmp   $labl\t! Loop end" %}
  9640   ins_encode %{
  9641     Label* L = $labl$$label;
  9642     Assembler::Predict predict_taken =
  9643       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9644     __ cmp($op1$$Register, $op2$$Register);
  9645     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9646     __ delayed()->nop();
  9647   %}
  9648   ins_pipe(cmp_br_reg_reg);
  9649 %}
  9651 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9652   match(CountedLoopEnd cmp (CmpI op1 op2));
  9653   effect(USE labl, KILL icc);
  9655   size(12);
  9656   ins_cost(BRANCH_COST);
  9657   format %{ "CMP    $op1,$op2\t! int\n\t"
  9658             "BP$cmp   $labl\t! Loop end" %}
  9659   ins_encode %{
  9660     Label* L = $labl$$label;
  9661     Assembler::Predict predict_taken =
  9662       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9663     __ cmp($op1$$Register, $op2$$constant);
  9664     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9665     __ delayed()->nop();
  9666   %}
  9667   ins_pipe(cmp_br_reg_imm);
  9668 %}
  9670 // Short compare and branch instructions
  9671 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9672   match(If cmp (CmpI op1 op2));
  9673   predicate(UseCBCond);
  9674   effect(USE labl, KILL icc);
  9676   size(4);
  9677   ins_cost(BRANCH_COST);
  9678   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9679   ins_encode %{
  9680     Label* L = $labl$$label;
  9681     assert(__ use_cbcond(*L), "back to back cbcond");
  9682     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9683   %}
  9684   ins_short_branch(1);
  9685   ins_avoid_back_to_back(1);
  9686   ins_pipe(cbcond_reg_reg);
  9687 %}
  9689 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9690   match(If cmp (CmpI op1 op2));
  9691   predicate(UseCBCond);
  9692   effect(USE labl, KILL icc);
  9694   size(4);
  9695   ins_cost(BRANCH_COST);
  9696   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9697   ins_encode %{
  9698     Label* L = $labl$$label;
  9699     assert(__ use_cbcond(*L), "back to back cbcond");
  9700     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9701   %}
  9702   ins_short_branch(1);
  9703   ins_avoid_back_to_back(1);
  9704   ins_pipe(cbcond_reg_imm);
  9705 %}
  9707 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9708   match(If cmp (CmpU op1 op2));
  9709   predicate(UseCBCond);
  9710   effect(USE labl, KILL icc);
  9712   size(4);
  9713   ins_cost(BRANCH_COST);
  9714   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9715   ins_encode %{
  9716     Label* L = $labl$$label;
  9717     assert(__ use_cbcond(*L), "back to back cbcond");
  9718     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9719   %}
  9720   ins_short_branch(1);
  9721   ins_avoid_back_to_back(1);
  9722   ins_pipe(cbcond_reg_reg);
  9723 %}
  9725 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9726   match(If cmp (CmpU op1 op2));
  9727   predicate(UseCBCond);
  9728   effect(USE labl, KILL icc);
  9730   size(4);
  9731   ins_cost(BRANCH_COST);
  9732   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9733   ins_encode %{
  9734     Label* L = $labl$$label;
  9735     assert(__ use_cbcond(*L), "back to back cbcond");
  9736     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9737   %}
  9738   ins_short_branch(1);
  9739   ins_avoid_back_to_back(1);
  9740   ins_pipe(cbcond_reg_imm);
  9741 %}
  9743 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9744   match(If cmp (CmpL op1 op2));
  9745   predicate(UseCBCond);
  9746   effect(USE labl, KILL xcc);
  9748   size(4);
  9749   ins_cost(BRANCH_COST);
  9750   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9751   ins_encode %{
  9752     Label* L = $labl$$label;
  9753     assert(__ use_cbcond(*L), "back to back cbcond");
  9754     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9755   %}
  9756   ins_short_branch(1);
  9757   ins_avoid_back_to_back(1);
  9758   ins_pipe(cbcond_reg_reg);
  9759 %}
  9761 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9762   match(If cmp (CmpL op1 op2));
  9763   predicate(UseCBCond);
  9764   effect(USE labl, KILL xcc);
  9766   size(4);
  9767   ins_cost(BRANCH_COST);
  9768   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9769   ins_encode %{
  9770     Label* L = $labl$$label;
  9771     assert(__ use_cbcond(*L), "back to back cbcond");
  9772     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9773   %}
  9774   ins_short_branch(1);
  9775   ins_avoid_back_to_back(1);
  9776   ins_pipe(cbcond_reg_imm);
  9777 %}
  9779 // Compare Pointers and branch
  9780 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9781   match(If cmp (CmpP op1 op2));
  9782   predicate(UseCBCond);
  9783   effect(USE labl, KILL pcc);
  9785   size(4);
  9786   ins_cost(BRANCH_COST);
  9787 #ifdef _LP64
  9788   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9789 #else
  9790   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9791 #endif
  9792   ins_encode %{
  9793     Label* L = $labl$$label;
  9794     assert(__ use_cbcond(*L), "back to back cbcond");
  9795     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9796   %}
  9797   ins_short_branch(1);
  9798   ins_avoid_back_to_back(1);
  9799   ins_pipe(cbcond_reg_reg);
  9800 %}
  9802 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9803   match(If cmp (CmpP op1 null));
  9804   predicate(UseCBCond);
  9805   effect(USE labl, KILL pcc);
  9807   size(4);
  9808   ins_cost(BRANCH_COST);
  9809 #ifdef _LP64
  9810   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9811 #else
  9812   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9813 #endif
  9814   ins_encode %{
  9815     Label* L = $labl$$label;
  9816     assert(__ use_cbcond(*L), "back to back cbcond");
  9817     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9818   %}
  9819   ins_short_branch(1);
  9820   ins_avoid_back_to_back(1);
  9821   ins_pipe(cbcond_reg_reg);
  9822 %}
  9824 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9825   match(If cmp (CmpN op1 op2));
  9826   predicate(UseCBCond);
  9827   effect(USE labl, KILL icc);
  9829   size(4);
  9830   ins_cost(BRANCH_COST);
  9831   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9832   ins_encode %{
  9833     Label* L = $labl$$label;
  9834     assert(__ use_cbcond(*L), "back to back cbcond");
  9835     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9836   %}
  9837   ins_short_branch(1);
  9838   ins_avoid_back_to_back(1);
  9839   ins_pipe(cbcond_reg_reg);
  9840 %}
  9842 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9843   match(If cmp (CmpN op1 null));
  9844   predicate(UseCBCond);
  9845   effect(USE labl, KILL icc);
  9847   size(4);
  9848   ins_cost(BRANCH_COST);
  9849   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9850   ins_encode %{
  9851     Label* L = $labl$$label;
  9852     assert(__ use_cbcond(*L), "back to back cbcond");
  9853     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9854   %}
  9855   ins_short_branch(1);
  9856   ins_avoid_back_to_back(1);
  9857   ins_pipe(cbcond_reg_reg);
  9858 %}
  9860 // Loop back branch
  9861 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9862   match(CountedLoopEnd cmp (CmpI op1 op2));
  9863   predicate(UseCBCond);
  9864   effect(USE labl, KILL icc);
  9866   size(4);
  9867   ins_cost(BRANCH_COST);
  9868   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9869   ins_encode %{
  9870     Label* L = $labl$$label;
  9871     assert(__ use_cbcond(*L), "back to back cbcond");
  9872     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9873   %}
  9874   ins_short_branch(1);
  9875   ins_avoid_back_to_back(1);
  9876   ins_pipe(cbcond_reg_reg);
  9877 %}
  9879 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9880   match(CountedLoopEnd cmp (CmpI op1 op2));
  9881   predicate(UseCBCond);
  9882   effect(USE labl, KILL icc);
  9884   size(4);
  9885   ins_cost(BRANCH_COST);
  9886   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9887   ins_encode %{
  9888     Label* L = $labl$$label;
  9889     assert(__ use_cbcond(*L), "back to back cbcond");
  9890     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9891   %}
  9892   ins_short_branch(1);
  9893   ins_avoid_back_to_back(1);
  9894   ins_pipe(cbcond_reg_imm);
  9895 %}
  9897 // Branch-on-register tests all 64 bits.  We assume that values
  9898 // in 64-bit registers always remains zero or sign extended
  9899 // unless our code munges the high bits.  Interrupts can chop
  9900 // the high order bits to zero or sign at any time.
  9901 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9902   match(If cmp (CmpI op1 zero));
  9903   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9904   effect(USE labl);
  9906   size(8);
  9907   ins_cost(BRANCH_COST);
  9908   format %{ "BR$cmp   $op1,$labl" %}
  9909   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9910   ins_pipe(br_reg);
  9911 %}
  9913 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9914   match(If cmp (CmpP op1 null));
  9915   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9916   effect(USE labl);
  9918   size(8);
  9919   ins_cost(BRANCH_COST);
  9920   format %{ "BR$cmp   $op1,$labl" %}
  9921   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9922   ins_pipe(br_reg);
  9923 %}
  9925 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9926   match(If cmp (CmpL op1 zero));
  9927   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9928   effect(USE labl);
  9930   size(8);
  9931   ins_cost(BRANCH_COST);
  9932   format %{ "BR$cmp   $op1,$labl" %}
  9933   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9934   ins_pipe(br_reg);
  9935 %}
  9938 // ============================================================================
  9939 // Long Compare
  9940 //
  9941 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9942 // is tricky.  The flavor of compare used depends on whether we are testing
  9943 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9944 // The GE test is the negated LT test.  The LE test can be had by commuting
  9945 // the operands (yielding a GE test) and then negating; negate again for the
  9946 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9947 // NE test is negated from that.
  9949 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9950 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9951 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9952 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9953 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9954 // foo match ends up with the wrong leaf.  One fix is to not match both
  9955 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9956 // both forms beat the trinary form of long-compare and both are very useful
  9957 // on Intel which has so few registers.
  9959 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9960   match(If cmp xcc);
  9961   effect(USE labl);
  9963   size(8);
  9964   ins_cost(BRANCH_COST);
  9965   format %{ "BP$cmp   $xcc,$labl" %}
  9966   ins_encode %{
  9967     Label* L = $labl$$label;
  9968     Assembler::Predict predict_taken =
  9969       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9971     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9972     __ delayed()->nop();
  9973   %}
  9974   ins_pipe(br_cc);
  9975 %}
  9977 // Manifest a CmpL3 result in an integer register.  Very painful.
  9978 // This is the test to avoid.
  9979 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9980   match(Set dst (CmpL3 src1 src2) );
  9981   effect( KILL ccr );
  9982   ins_cost(6*DEFAULT_COST);
  9983   size(24);
  9984   format %{ "CMP    $src1,$src2\t\t! long\n"
  9985           "\tBLT,a,pn done\n"
  9986           "\tMOV    -1,$dst\t! delay slot\n"
  9987           "\tBGT,a,pn done\n"
  9988           "\tMOV    1,$dst\t! delay slot\n"
  9989           "\tCLR    $dst\n"
  9990     "done:"     %}
  9991   ins_encode( cmpl_flag(src1,src2,dst) );
  9992   ins_pipe(cmpL_reg);
  9993 %}
  9995 // Conditional move
  9996 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9997   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9998   ins_cost(150);
  9999   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
 10000   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10001   ins_pipe(ialu_reg);
 10002 %}
 10004 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
 10005   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
 10006   ins_cost(140);
 10007   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
 10008   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10009   ins_pipe(ialu_imm);
 10010 %}
 10012 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
 10013   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
 10014   ins_cost(150);
 10015   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10016   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10017   ins_pipe(ialu_reg);
 10018 %}
 10020 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
 10021   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
 10022   ins_cost(140);
 10023   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10024   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10025   ins_pipe(ialu_imm);
 10026 %}
 10028 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
 10029   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
 10030   ins_cost(150);
 10031   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10032   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10033   ins_pipe(ialu_reg);
 10034 %}
 10036 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
 10037   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
 10038   ins_cost(150);
 10039   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10040   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
 10041   ins_pipe(ialu_reg);
 10042 %}
 10044 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
 10045   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
 10046   ins_cost(140);
 10047   format %{ "MOV$cmp  $xcc,$src,$dst" %}
 10048   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
 10049   ins_pipe(ialu_imm);
 10050 %}
 10052 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
 10053   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
 10054   ins_cost(150);
 10055   opcode(0x101);
 10056   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
 10057   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10058   ins_pipe(int_conditional_float_move);
 10059 %}
 10061 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
 10062   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
 10063   ins_cost(150);
 10064   opcode(0x102);
 10065   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
 10066   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10067   ins_pipe(int_conditional_float_move);
 10068 %}
 10070 // ============================================================================
 10071 // Safepoint Instruction
 10072 instruct safePoint_poll(iRegP poll) %{
 10073   match(SafePoint poll);
 10074   effect(USE poll);
 10076   size(4);
 10077 #ifdef _LP64
 10078   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
 10079 #else
 10080   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
 10081 #endif
 10082   ins_encode %{
 10083     __ relocate(relocInfo::poll_type);
 10084     __ ld_ptr($poll$$Register, 0, G0);
 10085   %}
 10086   ins_pipe(loadPollP);
 10087 %}
 10089 // ============================================================================
 10090 // Call Instructions
 10091 // Call Java Static Instruction
 10092 instruct CallStaticJavaDirect( method meth ) %{
 10093   match(CallStaticJava);
 10094   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10095   effect(USE meth);
 10097   size(8);
 10098   ins_cost(CALL_COST);
 10099   format %{ "CALL,static  ; NOP ==> " %}
 10100   ins_encode( Java_Static_Call( meth ), call_epilog );
 10101   ins_pipe(simple_call);
 10102 %}
 10104 // Call Java Static Instruction (method handle version)
 10105 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10106   match(CallStaticJava);
 10107   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10108   effect(USE meth, KILL l7_mh_SP_save);
 10110   size(16);
 10111   ins_cost(CALL_COST);
 10112   format %{ "CALL,static/MethodHandle" %}
 10113   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10114   ins_pipe(simple_call);
 10115 %}
 10117 // Call Java Dynamic Instruction
 10118 instruct CallDynamicJavaDirect( method meth ) %{
 10119   match(CallDynamicJava);
 10120   effect(USE meth);
 10122   ins_cost(CALL_COST);
 10123   format %{ "SET    (empty),R_G5\n\t"
 10124             "CALL,dynamic  ; NOP ==> " %}
 10125   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10126   ins_pipe(call);
 10127 %}
 10129 // Call Runtime Instruction
 10130 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10131   match(CallRuntime);
 10132   effect(USE meth, KILL l7);
 10133   ins_cost(CALL_COST);
 10134   format %{ "CALL,runtime" %}
 10135   ins_encode( Java_To_Runtime( meth ),
 10136               call_epilog, adjust_long_from_native_call );
 10137   ins_pipe(simple_call);
 10138 %}
 10140 // Call runtime without safepoint - same as CallRuntime
 10141 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10142   match(CallLeaf);
 10143   effect(USE meth, KILL l7);
 10144   ins_cost(CALL_COST);
 10145   format %{ "CALL,runtime leaf" %}
 10146   ins_encode( Java_To_Runtime( meth ),
 10147               call_epilog,
 10148               adjust_long_from_native_call );
 10149   ins_pipe(simple_call);
 10150 %}
 10152 // Call runtime without safepoint - same as CallLeaf
 10153 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10154   match(CallLeafNoFP);
 10155   effect(USE meth, KILL l7);
 10156   ins_cost(CALL_COST);
 10157   format %{ "CALL,runtime leaf nofp" %}
 10158   ins_encode( Java_To_Runtime( meth ),
 10159               call_epilog,
 10160               adjust_long_from_native_call );
 10161   ins_pipe(simple_call);
 10162 %}
 10164 // Tail Call; Jump from runtime stub to Java code.
 10165 // Also known as an 'interprocedural jump'.
 10166 // Target of jump will eventually return to caller.
 10167 // TailJump below removes the return address.
 10168 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10169   match(TailCall jump_target method_oop );
 10171   ins_cost(CALL_COST);
 10172   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10173   ins_encode(form_jmpl(jump_target));
 10174   ins_pipe(tail_call);
 10175 %}
 10178 // Return Instruction
 10179 instruct Ret() %{
 10180   match(Return);
 10182   // The epilogue node did the ret already.
 10183   size(0);
 10184   format %{ "! return" %}
 10185   ins_encode();
 10186   ins_pipe(empty);
 10187 %}
 10190 // Tail Jump; remove the return address; jump to target.
 10191 // TailCall above leaves the return address around.
 10192 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10193 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10194 // "restore" before this instruction (in Epilogue), we need to materialize it
 10195 // in %i0.
 10196 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10197   match( TailJump jump_target ex_oop );
 10198   ins_cost(CALL_COST);
 10199   format %{ "! discard R_O7\n\t"
 10200             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10201   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10202   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10203   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10204   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10205   ins_pipe(tail_call);
 10206 %}
 10208 // Create exception oop: created by stack-crawling runtime code.
 10209 // Created exception is now available to this handler, and is setup
 10210 // just prior to jumping to this handler.  No code emitted.
 10211 instruct CreateException( o0RegP ex_oop )
 10212 %{
 10213   match(Set ex_oop (CreateEx));
 10214   ins_cost(0);
 10216   size(0);
 10217   // use the following format syntax
 10218   format %{ "! exception oop is in R_O0; no code emitted" %}
 10219   ins_encode();
 10220   ins_pipe(empty);
 10221 %}
 10224 // Rethrow exception:
 10225 // The exception oop will come in the first argument position.
 10226 // Then JUMP (not call) to the rethrow stub code.
 10227 instruct RethrowException()
 10228 %{
 10229   match(Rethrow);
 10230   ins_cost(CALL_COST);
 10232   // use the following format syntax
 10233   format %{ "Jmp    rethrow_stub" %}
 10234   ins_encode(enc_rethrow);
 10235   ins_pipe(tail_call);
 10236 %}
 10239 // Die now
 10240 instruct ShouldNotReachHere( )
 10241 %{
 10242   match(Halt);
 10243   ins_cost(CALL_COST);
 10245   size(4);
 10246   // Use the following format syntax
 10247   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10248   ins_encode( form2_illtrap() );
 10249   ins_pipe(tail_call);
 10250 %}
 10252 // ============================================================================
 10253 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10254 // array for an instance of the superklass.  Set a hidden internal cache on a
 10255 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10256 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10257 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10258   match(Set index (PartialSubtypeCheck sub super));
 10259   effect( KILL pcc, KILL o7 );
 10260   ins_cost(DEFAULT_COST*10);
 10261   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10262   ins_encode( enc_PartialSubtypeCheck() );
 10263   ins_pipe(partial_subtype_check_pipe);
 10264 %}
 10266 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10267   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10268   effect( KILL idx, KILL o7 );
 10269   ins_cost(DEFAULT_COST*10);
 10270   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10271   ins_encode( enc_PartialSubtypeCheck() );
 10272   ins_pipe(partial_subtype_check_pipe);
 10273 %}
 10276 // ============================================================================
 10277 // inlined locking and unlocking
 10279 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10280   match(Set pcc (FastLock object box));
 10282   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10283   ins_cost(100);
 10285   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10286   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10287   ins_pipe(long_memory_op);
 10288 %}
 10291 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10292   match(Set pcc (FastUnlock object box));
 10293   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10294   ins_cost(100);
 10296   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10297   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10298   ins_pipe(long_memory_op);
 10299 %}
 10301 // The encodings are generic.
 10302 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10303   predicate(!use_block_zeroing(n->in(2)) );
 10304   match(Set dummy (ClearArray cnt base));
 10305   effect(TEMP temp, KILL ccr);
 10306   ins_cost(300);
 10307   format %{ "MOV    $cnt,$temp\n"
 10308     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10309     "        BRge   loop\t\t! Clearing loop\n"
 10310     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10312   ins_encode %{
 10313     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10314     Register nof_bytes_arg    = $cnt$$Register;
 10315     Register nof_bytes_tmp    = $temp$$Register;
 10316     Register base_pointer_arg = $base$$Register;
 10318     Label loop;
 10319     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10321     // Loop and clear, walking backwards through the array.
 10322     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10323     __ bind(loop);
 10324     __ deccc(nof_bytes_tmp, 8);
 10325     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10326     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10327     // %%%% this mini-loop must not cross a cache boundary!
 10328   %}
 10329   ins_pipe(long_memory_op);
 10330 %}
 10332 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10333   predicate(use_block_zeroing(n->in(2)));
 10334   match(Set dummy (ClearArray cnt base));
 10335   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10336   ins_cost(300);
 10337   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10339   ins_encode %{
 10341     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10342     Register to    = $base$$Register;
 10343     Register count = $cnt$$Register;
 10345     Label Ldone;
 10346     __ nop(); // Separate short branches
 10347     // Use BIS for zeroing (temp is not used).
 10348     __ bis_zeroing(to, count, G0, Ldone);
 10349     __ bind(Ldone);
 10351   %}
 10352   ins_pipe(long_memory_op);
 10353 %}
 10355 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10356   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10357   match(Set dummy (ClearArray cnt base));
 10358   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10359   ins_cost(300);
 10360   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10362   ins_encode %{
 10364     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10365     Register to    = $base$$Register;
 10366     Register count = $cnt$$Register;
 10367     Register temp  = $tmp$$Register;
 10369     Label Ldone;
 10370     __ nop(); // Separate short branches
 10371     // Use BIS for zeroing
 10372     __ bis_zeroing(to, count, temp, Ldone);
 10373     __ bind(Ldone);
 10375   %}
 10376   ins_pipe(long_memory_op);
 10377 %}
 10379 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10380                         o7RegI tmp, flagsReg ccr) %{
 10381   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10382   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10383   ins_cost(300);
 10384   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10385   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10386   ins_pipe(long_memory_op);
 10387 %}
 10389 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10390                        o7RegI tmp, flagsReg ccr) %{
 10391   match(Set result (StrEquals (Binary str1 str2) cnt));
 10392   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10393   ins_cost(300);
 10394   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10395   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10396   ins_pipe(long_memory_op);
 10397 %}
 10399 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10400                       o7RegI tmp2, flagsReg ccr) %{
 10401   match(Set result (AryEq ary1 ary2));
 10402   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10403   ins_cost(300);
 10404   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10405   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10406   ins_pipe(long_memory_op);
 10407 %}
 10410 //---------- Zeros Count Instructions ------------------------------------------
 10412 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10413   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10414   match(Set dst (CountLeadingZerosI src));
 10415   effect(TEMP dst, TEMP tmp, KILL cr);
 10417   // x |= (x >> 1);
 10418   // x |= (x >> 2);
 10419   // x |= (x >> 4);
 10420   // x |= (x >> 8);
 10421   // x |= (x >> 16);
 10422   // return (WORDBITS - popc(x));
 10423   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10424             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10425             "OR      $dst,$tmp,$dst\n\t"
 10426             "SRL     $dst,2,$tmp\n\t"
 10427             "OR      $dst,$tmp,$dst\n\t"
 10428             "SRL     $dst,4,$tmp\n\t"
 10429             "OR      $dst,$tmp,$dst\n\t"
 10430             "SRL     $dst,8,$tmp\n\t"
 10431             "OR      $dst,$tmp,$dst\n\t"
 10432             "SRL     $dst,16,$tmp\n\t"
 10433             "OR      $dst,$tmp,$dst\n\t"
 10434             "POPC    $dst,$dst\n\t"
 10435             "MOV     32,$tmp\n\t"
 10436             "SUB     $tmp,$dst,$dst" %}
 10437   ins_encode %{
 10438     Register Rdst = $dst$$Register;
 10439     Register Rsrc = $src$$Register;
 10440     Register Rtmp = $tmp$$Register;
 10441     __ srl(Rsrc, 1,    Rtmp);
 10442     __ srl(Rsrc, 0,    Rdst);
 10443     __ or3(Rdst, Rtmp, Rdst);
 10444     __ srl(Rdst, 2,    Rtmp);
 10445     __ or3(Rdst, Rtmp, Rdst);
 10446     __ srl(Rdst, 4,    Rtmp);
 10447     __ or3(Rdst, Rtmp, Rdst);
 10448     __ srl(Rdst, 8,    Rtmp);
 10449     __ or3(Rdst, Rtmp, Rdst);
 10450     __ srl(Rdst, 16,   Rtmp);
 10451     __ or3(Rdst, Rtmp, Rdst);
 10452     __ popc(Rdst, Rdst);
 10453     __ mov(BitsPerInt, Rtmp);
 10454     __ sub(Rtmp, Rdst, Rdst);
 10455   %}
 10456   ins_pipe(ialu_reg);
 10457 %}
 10459 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10460   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10461   match(Set dst (CountLeadingZerosL src));
 10462   effect(TEMP dst, TEMP tmp, KILL cr);
 10464   // x |= (x >> 1);
 10465   // x |= (x >> 2);
 10466   // x |= (x >> 4);
 10467   // x |= (x >> 8);
 10468   // x |= (x >> 16);
 10469   // x |= (x >> 32);
 10470   // return (WORDBITS - popc(x));
 10471   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10472             "OR      $src,$tmp,$dst\n\t"
 10473             "SRLX    $dst,2,$tmp\n\t"
 10474             "OR      $dst,$tmp,$dst\n\t"
 10475             "SRLX    $dst,4,$tmp\n\t"
 10476             "OR      $dst,$tmp,$dst\n\t"
 10477             "SRLX    $dst,8,$tmp\n\t"
 10478             "OR      $dst,$tmp,$dst\n\t"
 10479             "SRLX    $dst,16,$tmp\n\t"
 10480             "OR      $dst,$tmp,$dst\n\t"
 10481             "SRLX    $dst,32,$tmp\n\t"
 10482             "OR      $dst,$tmp,$dst\n\t"
 10483             "POPC    $dst,$dst\n\t"
 10484             "MOV     64,$tmp\n\t"
 10485             "SUB     $tmp,$dst,$dst" %}
 10486   ins_encode %{
 10487     Register Rdst = $dst$$Register;
 10488     Register Rsrc = $src$$Register;
 10489     Register Rtmp = $tmp$$Register;
 10490     __ srlx(Rsrc, 1,    Rtmp);
 10491     __ or3( Rsrc, Rtmp, Rdst);
 10492     __ srlx(Rdst, 2,    Rtmp);
 10493     __ or3( Rdst, Rtmp, Rdst);
 10494     __ srlx(Rdst, 4,    Rtmp);
 10495     __ or3( Rdst, Rtmp, Rdst);
 10496     __ srlx(Rdst, 8,    Rtmp);
 10497     __ or3( Rdst, Rtmp, Rdst);
 10498     __ srlx(Rdst, 16,   Rtmp);
 10499     __ or3( Rdst, Rtmp, Rdst);
 10500     __ srlx(Rdst, 32,   Rtmp);
 10501     __ or3( Rdst, Rtmp, Rdst);
 10502     __ popc(Rdst, Rdst);
 10503     __ mov(BitsPerLong, Rtmp);
 10504     __ sub(Rtmp, Rdst, Rdst);
 10505   %}
 10506   ins_pipe(ialu_reg);
 10507 %}
 10509 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10510   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10511   match(Set dst (CountTrailingZerosI src));
 10512   effect(TEMP dst, KILL cr);
 10514   // return popc(~x & (x - 1));
 10515   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10516             "ANDN    $dst,$src,$dst\n\t"
 10517             "SRL     $dst,R_G0,$dst\n\t"
 10518             "POPC    $dst,$dst" %}
 10519   ins_encode %{
 10520     Register Rdst = $dst$$Register;
 10521     Register Rsrc = $src$$Register;
 10522     __ sub(Rsrc, 1, Rdst);
 10523     __ andn(Rdst, Rsrc, Rdst);
 10524     __ srl(Rdst, G0, Rdst);
 10525     __ popc(Rdst, Rdst);
 10526   %}
 10527   ins_pipe(ialu_reg);
 10528 %}
 10530 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10531   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10532   match(Set dst (CountTrailingZerosL src));
 10533   effect(TEMP dst, KILL cr);
 10535   // return popc(~x & (x - 1));
 10536   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10537             "ANDN    $dst,$src,$dst\n\t"
 10538             "POPC    $dst,$dst" %}
 10539   ins_encode %{
 10540     Register Rdst = $dst$$Register;
 10541     Register Rsrc = $src$$Register;
 10542     __ sub(Rsrc, 1, Rdst);
 10543     __ andn(Rdst, Rsrc, Rdst);
 10544     __ popc(Rdst, Rdst);
 10545   %}
 10546   ins_pipe(ialu_reg);
 10547 %}
 10550 //---------- Population Count Instructions -------------------------------------
 10552 instruct popCountI(iRegI dst, iRegI src) %{
 10553   predicate(UsePopCountInstruction);
 10554   match(Set dst (PopCountI src));
 10556   format %{ "POPC   $src, $dst" %}
 10557   ins_encode %{
 10558     __ popc($src$$Register, $dst$$Register);
 10559   %}
 10560   ins_pipe(ialu_reg);
 10561 %}
 10563 // Note: Long.bitCount(long) returns an int.
 10564 instruct popCountL(iRegI dst, iRegL src) %{
 10565   predicate(UsePopCountInstruction);
 10566   match(Set dst (PopCountL src));
 10568   format %{ "POPC   $src, $dst" %}
 10569   ins_encode %{
 10570     __ popc($src$$Register, $dst$$Register);
 10571   %}
 10572   ins_pipe(ialu_reg);
 10573 %}
 10576 // ============================================================================
 10577 //------------Bytes reverse--------------------------------------------------
 10579 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10580   match(Set dst (ReverseBytesI src));
 10582   // Op cost is artificially doubled to make sure that load or store
 10583   // instructions are preferred over this one which requires a spill
 10584   // onto a stack slot.
 10585   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10586   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10588   ins_encode %{
 10589     __ set($src$$disp + STACK_BIAS, O7);
 10590     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10591   %}
 10592   ins_pipe( iload_mem );
 10593 %}
 10595 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10596   match(Set dst (ReverseBytesL src));
 10598   // Op cost is artificially doubled to make sure that load or store
 10599   // instructions are preferred over this one which requires a spill
 10600   // onto a stack slot.
 10601   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10602   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10604   ins_encode %{
 10605     __ set($src$$disp + STACK_BIAS, O7);
 10606     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10607   %}
 10608   ins_pipe( iload_mem );
 10609 %}
 10611 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10612   match(Set dst (ReverseBytesUS src));
 10614   // Op cost is artificially doubled to make sure that load or store
 10615   // instructions are preferred over this one which requires a spill
 10616   // onto a stack slot.
 10617   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10618   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10620   ins_encode %{
 10621     // the value was spilled as an int so bias the load
 10622     __ set($src$$disp + STACK_BIAS + 2, O7);
 10623     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10624   %}
 10625   ins_pipe( iload_mem );
 10626 %}
 10628 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10629   match(Set dst (ReverseBytesS src));
 10631   // Op cost is artificially doubled to make sure that load or store
 10632   // instructions are preferred over this one which requires a spill
 10633   // onto a stack slot.
 10634   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10635   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10637   ins_encode %{
 10638     // the value was spilled as an int so bias the load
 10639     __ set($src$$disp + STACK_BIAS + 2, O7);
 10640     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10641   %}
 10642   ins_pipe( iload_mem );
 10643 %}
 10645 // Load Integer reversed byte order
 10646 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10647   match(Set dst (ReverseBytesI (LoadI src)));
 10649   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10650   size(4);
 10651   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10653   ins_encode %{
 10654     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10655   %}
 10656   ins_pipe(iload_mem);
 10657 %}
 10659 // Load Long - aligned and reversed
 10660 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10661   match(Set dst (ReverseBytesL (LoadL src)));
 10663   ins_cost(MEMORY_REF_COST);
 10664   size(4);
 10665   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10667   ins_encode %{
 10668     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10669   %}
 10670   ins_pipe(iload_mem);
 10671 %}
 10673 // Load unsigned short / char reversed byte order
 10674 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10675   match(Set dst (ReverseBytesUS (LoadUS src)));
 10677   ins_cost(MEMORY_REF_COST);
 10678   size(4);
 10679   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10681   ins_encode %{
 10682     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10683   %}
 10684   ins_pipe(iload_mem);
 10685 %}
 10687 // Load short reversed byte order
 10688 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10689   match(Set dst (ReverseBytesS (LoadS src)));
 10691   ins_cost(MEMORY_REF_COST);
 10692   size(4);
 10693   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10695   ins_encode %{
 10696     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10697   %}
 10698   ins_pipe(iload_mem);
 10699 %}
 10701 // Store Integer reversed byte order
 10702 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10703   match(Set dst (StoreI dst (ReverseBytesI src)));
 10705   ins_cost(MEMORY_REF_COST);
 10706   size(4);
 10707   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10709   ins_encode %{
 10710     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10711   %}
 10712   ins_pipe(istore_mem_reg);
 10713 %}
 10715 // Store Long reversed byte order
 10716 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10717   match(Set dst (StoreL dst (ReverseBytesL src)));
 10719   ins_cost(MEMORY_REF_COST);
 10720   size(4);
 10721   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10723   ins_encode %{
 10724     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10725   %}
 10726   ins_pipe(istore_mem_reg);
 10727 %}
 10729 // Store unsighed short/char reversed byte order
 10730 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10731   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10733   ins_cost(MEMORY_REF_COST);
 10734   size(4);
 10735   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10737   ins_encode %{
 10738     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10739   %}
 10740   ins_pipe(istore_mem_reg);
 10741 %}
 10743 // Store short reversed byte order
 10744 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10745   match(Set dst (StoreC dst (ReverseBytesS src)));
 10747   ins_cost(MEMORY_REF_COST);
 10748   size(4);
 10749   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10751   ins_encode %{
 10752     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10753   %}
 10754   ins_pipe(istore_mem_reg);
 10755 %}
 10757 //----------PEEPHOLE RULES-----------------------------------------------------
 10758 // These must follow all instruction definitions as they use the names
 10759 // defined in the instructions definitions.
 10760 //
 10761 // peepmatch ( root_instr_name [preceding_instruction]* );
 10762 //
 10763 // peepconstraint %{
 10764 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10765 //  [, ...] );
 10766 // // instruction numbers are zero-based using left to right order in peepmatch
 10767 //
 10768 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10769 // // provide an instruction_number.operand_name for each operand that appears
 10770 // // in the replacement instruction's match rule
 10771 //
 10772 // ---------VM FLAGS---------------------------------------------------------
 10773 //
 10774 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10775 //
 10776 // Each peephole rule is given an identifying number starting with zero and
 10777 // increasing by one in the order seen by the parser.  An individual peephole
 10778 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10779 // on the command-line.
 10780 //
 10781 // ---------CURRENT LIMITATIONS----------------------------------------------
 10782 //
 10783 // Only match adjacent instructions in same basic block
 10784 // Only equality constraints
 10785 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10786 // Only one replacement instruction
 10787 //
 10788 // ---------EXAMPLE----------------------------------------------------------
 10789 //
 10790 // // pertinent parts of existing instructions in architecture description
 10791 // instruct movI(eRegI dst, eRegI src) %{
 10792 //   match(Set dst (CopyI src));
 10793 // %}
 10794 //
 10795 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10796 //   match(Set dst (AddI dst src));
 10797 //   effect(KILL cr);
 10798 // %}
 10799 //
 10800 // // Change (inc mov) to lea
 10801 // peephole %{
 10802 //   // increment preceeded by register-register move
 10803 //   peepmatch ( incI_eReg movI );
 10804 //   // require that the destination register of the increment
 10805 //   // match the destination register of the move
 10806 //   peepconstraint ( 0.dst == 1.dst );
 10807 //   // construct a replacement instruction that sets
 10808 //   // the destination to ( move's source register + one )
 10809 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10810 // %}
 10811 //
 10813 // // Change load of spilled value to only a spill
 10814 // instruct storeI(memory mem, eRegI src) %{
 10815 //   match(Set mem (StoreI mem src));
 10816 // %}
 10817 //
 10818 // instruct loadI(eRegI dst, memory mem) %{
 10819 //   match(Set dst (LoadI mem));
 10820 // %}
 10821 //
 10822 // peephole %{
 10823 //   peepmatch ( loadI storeI );
 10824 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10825 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10826 // %}
 10828 //----------SMARTSPILL RULES---------------------------------------------------
 10829 // These must follow all instruction definitions as they use the names
 10830 // defined in the instructions definitions.
 10831 //
 10832 // SPARC will probably not have any of these rules due to RISC instruction set.
 10834 //----------PIPELINE-----------------------------------------------------------
 10835 // Rules which define the behavior of the target architectures pipeline.

mercurial