src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Thu, 19 Jan 2012 10:56:51 -0800

author
iveresov
date
Thu, 19 Jan 2012 10:56:51 -0800
changeset 3435
898522ae3c32
parent 3400
22cee0ee8927
child 3592
701a83c86f28
permissions
-rw-r--r--

7131288: COMPILE SKIPPED: deopt handler overflow (retry at different tier)
Summary: Fix exception handler stub size, enable guarantees to check for the correct deopt and exception stub sizes in the future
Reviewed-by: kvn, never, twisti

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_LIRAssembler.hpp"
    29 #include "c1/c1_MacroAssembler.hpp"
    30 #include "c1/c1_Runtime1.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "gc_interface/collectedHeap.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/cardTableModRefBS.hpp"
    37 #include "nativeInst_x86.hpp"
    38 #include "oops/objArrayKlass.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    44 // fast versions of NegF/NegD and AbsF/AbsD.
    46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    49   // of 128-bits operands for SSE instructions.
    50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    51   // Store the value to a 128-bits operand.
    52   operand[0] = lo;
    53   operand[1] = hi;
    54   return operand;
    55 }
    57 // Buffer for 128-bits masks used by SSE instructions.
    58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    60 // Static initialization during VM startup.
    61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    68 NEEDS_CLEANUP // remove this definitions ?
    69 const Register IC_Klass    = rax;   // where the IC klass is cached
    70 const Register SYNC_header = rax;   // synchronization header
    71 const Register SHIFT_count = rcx;   // where count for shift operations must be
    73 #define __ _masm->
    76 static void select_different_registers(Register preserve,
    77                                        Register extra,
    78                                        Register &tmp1,
    79                                        Register &tmp2) {
    80   if (tmp1 == preserve) {
    81     assert_different_registers(tmp1, tmp2, extra);
    82     tmp1 = extra;
    83   } else if (tmp2 == preserve) {
    84     assert_different_registers(tmp1, tmp2, extra);
    85     tmp2 = extra;
    86   }
    87   assert_different_registers(preserve, tmp1, tmp2);
    88 }
    92 static void select_different_registers(Register preserve,
    93                                        Register extra,
    94                                        Register &tmp1,
    95                                        Register &tmp2,
    96                                        Register &tmp3) {
    97   if (tmp1 == preserve) {
    98     assert_different_registers(tmp1, tmp2, tmp3, extra);
    99     tmp1 = extra;
   100   } else if (tmp2 == preserve) {
   101     assert_different_registers(tmp1, tmp2, tmp3, extra);
   102     tmp2 = extra;
   103   } else if (tmp3 == preserve) {
   104     assert_different_registers(tmp1, tmp2, tmp3, extra);
   105     tmp3 = extra;
   106   }
   107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   108 }
   112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   113   if (opr->is_constant()) {
   114     LIR_Const* constant = opr->as_constant_ptr();
   115     switch (constant->type()) {
   116       case T_INT: {
   117         return true;
   118       }
   120       default:
   121         return false;
   122     }
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIR_Assembler::receiverOpr() {
   129   return FrameMap::receiver_opr;
   130 }
   132 LIR_Opr LIR_Assembler::osrBufferPointer() {
   133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   134 }
   136 //--------------fpu register translations-----------------------
   139 address LIR_Assembler::float_constant(float f) {
   140   address const_addr = __ float_constant(f);
   141   if (const_addr == NULL) {
   142     bailout("const section overflow");
   143     return __ code()->consts()->start();
   144   } else {
   145     return const_addr;
   146   }
   147 }
   150 address LIR_Assembler::double_constant(double d) {
   151   address const_addr = __ double_constant(d);
   152   if (const_addr == NULL) {
   153     bailout("const section overflow");
   154     return __ code()->consts()->start();
   155   } else {
   156     return const_addr;
   157   }
   158 }
   161 void LIR_Assembler::set_24bit_FPU() {
   162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   163 }
   165 void LIR_Assembler::reset_FPU() {
   166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 }
   169 void LIR_Assembler::fpop() {
   170   __ fpop();
   171 }
   173 void LIR_Assembler::fxch(int i) {
   174   __ fxch(i);
   175 }
   177 void LIR_Assembler::fld(int i) {
   178   __ fld_s(i);
   179 }
   181 void LIR_Assembler::ffree(int i) {
   182   __ ffree(i);
   183 }
   185 void LIR_Assembler::breakpoint() {
   186   __ int3();
   187 }
   189 void LIR_Assembler::push(LIR_Opr opr) {
   190   if (opr->is_single_cpu()) {
   191     __ push_reg(opr->as_register());
   192   } else if (opr->is_double_cpu()) {
   193     NOT_LP64(__ push_reg(opr->as_register_hi()));
   194     __ push_reg(opr->as_register_lo());
   195   } else if (opr->is_stack()) {
   196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   197   } else if (opr->is_constant()) {
   198     LIR_Const* const_opr = opr->as_constant_ptr();
   199     if (const_opr->type() == T_OBJECT) {
   200       __ push_oop(const_opr->as_jobject());
   201     } else if (const_opr->type() == T_INT) {
   202       __ push_jint(const_opr->as_jint());
   203     } else {
   204       ShouldNotReachHere();
   205     }
   207   } else {
   208     ShouldNotReachHere();
   209   }
   210 }
   212 void LIR_Assembler::pop(LIR_Opr opr) {
   213   if (opr->is_single_cpu()) {
   214     __ pop_reg(opr->as_register());
   215   } else {
   216     ShouldNotReachHere();
   217   }
   218 }
   220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   221   return addr->base()->is_illegal() && addr->index()->is_illegal();
   222 }
   224 //-------------------------------------------
   226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   227   return as_Address(addr, rscratch1);
   228 }
   230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   231   if (addr->base()->is_illegal()) {
   232     assert(addr->index()->is_illegal(), "must be illegal too");
   233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   234     if (! __ reachable(laddr)) {
   235       __ movptr(tmp, laddr.addr());
   236       Address res(tmp, 0);
   237       return res;
   238     } else {
   239       return __ as_Address(laddr);
   240     }
   241   }
   243   Register base = addr->base()->as_pointer_register();
   245   if (addr->index()->is_illegal()) {
   246     return Address( base, addr->disp());
   247   } else if (addr->index()->is_cpu_register()) {
   248     Register index = addr->index()->as_pointer_register();
   249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   250   } else if (addr->index()->is_constant()) {
   251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   252     assert(Assembler::is_simm32(addr_offset), "must be");
   254     return Address(base, addr_offset);
   255   } else {
   256     Unimplemented();
   257     return Address();
   258   }
   259 }
   262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   263   Address base = as_Address(addr);
   264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   265 }
   268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   269   return as_Address(addr);
   270 }
   273 void LIR_Assembler::osr_entry() {
   274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   276   ValueStack* entry_state = osr_entry->state();
   277   int number_of_locks = entry_state->locks_size();
   279   // we jump here if osr happens with the interpreter
   280   // state set up to continue at the beginning of the
   281   // loop that triggered osr - in particular, we have
   282   // the following registers setup:
   283   //
   284   // rcx: osr buffer
   285   //
   287   // build frame
   288   ciMethod* m = compilation()->method();
   289   __ build_frame(initial_frame_size_in_bytes());
   291   // OSR buffer is
   292   //
   293   // locals[nlocals-1..0]
   294   // monitors[0..number_of_locks]
   295   //
   296   // locals is a direct copy of the interpreter frame so in the osr buffer
   297   // so first slot in the local array is the last local from the interpreter
   298   // and last slot is local[0] (receiver) from the interpreter
   299   //
   300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   302   // in the interpreter frame (the method lock if a sync method)
   304   // Initialize monitors in the compiled activation.
   305   //   rcx: pointer to osr buffer
   306   //
   307   // All other registers are dead at this point and the locals will be
   308   // copied into place by code emitted in the IR.
   310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   312     int monitor_offset = BytesPerWord * method()->max_locals() +
   313       (2 * BytesPerWord) * (number_of_locks - 1);
   314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   315     // the OSR buffer using 2 word entries: first the lock and then
   316     // the oop.
   317     for (int i = 0; i < number_of_locks; i++) {
   318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   319 #ifdef ASSERT
   320       // verify the interpreter's monitor has a non-null object
   321       {
   322         Label L;
   323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   324         __ jcc(Assembler::notZero, L);
   325         __ stop("locked object is NULL");
   326         __ bind(L);
   327       }
   328 #endif
   329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   333     }
   334   }
   335 }
   338 // inline cache check; done before the frame is built.
   339 int LIR_Assembler::check_icache() {
   340   Register receiver = FrameMap::receiver_opr->as_register();
   341   Register ic_klass = IC_Klass;
   342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   343   const bool do_post_padding = VerifyOops || UseCompressedOops;
   344   if (!do_post_padding) {
   345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   347       __ nop();
   348     }
   349   }
   350   int offset = __ offset();
   351   __ inline_cache_check(receiver, IC_Klass);
   352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   353   if (do_post_padding) {
   354     // force alignment after the cache check.
   355     // It's been verified to be aligned if !VerifyOops
   356     __ align(CodeEntryAlignment);
   357   }
   358   return offset;
   359 }
   362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   363   jobject o = NULL;
   364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   365   __ movoop(reg, o);
   366   patching_epilog(patch, lir_patch_normal, reg, info);
   367 }
   370 // This specifies the rsp decrement needed to build the frame
   371 int LIR_Assembler::initial_frame_size_in_bytes() {
   372   // if rounding, must let FrameMap know!
   374   // The frame_map records size in slots (32bit word)
   376   // subtract two words to account for return address and link
   377   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   378 }
   381 int LIR_Assembler::emit_exception_handler() {
   382   // if the last instruction is a call (typically to do a throw which
   383   // is coming at the end after block reordering) the return address
   384   // must still point into the code area in order to avoid assertion
   385   // failures when searching for the corresponding bci => add a nop
   386   // (was bug 5/14/1999 - gri)
   387   __ nop();
   389   // generate code for exception handler
   390   address handler_base = __ start_a_stub(exception_handler_size);
   391   if (handler_base == NULL) {
   392     // not enough space left for the handler
   393     bailout("exception handler overflow");
   394     return -1;
   395   }
   397   int offset = code_offset();
   399   // the exception oop and pc are in rax, and rdx
   400   // no other registers need to be preserved, so invalidate them
   401   __ invalidate_registers(false, true, true, false, true, true);
   403   // check that there is really an exception
   404   __ verify_not_null_oop(rax);
   406   // search an exception handler (rax: exception oop, rdx: throwing pc)
   407   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   408   __ should_not_reach_here();
   409   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   410   __ end_a_stub();
   412   return offset;
   413 }
   416 // Emit the code to remove the frame from the stack in the exception
   417 // unwind path.
   418 int LIR_Assembler::emit_unwind_handler() {
   419 #ifndef PRODUCT
   420   if (CommentedAssembly) {
   421     _masm->block_comment("Unwind handler");
   422   }
   423 #endif
   425   int offset = code_offset();
   427   // Fetch the exception from TLS and clear out exception related thread state
   428   __ get_thread(rsi);
   429   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   430   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   431   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   433   __ bind(_unwind_handler_entry);
   434   __ verify_not_null_oop(rax);
   435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   436     __ mov(rsi, rax);  // Preserve the exception
   437   }
   439   // Preform needed unlocking
   440   MonitorExitStub* stub = NULL;
   441   if (method()->is_synchronized()) {
   442     monitor_address(0, FrameMap::rax_opr);
   443     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   444     __ unlock_object(rdi, rbx, rax, *stub->entry());
   445     __ bind(*stub->continuation());
   446   }
   448   if (compilation()->env()->dtrace_method_probes()) {
   449     __ get_thread(rax);
   450     __ movptr(Address(rsp, 0), rax);
   451     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
   452     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   453   }
   455   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   456     __ mov(rax, rsi);  // Restore the exception
   457   }
   459   // remove the activation and dispatch to the unwind handler
   460   __ remove_frame(initial_frame_size_in_bytes());
   461   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   463   // Emit the slow path assembly
   464   if (stub != NULL) {
   465     stub->emit_code(this);
   466   }
   468   return offset;
   469 }
   472 int LIR_Assembler::emit_deopt_handler() {
   473   // if the last instruction is a call (typically to do a throw which
   474   // is coming at the end after block reordering) the return address
   475   // must still point into the code area in order to avoid assertion
   476   // failures when searching for the corresponding bci => add a nop
   477   // (was bug 5/14/1999 - gri)
   478   __ nop();
   480   // generate code for exception handler
   481   address handler_base = __ start_a_stub(deopt_handler_size);
   482   if (handler_base == NULL) {
   483     // not enough space left for the handler
   484     bailout("deopt handler overflow");
   485     return -1;
   486   }
   488   int offset = code_offset();
   489   InternalAddress here(__ pc());
   491   __ pushptr(here.addr());
   492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   493   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   494   __ end_a_stub();
   496   return offset;
   497 }
   500 // This is the fast version of java.lang.String.compare; it has not
   501 // OSR-entry and therefore, we generate a slow version for OSR's
   502 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   503   __ movptr (rbx, rcx); // receiver is in rcx
   504   __ movptr (rax, arg1->as_register());
   506   // Get addresses of first characters from both Strings
   507   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   508   __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   509   __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   512   // rbx, may be NULL
   513   add_debug_info_for_null_check_here(info);
   514   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   515   __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   516   __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   518   // compute minimum length (in rax) and difference of lengths (on top of stack)
   519   __ movl  (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   520   __ movl  (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   521   __ mov   (rcx, rbx);
   522   __ subptr(rbx, rax); // subtract lengths
   523   __ push  (rbx);      // result
   524   __ cmov  (Assembler::lessEqual, rax, rcx);
   526   // is minimum length 0?
   527   Label noLoop, haveResult;
   528   __ testptr (rax, rax);
   529   __ jcc (Assembler::zero, noLoop);
   531   // compare first characters
   532   __ load_unsigned_short(rcx, Address(rdi, 0));
   533   __ load_unsigned_short(rbx, Address(rsi, 0));
   534   __ subl(rcx, rbx);
   535   __ jcc(Assembler::notZero, haveResult);
   536   // starting loop
   537   __ decrement(rax); // we already tested index: skip one
   538   __ jcc(Assembler::zero, noLoop);
   540   // set rsi.edi to the end of the arrays (arrays have same length)
   541   // negate the index
   543   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   544   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   545   __ negptr(rax);
   547   // compare the strings in a loop
   549   Label loop;
   550   __ align(wordSize);
   551   __ bind(loop);
   552   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   553   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   554   __ subl(rcx, rbx);
   555   __ jcc(Assembler::notZero, haveResult);
   556   __ increment(rax);
   557   __ jcc(Assembler::notZero, loop);
   559   // strings are equal up to min length
   561   __ bind(noLoop);
   562   __ pop(rax);
   563   return_op(LIR_OprFact::illegalOpr);
   565   __ bind(haveResult);
   566   // leave instruction is going to discard the TOS value
   567   __ mov (rax, rcx); // result of call is in rax,
   568 }
   571 void LIR_Assembler::return_op(LIR_Opr result) {
   572   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   573   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   574     assert(result->fpu() == 0, "result must already be on TOS");
   575   }
   577   // Pop the stack before the safepoint code
   578   __ remove_frame(initial_frame_size_in_bytes());
   580   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   582   // Note: we do not need to round double result; float result has the right precision
   583   // the poll sets the condition code, but no data registers
   584   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   585                               relocInfo::poll_return_type);
   587   if (Assembler::is_polling_page_far()) {
   588     __ lea(rscratch1, polling_page);
   589     __ relocate(relocInfo::poll_return_type);
   590     __ testl(rax, Address(rscratch1, 0));
   591   } else {
   592     __ testl(rax, polling_page);
   593   }
   594   __ ret(0);
   595 }
   598 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   599   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   600                               relocInfo::poll_type);
   601   guarantee(info != NULL, "Shouldn't be NULL");
   602   int offset = __ offset();
   603   if (Assembler::is_polling_page_far()) {
   604     __ lea(rscratch1, polling_page);
   605     offset = __ offset();
   606     add_debug_info_for_branch(info);
   607     __ testl(rax, Address(rscratch1, 0));
   608   } else {
   609     add_debug_info_for_branch(info);
   610     __ testl(rax, polling_page);
   611   }
   612   return offset;
   613 }
   616 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   617   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   618 }
   620 void LIR_Assembler::swap_reg(Register a, Register b) {
   621   __ xchgptr(a, b);
   622 }
   625 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   626   assert(src->is_constant(), "should not call otherwise");
   627   assert(dest->is_register(), "should not call otherwise");
   628   LIR_Const* c = src->as_constant_ptr();
   630   switch (c->type()) {
   631     case T_INT: {
   632       assert(patch_code == lir_patch_none, "no patching handled here");
   633       __ movl(dest->as_register(), c->as_jint());
   634       break;
   635     }
   637     case T_ADDRESS: {
   638       assert(patch_code == lir_patch_none, "no patching handled here");
   639       __ movptr(dest->as_register(), c->as_jint());
   640       break;
   641     }
   643     case T_LONG: {
   644       assert(patch_code == lir_patch_none, "no patching handled here");
   645 #ifdef _LP64
   646       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   647 #else
   648       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   649       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   650 #endif // _LP64
   651       break;
   652     }
   654     case T_OBJECT: {
   655       if (patch_code != lir_patch_none) {
   656         jobject2reg_with_patching(dest->as_register(), info);
   657       } else {
   658         __ movoop(dest->as_register(), c->as_jobject());
   659       }
   660       break;
   661     }
   663     case T_FLOAT: {
   664       if (dest->is_single_xmm()) {
   665         if (c->is_zero_float()) {
   666           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   667         } else {
   668           __ movflt(dest->as_xmm_float_reg(),
   669                    InternalAddress(float_constant(c->as_jfloat())));
   670         }
   671       } else {
   672         assert(dest->is_single_fpu(), "must be");
   673         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   674         if (c->is_zero_float()) {
   675           __ fldz();
   676         } else if (c->is_one_float()) {
   677           __ fld1();
   678         } else {
   679           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   680         }
   681       }
   682       break;
   683     }
   685     case T_DOUBLE: {
   686       if (dest->is_double_xmm()) {
   687         if (c->is_zero_double()) {
   688           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   689         } else {
   690           __ movdbl(dest->as_xmm_double_reg(),
   691                     InternalAddress(double_constant(c->as_jdouble())));
   692         }
   693       } else {
   694         assert(dest->is_double_fpu(), "must be");
   695         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   696         if (c->is_zero_double()) {
   697           __ fldz();
   698         } else if (c->is_one_double()) {
   699           __ fld1();
   700         } else {
   701           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   702         }
   703       }
   704       break;
   705     }
   707     default:
   708       ShouldNotReachHere();
   709   }
   710 }
   712 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   713   assert(src->is_constant(), "should not call otherwise");
   714   assert(dest->is_stack(), "should not call otherwise");
   715   LIR_Const* c = src->as_constant_ptr();
   717   switch (c->type()) {
   718     case T_INT:  // fall through
   719     case T_FLOAT:
   720       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   721       break;
   723     case T_ADDRESS:
   724       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   725       break;
   727     case T_OBJECT:
   728       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   729       break;
   731     case T_LONG:  // fall through
   732     case T_DOUBLE:
   733 #ifdef _LP64
   734       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   735                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   736 #else
   737       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   738                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   739       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   740                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   741 #endif // _LP64
   742       break;
   744     default:
   745       ShouldNotReachHere();
   746   }
   747 }
   749 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   750   assert(src->is_constant(), "should not call otherwise");
   751   assert(dest->is_address(), "should not call otherwise");
   752   LIR_Const* c = src->as_constant_ptr();
   753   LIR_Address* addr = dest->as_address_ptr();
   755   int null_check_here = code_offset();
   756   switch (type) {
   757     case T_INT:    // fall through
   758     case T_FLOAT:
   759       __ movl(as_Address(addr), c->as_jint_bits());
   760       break;
   762     case T_ADDRESS:
   763       __ movptr(as_Address(addr), c->as_jint_bits());
   764       break;
   766     case T_OBJECT:  // fall through
   767     case T_ARRAY:
   768       if (c->as_jobject() == NULL) {
   769         if (UseCompressedOops && !wide) {
   770           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   771         } else {
   772           __ movptr(as_Address(addr), NULL_WORD);
   773         }
   774       } else {
   775         if (is_literal_address(addr)) {
   776           ShouldNotReachHere();
   777           __ movoop(as_Address(addr, noreg), c->as_jobject());
   778         } else {
   779 #ifdef _LP64
   780           __ movoop(rscratch1, c->as_jobject());
   781           if (UseCompressedOops && !wide) {
   782             __ encode_heap_oop(rscratch1);
   783             null_check_here = code_offset();
   784             __ movl(as_Address_lo(addr), rscratch1);
   785           } else {
   786             null_check_here = code_offset();
   787             __ movptr(as_Address_lo(addr), rscratch1);
   788           }
   789 #else
   790           __ movoop(as_Address(addr), c->as_jobject());
   791 #endif
   792         }
   793       }
   794       break;
   796     case T_LONG:    // fall through
   797     case T_DOUBLE:
   798 #ifdef _LP64
   799       if (is_literal_address(addr)) {
   800         ShouldNotReachHere();
   801         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   802       } else {
   803         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   804         null_check_here = code_offset();
   805         __ movptr(as_Address_lo(addr), r10);
   806       }
   807 #else
   808       // Always reachable in 32bit so this doesn't produce useless move literal
   809       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   810       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   811 #endif // _LP64
   812       break;
   814     case T_BOOLEAN: // fall through
   815     case T_BYTE:
   816       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   817       break;
   819     case T_CHAR:    // fall through
   820     case T_SHORT:
   821       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   822       break;
   824     default:
   825       ShouldNotReachHere();
   826   };
   828   if (info != NULL) {
   829     add_debug_info_for_null_check(null_check_here, info);
   830   }
   831 }
   834 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   835   assert(src->is_register(), "should not call otherwise");
   836   assert(dest->is_register(), "should not call otherwise");
   838   // move between cpu-registers
   839   if (dest->is_single_cpu()) {
   840 #ifdef _LP64
   841     if (src->type() == T_LONG) {
   842       // Can do LONG -> OBJECT
   843       move_regs(src->as_register_lo(), dest->as_register());
   844       return;
   845     }
   846 #endif
   847     assert(src->is_single_cpu(), "must match");
   848     if (src->type() == T_OBJECT) {
   849       __ verify_oop(src->as_register());
   850     }
   851     move_regs(src->as_register(), dest->as_register());
   853   } else if (dest->is_double_cpu()) {
   854 #ifdef _LP64
   855     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   856       // Surprising to me but we can see move of a long to t_object
   857       __ verify_oop(src->as_register());
   858       move_regs(src->as_register(), dest->as_register_lo());
   859       return;
   860     }
   861 #endif
   862     assert(src->is_double_cpu(), "must match");
   863     Register f_lo = src->as_register_lo();
   864     Register f_hi = src->as_register_hi();
   865     Register t_lo = dest->as_register_lo();
   866     Register t_hi = dest->as_register_hi();
   867 #ifdef _LP64
   868     assert(f_hi == f_lo, "must be same");
   869     assert(t_hi == t_lo, "must be same");
   870     move_regs(f_lo, t_lo);
   871 #else
   872     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   875     if (f_lo == t_hi && f_hi == t_lo) {
   876       swap_reg(f_lo, f_hi);
   877     } else if (f_hi == t_lo) {
   878       assert(f_lo != t_hi, "overwriting register");
   879       move_regs(f_hi, t_hi);
   880       move_regs(f_lo, t_lo);
   881     } else {
   882       assert(f_hi != t_lo, "overwriting register");
   883       move_regs(f_lo, t_lo);
   884       move_regs(f_hi, t_hi);
   885     }
   886 #endif // LP64
   888     // special moves from fpu-register to xmm-register
   889     // necessary for method results
   890   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   891     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   892     __ fld_s(Address(rsp, 0));
   893   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   894     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   895     __ fld_d(Address(rsp, 0));
   896   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   897     __ fstp_s(Address(rsp, 0));
   898     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   899   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   900     __ fstp_d(Address(rsp, 0));
   901     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   903     // move between xmm-registers
   904   } else if (dest->is_single_xmm()) {
   905     assert(src->is_single_xmm(), "must match");
   906     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   907   } else if (dest->is_double_xmm()) {
   908     assert(src->is_double_xmm(), "must match");
   909     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   911     // move between fpu-registers (no instruction necessary because of fpu-stack)
   912   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   913     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   914     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   915   } else {
   916     ShouldNotReachHere();
   917   }
   918 }
   920 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   921   assert(src->is_register(), "should not call otherwise");
   922   assert(dest->is_stack(), "should not call otherwise");
   924   if (src->is_single_cpu()) {
   925     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   926     if (type == T_OBJECT || type == T_ARRAY) {
   927       __ verify_oop(src->as_register());
   928       __ movptr (dst, src->as_register());
   929     } else {
   930       __ movl (dst, src->as_register());
   931     }
   933   } else if (src->is_double_cpu()) {
   934     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   935     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   936     __ movptr (dstLO, src->as_register_lo());
   937     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   939   } else if (src->is_single_xmm()) {
   940     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   941     __ movflt(dst_addr, src->as_xmm_float_reg());
   943   } else if (src->is_double_xmm()) {
   944     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   945     __ movdbl(dst_addr, src->as_xmm_double_reg());
   947   } else if (src->is_single_fpu()) {
   948     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   949     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   950     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   951     else                   __ fst_s  (dst_addr);
   953   } else if (src->is_double_fpu()) {
   954     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   955     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   956     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   957     else                   __ fst_d  (dst_addr);
   959   } else {
   960     ShouldNotReachHere();
   961   }
   962 }
   965 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   966   LIR_Address* to_addr = dest->as_address_ptr();
   967   PatchingStub* patch = NULL;
   968   Register compressed_src = rscratch1;
   970   if (type == T_ARRAY || type == T_OBJECT) {
   971     __ verify_oop(src->as_register());
   972 #ifdef _LP64
   973     if (UseCompressedOops && !wide) {
   974       __ movptr(compressed_src, src->as_register());
   975       __ encode_heap_oop(compressed_src);
   976     }
   977 #endif
   978   }
   980   if (patch_code != lir_patch_none) {
   981     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   982     Address toa = as_Address(to_addr);
   983     assert(toa.disp() != 0, "must have");
   984   }
   986   int null_check_here = code_offset();
   987   switch (type) {
   988     case T_FLOAT: {
   989       if (src->is_single_xmm()) {
   990         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
   991       } else {
   992         assert(src->is_single_fpu(), "must be");
   993         assert(src->fpu_regnr() == 0, "argument must be on TOS");
   994         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
   995         else                    __ fst_s (as_Address(to_addr));
   996       }
   997       break;
   998     }
  1000     case T_DOUBLE: {
  1001       if (src->is_double_xmm()) {
  1002         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1003       } else {
  1004         assert(src->is_double_fpu(), "must be");
  1005         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1006         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1007         else                    __ fst_d (as_Address(to_addr));
  1009       break;
  1012     case T_ARRAY:   // fall through
  1013     case T_OBJECT:  // fall through
  1014       if (UseCompressedOops && !wide) {
  1015         __ movl(as_Address(to_addr), compressed_src);
  1016       } else {
  1017         __ movptr(as_Address(to_addr), src->as_register());
  1019       break;
  1020     case T_ADDRESS:
  1021       __ movptr(as_Address(to_addr), src->as_register());
  1022       break;
  1023     case T_INT:
  1024       __ movl(as_Address(to_addr), src->as_register());
  1025       break;
  1027     case T_LONG: {
  1028       Register from_lo = src->as_register_lo();
  1029       Register from_hi = src->as_register_hi();
  1030 #ifdef _LP64
  1031       __ movptr(as_Address_lo(to_addr), from_lo);
  1032 #else
  1033       Register base = to_addr->base()->as_register();
  1034       Register index = noreg;
  1035       if (to_addr->index()->is_register()) {
  1036         index = to_addr->index()->as_register();
  1038       if (base == from_lo || index == from_lo) {
  1039         assert(base != from_hi, "can't be");
  1040         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1041         __ movl(as_Address_hi(to_addr), from_hi);
  1042         if (patch != NULL) {
  1043           patching_epilog(patch, lir_patch_high, base, info);
  1044           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1045           patch_code = lir_patch_low;
  1047         __ movl(as_Address_lo(to_addr), from_lo);
  1048       } else {
  1049         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1050         __ movl(as_Address_lo(to_addr), from_lo);
  1051         if (patch != NULL) {
  1052           patching_epilog(patch, lir_patch_low, base, info);
  1053           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1054           patch_code = lir_patch_high;
  1056         __ movl(as_Address_hi(to_addr), from_hi);
  1058 #endif // _LP64
  1059       break;
  1062     case T_BYTE:    // fall through
  1063     case T_BOOLEAN: {
  1064       Register src_reg = src->as_register();
  1065       Address dst_addr = as_Address(to_addr);
  1066       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1067       __ movb(dst_addr, src_reg);
  1068       break;
  1071     case T_CHAR:    // fall through
  1072     case T_SHORT:
  1073       __ movw(as_Address(to_addr), src->as_register());
  1074       break;
  1076     default:
  1077       ShouldNotReachHere();
  1079   if (info != NULL) {
  1080     add_debug_info_for_null_check(null_check_here, info);
  1083   if (patch_code != lir_patch_none) {
  1084     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1089 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1090   assert(src->is_stack(), "should not call otherwise");
  1091   assert(dest->is_register(), "should not call otherwise");
  1093   if (dest->is_single_cpu()) {
  1094     if (type == T_ARRAY || type == T_OBJECT) {
  1095       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1096       __ verify_oop(dest->as_register());
  1097     } else {
  1098       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1101   } else if (dest->is_double_cpu()) {
  1102     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1103     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1104     __ movptr(dest->as_register_lo(), src_addr_LO);
  1105     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1107   } else if (dest->is_single_xmm()) {
  1108     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1109     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1111   } else if (dest->is_double_xmm()) {
  1112     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1113     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1115   } else if (dest->is_single_fpu()) {
  1116     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1118     __ fld_s(src_addr);
  1120   } else if (dest->is_double_fpu()) {
  1121     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1122     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1123     __ fld_d(src_addr);
  1125   } else {
  1126     ShouldNotReachHere();
  1131 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1132   if (src->is_single_stack()) {
  1133     if (type == T_OBJECT || type == T_ARRAY) {
  1134       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1135       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1136     } else {
  1137 #ifndef _LP64
  1138       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1139       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1140 #else
  1141       //no pushl on 64bits
  1142       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1143       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1144 #endif
  1147   } else if (src->is_double_stack()) {
  1148 #ifdef _LP64
  1149     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1150     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1151 #else
  1152     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1153     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1154     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1155     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1156     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1157 #endif // _LP64
  1159   } else {
  1160     ShouldNotReachHere();
  1165 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1166   assert(src->is_address(), "should not call otherwise");
  1167   assert(dest->is_register(), "should not call otherwise");
  1169   LIR_Address* addr = src->as_address_ptr();
  1170   Address from_addr = as_Address(addr);
  1172   switch (type) {
  1173     case T_BOOLEAN: // fall through
  1174     case T_BYTE:    // fall through
  1175     case T_CHAR:    // fall through
  1176     case T_SHORT:
  1177       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1178         // on pre P6 processors we may get partial register stalls
  1179         // so blow away the value of to_rinfo before loading a
  1180         // partial word into it.  Do it here so that it precedes
  1181         // the potential patch point below.
  1182         __ xorptr(dest->as_register(), dest->as_register());
  1184       break;
  1187   PatchingStub* patch = NULL;
  1188   if (patch_code != lir_patch_none) {
  1189     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1190     assert(from_addr.disp() != 0, "must have");
  1192   if (info != NULL) {
  1193     add_debug_info_for_null_check_here(info);
  1196   switch (type) {
  1197     case T_FLOAT: {
  1198       if (dest->is_single_xmm()) {
  1199         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1200       } else {
  1201         assert(dest->is_single_fpu(), "must be");
  1202         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1203         __ fld_s(from_addr);
  1205       break;
  1208     case T_DOUBLE: {
  1209       if (dest->is_double_xmm()) {
  1210         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1211       } else {
  1212         assert(dest->is_double_fpu(), "must be");
  1213         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1214         __ fld_d(from_addr);
  1216       break;
  1219     case T_OBJECT:  // fall through
  1220     case T_ARRAY:   // fall through
  1221       if (UseCompressedOops && !wide) {
  1222         __ movl(dest->as_register(), from_addr);
  1223       } else {
  1224         __ movptr(dest->as_register(), from_addr);
  1226       break;
  1228     case T_ADDRESS:
  1229       __ movptr(dest->as_register(), from_addr);
  1230       break;
  1231     case T_INT:
  1232       __ movl(dest->as_register(), from_addr);
  1233       break;
  1235     case T_LONG: {
  1236       Register to_lo = dest->as_register_lo();
  1237       Register to_hi = dest->as_register_hi();
  1238 #ifdef _LP64
  1239       __ movptr(to_lo, as_Address_lo(addr));
  1240 #else
  1241       Register base = addr->base()->as_register();
  1242       Register index = noreg;
  1243       if (addr->index()->is_register()) {
  1244         index = addr->index()->as_register();
  1246       if ((base == to_lo && index == to_hi) ||
  1247           (base == to_hi && index == to_lo)) {
  1248         // addresses with 2 registers are only formed as a result of
  1249         // array access so this code will never have to deal with
  1250         // patches or null checks.
  1251         assert(info == NULL && patch == NULL, "must be");
  1252         __ lea(to_hi, as_Address(addr));
  1253         __ movl(to_lo, Address(to_hi, 0));
  1254         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1255       } else if (base == to_lo || index == to_lo) {
  1256         assert(base != to_hi, "can't be");
  1257         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1258         __ movl(to_hi, as_Address_hi(addr));
  1259         if (patch != NULL) {
  1260           patching_epilog(patch, lir_patch_high, base, info);
  1261           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1262           patch_code = lir_patch_low;
  1264         __ movl(to_lo, as_Address_lo(addr));
  1265       } else {
  1266         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1267         __ movl(to_lo, as_Address_lo(addr));
  1268         if (patch != NULL) {
  1269           patching_epilog(patch, lir_patch_low, base, info);
  1270           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1271           patch_code = lir_patch_high;
  1273         __ movl(to_hi, as_Address_hi(addr));
  1275 #endif // _LP64
  1276       break;
  1279     case T_BOOLEAN: // fall through
  1280     case T_BYTE: {
  1281       Register dest_reg = dest->as_register();
  1282       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1283       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1284         __ movsbl(dest_reg, from_addr);
  1285       } else {
  1286         __ movb(dest_reg, from_addr);
  1287         __ shll(dest_reg, 24);
  1288         __ sarl(dest_reg, 24);
  1290       break;
  1293     case T_CHAR: {
  1294       Register dest_reg = dest->as_register();
  1295       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1296       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1297         __ movzwl(dest_reg, from_addr);
  1298       } else {
  1299         __ movw(dest_reg, from_addr);
  1301       break;
  1304     case T_SHORT: {
  1305       Register dest_reg = dest->as_register();
  1306       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1307         __ movswl(dest_reg, from_addr);
  1308       } else {
  1309         __ movw(dest_reg, from_addr);
  1310         __ shll(dest_reg, 16);
  1311         __ sarl(dest_reg, 16);
  1313       break;
  1316     default:
  1317       ShouldNotReachHere();
  1320   if (patch != NULL) {
  1321     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1324   if (type == T_ARRAY || type == T_OBJECT) {
  1325 #ifdef _LP64
  1326     if (UseCompressedOops && !wide) {
  1327       __ decode_heap_oop(dest->as_register());
  1329 #endif
  1330     __ verify_oop(dest->as_register());
  1335 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1336   LIR_Address* addr = src->as_address_ptr();
  1337   Address from_addr = as_Address(addr);
  1339   if (VM_Version::supports_sse()) {
  1340     switch (ReadPrefetchInstr) {
  1341       case 0:
  1342         __ prefetchnta(from_addr); break;
  1343       case 1:
  1344         __ prefetcht0(from_addr); break;
  1345       case 2:
  1346         __ prefetcht2(from_addr); break;
  1347       default:
  1348         ShouldNotReachHere(); break;
  1350   } else if (VM_Version::supports_3dnow_prefetch()) {
  1351     __ prefetchr(from_addr);
  1356 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1357   LIR_Address* addr = src->as_address_ptr();
  1358   Address from_addr = as_Address(addr);
  1360   if (VM_Version::supports_sse()) {
  1361     switch (AllocatePrefetchInstr) {
  1362       case 0:
  1363         __ prefetchnta(from_addr); break;
  1364       case 1:
  1365         __ prefetcht0(from_addr); break;
  1366       case 2:
  1367         __ prefetcht2(from_addr); break;
  1368       case 3:
  1369         __ prefetchw(from_addr); break;
  1370       default:
  1371         ShouldNotReachHere(); break;
  1373   } else if (VM_Version::supports_3dnow_prefetch()) {
  1374     __ prefetchw(from_addr);
  1379 NEEDS_CLEANUP; // This could be static?
  1380 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1381   int elem_size = type2aelembytes(type);
  1382   switch (elem_size) {
  1383     case 1: return Address::times_1;
  1384     case 2: return Address::times_2;
  1385     case 4: return Address::times_4;
  1386     case 8: return Address::times_8;
  1388   ShouldNotReachHere();
  1389   return Address::no_scale;
  1393 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1394   switch (op->code()) {
  1395     case lir_idiv:
  1396     case lir_irem:
  1397       arithmetic_idiv(op->code(),
  1398                       op->in_opr1(),
  1399                       op->in_opr2(),
  1400                       op->in_opr3(),
  1401                       op->result_opr(),
  1402                       op->info());
  1403       break;
  1404     default:      ShouldNotReachHere(); break;
  1408 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1409 #ifdef ASSERT
  1410   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1411   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1412   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1413 #endif
  1415   if (op->cond() == lir_cond_always) {
  1416     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1417     __ jmp (*(op->label()));
  1418   } else {
  1419     Assembler::Condition acond = Assembler::zero;
  1420     if (op->code() == lir_cond_float_branch) {
  1421       assert(op->ublock() != NULL, "must have unordered successor");
  1422       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1423       switch(op->cond()) {
  1424         case lir_cond_equal:        acond = Assembler::equal;      break;
  1425         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1426         case lir_cond_less:         acond = Assembler::below;      break;
  1427         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1428         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1429         case lir_cond_greater:      acond = Assembler::above;      break;
  1430         default:                         ShouldNotReachHere();
  1432     } else {
  1433       switch (op->cond()) {
  1434         case lir_cond_equal:        acond = Assembler::equal;       break;
  1435         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1436         case lir_cond_less:         acond = Assembler::less;        break;
  1437         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1438         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1439         case lir_cond_greater:      acond = Assembler::greater;     break;
  1440         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1441         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1442         default:                         ShouldNotReachHere();
  1445     __ jcc(acond,*(op->label()));
  1449 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1450   LIR_Opr src  = op->in_opr();
  1451   LIR_Opr dest = op->result_opr();
  1453   switch (op->bytecode()) {
  1454     case Bytecodes::_i2l:
  1455 #ifdef _LP64
  1456       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1457 #else
  1458       move_regs(src->as_register(), dest->as_register_lo());
  1459       move_regs(src->as_register(), dest->as_register_hi());
  1460       __ sarl(dest->as_register_hi(), 31);
  1461 #endif // LP64
  1462       break;
  1464     case Bytecodes::_l2i:
  1465       move_regs(src->as_register_lo(), dest->as_register());
  1466       break;
  1468     case Bytecodes::_i2b:
  1469       move_regs(src->as_register(), dest->as_register());
  1470       __ sign_extend_byte(dest->as_register());
  1471       break;
  1473     case Bytecodes::_i2c:
  1474       move_regs(src->as_register(), dest->as_register());
  1475       __ andl(dest->as_register(), 0xFFFF);
  1476       break;
  1478     case Bytecodes::_i2s:
  1479       move_regs(src->as_register(), dest->as_register());
  1480       __ sign_extend_short(dest->as_register());
  1481       break;
  1484     case Bytecodes::_f2d:
  1485     case Bytecodes::_d2f:
  1486       if (dest->is_single_xmm()) {
  1487         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1488       } else if (dest->is_double_xmm()) {
  1489         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1490       } else {
  1491         assert(src->fpu() == dest->fpu(), "register must be equal");
  1492         // do nothing (float result is rounded later through spilling)
  1494       break;
  1496     case Bytecodes::_i2f:
  1497     case Bytecodes::_i2d:
  1498       if (dest->is_single_xmm()) {
  1499         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1500       } else if (dest->is_double_xmm()) {
  1501         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1502       } else {
  1503         assert(dest->fpu() == 0, "result must be on TOS");
  1504         __ movl(Address(rsp, 0), src->as_register());
  1505         __ fild_s(Address(rsp, 0));
  1507       break;
  1509     case Bytecodes::_f2i:
  1510     case Bytecodes::_d2i:
  1511       if (src->is_single_xmm()) {
  1512         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1513       } else if (src->is_double_xmm()) {
  1514         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1515       } else {
  1516         assert(src->fpu() == 0, "input must be on TOS");
  1517         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1518         __ fist_s(Address(rsp, 0));
  1519         __ movl(dest->as_register(), Address(rsp, 0));
  1520         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1523       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1524       assert(op->stub() != NULL, "stub required");
  1525       __ cmpl(dest->as_register(), 0x80000000);
  1526       __ jcc(Assembler::equal, *op->stub()->entry());
  1527       __ bind(*op->stub()->continuation());
  1528       break;
  1530     case Bytecodes::_l2f:
  1531     case Bytecodes::_l2d:
  1532       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1533       assert(dest->fpu() == 0, "result must be on TOS");
  1535       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1536       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1537       __ fild_d(Address(rsp, 0));
  1538       // float result is rounded later through spilling
  1539       break;
  1541     case Bytecodes::_f2l:
  1542     case Bytecodes::_d2l:
  1543       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1544       assert(src->fpu() == 0, "input must be on TOS");
  1545       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1547       // instruction sequence too long to inline it here
  1549         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1551       break;
  1553     default: ShouldNotReachHere();
  1557 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1558   if (op->init_check()) {
  1559     __ cmpb(Address(op->klass()->as_register(),
  1560                     instanceKlass::init_state_offset()),
  1561             instanceKlass::fully_initialized);
  1562     add_debug_info_for_null_check_here(op->stub()->info());
  1563     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1565   __ allocate_object(op->obj()->as_register(),
  1566                      op->tmp1()->as_register(),
  1567                      op->tmp2()->as_register(),
  1568                      op->header_size(),
  1569                      op->object_size(),
  1570                      op->klass()->as_register(),
  1571                      *op->stub()->entry());
  1572   __ bind(*op->stub()->continuation());
  1575 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1576   Register len =  op->len()->as_register();
  1577   LP64_ONLY( __ movslq(len, len); )
  1579   if (UseSlowPath ||
  1580       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1581       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1582     __ jmp(*op->stub()->entry());
  1583   } else {
  1584     Register tmp1 = op->tmp1()->as_register();
  1585     Register tmp2 = op->tmp2()->as_register();
  1586     Register tmp3 = op->tmp3()->as_register();
  1587     if (len == tmp1) {
  1588       tmp1 = tmp3;
  1589     } else if (len == tmp2) {
  1590       tmp2 = tmp3;
  1591     } else if (len == tmp3) {
  1592       // everything is ok
  1593     } else {
  1594       __ mov(tmp3, len);
  1596     __ allocate_array(op->obj()->as_register(),
  1597                       len,
  1598                       tmp1,
  1599                       tmp2,
  1600                       arrayOopDesc::header_size(op->type()),
  1601                       array_element_size(op->type()),
  1602                       op->klass()->as_register(),
  1603                       *op->stub()->entry());
  1605   __ bind(*op->stub()->continuation());
  1608 void LIR_Assembler::type_profile_helper(Register mdo,
  1609                                         ciMethodData *md, ciProfileData *data,
  1610                                         Register recv, Label* update_done) {
  1611   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1612     Label next_test;
  1613     // See if the receiver is receiver[n].
  1614     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1615     __ jccb(Assembler::notEqual, next_test);
  1616     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1617     __ addptr(data_addr, DataLayout::counter_increment);
  1618     __ jmp(*update_done);
  1619     __ bind(next_test);
  1622   // Didn't find receiver; find next empty slot and fill it in
  1623   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1624     Label next_test;
  1625     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1626     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1627     __ jccb(Assembler::notEqual, next_test);
  1628     __ movptr(recv_addr, recv);
  1629     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1630     __ jmp(*update_done);
  1631     __ bind(next_test);
  1635 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1636   // we always need a stub for the failure case.
  1637   CodeStub* stub = op->stub();
  1638   Register obj = op->object()->as_register();
  1639   Register k_RInfo = op->tmp1()->as_register();
  1640   Register klass_RInfo = op->tmp2()->as_register();
  1641   Register dst = op->result_opr()->as_register();
  1642   ciKlass* k = op->klass();
  1643   Register Rtmp1 = noreg;
  1645   // check if it needs to be profiled
  1646   ciMethodData* md;
  1647   ciProfileData* data;
  1649   if (op->should_profile()) {
  1650     ciMethod* method = op->profiled_method();
  1651     assert(method != NULL, "Should have method");
  1652     int bci = op->profiled_bci();
  1653     md = method->method_data_or_null();
  1654     assert(md != NULL, "Sanity");
  1655     data = md->bci_to_data(bci);
  1656     assert(data != NULL,                "need data for type check");
  1657     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1659   Label profile_cast_success, profile_cast_failure;
  1660   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1661   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1663   if (obj == k_RInfo) {
  1664     k_RInfo = dst;
  1665   } else if (obj == klass_RInfo) {
  1666     klass_RInfo = dst;
  1668   if (k->is_loaded() && !UseCompressedOops) {
  1669     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1670   } else {
  1671     Rtmp1 = op->tmp3()->as_register();
  1672     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1675   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1676   if (!k->is_loaded()) {
  1677     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1678   } else {
  1679 #ifdef _LP64
  1680     __ movoop(k_RInfo, k->constant_encoding());
  1681 #endif // _LP64
  1683   assert(obj != k_RInfo, "must be different");
  1685   __ cmpptr(obj, (int32_t)NULL_WORD);
  1686   if (op->should_profile()) {
  1687     Label not_null;
  1688     __ jccb(Assembler::notEqual, not_null);
  1689     // Object is null; update MDO and exit
  1690     Register mdo  = klass_RInfo;
  1691     __ movoop(mdo, md->constant_encoding());
  1692     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1693     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1694     __ orl(data_addr, header_bits);
  1695     __ jmp(*obj_is_null);
  1696     __ bind(not_null);
  1697   } else {
  1698     __ jcc(Assembler::equal, *obj_is_null);
  1700   __ verify_oop(obj);
  1702   if (op->fast_check()) {
  1703     // get object class
  1704     // not a safepoint as obj null check happens earlier
  1705 #ifdef _LP64
  1706     if (UseCompressedOops) {
  1707       __ load_klass(Rtmp1, obj);
  1708       __ cmpptr(k_RInfo, Rtmp1);
  1709     } else {
  1710       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1712 #else
  1713     if (k->is_loaded()) {
  1714       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1715     } else {
  1716       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1718 #endif
  1719     __ jcc(Assembler::notEqual, *failure_target);
  1720     // successful cast, fall through to profile or jump
  1721   } else {
  1722     // get object class
  1723     // not a safepoint as obj null check happens earlier
  1724     __ load_klass(klass_RInfo, obj);
  1725     if (k->is_loaded()) {
  1726       // See if we get an immediate positive hit
  1727 #ifdef _LP64
  1728       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1729 #else
  1730       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1731 #endif // _LP64
  1732       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1733         __ jcc(Assembler::notEqual, *failure_target);
  1734         // successful cast, fall through to profile or jump
  1735       } else {
  1736         // See if we get an immediate positive hit
  1737         __ jcc(Assembler::equal, *success_target);
  1738         // check for self
  1739 #ifdef _LP64
  1740         __ cmpptr(klass_RInfo, k_RInfo);
  1741 #else
  1742         __ cmpoop(klass_RInfo, k->constant_encoding());
  1743 #endif // _LP64
  1744         __ jcc(Assembler::equal, *success_target);
  1746         __ push(klass_RInfo);
  1747 #ifdef _LP64
  1748         __ push(k_RInfo);
  1749 #else
  1750         __ pushoop(k->constant_encoding());
  1751 #endif // _LP64
  1752         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1753         __ pop(klass_RInfo);
  1754         __ pop(klass_RInfo);
  1755         // result is a boolean
  1756         __ cmpl(klass_RInfo, 0);
  1757         __ jcc(Assembler::equal, *failure_target);
  1758         // successful cast, fall through to profile or jump
  1760     } else {
  1761       // perform the fast part of the checking logic
  1762       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1763       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1764       __ push(klass_RInfo);
  1765       __ push(k_RInfo);
  1766       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1767       __ pop(klass_RInfo);
  1768       __ pop(k_RInfo);
  1769       // result is a boolean
  1770       __ cmpl(k_RInfo, 0);
  1771       __ jcc(Assembler::equal, *failure_target);
  1772       // successful cast, fall through to profile or jump
  1775   if (op->should_profile()) {
  1776     Register mdo  = klass_RInfo, recv = k_RInfo;
  1777     __ bind(profile_cast_success);
  1778     __ movoop(mdo, md->constant_encoding());
  1779     __ load_klass(recv, obj);
  1780     Label update_done;
  1781     type_profile_helper(mdo, md, data, recv, success);
  1782     __ jmp(*success);
  1784     __ bind(profile_cast_failure);
  1785     __ movoop(mdo, md->constant_encoding());
  1786     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1787     __ subptr(counter_addr, DataLayout::counter_increment);
  1788     __ jmp(*failure);
  1790   __ jmp(*success);
  1794 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1795   LIR_Code code = op->code();
  1796   if (code == lir_store_check) {
  1797     Register value = op->object()->as_register();
  1798     Register array = op->array()->as_register();
  1799     Register k_RInfo = op->tmp1()->as_register();
  1800     Register klass_RInfo = op->tmp2()->as_register();
  1801     Register Rtmp1 = op->tmp3()->as_register();
  1803     CodeStub* stub = op->stub();
  1805     // check if it needs to be profiled
  1806     ciMethodData* md;
  1807     ciProfileData* data;
  1809     if (op->should_profile()) {
  1810       ciMethod* method = op->profiled_method();
  1811       assert(method != NULL, "Should have method");
  1812       int bci = op->profiled_bci();
  1813       md = method->method_data_or_null();
  1814       assert(md != NULL, "Sanity");
  1815       data = md->bci_to_data(bci);
  1816       assert(data != NULL,                "need data for type check");
  1817       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1819     Label profile_cast_success, profile_cast_failure, done;
  1820     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1821     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1823     __ cmpptr(value, (int32_t)NULL_WORD);
  1824     if (op->should_profile()) {
  1825       Label not_null;
  1826       __ jccb(Assembler::notEqual, not_null);
  1827       // Object is null; update MDO and exit
  1828       Register mdo  = klass_RInfo;
  1829       __ movoop(mdo, md->constant_encoding());
  1830       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1831       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1832       __ orl(data_addr, header_bits);
  1833       __ jmp(done);
  1834       __ bind(not_null);
  1835     } else {
  1836       __ jcc(Assembler::equal, done);
  1839     add_debug_info_for_null_check_here(op->info_for_exception());
  1840     __ load_klass(k_RInfo, array);
  1841     __ load_klass(klass_RInfo, value);
  1843     // get instance klass (it's already uncompressed)
  1844     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
  1845     // perform the fast part of the checking logic
  1846     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1847     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1848     __ push(klass_RInfo);
  1849     __ push(k_RInfo);
  1850     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1851     __ pop(klass_RInfo);
  1852     __ pop(k_RInfo);
  1853     // result is a boolean
  1854     __ cmpl(k_RInfo, 0);
  1855     __ jcc(Assembler::equal, *failure_target);
  1856     // fall through to the success case
  1858     if (op->should_profile()) {
  1859       Register mdo  = klass_RInfo, recv = k_RInfo;
  1860       __ bind(profile_cast_success);
  1861       __ movoop(mdo, md->constant_encoding());
  1862       __ load_klass(recv, value);
  1863       Label update_done;
  1864       type_profile_helper(mdo, md, data, recv, &done);
  1865       __ jmpb(done);
  1867       __ bind(profile_cast_failure);
  1868       __ movoop(mdo, md->constant_encoding());
  1869       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1870       __ subptr(counter_addr, DataLayout::counter_increment);
  1871       __ jmp(*stub->entry());
  1874     __ bind(done);
  1875   } else
  1876     if (code == lir_checkcast) {
  1877       Register obj = op->object()->as_register();
  1878       Register dst = op->result_opr()->as_register();
  1879       Label success;
  1880       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1881       __ bind(success);
  1882       if (dst != obj) {
  1883         __ mov(dst, obj);
  1885     } else
  1886       if (code == lir_instanceof) {
  1887         Register obj = op->object()->as_register();
  1888         Register dst = op->result_opr()->as_register();
  1889         Label success, failure, done;
  1890         emit_typecheck_helper(op, &success, &failure, &failure);
  1891         __ bind(failure);
  1892         __ xorptr(dst, dst);
  1893         __ jmpb(done);
  1894         __ bind(success);
  1895         __ movptr(dst, 1);
  1896         __ bind(done);
  1897       } else {
  1898         ShouldNotReachHere();
  1904 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1905   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1906     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1907     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1908     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1909     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1910     Register addr = op->addr()->as_register();
  1911     if (os::is_MP()) {
  1912       __ lock();
  1914     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1916   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1917     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1918     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1919     Register newval = op->new_value()->as_register();
  1920     Register cmpval = op->cmp_value()->as_register();
  1921     assert(cmpval == rax, "wrong register");
  1922     assert(newval != NULL, "new val must be register");
  1923     assert(cmpval != newval, "cmp and new values must be in different registers");
  1924     assert(cmpval != addr, "cmp and addr must be in different registers");
  1925     assert(newval != addr, "new value and addr must be in different registers");
  1927     if ( op->code() == lir_cas_obj) {
  1928 #ifdef _LP64
  1929       if (UseCompressedOops) {
  1930         __ encode_heap_oop(cmpval);
  1931         __ mov(rscratch1, newval);
  1932         __ encode_heap_oop(rscratch1);
  1933         if (os::is_MP()) {
  1934           __ lock();
  1936         // cmpval (rax) is implicitly used by this instruction
  1937         __ cmpxchgl(rscratch1, Address(addr, 0));
  1938       } else
  1939 #endif
  1941         if (os::is_MP()) {
  1942           __ lock();
  1944         __ cmpxchgptr(newval, Address(addr, 0));
  1946     } else {
  1947       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  1948       if (os::is_MP()) {
  1949         __ lock();
  1951       __ cmpxchgl(newval, Address(addr, 0));
  1953 #ifdef _LP64
  1954   } else if (op->code() == lir_cas_long) {
  1955     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1956     Register newval = op->new_value()->as_register_lo();
  1957     Register cmpval = op->cmp_value()->as_register_lo();
  1958     assert(cmpval == rax, "wrong register");
  1959     assert(newval != NULL, "new val must be register");
  1960     assert(cmpval != newval, "cmp and new values must be in different registers");
  1961     assert(cmpval != addr, "cmp and addr must be in different registers");
  1962     assert(newval != addr, "new value and addr must be in different registers");
  1963     if (os::is_MP()) {
  1964       __ lock();
  1966     __ cmpxchgq(newval, Address(addr, 0));
  1967 #endif // _LP64
  1968   } else {
  1969     Unimplemented();
  1973 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1974   Assembler::Condition acond, ncond;
  1975   switch (condition) {
  1976     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1977     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1978     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1979     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1980     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1981     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1982     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1983     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1984     default:                    ShouldNotReachHere();
  1987   if (opr1->is_cpu_register()) {
  1988     reg2reg(opr1, result);
  1989   } else if (opr1->is_stack()) {
  1990     stack2reg(opr1, result, result->type());
  1991   } else if (opr1->is_constant()) {
  1992     const2reg(opr1, result, lir_patch_none, NULL);
  1993   } else {
  1994     ShouldNotReachHere();
  1997   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1998     // optimized version that does not require a branch
  1999     if (opr2->is_single_cpu()) {
  2000       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2001       __ cmov(ncond, result->as_register(), opr2->as_register());
  2002     } else if (opr2->is_double_cpu()) {
  2003       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2004       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2005       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2006       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2007     } else if (opr2->is_single_stack()) {
  2008       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2009     } else if (opr2->is_double_stack()) {
  2010       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2011       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2012     } else {
  2013       ShouldNotReachHere();
  2016   } else {
  2017     Label skip;
  2018     __ jcc (acond, skip);
  2019     if (opr2->is_cpu_register()) {
  2020       reg2reg(opr2, result);
  2021     } else if (opr2->is_stack()) {
  2022       stack2reg(opr2, result, result->type());
  2023     } else if (opr2->is_constant()) {
  2024       const2reg(opr2, result, lir_patch_none, NULL);
  2025     } else {
  2026       ShouldNotReachHere();
  2028     __ bind(skip);
  2033 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2034   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2036   if (left->is_single_cpu()) {
  2037     assert(left == dest, "left and dest must be equal");
  2038     Register lreg = left->as_register();
  2040     if (right->is_single_cpu()) {
  2041       // cpu register - cpu register
  2042       Register rreg = right->as_register();
  2043       switch (code) {
  2044         case lir_add: __ addl (lreg, rreg); break;
  2045         case lir_sub: __ subl (lreg, rreg); break;
  2046         case lir_mul: __ imull(lreg, rreg); break;
  2047         default:      ShouldNotReachHere();
  2050     } else if (right->is_stack()) {
  2051       // cpu register - stack
  2052       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2053       switch (code) {
  2054         case lir_add: __ addl(lreg, raddr); break;
  2055         case lir_sub: __ subl(lreg, raddr); break;
  2056         default:      ShouldNotReachHere();
  2059     } else if (right->is_constant()) {
  2060       // cpu register - constant
  2061       jint c = right->as_constant_ptr()->as_jint();
  2062       switch (code) {
  2063         case lir_add: {
  2064           __ incrementl(lreg, c);
  2065           break;
  2067         case lir_sub: {
  2068           __ decrementl(lreg, c);
  2069           break;
  2071         default: ShouldNotReachHere();
  2074     } else {
  2075       ShouldNotReachHere();
  2078   } else if (left->is_double_cpu()) {
  2079     assert(left == dest, "left and dest must be equal");
  2080     Register lreg_lo = left->as_register_lo();
  2081     Register lreg_hi = left->as_register_hi();
  2083     if (right->is_double_cpu()) {
  2084       // cpu register - cpu register
  2085       Register rreg_lo = right->as_register_lo();
  2086       Register rreg_hi = right->as_register_hi();
  2087       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2088       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2089       switch (code) {
  2090         case lir_add:
  2091           __ addptr(lreg_lo, rreg_lo);
  2092           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2093           break;
  2094         case lir_sub:
  2095           __ subptr(lreg_lo, rreg_lo);
  2096           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2097           break;
  2098         case lir_mul:
  2099 #ifdef _LP64
  2100           __ imulq(lreg_lo, rreg_lo);
  2101 #else
  2102           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2103           __ imull(lreg_hi, rreg_lo);
  2104           __ imull(rreg_hi, lreg_lo);
  2105           __ addl (rreg_hi, lreg_hi);
  2106           __ mull (rreg_lo);
  2107           __ addl (lreg_hi, rreg_hi);
  2108 #endif // _LP64
  2109           break;
  2110         default:
  2111           ShouldNotReachHere();
  2114     } else if (right->is_constant()) {
  2115       // cpu register - constant
  2116 #ifdef _LP64
  2117       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2118       __ movptr(r10, (intptr_t) c);
  2119       switch (code) {
  2120         case lir_add:
  2121           __ addptr(lreg_lo, r10);
  2122           break;
  2123         case lir_sub:
  2124           __ subptr(lreg_lo, r10);
  2125           break;
  2126         default:
  2127           ShouldNotReachHere();
  2129 #else
  2130       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2131       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2132       switch (code) {
  2133         case lir_add:
  2134           __ addptr(lreg_lo, c_lo);
  2135           __ adcl(lreg_hi, c_hi);
  2136           break;
  2137         case lir_sub:
  2138           __ subptr(lreg_lo, c_lo);
  2139           __ sbbl(lreg_hi, c_hi);
  2140           break;
  2141         default:
  2142           ShouldNotReachHere();
  2144 #endif // _LP64
  2146     } else {
  2147       ShouldNotReachHere();
  2150   } else if (left->is_single_xmm()) {
  2151     assert(left == dest, "left and dest must be equal");
  2152     XMMRegister lreg = left->as_xmm_float_reg();
  2154     if (right->is_single_xmm()) {
  2155       XMMRegister rreg = right->as_xmm_float_reg();
  2156       switch (code) {
  2157         case lir_add: __ addss(lreg, rreg);  break;
  2158         case lir_sub: __ subss(lreg, rreg);  break;
  2159         case lir_mul_strictfp: // fall through
  2160         case lir_mul: __ mulss(lreg, rreg);  break;
  2161         case lir_div_strictfp: // fall through
  2162         case lir_div: __ divss(lreg, rreg);  break;
  2163         default: ShouldNotReachHere();
  2165     } else {
  2166       Address raddr;
  2167       if (right->is_single_stack()) {
  2168         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2169       } else if (right->is_constant()) {
  2170         // hack for now
  2171         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2172       } else {
  2173         ShouldNotReachHere();
  2175       switch (code) {
  2176         case lir_add: __ addss(lreg, raddr);  break;
  2177         case lir_sub: __ subss(lreg, raddr);  break;
  2178         case lir_mul_strictfp: // fall through
  2179         case lir_mul: __ mulss(lreg, raddr);  break;
  2180         case lir_div_strictfp: // fall through
  2181         case lir_div: __ divss(lreg, raddr);  break;
  2182         default: ShouldNotReachHere();
  2186   } else if (left->is_double_xmm()) {
  2187     assert(left == dest, "left and dest must be equal");
  2189     XMMRegister lreg = left->as_xmm_double_reg();
  2190     if (right->is_double_xmm()) {
  2191       XMMRegister rreg = right->as_xmm_double_reg();
  2192       switch (code) {
  2193         case lir_add: __ addsd(lreg, rreg);  break;
  2194         case lir_sub: __ subsd(lreg, rreg);  break;
  2195         case lir_mul_strictfp: // fall through
  2196         case lir_mul: __ mulsd(lreg, rreg);  break;
  2197         case lir_div_strictfp: // fall through
  2198         case lir_div: __ divsd(lreg, rreg);  break;
  2199         default: ShouldNotReachHere();
  2201     } else {
  2202       Address raddr;
  2203       if (right->is_double_stack()) {
  2204         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2205       } else if (right->is_constant()) {
  2206         // hack for now
  2207         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2208       } else {
  2209         ShouldNotReachHere();
  2211       switch (code) {
  2212         case lir_add: __ addsd(lreg, raddr);  break;
  2213         case lir_sub: __ subsd(lreg, raddr);  break;
  2214         case lir_mul_strictfp: // fall through
  2215         case lir_mul: __ mulsd(lreg, raddr);  break;
  2216         case lir_div_strictfp: // fall through
  2217         case lir_div: __ divsd(lreg, raddr);  break;
  2218         default: ShouldNotReachHere();
  2222   } else if (left->is_single_fpu()) {
  2223     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2225     if (right->is_single_fpu()) {
  2226       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2228     } else {
  2229       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2230       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2232       Address raddr;
  2233       if (right->is_single_stack()) {
  2234         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2235       } else if (right->is_constant()) {
  2236         address const_addr = float_constant(right->as_jfloat());
  2237         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2238         // hack for now
  2239         raddr = __ as_Address(InternalAddress(const_addr));
  2240       } else {
  2241         ShouldNotReachHere();
  2244       switch (code) {
  2245         case lir_add: __ fadd_s(raddr); break;
  2246         case lir_sub: __ fsub_s(raddr); break;
  2247         case lir_mul_strictfp: // fall through
  2248         case lir_mul: __ fmul_s(raddr); break;
  2249         case lir_div_strictfp: // fall through
  2250         case lir_div: __ fdiv_s(raddr); break;
  2251         default:      ShouldNotReachHere();
  2255   } else if (left->is_double_fpu()) {
  2256     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2258     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2259       // Double values require special handling for strictfp mul/div on x86
  2260       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2261       __ fmulp(left->fpu_regnrLo() + 1);
  2264     if (right->is_double_fpu()) {
  2265       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2267     } else {
  2268       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2269       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2271       Address raddr;
  2272       if (right->is_double_stack()) {
  2273         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2274       } else if (right->is_constant()) {
  2275         // hack for now
  2276         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2277       } else {
  2278         ShouldNotReachHere();
  2281       switch (code) {
  2282         case lir_add: __ fadd_d(raddr); break;
  2283         case lir_sub: __ fsub_d(raddr); break;
  2284         case lir_mul_strictfp: // fall through
  2285         case lir_mul: __ fmul_d(raddr); break;
  2286         case lir_div_strictfp: // fall through
  2287         case lir_div: __ fdiv_d(raddr); break;
  2288         default: ShouldNotReachHere();
  2292     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2293       // Double values require special handling for strictfp mul/div on x86
  2294       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2295       __ fmulp(dest->fpu_regnrLo() + 1);
  2298   } else if (left->is_single_stack() || left->is_address()) {
  2299     assert(left == dest, "left and dest must be equal");
  2301     Address laddr;
  2302     if (left->is_single_stack()) {
  2303       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2304     } else if (left->is_address()) {
  2305       laddr = as_Address(left->as_address_ptr());
  2306     } else {
  2307       ShouldNotReachHere();
  2310     if (right->is_single_cpu()) {
  2311       Register rreg = right->as_register();
  2312       switch (code) {
  2313         case lir_add: __ addl(laddr, rreg); break;
  2314         case lir_sub: __ subl(laddr, rreg); break;
  2315         default:      ShouldNotReachHere();
  2317     } else if (right->is_constant()) {
  2318       jint c = right->as_constant_ptr()->as_jint();
  2319       switch (code) {
  2320         case lir_add: {
  2321           __ incrementl(laddr, c);
  2322           break;
  2324         case lir_sub: {
  2325           __ decrementl(laddr, c);
  2326           break;
  2328         default: ShouldNotReachHere();
  2330     } else {
  2331       ShouldNotReachHere();
  2334   } else {
  2335     ShouldNotReachHere();
  2339 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2340   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2341   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2342   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2344   bool left_is_tos = (left_index == 0);
  2345   bool dest_is_tos = (dest_index == 0);
  2346   int non_tos_index = (left_is_tos ? right_index : left_index);
  2348   switch (code) {
  2349     case lir_add:
  2350       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2351       else if (dest_is_tos)    __ fadd (non_tos_index);
  2352       else                     __ fadda(non_tos_index);
  2353       break;
  2355     case lir_sub:
  2356       if (left_is_tos) {
  2357         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2358         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2359         else                   __ fsubra(non_tos_index);
  2360       } else {
  2361         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2362         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2363         else                   __ fsuba (non_tos_index);
  2365       break;
  2367     case lir_mul_strictfp: // fall through
  2368     case lir_mul:
  2369       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2370       else if (dest_is_tos)    __ fmul (non_tos_index);
  2371       else                     __ fmula(non_tos_index);
  2372       break;
  2374     case lir_div_strictfp: // fall through
  2375     case lir_div:
  2376       if (left_is_tos) {
  2377         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2378         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2379         else                   __ fdivra(non_tos_index);
  2380       } else {
  2381         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2382         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2383         else                   __ fdiva (non_tos_index);
  2385       break;
  2387     case lir_rem:
  2388       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2389       __ fremr(noreg);
  2390       break;
  2392     default:
  2393       ShouldNotReachHere();
  2398 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2399   if (value->is_double_xmm()) {
  2400     switch(code) {
  2401       case lir_abs :
  2403           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2404             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2406           __ andpd(dest->as_xmm_double_reg(),
  2407                     ExternalAddress((address)double_signmask_pool));
  2409         break;
  2411       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2412       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2413       default      : ShouldNotReachHere();
  2416   } else if (value->is_double_fpu()) {
  2417     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2418     switch(code) {
  2419       case lir_log   : __ flog() ; break;
  2420       case lir_log10 : __ flog10() ; break;
  2421       case lir_abs   : __ fabs() ; break;
  2422       case lir_sqrt  : __ fsqrt(); break;
  2423       case lir_sin   :
  2424         // Should consider not saving rbx, if not necessary
  2425         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2426         break;
  2427       case lir_cos :
  2428         // Should consider not saving rbx, if not necessary
  2429         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2430         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2431         break;
  2432       case lir_tan :
  2433         // Should consider not saving rbx, if not necessary
  2434         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2435         break;
  2436       default      : ShouldNotReachHere();
  2438   } else {
  2439     Unimplemented();
  2443 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2444   // assert(left->destroys_register(), "check");
  2445   if (left->is_single_cpu()) {
  2446     Register reg = left->as_register();
  2447     if (right->is_constant()) {
  2448       int val = right->as_constant_ptr()->as_jint();
  2449       switch (code) {
  2450         case lir_logic_and: __ andl (reg, val); break;
  2451         case lir_logic_or:  __ orl  (reg, val); break;
  2452         case lir_logic_xor: __ xorl (reg, val); break;
  2453         default: ShouldNotReachHere();
  2455     } else if (right->is_stack()) {
  2456       // added support for stack operands
  2457       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2458       switch (code) {
  2459         case lir_logic_and: __ andl (reg, raddr); break;
  2460         case lir_logic_or:  __ orl  (reg, raddr); break;
  2461         case lir_logic_xor: __ xorl (reg, raddr); break;
  2462         default: ShouldNotReachHere();
  2464     } else {
  2465       Register rright = right->as_register();
  2466       switch (code) {
  2467         case lir_logic_and: __ andptr (reg, rright); break;
  2468         case lir_logic_or : __ orptr  (reg, rright); break;
  2469         case lir_logic_xor: __ xorptr (reg, rright); break;
  2470         default: ShouldNotReachHere();
  2473     move_regs(reg, dst->as_register());
  2474   } else {
  2475     Register l_lo = left->as_register_lo();
  2476     Register l_hi = left->as_register_hi();
  2477     if (right->is_constant()) {
  2478 #ifdef _LP64
  2479       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2480       switch (code) {
  2481         case lir_logic_and:
  2482           __ andq(l_lo, rscratch1);
  2483           break;
  2484         case lir_logic_or:
  2485           __ orq(l_lo, rscratch1);
  2486           break;
  2487         case lir_logic_xor:
  2488           __ xorq(l_lo, rscratch1);
  2489           break;
  2490         default: ShouldNotReachHere();
  2492 #else
  2493       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2494       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2495       switch (code) {
  2496         case lir_logic_and:
  2497           __ andl(l_lo, r_lo);
  2498           __ andl(l_hi, r_hi);
  2499           break;
  2500         case lir_logic_or:
  2501           __ orl(l_lo, r_lo);
  2502           __ orl(l_hi, r_hi);
  2503           break;
  2504         case lir_logic_xor:
  2505           __ xorl(l_lo, r_lo);
  2506           __ xorl(l_hi, r_hi);
  2507           break;
  2508         default: ShouldNotReachHere();
  2510 #endif // _LP64
  2511     } else {
  2512 #ifdef _LP64
  2513       Register r_lo;
  2514       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2515         r_lo = right->as_register();
  2516       } else {
  2517         r_lo = right->as_register_lo();
  2519 #else
  2520       Register r_lo = right->as_register_lo();
  2521       Register r_hi = right->as_register_hi();
  2522       assert(l_lo != r_hi, "overwriting registers");
  2523 #endif
  2524       switch (code) {
  2525         case lir_logic_and:
  2526           __ andptr(l_lo, r_lo);
  2527           NOT_LP64(__ andptr(l_hi, r_hi);)
  2528           break;
  2529         case lir_logic_or:
  2530           __ orptr(l_lo, r_lo);
  2531           NOT_LP64(__ orptr(l_hi, r_hi);)
  2532           break;
  2533         case lir_logic_xor:
  2534           __ xorptr(l_lo, r_lo);
  2535           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2536           break;
  2537         default: ShouldNotReachHere();
  2541     Register dst_lo = dst->as_register_lo();
  2542     Register dst_hi = dst->as_register_hi();
  2544 #ifdef _LP64
  2545     move_regs(l_lo, dst_lo);
  2546 #else
  2547     if (dst_lo == l_hi) {
  2548       assert(dst_hi != l_lo, "overwriting registers");
  2549       move_regs(l_hi, dst_hi);
  2550       move_regs(l_lo, dst_lo);
  2551     } else {
  2552       assert(dst_lo != l_hi, "overwriting registers");
  2553       move_regs(l_lo, dst_lo);
  2554       move_regs(l_hi, dst_hi);
  2556 #endif // _LP64
  2561 // we assume that rax, and rdx can be overwritten
  2562 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2564   assert(left->is_single_cpu(),   "left must be register");
  2565   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2566   assert(result->is_single_cpu(), "result must be register");
  2568   //  assert(left->destroys_register(), "check");
  2569   //  assert(right->destroys_register(), "check");
  2571   Register lreg = left->as_register();
  2572   Register dreg = result->as_register();
  2574   if (right->is_constant()) {
  2575     int divisor = right->as_constant_ptr()->as_jint();
  2576     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2577     if (code == lir_idiv) {
  2578       assert(lreg == rax, "must be rax,");
  2579       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2580       __ cdql(); // sign extend into rdx:rax
  2581       if (divisor == 2) {
  2582         __ subl(lreg, rdx);
  2583       } else {
  2584         __ andl(rdx, divisor - 1);
  2585         __ addl(lreg, rdx);
  2587       __ sarl(lreg, log2_intptr(divisor));
  2588       move_regs(lreg, dreg);
  2589     } else if (code == lir_irem) {
  2590       Label done;
  2591       __ mov(dreg, lreg);
  2592       __ andl(dreg, 0x80000000 | (divisor - 1));
  2593       __ jcc(Assembler::positive, done);
  2594       __ decrement(dreg);
  2595       __ orl(dreg, ~(divisor - 1));
  2596       __ increment(dreg);
  2597       __ bind(done);
  2598     } else {
  2599       ShouldNotReachHere();
  2601   } else {
  2602     Register rreg = right->as_register();
  2603     assert(lreg == rax, "left register must be rax,");
  2604     assert(rreg != rdx, "right register must not be rdx");
  2605     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2607     move_regs(lreg, rax);
  2609     int idivl_offset = __ corrected_idivl(rreg);
  2610     add_debug_info_for_div0(idivl_offset, info);
  2611     if (code == lir_irem) {
  2612       move_regs(rdx, dreg); // result is in rdx
  2613     } else {
  2614       move_regs(rax, dreg);
  2620 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2621   if (opr1->is_single_cpu()) {
  2622     Register reg1 = opr1->as_register();
  2623     if (opr2->is_single_cpu()) {
  2624       // cpu register - cpu register
  2625       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2626         __ cmpptr(reg1, opr2->as_register());
  2627       } else {
  2628         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2629         __ cmpl(reg1, opr2->as_register());
  2631     } else if (opr2->is_stack()) {
  2632       // cpu register - stack
  2633       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2634         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2635       } else {
  2636         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2638     } else if (opr2->is_constant()) {
  2639       // cpu register - constant
  2640       LIR_Const* c = opr2->as_constant_ptr();
  2641       if (c->type() == T_INT) {
  2642         __ cmpl(reg1, c->as_jint());
  2643       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2644         // In 64bit oops are single register
  2645         jobject o = c->as_jobject();
  2646         if (o == NULL) {
  2647           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2648         } else {
  2649 #ifdef _LP64
  2650           __ movoop(rscratch1, o);
  2651           __ cmpptr(reg1, rscratch1);
  2652 #else
  2653           __ cmpoop(reg1, c->as_jobject());
  2654 #endif // _LP64
  2656       } else {
  2657         ShouldNotReachHere();
  2659       // cpu register - address
  2660     } else if (opr2->is_address()) {
  2661       if (op->info() != NULL) {
  2662         add_debug_info_for_null_check_here(op->info());
  2664       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2665     } else {
  2666       ShouldNotReachHere();
  2669   } else if(opr1->is_double_cpu()) {
  2670     Register xlo = opr1->as_register_lo();
  2671     Register xhi = opr1->as_register_hi();
  2672     if (opr2->is_double_cpu()) {
  2673 #ifdef _LP64
  2674       __ cmpptr(xlo, opr2->as_register_lo());
  2675 #else
  2676       // cpu register - cpu register
  2677       Register ylo = opr2->as_register_lo();
  2678       Register yhi = opr2->as_register_hi();
  2679       __ subl(xlo, ylo);
  2680       __ sbbl(xhi, yhi);
  2681       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2682         __ orl(xhi, xlo);
  2684 #endif // _LP64
  2685     } else if (opr2->is_constant()) {
  2686       // cpu register - constant 0
  2687       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2688 #ifdef _LP64
  2689       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2690 #else
  2691       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2692       __ orl(xhi, xlo);
  2693 #endif // _LP64
  2694     } else {
  2695       ShouldNotReachHere();
  2698   } else if (opr1->is_single_xmm()) {
  2699     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2700     if (opr2->is_single_xmm()) {
  2701       // xmm register - xmm register
  2702       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2703     } else if (opr2->is_stack()) {
  2704       // xmm register - stack
  2705       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2706     } else if (opr2->is_constant()) {
  2707       // xmm register - constant
  2708       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2709     } else if (opr2->is_address()) {
  2710       // xmm register - address
  2711       if (op->info() != NULL) {
  2712         add_debug_info_for_null_check_here(op->info());
  2714       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2715     } else {
  2716       ShouldNotReachHere();
  2719   } else if (opr1->is_double_xmm()) {
  2720     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2721     if (opr2->is_double_xmm()) {
  2722       // xmm register - xmm register
  2723       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2724     } else if (opr2->is_stack()) {
  2725       // xmm register - stack
  2726       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2727     } else if (opr2->is_constant()) {
  2728       // xmm register - constant
  2729       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2730     } else if (opr2->is_address()) {
  2731       // xmm register - address
  2732       if (op->info() != NULL) {
  2733         add_debug_info_for_null_check_here(op->info());
  2735       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2736     } else {
  2737       ShouldNotReachHere();
  2740   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2741     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2742     assert(opr2->is_fpu_register(), "both must be registers");
  2743     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2745   } else if (opr1->is_address() && opr2->is_constant()) {
  2746     LIR_Const* c = opr2->as_constant_ptr();
  2747 #ifdef _LP64
  2748     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2749       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2750       __ movoop(rscratch1, c->as_jobject());
  2752 #endif // LP64
  2753     if (op->info() != NULL) {
  2754       add_debug_info_for_null_check_here(op->info());
  2756     // special case: address - constant
  2757     LIR_Address* addr = opr1->as_address_ptr();
  2758     if (c->type() == T_INT) {
  2759       __ cmpl(as_Address(addr), c->as_jint());
  2760     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2761 #ifdef _LP64
  2762       // %%% Make this explode if addr isn't reachable until we figure out a
  2763       // better strategy by giving noreg as the temp for as_Address
  2764       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2765 #else
  2766       __ cmpoop(as_Address(addr), c->as_jobject());
  2767 #endif // _LP64
  2768     } else {
  2769       ShouldNotReachHere();
  2772   } else {
  2773     ShouldNotReachHere();
  2777 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2778   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2779     if (left->is_single_xmm()) {
  2780       assert(right->is_single_xmm(), "must match");
  2781       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2782     } else if (left->is_double_xmm()) {
  2783       assert(right->is_double_xmm(), "must match");
  2784       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2786     } else {
  2787       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2788       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2790       assert(left->fpu() == 0, "left must be on TOS");
  2791       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2792                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2794   } else {
  2795     assert(code == lir_cmp_l2i, "check");
  2796 #ifdef _LP64
  2797     Label done;
  2798     Register dest = dst->as_register();
  2799     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2800     __ movl(dest, -1);
  2801     __ jccb(Assembler::less, done);
  2802     __ set_byte_if_not_zero(dest);
  2803     __ movzbl(dest, dest);
  2804     __ bind(done);
  2805 #else
  2806     __ lcmp2int(left->as_register_hi(),
  2807                 left->as_register_lo(),
  2808                 right->as_register_hi(),
  2809                 right->as_register_lo());
  2810     move_regs(left->as_register_hi(), dst->as_register());
  2811 #endif // _LP64
  2816 void LIR_Assembler::align_call(LIR_Code code) {
  2817   if (os::is_MP()) {
  2818     // make sure that the displacement word of the call ends up word aligned
  2819     int offset = __ offset();
  2820     switch (code) {
  2821       case lir_static_call:
  2822       case lir_optvirtual_call:
  2823       case lir_dynamic_call:
  2824         offset += NativeCall::displacement_offset;
  2825         break;
  2826       case lir_icvirtual_call:
  2827         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2828       break;
  2829       case lir_virtual_call:  // currently, sparc-specific for niagara
  2830       default: ShouldNotReachHere();
  2832     while (offset++ % BytesPerWord != 0) {
  2833       __ nop();
  2839 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2840   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2841          "must be aligned");
  2842   __ call(AddressLiteral(op->addr(), rtype));
  2843   add_call_info(code_offset(), op->info());
  2847 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2848   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2849   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2850   assert(!os::is_MP() ||
  2851          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2852          "must be aligned");
  2853   __ call(AddressLiteral(op->addr(), rh));
  2854   add_call_info(code_offset(), op->info());
  2858 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2859 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2860   ShouldNotReachHere();
  2864 void LIR_Assembler::emit_static_call_stub() {
  2865   address call_pc = __ pc();
  2866   address stub = __ start_a_stub(call_stub_size);
  2867   if (stub == NULL) {
  2868     bailout("static call stub overflow");
  2869     return;
  2872   int start = __ offset();
  2873   if (os::is_MP()) {
  2874     // make sure that the displacement word of the call ends up word aligned
  2875     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2876     while (offset++ % BytesPerWord != 0) {
  2877       __ nop();
  2880   __ relocate(static_stub_Relocation::spec(call_pc));
  2881   __ movoop(rbx, (jobject)NULL);
  2882   // must be set to -1 at code generation time
  2883   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2884   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2885   __ jump(RuntimeAddress(__ pc()));
  2887   assert(__ offset() - start <= call_stub_size, "stub too big");
  2888   __ end_a_stub();
  2892 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2893   assert(exceptionOop->as_register() == rax, "must match");
  2894   assert(exceptionPC->as_register() == rdx, "must match");
  2896   // exception object is not added to oop map by LinearScan
  2897   // (LinearScan assumes that no oops are in fixed registers)
  2898   info->add_register_oop(exceptionOop);
  2899   Runtime1::StubID unwind_id;
  2901   // get current pc information
  2902   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2903   int pc_for_athrow_offset = __ offset();
  2904   InternalAddress pc_for_athrow(__ pc());
  2905   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2906   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2908   __ verify_not_null_oop(rax);
  2909   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2910   if (compilation()->has_fpu_code()) {
  2911     unwind_id = Runtime1::handle_exception_id;
  2912   } else {
  2913     unwind_id = Runtime1::handle_exception_nofpu_id;
  2915   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2917   // enough room for two byte trap
  2918   __ nop();
  2922 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2923   assert(exceptionOop->as_register() == rax, "must match");
  2925   __ jmp(_unwind_handler_entry);
  2929 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2931   // optimized version for linear scan:
  2932   // * count must be already in ECX (guaranteed by LinearScan)
  2933   // * left and dest must be equal
  2934   // * tmp must be unused
  2935   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2936   assert(left == dest, "left and dest must be equal");
  2937   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2939   if (left->is_single_cpu()) {
  2940     Register value = left->as_register();
  2941     assert(value != SHIFT_count, "left cannot be ECX");
  2943     switch (code) {
  2944       case lir_shl:  __ shll(value); break;
  2945       case lir_shr:  __ sarl(value); break;
  2946       case lir_ushr: __ shrl(value); break;
  2947       default: ShouldNotReachHere();
  2949   } else if (left->is_double_cpu()) {
  2950     Register lo = left->as_register_lo();
  2951     Register hi = left->as_register_hi();
  2952     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2953 #ifdef _LP64
  2954     switch (code) {
  2955       case lir_shl:  __ shlptr(lo);        break;
  2956       case lir_shr:  __ sarptr(lo);        break;
  2957       case lir_ushr: __ shrptr(lo);        break;
  2958       default: ShouldNotReachHere();
  2960 #else
  2962     switch (code) {
  2963       case lir_shl:  __ lshl(hi, lo);        break;
  2964       case lir_shr:  __ lshr(hi, lo, true);  break;
  2965       case lir_ushr: __ lshr(hi, lo, false); break;
  2966       default: ShouldNotReachHere();
  2968 #endif // LP64
  2969   } else {
  2970     ShouldNotReachHere();
  2975 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2976   if (dest->is_single_cpu()) {
  2977     // first move left into dest so that left is not destroyed by the shift
  2978     Register value = dest->as_register();
  2979     count = count & 0x1F; // Java spec
  2981     move_regs(left->as_register(), value);
  2982     switch (code) {
  2983       case lir_shl:  __ shll(value, count); break;
  2984       case lir_shr:  __ sarl(value, count); break;
  2985       case lir_ushr: __ shrl(value, count); break;
  2986       default: ShouldNotReachHere();
  2988   } else if (dest->is_double_cpu()) {
  2989 #ifndef _LP64
  2990     Unimplemented();
  2991 #else
  2992     // first move left into dest so that left is not destroyed by the shift
  2993     Register value = dest->as_register_lo();
  2994     count = count & 0x1F; // Java spec
  2996     move_regs(left->as_register_lo(), value);
  2997     switch (code) {
  2998       case lir_shl:  __ shlptr(value, count); break;
  2999       case lir_shr:  __ sarptr(value, count); break;
  3000       case lir_ushr: __ shrptr(value, count); break;
  3001       default: ShouldNotReachHere();
  3003 #endif // _LP64
  3004   } else {
  3005     ShouldNotReachHere();
  3010 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3011   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3012   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3013   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3014   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3018 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3019   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3020   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3021   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3022   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3026 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3027   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3028   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3029   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3030   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3034 // This code replaces a call to arraycopy; no exception may
  3035 // be thrown in this code, they must be thrown in the System.arraycopy
  3036 // activation frame; we could save some checks if this would not be the case
  3037 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3038   ciArrayKlass* default_type = op->expected_type();
  3039   Register src = op->src()->as_register();
  3040   Register dst = op->dst()->as_register();
  3041   Register src_pos = op->src_pos()->as_register();
  3042   Register dst_pos = op->dst_pos()->as_register();
  3043   Register length  = op->length()->as_register();
  3044   Register tmp = op->tmp()->as_register();
  3046   CodeStub* stub = op->stub();
  3047   int flags = op->flags();
  3048   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3049   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3051   // if we don't know anything, just go through the generic arraycopy
  3052   if (default_type == NULL) {
  3053     Label done;
  3054     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3055     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3056     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3057     // For the moment until C1 gets the new register allocator I just force all the
  3058     // args to the right place (except the register args) and then on the back side
  3059     // reload the register args properly if we go slow path. Yuck
  3061     // These are proper for the calling convention
  3062     store_parameter(length, 2);
  3063     store_parameter(dst_pos, 1);
  3064     store_parameter(dst, 0);
  3066     // these are just temporary placements until we need to reload
  3067     store_parameter(src_pos, 3);
  3068     store_parameter(src, 4);
  3069     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3071     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3073     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3075     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3076 #ifdef _LP64
  3077     // The arguments are in java calling convention so we can trivially shift them to C
  3078     // convention
  3079     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3080     __ mov(c_rarg0, j_rarg0);
  3081     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3082     __ mov(c_rarg1, j_rarg1);
  3083     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3084     __ mov(c_rarg2, j_rarg2);
  3085     assert_different_registers(c_rarg3, j_rarg4);
  3086     __ mov(c_rarg3, j_rarg3);
  3087 #ifdef _WIN64
  3088     // Allocate abi space for args but be sure to keep stack aligned
  3089     __ subptr(rsp, 6*wordSize);
  3090     store_parameter(j_rarg4, 4);
  3091     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3092       __ call(RuntimeAddress(C_entry));
  3093     } else {
  3094 #ifndef PRODUCT
  3095       if (PrintC1Statistics) {
  3096         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3098 #endif
  3099       __ call(RuntimeAddress(copyfunc_addr));
  3101     __ addptr(rsp, 6*wordSize);
  3102 #else
  3103     __ mov(c_rarg4, j_rarg4);
  3104     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3105       __ call(RuntimeAddress(C_entry));
  3106     } else {
  3107 #ifndef PRODUCT
  3108       if (PrintC1Statistics) {
  3109         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3111 #endif
  3112       __ call(RuntimeAddress(copyfunc_addr));
  3114 #endif // _WIN64
  3115 #else
  3116     __ push(length);
  3117     __ push(dst_pos);
  3118     __ push(dst);
  3119     __ push(src_pos);
  3120     __ push(src);
  3122     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3123       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3124     } else {
  3125 #ifndef PRODUCT
  3126       if (PrintC1Statistics) {
  3127         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3129 #endif
  3130       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3133 #endif // _LP64
  3135     __ cmpl(rax, 0);
  3136     __ jcc(Assembler::equal, *stub->continuation());
  3138     if (copyfunc_addr != NULL) {
  3139       __ mov(tmp, rax);
  3140       __ xorl(tmp, -1);
  3143     // Reload values from the stack so they are where the stub
  3144     // expects them.
  3145     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3146     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3147     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3148     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3149     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3151     if (copyfunc_addr != NULL) {
  3152       __ subl(length, tmp);
  3153       __ addl(src_pos, tmp);
  3154       __ addl(dst_pos, tmp);
  3156     __ jmp(*stub->entry());
  3158     __ bind(*stub->continuation());
  3159     return;
  3162   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3164   int elem_size = type2aelembytes(basic_type);
  3165   int shift_amount;
  3166   Address::ScaleFactor scale;
  3168   switch (elem_size) {
  3169     case 1 :
  3170       shift_amount = 0;
  3171       scale = Address::times_1;
  3172       break;
  3173     case 2 :
  3174       shift_amount = 1;
  3175       scale = Address::times_2;
  3176       break;
  3177     case 4 :
  3178       shift_amount = 2;
  3179       scale = Address::times_4;
  3180       break;
  3181     case 8 :
  3182       shift_amount = 3;
  3183       scale = Address::times_8;
  3184       break;
  3185     default:
  3186       ShouldNotReachHere();
  3189   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3190   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3191   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3192   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3194   // length and pos's are all sign extended at this point on 64bit
  3196   // test for NULL
  3197   if (flags & LIR_OpArrayCopy::src_null_check) {
  3198     __ testptr(src, src);
  3199     __ jcc(Assembler::zero, *stub->entry());
  3201   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3202     __ testptr(dst, dst);
  3203     __ jcc(Assembler::zero, *stub->entry());
  3206   // check if negative
  3207   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3208     __ testl(src_pos, src_pos);
  3209     __ jcc(Assembler::less, *stub->entry());
  3211   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3212     __ testl(dst_pos, dst_pos);
  3213     __ jcc(Assembler::less, *stub->entry());
  3216   if (flags & LIR_OpArrayCopy::src_range_check) {
  3217     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3218     __ cmpl(tmp, src_length_addr);
  3219     __ jcc(Assembler::above, *stub->entry());
  3221   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3222     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3223     __ cmpl(tmp, dst_length_addr);
  3224     __ jcc(Assembler::above, *stub->entry());
  3227   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3228     __ testl(length, length);
  3229     __ jcc(Assembler::less, *stub->entry());
  3230     __ jcc(Assembler::zero, *stub->continuation());
  3233 #ifdef _LP64
  3234   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3235   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3236 #endif
  3238   if (flags & LIR_OpArrayCopy::type_check) {
  3239     // We don't know the array types are compatible
  3240     if (basic_type != T_OBJECT) {
  3241       // Simple test for basic type arrays
  3242       if (UseCompressedOops) {
  3243         __ movl(tmp, src_klass_addr);
  3244         __ cmpl(tmp, dst_klass_addr);
  3245       } else {
  3246         __ movptr(tmp, src_klass_addr);
  3247         __ cmpptr(tmp, dst_klass_addr);
  3249       __ jcc(Assembler::notEqual, *stub->entry());
  3250     } else {
  3251       // For object arrays, if src is a sub class of dst then we can
  3252       // safely do the copy.
  3253       Label cont, slow;
  3255       __ push(src);
  3256       __ push(dst);
  3258       __ load_klass(src, src);
  3259       __ load_klass(dst, dst);
  3261       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3263       __ push(src);
  3264       __ push(dst);
  3265       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3266       __ pop(dst);
  3267       __ pop(src);
  3269       __ cmpl(src, 0);
  3270       __ jcc(Assembler::notEqual, cont);
  3272       __ bind(slow);
  3273       __ pop(dst);
  3274       __ pop(src);
  3276       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3277       if (copyfunc_addr != NULL) { // use stub if available
  3278         // src is not a sub class of dst so we have to do a
  3279         // per-element check.
  3281         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3282         if ((flags & mask) != mask) {
  3283           // Check that at least both of them object arrays.
  3284           assert(flags & mask, "one of the two should be known to be an object array");
  3286           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3287             __ load_klass(tmp, src);
  3288           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3289             __ load_klass(tmp, dst);
  3291           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3292           Address klass_lh_addr(tmp, lh_offset);
  3293           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3294           __ cmpl(klass_lh_addr, objArray_lh);
  3295           __ jcc(Assembler::notEqual, *stub->entry());
  3298        // Spill because stubs can use any register they like and it's
  3299        // easier to restore just those that we care about.
  3300        store_parameter(dst, 0);
  3301        store_parameter(dst_pos, 1);
  3302        store_parameter(length, 2);
  3303        store_parameter(src_pos, 3);
  3304        store_parameter(src, 4);
  3306 #ifndef _LP64
  3307         __ movptr(tmp, dst_klass_addr);
  3308         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
  3309         __ push(tmp);
  3310         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3311         __ push(tmp);
  3312         __ push(length);
  3313         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3314         __ push(tmp);
  3315         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3316         __ push(tmp);
  3318         __ call_VM_leaf(copyfunc_addr, 5);
  3319 #else
  3320         __ movl2ptr(length, length); //higher 32bits must be null
  3322         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3323         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3324         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3325         assert_different_registers(c_rarg1, dst, length);
  3327         __ mov(c_rarg2, length);
  3328         assert_different_registers(c_rarg2, dst);
  3330 #ifdef _WIN64
  3331         // Allocate abi space for args but be sure to keep stack aligned
  3332         __ subptr(rsp, 6*wordSize);
  3333         __ load_klass(c_rarg3, dst);
  3334         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
  3335         store_parameter(c_rarg3, 4);
  3336         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3337         __ call(RuntimeAddress(copyfunc_addr));
  3338         __ addptr(rsp, 6*wordSize);
  3339 #else
  3340         __ load_klass(c_rarg4, dst);
  3341         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
  3342         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3343         __ call(RuntimeAddress(copyfunc_addr));
  3344 #endif
  3346 #endif
  3348 #ifndef PRODUCT
  3349         if (PrintC1Statistics) {
  3350           Label failed;
  3351           __ testl(rax, rax);
  3352           __ jcc(Assembler::notZero, failed);
  3353           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3354           __ bind(failed);
  3356 #endif
  3358         __ testl(rax, rax);
  3359         __ jcc(Assembler::zero, *stub->continuation());
  3361 #ifndef PRODUCT
  3362         if (PrintC1Statistics) {
  3363           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3365 #endif
  3367         __ mov(tmp, rax);
  3369         __ xorl(tmp, -1);
  3371         // Restore previously spilled arguments
  3372         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3373         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3374         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3375         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3376         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3379         __ subl(length, tmp);
  3380         __ addl(src_pos, tmp);
  3381         __ addl(dst_pos, tmp);
  3384       __ jmp(*stub->entry());
  3386       __ bind(cont);
  3387       __ pop(dst);
  3388       __ pop(src);
  3392 #ifdef ASSERT
  3393   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3394     // Sanity check the known type with the incoming class.  For the
  3395     // primitive case the types must match exactly with src.klass and
  3396     // dst.klass each exactly matching the default type.  For the
  3397     // object array case, if no type check is needed then either the
  3398     // dst type is exactly the expected type and the src type is a
  3399     // subtype which we can't check or src is the same array as dst
  3400     // but not necessarily exactly of type default_type.
  3401     Label known_ok, halt;
  3402     __ movoop(tmp, default_type->constant_encoding());
  3403 #ifdef _LP64
  3404     if (UseCompressedOops) {
  3405       __ encode_heap_oop(tmp);
  3407 #endif
  3409     if (basic_type != T_OBJECT) {
  3411       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3412       else                   __ cmpptr(tmp, dst_klass_addr);
  3413       __ jcc(Assembler::notEqual, halt);
  3414       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
  3415       else                   __ cmpptr(tmp, src_klass_addr);
  3416       __ jcc(Assembler::equal, known_ok);
  3417     } else {
  3418       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3419       else                   __ cmpptr(tmp, dst_klass_addr);
  3420       __ jcc(Assembler::equal, known_ok);
  3421       __ cmpptr(src, dst);
  3422       __ jcc(Assembler::equal, known_ok);
  3424     __ bind(halt);
  3425     __ stop("incorrect type information in arraycopy");
  3426     __ bind(known_ok);
  3428 #endif
  3430 #ifndef PRODUCT
  3431   if (PrintC1Statistics) {
  3432     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3434 #endif
  3436 #ifdef _LP64
  3437   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3438   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3439   assert_different_registers(c_rarg1, length);
  3440   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3441   __ mov(c_rarg2, length);
  3443 #else
  3444   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3445   store_parameter(tmp, 0);
  3446   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3447   store_parameter(tmp, 1);
  3448   store_parameter(length, 2);
  3449 #endif // _LP64
  3451   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3452   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3453   const char *name;
  3454   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3455   __ call_VM_leaf(entry, 0);
  3457   __ bind(*stub->continuation());
  3461 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3462   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3463   Register hdr = op->hdr_opr()->as_register();
  3464   Register lock = op->lock_opr()->as_register();
  3465   if (!UseFastLocking) {
  3466     __ jmp(*op->stub()->entry());
  3467   } else if (op->code() == lir_lock) {
  3468     Register scratch = noreg;
  3469     if (UseBiasedLocking) {
  3470       scratch = op->scratch_opr()->as_register();
  3472     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3473     // add debug info for NullPointerException only if one is possible
  3474     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3475     if (op->info() != NULL) {
  3476       add_debug_info_for_null_check(null_check_offset, op->info());
  3478     // done
  3479   } else if (op->code() == lir_unlock) {
  3480     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3481     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3482   } else {
  3483     Unimplemented();
  3485   __ bind(*op->stub()->continuation());
  3489 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3490   ciMethod* method = op->profiled_method();
  3491   int bci          = op->profiled_bci();
  3493   // Update counter for all call types
  3494   ciMethodData* md = method->method_data_or_null();
  3495   assert(md != NULL, "Sanity");
  3496   ciProfileData* data = md->bci_to_data(bci);
  3497   assert(data->is_CounterData(), "need CounterData for calls");
  3498   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3499   Register mdo  = op->mdo()->as_register();
  3500   __ movoop(mdo, md->constant_encoding());
  3501   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3502   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3503   // Perform additional virtual call profiling for invokevirtual and
  3504   // invokeinterface bytecodes
  3505   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3506       C1ProfileVirtualCalls) {
  3507     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3508     Register recv = op->recv()->as_register();
  3509     assert_different_registers(mdo, recv);
  3510     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3511     ciKlass* known_klass = op->known_holder();
  3512     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3513       // We know the type that will be seen at this call site; we can
  3514       // statically update the methodDataOop rather than needing to do
  3515       // dynamic tests on the receiver type
  3517       // NOTE: we should probably put a lock around this search to
  3518       // avoid collisions by concurrent compilations
  3519       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3520       uint i;
  3521       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3522         ciKlass* receiver = vc_data->receiver(i);
  3523         if (known_klass->equals(receiver)) {
  3524           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3525           __ addptr(data_addr, DataLayout::counter_increment);
  3526           return;
  3530       // Receiver type not found in profile data; select an empty slot
  3532       // Note that this is less efficient than it should be because it
  3533       // always does a write to the receiver part of the
  3534       // VirtualCallData rather than just the first time
  3535       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3536         ciKlass* receiver = vc_data->receiver(i);
  3537         if (receiver == NULL) {
  3538           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3539           __ movoop(recv_addr, known_klass->constant_encoding());
  3540           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3541           __ addptr(data_addr, DataLayout::counter_increment);
  3542           return;
  3545     } else {
  3546       __ load_klass(recv, recv);
  3547       Label update_done;
  3548       type_profile_helper(mdo, md, data, recv, &update_done);
  3549       // Receiver did not match any saved receiver and there is no empty row for it.
  3550       // Increment total counter to indicate polymorphic case.
  3551       __ addptr(counter_addr, DataLayout::counter_increment);
  3553       __ bind(update_done);
  3555   } else {
  3556     // Static call
  3557     __ addptr(counter_addr, DataLayout::counter_increment);
  3561 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3562   Unimplemented();
  3566 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3567   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3571 void LIR_Assembler::align_backward_branch_target() {
  3572   __ align(BytesPerWord);
  3576 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3577   if (left->is_single_cpu()) {
  3578     __ negl(left->as_register());
  3579     move_regs(left->as_register(), dest->as_register());
  3581   } else if (left->is_double_cpu()) {
  3582     Register lo = left->as_register_lo();
  3583 #ifdef _LP64
  3584     Register dst = dest->as_register_lo();
  3585     __ movptr(dst, lo);
  3586     __ negptr(dst);
  3587 #else
  3588     Register hi = left->as_register_hi();
  3589     __ lneg(hi, lo);
  3590     if (dest->as_register_lo() == hi) {
  3591       assert(dest->as_register_hi() != lo, "destroying register");
  3592       move_regs(hi, dest->as_register_hi());
  3593       move_regs(lo, dest->as_register_lo());
  3594     } else {
  3595       move_regs(lo, dest->as_register_lo());
  3596       move_regs(hi, dest->as_register_hi());
  3598 #endif // _LP64
  3600   } else if (dest->is_single_xmm()) {
  3601     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3602       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3604     __ xorps(dest->as_xmm_float_reg(),
  3605              ExternalAddress((address)float_signflip_pool));
  3607   } else if (dest->is_double_xmm()) {
  3608     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3609       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3611     __ xorpd(dest->as_xmm_double_reg(),
  3612              ExternalAddress((address)double_signflip_pool));
  3614   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3615     assert(left->fpu() == 0, "arg must be on TOS");
  3616     assert(dest->fpu() == 0, "dest must be TOS");
  3617     __ fchs();
  3619   } else {
  3620     ShouldNotReachHere();
  3625 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3626   assert(addr->is_address() && dest->is_register(), "check");
  3627   Register reg;
  3628   reg = dest->as_pointer_register();
  3629   __ lea(reg, as_Address(addr->as_address_ptr()));
  3634 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3635   assert(!tmp->is_valid(), "don't need temporary");
  3636   __ call(RuntimeAddress(dest));
  3637   if (info != NULL) {
  3638     add_call_info_here(info);
  3643 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3644   assert(type == T_LONG, "only for volatile long fields");
  3646   if (info != NULL) {
  3647     add_debug_info_for_null_check_here(info);
  3650   if (src->is_double_xmm()) {
  3651     if (dest->is_double_cpu()) {
  3652 #ifdef _LP64
  3653       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3654 #else
  3655       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3656       __ psrlq(src->as_xmm_double_reg(), 32);
  3657       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3658 #endif // _LP64
  3659     } else if (dest->is_double_stack()) {
  3660       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3661     } else if (dest->is_address()) {
  3662       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3663     } else {
  3664       ShouldNotReachHere();
  3667   } else if (dest->is_double_xmm()) {
  3668     if (src->is_double_stack()) {
  3669       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3670     } else if (src->is_address()) {
  3671       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3672     } else {
  3673       ShouldNotReachHere();
  3676   } else if (src->is_double_fpu()) {
  3677     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3678     if (dest->is_double_stack()) {
  3679       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3680     } else if (dest->is_address()) {
  3681       __ fistp_d(as_Address(dest->as_address_ptr()));
  3682     } else {
  3683       ShouldNotReachHere();
  3686   } else if (dest->is_double_fpu()) {
  3687     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3688     if (src->is_double_stack()) {
  3689       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3690     } else if (src->is_address()) {
  3691       __ fild_d(as_Address(src->as_address_ptr()));
  3692     } else {
  3693       ShouldNotReachHere();
  3695   } else {
  3696     ShouldNotReachHere();
  3701 void LIR_Assembler::membar() {
  3702   // QQQ sparc TSO uses this,
  3703   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3706 void LIR_Assembler::membar_acquire() {
  3707   // No x86 machines currently require load fences
  3708   // __ load_fence();
  3711 void LIR_Assembler::membar_release() {
  3712   // No x86 machines currently require store fences
  3713   // __ store_fence();
  3716 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3717   assert(result_reg->is_register(), "check");
  3718 #ifdef _LP64
  3719   // __ get_thread(result_reg->as_register_lo());
  3720   __ mov(result_reg->as_register(), r15_thread);
  3721 #else
  3722   __ get_thread(result_reg->as_register());
  3723 #endif // _LP64
  3727 void LIR_Assembler::peephole(LIR_List*) {
  3728   // do nothing for now
  3732 #undef __

mercurial