src/share/vm/opto/block.hpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2314
f95d63e2154a
child 3049
95134e034042
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
    26 #define SHARE_VM_OPTO_BLOCK_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/phase.hpp"
    32 // Optimization - Graph Style
    34 class Block;
    35 class CFGLoop;
    36 class MachCallNode;
    37 class Matcher;
    38 class RootNode;
    39 class VectorSet;
    40 struct Tarjan;
    42 //------------------------------Block_Array------------------------------------
    43 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
    44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
    45 // Note that the constructor just zeros things, and since I use Arena
    46 // allocation I do not need a destructor to reclaim storage.
    47 class Block_Array : public ResourceObj {
    48   uint _size;                   // allocated size, as opposed to formal limit
    49   debug_only(uint _limit;)      // limit to formal domain
    50 protected:
    51   Block **_blocks;
    52   void grow( uint i );          // Grow array node to fit
    54 public:
    55   Arena *_arena;                // Arena to allocate in
    57   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    58     debug_only(_limit=0);
    59     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    60     for( int i = 0; i < OptoBlockListSize; i++ ) {
    61       _blocks[i] = NULL;
    62     }
    63   }
    64   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
    65   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
    66   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
    67   { assert( i < Max(), "oob" ); return _blocks[i]; }
    68   // Extend the mapping: index i maps to Block *n.
    69   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
    70   uint Max() const { debug_only(return _limit); return _size; }
    71 };
    74 class Block_List : public Block_Array {
    75 public:
    76   uint _cnt;
    77   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
    78   void push( Block *b ) { map(_cnt++,b); }
    79   Block *pop() { return _blocks[--_cnt]; }
    80   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
    81   void remove( uint i );
    82   void insert( uint i, Block *n );
    83   uint size() const { return _cnt; }
    84   void reset() { _cnt = 0; }
    85   void print();
    86 };
    89 class CFGElement : public ResourceObj {
    90  public:
    91   float _freq; // Execution frequency (estimate)
    93   CFGElement() : _freq(0.0f) {}
    94   virtual bool is_block() { return false; }
    95   virtual bool is_loop()  { return false; }
    96   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
    97   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
    98 };
   100 //------------------------------Block------------------------------------------
   101 // This class defines a Basic Block.
   102 // Basic blocks are used during the output routines, and are not used during
   103 // any optimization pass.  They are created late in the game.
   104 class Block : public CFGElement {
   105  public:
   106   // Nodes in this block, in order
   107   Node_List _nodes;
   109   // Basic blocks have a Node which defines Control for all Nodes pinned in
   110   // this block.  This Node is a RegionNode.  Exception-causing Nodes
   111   // (division, subroutines) and Phi functions are always pinned.  Later,
   112   // every Node will get pinned to some block.
   113   Node *head() const { return _nodes[0]; }
   115   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
   116   // input edges to Regions and Phis.
   117   uint num_preds() const { return head()->req(); }
   118   Node *pred(uint i) const { return head()->in(i); }
   120   // Array of successor blocks, same size as projs array
   121   Block_Array _succs;
   123   // Basic blocks have some number of Nodes which split control to all
   124   // following blocks.  These Nodes are always Projections.  The field in
   125   // the Projection and the block-ending Node determine which Block follows.
   126   uint _num_succs;
   128   // Basic blocks also carry all sorts of good old fashioned DFS information
   129   // used to find loops, loop nesting depth, dominators, etc.
   130   uint _pre_order;              // Pre-order DFS number
   132   // Dominator tree
   133   uint _dom_depth;              // Depth in dominator tree for fast LCA
   134   Block* _idom;                 // Immediate dominator block
   136   CFGLoop *_loop;               // Loop to which this block belongs
   137   uint _rpo;                    // Number in reverse post order walk
   139   virtual bool is_block() { return true; }
   140   float succ_prob(uint i);      // return probability of i'th successor
   141   int num_fall_throughs();      // How many fall-through candidate this block has
   142   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
   143   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
   144   Block* lone_fall_through();   // Return lone fall-through Block or null
   146   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
   147 #ifdef ASSERT
   148   bool dominates(Block* that) {
   149     int dom_diff = this->_dom_depth - that->_dom_depth;
   150     if (dom_diff > 0)  return false;
   151     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
   152     return this == that;
   153   }
   154 #endif
   156   // Report the alignment required by this block.  Must be a power of 2.
   157   // The previous block will insert nops to get this alignment.
   158   uint code_alignment();
   159   uint compute_loop_alignment();
   161   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
   162   // It is currently also used to scale such frequencies relative to
   163   // FreqCountInvocations relative to the old value of 1500.
   164 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
   166   // Register Pressure (estimate) for Splitting heuristic
   167   uint _reg_pressure;
   168   uint _ihrp_index;
   169   uint _freg_pressure;
   170   uint _fhrp_index;
   172   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
   173   // Since they hold unique node indexes, they do not need reinitialization.
   174   node_idx_t _raise_LCA_mark;
   175   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
   176   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
   177   node_idx_t _raise_LCA_visited;
   178   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
   179   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
   181   // Estimated size in bytes of first instructions in a loop.
   182   uint _first_inst_size;
   183   uint first_inst_size() const     { return _first_inst_size; }
   184   void set_first_inst_size(uint s) { _first_inst_size = s; }
   186   // Compute the size of first instructions in this block.
   187   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
   189   // Compute alignment padding if the block needs it.
   190   // Align a loop if loop's padding is less or equal to padding limit
   191   // or the size of first instructions in the loop > padding.
   192   uint alignment_padding(int current_offset) {
   193     int block_alignment = code_alignment();
   194     int max_pad = block_alignment-relocInfo::addr_unit();
   195     if( max_pad > 0 ) {
   196       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
   197       int current_alignment = current_offset & max_pad;
   198       if( current_alignment != 0 ) {
   199         uint padding = (block_alignment-current_alignment) & max_pad;
   200         if( has_loop_alignment() &&
   201             padding > (uint)MaxLoopPad &&
   202             first_inst_size() <= padding ) {
   203           return 0;
   204         }
   205         return padding;
   206       }
   207     }
   208     return 0;
   209   }
   211   // Connector blocks. Connector blocks are basic blocks devoid of
   212   // instructions, but may have relevant non-instruction Nodes, such as
   213   // Phis or MergeMems. Such blocks are discovered and marked during the
   214   // RemoveEmpty phase, and elided during Output.
   215   bool _connector;
   216   void set_connector() { _connector = true; }
   217   bool is_connector() const { return _connector; };
   219   // Loop_alignment will be set for blocks which are at the top of loops.
   220   // The block layout pass may rotate loops such that the loop head may not
   221   // be the sequentially first block of the loop encountered in the linear
   222   // list of blocks.  If the layout pass is not run, loop alignment is set
   223   // for each block which is the head of a loop.
   224   uint _loop_alignment;
   225   void set_loop_alignment(Block *loop_top) {
   226     uint new_alignment = loop_top->compute_loop_alignment();
   227     if (new_alignment > _loop_alignment) {
   228       _loop_alignment = new_alignment;
   229     }
   230   }
   231   uint loop_alignment() const { return _loop_alignment; }
   232   bool has_loop_alignment() const { return loop_alignment() > 0; }
   234   // Create a new Block with given head Node.
   235   // Creates the (empty) predecessor arrays.
   236   Block( Arena *a, Node *headnode )
   237     : CFGElement(),
   238       _nodes(a),
   239       _succs(a),
   240       _num_succs(0),
   241       _pre_order(0),
   242       _idom(0),
   243       _loop(NULL),
   244       _reg_pressure(0),
   245       _ihrp_index(1),
   246       _freg_pressure(0),
   247       _fhrp_index(1),
   248       _raise_LCA_mark(0),
   249       _raise_LCA_visited(0),
   250       _first_inst_size(999999),
   251       _connector(false),
   252       _loop_alignment(0) {
   253     _nodes.push(headnode);
   254   }
   256   // Index of 'end' Node
   257   uint end_idx() const {
   258     // %%%%% add a proj after every goto
   259     // so (last->is_block_proj() != last) always, then simplify this code
   260     // This will not give correct end_idx for block 0 when it only contains root.
   261     int last_idx = _nodes.size() - 1;
   262     Node *last  = _nodes[last_idx];
   263     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
   264     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
   265   }
   267   // Basic blocks have a Node which ends them.  This Node determines which
   268   // basic block follows this one in the program flow.  This Node is either an
   269   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
   270   Node *end() const { return _nodes[end_idx()]; }
   272   // Add an instruction to an existing block.  It must go after the head
   273   // instruction and before the end instruction.
   274   void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
   275   // Find node in block
   276   uint find_node( const Node *n ) const;
   277   // Find and remove n from block list
   278   void find_remove( const Node *n );
   280   // Schedule a call next in the block
   281   uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
   283   // Perform basic-block local scheduling
   284   Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
   285   void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
   286   void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
   287   bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
   288   // Cleanup if any code lands between a Call and his Catch
   289   void call_catch_cleanup(Block_Array &bbs);
   290   // Detect implicit-null-check opportunities.  Basically, find NULL checks
   291   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
   292   // I can generate a memory op if there is not one nearby.
   293   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
   295   // Return the empty status of a block
   296   enum { not_empty, empty_with_goto, completely_empty };
   297   int is_Empty() const;
   299   // Forward through connectors
   300   Block* non_connector() {
   301     Block* s = this;
   302     while (s->is_connector()) {
   303       s = s->_succs[0];
   304     }
   305     return s;
   306   }
   308   // Return true if b is a successor of this block
   309   bool has_successor(Block* b) const {
   310     for (uint i = 0; i < _num_succs; i++ ) {
   311       if (non_connector_successor(i) == b) {
   312         return true;
   313       }
   314     }
   315     return false;
   316   }
   318   // Successor block, after forwarding through connectors
   319   Block* non_connector_successor(int i) const {
   320     return _succs[i]->non_connector();
   321   }
   323   // Examine block's code shape to predict if it is not commonly executed.
   324   bool has_uncommon_code() const;
   326   // Use frequency calculations and code shape to predict if the block
   327   // is uncommon.
   328   bool is_uncommon( Block_Array &bbs ) const;
   330 #ifndef PRODUCT
   331   // Debugging print of basic block
   332   void dump_bidx(const Block* orig) const;
   333   void dump_pred(const Block_Array *bbs, Block* orig) const;
   334   void dump_head( const Block_Array *bbs ) const;
   335   void dump( ) const;
   336   void dump( const Block_Array *bbs ) const;
   337 #endif
   338 };
   341 //------------------------------PhaseCFG---------------------------------------
   342 // Build an array of Basic Block pointers, one per Node.
   343 class PhaseCFG : public Phase {
   344  private:
   345   // Build a proper looking cfg.  Return count of basic blocks
   346   uint build_cfg();
   348   // Perform DFS search.
   349   // Setup 'vertex' as DFS to vertex mapping.
   350   // Setup 'semi' as vertex to DFS mapping.
   351   // Set 'parent' to DFS parent.
   352   uint DFS( Tarjan *tarjan );
   354   // Helper function to insert a node into a block
   355   void schedule_node_into_block( Node *n, Block *b );
   357   void replace_block_proj_ctrl( Node *n );
   359   // Set the basic block for pinned Nodes
   360   void schedule_pinned_nodes( VectorSet &visited );
   362   // I'll need a few machine-specific GotoNodes.  Clone from this one.
   363   MachNode *_goto;
   365   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
   366   void verify_anti_dependences(Block* LCA, Node* load) {
   367     assert(LCA == _bbs[load->_idx], "should already be scheduled");
   368     insert_anti_dependences(LCA, load, true);
   369   }
   371  public:
   372   PhaseCFG( Arena *a, RootNode *r, Matcher &m );
   374   uint _num_blocks;             // Count of basic blocks
   375   Block_List _blocks;           // List of basic blocks
   376   RootNode *_root;              // Root of whole program
   377   Block_Array _bbs;             // Map Nodes to owning Basic Block
   378   Block *_broot;                // Basic block of root
   379   uint _rpo_ctr;
   380   CFGLoop* _root_loop;
   381   float _outer_loop_freq;       // Outmost loop frequency
   383   // Per node latency estimation, valid only during GCM
   384   GrowableArray<uint> *_node_latency;
   386 #ifndef PRODUCT
   387   bool _trace_opto_pipelining;  // tracing flag
   388 #endif
   390 #ifdef ASSERT
   391   Unique_Node_List _raw_oops;
   392 #endif
   394   // Build dominators
   395   void Dominators();
   397   // Estimate block frequencies based on IfNode probabilities
   398   void Estimate_Block_Frequency();
   400   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
   401   // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
   402   void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
   404   // Compute the (backwards) latency of a node from the uses
   405   void latency_from_uses(Node *n);
   407   // Compute the (backwards) latency of a node from a single use
   408   int latency_from_use(Node *n, const Node *def, Node *use);
   410   // Compute the (backwards) latency of a node from the uses of this instruction
   411   void partial_latency_of_defs(Node *n);
   413   // Schedule Nodes early in their basic blocks.
   414   bool schedule_early(VectorSet &visited, Node_List &roots);
   416   // For each node, find the latest block it can be scheduled into
   417   // and then select the cheapest block between the latest and earliest
   418   // block to place the node.
   419   void schedule_late(VectorSet &visited, Node_List &stack);
   421   // Pick a block between early and late that is a cheaper alternative
   422   // to late. Helper for schedule_late.
   423   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
   425   // Compute the instruction global latency with a backwards walk
   426   void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
   428   // Set loop alignment
   429   void set_loop_alignment();
   431   // Remove empty basic blocks
   432   void remove_empty();
   433   void fixup_flow();
   434   bool move_to_next(Block* bx, uint b_index);
   435   void move_to_end(Block* bx, uint b_index);
   436   void insert_goto_at(uint block_no, uint succ_no);
   438   // Check for NeverBranch at block end.  This needs to become a GOTO to the
   439   // true target.  NeverBranch are treated as a conditional branch that always
   440   // goes the same direction for most of the optimizer and are used to give a
   441   // fake exit path to infinite loops.  At this late stage they need to turn
   442   // into Goto's so that when you enter the infinite loop you indeed hang.
   443   void convert_NeverBranch_to_Goto(Block *b);
   445   CFGLoop* create_loop_tree();
   447   // Insert a node into a block, and update the _bbs
   448   void insert( Block *b, uint idx, Node *n ) {
   449     b->_nodes.insert( idx, n );
   450     _bbs.map( n->_idx, b );
   451   }
   453 #ifndef PRODUCT
   454   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
   456   // Debugging print of CFG
   457   void dump( ) const;           // CFG only
   458   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
   459   void verify() const;
   460   void dump_headers();
   461 #else
   462   bool trace_opto_pipelining() const { return false; }
   463 #endif
   464 };
   467 //------------------------------UnionFind--------------------------------------
   468 // Map Block indices to a block-index for a cfg-cover.
   469 // Array lookup in the optimized case.
   470 class UnionFind : public ResourceObj {
   471   uint _cnt, _max;
   472   uint* _indices;
   473   ReallocMark _nesting;  // assertion check for reallocations
   474 public:
   475   UnionFind( uint max );
   476   void reset( uint max );  // Reset to identity map for [0..max]
   478   uint lookup( uint nidx ) const {
   479     return _indices[nidx];
   480   }
   481   uint operator[] (uint nidx) const { return lookup(nidx); }
   483   void map( uint from_idx, uint to_idx ) {
   484     assert( from_idx < _cnt, "oob" );
   485     _indices[from_idx] = to_idx;
   486   }
   487   void extend( uint from_idx, uint to_idx );
   489   uint Size() const { return _cnt; }
   491   uint Find( uint idx ) {
   492     assert( idx < 65536, "Must fit into uint");
   493     uint uf_idx = lookup(idx);
   494     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
   495   }
   496   uint Find_compress( uint idx );
   497   uint Find_const( uint idx ) const;
   498   void Union( uint idx1, uint idx2 );
   500 };
   502 //----------------------------BlockProbPair---------------------------
   503 // Ordered pair of Node*.
   504 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
   505 protected:
   506   Block* _target;      // block target
   507   float  _prob;        // probability of edge to block
   508 public:
   509   BlockProbPair() : _target(NULL), _prob(0.0) {}
   510   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
   512   Block* get_target() const { return _target; }
   513   float get_prob() const { return _prob; }
   514 };
   516 //------------------------------CFGLoop-------------------------------------------
   517 class CFGLoop : public CFGElement {
   518   int _id;
   519   int _depth;
   520   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
   521   CFGLoop *_sibling;     // null terminated list
   522   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
   523   GrowableArray<CFGElement*> _members; // list of members of loop
   524   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
   525   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
   526   void update_succ_freq(Block* b, float freq);
   528  public:
   529   CFGLoop(int id) :
   530     CFGElement(),
   531     _id(id),
   532     _depth(0),
   533     _parent(NULL),
   534     _sibling(NULL),
   535     _child(NULL),
   536     _exit_prob(1.0f) {}
   537   CFGLoop* parent() { return _parent; }
   538   void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
   539   void add_member(CFGElement *s) { _members.push(s); }
   540   void add_nested_loop(CFGLoop* cl);
   541   Block* head() {
   542     assert(_members.at(0)->is_block(), "head must be a block");
   543     Block* hd = _members.at(0)->as_Block();
   544     assert(hd->_loop == this, "just checking");
   545     assert(hd->head()->is_Loop(), "must begin with loop head node");
   546     return hd;
   547   }
   548   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
   549   void compute_loop_depth(int depth);
   550   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
   551   void scale_freq();   // scale frequency by loop trip count (including outer loops)
   552   float outer_loop_freq() const; // frequency of outer loop
   553   bool in_loop_nest(Block* b);
   554   float trip_count() const { return 1.0f / _exit_prob; }
   555   virtual bool is_loop()  { return true; }
   556   int id() { return _id; }
   558 #ifndef PRODUCT
   559   void dump( ) const;
   560   void dump_tree() const;
   561 #endif
   562 };
   565 //----------------------------------CFGEdge------------------------------------
   566 // A edge between two basic blocks that will be embodied by a branch or a
   567 // fall-through.
   568 class CFGEdge : public ResourceObj {
   569  private:
   570   Block * _from;        // Source basic block
   571   Block * _to;          // Destination basic block
   572   float _freq;          // Execution frequency (estimate)
   573   int   _state;
   574   bool  _infrequent;
   575   int   _from_pct;
   576   int   _to_pct;
   578   // Private accessors
   579   int  from_pct() const { return _from_pct; }
   580   int  to_pct()   const { return _to_pct;   }
   581   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
   582   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
   584  public:
   585   enum {
   586     open,               // initial edge state; unprocessed
   587     connected,          // edge used to connect two traces together
   588     interior            // edge is interior to trace (could be backedge)
   589   };
   591   CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
   592     _from(from), _to(to), _freq(freq),
   593     _from_pct(from_pct), _to_pct(to_pct), _state(open) {
   594     _infrequent = from_infrequent() || to_infrequent();
   595   }
   597   float  freq() const { return _freq; }
   598   Block* from() const { return _from; }
   599   Block* to  () const { return _to;   }
   600   int  infrequent() const { return _infrequent; }
   601   int state() const { return _state; }
   603   void set_state(int state) { _state = state; }
   605 #ifndef PRODUCT
   606   void dump( ) const;
   607 #endif
   608 };
   611 //-----------------------------------Trace-------------------------------------
   612 // An ordered list of basic blocks.
   613 class Trace : public ResourceObj {
   614  private:
   615   uint _id;             // Unique Trace id (derived from initial block)
   616   Block ** _next_list;  // Array mapping index to next block
   617   Block ** _prev_list;  // Array mapping index to previous block
   618   Block * _first;       // First block in the trace
   619   Block * _last;        // Last block in the trace
   621   // Return the block that follows "b" in the trace.
   622   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
   623   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
   625   // Return the block that precedes "b" in the trace.
   626   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
   627   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
   629   // We've discovered a loop in this trace. Reset last to be "b", and first as
   630   // the block following "b
   631   void break_loop_after(Block *b) {
   632     _last = b;
   633     _first = next(b);
   634     set_prev(_first, NULL);
   635     set_next(_last, NULL);
   636   }
   638  public:
   640   Trace(Block *b, Block **next_list, Block **prev_list) :
   641     _first(b),
   642     _last(b),
   643     _next_list(next_list),
   644     _prev_list(prev_list),
   645     _id(b->_pre_order) {
   646     set_next(b, NULL);
   647     set_prev(b, NULL);
   648   };
   650   // Return the id number
   651   uint id() const { return _id; }
   652   void set_id(uint id) { _id = id; }
   654   // Return the first block in the trace
   655   Block * first_block() const { return _first; }
   657   // Return the last block in the trace
   658   Block * last_block() const { return _last; }
   660   // Insert a trace in the middle of this one after b
   661   void insert_after(Block *b, Trace *tr) {
   662     set_next(tr->last_block(), next(b));
   663     if (next(b) != NULL) {
   664       set_prev(next(b), tr->last_block());
   665     }
   667     set_next(b, tr->first_block());
   668     set_prev(tr->first_block(), b);
   670     if (b == _last) {
   671       _last = tr->last_block();
   672     }
   673   }
   675   void insert_before(Block *b, Trace *tr) {
   676     Block *p = prev(b);
   677     assert(p != NULL, "use append instead");
   678     insert_after(p, tr);
   679   }
   681   // Append another trace to this one.
   682   void append(Trace *tr) {
   683     insert_after(_last, tr);
   684   }
   686   // Append a block at the end of this trace
   687   void append(Block *b) {
   688     set_next(_last, b);
   689     set_prev(b, _last);
   690     _last = b;
   691   }
   693   // Adjust the the blocks in this trace
   694   void fixup_blocks(PhaseCFG &cfg);
   695   bool backedge(CFGEdge *e);
   697 #ifndef PRODUCT
   698   void dump( ) const;
   699 #endif
   700 };
   702 //------------------------------PhaseBlockLayout-------------------------------
   703 // Rearrange blocks into some canonical order, based on edges and their frequencies
   704 class PhaseBlockLayout : public Phase {
   705   PhaseCFG &_cfg;               // Control flow graph
   707   GrowableArray<CFGEdge *> *edges;
   708   Trace **traces;
   709   Block **next;
   710   Block **prev;
   711   UnionFind *uf;
   713   // Given a block, find its encompassing Trace
   714   Trace * trace(Block *b) {
   715     return traces[uf->Find_compress(b->_pre_order)];
   716   }
   717  public:
   718   PhaseBlockLayout(PhaseCFG &cfg);
   720   void find_edges();
   721   void grow_traces();
   722   void merge_traces(bool loose_connections);
   723   void reorder_traces(int count);
   724   void union_traces(Trace* from, Trace* to);
   725 };
   727 #endif // SHARE_VM_OPTO_BLOCK_HPP

mercurial