src/share/vm/opto/escape.cpp

Tue, 16 Apr 2013 10:08:41 +0200

author
neliasso
date
Tue, 16 Apr 2013 10:08:41 +0200
changeset 4949
8373c19be854
parent 4479
b30b3c2a0cf2
child 5110
6f3fd5150b67
permissions
-rw-r--r--

8011621: live_ranges_in_separate_class.patch
Reviewed-by: kvn, roland
Contributed-by: niclas.adlertz@oracle.com

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _collecting(true),
    41   _verify(false),
    42   _compile(C),
    43   _igvn(igvn),
    44   _node_map(C->comp_arena()) {
    45   // Add unknown java object.
    46   add_java_object(C->top(), PointsToNode::GlobalEscape);
    47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    48   // Add ConP(#NULL) and ConN(#NULL) nodes.
    49   Node* oop_null = igvn->zerocon(T_OBJECT);
    50   assert(oop_null->_idx < nodes_size(), "should be created already");
    51   add_java_object(oop_null, PointsToNode::NoEscape);
    52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    53   if (UseCompressedOops) {
    54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    55     assert(noop_null->_idx < nodes_size(), "should be created already");
    56     map_ideal_node(noop_null, null_obj);
    57   }
    58   _pcmp_neq = NULL; // Should be initialized
    59   _pcmp_eq  = NULL;
    60 }
    62 bool ConnectionGraph::has_candidates(Compile *C) {
    63   // EA brings benefits only when the code has allocations and/or locks which
    64   // are represented by ideal Macro nodes.
    65   int cnt = C->macro_count();
    66   for( int i=0; i < cnt; i++ ) {
    67     Node *n = C->macro_node(i);
    68     if ( n->is_Allocate() )
    69       return true;
    70     if( n->is_Lock() ) {
    71       Node* obj = n->as_Lock()->obj_node()->uncast();
    72       if( !(obj->is_Parm() || obj->is_Con()) )
    73         return true;
    74     }
    75   }
    76   return false;
    77 }
    79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    80   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    81   ResourceMark rm;
    83   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    84   // to create space for them in ConnectionGraph::_nodes[].
    85   Node* oop_null = igvn->zerocon(T_OBJECT);
    86   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    87   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    88   // Perform escape analysis
    89   if (congraph->compute_escape()) {
    90     // There are non escaping objects.
    91     C->set_congraph(congraph);
    92   }
    93   // Cleanup.
    94   if (oop_null->outcnt() == 0)
    95     igvn->hash_delete(oop_null);
    96   if (noop_null->outcnt() == 0)
    97     igvn->hash_delete(noop_null);
    98 }
   100 bool ConnectionGraph::compute_escape() {
   101   Compile* C = _compile;
   102   PhaseGVN* igvn = _igvn;
   104   // Worklists used by EA.
   105   Unique_Node_List delayed_worklist;
   106   GrowableArray<Node*> alloc_worklist;
   107   GrowableArray<Node*> ptr_cmp_worklist;
   108   GrowableArray<Node*> storestore_worklist;
   109   GrowableArray<PointsToNode*>   ptnodes_worklist;
   110   GrowableArray<JavaObjectNode*> java_objects_worklist;
   111   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   112   GrowableArray<FieldNode*>      oop_fields_worklist;
   113   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   115   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   117   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   118   ideal_nodes.map(C->unique(), NULL);  // preallocate space
   119   // Initialize worklist
   120   if (C->root() != NULL) {
   121     ideal_nodes.push(C->root());
   122   }
   123   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   124     Node* n = ideal_nodes.at(next);
   125     // Create PointsTo nodes and add them to Connection Graph. Called
   126     // only once per ideal node since ideal_nodes is Unique_Node list.
   127     add_node_to_connection_graph(n, &delayed_worklist);
   128     PointsToNode* ptn = ptnode_adr(n->_idx);
   129     if (ptn != NULL) {
   130       ptnodes_worklist.append(ptn);
   131       if (ptn->is_JavaObject()) {
   132         java_objects_worklist.append(ptn->as_JavaObject());
   133         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   134             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   135           // Only allocations and java static calls results are interesting.
   136           non_escaped_worklist.append(ptn->as_JavaObject());
   137         }
   138       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   139         oop_fields_worklist.append(ptn->as_Field());
   140       }
   141     }
   142     if (n->is_MergeMem()) {
   143       // Collect all MergeMem nodes to add memory slices for
   144       // scalar replaceable objects in split_unique_types().
   145       _mergemem_worklist.append(n->as_MergeMem());
   146     } else if (OptimizePtrCompare && n->is_Cmp() &&
   147                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   148       // Collect compare pointers nodes.
   149       ptr_cmp_worklist.append(n);
   150     } else if (n->is_MemBarStoreStore()) {
   151       // Collect all MemBarStoreStore nodes so that depending on the
   152       // escape status of the associated Allocate node some of them
   153       // may be eliminated.
   154       storestore_worklist.append(n);
   155 #ifdef ASSERT
   156     } else if(n->is_AddP()) {
   157       // Collect address nodes for graph verification.
   158       addp_worklist.append(n);
   159 #endif
   160     }
   161     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   162       Node* m = n->fast_out(i);   // Get user
   163       ideal_nodes.push(m);
   164     }
   165   }
   166   if (non_escaped_worklist.length() == 0) {
   167     _collecting = false;
   168     return false; // Nothing to do.
   169   }
   170   // Add final simple edges to graph.
   171   while(delayed_worklist.size() > 0) {
   172     Node* n = delayed_worklist.pop();
   173     add_final_edges(n);
   174   }
   175   int ptnodes_length = ptnodes_worklist.length();
   177 #ifdef ASSERT
   178   if (VerifyConnectionGraph) {
   179     // Verify that no new simple edges could be created and all
   180     // local vars has edges.
   181     _verify = true;
   182     for (int next = 0; next < ptnodes_length; ++next) {
   183       PointsToNode* ptn = ptnodes_worklist.at(next);
   184       add_final_edges(ptn->ideal_node());
   185       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   186         ptn->dump();
   187         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   188       }
   189     }
   190     _verify = false;
   191   }
   192 #endif
   194   // 2. Finish Graph construction by propagating references to all
   195   //    java objects through graph.
   196   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   197                                  java_objects_worklist, oop_fields_worklist)) {
   198     // All objects escaped or hit time or iterations limits.
   199     _collecting = false;
   200     return false;
   201   }
   203   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   204   //    scalar replaceable allocations on alloc_worklist for processing
   205   //    in split_unique_types().
   206   int non_escaped_length = non_escaped_worklist.length();
   207   for (int next = 0; next < non_escaped_length; next++) {
   208     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   209     if (ptn->escape_state() == PointsToNode::NoEscape &&
   210         ptn->scalar_replaceable()) {
   211       adjust_scalar_replaceable_state(ptn);
   212       if (ptn->scalar_replaceable()) {
   213         alloc_worklist.append(ptn->ideal_node());
   214       }
   215     }
   216   }
   218 #ifdef ASSERT
   219   if (VerifyConnectionGraph) {
   220     // Verify that graph is complete - no new edges could be added or needed.
   221     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   222                             java_objects_worklist, addp_worklist);
   223   }
   224   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   225   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   226          null_obj->edge_count() == 0 &&
   227          !null_obj->arraycopy_src() &&
   228          !null_obj->arraycopy_dst(), "sanity");
   229 #endif
   231   _collecting = false;
   233   } // TracePhase t3("connectionGraph")
   235   // 4. Optimize ideal graph based on EA information.
   236   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   237   if (has_non_escaping_obj) {
   238     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   239   }
   241 #ifndef PRODUCT
   242   if (PrintEscapeAnalysis) {
   243     dump(ptnodes_worklist); // Dump ConnectionGraph
   244   }
   245 #endif
   247   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   248 #ifdef ASSERT
   249   if (VerifyConnectionGraph) {
   250     int alloc_length = alloc_worklist.length();
   251     for (int next = 0; next < alloc_length; ++next) {
   252       Node* n = alloc_worklist.at(next);
   253       PointsToNode* ptn = ptnode_adr(n->_idx);
   254       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   255     }
   256   }
   257 #endif
   259   // 5. Separate memory graph for scalar replaceable allcations.
   260   if (has_scalar_replaceable_candidates &&
   261       C->AliasLevel() >= 3 && EliminateAllocations) {
   262     // Now use the escape information to create unique types for
   263     // scalar replaceable objects.
   264     split_unique_types(alloc_worklist);
   265     if (C->failing())  return false;
   266     C->print_method("After Escape Analysis", 2);
   268 #ifdef ASSERT
   269   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   270     tty->print("=== No allocations eliminated for ");
   271     C->method()->print_short_name();
   272     if(!EliminateAllocations) {
   273       tty->print(" since EliminateAllocations is off ===");
   274     } else if(!has_scalar_replaceable_candidates) {
   275       tty->print(" since there are no scalar replaceable candidates ===");
   276     } else if(C->AliasLevel() < 3) {
   277       tty->print(" since AliasLevel < 3 ===");
   278     }
   279     tty->cr();
   280 #endif
   281   }
   282   return has_non_escaping_obj;
   283 }
   285 // Utility function for nodes that load an object
   286 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   287   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   288   // ThreadLocal has RawPtr type.
   289   const Type* t = _igvn->type(n);
   290   if (t->make_ptr() != NULL) {
   291     Node* adr = n->in(MemNode::Address);
   292 #ifdef ASSERT
   293     if (!adr->is_AddP()) {
   294       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   295     } else {
   296       assert((ptnode_adr(adr->_idx) == NULL ||
   297               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   298     }
   299 #endif
   300     add_local_var_and_edge(n, PointsToNode::NoEscape,
   301                            adr, delayed_worklist);
   302   }
   303 }
   305 // Populate Connection Graph with PointsTo nodes and create simple
   306 // connection graph edges.
   307 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   308   assert(!_verify, "this method sould not be called for verification");
   309   PhaseGVN* igvn = _igvn;
   310   uint n_idx = n->_idx;
   311   PointsToNode* n_ptn = ptnode_adr(n_idx);
   312   if (n_ptn != NULL)
   313     return; // No need to redefine PointsTo node during first iteration.
   315   if (n->is_Call()) {
   316     // Arguments to allocation and locking don't escape.
   317     if (n->is_AbstractLock()) {
   318       // Put Lock and Unlock nodes on IGVN worklist to process them during
   319       // first IGVN optimization when escape information is still available.
   320       record_for_optimizer(n);
   321     } else if (n->is_Allocate()) {
   322       add_call_node(n->as_Call());
   323       record_for_optimizer(n);
   324     } else {
   325       if (n->is_CallStaticJava()) {
   326         const char* name = n->as_CallStaticJava()->_name;
   327         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   328           return; // Skip uncommon traps
   329       }
   330       // Don't mark as processed since call's arguments have to be processed.
   331       delayed_worklist->push(n);
   332       // Check if a call returns an object.
   333       if (n->as_Call()->returns_pointer() &&
   334           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
   335         add_call_node(n->as_Call());
   336       }
   337     }
   338     return;
   339   }
   340   // Put this check here to process call arguments since some call nodes
   341   // point to phantom_obj.
   342   if (n_ptn == phantom_obj || n_ptn == null_obj)
   343     return; // Skip predefined nodes.
   345   int opcode = n->Opcode();
   346   switch (opcode) {
   347     case Op_AddP: {
   348       Node* base = get_addp_base(n);
   349       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   350       // Field nodes are created for all field types. They are used in
   351       // adjust_scalar_replaceable_state() and split_unique_types().
   352       // Note, non-oop fields will have only base edges in Connection
   353       // Graph because such fields are not used for oop loads and stores.
   354       int offset = address_offset(n, igvn);
   355       add_field(n, PointsToNode::NoEscape, offset);
   356       if (ptn_base == NULL) {
   357         delayed_worklist->push(n); // Process it later.
   358       } else {
   359         n_ptn = ptnode_adr(n_idx);
   360         add_base(n_ptn->as_Field(), ptn_base);
   361       }
   362       break;
   363     }
   364     case Op_CastX2P: {
   365       map_ideal_node(n, phantom_obj);
   366       break;
   367     }
   368     case Op_CastPP:
   369     case Op_CheckCastPP:
   370     case Op_EncodeP:
   371     case Op_DecodeN:
   372     case Op_EncodePKlass:
   373     case Op_DecodeNKlass: {
   374       add_local_var_and_edge(n, PointsToNode::NoEscape,
   375                              n->in(1), delayed_worklist);
   376       break;
   377     }
   378     case Op_CMoveP: {
   379       add_local_var(n, PointsToNode::NoEscape);
   380       // Do not add edges during first iteration because some could be
   381       // not defined yet.
   382       delayed_worklist->push(n);
   383       break;
   384     }
   385     case Op_ConP:
   386     case Op_ConN:
   387     case Op_ConNKlass: {
   388       // assume all oop constants globally escape except for null
   389       PointsToNode::EscapeState es;
   390       if (igvn->type(n) == TypePtr::NULL_PTR ||
   391           igvn->type(n) == TypeNarrowOop::NULL_PTR) {
   392         es = PointsToNode::NoEscape;
   393       } else {
   394         es = PointsToNode::GlobalEscape;
   395       }
   396       add_java_object(n, es);
   397       break;
   398     }
   399     case Op_CreateEx: {
   400       // assume that all exception objects globally escape
   401       add_java_object(n, PointsToNode::GlobalEscape);
   402       break;
   403     }
   404     case Op_LoadKlass:
   405     case Op_LoadNKlass: {
   406       // Unknown class is loaded
   407       map_ideal_node(n, phantom_obj);
   408       break;
   409     }
   410     case Op_LoadP:
   411     case Op_LoadN:
   412     case Op_LoadPLocked: {
   413       add_objload_to_connection_graph(n, delayed_worklist);
   414       break;
   415     }
   416     case Op_Parm: {
   417       map_ideal_node(n, phantom_obj);
   418       break;
   419     }
   420     case Op_PartialSubtypeCheck: {
   421       // Produces Null or notNull and is used in only in CmpP so
   422       // phantom_obj could be used.
   423       map_ideal_node(n, phantom_obj); // Result is unknown
   424       break;
   425     }
   426     case Op_Phi: {
   427       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   428       // ThreadLocal has RawPtr type.
   429       const Type* t = n->as_Phi()->type();
   430       if (t->make_ptr() != NULL) {
   431         add_local_var(n, PointsToNode::NoEscape);
   432         // Do not add edges during first iteration because some could be
   433         // not defined yet.
   434         delayed_worklist->push(n);
   435       }
   436       break;
   437     }
   438     case Op_Proj: {
   439       // we are only interested in the oop result projection from a call
   440       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   441           n->in(0)->as_Call()->returns_pointer()) {
   442         add_local_var_and_edge(n, PointsToNode::NoEscape,
   443                                n->in(0), delayed_worklist);
   444       }
   445       break;
   446     }
   447     case Op_Rethrow: // Exception object escapes
   448     case Op_Return: {
   449       if (n->req() > TypeFunc::Parms &&
   450           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   451         // Treat Return value as LocalVar with GlobalEscape escape state.
   452         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   453                                n->in(TypeFunc::Parms), delayed_worklist);
   454       }
   455       break;
   456     }
   457     case Op_GetAndSetP:
   458     case Op_GetAndSetN: {
   459       add_objload_to_connection_graph(n, delayed_worklist);
   460       // fallthrough
   461     }
   462     case Op_StoreP:
   463     case Op_StoreN:
   464     case Op_StoreNKlass:
   465     case Op_StorePConditional:
   466     case Op_CompareAndSwapP:
   467     case Op_CompareAndSwapN: {
   468       Node* adr = n->in(MemNode::Address);
   469       const Type *adr_type = igvn->type(adr);
   470       adr_type = adr_type->make_ptr();
   471       if (adr_type->isa_oopptr() ||
   472           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   473                         (adr_type == TypeRawPtr::NOTNULL &&
   474                          adr->in(AddPNode::Address)->is_Proj() &&
   475                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   476         delayed_worklist->push(n); // Process it later.
   477 #ifdef ASSERT
   478         assert(adr->is_AddP(), "expecting an AddP");
   479         if (adr_type == TypeRawPtr::NOTNULL) {
   480           // Verify a raw address for a store captured by Initialize node.
   481           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   482           assert(offs != Type::OffsetBot, "offset must be a constant");
   483         }
   484 #endif
   485       } else {
   486         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   487         if (adr->is_BoxLock())
   488           break;
   489         // Stored value escapes in unsafe access.
   490         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   491           // Pointer stores in G1 barriers looks like unsafe access.
   492           // Ignore such stores to be able scalar replace non-escaping
   493           // allocations.
   494           if (UseG1GC && adr->is_AddP()) {
   495             Node* base = get_addp_base(adr);
   496             if (base->Opcode() == Op_LoadP &&
   497                 base->in(MemNode::Address)->is_AddP()) {
   498               adr = base->in(MemNode::Address);
   499               Node* tls = get_addp_base(adr);
   500               if (tls->Opcode() == Op_ThreadLocal) {
   501                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   502                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   503                                      PtrQueue::byte_offset_of_buf())) {
   504                   break; // G1 pre barier previous oop value store.
   505                 }
   506                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   507                                      PtrQueue::byte_offset_of_buf())) {
   508                   break; // G1 post barier card address store.
   509                 }
   510               }
   511             }
   512           }
   513           delayed_worklist->push(n); // Process unsafe access later.
   514           break;
   515         }
   516 #ifdef ASSERT
   517         n->dump(1);
   518         assert(false, "not unsafe or G1 barrier raw StoreP");
   519 #endif
   520       }
   521       break;
   522     }
   523     case Op_AryEq:
   524     case Op_StrComp:
   525     case Op_StrEquals:
   526     case Op_StrIndexOf:
   527     case Op_EncodeISOArray: {
   528       add_local_var(n, PointsToNode::ArgEscape);
   529       delayed_worklist->push(n); // Process it later.
   530       break;
   531     }
   532     case Op_ThreadLocal: {
   533       add_java_object(n, PointsToNode::ArgEscape);
   534       break;
   535     }
   536     default:
   537       ; // Do nothing for nodes not related to EA.
   538   }
   539   return;
   540 }
   542 #ifdef ASSERT
   543 #define ELSE_FAIL(name)                               \
   544       /* Should not be called for not pointer type. */  \
   545       n->dump(1);                                       \
   546       assert(false, name);                              \
   547       break;
   548 #else
   549 #define ELSE_FAIL(name) \
   550       break;
   551 #endif
   553 // Add final simple edges to graph.
   554 void ConnectionGraph::add_final_edges(Node *n) {
   555   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   556 #ifdef ASSERT
   557   if (_verify && n_ptn->is_JavaObject())
   558     return; // This method does not change graph for JavaObject.
   559 #endif
   561   if (n->is_Call()) {
   562     process_call_arguments(n->as_Call());
   563     return;
   564   }
   565   assert(n->is_Store() || n->is_LoadStore() ||
   566          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   567          "node should be registered already");
   568   int opcode = n->Opcode();
   569   switch (opcode) {
   570     case Op_AddP: {
   571       Node* base = get_addp_base(n);
   572       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   573       assert(ptn_base != NULL, "field's base should be registered");
   574       add_base(n_ptn->as_Field(), ptn_base);
   575       break;
   576     }
   577     case Op_CastPP:
   578     case Op_CheckCastPP:
   579     case Op_EncodeP:
   580     case Op_DecodeN:
   581     case Op_EncodePKlass:
   582     case Op_DecodeNKlass: {
   583       add_local_var_and_edge(n, PointsToNode::NoEscape,
   584                              n->in(1), NULL);
   585       break;
   586     }
   587     case Op_CMoveP: {
   588       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   589         Node* in = n->in(i);
   590         if (in == NULL)
   591           continue;  // ignore NULL
   592         Node* uncast_in = in->uncast();
   593         if (uncast_in->is_top() || uncast_in == n)
   594           continue;  // ignore top or inputs which go back this node
   595         PointsToNode* ptn = ptnode_adr(in->_idx);
   596         assert(ptn != NULL, "node should be registered");
   597         add_edge(n_ptn, ptn);
   598       }
   599       break;
   600     }
   601     case Op_LoadP:
   602     case Op_LoadN:
   603     case Op_LoadPLocked: {
   604       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   605       // ThreadLocal has RawPtr type.
   606       const Type* t = _igvn->type(n);
   607       if (t->make_ptr() != NULL) {
   608         Node* adr = n->in(MemNode::Address);
   609         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   610         break;
   611       }
   612       ELSE_FAIL("Op_LoadP");
   613     }
   614     case Op_Phi: {
   615       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   616       // ThreadLocal has RawPtr type.
   617       const Type* t = n->as_Phi()->type();
   618       if (t->make_ptr() != NULL) {
   619         for (uint i = 1; i < n->req(); i++) {
   620           Node* in = n->in(i);
   621           if (in == NULL)
   622             continue;  // ignore NULL
   623           Node* uncast_in = in->uncast();
   624           if (uncast_in->is_top() || uncast_in == n)
   625             continue;  // ignore top or inputs which go back this node
   626           PointsToNode* ptn = ptnode_adr(in->_idx);
   627           assert(ptn != NULL, "node should be registered");
   628           add_edge(n_ptn, ptn);
   629         }
   630         break;
   631       }
   632       ELSE_FAIL("Op_Phi");
   633     }
   634     case Op_Proj: {
   635       // we are only interested in the oop result projection from a call
   636       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   637           n->in(0)->as_Call()->returns_pointer()) {
   638         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   639         break;
   640       }
   641       ELSE_FAIL("Op_Proj");
   642     }
   643     case Op_Rethrow: // Exception object escapes
   644     case Op_Return: {
   645       if (n->req() > TypeFunc::Parms &&
   646           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   647         // Treat Return value as LocalVar with GlobalEscape escape state.
   648         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   649                                n->in(TypeFunc::Parms), NULL);
   650         break;
   651       }
   652       ELSE_FAIL("Op_Return");
   653     }
   654     case Op_StoreP:
   655     case Op_StoreN:
   656     case Op_StoreNKlass:
   657     case Op_StorePConditional:
   658     case Op_CompareAndSwapP:
   659     case Op_CompareAndSwapN:
   660     case Op_GetAndSetP:
   661     case Op_GetAndSetN: {
   662       Node* adr = n->in(MemNode::Address);
   663       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   664         const Type* t = _igvn->type(n);
   665         if (t->make_ptr() != NULL) {
   666           add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   667         }
   668       }
   669       const Type *adr_type = _igvn->type(adr);
   670       adr_type = adr_type->make_ptr();
   671       if (adr_type->isa_oopptr() ||
   672           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   673                         (adr_type == TypeRawPtr::NOTNULL &&
   674                          adr->in(AddPNode::Address)->is_Proj() &&
   675                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   676         // Point Address to Value
   677         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   678         assert(adr_ptn != NULL &&
   679                adr_ptn->as_Field()->is_oop(), "node should be registered");
   680         Node *val = n->in(MemNode::ValueIn);
   681         PointsToNode* ptn = ptnode_adr(val->_idx);
   682         assert(ptn != NULL, "node should be registered");
   683         add_edge(adr_ptn, ptn);
   684         break;
   685       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   686         // Stored value escapes in unsafe access.
   687         Node *val = n->in(MemNode::ValueIn);
   688         PointsToNode* ptn = ptnode_adr(val->_idx);
   689         assert(ptn != NULL, "node should be registered");
   690         ptn->set_escape_state(PointsToNode::GlobalEscape);
   691         // Add edge to object for unsafe access with offset.
   692         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   693         assert(adr_ptn != NULL, "node should be registered");
   694         if (adr_ptn->is_Field()) {
   695           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   696           add_edge(adr_ptn, ptn);
   697         }
   698         break;
   699       }
   700       ELSE_FAIL("Op_StoreP");
   701     }
   702     case Op_AryEq:
   703     case Op_StrComp:
   704     case Op_StrEquals:
   705     case Op_StrIndexOf:
   706     case Op_EncodeISOArray: {
   707       // char[] arrays passed to string intrinsic do not escape but
   708       // they are not scalar replaceable. Adjust escape state for them.
   709       // Start from in(2) edge since in(1) is memory edge.
   710       for (uint i = 2; i < n->req(); i++) {
   711         Node* adr = n->in(i);
   712         const Type* at = _igvn->type(adr);
   713         if (!adr->is_top() && at->isa_ptr()) {
   714           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   715                  at->isa_ptr() != NULL, "expecting a pointer");
   716           if (adr->is_AddP()) {
   717             adr = get_addp_base(adr);
   718           }
   719           PointsToNode* ptn = ptnode_adr(adr->_idx);
   720           assert(ptn != NULL, "node should be registered");
   721           add_edge(n_ptn, ptn);
   722         }
   723       }
   724       break;
   725     }
   726     default: {
   727       // This method should be called only for EA specific nodes which may
   728       // miss some edges when they were created.
   729 #ifdef ASSERT
   730       n->dump(1);
   731 #endif
   732       guarantee(false, "unknown node");
   733     }
   734   }
   735   return;
   736 }
   738 void ConnectionGraph::add_call_node(CallNode* call) {
   739   assert(call->returns_pointer(), "only for call which returns pointer");
   740   uint call_idx = call->_idx;
   741   if (call->is_Allocate()) {
   742     Node* k = call->in(AllocateNode::KlassNode);
   743     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   744     assert(kt != NULL, "TypeKlassPtr  required.");
   745     ciKlass* cik = kt->klass();
   746     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   747     bool scalar_replaceable = true;
   748     if (call->is_AllocateArray()) {
   749       if (!cik->is_array_klass()) { // StressReflectiveCode
   750         es = PointsToNode::GlobalEscape;
   751       } else {
   752         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   753         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   754           // Not scalar replaceable if the length is not constant or too big.
   755           scalar_replaceable = false;
   756         }
   757       }
   758     } else {  // Allocate instance
   759       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   760          !cik->is_instance_klass() || // StressReflectiveCode
   761           cik->as_instance_klass()->has_finalizer()) {
   762         es = PointsToNode::GlobalEscape;
   763       }
   764     }
   765     add_java_object(call, es);
   766     PointsToNode* ptn = ptnode_adr(call_idx);
   767     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   768       ptn->set_scalar_replaceable(false);
   769     }
   770   } else if (call->is_CallStaticJava()) {
   771     // Call nodes could be different types:
   772     //
   773     // 1. CallDynamicJavaNode (what happened during call is unknown):
   774     //
   775     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   776     //
   777     //    - all oop arguments are escaping globally;
   778     //
   779     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   780     //
   781     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   782     //
   783     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   784     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   785     //      during call is returned;
   786     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   787     //      which are returned and does not escape during call;
   788     //
   789     //    - oop arguments escaping status is defined by bytecode analysis;
   790     //
   791     // For a static call, we know exactly what method is being called.
   792     // Use bytecode estimator to record whether the call's return value escapes.
   793     ciMethod* meth = call->as_CallJava()->method();
   794     if (meth == NULL) {
   795       const char* name = call->as_CallStaticJava()->_name;
   796       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   797       // Returns a newly allocated unescaped object.
   798       add_java_object(call, PointsToNode::NoEscape);
   799       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   800     } else {
   801       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   802       call_analyzer->copy_dependencies(_compile->dependencies());
   803       if (call_analyzer->is_return_allocated()) {
   804         // Returns a newly allocated unescaped object, simply
   805         // update dependency information.
   806         // Mark it as NoEscape so that objects referenced by
   807         // it's fields will be marked as NoEscape at least.
   808         add_java_object(call, PointsToNode::NoEscape);
   809         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   810       } else {
   811         // Determine whether any arguments are returned.
   812         const TypeTuple* d = call->tf()->domain();
   813         bool ret_arg = false;
   814         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   815           if (d->field_at(i)->isa_ptr() != NULL &&
   816               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   817             ret_arg = true;
   818             break;
   819           }
   820         }
   821         if (ret_arg) {
   822           add_local_var(call, PointsToNode::ArgEscape);
   823         } else {
   824           // Returns unknown object.
   825           map_ideal_node(call, phantom_obj);
   826         }
   827       }
   828     }
   829   } else {
   830     // An other type of call, assume the worst case:
   831     // returned value is unknown and globally escapes.
   832     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   833     map_ideal_node(call, phantom_obj);
   834   }
   835 }
   837 void ConnectionGraph::process_call_arguments(CallNode *call) {
   838     bool is_arraycopy = false;
   839     switch (call->Opcode()) {
   840 #ifdef ASSERT
   841     case Op_Allocate:
   842     case Op_AllocateArray:
   843     case Op_Lock:
   844     case Op_Unlock:
   845       assert(false, "should be done already");
   846       break;
   847 #endif
   848     case Op_CallLeafNoFP:
   849       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   850                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   851       // fall through
   852     case Op_CallLeaf: {
   853       // Stub calls, objects do not escape but they are not scale replaceable.
   854       // Adjust escape state for outgoing arguments.
   855       const TypeTuple * d = call->tf()->domain();
   856       bool src_has_oops = false;
   857       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   858         const Type* at = d->field_at(i);
   859         Node *arg = call->in(i);
   860         const Type *aat = _igvn->type(arg);
   861         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   862           continue;
   863         if (arg->is_AddP()) {
   864           //
   865           // The inline_native_clone() case when the arraycopy stub is called
   866           // after the allocation before Initialize and CheckCastPP nodes.
   867           // Or normal arraycopy for object arrays case.
   868           //
   869           // Set AddP's base (Allocate) as not scalar replaceable since
   870           // pointer to the base (with offset) is passed as argument.
   871           //
   872           arg = get_addp_base(arg);
   873         }
   874         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   875         assert(arg_ptn != NULL, "should be registered");
   876         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   877         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   878           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   879                  aat->isa_ptr() != NULL, "expecting an Ptr");
   880           bool arg_has_oops = aat->isa_oopptr() &&
   881                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   882                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   883           if (i == TypeFunc::Parms) {
   884             src_has_oops = arg_has_oops;
   885           }
   886           //
   887           // src or dst could be j.l.Object when other is basic type array:
   888           //
   889           //   arraycopy(char[],0,Object*,0,size);
   890           //   arraycopy(Object*,0,char[],0,size);
   891           //
   892           // Don't add edges in such cases.
   893           //
   894           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   895                                        arg_has_oops && (i > TypeFunc::Parms);
   896 #ifdef ASSERT
   897           if (!(is_arraycopy ||
   898                 (call->as_CallLeaf()->_name != NULL &&
   899                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   900                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   901                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   902                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   903                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   904                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
   905                   ))) {
   906             call->dump();
   907             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   908           }
   909 #endif
   910           // Always process arraycopy's destination object since
   911           // we need to add all possible edges to references in
   912           // source object.
   913           if (arg_esc >= PointsToNode::ArgEscape &&
   914               !arg_is_arraycopy_dest) {
   915             continue;
   916           }
   917           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   918           if (arg_is_arraycopy_dest) {
   919             Node* src = call->in(TypeFunc::Parms);
   920             if (src->is_AddP()) {
   921               src = get_addp_base(src);
   922             }
   923             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   924             assert(src_ptn != NULL, "should be registered");
   925             if (arg_ptn != src_ptn) {
   926               // Special arraycopy edge:
   927               // A destination object's field can't have the source object
   928               // as base since objects escape states are not related.
   929               // Only escape state of destination object's fields affects
   930               // escape state of fields in source object.
   931               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   932             }
   933           }
   934         }
   935       }
   936       break;
   937     }
   938     case Op_CallStaticJava: {
   939       // For a static call, we know exactly what method is being called.
   940       // Use bytecode estimator to record the call's escape affects
   941 #ifdef ASSERT
   942       const char* name = call->as_CallStaticJava()->_name;
   943       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   944 #endif
   945       ciMethod* meth = call->as_CallJava()->method();
   946       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
   947       // fall-through if not a Java method or no analyzer information
   948       if (call_analyzer != NULL) {
   949         PointsToNode* call_ptn = ptnode_adr(call->_idx);
   950         const TypeTuple* d = call->tf()->domain();
   951         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   952           const Type* at = d->field_at(i);
   953           int k = i - TypeFunc::Parms;
   954           Node* arg = call->in(i);
   955           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   956           if (at->isa_ptr() != NULL &&
   957               call_analyzer->is_arg_returned(k)) {
   958             // The call returns arguments.
   959             if (call_ptn != NULL) { // Is call's result used?
   960               assert(call_ptn->is_LocalVar(), "node should be registered");
   961               assert(arg_ptn != NULL, "node should be registered");
   962               add_edge(call_ptn, arg_ptn);
   963             }
   964           }
   965           if (at->isa_oopptr() != NULL &&
   966               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
   967             if (!call_analyzer->is_arg_stack(k)) {
   968               // The argument global escapes
   969               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
   970             } else {
   971               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   972               if (!call_analyzer->is_arg_local(k)) {
   973                 // The argument itself doesn't escape, but any fields might
   974                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
   975               }
   976             }
   977           }
   978         }
   979         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
   980           // The call returns arguments.
   981           assert(call_ptn->edge_count() > 0, "sanity");
   982           if (!call_analyzer->is_return_local()) {
   983             // Returns also unknown object.
   984             add_edge(call_ptn, phantom_obj);
   985           }
   986         }
   987         break;
   988       }
   989     }
   990     default: {
   991       // Fall-through here if not a Java method or no analyzer information
   992       // or some other type of call, assume the worst case: all arguments
   993       // globally escape.
   994       const TypeTuple* d = call->tf()->domain();
   995       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   996         const Type* at = d->field_at(i);
   997         if (at->isa_oopptr() != NULL) {
   998           Node* arg = call->in(i);
   999           if (arg->is_AddP()) {
  1000             arg = get_addp_base(arg);
  1002           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1003           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1011 // Finish Graph construction.
  1012 bool ConnectionGraph::complete_connection_graph(
  1013                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1014                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1015                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1016                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1017   // Normally only 1-3 passes needed to build Connection Graph depending
  1018   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1019   // Set limit to 20 to catch situation when something did go wrong and
  1020   // bailout Escape Analysis.
  1021   // Also limit build time to 30 sec (60 in debug VM).
  1022 #define CG_BUILD_ITER_LIMIT 20
  1023 #ifdef ASSERT
  1024 #define CG_BUILD_TIME_LIMIT 60.0
  1025 #else
  1026 #define CG_BUILD_TIME_LIMIT 30.0
  1027 #endif
  1029   // Propagate GlobalEscape and ArgEscape escape states and check that
  1030   // we still have non-escaping objects. The method pushs on _worklist
  1031   // Field nodes which reference phantom_object.
  1032   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1033     return false; // Nothing to do.
  1035   // Now propagate references to all JavaObject nodes.
  1036   int java_objects_length = java_objects_worklist.length();
  1037   elapsedTimer time;
  1038   int new_edges = 1;
  1039   int iterations = 0;
  1040   do {
  1041     while ((new_edges > 0) &&
  1042           (iterations++   < CG_BUILD_ITER_LIMIT) &&
  1043           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1044       time.start();
  1045       new_edges = 0;
  1046       // Propagate references to phantom_object for nodes pushed on _worklist
  1047       // by find_non_escaped_objects() and find_field_value().
  1048       new_edges += add_java_object_edges(phantom_obj, false);
  1049       for (int next = 0; next < java_objects_length; ++next) {
  1050         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1051         new_edges += add_java_object_edges(ptn, true);
  1053       if (new_edges > 0) {
  1054         // Update escape states on each iteration if graph was updated.
  1055         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1056           return false; // Nothing to do.
  1059       time.stop();
  1061     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
  1062         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1063       time.start();
  1064       // Find fields which have unknown value.
  1065       int fields_length = oop_fields_worklist.length();
  1066       for (int next = 0; next < fields_length; next++) {
  1067         FieldNode* field = oop_fields_worklist.at(next);
  1068         if (field->edge_count() == 0) {
  1069           new_edges += find_field_value(field);
  1070           // This code may added new edges to phantom_object.
  1071           // Need an other cycle to propagate references to phantom_object.
  1074       time.stop();
  1075     } else {
  1076       new_edges = 0; // Bailout
  1078   } while (new_edges > 0);
  1080   // Bailout if passed limits.
  1081   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
  1082       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
  1083     Compile* C = _compile;
  1084     if (C->log() != NULL) {
  1085       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1086       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
  1087       C->log()->end_elem(" limit'");
  1089     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1090            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1091     // Possible infinite build_connection_graph loop,
  1092     // bailout (no changes to ideal graph were made).
  1093     return false;
  1095 #ifdef ASSERT
  1096   if (Verbose && PrintEscapeAnalysis) {
  1097     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1098                   iterations, nodes_size(), ptnodes_worklist.length());
  1100 #endif
  1102 #undef CG_BUILD_ITER_LIMIT
  1103 #undef CG_BUILD_TIME_LIMIT
  1105   // Find fields initialized by NULL for non-escaping Allocations.
  1106   int non_escaped_length = non_escaped_worklist.length();
  1107   for (int next = 0; next < non_escaped_length; next++) {
  1108     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1109     PointsToNode::EscapeState es = ptn->escape_state();
  1110     assert(es <= PointsToNode::ArgEscape, "sanity");
  1111     if (es == PointsToNode::NoEscape) {
  1112       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1113         // Adding references to NULL object does not change escape states
  1114         // since it does not escape. Also no fields are added to NULL object.
  1115         add_java_object_edges(null_obj, false);
  1118     Node* n = ptn->ideal_node();
  1119     if (n->is_Allocate()) {
  1120       // The object allocated by this Allocate node will never be
  1121       // seen by an other thread. Mark it so that when it is
  1122       // expanded no MemBarStoreStore is added.
  1123       InitializeNode* ini = n->as_Allocate()->initialization();
  1124       if (ini != NULL)
  1125         ini->set_does_not_escape();
  1128   return true; // Finished graph construction.
  1131 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1132 // and check that we still have non-escaping java objects.
  1133 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1134                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1135   GrowableArray<PointsToNode*> escape_worklist;
  1136   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1137   int ptnodes_length = ptnodes_worklist.length();
  1138   for (int next = 0; next < ptnodes_length; ++next) {
  1139     PointsToNode* ptn = ptnodes_worklist.at(next);
  1140     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1141         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1142       escape_worklist.push(ptn);
  1145   // Set escape states to referenced nodes (edges list).
  1146   while (escape_worklist.length() > 0) {
  1147     PointsToNode* ptn = escape_worklist.pop();
  1148     PointsToNode::EscapeState es  = ptn->escape_state();
  1149     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1150     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1151         es >= PointsToNode::ArgEscape) {
  1152       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1153       if (add_edge(ptn, phantom_obj)) {
  1154         // New edge was added
  1155         add_field_uses_to_worklist(ptn->as_Field());
  1158     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1159       PointsToNode* e = i.get();
  1160       if (e->is_Arraycopy()) {
  1161         assert(ptn->arraycopy_dst(), "sanity");
  1162         // Propagate only fields escape state through arraycopy edge.
  1163         if (e->fields_escape_state() < field_es) {
  1164           set_fields_escape_state(e, field_es);
  1165           escape_worklist.push(e);
  1167       } else if (es >= field_es) {
  1168         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1169         if (e->escape_state() < es) {
  1170           set_escape_state(e, es);
  1171           escape_worklist.push(e);
  1173       } else {
  1174         // Propagate field escape state.
  1175         bool es_changed = false;
  1176         if (e->fields_escape_state() < field_es) {
  1177           set_fields_escape_state(e, field_es);
  1178           es_changed = true;
  1180         if ((e->escape_state() < field_es) &&
  1181             e->is_Field() && ptn->is_JavaObject() &&
  1182             e->as_Field()->is_oop()) {
  1183           // Change escape state of referenced fileds.
  1184           set_escape_state(e, field_es);
  1185           es_changed = true;;
  1186         } else if (e->escape_state() < es) {
  1187           set_escape_state(e, es);
  1188           es_changed = true;;
  1190         if (es_changed) {
  1191           escape_worklist.push(e);
  1196   // Remove escaped objects from non_escaped list.
  1197   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1198     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1199     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1200       non_escaped_worklist.delete_at(next);
  1202     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1203       // Find fields in non-escaped allocations which have unknown value.
  1204       find_init_values(ptn, phantom_obj, NULL);
  1207   return (non_escaped_worklist.length() > 0);
  1210 // Add all references to JavaObject node by walking over all uses.
  1211 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1212   int new_edges = 0;
  1213   if (populate_worklist) {
  1214     // Populate _worklist by uses of jobj's uses.
  1215     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1216       PointsToNode* use = i.get();
  1217       if (use->is_Arraycopy())
  1218         continue;
  1219       add_uses_to_worklist(use);
  1220       if (use->is_Field() && use->as_Field()->is_oop()) {
  1221         // Put on worklist all field's uses (loads) and
  1222         // related field nodes (same base and offset).
  1223         add_field_uses_to_worklist(use->as_Field());
  1227   while(_worklist.length() > 0) {
  1228     PointsToNode* use = _worklist.pop();
  1229     if (PointsToNode::is_base_use(use)) {
  1230       // Add reference from jobj to field and from field to jobj (field's base).
  1231       use = PointsToNode::get_use_node(use)->as_Field();
  1232       if (add_base(use->as_Field(), jobj)) {
  1233         new_edges++;
  1235       continue;
  1237     assert(!use->is_JavaObject(), "sanity");
  1238     if (use->is_Arraycopy()) {
  1239       if (jobj == null_obj) // NULL object does not have field edges
  1240         continue;
  1241       // Added edge from Arraycopy node to arraycopy's source java object
  1242       if (add_edge(use, jobj)) {
  1243         jobj->set_arraycopy_src();
  1244         new_edges++;
  1246       // and stop here.
  1247       continue;
  1249     if (!add_edge(use, jobj))
  1250       continue; // No new edge added, there was such edge already.
  1251     new_edges++;
  1252     if (use->is_LocalVar()) {
  1253       add_uses_to_worklist(use);
  1254       if (use->arraycopy_dst()) {
  1255         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1256           PointsToNode* e = i.get();
  1257           if (e->is_Arraycopy()) {
  1258             if (jobj == null_obj) // NULL object does not have field edges
  1259               continue;
  1260             // Add edge from arraycopy's destination java object to Arraycopy node.
  1261             if (add_edge(jobj, e)) {
  1262               new_edges++;
  1263               jobj->set_arraycopy_dst();
  1268     } else {
  1269       // Added new edge to stored in field values.
  1270       // Put on worklist all field's uses (loads) and
  1271       // related field nodes (same base and offset).
  1272       add_field_uses_to_worklist(use->as_Field());
  1275   return new_edges;
  1278 // Put on worklist all related field nodes.
  1279 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1280   assert(field->is_oop(), "sanity");
  1281   int offset = field->offset();
  1282   add_uses_to_worklist(field);
  1283   // Loop over all bases of this field and push on worklist Field nodes
  1284   // with the same offset and base (since they may reference the same field).
  1285   for (BaseIterator i(field); i.has_next(); i.next()) {
  1286     PointsToNode* base = i.get();
  1287     add_fields_to_worklist(field, base);
  1288     // Check if the base was source object of arraycopy and go over arraycopy's
  1289     // destination objects since values stored to a field of source object are
  1290     // accessable by uses (loads) of fields of destination objects.
  1291     if (base->arraycopy_src()) {
  1292       for (UseIterator j(base); j.has_next(); j.next()) {
  1293         PointsToNode* arycp = j.get();
  1294         if (arycp->is_Arraycopy()) {
  1295           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1296             PointsToNode* abase = k.get();
  1297             if (abase->arraycopy_dst() && abase != base) {
  1298               // Look for the same arracopy reference.
  1299               add_fields_to_worklist(field, abase);
  1308 // Put on worklist all related field nodes.
  1309 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1310   int offset = field->offset();
  1311   if (base->is_LocalVar()) {
  1312     for (UseIterator j(base); j.has_next(); j.next()) {
  1313       PointsToNode* f = j.get();
  1314       if (PointsToNode::is_base_use(f)) { // Field
  1315         f = PointsToNode::get_use_node(f);
  1316         if (f == field || !f->as_Field()->is_oop())
  1317           continue;
  1318         int offs = f->as_Field()->offset();
  1319         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1320           add_to_worklist(f);
  1324   } else {
  1325     assert(base->is_JavaObject(), "sanity");
  1326     if (// Skip phantom_object since it is only used to indicate that
  1327         // this field's content globally escapes.
  1328         (base != phantom_obj) &&
  1329         // NULL object node does not have fields.
  1330         (base != null_obj)) {
  1331       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1332         PointsToNode* f = i.get();
  1333         // Skip arraycopy edge since store to destination object field
  1334         // does not update value in source object field.
  1335         if (f->is_Arraycopy()) {
  1336           assert(base->arraycopy_dst(), "sanity");
  1337           continue;
  1339         if (f == field || !f->as_Field()->is_oop())
  1340           continue;
  1341         int offs = f->as_Field()->offset();
  1342         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1343           add_to_worklist(f);
  1350 // Find fields which have unknown value.
  1351 int ConnectionGraph::find_field_value(FieldNode* field) {
  1352   // Escaped fields should have init value already.
  1353   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1354   int new_edges = 0;
  1355   for (BaseIterator i(field); i.has_next(); i.next()) {
  1356     PointsToNode* base = i.get();
  1357     if (base->is_JavaObject()) {
  1358       // Skip Allocate's fields which will be processed later.
  1359       if (base->ideal_node()->is_Allocate())
  1360         return 0;
  1361       assert(base == null_obj, "only NULL ptr base expected here");
  1364   if (add_edge(field, phantom_obj)) {
  1365     // New edge was added
  1366     new_edges++;
  1367     add_field_uses_to_worklist(field);
  1369   return new_edges;
  1372 // Find fields initializing values for allocations.
  1373 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1374   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1375   int new_edges = 0;
  1376   Node* alloc = pta->ideal_node();
  1377   if (init_val == phantom_obj) {
  1378     // Do nothing for Allocate nodes since its fields values are "known".
  1379     if (alloc->is_Allocate())
  1380       return 0;
  1381     assert(alloc->as_CallStaticJava(), "sanity");
  1382 #ifdef ASSERT
  1383     if (alloc->as_CallStaticJava()->method() == NULL) {
  1384       const char* name = alloc->as_CallStaticJava()->_name;
  1385       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1387 #endif
  1388     // Non-escaped allocation returned from Java or runtime call have
  1389     // unknown values in fields.
  1390     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1391       PointsToNode* field = i.get();
  1392       if (field->is_Field() && field->as_Field()->is_oop()) {
  1393         if (add_edge(field, phantom_obj)) {
  1394           // New edge was added
  1395           new_edges++;
  1396           add_field_uses_to_worklist(field->as_Field());
  1400     return new_edges;
  1402   assert(init_val == null_obj, "sanity");
  1403   // Do nothing for Call nodes since its fields values are unknown.
  1404   if (!alloc->is_Allocate())
  1405     return 0;
  1407   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1408   Compile* C = _compile;
  1409   bool visited_bottom_offset = false;
  1410   GrowableArray<int> offsets_worklist;
  1412   // Check if an oop field's initializing value is recorded and add
  1413   // a corresponding NULL if field's value if it is not recorded.
  1414   // Connection Graph does not record a default initialization by NULL
  1415   // captured by Initialize node.
  1416   //
  1417   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1418     PointsToNode* field = i.get(); // Field (AddP)
  1419     if (!field->is_Field() || !field->as_Field()->is_oop())
  1420       continue; // Not oop field
  1421     int offset = field->as_Field()->offset();
  1422     if (offset == Type::OffsetBot) {
  1423       if (!visited_bottom_offset) {
  1424         // OffsetBot is used to reference array's element,
  1425         // always add reference to NULL to all Field nodes since we don't
  1426         // known which element is referenced.
  1427         if (add_edge(field, null_obj)) {
  1428           // New edge was added
  1429           new_edges++;
  1430           add_field_uses_to_worklist(field->as_Field());
  1431           visited_bottom_offset = true;
  1434     } else {
  1435       // Check only oop fields.
  1436       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1437       if (adr_type->isa_rawptr()) {
  1438 #ifdef ASSERT
  1439         // Raw pointers are used for initializing stores so skip it
  1440         // since it should be recorded already
  1441         Node* base = get_addp_base(field->ideal_node());
  1442         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1443                (base->in(0) == alloc),"unexpected pointer type");
  1444 #endif
  1445         continue;
  1447       if (!offsets_worklist.contains(offset)) {
  1448         offsets_worklist.append(offset);
  1449         Node* value = NULL;
  1450         if (ini != NULL) {
  1451           // StoreP::memory_type() == T_ADDRESS
  1452           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1453           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1454           // Make sure initializing store has the same type as this AddP.
  1455           // This AddP may reference non existing field because it is on a
  1456           // dead branch of bimorphic call which is not eliminated yet.
  1457           if (store != NULL && store->is_Store() &&
  1458               store->as_Store()->memory_type() == ft) {
  1459             value = store->in(MemNode::ValueIn);
  1460 #ifdef ASSERT
  1461             if (VerifyConnectionGraph) {
  1462               // Verify that AddP already points to all objects the value points to.
  1463               PointsToNode* val = ptnode_adr(value->_idx);
  1464               assert((val != NULL), "should be processed already");
  1465               PointsToNode* missed_obj = NULL;
  1466               if (val->is_JavaObject()) {
  1467                 if (!field->points_to(val->as_JavaObject())) {
  1468                   missed_obj = val;
  1470               } else {
  1471                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1472                   tty->print_cr("----------init store has invalid value -----");
  1473                   store->dump();
  1474                   val->dump();
  1475                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1477                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1478                   PointsToNode* obj = j.get();
  1479                   if (obj->is_JavaObject()) {
  1480                     if (!field->points_to(obj->as_JavaObject())) {
  1481                       missed_obj = obj;
  1482                       break;
  1487               if (missed_obj != NULL) {
  1488                 tty->print_cr("----------field---------------------------------");
  1489                 field->dump();
  1490                 tty->print_cr("----------missed referernce to object-----------");
  1491                 missed_obj->dump();
  1492                 tty->print_cr("----------object referernced by init store -----");
  1493                 store->dump();
  1494                 val->dump();
  1495                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1498 #endif
  1499           } else {
  1500             // There could be initializing stores which follow allocation.
  1501             // For example, a volatile field store is not collected
  1502             // by Initialize node.
  1503             //
  1504             // Need to check for dependent loads to separate such stores from
  1505             // stores which follow loads. For now, add initial value NULL so
  1506             // that compare pointers optimization works correctly.
  1509         if (value == NULL) {
  1510           // A field's initializing value was not recorded. Add NULL.
  1511           if (add_edge(field, null_obj)) {
  1512             // New edge was added
  1513             new_edges++;
  1514             add_field_uses_to_worklist(field->as_Field());
  1520   return new_edges;
  1523 // Adjust scalar_replaceable state after Connection Graph is built.
  1524 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1525   // Search for non-escaping objects which are not scalar replaceable
  1526   // and mark them to propagate the state to referenced objects.
  1528   // 1. An object is not scalar replaceable if the field into which it is
  1529   // stored has unknown offset (stored into unknown element of an array).
  1530   //
  1531   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1532     PointsToNode* use = i.get();
  1533     assert(!use->is_Arraycopy(), "sanity");
  1534     if (use->is_Field()) {
  1535       FieldNode* field = use->as_Field();
  1536       assert(field->is_oop() && field->scalar_replaceable() &&
  1537              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1538       if (field->offset() == Type::OffsetBot) {
  1539         jobj->set_scalar_replaceable(false);
  1540         return;
  1543     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1544     // 2. An object is not scalar replaceable if it is merged with other objects.
  1545     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1546       PointsToNode* ptn = j.get();
  1547       if (ptn->is_JavaObject() && ptn != jobj) {
  1548         // Mark all objects.
  1549         jobj->set_scalar_replaceable(false);
  1550          ptn->set_scalar_replaceable(false);
  1553     if (!jobj->scalar_replaceable()) {
  1554       return;
  1558   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1559     // Non-escaping object node should point only to field nodes.
  1560     FieldNode* field = j.get()->as_Field();
  1561     int offset = field->as_Field()->offset();
  1563     // 3. An object is not scalar replaceable if it has a field with unknown
  1564     // offset (array's element is accessed in loop).
  1565     if (offset == Type::OffsetBot) {
  1566       jobj->set_scalar_replaceable(false);
  1567       return;
  1569     // 4. Currently an object is not scalar replaceable if a LoadStore node
  1570     // access its field since the field value is unknown after it.
  1571     //
  1572     Node* n = field->ideal_node();
  1573     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1574       if (n->fast_out(i)->is_LoadStore()) {
  1575         jobj->set_scalar_replaceable(false);
  1576         return;
  1580     // 5. Or the address may point to more then one object. This may produce
  1581     // the false positive result (set not scalar replaceable)
  1582     // since the flow-insensitive escape analysis can't separate
  1583     // the case when stores overwrite the field's value from the case
  1584     // when stores happened on different control branches.
  1585     //
  1586     // Note: it will disable scalar replacement in some cases:
  1587     //
  1588     //    Point p[] = new Point[1];
  1589     //    p[0] = new Point(); // Will be not scalar replaced
  1590     //
  1591     // but it will save us from incorrect optimizations in next cases:
  1592     //
  1593     //    Point p[] = new Point[1];
  1594     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1595     //
  1596     if (field->base_count() > 1) {
  1597       for (BaseIterator i(field); i.has_next(); i.next()) {
  1598         PointsToNode* base = i.get();
  1599         // Don't take into account LocalVar nodes which
  1600         // may point to only one object which should be also
  1601         // this field's base by now.
  1602         if (base->is_JavaObject() && base != jobj) {
  1603           // Mark all bases.
  1604           jobj->set_scalar_replaceable(false);
  1605           base->set_scalar_replaceable(false);
  1612 #ifdef ASSERT
  1613 void ConnectionGraph::verify_connection_graph(
  1614                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1615                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1616                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1617                          GrowableArray<Node*>& addp_worklist) {
  1618   // Verify that graph is complete - no new edges could be added.
  1619   int java_objects_length = java_objects_worklist.length();
  1620   int non_escaped_length  = non_escaped_worklist.length();
  1621   int new_edges = 0;
  1622   for (int next = 0; next < java_objects_length; ++next) {
  1623     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1624     new_edges += add_java_object_edges(ptn, true);
  1626   assert(new_edges == 0, "graph was not complete");
  1627   // Verify that escape state is final.
  1628   int length = non_escaped_worklist.length();
  1629   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1630   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1631          (non_escaped_length == length) &&
  1632          (_worklist.length() == 0), "escape state was not final");
  1634   // Verify fields information.
  1635   int addp_length = addp_worklist.length();
  1636   for (int next = 0; next < addp_length; ++next ) {
  1637     Node* n = addp_worklist.at(next);
  1638     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1639     if (field->is_oop()) {
  1640       // Verify that field has all bases
  1641       Node* base = get_addp_base(n);
  1642       PointsToNode* ptn = ptnode_adr(base->_idx);
  1643       if (ptn->is_JavaObject()) {
  1644         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1645       } else {
  1646         assert(ptn->is_LocalVar(), "sanity");
  1647         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1648           PointsToNode* e = i.get();
  1649           if (e->is_JavaObject()) {
  1650             assert(field->has_base(e->as_JavaObject()), "sanity");
  1654       // Verify that all fields have initializing values.
  1655       if (field->edge_count() == 0) {
  1656         tty->print_cr("----------field does not have references----------");
  1657         field->dump();
  1658         for (BaseIterator i(field); i.has_next(); i.next()) {
  1659           PointsToNode* base = i.get();
  1660           tty->print_cr("----------field has next base---------------------");
  1661           base->dump();
  1662           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1663             tty->print_cr("----------base has fields-------------------------");
  1664             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1665               j.get()->dump();
  1667             tty->print_cr("----------base has references---------------------");
  1668             for (UseIterator j(base); j.has_next(); j.next()) {
  1669               j.get()->dump();
  1673         for (UseIterator i(field); i.has_next(); i.next()) {
  1674           i.get()->dump();
  1676         assert(field->edge_count() > 0, "sanity");
  1681 #endif
  1683 // Optimize ideal graph.
  1684 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1685                                            GrowableArray<Node*>& storestore_worklist) {
  1686   Compile* C = _compile;
  1687   PhaseIterGVN* igvn = _igvn;
  1688   if (EliminateLocks) {
  1689     // Mark locks before changing ideal graph.
  1690     int cnt = C->macro_count();
  1691     for( int i=0; i < cnt; i++ ) {
  1692       Node *n = C->macro_node(i);
  1693       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1694         AbstractLockNode* alock = n->as_AbstractLock();
  1695         if (!alock->is_non_esc_obj()) {
  1696           if (not_global_escape(alock->obj_node())) {
  1697             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1698             // The lock could be marked eliminated by lock coarsening
  1699             // code during first IGVN before EA. Replace coarsened flag
  1700             // to eliminate all associated locks/unlocks.
  1701             alock->set_non_esc_obj();
  1708   if (OptimizePtrCompare) {
  1709     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1710     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1711     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1712     // Optimize objects compare.
  1713     while (ptr_cmp_worklist.length() != 0) {
  1714       Node *n = ptr_cmp_worklist.pop();
  1715       Node *res = optimize_ptr_compare(n);
  1716       if (res != NULL) {
  1717 #ifndef PRODUCT
  1718         if (PrintOptimizePtrCompare) {
  1719           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1720           if (Verbose) {
  1721             n->dump(1);
  1724 #endif
  1725         igvn->replace_node(n, res);
  1728     // cleanup
  1729     if (_pcmp_neq->outcnt() == 0)
  1730       igvn->hash_delete(_pcmp_neq);
  1731     if (_pcmp_eq->outcnt()  == 0)
  1732       igvn->hash_delete(_pcmp_eq);
  1735   // For MemBarStoreStore nodes added in library_call.cpp, check
  1736   // escape status of associated AllocateNode and optimize out
  1737   // MemBarStoreStore node if the allocated object never escapes.
  1738   while (storestore_worklist.length() != 0) {
  1739     Node *n = storestore_worklist.pop();
  1740     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1741     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1742     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1743     if (not_global_escape(alloc)) {
  1744       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1745       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1746       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1747       igvn->register_new_node_with_optimizer(mb);
  1748       igvn->replace_node(storestore, mb);
  1753 // Optimize objects compare.
  1754 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1755   assert(OptimizePtrCompare, "sanity");
  1756   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1757   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1758   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1759   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1760   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1761   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1763   // Check simple cases first.
  1764   if (jobj1 != NULL) {
  1765     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1766       if (jobj1 == jobj2) {
  1767         // Comparing the same not escaping object.
  1768         return _pcmp_eq;
  1770       Node* obj = jobj1->ideal_node();
  1771       // Comparing not escaping allocation.
  1772       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1773           !ptn2->points_to(jobj1)) {
  1774         return _pcmp_neq; // This includes nullness check.
  1778   if (jobj2 != NULL) {
  1779     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1780       Node* obj = jobj2->ideal_node();
  1781       // Comparing not escaping allocation.
  1782       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1783           !ptn1->points_to(jobj2)) {
  1784         return _pcmp_neq; // This includes nullness check.
  1788   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1789       jobj2 != NULL && jobj2 != phantom_obj &&
  1790       jobj1->ideal_node()->is_Con() &&
  1791       jobj2->ideal_node()->is_Con()) {
  1792     // Klass or String constants compare. Need to be careful with
  1793     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1794     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
  1795     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
  1796     assert(t1 != NULL && t2 != NULL, "sanity");
  1797     if (t1->make_ptr() == t2->make_ptr()) {
  1798       return _pcmp_eq;
  1799     } else {
  1800       return _pcmp_neq;
  1803   if (ptn1->meet(ptn2)) {
  1804     return NULL; // Sets are not disjoint
  1807   // Sets are disjoint.
  1808   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1809   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1810   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1811   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1812   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1813       set2_has_unknown_ptr && set1_has_null_ptr) {
  1814     // Check nullness of unknown object.
  1815     return NULL;
  1818   // Disjointness by itself is not sufficient since
  1819   // alias analysis is not complete for escaped objects.
  1820   // Disjoint sets are definitely unrelated only when
  1821   // at least one set has only not escaping allocations.
  1822   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1823     if (ptn1->non_escaping_allocation()) {
  1824       return _pcmp_neq;
  1827   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1828     if (ptn2->non_escaping_allocation()) {
  1829       return _pcmp_neq;
  1832   return NULL;
  1835 // Connection Graph constuction functions.
  1837 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1838   PointsToNode* ptadr = _nodes.at(n->_idx);
  1839   if (ptadr != NULL) {
  1840     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1841     return;
  1843   Compile* C = _compile;
  1844   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  1845   _nodes.at_put(n->_idx, ptadr);
  1848 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1849   PointsToNode* ptadr = _nodes.at(n->_idx);
  1850   if (ptadr != NULL) {
  1851     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1852     return;
  1854   Compile* C = _compile;
  1855   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  1856   _nodes.at_put(n->_idx, ptadr);
  1859 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1860   PointsToNode* ptadr = _nodes.at(n->_idx);
  1861   if (ptadr != NULL) {
  1862     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1863     return;
  1865   bool unsafe = false;
  1866   bool is_oop = is_oop_field(n, offset, &unsafe);
  1867   if (unsafe) {
  1868     es = PointsToNode::GlobalEscape;
  1870   Compile* C = _compile;
  1871   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  1872   _nodes.at_put(n->_idx, field);
  1875 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1876                                     PointsToNode* src, PointsToNode* dst) {
  1877   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1878   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1879   PointsToNode* ptadr = _nodes.at(n->_idx);
  1880   if (ptadr != NULL) {
  1881     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1882     return;
  1884   Compile* C = _compile;
  1885   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  1886   _nodes.at_put(n->_idx, ptadr);
  1887   // Add edge from arraycopy node to source object.
  1888   (void)add_edge(ptadr, src);
  1889   src->set_arraycopy_src();
  1890   // Add edge from destination object to arraycopy node.
  1891   (void)add_edge(dst, ptadr);
  1892   dst->set_arraycopy_dst();
  1895 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1896   const Type* adr_type = n->as_AddP()->bottom_type();
  1897   BasicType bt = T_INT;
  1898   if (offset == Type::OffsetBot) {
  1899     // Check only oop fields.
  1900     if (!adr_type->isa_aryptr() ||
  1901         (adr_type->isa_aryptr()->klass() == NULL) ||
  1902          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1903       // OffsetBot is used to reference array's element. Ignore first AddP.
  1904       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1905         bt = T_OBJECT;
  1908   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1909     if (adr_type->isa_instptr()) {
  1910       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  1911       if (field != NULL) {
  1912         bt = field->layout_type();
  1913       } else {
  1914         // Check for unsafe oop field access
  1915         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1916           int opcode = n->fast_out(i)->Opcode();
  1917           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1918               opcode == Op_StoreN || opcode == Op_LoadN) {
  1919             bt = T_OBJECT;
  1920             (*unsafe) = true;
  1921             break;
  1925     } else if (adr_type->isa_aryptr()) {
  1926       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1927         // Ignore array length load.
  1928       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  1929         // Ignore first AddP.
  1930       } else {
  1931         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1932         bt = elemtype->array_element_basic_type();
  1934     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  1935       // Allocation initialization, ThreadLocal field access, unsafe access
  1936       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1937         int opcode = n->fast_out(i)->Opcode();
  1938         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1939             opcode == Op_StoreN || opcode == Op_LoadN) {
  1940           bt = T_OBJECT;
  1941           break;
  1946   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  1949 // Returns unique pointed java object or NULL.
  1950 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  1951   assert(!_collecting, "should not call when contructed graph");
  1952   // If the node was created after the escape computation we can't answer.
  1953   uint idx = n->_idx;
  1954   if (idx >= nodes_size()) {
  1955     return NULL;
  1957   PointsToNode* ptn = ptnode_adr(idx);
  1958   if (ptn->is_JavaObject()) {
  1959     return ptn->as_JavaObject();
  1961   assert(ptn->is_LocalVar(), "sanity");
  1962   // Check all java objects it points to.
  1963   JavaObjectNode* jobj = NULL;
  1964   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1965     PointsToNode* e = i.get();
  1966     if (e->is_JavaObject()) {
  1967       if (jobj == NULL) {
  1968         jobj = e->as_JavaObject();
  1969       } else if (jobj != e) {
  1970         return NULL;
  1974   return jobj;
  1977 // Return true if this node points only to non-escaping allocations.
  1978 bool PointsToNode::non_escaping_allocation() {
  1979   if (is_JavaObject()) {
  1980     Node* n = ideal_node();
  1981     if (n->is_Allocate() || n->is_CallStaticJava()) {
  1982       return (escape_state() == PointsToNode::NoEscape);
  1983     } else {
  1984       return false;
  1987   assert(is_LocalVar(), "sanity");
  1988   // Check all java objects it points to.
  1989   for (EdgeIterator i(this); i.has_next(); i.next()) {
  1990     PointsToNode* e = i.get();
  1991     if (e->is_JavaObject()) {
  1992       Node* n = e->ideal_node();
  1993       if ((e->escape_state() != PointsToNode::NoEscape) ||
  1994           !(n->is_Allocate() || n->is_CallStaticJava())) {
  1995         return false;
  1999   return true;
  2002 // Return true if we know the node does not escape globally.
  2003 bool ConnectionGraph::not_global_escape(Node *n) {
  2004   assert(!_collecting, "should not call during graph construction");
  2005   // If the node was created after the escape computation we can't answer.
  2006   uint idx = n->_idx;
  2007   if (idx >= nodes_size()) {
  2008     return false;
  2010   PointsToNode* ptn = ptnode_adr(idx);
  2011   PointsToNode::EscapeState es = ptn->escape_state();
  2012   // If we have already computed a value, return it.
  2013   if (es >= PointsToNode::GlobalEscape)
  2014     return false;
  2015   if (ptn->is_JavaObject()) {
  2016     return true; // (es < PointsToNode::GlobalEscape);
  2018   assert(ptn->is_LocalVar(), "sanity");
  2019   // Check all java objects it points to.
  2020   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2021     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2022       return false;
  2024   return true;
  2028 // Helper functions
  2030 // Return true if this node points to specified node or nodes it points to.
  2031 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2032   if (is_JavaObject()) {
  2033     return (this == ptn);
  2035   assert(is_LocalVar() || is_Field(), "sanity");
  2036   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2037     if (i.get() == ptn)
  2038       return true;
  2040   return false;
  2043 // Return true if one node points to an other.
  2044 bool PointsToNode::meet(PointsToNode* ptn) {
  2045   if (this == ptn) {
  2046     return true;
  2047   } else if (ptn->is_JavaObject()) {
  2048     return this->points_to(ptn->as_JavaObject());
  2049   } else if (this->is_JavaObject()) {
  2050     return ptn->points_to(this->as_JavaObject());
  2052   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2053   int ptn_count =  ptn->edge_count();
  2054   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2055     PointsToNode* this_e = i.get();
  2056     for (int j = 0; j < ptn_count; j++) {
  2057       if (this_e == ptn->edge(j))
  2058         return true;
  2061   return false;
  2064 #ifdef ASSERT
  2065 // Return true if bases point to this java object.
  2066 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2067   for (BaseIterator i(this); i.has_next(); i.next()) {
  2068     if (i.get() == jobj)
  2069       return true;
  2071   return false;
  2073 #endif
  2075 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2076   const Type *adr_type = phase->type(adr);
  2077   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2078       adr->in(AddPNode::Address)->is_Proj() &&
  2079       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2080     // We are computing a raw address for a store captured by an Initialize
  2081     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2082     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2083     assert(offs != Type::OffsetBot ||
  2084            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2085            "offset must be a constant or it is initialization of array");
  2086     return offs;
  2088   const TypePtr *t_ptr = adr_type->isa_ptr();
  2089   assert(t_ptr != NULL, "must be a pointer type");
  2090   return t_ptr->offset();
  2093 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2094   assert(addp->is_AddP(), "must be AddP");
  2095   //
  2096   // AddP cases for Base and Address inputs:
  2097   // case #1. Direct object's field reference:
  2098   //     Allocate
  2099   //       |
  2100   //     Proj #5 ( oop result )
  2101   //       |
  2102   //     CheckCastPP (cast to instance type)
  2103   //      | |
  2104   //     AddP  ( base == address )
  2105   //
  2106   // case #2. Indirect object's field reference:
  2107   //      Phi
  2108   //       |
  2109   //     CastPP (cast to instance type)
  2110   //      | |
  2111   //     AddP  ( base == address )
  2112   //
  2113   // case #3. Raw object's field reference for Initialize node:
  2114   //      Allocate
  2115   //        |
  2116   //      Proj #5 ( oop result )
  2117   //  top   |
  2118   //     \  |
  2119   //     AddP  ( base == top )
  2120   //
  2121   // case #4. Array's element reference:
  2122   //   {CheckCastPP | CastPP}
  2123   //     |  | |
  2124   //     |  AddP ( array's element offset )
  2125   //     |  |
  2126   //     AddP ( array's offset )
  2127   //
  2128   // case #5. Raw object's field reference for arraycopy stub call:
  2129   //          The inline_native_clone() case when the arraycopy stub is called
  2130   //          after the allocation before Initialize and CheckCastPP nodes.
  2131   //      Allocate
  2132   //        |
  2133   //      Proj #5 ( oop result )
  2134   //       | |
  2135   //       AddP  ( base == address )
  2136   //
  2137   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2138   //          Raw object's field reference:
  2139   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2140   //  top   |
  2141   //     \  |
  2142   //     AddP  ( base == top )
  2143   //
  2144   // case #7. Klass's field reference.
  2145   //      LoadKlass
  2146   //       | |
  2147   //       AddP  ( base == address )
  2148   //
  2149   // case #8. narrow Klass's field reference.
  2150   //      LoadNKlass
  2151   //       |
  2152   //      DecodeN
  2153   //       | |
  2154   //       AddP  ( base == address )
  2155   //
  2156   Node *base = addp->in(AddPNode::Base);
  2157   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2158     base = addp->in(AddPNode::Address);
  2159     while (base->is_AddP()) {
  2160       // Case #6 (unsafe access) may have several chained AddP nodes.
  2161       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2162       base = base->in(AddPNode::Address);
  2164     Node* uncast_base = base->uncast();
  2165     int opcode = uncast_base->Opcode();
  2166     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2167            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2168            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
  2169            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2171   return base;
  2174 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2175   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2176   Node* addp2 = addp->raw_out(0);
  2177   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2178       addp2->in(AddPNode::Base) == n &&
  2179       addp2->in(AddPNode::Address) == addp) {
  2180     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2181     //
  2182     // Find array's offset to push it on worklist first and
  2183     // as result process an array's element offset first (pushed second)
  2184     // to avoid CastPP for the array's offset.
  2185     // Otherwise the inserted CastPP (LocalVar) will point to what
  2186     // the AddP (Field) points to. Which would be wrong since
  2187     // the algorithm expects the CastPP has the same point as
  2188     // as AddP's base CheckCastPP (LocalVar).
  2189     //
  2190     //    ArrayAllocation
  2191     //     |
  2192     //    CheckCastPP
  2193     //     |
  2194     //    memProj (from ArrayAllocation CheckCastPP)
  2195     //     |  ||
  2196     //     |  ||   Int (element index)
  2197     //     |  ||    |   ConI (log(element size))
  2198     //     |  ||    |   /
  2199     //     |  ||   LShift
  2200     //     |  ||  /
  2201     //     |  AddP (array's element offset)
  2202     //     |  |
  2203     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2204     //     | / /
  2205     //     AddP (array's offset)
  2206     //      |
  2207     //     Load/Store (memory operation on array's element)
  2208     //
  2209     return addp2;
  2211   return NULL;
  2214 //
  2215 // Adjust the type and inputs of an AddP which computes the
  2216 // address of a field of an instance
  2217 //
  2218 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2219   PhaseGVN* igvn = _igvn;
  2220   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2221   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2222   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2223   if (t == NULL) {
  2224     // We are computing a raw address for a store captured by an Initialize
  2225     // compute an appropriate address type (cases #3 and #5).
  2226     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2227     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2228     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2229     assert(offs != Type::OffsetBot, "offset must be a constant");
  2230     t = base_t->add_offset(offs)->is_oopptr();
  2232   int inst_id =  base_t->instance_id();
  2233   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2234                              "old type must be non-instance or match new type");
  2236   // The type 't' could be subclass of 'base_t'.
  2237   // As result t->offset() could be large then base_t's size and it will
  2238   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2239   // constructor verifies correctness of the offset.
  2240   //
  2241   // It could happened on subclass's branch (from the type profiling
  2242   // inlining) which was not eliminated during parsing since the exactness
  2243   // of the allocation type was not propagated to the subclass type check.
  2244   //
  2245   // Or the type 't' could be not related to 'base_t' at all.
  2246   // It could happened when CHA type is different from MDO type on a dead path
  2247   // (for example, from instanceof check) which is not collapsed during parsing.
  2248   //
  2249   // Do nothing for such AddP node and don't process its users since
  2250   // this code branch will go away.
  2251   //
  2252   if (!t->is_known_instance() &&
  2253       !base_t->klass()->is_subtype_of(t->klass())) {
  2254      return false; // bail out
  2256   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2257   // Do NOT remove the next line: ensure a new alias index is allocated
  2258   // for the instance type. Note: C++ will not remove it since the call
  2259   // has side effect.
  2260   int alias_idx = _compile->get_alias_index(tinst);
  2261   igvn->set_type(addp, tinst);
  2262   // record the allocation in the node map
  2263   set_map(addp, get_map(base->_idx));
  2264   // Set addp's Base and Address to 'base'.
  2265   Node *abase = addp->in(AddPNode::Base);
  2266   Node *adr   = addp->in(AddPNode::Address);
  2267   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2268       adr->in(0)->_idx == (uint)inst_id) {
  2269     // Skip AddP cases #3 and #5.
  2270   } else {
  2271     assert(!abase->is_top(), "sanity"); // AddP case #3
  2272     if (abase != base) {
  2273       igvn->hash_delete(addp);
  2274       addp->set_req(AddPNode::Base, base);
  2275       if (abase == adr) {
  2276         addp->set_req(AddPNode::Address, base);
  2277       } else {
  2278         // AddP case #4 (adr is array's element offset AddP node)
  2279 #ifdef ASSERT
  2280         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2281         assert(adr->is_AddP() && atype != NULL &&
  2282                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2283 #endif
  2285       igvn->hash_insert(addp);
  2288   // Put on IGVN worklist since at least addp's type was changed above.
  2289   record_for_optimizer(addp);
  2290   return true;
  2293 //
  2294 // Create a new version of orig_phi if necessary. Returns either the newly
  2295 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2296 // phi was created.  Cache the last newly created phi in the node map.
  2297 //
  2298 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2299   Compile *C = _compile;
  2300   PhaseGVN* igvn = _igvn;
  2301   new_created = false;
  2302   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2303   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2304   if (phi_alias_idx == alias_idx) {
  2305     return orig_phi;
  2307   // Have we recently created a Phi for this alias index?
  2308   PhiNode *result = get_map_phi(orig_phi->_idx);
  2309   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2310     return result;
  2312   // Previous check may fail when the same wide memory Phi was split into Phis
  2313   // for different memory slices. Search all Phis for this region.
  2314   if (result != NULL) {
  2315     Node* region = orig_phi->in(0);
  2316     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2317       Node* phi = region->fast_out(i);
  2318       if (phi->is_Phi() &&
  2319           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2320         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2321         return phi->as_Phi();
  2325   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
  2326     if (C->do_escape_analysis() == true && !C->failing()) {
  2327       // Retry compilation without escape analysis.
  2328       // If this is the first failure, the sentinel string will "stick"
  2329       // to the Compile object, and the C2Compiler will see it and retry.
  2330       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2332     return NULL;
  2334   orig_phi_worklist.append_if_missing(orig_phi);
  2335   const TypePtr *atype = C->get_adr_type(alias_idx);
  2336   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2337   C->copy_node_notes_to(result, orig_phi);
  2338   igvn->set_type(result, result->bottom_type());
  2339   record_for_optimizer(result);
  2340   set_map(orig_phi, result);
  2341   new_created = true;
  2342   return result;
  2345 //
  2346 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2347 // specified alias index.
  2348 //
  2349 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2350   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2351   Compile *C = _compile;
  2352   PhaseGVN* igvn = _igvn;
  2353   bool new_phi_created;
  2354   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2355   if (!new_phi_created) {
  2356     return result;
  2358   GrowableArray<PhiNode *>  phi_list;
  2359   GrowableArray<uint>  cur_input;
  2360   PhiNode *phi = orig_phi;
  2361   uint idx = 1;
  2362   bool finished = false;
  2363   while(!finished) {
  2364     while (idx < phi->req()) {
  2365       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2366       if (mem != NULL && mem->is_Phi()) {
  2367         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2368         if (new_phi_created) {
  2369           // found an phi for which we created a new split, push current one on worklist and begin
  2370           // processing new one
  2371           phi_list.push(phi);
  2372           cur_input.push(idx);
  2373           phi = mem->as_Phi();
  2374           result = newphi;
  2375           idx = 1;
  2376           continue;
  2377         } else {
  2378           mem = newphi;
  2381       if (C->failing()) {
  2382         return NULL;
  2384       result->set_req(idx++, mem);
  2386 #ifdef ASSERT
  2387     // verify that the new Phi has an input for each input of the original
  2388     assert( phi->req() == result->req(), "must have same number of inputs.");
  2389     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2390 #endif
  2391     // Check if all new phi's inputs have specified alias index.
  2392     // Otherwise use old phi.
  2393     for (uint i = 1; i < phi->req(); i++) {
  2394       Node* in = result->in(i);
  2395       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2397     // we have finished processing a Phi, see if there are any more to do
  2398     finished = (phi_list.length() == 0 );
  2399     if (!finished) {
  2400       phi = phi_list.pop();
  2401       idx = cur_input.pop();
  2402       PhiNode *prev_result = get_map_phi(phi->_idx);
  2403       prev_result->set_req(idx++, result);
  2404       result = prev_result;
  2407   return result;
  2410 //
  2411 // The next methods are derived from methods in MemNode.
  2412 //
  2413 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2414   Node *mem = mmem;
  2415   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2416   // means an array I have not precisely typed yet.  Do not do any
  2417   // alias stuff with it any time soon.
  2418   if (toop->base() != Type::AnyPtr &&
  2419       !(toop->klass() != NULL &&
  2420         toop->klass()->is_java_lang_Object() &&
  2421         toop->offset() == Type::OffsetBot)) {
  2422     mem = mmem->memory_at(alias_idx);
  2423     // Update input if it is progress over what we have now
  2425   return mem;
  2428 //
  2429 // Move memory users to their memory slices.
  2430 //
  2431 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2432   Compile* C = _compile;
  2433   PhaseGVN* igvn = _igvn;
  2434   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2435   assert(tp != NULL, "ptr type");
  2436   int alias_idx = C->get_alias_index(tp);
  2437   int general_idx = C->get_general_index(alias_idx);
  2439   // Move users first
  2440   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2441     Node* use = n->fast_out(i);
  2442     if (use->is_MergeMem()) {
  2443       MergeMemNode* mmem = use->as_MergeMem();
  2444       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2445       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2446         continue; // Nothing to do
  2448       // Replace previous general reference to mem node.
  2449       uint orig_uniq = C->unique();
  2450       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2451       assert(orig_uniq == C->unique(), "no new nodes");
  2452       mmem->set_memory_at(general_idx, m);
  2453       --imax;
  2454       --i;
  2455     } else if (use->is_MemBar()) {
  2456       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2457       if (use->req() > MemBarNode::Precedent &&
  2458           use->in(MemBarNode::Precedent) == n) {
  2459         // Don't move related membars.
  2460         record_for_optimizer(use);
  2461         continue;
  2463       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2464       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2465           alias_idx == general_idx) {
  2466         continue; // Nothing to do
  2468       // Move to general memory slice.
  2469       uint orig_uniq = C->unique();
  2470       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2471       assert(orig_uniq == C->unique(), "no new nodes");
  2472       igvn->hash_delete(use);
  2473       imax -= use->replace_edge(n, m);
  2474       igvn->hash_insert(use);
  2475       record_for_optimizer(use);
  2476       --i;
  2477 #ifdef ASSERT
  2478     } else if (use->is_Mem()) {
  2479       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2480         // Don't move related cardmark.
  2481         continue;
  2483       // Memory nodes should have new memory input.
  2484       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2485       assert(tp != NULL, "ptr type");
  2486       int idx = C->get_alias_index(tp);
  2487       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2488              "Following memory nodes should have new memory input or be on the same memory slice");
  2489     } else if (use->is_Phi()) {
  2490       // Phi nodes should be split and moved already.
  2491       tp = use->as_Phi()->adr_type()->isa_ptr();
  2492       assert(tp != NULL, "ptr type");
  2493       int idx = C->get_alias_index(tp);
  2494       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2495     } else {
  2496       use->dump();
  2497       assert(false, "should not be here");
  2498 #endif
  2503 //
  2504 // Search memory chain of "mem" to find a MemNode whose address
  2505 // is the specified alias index.
  2506 //
  2507 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2508   if (orig_mem == NULL)
  2509     return orig_mem;
  2510   Compile* C = _compile;
  2511   PhaseGVN* igvn = _igvn;
  2512   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2513   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2514   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2515   Node *prev = NULL;
  2516   Node *result = orig_mem;
  2517   while (prev != result) {
  2518     prev = result;
  2519     if (result == start_mem)
  2520       break;  // hit one of our sentinels
  2521     if (result->is_Mem()) {
  2522       const Type *at = igvn->type(result->in(MemNode::Address));
  2523       if (at == Type::TOP)
  2524         break; // Dead
  2525       assert (at->isa_ptr() != NULL, "pointer type required.");
  2526       int idx = C->get_alias_index(at->is_ptr());
  2527       if (idx == alias_idx)
  2528         break; // Found
  2529       if (!is_instance && (at->isa_oopptr() == NULL ||
  2530                            !at->is_oopptr()->is_known_instance())) {
  2531         break; // Do not skip store to general memory slice.
  2533       result = result->in(MemNode::Memory);
  2535     if (!is_instance)
  2536       continue;  // don't search further for non-instance types
  2537     // skip over a call which does not affect this memory slice
  2538     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2539       Node *proj_in = result->in(0);
  2540       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2541         break;  // hit one of our sentinels
  2542       } else if (proj_in->is_Call()) {
  2543         CallNode *call = proj_in->as_Call();
  2544         if (!call->may_modify(toop, igvn)) {
  2545           result = call->in(TypeFunc::Memory);
  2547       } else if (proj_in->is_Initialize()) {
  2548         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2549         // Stop if this is the initialization for the object instance which
  2550         // which contains this memory slice, otherwise skip over it.
  2551         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2552           result = proj_in->in(TypeFunc::Memory);
  2554       } else if (proj_in->is_MemBar()) {
  2555         result = proj_in->in(TypeFunc::Memory);
  2557     } else if (result->is_MergeMem()) {
  2558       MergeMemNode *mmem = result->as_MergeMem();
  2559       result = step_through_mergemem(mmem, alias_idx, toop);
  2560       if (result == mmem->base_memory()) {
  2561         // Didn't find instance memory, search through general slice recursively.
  2562         result = mmem->memory_at(C->get_general_index(alias_idx));
  2563         result = find_inst_mem(result, alias_idx, orig_phis);
  2564         if (C->failing()) {
  2565           return NULL;
  2567         mmem->set_memory_at(alias_idx, result);
  2569     } else if (result->is_Phi() &&
  2570                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2571       Node *un = result->as_Phi()->unique_input(igvn);
  2572       if (un != NULL) {
  2573         orig_phis.append_if_missing(result->as_Phi());
  2574         result = un;
  2575       } else {
  2576         break;
  2578     } else if (result->is_ClearArray()) {
  2579       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2580         // Can not bypass initialization of the instance
  2581         // we are looking for.
  2582         break;
  2584       // Otherwise skip it (the call updated 'result' value).
  2585     } else if (result->Opcode() == Op_SCMemProj) {
  2586       Node* mem = result->in(0);
  2587       Node* adr = NULL;
  2588       if (mem->is_LoadStore()) {
  2589         adr = mem->in(MemNode::Address);
  2590       } else {
  2591         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2592         adr = mem->in(3); // Memory edge corresponds to destination array
  2594       const Type *at = igvn->type(adr);
  2595       if (at != Type::TOP) {
  2596         assert (at->isa_ptr() != NULL, "pointer type required.");
  2597         int idx = C->get_alias_index(at->is_ptr());
  2598         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2599         break;
  2601       result = mem->in(MemNode::Memory);
  2604   if (result->is_Phi()) {
  2605     PhiNode *mphi = result->as_Phi();
  2606     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2607     const TypePtr *t = mphi->adr_type();
  2608     if (!is_instance) {
  2609       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2610       // during Phase 4 if needed.
  2611       orig_phis.append_if_missing(mphi);
  2612     } else if (C->get_alias_index(t) != alias_idx) {
  2613       // Create a new Phi with the specified alias index type.
  2614       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2617   // the result is either MemNode, PhiNode, InitializeNode.
  2618   return result;
  2621 //
  2622 //  Convert the types of unescaped object to instance types where possible,
  2623 //  propagate the new type information through the graph, and update memory
  2624 //  edges and MergeMem inputs to reflect the new type.
  2625 //
  2626 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2627 //  The processing is done in 4 phases:
  2628 //
  2629 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2630 //            types for the CheckCastPP for allocations where possible.
  2631 //            Propagate the the new types through users as follows:
  2632 //               casts and Phi:  push users on alloc_worklist
  2633 //               AddP:  cast Base and Address inputs to the instance type
  2634 //                      push any AddP users on alloc_worklist and push any memnode
  2635 //                      users onto memnode_worklist.
  2636 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2637 //            search the Memory chain for a store with the appropriate type
  2638 //            address type.  If a Phi is found, create a new version with
  2639 //            the appropriate memory slices from each of the Phi inputs.
  2640 //            For stores, process the users as follows:
  2641 //               MemNode:  push on memnode_worklist
  2642 //               MergeMem: push on mergemem_worklist
  2643 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2644 //            moving the first node encountered of each  instance type to the
  2645 //            the input corresponding to its alias index.
  2646 //            appropriate memory slice.
  2647 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2648 //
  2649 // In the following example, the CheckCastPP nodes are the cast of allocation
  2650 // results and the allocation of node 29 is unescaped and eligible to be an
  2651 // instance type.
  2652 //
  2653 // We start with:
  2654 //
  2655 //     7 Parm #memory
  2656 //    10  ConI  "12"
  2657 //    19  CheckCastPP   "Foo"
  2658 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2659 //    29  CheckCastPP   "Foo"
  2660 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2661 //
  2662 //    40  StoreP  25   7  20   ... alias_index=4
  2663 //    50  StoreP  35  40  30   ... alias_index=4
  2664 //    60  StoreP  45  50  20   ... alias_index=4
  2665 //    70  LoadP    _  60  30   ... alias_index=4
  2666 //    80  Phi     75  50  60   Memory alias_index=4
  2667 //    90  LoadP    _  80  30   ... alias_index=4
  2668 //   100  LoadP    _  80  20   ... alias_index=4
  2669 //
  2670 //
  2671 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2672 // and creating a new alias index for node 30.  This gives:
  2673 //
  2674 //     7 Parm #memory
  2675 //    10  ConI  "12"
  2676 //    19  CheckCastPP   "Foo"
  2677 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2678 //    29  CheckCastPP   "Foo"  iid=24
  2679 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2680 //
  2681 //    40  StoreP  25   7  20   ... alias_index=4
  2682 //    50  StoreP  35  40  30   ... alias_index=6
  2683 //    60  StoreP  45  50  20   ... alias_index=4
  2684 //    70  LoadP    _  60  30   ... alias_index=6
  2685 //    80  Phi     75  50  60   Memory alias_index=4
  2686 //    90  LoadP    _  80  30   ... alias_index=6
  2687 //   100  LoadP    _  80  20   ... alias_index=4
  2688 //
  2689 // In phase 2, new memory inputs are computed for the loads and stores,
  2690 // And a new version of the phi is created.  In phase 4, the inputs to
  2691 // node 80 are updated and then the memory nodes are updated with the
  2692 // values computed in phase 2.  This results in:
  2693 //
  2694 //     7 Parm #memory
  2695 //    10  ConI  "12"
  2696 //    19  CheckCastPP   "Foo"
  2697 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2698 //    29  CheckCastPP   "Foo"  iid=24
  2699 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2700 //
  2701 //    40  StoreP  25  7   20   ... alias_index=4
  2702 //    50  StoreP  35  7   30   ... alias_index=6
  2703 //    60  StoreP  45  40  20   ... alias_index=4
  2704 //    70  LoadP    _  50  30   ... alias_index=6
  2705 //    80  Phi     75  40  60   Memory alias_index=4
  2706 //   120  Phi     75  50  50   Memory alias_index=6
  2707 //    90  LoadP    _ 120  30   ... alias_index=6
  2708 //   100  LoadP    _  80  20   ... alias_index=4
  2709 //
  2710 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2711   GrowableArray<Node *>  memnode_worklist;
  2712   GrowableArray<PhiNode *>  orig_phis;
  2713   PhaseIterGVN  *igvn = _igvn;
  2714   uint new_index_start = (uint) _compile->num_alias_types();
  2715   Arena* arena = Thread::current()->resource_area();
  2716   VectorSet visited(arena);
  2717   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2718   uint unique_old = _compile->unique();
  2720   //  Phase 1:  Process possible allocations from alloc_worklist.
  2721   //  Create instance types for the CheckCastPP for allocations where possible.
  2722   //
  2723   // (Note: don't forget to change the order of the second AddP node on
  2724   //  the alloc_worklist if the order of the worklist processing is changed,
  2725   //  see the comment in find_second_addp().)
  2726   //
  2727   while (alloc_worklist.length() != 0) {
  2728     Node *n = alloc_worklist.pop();
  2729     uint ni = n->_idx;
  2730     if (n->is_Call()) {
  2731       CallNode *alloc = n->as_Call();
  2732       // copy escape information to call node
  2733       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2734       PointsToNode::EscapeState es = ptn->escape_state();
  2735       // We have an allocation or call which returns a Java object,
  2736       // see if it is unescaped.
  2737       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2738         continue;
  2739       // Find CheckCastPP for the allocate or for the return value of a call
  2740       n = alloc->result_cast();
  2741       if (n == NULL) {            // No uses except Initialize node
  2742         if (alloc->is_Allocate()) {
  2743           // Set the scalar_replaceable flag for allocation
  2744           // so it could be eliminated if it has no uses.
  2745           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2747         continue;
  2749       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2750         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2751         continue;
  2754       // The inline code for Object.clone() casts the allocation result to
  2755       // java.lang.Object and then to the actual type of the allocated
  2756       // object. Detect this case and use the second cast.
  2757       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2758       // the allocation result is cast to java.lang.Object and then
  2759       // to the actual Array type.
  2760       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2761           && (alloc->is_AllocateArray() ||
  2762               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2763         Node *cast2 = NULL;
  2764         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2765           Node *use = n->fast_out(i);
  2766           if (use->is_CheckCastPP()) {
  2767             cast2 = use;
  2768             break;
  2771         if (cast2 != NULL) {
  2772           n = cast2;
  2773         } else {
  2774           // Non-scalar replaceable if the allocation type is unknown statically
  2775           // (reflection allocation), the object can't be restored during
  2776           // deoptimization without precise type.
  2777           continue;
  2780       if (alloc->is_Allocate()) {
  2781         // Set the scalar_replaceable flag for allocation
  2782         // so it could be eliminated.
  2783         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2785       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2786       // in order for an object to be scalar-replaceable, it must be:
  2787       //   - a direct allocation (not a call returning an object)
  2788       //   - non-escaping
  2789       //   - eligible to be a unique type
  2790       //   - not determined to be ineligible by escape analysis
  2791       set_map(alloc, n);
  2792       set_map(n, alloc);
  2793       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2794       if (t == NULL)
  2795         continue;  // not a TypeOopPtr
  2796       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
  2797       igvn->hash_delete(n);
  2798       igvn->set_type(n,  tinst);
  2799       n->raise_bottom_type(tinst);
  2800       igvn->hash_insert(n);
  2801       record_for_optimizer(n);
  2802       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2804         // First, put on the worklist all Field edges from Connection Graph
  2805         // which is more accurate then putting immediate users from Ideal Graph.
  2806         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2807           PointsToNode* tgt = e.get();
  2808           Node* use = tgt->ideal_node();
  2809           assert(tgt->is_Field() && use->is_AddP(),
  2810                  "only AddP nodes are Field edges in CG");
  2811           if (use->outcnt() > 0) { // Don't process dead nodes
  2812             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2813             if (addp2 != NULL) {
  2814               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2815               alloc_worklist.append_if_missing(addp2);
  2817             alloc_worklist.append_if_missing(use);
  2821         // An allocation may have an Initialize which has raw stores. Scan
  2822         // the users of the raw allocation result and push AddP users
  2823         // on alloc_worklist.
  2824         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2825         assert (raw_result != NULL, "must have an allocation result");
  2826         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2827           Node *use = raw_result->fast_out(i);
  2828           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2829             Node* addp2 = find_second_addp(use, raw_result);
  2830             if (addp2 != NULL) {
  2831               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2832               alloc_worklist.append_if_missing(addp2);
  2834             alloc_worklist.append_if_missing(use);
  2835           } else if (use->is_MemBar()) {
  2836             memnode_worklist.append_if_missing(use);
  2840     } else if (n->is_AddP()) {
  2841       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2842       if (jobj == NULL || jobj == phantom_obj) {
  2843 #ifdef ASSERT
  2844         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2845         ptnode_adr(n->_idx)->dump();
  2846         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2847 #endif
  2848         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2849         return;
  2851       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2852       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2853     } else if (n->is_Phi() ||
  2854                n->is_CheckCastPP() ||
  2855                n->is_EncodeP() ||
  2856                n->is_DecodeN() ||
  2857                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2858       if (visited.test_set(n->_idx)) {
  2859         assert(n->is_Phi(), "loops only through Phi's");
  2860         continue;  // already processed
  2862       JavaObjectNode* jobj = unique_java_object(n);
  2863       if (jobj == NULL || jobj == phantom_obj) {
  2864 #ifdef ASSERT
  2865         ptnode_adr(n->_idx)->dump();
  2866         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2867 #endif
  2868         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2869         return;
  2870       } else {
  2871         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2872         TypeNode *tn = n->as_Type();
  2873         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2874         assert(tinst != NULL && tinst->is_known_instance() &&
  2875                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2877         const Type *tn_type = igvn->type(tn);
  2878         const TypeOopPtr *tn_t;
  2879         if (tn_type->isa_narrowoop()) {
  2880           tn_t = tn_type->make_ptr()->isa_oopptr();
  2881         } else {
  2882           tn_t = tn_type->isa_oopptr();
  2884         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2885           if (tn_type->isa_narrowoop()) {
  2886             tn_type = tinst->make_narrowoop();
  2887           } else {
  2888             tn_type = tinst;
  2890           igvn->hash_delete(tn);
  2891           igvn->set_type(tn, tn_type);
  2892           tn->set_type(tn_type);
  2893           igvn->hash_insert(tn);
  2894           record_for_optimizer(n);
  2895         } else {
  2896           assert(tn_type == TypePtr::NULL_PTR ||
  2897                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  2898                  "unexpected type");
  2899           continue; // Skip dead path with different type
  2902     } else {
  2903       debug_only(n->dump();)
  2904       assert(false, "EA: unexpected node");
  2905       continue;
  2907     // push allocation's users on appropriate worklist
  2908     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2909       Node *use = n->fast_out(i);
  2910       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  2911         // Load/store to instance's field
  2912         memnode_worklist.append_if_missing(use);
  2913       } else if (use->is_MemBar()) {
  2914         memnode_worklist.append_if_missing(use);
  2915       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  2916         Node* addp2 = find_second_addp(use, n);
  2917         if (addp2 != NULL) {
  2918           alloc_worklist.append_if_missing(addp2);
  2920         alloc_worklist.append_if_missing(use);
  2921       } else if (use->is_Phi() ||
  2922                  use->is_CheckCastPP() ||
  2923                  use->is_EncodeNarrowPtr() ||
  2924                  use->is_DecodeNarrowPtr() ||
  2925                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  2926         alloc_worklist.append_if_missing(use);
  2927 #ifdef ASSERT
  2928       } else if (use->is_Mem()) {
  2929         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  2930       } else if (use->is_MergeMem()) {
  2931         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2932       } else if (use->is_SafePoint()) {
  2933         // Look for MergeMem nodes for calls which reference unique allocation
  2934         // (through CheckCastPP nodes) even for debug info.
  2935         Node* m = use->in(TypeFunc::Memory);
  2936         if (m->is_MergeMem()) {
  2937           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2939       } else if (use->Opcode() == Op_EncodeISOArray) {
  2940         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  2941           // EncodeISOArray overwrites destination array
  2942           memnode_worklist.append_if_missing(use);
  2944       } else {
  2945         uint op = use->Opcode();
  2946         if (!(op == Op_CmpP || op == Op_Conv2B ||
  2947               op == Op_CastP2X || op == Op_StoreCM ||
  2948               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  2949               op == Op_StrEquals || op == Op_StrIndexOf)) {
  2950           n->dump();
  2951           use->dump();
  2952           assert(false, "EA: missing allocation reference path");
  2954 #endif
  2959   // New alias types were created in split_AddP().
  2960   uint new_index_end = (uint) _compile->num_alias_types();
  2961   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  2963   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2964   //            compute new values for Memory inputs  (the Memory inputs are not
  2965   //            actually updated until phase 4.)
  2966   if (memnode_worklist.length() == 0)
  2967     return;  // nothing to do
  2968   while (memnode_worklist.length() != 0) {
  2969     Node *n = memnode_worklist.pop();
  2970     if (visited.test_set(n->_idx))
  2971       continue;
  2972     if (n->is_Phi() || n->is_ClearArray()) {
  2973       // we don't need to do anything, but the users must be pushed
  2974     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  2975       // we don't need to do anything, but the users must be pushed
  2976       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  2977       if (n == NULL)
  2978         continue;
  2979     } else if (n->Opcode() == Op_EncodeISOArray) {
  2980       // get the memory projection
  2981       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2982         Node *use = n->fast_out(i);
  2983         if (use->Opcode() == Op_SCMemProj) {
  2984           n = use;
  2985           break;
  2988       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  2989     } else {
  2990       assert(n->is_Mem(), "memory node required.");
  2991       Node *addr = n->in(MemNode::Address);
  2992       const Type *addr_t = igvn->type(addr);
  2993       if (addr_t == Type::TOP)
  2994         continue;
  2995       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  2996       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  2997       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  2998       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  2999       if (_compile->failing()) {
  3000         return;
  3002       if (mem != n->in(MemNode::Memory)) {
  3003         // We delay the memory edge update since we need old one in
  3004         // MergeMem code below when instances memory slices are separated.
  3005         set_map(n, mem);
  3007       if (n->is_Load()) {
  3008         continue;  // don't push users
  3009       } else if (n->is_LoadStore()) {
  3010         // get the memory projection
  3011         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3012           Node *use = n->fast_out(i);
  3013           if (use->Opcode() == Op_SCMemProj) {
  3014             n = use;
  3015             break;
  3018         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3021     // push user on appropriate worklist
  3022     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3023       Node *use = n->fast_out(i);
  3024       if (use->is_Phi() || use->is_ClearArray()) {
  3025         memnode_worklist.append_if_missing(use);
  3026       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3027         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3028           continue;
  3029         memnode_worklist.append_if_missing(use);
  3030       } else if (use->is_MemBar()) {
  3031         memnode_worklist.append_if_missing(use);
  3032 #ifdef ASSERT
  3033       } else if(use->is_Mem()) {
  3034         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3035       } else if (use->is_MergeMem()) {
  3036         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3037       } else if (use->Opcode() == Op_EncodeISOArray) {
  3038         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3039           // EncodeISOArray overwrites destination array
  3040           memnode_worklist.append_if_missing(use);
  3042       } else {
  3043         uint op = use->Opcode();
  3044         if (!(op == Op_StoreCM ||
  3045               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3046                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3047               op == Op_AryEq || op == Op_StrComp ||
  3048               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3049           n->dump();
  3050           use->dump();
  3051           assert(false, "EA: missing memory path");
  3053 #endif
  3058   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3059   //            Walk each memory slice moving the first node encountered of each
  3060   //            instance type to the the input corresponding to its alias index.
  3061   uint length = _mergemem_worklist.length();
  3062   for( uint next = 0; next < length; ++next ) {
  3063     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3064     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3065     // Note: we don't want to use MergeMemStream here because we only want to
  3066     // scan inputs which exist at the start, not ones we add during processing.
  3067     // Note 2: MergeMem may already contains instance memory slices added
  3068     // during find_inst_mem() call when memory nodes were processed above.
  3069     igvn->hash_delete(nmm);
  3070     uint nslices = nmm->req();
  3071     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3072       Node* mem = nmm->in(i);
  3073       Node* cur = NULL;
  3074       if (mem == NULL || mem->is_top())
  3075         continue;
  3076       // First, update mergemem by moving memory nodes to corresponding slices
  3077       // if their type became more precise since this mergemem was created.
  3078       while (mem->is_Mem()) {
  3079         const Type *at = igvn->type(mem->in(MemNode::Address));
  3080         if (at != Type::TOP) {
  3081           assert (at->isa_ptr() != NULL, "pointer type required.");
  3082           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3083           if (idx == i) {
  3084             if (cur == NULL)
  3085               cur = mem;
  3086           } else {
  3087             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3088               nmm->set_memory_at(idx, mem);
  3092         mem = mem->in(MemNode::Memory);
  3094       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3095       // Find any instance of the current type if we haven't encountered
  3096       // already a memory slice of the instance along the memory chain.
  3097       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3098         if((uint)_compile->get_general_index(ni) == i) {
  3099           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3100           if (nmm->is_empty_memory(m)) {
  3101             Node* result = find_inst_mem(mem, ni, orig_phis);
  3102             if (_compile->failing()) {
  3103               return;
  3105             nmm->set_memory_at(ni, result);
  3110     // Find the rest of instances values
  3111     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3112       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3113       Node* result = step_through_mergemem(nmm, ni, tinst);
  3114       if (result == nmm->base_memory()) {
  3115         // Didn't find instance memory, search through general slice recursively.
  3116         result = nmm->memory_at(_compile->get_general_index(ni));
  3117         result = find_inst_mem(result, ni, orig_phis);
  3118         if (_compile->failing()) {
  3119           return;
  3121         nmm->set_memory_at(ni, result);
  3124     igvn->hash_insert(nmm);
  3125     record_for_optimizer(nmm);
  3128   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3129   //            the Memory input of memnodes
  3130   // First update the inputs of any non-instance Phi's from
  3131   // which we split out an instance Phi.  Note we don't have
  3132   // to recursively process Phi's encounted on the input memory
  3133   // chains as is done in split_memory_phi() since they  will
  3134   // also be processed here.
  3135   for (int j = 0; j < orig_phis.length(); j++) {
  3136     PhiNode *phi = orig_phis.at(j);
  3137     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3138     igvn->hash_delete(phi);
  3139     for (uint i = 1; i < phi->req(); i++) {
  3140       Node *mem = phi->in(i);
  3141       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3142       if (_compile->failing()) {
  3143         return;
  3145       if (mem != new_mem) {
  3146         phi->set_req(i, new_mem);
  3149     igvn->hash_insert(phi);
  3150     record_for_optimizer(phi);
  3153   // Update the memory inputs of MemNodes with the value we computed
  3154   // in Phase 2 and move stores memory users to corresponding memory slices.
  3155   // Disable memory split verification code until the fix for 6984348.
  3156   // Currently it produces false negative results since it does not cover all cases.
  3157 #if 0 // ifdef ASSERT
  3158   visited.Reset();
  3159   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3160 #endif
  3161   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3162     Node*    n = ideal_nodes.at(i);
  3163     Node* nmem = get_map(n->_idx);
  3164     assert(nmem != NULL, "sanity");
  3165     if (n->is_Mem()) {
  3166 #if 0 // ifdef ASSERT
  3167       Node* old_mem = n->in(MemNode::Memory);
  3168       if (!visited.test_set(old_mem->_idx)) {
  3169         old_mems.push(old_mem, old_mem->outcnt());
  3171 #endif
  3172       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3173       if (!n->is_Load()) {
  3174         // Move memory users of a store first.
  3175         move_inst_mem(n, orig_phis);
  3177       // Now update memory input
  3178       igvn->hash_delete(n);
  3179       n->set_req(MemNode::Memory, nmem);
  3180       igvn->hash_insert(n);
  3181       record_for_optimizer(n);
  3182     } else {
  3183       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3184              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3187 #if 0 // ifdef ASSERT
  3188   // Verify that memory was split correctly
  3189   while (old_mems.is_nonempty()) {
  3190     Node* old_mem = old_mems.node();
  3191     uint  old_cnt = old_mems.index();
  3192     old_mems.pop();
  3193     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3195 #endif
  3198 #ifndef PRODUCT
  3199 static const char *node_type_names[] = {
  3200   "UnknownType",
  3201   "JavaObject",
  3202   "LocalVar",
  3203   "Field",
  3204   "Arraycopy"
  3205 };
  3207 static const char *esc_names[] = {
  3208   "UnknownEscape",
  3209   "NoEscape",
  3210   "ArgEscape",
  3211   "GlobalEscape"
  3212 };
  3214 void PointsToNode::dump(bool print_state) const {
  3215   NodeType nt = node_type();
  3216   tty->print("%s ", node_type_names[(int) nt]);
  3217   if (print_state) {
  3218     EscapeState es = escape_state();
  3219     EscapeState fields_es = fields_escape_state();
  3220     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3221     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3222       tty->print("NSR ");
  3224   if (is_Field()) {
  3225     FieldNode* f = (FieldNode*)this;
  3226     if (f->is_oop())
  3227       tty->print("oop ");
  3228     if (f->offset() > 0)
  3229       tty->print("+%d ", f->offset());
  3230     tty->print("(");
  3231     for (BaseIterator i(f); i.has_next(); i.next()) {
  3232       PointsToNode* b = i.get();
  3233       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3235     tty->print(" )");
  3237   tty->print("[");
  3238   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3239     PointsToNode* e = i.get();
  3240     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3242   tty->print(" [");
  3243   for (UseIterator i(this); i.has_next(); i.next()) {
  3244     PointsToNode* u = i.get();
  3245     bool is_base = false;
  3246     if (PointsToNode::is_base_use(u)) {
  3247       is_base = true;
  3248       u = PointsToNode::get_use_node(u)->as_Field();
  3250     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3252   tty->print(" ]]  ");
  3253   if (_node == NULL)
  3254     tty->print_cr("<null>");
  3255   else
  3256     _node->dump();
  3259 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3260   bool first = true;
  3261   int ptnodes_length = ptnodes_worklist.length();
  3262   for (int i = 0; i < ptnodes_length; i++) {
  3263     PointsToNode *ptn = ptnodes_worklist.at(i);
  3264     if (ptn == NULL || !ptn->is_JavaObject())
  3265       continue;
  3266     PointsToNode::EscapeState es = ptn->escape_state();
  3267     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  3268       if (first) {
  3269         tty->cr();
  3270         tty->print("======== Connection graph for ");
  3271         _compile->method()->print_short_name();
  3272         tty->cr();
  3273         first = false;
  3275       ptn->dump();
  3276       // Print all locals and fields which reference this allocation
  3277       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3278         PointsToNode* use = j.get();
  3279         if (use->is_LocalVar()) {
  3280           use->dump(Verbose);
  3281         } else if (Verbose) {
  3282           use->dump();
  3285       tty->cr();
  3289 #endif

mercurial