src/share/vm/opto/escape.cpp

Wed, 08 May 2013 15:08:01 -0700

author
kvn
date
Wed, 08 May 2013 15:08:01 -0700
changeset 5110
6f3fd5150b67
parent 4479
b30b3c2a0cf2
child 5111
70120f47d403
permissions
-rw-r--r--

6934604: enable parts of EliminateAutoBox by default
Summary: Resurrected autobox elimination code and enabled part of it by default.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _collecting(true),
    41   _verify(false),
    42   _compile(C),
    43   _igvn(igvn),
    44   _node_map(C->comp_arena()) {
    45   // Add unknown java object.
    46   add_java_object(C->top(), PointsToNode::GlobalEscape);
    47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    48   // Add ConP(#NULL) and ConN(#NULL) nodes.
    49   Node* oop_null = igvn->zerocon(T_OBJECT);
    50   assert(oop_null->_idx < nodes_size(), "should be created already");
    51   add_java_object(oop_null, PointsToNode::NoEscape);
    52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    53   if (UseCompressedOops) {
    54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    55     assert(noop_null->_idx < nodes_size(), "should be created already");
    56     map_ideal_node(noop_null, null_obj);
    57   }
    58   _pcmp_neq = NULL; // Should be initialized
    59   _pcmp_eq  = NULL;
    60 }
    62 bool ConnectionGraph::has_candidates(Compile *C) {
    63   // EA brings benefits only when the code has allocations and/or locks which
    64   // are represented by ideal Macro nodes.
    65   int cnt = C->macro_count();
    66   for (int i = 0; i < cnt; i++) {
    67     Node *n = C->macro_node(i);
    68     if (n->is_Allocate())
    69       return true;
    70     if (n->is_Lock()) {
    71       Node* obj = n->as_Lock()->obj_node()->uncast();
    72       if (!(obj->is_Parm() || obj->is_Con()))
    73         return true;
    74     }
    75     if (n->is_CallStaticJava() &&
    76         n->as_CallStaticJava()->is_boxing_method()) {
    77       return true;
    78     }
    79   }
    80   return false;
    81 }
    83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    84   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    85   ResourceMark rm;
    87   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    88   // to create space for them in ConnectionGraph::_nodes[].
    89   Node* oop_null = igvn->zerocon(T_OBJECT);
    90   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    91   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    92   // Perform escape analysis
    93   if (congraph->compute_escape()) {
    94     // There are non escaping objects.
    95     C->set_congraph(congraph);
    96   }
    97   // Cleanup.
    98   if (oop_null->outcnt() == 0)
    99     igvn->hash_delete(oop_null);
   100   if (noop_null->outcnt() == 0)
   101     igvn->hash_delete(noop_null);
   102 }
   104 bool ConnectionGraph::compute_escape() {
   105   Compile* C = _compile;
   106   PhaseGVN* igvn = _igvn;
   108   // Worklists used by EA.
   109   Unique_Node_List delayed_worklist;
   110   GrowableArray<Node*> alloc_worklist;
   111   GrowableArray<Node*> ptr_cmp_worklist;
   112   GrowableArray<Node*> storestore_worklist;
   113   GrowableArray<PointsToNode*>   ptnodes_worklist;
   114   GrowableArray<JavaObjectNode*> java_objects_worklist;
   115   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   116   GrowableArray<FieldNode*>      oop_fields_worklist;
   117   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   119   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   121   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   122   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   123   // Initialize worklist
   124   if (C->root() != NULL) {
   125     ideal_nodes.push(C->root());
   126   }
   127   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   128     Node* n = ideal_nodes.at(next);
   129     // Create PointsTo nodes and add them to Connection Graph. Called
   130     // only once per ideal node since ideal_nodes is Unique_Node list.
   131     add_node_to_connection_graph(n, &delayed_worklist);
   132     PointsToNode* ptn = ptnode_adr(n->_idx);
   133     if (ptn != NULL) {
   134       ptnodes_worklist.append(ptn);
   135       if (ptn->is_JavaObject()) {
   136         java_objects_worklist.append(ptn->as_JavaObject());
   137         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   138             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   139           // Only allocations and java static calls results are interesting.
   140           non_escaped_worklist.append(ptn->as_JavaObject());
   141         }
   142       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   143         oop_fields_worklist.append(ptn->as_Field());
   144       }
   145     }
   146     if (n->is_MergeMem()) {
   147       // Collect all MergeMem nodes to add memory slices for
   148       // scalar replaceable objects in split_unique_types().
   149       _mergemem_worklist.append(n->as_MergeMem());
   150     } else if (OptimizePtrCompare && n->is_Cmp() &&
   151                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   152       // Collect compare pointers nodes.
   153       ptr_cmp_worklist.append(n);
   154     } else if (n->is_MemBarStoreStore()) {
   155       // Collect all MemBarStoreStore nodes so that depending on the
   156       // escape status of the associated Allocate node some of them
   157       // may be eliminated.
   158       storestore_worklist.append(n);
   159     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   160                (n->req() > MemBarNode::Precedent)) {
   161       record_for_optimizer(n);
   162 #ifdef ASSERT
   163     } else if (n->is_AddP()) {
   164       // Collect address nodes for graph verification.
   165       addp_worklist.append(n);
   166 #endif
   167     }
   168     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   169       Node* m = n->fast_out(i);   // Get user
   170       ideal_nodes.push(m);
   171     }
   172   }
   173   if (non_escaped_worklist.length() == 0) {
   174     _collecting = false;
   175     return false; // Nothing to do.
   176   }
   177   // Add final simple edges to graph.
   178   while(delayed_worklist.size() > 0) {
   179     Node* n = delayed_worklist.pop();
   180     add_final_edges(n);
   181   }
   182   int ptnodes_length = ptnodes_worklist.length();
   184 #ifdef ASSERT
   185   if (VerifyConnectionGraph) {
   186     // Verify that no new simple edges could be created and all
   187     // local vars has edges.
   188     _verify = true;
   189     for (int next = 0; next < ptnodes_length; ++next) {
   190       PointsToNode* ptn = ptnodes_worklist.at(next);
   191       add_final_edges(ptn->ideal_node());
   192       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   193         ptn->dump();
   194         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   195       }
   196     }
   197     _verify = false;
   198   }
   199 #endif
   201   // 2. Finish Graph construction by propagating references to all
   202   //    java objects through graph.
   203   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   204                                  java_objects_worklist, oop_fields_worklist)) {
   205     // All objects escaped or hit time or iterations limits.
   206     _collecting = false;
   207     return false;
   208   }
   210   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   211   //    scalar replaceable allocations on alloc_worklist for processing
   212   //    in split_unique_types().
   213   int non_escaped_length = non_escaped_worklist.length();
   214   for (int next = 0; next < non_escaped_length; next++) {
   215     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   216     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   217     Node* n = ptn->ideal_node();
   218     if (n->is_Allocate()) {
   219       n->as_Allocate()->_is_non_escaping = noescape;
   220     }
   221     if (n->is_CallStaticJava()) {
   222       n->as_CallStaticJava()->_is_non_escaping = noescape;
   223     }
   224     if (noescape && ptn->scalar_replaceable()) {
   225       adjust_scalar_replaceable_state(ptn);
   226       if (ptn->scalar_replaceable()) {
   227         alloc_worklist.append(ptn->ideal_node());
   228       }
   229     }
   230   }
   232 #ifdef ASSERT
   233   if (VerifyConnectionGraph) {
   234     // Verify that graph is complete - no new edges could be added or needed.
   235     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   236                             java_objects_worklist, addp_worklist);
   237   }
   238   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   239   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   240          null_obj->edge_count() == 0 &&
   241          !null_obj->arraycopy_src() &&
   242          !null_obj->arraycopy_dst(), "sanity");
   243 #endif
   245   _collecting = false;
   247   } // TracePhase t3("connectionGraph")
   249   // 4. Optimize ideal graph based on EA information.
   250   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   251   if (has_non_escaping_obj) {
   252     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   253   }
   255 #ifndef PRODUCT
   256   if (PrintEscapeAnalysis) {
   257     dump(ptnodes_worklist); // Dump ConnectionGraph
   258   }
   259 #endif
   261   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   262 #ifdef ASSERT
   263   if (VerifyConnectionGraph) {
   264     int alloc_length = alloc_worklist.length();
   265     for (int next = 0; next < alloc_length; ++next) {
   266       Node* n = alloc_worklist.at(next);
   267       PointsToNode* ptn = ptnode_adr(n->_idx);
   268       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   269     }
   270   }
   271 #endif
   273   // 5. Separate memory graph for scalar replaceable allcations.
   274   if (has_scalar_replaceable_candidates &&
   275       C->AliasLevel() >= 3 && EliminateAllocations) {
   276     // Now use the escape information to create unique types for
   277     // scalar replaceable objects.
   278     split_unique_types(alloc_worklist);
   279     if (C->failing())  return false;
   280     C->print_method("After Escape Analysis", 2);
   282 #ifdef ASSERT
   283   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   284     tty->print("=== No allocations eliminated for ");
   285     C->method()->print_short_name();
   286     if(!EliminateAllocations) {
   287       tty->print(" since EliminateAllocations is off ===");
   288     } else if(!has_scalar_replaceable_candidates) {
   289       tty->print(" since there are no scalar replaceable candidates ===");
   290     } else if(C->AliasLevel() < 3) {
   291       tty->print(" since AliasLevel < 3 ===");
   292     }
   293     tty->cr();
   294 #endif
   295   }
   296   return has_non_escaping_obj;
   297 }
   299 // Utility function for nodes that load an object
   300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   301   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   302   // ThreadLocal has RawPtr type.
   303   const Type* t = _igvn->type(n);
   304   if (t->make_ptr() != NULL) {
   305     Node* adr = n->in(MemNode::Address);
   306 #ifdef ASSERT
   307     if (!adr->is_AddP()) {
   308       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   309     } else {
   310       assert((ptnode_adr(adr->_idx) == NULL ||
   311               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   312     }
   313 #endif
   314     add_local_var_and_edge(n, PointsToNode::NoEscape,
   315                            adr, delayed_worklist);
   316   }
   317 }
   319 // Populate Connection Graph with PointsTo nodes and create simple
   320 // connection graph edges.
   321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   322   assert(!_verify, "this method sould not be called for verification");
   323   PhaseGVN* igvn = _igvn;
   324   uint n_idx = n->_idx;
   325   PointsToNode* n_ptn = ptnode_adr(n_idx);
   326   if (n_ptn != NULL)
   327     return; // No need to redefine PointsTo node during first iteration.
   329   if (n->is_Call()) {
   330     // Arguments to allocation and locking don't escape.
   331     if (n->is_AbstractLock()) {
   332       // Put Lock and Unlock nodes on IGVN worklist to process them during
   333       // first IGVN optimization when escape information is still available.
   334       record_for_optimizer(n);
   335     } else if (n->is_Allocate()) {
   336       add_call_node(n->as_Call());
   337       record_for_optimizer(n);
   338     } else {
   339       if (n->is_CallStaticJava()) {
   340         const char* name = n->as_CallStaticJava()->_name;
   341         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   342           return; // Skip uncommon traps
   343       }
   344       // Don't mark as processed since call's arguments have to be processed.
   345       delayed_worklist->push(n);
   346       // Check if a call returns an object.
   347       if ((n->as_Call()->returns_pointer() &&
   348            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   349           (n->is_CallStaticJava() &&
   350            n->as_CallStaticJava()->is_boxing_method())) {
   351         add_call_node(n->as_Call());
   352       }
   353     }
   354     return;
   355   }
   356   // Put this check here to process call arguments since some call nodes
   357   // point to phantom_obj.
   358   if (n_ptn == phantom_obj || n_ptn == null_obj)
   359     return; // Skip predefined nodes.
   361   int opcode = n->Opcode();
   362   switch (opcode) {
   363     case Op_AddP: {
   364       Node* base = get_addp_base(n);
   365       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   366       // Field nodes are created for all field types. They are used in
   367       // adjust_scalar_replaceable_state() and split_unique_types().
   368       // Note, non-oop fields will have only base edges in Connection
   369       // Graph because such fields are not used for oop loads and stores.
   370       int offset = address_offset(n, igvn);
   371       add_field(n, PointsToNode::NoEscape, offset);
   372       if (ptn_base == NULL) {
   373         delayed_worklist->push(n); // Process it later.
   374       } else {
   375         n_ptn = ptnode_adr(n_idx);
   376         add_base(n_ptn->as_Field(), ptn_base);
   377       }
   378       break;
   379     }
   380     case Op_CastX2P: {
   381       map_ideal_node(n, phantom_obj);
   382       break;
   383     }
   384     case Op_CastPP:
   385     case Op_CheckCastPP:
   386     case Op_EncodeP:
   387     case Op_DecodeN:
   388     case Op_EncodePKlass:
   389     case Op_DecodeNKlass: {
   390       add_local_var_and_edge(n, PointsToNode::NoEscape,
   391                              n->in(1), delayed_worklist);
   392       break;
   393     }
   394     case Op_CMoveP: {
   395       add_local_var(n, PointsToNode::NoEscape);
   396       // Do not add edges during first iteration because some could be
   397       // not defined yet.
   398       delayed_worklist->push(n);
   399       break;
   400     }
   401     case Op_ConP:
   402     case Op_ConN:
   403     case Op_ConNKlass: {
   404       // assume all oop constants globally escape except for null
   405       PointsToNode::EscapeState es;
   406       const Type* t = igvn->type(n);
   407       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   408         es = PointsToNode::NoEscape;
   409       } else {
   410         es = PointsToNode::GlobalEscape;
   411       }
   412       add_java_object(n, es);
   413       break;
   414     }
   415     case Op_CreateEx: {
   416       // assume that all exception objects globally escape
   417       add_java_object(n, PointsToNode::GlobalEscape);
   418       break;
   419     }
   420     case Op_LoadKlass:
   421     case Op_LoadNKlass: {
   422       // Unknown class is loaded
   423       map_ideal_node(n, phantom_obj);
   424       break;
   425     }
   426     case Op_LoadP:
   427     case Op_LoadN:
   428     case Op_LoadPLocked: {
   429       add_objload_to_connection_graph(n, delayed_worklist);
   430       break;
   431     }
   432     case Op_Parm: {
   433       map_ideal_node(n, phantom_obj);
   434       break;
   435     }
   436     case Op_PartialSubtypeCheck: {
   437       // Produces Null or notNull and is used in only in CmpP so
   438       // phantom_obj could be used.
   439       map_ideal_node(n, phantom_obj); // Result is unknown
   440       break;
   441     }
   442     case Op_Phi: {
   443       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   444       // ThreadLocal has RawPtr type.
   445       const Type* t = n->as_Phi()->type();
   446       if (t->make_ptr() != NULL) {
   447         add_local_var(n, PointsToNode::NoEscape);
   448         // Do not add edges during first iteration because some could be
   449         // not defined yet.
   450         delayed_worklist->push(n);
   451       }
   452       break;
   453     }
   454     case Op_Proj: {
   455       // we are only interested in the oop result projection from a call
   456       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   457           n->in(0)->as_Call()->returns_pointer()) {
   458         add_local_var_and_edge(n, PointsToNode::NoEscape,
   459                                n->in(0), delayed_worklist);
   460       }
   461       break;
   462     }
   463     case Op_Rethrow: // Exception object escapes
   464     case Op_Return: {
   465       if (n->req() > TypeFunc::Parms &&
   466           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   467         // Treat Return value as LocalVar with GlobalEscape escape state.
   468         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   469                                n->in(TypeFunc::Parms), delayed_worklist);
   470       }
   471       break;
   472     }
   473     case Op_GetAndSetP:
   474     case Op_GetAndSetN: {
   475       add_objload_to_connection_graph(n, delayed_worklist);
   476       // fallthrough
   477     }
   478     case Op_StoreP:
   479     case Op_StoreN:
   480     case Op_StoreNKlass:
   481     case Op_StorePConditional:
   482     case Op_CompareAndSwapP:
   483     case Op_CompareAndSwapN: {
   484       Node* adr = n->in(MemNode::Address);
   485       const Type *adr_type = igvn->type(adr);
   486       adr_type = adr_type->make_ptr();
   487       if (adr_type->isa_oopptr() ||
   488           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   489                         (adr_type == TypeRawPtr::NOTNULL &&
   490                          adr->in(AddPNode::Address)->is_Proj() &&
   491                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   492         delayed_worklist->push(n); // Process it later.
   493 #ifdef ASSERT
   494         assert(adr->is_AddP(), "expecting an AddP");
   495         if (adr_type == TypeRawPtr::NOTNULL) {
   496           // Verify a raw address for a store captured by Initialize node.
   497           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   498           assert(offs != Type::OffsetBot, "offset must be a constant");
   499         }
   500 #endif
   501       } else {
   502         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   503         if (adr->is_BoxLock())
   504           break;
   505         // Stored value escapes in unsafe access.
   506         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   507           // Pointer stores in G1 barriers looks like unsafe access.
   508           // Ignore such stores to be able scalar replace non-escaping
   509           // allocations.
   510           if (UseG1GC && adr->is_AddP()) {
   511             Node* base = get_addp_base(adr);
   512             if (base->Opcode() == Op_LoadP &&
   513                 base->in(MemNode::Address)->is_AddP()) {
   514               adr = base->in(MemNode::Address);
   515               Node* tls = get_addp_base(adr);
   516               if (tls->Opcode() == Op_ThreadLocal) {
   517                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   518                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   519                                      PtrQueue::byte_offset_of_buf())) {
   520                   break; // G1 pre barier previous oop value store.
   521                 }
   522                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   523                                      PtrQueue::byte_offset_of_buf())) {
   524                   break; // G1 post barier card address store.
   525                 }
   526               }
   527             }
   528           }
   529           delayed_worklist->push(n); // Process unsafe access later.
   530           break;
   531         }
   532 #ifdef ASSERT
   533         n->dump(1);
   534         assert(false, "not unsafe or G1 barrier raw StoreP");
   535 #endif
   536       }
   537       break;
   538     }
   539     case Op_AryEq:
   540     case Op_StrComp:
   541     case Op_StrEquals:
   542     case Op_StrIndexOf:
   543     case Op_EncodeISOArray: {
   544       add_local_var(n, PointsToNode::ArgEscape);
   545       delayed_worklist->push(n); // Process it later.
   546       break;
   547     }
   548     case Op_ThreadLocal: {
   549       add_java_object(n, PointsToNode::ArgEscape);
   550       break;
   551     }
   552     default:
   553       ; // Do nothing for nodes not related to EA.
   554   }
   555   return;
   556 }
   558 #ifdef ASSERT
   559 #define ELSE_FAIL(name)                               \
   560       /* Should not be called for not pointer type. */  \
   561       n->dump(1);                                       \
   562       assert(false, name);                              \
   563       break;
   564 #else
   565 #define ELSE_FAIL(name) \
   566       break;
   567 #endif
   569 // Add final simple edges to graph.
   570 void ConnectionGraph::add_final_edges(Node *n) {
   571   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   572 #ifdef ASSERT
   573   if (_verify && n_ptn->is_JavaObject())
   574     return; // This method does not change graph for JavaObject.
   575 #endif
   577   if (n->is_Call()) {
   578     process_call_arguments(n->as_Call());
   579     return;
   580   }
   581   assert(n->is_Store() || n->is_LoadStore() ||
   582          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   583          "node should be registered already");
   584   int opcode = n->Opcode();
   585   switch (opcode) {
   586     case Op_AddP: {
   587       Node* base = get_addp_base(n);
   588       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   589       assert(ptn_base != NULL, "field's base should be registered");
   590       add_base(n_ptn->as_Field(), ptn_base);
   591       break;
   592     }
   593     case Op_CastPP:
   594     case Op_CheckCastPP:
   595     case Op_EncodeP:
   596     case Op_DecodeN:
   597     case Op_EncodePKlass:
   598     case Op_DecodeNKlass: {
   599       add_local_var_and_edge(n, PointsToNode::NoEscape,
   600                              n->in(1), NULL);
   601       break;
   602     }
   603     case Op_CMoveP: {
   604       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   605         Node* in = n->in(i);
   606         if (in == NULL)
   607           continue;  // ignore NULL
   608         Node* uncast_in = in->uncast();
   609         if (uncast_in->is_top() || uncast_in == n)
   610           continue;  // ignore top or inputs which go back this node
   611         PointsToNode* ptn = ptnode_adr(in->_idx);
   612         assert(ptn != NULL, "node should be registered");
   613         add_edge(n_ptn, ptn);
   614       }
   615       break;
   616     }
   617     case Op_LoadP:
   618     case Op_LoadN:
   619     case Op_LoadPLocked: {
   620       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   621       // ThreadLocal has RawPtr type.
   622       const Type* t = _igvn->type(n);
   623       if (t->make_ptr() != NULL) {
   624         Node* adr = n->in(MemNode::Address);
   625         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   626         break;
   627       }
   628       ELSE_FAIL("Op_LoadP");
   629     }
   630     case Op_Phi: {
   631       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   632       // ThreadLocal has RawPtr type.
   633       const Type* t = n->as_Phi()->type();
   634       if (t->make_ptr() != NULL) {
   635         for (uint i = 1; i < n->req(); i++) {
   636           Node* in = n->in(i);
   637           if (in == NULL)
   638             continue;  // ignore NULL
   639           Node* uncast_in = in->uncast();
   640           if (uncast_in->is_top() || uncast_in == n)
   641             continue;  // ignore top or inputs which go back this node
   642           PointsToNode* ptn = ptnode_adr(in->_idx);
   643           assert(ptn != NULL, "node should be registered");
   644           add_edge(n_ptn, ptn);
   645         }
   646         break;
   647       }
   648       ELSE_FAIL("Op_Phi");
   649     }
   650     case Op_Proj: {
   651       // we are only interested in the oop result projection from a call
   652       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   653           n->in(0)->as_Call()->returns_pointer()) {
   654         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   655         break;
   656       }
   657       ELSE_FAIL("Op_Proj");
   658     }
   659     case Op_Rethrow: // Exception object escapes
   660     case Op_Return: {
   661       if (n->req() > TypeFunc::Parms &&
   662           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   663         // Treat Return value as LocalVar with GlobalEscape escape state.
   664         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   665                                n->in(TypeFunc::Parms), NULL);
   666         break;
   667       }
   668       ELSE_FAIL("Op_Return");
   669     }
   670     case Op_StoreP:
   671     case Op_StoreN:
   672     case Op_StoreNKlass:
   673     case Op_StorePConditional:
   674     case Op_CompareAndSwapP:
   675     case Op_CompareAndSwapN:
   676     case Op_GetAndSetP:
   677     case Op_GetAndSetN: {
   678       Node* adr = n->in(MemNode::Address);
   679       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   680         const Type* t = _igvn->type(n);
   681         if (t->make_ptr() != NULL) {
   682           add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   683         }
   684       }
   685       const Type *adr_type = _igvn->type(adr);
   686       adr_type = adr_type->make_ptr();
   687       if (adr_type->isa_oopptr() ||
   688           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   689                         (adr_type == TypeRawPtr::NOTNULL &&
   690                          adr->in(AddPNode::Address)->is_Proj() &&
   691                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   692         // Point Address to Value
   693         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   694         assert(adr_ptn != NULL &&
   695                adr_ptn->as_Field()->is_oop(), "node should be registered");
   696         Node *val = n->in(MemNode::ValueIn);
   697         PointsToNode* ptn = ptnode_adr(val->_idx);
   698         assert(ptn != NULL, "node should be registered");
   699         add_edge(adr_ptn, ptn);
   700         break;
   701       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   702         // Stored value escapes in unsafe access.
   703         Node *val = n->in(MemNode::ValueIn);
   704         PointsToNode* ptn = ptnode_adr(val->_idx);
   705         assert(ptn != NULL, "node should be registered");
   706         ptn->set_escape_state(PointsToNode::GlobalEscape);
   707         // Add edge to object for unsafe access with offset.
   708         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   709         assert(adr_ptn != NULL, "node should be registered");
   710         if (adr_ptn->is_Field()) {
   711           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   712           add_edge(adr_ptn, ptn);
   713         }
   714         break;
   715       }
   716       ELSE_FAIL("Op_StoreP");
   717     }
   718     case Op_AryEq:
   719     case Op_StrComp:
   720     case Op_StrEquals:
   721     case Op_StrIndexOf:
   722     case Op_EncodeISOArray: {
   723       // char[] arrays passed to string intrinsic do not escape but
   724       // they are not scalar replaceable. Adjust escape state for them.
   725       // Start from in(2) edge since in(1) is memory edge.
   726       for (uint i = 2; i < n->req(); i++) {
   727         Node* adr = n->in(i);
   728         const Type* at = _igvn->type(adr);
   729         if (!adr->is_top() && at->isa_ptr()) {
   730           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   731                  at->isa_ptr() != NULL, "expecting a pointer");
   732           if (adr->is_AddP()) {
   733             adr = get_addp_base(adr);
   734           }
   735           PointsToNode* ptn = ptnode_adr(adr->_idx);
   736           assert(ptn != NULL, "node should be registered");
   737           add_edge(n_ptn, ptn);
   738         }
   739       }
   740       break;
   741     }
   742     default: {
   743       // This method should be called only for EA specific nodes which may
   744       // miss some edges when they were created.
   745 #ifdef ASSERT
   746       n->dump(1);
   747 #endif
   748       guarantee(false, "unknown node");
   749     }
   750   }
   751   return;
   752 }
   754 void ConnectionGraph::add_call_node(CallNode* call) {
   755   assert(call->returns_pointer(), "only for call which returns pointer");
   756   uint call_idx = call->_idx;
   757   if (call->is_Allocate()) {
   758     Node* k = call->in(AllocateNode::KlassNode);
   759     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   760     assert(kt != NULL, "TypeKlassPtr  required.");
   761     ciKlass* cik = kt->klass();
   762     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   763     bool scalar_replaceable = true;
   764     if (call->is_AllocateArray()) {
   765       if (!cik->is_array_klass()) { // StressReflectiveCode
   766         es = PointsToNode::GlobalEscape;
   767       } else {
   768         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   769         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   770           // Not scalar replaceable if the length is not constant or too big.
   771           scalar_replaceable = false;
   772         }
   773       }
   774     } else {  // Allocate instance
   775       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   776          !cik->is_instance_klass() || // StressReflectiveCode
   777           cik->as_instance_klass()->has_finalizer()) {
   778         es = PointsToNode::GlobalEscape;
   779       }
   780     }
   781     add_java_object(call, es);
   782     PointsToNode* ptn = ptnode_adr(call_idx);
   783     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   784       ptn->set_scalar_replaceable(false);
   785     }
   786   } else if (call->is_CallStaticJava()) {
   787     // Call nodes could be different types:
   788     //
   789     // 1. CallDynamicJavaNode (what happened during call is unknown):
   790     //
   791     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   792     //
   793     //    - all oop arguments are escaping globally;
   794     //
   795     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   796     //
   797     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   798     //
   799     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   800     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   801     //      during call is returned;
   802     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   803     //      which are returned and does not escape during call;
   804     //
   805     //    - oop arguments escaping status is defined by bytecode analysis;
   806     //
   807     // For a static call, we know exactly what method is being called.
   808     // Use bytecode estimator to record whether the call's return value escapes.
   809     ciMethod* meth = call->as_CallJava()->method();
   810     if (meth == NULL) {
   811       const char* name = call->as_CallStaticJava()->_name;
   812       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   813       // Returns a newly allocated unescaped object.
   814       add_java_object(call, PointsToNode::NoEscape);
   815       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   816     } else if (meth->is_boxing_method()) {
   817       // Returns boxing object
   818       add_java_object(call, PointsToNode::NoEscape);
   819     } else {
   820       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   821       call_analyzer->copy_dependencies(_compile->dependencies());
   822       if (call_analyzer->is_return_allocated()) {
   823         // Returns a newly allocated unescaped object, simply
   824         // update dependency information.
   825         // Mark it as NoEscape so that objects referenced by
   826         // it's fields will be marked as NoEscape at least.
   827         add_java_object(call, PointsToNode::NoEscape);
   828         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   829       } else {
   830         // Determine whether any arguments are returned.
   831         const TypeTuple* d = call->tf()->domain();
   832         bool ret_arg = false;
   833         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   834           if (d->field_at(i)->isa_ptr() != NULL &&
   835               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   836             ret_arg = true;
   837             break;
   838           }
   839         }
   840         if (ret_arg) {
   841           add_local_var(call, PointsToNode::ArgEscape);
   842         } else {
   843           // Returns unknown object.
   844           map_ideal_node(call, phantom_obj);
   845         }
   846       }
   847     }
   848   } else {
   849     // An other type of call, assume the worst case:
   850     // returned value is unknown and globally escapes.
   851     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   852     map_ideal_node(call, phantom_obj);
   853   }
   854 }
   856 void ConnectionGraph::process_call_arguments(CallNode *call) {
   857     bool is_arraycopy = false;
   858     switch (call->Opcode()) {
   859 #ifdef ASSERT
   860     case Op_Allocate:
   861     case Op_AllocateArray:
   862     case Op_Lock:
   863     case Op_Unlock:
   864       assert(false, "should be done already");
   865       break;
   866 #endif
   867     case Op_CallLeafNoFP:
   868       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   869                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   870       // fall through
   871     case Op_CallLeaf: {
   872       // Stub calls, objects do not escape but they are not scale replaceable.
   873       // Adjust escape state for outgoing arguments.
   874       const TypeTuple * d = call->tf()->domain();
   875       bool src_has_oops = false;
   876       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   877         const Type* at = d->field_at(i);
   878         Node *arg = call->in(i);
   879         const Type *aat = _igvn->type(arg);
   880         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   881           continue;
   882         if (arg->is_AddP()) {
   883           //
   884           // The inline_native_clone() case when the arraycopy stub is called
   885           // after the allocation before Initialize and CheckCastPP nodes.
   886           // Or normal arraycopy for object arrays case.
   887           //
   888           // Set AddP's base (Allocate) as not scalar replaceable since
   889           // pointer to the base (with offset) is passed as argument.
   890           //
   891           arg = get_addp_base(arg);
   892         }
   893         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   894         assert(arg_ptn != NULL, "should be registered");
   895         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   896         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   897           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   898                  aat->isa_ptr() != NULL, "expecting an Ptr");
   899           bool arg_has_oops = aat->isa_oopptr() &&
   900                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   901                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   902           if (i == TypeFunc::Parms) {
   903             src_has_oops = arg_has_oops;
   904           }
   905           //
   906           // src or dst could be j.l.Object when other is basic type array:
   907           //
   908           //   arraycopy(char[],0,Object*,0,size);
   909           //   arraycopy(Object*,0,char[],0,size);
   910           //
   911           // Don't add edges in such cases.
   912           //
   913           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   914                                        arg_has_oops && (i > TypeFunc::Parms);
   915 #ifdef ASSERT
   916           if (!(is_arraycopy ||
   917                 (call->as_CallLeaf()->_name != NULL &&
   918                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   919                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   920                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   921                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   922                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   923                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
   924                   ))) {
   925             call->dump();
   926             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   927           }
   928 #endif
   929           // Always process arraycopy's destination object since
   930           // we need to add all possible edges to references in
   931           // source object.
   932           if (arg_esc >= PointsToNode::ArgEscape &&
   933               !arg_is_arraycopy_dest) {
   934             continue;
   935           }
   936           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   937           if (arg_is_arraycopy_dest) {
   938             Node* src = call->in(TypeFunc::Parms);
   939             if (src->is_AddP()) {
   940               src = get_addp_base(src);
   941             }
   942             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   943             assert(src_ptn != NULL, "should be registered");
   944             if (arg_ptn != src_ptn) {
   945               // Special arraycopy edge:
   946               // A destination object's field can't have the source object
   947               // as base since objects escape states are not related.
   948               // Only escape state of destination object's fields affects
   949               // escape state of fields in source object.
   950               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   951             }
   952           }
   953         }
   954       }
   955       break;
   956     }
   957     case Op_CallStaticJava: {
   958       // For a static call, we know exactly what method is being called.
   959       // Use bytecode estimator to record the call's escape affects
   960 #ifdef ASSERT
   961       const char* name = call->as_CallStaticJava()->_name;
   962       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   963 #endif
   964       ciMethod* meth = call->as_CallJava()->method();
   965       if ((meth != NULL) && meth->is_boxing_method()) {
   966         break; // Boxing methods do not modify any oops.
   967       }
   968       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
   969       // fall-through if not a Java method or no analyzer information
   970       if (call_analyzer != NULL) {
   971         PointsToNode* call_ptn = ptnode_adr(call->_idx);
   972         const TypeTuple* d = call->tf()->domain();
   973         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   974           const Type* at = d->field_at(i);
   975           int k = i - TypeFunc::Parms;
   976           Node* arg = call->in(i);
   977           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   978           if (at->isa_ptr() != NULL &&
   979               call_analyzer->is_arg_returned(k)) {
   980             // The call returns arguments.
   981             if (call_ptn != NULL) { // Is call's result used?
   982               assert(call_ptn->is_LocalVar(), "node should be registered");
   983               assert(arg_ptn != NULL, "node should be registered");
   984               add_edge(call_ptn, arg_ptn);
   985             }
   986           }
   987           if (at->isa_oopptr() != NULL &&
   988               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
   989             if (!call_analyzer->is_arg_stack(k)) {
   990               // The argument global escapes
   991               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
   992             } else {
   993               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   994               if (!call_analyzer->is_arg_local(k)) {
   995                 // The argument itself doesn't escape, but any fields might
   996                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
   997               }
   998             }
   999           }
  1001         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1002           // The call returns arguments.
  1003           assert(call_ptn->edge_count() > 0, "sanity");
  1004           if (!call_analyzer->is_return_local()) {
  1005             // Returns also unknown object.
  1006             add_edge(call_ptn, phantom_obj);
  1009         break;
  1012     default: {
  1013       // Fall-through here if not a Java method or no analyzer information
  1014       // or some other type of call, assume the worst case: all arguments
  1015       // globally escape.
  1016       const TypeTuple* d = call->tf()->domain();
  1017       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1018         const Type* at = d->field_at(i);
  1019         if (at->isa_oopptr() != NULL) {
  1020           Node* arg = call->in(i);
  1021           if (arg->is_AddP()) {
  1022             arg = get_addp_base(arg);
  1024           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1025           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1033 // Finish Graph construction.
  1034 bool ConnectionGraph::complete_connection_graph(
  1035                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1036                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1037                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1038                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1039   // Normally only 1-3 passes needed to build Connection Graph depending
  1040   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1041   // Set limit to 20 to catch situation when something did go wrong and
  1042   // bailout Escape Analysis.
  1043   // Also limit build time to 30 sec (60 in debug VM).
  1044 #define CG_BUILD_ITER_LIMIT 20
  1045 #ifdef ASSERT
  1046 #define CG_BUILD_TIME_LIMIT 60.0
  1047 #else
  1048 #define CG_BUILD_TIME_LIMIT 30.0
  1049 #endif
  1051   // Propagate GlobalEscape and ArgEscape escape states and check that
  1052   // we still have non-escaping objects. The method pushs on _worklist
  1053   // Field nodes which reference phantom_object.
  1054   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1055     return false; // Nothing to do.
  1057   // Now propagate references to all JavaObject nodes.
  1058   int java_objects_length = java_objects_worklist.length();
  1059   elapsedTimer time;
  1060   int new_edges = 1;
  1061   int iterations = 0;
  1062   do {
  1063     while ((new_edges > 0) &&
  1064           (iterations++   < CG_BUILD_ITER_LIMIT) &&
  1065           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1066       time.start();
  1067       new_edges = 0;
  1068       // Propagate references to phantom_object for nodes pushed on _worklist
  1069       // by find_non_escaped_objects() and find_field_value().
  1070       new_edges += add_java_object_edges(phantom_obj, false);
  1071       for (int next = 0; next < java_objects_length; ++next) {
  1072         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1073         new_edges += add_java_object_edges(ptn, true);
  1075       if (new_edges > 0) {
  1076         // Update escape states on each iteration if graph was updated.
  1077         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1078           return false; // Nothing to do.
  1081       time.stop();
  1083     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
  1084         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1085       time.start();
  1086       // Find fields which have unknown value.
  1087       int fields_length = oop_fields_worklist.length();
  1088       for (int next = 0; next < fields_length; next++) {
  1089         FieldNode* field = oop_fields_worklist.at(next);
  1090         if (field->edge_count() == 0) {
  1091           new_edges += find_field_value(field);
  1092           // This code may added new edges to phantom_object.
  1093           // Need an other cycle to propagate references to phantom_object.
  1096       time.stop();
  1097     } else {
  1098       new_edges = 0; // Bailout
  1100   } while (new_edges > 0);
  1102   // Bailout if passed limits.
  1103   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
  1104       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
  1105     Compile* C = _compile;
  1106     if (C->log() != NULL) {
  1107       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1108       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
  1109       C->log()->end_elem(" limit'");
  1111     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1112            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1113     // Possible infinite build_connection_graph loop,
  1114     // bailout (no changes to ideal graph were made).
  1115     return false;
  1117 #ifdef ASSERT
  1118   if (Verbose && PrintEscapeAnalysis) {
  1119     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1120                   iterations, nodes_size(), ptnodes_worklist.length());
  1122 #endif
  1124 #undef CG_BUILD_ITER_LIMIT
  1125 #undef CG_BUILD_TIME_LIMIT
  1127   // Find fields initialized by NULL for non-escaping Allocations.
  1128   int non_escaped_length = non_escaped_worklist.length();
  1129   for (int next = 0; next < non_escaped_length; next++) {
  1130     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1131     PointsToNode::EscapeState es = ptn->escape_state();
  1132     assert(es <= PointsToNode::ArgEscape, "sanity");
  1133     if (es == PointsToNode::NoEscape) {
  1134       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1135         // Adding references to NULL object does not change escape states
  1136         // since it does not escape. Also no fields are added to NULL object.
  1137         add_java_object_edges(null_obj, false);
  1140     Node* n = ptn->ideal_node();
  1141     if (n->is_Allocate()) {
  1142       // The object allocated by this Allocate node will never be
  1143       // seen by an other thread. Mark it so that when it is
  1144       // expanded no MemBarStoreStore is added.
  1145       InitializeNode* ini = n->as_Allocate()->initialization();
  1146       if (ini != NULL)
  1147         ini->set_does_not_escape();
  1150   return true; // Finished graph construction.
  1153 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1154 // and check that we still have non-escaping java objects.
  1155 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1156                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1157   GrowableArray<PointsToNode*> escape_worklist;
  1158   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1159   int ptnodes_length = ptnodes_worklist.length();
  1160   for (int next = 0; next < ptnodes_length; ++next) {
  1161     PointsToNode* ptn = ptnodes_worklist.at(next);
  1162     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1163         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1164       escape_worklist.push(ptn);
  1167   // Set escape states to referenced nodes (edges list).
  1168   while (escape_worklist.length() > 0) {
  1169     PointsToNode* ptn = escape_worklist.pop();
  1170     PointsToNode::EscapeState es  = ptn->escape_state();
  1171     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1172     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1173         es >= PointsToNode::ArgEscape) {
  1174       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1175       if (add_edge(ptn, phantom_obj)) {
  1176         // New edge was added
  1177         add_field_uses_to_worklist(ptn->as_Field());
  1180     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1181       PointsToNode* e = i.get();
  1182       if (e->is_Arraycopy()) {
  1183         assert(ptn->arraycopy_dst(), "sanity");
  1184         // Propagate only fields escape state through arraycopy edge.
  1185         if (e->fields_escape_state() < field_es) {
  1186           set_fields_escape_state(e, field_es);
  1187           escape_worklist.push(e);
  1189       } else if (es >= field_es) {
  1190         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1191         if (e->escape_state() < es) {
  1192           set_escape_state(e, es);
  1193           escape_worklist.push(e);
  1195       } else {
  1196         // Propagate field escape state.
  1197         bool es_changed = false;
  1198         if (e->fields_escape_state() < field_es) {
  1199           set_fields_escape_state(e, field_es);
  1200           es_changed = true;
  1202         if ((e->escape_state() < field_es) &&
  1203             e->is_Field() && ptn->is_JavaObject() &&
  1204             e->as_Field()->is_oop()) {
  1205           // Change escape state of referenced fileds.
  1206           set_escape_state(e, field_es);
  1207           es_changed = true;;
  1208         } else if (e->escape_state() < es) {
  1209           set_escape_state(e, es);
  1210           es_changed = true;;
  1212         if (es_changed) {
  1213           escape_worklist.push(e);
  1218   // Remove escaped objects from non_escaped list.
  1219   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1220     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1221     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1222       non_escaped_worklist.delete_at(next);
  1224     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1225       // Find fields in non-escaped allocations which have unknown value.
  1226       find_init_values(ptn, phantom_obj, NULL);
  1229   return (non_escaped_worklist.length() > 0);
  1232 // Add all references to JavaObject node by walking over all uses.
  1233 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1234   int new_edges = 0;
  1235   if (populate_worklist) {
  1236     // Populate _worklist by uses of jobj's uses.
  1237     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1238       PointsToNode* use = i.get();
  1239       if (use->is_Arraycopy())
  1240         continue;
  1241       add_uses_to_worklist(use);
  1242       if (use->is_Field() && use->as_Field()->is_oop()) {
  1243         // Put on worklist all field's uses (loads) and
  1244         // related field nodes (same base and offset).
  1245         add_field_uses_to_worklist(use->as_Field());
  1249   while(_worklist.length() > 0) {
  1250     PointsToNode* use = _worklist.pop();
  1251     if (PointsToNode::is_base_use(use)) {
  1252       // Add reference from jobj to field and from field to jobj (field's base).
  1253       use = PointsToNode::get_use_node(use)->as_Field();
  1254       if (add_base(use->as_Field(), jobj)) {
  1255         new_edges++;
  1257       continue;
  1259     assert(!use->is_JavaObject(), "sanity");
  1260     if (use->is_Arraycopy()) {
  1261       if (jobj == null_obj) // NULL object does not have field edges
  1262         continue;
  1263       // Added edge from Arraycopy node to arraycopy's source java object
  1264       if (add_edge(use, jobj)) {
  1265         jobj->set_arraycopy_src();
  1266         new_edges++;
  1268       // and stop here.
  1269       continue;
  1271     if (!add_edge(use, jobj))
  1272       continue; // No new edge added, there was such edge already.
  1273     new_edges++;
  1274     if (use->is_LocalVar()) {
  1275       add_uses_to_worklist(use);
  1276       if (use->arraycopy_dst()) {
  1277         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1278           PointsToNode* e = i.get();
  1279           if (e->is_Arraycopy()) {
  1280             if (jobj == null_obj) // NULL object does not have field edges
  1281               continue;
  1282             // Add edge from arraycopy's destination java object to Arraycopy node.
  1283             if (add_edge(jobj, e)) {
  1284               new_edges++;
  1285               jobj->set_arraycopy_dst();
  1290     } else {
  1291       // Added new edge to stored in field values.
  1292       // Put on worklist all field's uses (loads) and
  1293       // related field nodes (same base and offset).
  1294       add_field_uses_to_worklist(use->as_Field());
  1297   return new_edges;
  1300 // Put on worklist all related field nodes.
  1301 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1302   assert(field->is_oop(), "sanity");
  1303   int offset = field->offset();
  1304   add_uses_to_worklist(field);
  1305   // Loop over all bases of this field and push on worklist Field nodes
  1306   // with the same offset and base (since they may reference the same field).
  1307   for (BaseIterator i(field); i.has_next(); i.next()) {
  1308     PointsToNode* base = i.get();
  1309     add_fields_to_worklist(field, base);
  1310     // Check if the base was source object of arraycopy and go over arraycopy's
  1311     // destination objects since values stored to a field of source object are
  1312     // accessable by uses (loads) of fields of destination objects.
  1313     if (base->arraycopy_src()) {
  1314       for (UseIterator j(base); j.has_next(); j.next()) {
  1315         PointsToNode* arycp = j.get();
  1316         if (arycp->is_Arraycopy()) {
  1317           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1318             PointsToNode* abase = k.get();
  1319             if (abase->arraycopy_dst() && abase != base) {
  1320               // Look for the same arracopy reference.
  1321               add_fields_to_worklist(field, abase);
  1330 // Put on worklist all related field nodes.
  1331 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1332   int offset = field->offset();
  1333   if (base->is_LocalVar()) {
  1334     for (UseIterator j(base); j.has_next(); j.next()) {
  1335       PointsToNode* f = j.get();
  1336       if (PointsToNode::is_base_use(f)) { // Field
  1337         f = PointsToNode::get_use_node(f);
  1338         if (f == field || !f->as_Field()->is_oop())
  1339           continue;
  1340         int offs = f->as_Field()->offset();
  1341         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1342           add_to_worklist(f);
  1346   } else {
  1347     assert(base->is_JavaObject(), "sanity");
  1348     if (// Skip phantom_object since it is only used to indicate that
  1349         // this field's content globally escapes.
  1350         (base != phantom_obj) &&
  1351         // NULL object node does not have fields.
  1352         (base != null_obj)) {
  1353       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1354         PointsToNode* f = i.get();
  1355         // Skip arraycopy edge since store to destination object field
  1356         // does not update value in source object field.
  1357         if (f->is_Arraycopy()) {
  1358           assert(base->arraycopy_dst(), "sanity");
  1359           continue;
  1361         if (f == field || !f->as_Field()->is_oop())
  1362           continue;
  1363         int offs = f->as_Field()->offset();
  1364         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1365           add_to_worklist(f);
  1372 // Find fields which have unknown value.
  1373 int ConnectionGraph::find_field_value(FieldNode* field) {
  1374   // Escaped fields should have init value already.
  1375   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1376   int new_edges = 0;
  1377   for (BaseIterator i(field); i.has_next(); i.next()) {
  1378     PointsToNode* base = i.get();
  1379     if (base->is_JavaObject()) {
  1380       // Skip Allocate's fields which will be processed later.
  1381       if (base->ideal_node()->is_Allocate())
  1382         return 0;
  1383       assert(base == null_obj, "only NULL ptr base expected here");
  1386   if (add_edge(field, phantom_obj)) {
  1387     // New edge was added
  1388     new_edges++;
  1389     add_field_uses_to_worklist(field);
  1391   return new_edges;
  1394 // Find fields initializing values for allocations.
  1395 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1396   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1397   int new_edges = 0;
  1398   Node* alloc = pta->ideal_node();
  1399   if (init_val == phantom_obj) {
  1400     // Do nothing for Allocate nodes since its fields values are "known".
  1401     if (alloc->is_Allocate())
  1402       return 0;
  1403     assert(alloc->as_CallStaticJava(), "sanity");
  1404 #ifdef ASSERT
  1405     if (alloc->as_CallStaticJava()->method() == NULL) {
  1406       const char* name = alloc->as_CallStaticJava()->_name;
  1407       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1409 #endif
  1410     // Non-escaped allocation returned from Java or runtime call have
  1411     // unknown values in fields.
  1412     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1413       PointsToNode* field = i.get();
  1414       if (field->is_Field() && field->as_Field()->is_oop()) {
  1415         if (add_edge(field, phantom_obj)) {
  1416           // New edge was added
  1417           new_edges++;
  1418           add_field_uses_to_worklist(field->as_Field());
  1422     return new_edges;
  1424   assert(init_val == null_obj, "sanity");
  1425   // Do nothing for Call nodes since its fields values are unknown.
  1426   if (!alloc->is_Allocate())
  1427     return 0;
  1429   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1430   Compile* C = _compile;
  1431   bool visited_bottom_offset = false;
  1432   GrowableArray<int> offsets_worklist;
  1434   // Check if an oop field's initializing value is recorded and add
  1435   // a corresponding NULL if field's value if it is not recorded.
  1436   // Connection Graph does not record a default initialization by NULL
  1437   // captured by Initialize node.
  1438   //
  1439   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1440     PointsToNode* field = i.get(); // Field (AddP)
  1441     if (!field->is_Field() || !field->as_Field()->is_oop())
  1442       continue; // Not oop field
  1443     int offset = field->as_Field()->offset();
  1444     if (offset == Type::OffsetBot) {
  1445       if (!visited_bottom_offset) {
  1446         // OffsetBot is used to reference array's element,
  1447         // always add reference to NULL to all Field nodes since we don't
  1448         // known which element is referenced.
  1449         if (add_edge(field, null_obj)) {
  1450           // New edge was added
  1451           new_edges++;
  1452           add_field_uses_to_worklist(field->as_Field());
  1453           visited_bottom_offset = true;
  1456     } else {
  1457       // Check only oop fields.
  1458       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1459       if (adr_type->isa_rawptr()) {
  1460 #ifdef ASSERT
  1461         // Raw pointers are used for initializing stores so skip it
  1462         // since it should be recorded already
  1463         Node* base = get_addp_base(field->ideal_node());
  1464         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1465                (base->in(0) == alloc),"unexpected pointer type");
  1466 #endif
  1467         continue;
  1469       if (!offsets_worklist.contains(offset)) {
  1470         offsets_worklist.append(offset);
  1471         Node* value = NULL;
  1472         if (ini != NULL) {
  1473           // StoreP::memory_type() == T_ADDRESS
  1474           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1475           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1476           // Make sure initializing store has the same type as this AddP.
  1477           // This AddP may reference non existing field because it is on a
  1478           // dead branch of bimorphic call which is not eliminated yet.
  1479           if (store != NULL && store->is_Store() &&
  1480               store->as_Store()->memory_type() == ft) {
  1481             value = store->in(MemNode::ValueIn);
  1482 #ifdef ASSERT
  1483             if (VerifyConnectionGraph) {
  1484               // Verify that AddP already points to all objects the value points to.
  1485               PointsToNode* val = ptnode_adr(value->_idx);
  1486               assert((val != NULL), "should be processed already");
  1487               PointsToNode* missed_obj = NULL;
  1488               if (val->is_JavaObject()) {
  1489                 if (!field->points_to(val->as_JavaObject())) {
  1490                   missed_obj = val;
  1492               } else {
  1493                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1494                   tty->print_cr("----------init store has invalid value -----");
  1495                   store->dump();
  1496                   val->dump();
  1497                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1499                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1500                   PointsToNode* obj = j.get();
  1501                   if (obj->is_JavaObject()) {
  1502                     if (!field->points_to(obj->as_JavaObject())) {
  1503                       missed_obj = obj;
  1504                       break;
  1509               if (missed_obj != NULL) {
  1510                 tty->print_cr("----------field---------------------------------");
  1511                 field->dump();
  1512                 tty->print_cr("----------missed referernce to object-----------");
  1513                 missed_obj->dump();
  1514                 tty->print_cr("----------object referernced by init store -----");
  1515                 store->dump();
  1516                 val->dump();
  1517                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1520 #endif
  1521           } else {
  1522             // There could be initializing stores which follow allocation.
  1523             // For example, a volatile field store is not collected
  1524             // by Initialize node.
  1525             //
  1526             // Need to check for dependent loads to separate such stores from
  1527             // stores which follow loads. For now, add initial value NULL so
  1528             // that compare pointers optimization works correctly.
  1531         if (value == NULL) {
  1532           // A field's initializing value was not recorded. Add NULL.
  1533           if (add_edge(field, null_obj)) {
  1534             // New edge was added
  1535             new_edges++;
  1536             add_field_uses_to_worklist(field->as_Field());
  1542   return new_edges;
  1545 // Adjust scalar_replaceable state after Connection Graph is built.
  1546 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1547   // Search for non-escaping objects which are not scalar replaceable
  1548   // and mark them to propagate the state to referenced objects.
  1550   // 1. An object is not scalar replaceable if the field into which it is
  1551   // stored has unknown offset (stored into unknown element of an array).
  1552   //
  1553   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1554     PointsToNode* use = i.get();
  1555     assert(!use->is_Arraycopy(), "sanity");
  1556     if (use->is_Field()) {
  1557       FieldNode* field = use->as_Field();
  1558       assert(field->is_oop() && field->scalar_replaceable() &&
  1559              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1560       if (field->offset() == Type::OffsetBot) {
  1561         jobj->set_scalar_replaceable(false);
  1562         return;
  1565     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1566     // 2. An object is not scalar replaceable if it is merged with other objects.
  1567     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1568       PointsToNode* ptn = j.get();
  1569       if (ptn->is_JavaObject() && ptn != jobj) {
  1570         // Mark all objects.
  1571         jobj->set_scalar_replaceable(false);
  1572          ptn->set_scalar_replaceable(false);
  1575     if (!jobj->scalar_replaceable()) {
  1576       return;
  1580   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1581     // Non-escaping object node should point only to field nodes.
  1582     FieldNode* field = j.get()->as_Field();
  1583     int offset = field->as_Field()->offset();
  1585     // 3. An object is not scalar replaceable if it has a field with unknown
  1586     // offset (array's element is accessed in loop).
  1587     if (offset == Type::OffsetBot) {
  1588       jobj->set_scalar_replaceable(false);
  1589       return;
  1591     // 4. Currently an object is not scalar replaceable if a LoadStore node
  1592     // access its field since the field value is unknown after it.
  1593     //
  1594     Node* n = field->ideal_node();
  1595     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1596       if (n->fast_out(i)->is_LoadStore()) {
  1597         jobj->set_scalar_replaceable(false);
  1598         return;
  1602     // 5. Or the address may point to more then one object. This may produce
  1603     // the false positive result (set not scalar replaceable)
  1604     // since the flow-insensitive escape analysis can't separate
  1605     // the case when stores overwrite the field's value from the case
  1606     // when stores happened on different control branches.
  1607     //
  1608     // Note: it will disable scalar replacement in some cases:
  1609     //
  1610     //    Point p[] = new Point[1];
  1611     //    p[0] = new Point(); // Will be not scalar replaced
  1612     //
  1613     // but it will save us from incorrect optimizations in next cases:
  1614     //
  1615     //    Point p[] = new Point[1];
  1616     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1617     //
  1618     if (field->base_count() > 1) {
  1619       for (BaseIterator i(field); i.has_next(); i.next()) {
  1620         PointsToNode* base = i.get();
  1621         // Don't take into account LocalVar nodes which
  1622         // may point to only one object which should be also
  1623         // this field's base by now.
  1624         if (base->is_JavaObject() && base != jobj) {
  1625           // Mark all bases.
  1626           jobj->set_scalar_replaceable(false);
  1627           base->set_scalar_replaceable(false);
  1634 #ifdef ASSERT
  1635 void ConnectionGraph::verify_connection_graph(
  1636                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1637                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1638                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1639                          GrowableArray<Node*>& addp_worklist) {
  1640   // Verify that graph is complete - no new edges could be added.
  1641   int java_objects_length = java_objects_worklist.length();
  1642   int non_escaped_length  = non_escaped_worklist.length();
  1643   int new_edges = 0;
  1644   for (int next = 0; next < java_objects_length; ++next) {
  1645     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1646     new_edges += add_java_object_edges(ptn, true);
  1648   assert(new_edges == 0, "graph was not complete");
  1649   // Verify that escape state is final.
  1650   int length = non_escaped_worklist.length();
  1651   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1652   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1653          (non_escaped_length == length) &&
  1654          (_worklist.length() == 0), "escape state was not final");
  1656   // Verify fields information.
  1657   int addp_length = addp_worklist.length();
  1658   for (int next = 0; next < addp_length; ++next ) {
  1659     Node* n = addp_worklist.at(next);
  1660     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1661     if (field->is_oop()) {
  1662       // Verify that field has all bases
  1663       Node* base = get_addp_base(n);
  1664       PointsToNode* ptn = ptnode_adr(base->_idx);
  1665       if (ptn->is_JavaObject()) {
  1666         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1667       } else {
  1668         assert(ptn->is_LocalVar(), "sanity");
  1669         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1670           PointsToNode* e = i.get();
  1671           if (e->is_JavaObject()) {
  1672             assert(field->has_base(e->as_JavaObject()), "sanity");
  1676       // Verify that all fields have initializing values.
  1677       if (field->edge_count() == 0) {
  1678         tty->print_cr("----------field does not have references----------");
  1679         field->dump();
  1680         for (BaseIterator i(field); i.has_next(); i.next()) {
  1681           PointsToNode* base = i.get();
  1682           tty->print_cr("----------field has next base---------------------");
  1683           base->dump();
  1684           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1685             tty->print_cr("----------base has fields-------------------------");
  1686             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1687               j.get()->dump();
  1689             tty->print_cr("----------base has references---------------------");
  1690             for (UseIterator j(base); j.has_next(); j.next()) {
  1691               j.get()->dump();
  1695         for (UseIterator i(field); i.has_next(); i.next()) {
  1696           i.get()->dump();
  1698         assert(field->edge_count() > 0, "sanity");
  1703 #endif
  1705 // Optimize ideal graph.
  1706 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1707                                            GrowableArray<Node*>& storestore_worklist) {
  1708   Compile* C = _compile;
  1709   PhaseIterGVN* igvn = _igvn;
  1710   if (EliminateLocks) {
  1711     // Mark locks before changing ideal graph.
  1712     int cnt = C->macro_count();
  1713     for( int i=0; i < cnt; i++ ) {
  1714       Node *n = C->macro_node(i);
  1715       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1716         AbstractLockNode* alock = n->as_AbstractLock();
  1717         if (!alock->is_non_esc_obj()) {
  1718           if (not_global_escape(alock->obj_node())) {
  1719             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1720             // The lock could be marked eliminated by lock coarsening
  1721             // code during first IGVN before EA. Replace coarsened flag
  1722             // to eliminate all associated locks/unlocks.
  1723             alock->set_non_esc_obj();
  1730   if (OptimizePtrCompare) {
  1731     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1732     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1733     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1734     // Optimize objects compare.
  1735     while (ptr_cmp_worklist.length() != 0) {
  1736       Node *n = ptr_cmp_worklist.pop();
  1737       Node *res = optimize_ptr_compare(n);
  1738       if (res != NULL) {
  1739 #ifndef PRODUCT
  1740         if (PrintOptimizePtrCompare) {
  1741           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1742           if (Verbose) {
  1743             n->dump(1);
  1746 #endif
  1747         igvn->replace_node(n, res);
  1750     // cleanup
  1751     if (_pcmp_neq->outcnt() == 0)
  1752       igvn->hash_delete(_pcmp_neq);
  1753     if (_pcmp_eq->outcnt()  == 0)
  1754       igvn->hash_delete(_pcmp_eq);
  1757   // For MemBarStoreStore nodes added in library_call.cpp, check
  1758   // escape status of associated AllocateNode and optimize out
  1759   // MemBarStoreStore node if the allocated object never escapes.
  1760   while (storestore_worklist.length() != 0) {
  1761     Node *n = storestore_worklist.pop();
  1762     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1763     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1764     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1765     if (not_global_escape(alloc)) {
  1766       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1767       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1768       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1769       igvn->register_new_node_with_optimizer(mb);
  1770       igvn->replace_node(storestore, mb);
  1775 // Optimize objects compare.
  1776 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1777   assert(OptimizePtrCompare, "sanity");
  1778   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1779   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1780   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1781   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1782   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1783   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1785   // Check simple cases first.
  1786   if (jobj1 != NULL) {
  1787     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1788       if (jobj1 == jobj2) {
  1789         // Comparing the same not escaping object.
  1790         return _pcmp_eq;
  1792       Node* obj = jobj1->ideal_node();
  1793       // Comparing not escaping allocation.
  1794       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1795           !ptn2->points_to(jobj1)) {
  1796         return _pcmp_neq; // This includes nullness check.
  1800   if (jobj2 != NULL) {
  1801     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1802       Node* obj = jobj2->ideal_node();
  1803       // Comparing not escaping allocation.
  1804       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1805           !ptn1->points_to(jobj2)) {
  1806         return _pcmp_neq; // This includes nullness check.
  1810   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1811       jobj2 != NULL && jobj2 != phantom_obj &&
  1812       jobj1->ideal_node()->is_Con() &&
  1813       jobj2->ideal_node()->is_Con()) {
  1814     // Klass or String constants compare. Need to be careful with
  1815     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1816     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
  1817     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
  1818     assert(t1 != NULL && t2 != NULL, "sanity");
  1819     if (t1->make_ptr() == t2->make_ptr()) {
  1820       return _pcmp_eq;
  1821     } else {
  1822       return _pcmp_neq;
  1825   if (ptn1->meet(ptn2)) {
  1826     return NULL; // Sets are not disjoint
  1829   // Sets are disjoint.
  1830   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1831   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1832   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1833   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1834   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1835       set2_has_unknown_ptr && set1_has_null_ptr) {
  1836     // Check nullness of unknown object.
  1837     return NULL;
  1840   // Disjointness by itself is not sufficient since
  1841   // alias analysis is not complete for escaped objects.
  1842   // Disjoint sets are definitely unrelated only when
  1843   // at least one set has only not escaping allocations.
  1844   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1845     if (ptn1->non_escaping_allocation()) {
  1846       return _pcmp_neq;
  1849   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1850     if (ptn2->non_escaping_allocation()) {
  1851       return _pcmp_neq;
  1854   return NULL;
  1857 // Connection Graph constuction functions.
  1859 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1860   PointsToNode* ptadr = _nodes.at(n->_idx);
  1861   if (ptadr != NULL) {
  1862     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1863     return;
  1865   Compile* C = _compile;
  1866   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  1867   _nodes.at_put(n->_idx, ptadr);
  1870 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1871   PointsToNode* ptadr = _nodes.at(n->_idx);
  1872   if (ptadr != NULL) {
  1873     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1874     return;
  1876   Compile* C = _compile;
  1877   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  1878   _nodes.at_put(n->_idx, ptadr);
  1881 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1882   PointsToNode* ptadr = _nodes.at(n->_idx);
  1883   if (ptadr != NULL) {
  1884     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1885     return;
  1887   bool unsafe = false;
  1888   bool is_oop = is_oop_field(n, offset, &unsafe);
  1889   if (unsafe) {
  1890     es = PointsToNode::GlobalEscape;
  1892   Compile* C = _compile;
  1893   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  1894   _nodes.at_put(n->_idx, field);
  1897 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1898                                     PointsToNode* src, PointsToNode* dst) {
  1899   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1900   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1901   PointsToNode* ptadr = _nodes.at(n->_idx);
  1902   if (ptadr != NULL) {
  1903     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1904     return;
  1906   Compile* C = _compile;
  1907   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  1908   _nodes.at_put(n->_idx, ptadr);
  1909   // Add edge from arraycopy node to source object.
  1910   (void)add_edge(ptadr, src);
  1911   src->set_arraycopy_src();
  1912   // Add edge from destination object to arraycopy node.
  1913   (void)add_edge(dst, ptadr);
  1914   dst->set_arraycopy_dst();
  1917 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1918   const Type* adr_type = n->as_AddP()->bottom_type();
  1919   BasicType bt = T_INT;
  1920   if (offset == Type::OffsetBot) {
  1921     // Check only oop fields.
  1922     if (!adr_type->isa_aryptr() ||
  1923         (adr_type->isa_aryptr()->klass() == NULL) ||
  1924          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1925       // OffsetBot is used to reference array's element. Ignore first AddP.
  1926       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1927         bt = T_OBJECT;
  1930   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1931     if (adr_type->isa_instptr()) {
  1932       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  1933       if (field != NULL) {
  1934         bt = field->layout_type();
  1935       } else {
  1936         // Check for unsafe oop field access
  1937         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1938           int opcode = n->fast_out(i)->Opcode();
  1939           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1940               opcode == Op_StoreN || opcode == Op_LoadN) {
  1941             bt = T_OBJECT;
  1942             (*unsafe) = true;
  1943             break;
  1947     } else if (adr_type->isa_aryptr()) {
  1948       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1949         // Ignore array length load.
  1950       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  1951         // Ignore first AddP.
  1952       } else {
  1953         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1954         bt = elemtype->array_element_basic_type();
  1956     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  1957       // Allocation initialization, ThreadLocal field access, unsafe access
  1958       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1959         int opcode = n->fast_out(i)->Opcode();
  1960         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1961             opcode == Op_StoreN || opcode == Op_LoadN) {
  1962           bt = T_OBJECT;
  1963           break;
  1968   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  1971 // Returns unique pointed java object or NULL.
  1972 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  1973   assert(!_collecting, "should not call when contructed graph");
  1974   // If the node was created after the escape computation we can't answer.
  1975   uint idx = n->_idx;
  1976   if (idx >= nodes_size()) {
  1977     return NULL;
  1979   PointsToNode* ptn = ptnode_adr(idx);
  1980   if (ptn->is_JavaObject()) {
  1981     return ptn->as_JavaObject();
  1983   assert(ptn->is_LocalVar(), "sanity");
  1984   // Check all java objects it points to.
  1985   JavaObjectNode* jobj = NULL;
  1986   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1987     PointsToNode* e = i.get();
  1988     if (e->is_JavaObject()) {
  1989       if (jobj == NULL) {
  1990         jobj = e->as_JavaObject();
  1991       } else if (jobj != e) {
  1992         return NULL;
  1996   return jobj;
  1999 // Return true if this node points only to non-escaping allocations.
  2000 bool PointsToNode::non_escaping_allocation() {
  2001   if (is_JavaObject()) {
  2002     Node* n = ideal_node();
  2003     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2004       return (escape_state() == PointsToNode::NoEscape);
  2005     } else {
  2006       return false;
  2009   assert(is_LocalVar(), "sanity");
  2010   // Check all java objects it points to.
  2011   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2012     PointsToNode* e = i.get();
  2013     if (e->is_JavaObject()) {
  2014       Node* n = e->ideal_node();
  2015       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2016           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2017         return false;
  2021   return true;
  2024 // Return true if we know the node does not escape globally.
  2025 bool ConnectionGraph::not_global_escape(Node *n) {
  2026   assert(!_collecting, "should not call during graph construction");
  2027   // If the node was created after the escape computation we can't answer.
  2028   uint idx = n->_idx;
  2029   if (idx >= nodes_size()) {
  2030     return false;
  2032   PointsToNode* ptn = ptnode_adr(idx);
  2033   PointsToNode::EscapeState es = ptn->escape_state();
  2034   // If we have already computed a value, return it.
  2035   if (es >= PointsToNode::GlobalEscape)
  2036     return false;
  2037   if (ptn->is_JavaObject()) {
  2038     return true; // (es < PointsToNode::GlobalEscape);
  2040   assert(ptn->is_LocalVar(), "sanity");
  2041   // Check all java objects it points to.
  2042   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2043     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2044       return false;
  2046   return true;
  2050 // Helper functions
  2052 // Return true if this node points to specified node or nodes it points to.
  2053 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2054   if (is_JavaObject()) {
  2055     return (this == ptn);
  2057   assert(is_LocalVar() || is_Field(), "sanity");
  2058   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2059     if (i.get() == ptn)
  2060       return true;
  2062   return false;
  2065 // Return true if one node points to an other.
  2066 bool PointsToNode::meet(PointsToNode* ptn) {
  2067   if (this == ptn) {
  2068     return true;
  2069   } else if (ptn->is_JavaObject()) {
  2070     return this->points_to(ptn->as_JavaObject());
  2071   } else if (this->is_JavaObject()) {
  2072     return ptn->points_to(this->as_JavaObject());
  2074   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2075   int ptn_count =  ptn->edge_count();
  2076   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2077     PointsToNode* this_e = i.get();
  2078     for (int j = 0; j < ptn_count; j++) {
  2079       if (this_e == ptn->edge(j))
  2080         return true;
  2083   return false;
  2086 #ifdef ASSERT
  2087 // Return true if bases point to this java object.
  2088 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2089   for (BaseIterator i(this); i.has_next(); i.next()) {
  2090     if (i.get() == jobj)
  2091       return true;
  2093   return false;
  2095 #endif
  2097 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2098   const Type *adr_type = phase->type(adr);
  2099   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2100       adr->in(AddPNode::Address)->is_Proj() &&
  2101       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2102     // We are computing a raw address for a store captured by an Initialize
  2103     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2104     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2105     assert(offs != Type::OffsetBot ||
  2106            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2107            "offset must be a constant or it is initialization of array");
  2108     return offs;
  2110   const TypePtr *t_ptr = adr_type->isa_ptr();
  2111   assert(t_ptr != NULL, "must be a pointer type");
  2112   return t_ptr->offset();
  2115 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2116   assert(addp->is_AddP(), "must be AddP");
  2117   //
  2118   // AddP cases for Base and Address inputs:
  2119   // case #1. Direct object's field reference:
  2120   //     Allocate
  2121   //       |
  2122   //     Proj #5 ( oop result )
  2123   //       |
  2124   //     CheckCastPP (cast to instance type)
  2125   //      | |
  2126   //     AddP  ( base == address )
  2127   //
  2128   // case #2. Indirect object's field reference:
  2129   //      Phi
  2130   //       |
  2131   //     CastPP (cast to instance type)
  2132   //      | |
  2133   //     AddP  ( base == address )
  2134   //
  2135   // case #3. Raw object's field reference for Initialize node:
  2136   //      Allocate
  2137   //        |
  2138   //      Proj #5 ( oop result )
  2139   //  top   |
  2140   //     \  |
  2141   //     AddP  ( base == top )
  2142   //
  2143   // case #4. Array's element reference:
  2144   //   {CheckCastPP | CastPP}
  2145   //     |  | |
  2146   //     |  AddP ( array's element offset )
  2147   //     |  |
  2148   //     AddP ( array's offset )
  2149   //
  2150   // case #5. Raw object's field reference for arraycopy stub call:
  2151   //          The inline_native_clone() case when the arraycopy stub is called
  2152   //          after the allocation before Initialize and CheckCastPP nodes.
  2153   //      Allocate
  2154   //        |
  2155   //      Proj #5 ( oop result )
  2156   //       | |
  2157   //       AddP  ( base == address )
  2158   //
  2159   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2160   //          Raw object's field reference:
  2161   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2162   //  top   |
  2163   //     \  |
  2164   //     AddP  ( base == top )
  2165   //
  2166   // case #7. Klass's field reference.
  2167   //      LoadKlass
  2168   //       | |
  2169   //       AddP  ( base == address )
  2170   //
  2171   // case #8. narrow Klass's field reference.
  2172   //      LoadNKlass
  2173   //       |
  2174   //      DecodeN
  2175   //       | |
  2176   //       AddP  ( base == address )
  2177   //
  2178   Node *base = addp->in(AddPNode::Base);
  2179   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2180     base = addp->in(AddPNode::Address);
  2181     while (base->is_AddP()) {
  2182       // Case #6 (unsafe access) may have several chained AddP nodes.
  2183       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2184       base = base->in(AddPNode::Address);
  2186     Node* uncast_base = base->uncast();
  2187     int opcode = uncast_base->Opcode();
  2188     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2189            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2190            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
  2191            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2193   return base;
  2196 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2197   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2198   Node* addp2 = addp->raw_out(0);
  2199   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2200       addp2->in(AddPNode::Base) == n &&
  2201       addp2->in(AddPNode::Address) == addp) {
  2202     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2203     //
  2204     // Find array's offset to push it on worklist first and
  2205     // as result process an array's element offset first (pushed second)
  2206     // to avoid CastPP for the array's offset.
  2207     // Otherwise the inserted CastPP (LocalVar) will point to what
  2208     // the AddP (Field) points to. Which would be wrong since
  2209     // the algorithm expects the CastPP has the same point as
  2210     // as AddP's base CheckCastPP (LocalVar).
  2211     //
  2212     //    ArrayAllocation
  2213     //     |
  2214     //    CheckCastPP
  2215     //     |
  2216     //    memProj (from ArrayAllocation CheckCastPP)
  2217     //     |  ||
  2218     //     |  ||   Int (element index)
  2219     //     |  ||    |   ConI (log(element size))
  2220     //     |  ||    |   /
  2221     //     |  ||   LShift
  2222     //     |  ||  /
  2223     //     |  AddP (array's element offset)
  2224     //     |  |
  2225     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2226     //     | / /
  2227     //     AddP (array's offset)
  2228     //      |
  2229     //     Load/Store (memory operation on array's element)
  2230     //
  2231     return addp2;
  2233   return NULL;
  2236 //
  2237 // Adjust the type and inputs of an AddP which computes the
  2238 // address of a field of an instance
  2239 //
  2240 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2241   PhaseGVN* igvn = _igvn;
  2242   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2243   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2244   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2245   if (t == NULL) {
  2246     // We are computing a raw address for a store captured by an Initialize
  2247     // compute an appropriate address type (cases #3 and #5).
  2248     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2249     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2250     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2251     assert(offs != Type::OffsetBot, "offset must be a constant");
  2252     t = base_t->add_offset(offs)->is_oopptr();
  2254   int inst_id =  base_t->instance_id();
  2255   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2256                              "old type must be non-instance or match new type");
  2258   // The type 't' could be subclass of 'base_t'.
  2259   // As result t->offset() could be large then base_t's size and it will
  2260   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2261   // constructor verifies correctness of the offset.
  2262   //
  2263   // It could happened on subclass's branch (from the type profiling
  2264   // inlining) which was not eliminated during parsing since the exactness
  2265   // of the allocation type was not propagated to the subclass type check.
  2266   //
  2267   // Or the type 't' could be not related to 'base_t' at all.
  2268   // It could happened when CHA type is different from MDO type on a dead path
  2269   // (for example, from instanceof check) which is not collapsed during parsing.
  2270   //
  2271   // Do nothing for such AddP node and don't process its users since
  2272   // this code branch will go away.
  2273   //
  2274   if (!t->is_known_instance() &&
  2275       !base_t->klass()->is_subtype_of(t->klass())) {
  2276      return false; // bail out
  2278   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2279   // Do NOT remove the next line: ensure a new alias index is allocated
  2280   // for the instance type. Note: C++ will not remove it since the call
  2281   // has side effect.
  2282   int alias_idx = _compile->get_alias_index(tinst);
  2283   igvn->set_type(addp, tinst);
  2284   // record the allocation in the node map
  2285   set_map(addp, get_map(base->_idx));
  2286   // Set addp's Base and Address to 'base'.
  2287   Node *abase = addp->in(AddPNode::Base);
  2288   Node *adr   = addp->in(AddPNode::Address);
  2289   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2290       adr->in(0)->_idx == (uint)inst_id) {
  2291     // Skip AddP cases #3 and #5.
  2292   } else {
  2293     assert(!abase->is_top(), "sanity"); // AddP case #3
  2294     if (abase != base) {
  2295       igvn->hash_delete(addp);
  2296       addp->set_req(AddPNode::Base, base);
  2297       if (abase == adr) {
  2298         addp->set_req(AddPNode::Address, base);
  2299       } else {
  2300         // AddP case #4 (adr is array's element offset AddP node)
  2301 #ifdef ASSERT
  2302         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2303         assert(adr->is_AddP() && atype != NULL &&
  2304                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2305 #endif
  2307       igvn->hash_insert(addp);
  2310   // Put on IGVN worklist since at least addp's type was changed above.
  2311   record_for_optimizer(addp);
  2312   return true;
  2315 //
  2316 // Create a new version of orig_phi if necessary. Returns either the newly
  2317 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2318 // phi was created.  Cache the last newly created phi in the node map.
  2319 //
  2320 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2321   Compile *C = _compile;
  2322   PhaseGVN* igvn = _igvn;
  2323   new_created = false;
  2324   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2325   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2326   if (phi_alias_idx == alias_idx) {
  2327     return orig_phi;
  2329   // Have we recently created a Phi for this alias index?
  2330   PhiNode *result = get_map_phi(orig_phi->_idx);
  2331   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2332     return result;
  2334   // Previous check may fail when the same wide memory Phi was split into Phis
  2335   // for different memory slices. Search all Phis for this region.
  2336   if (result != NULL) {
  2337     Node* region = orig_phi->in(0);
  2338     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2339       Node* phi = region->fast_out(i);
  2340       if (phi->is_Phi() &&
  2341           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2342         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2343         return phi->as_Phi();
  2347   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
  2348     if (C->do_escape_analysis() == true && !C->failing()) {
  2349       // Retry compilation without escape analysis.
  2350       // If this is the first failure, the sentinel string will "stick"
  2351       // to the Compile object, and the C2Compiler will see it and retry.
  2352       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2354     return NULL;
  2356   orig_phi_worklist.append_if_missing(orig_phi);
  2357   const TypePtr *atype = C->get_adr_type(alias_idx);
  2358   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2359   C->copy_node_notes_to(result, orig_phi);
  2360   igvn->set_type(result, result->bottom_type());
  2361   record_for_optimizer(result);
  2362   set_map(orig_phi, result);
  2363   new_created = true;
  2364   return result;
  2367 //
  2368 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2369 // specified alias index.
  2370 //
  2371 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2372   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2373   Compile *C = _compile;
  2374   PhaseGVN* igvn = _igvn;
  2375   bool new_phi_created;
  2376   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2377   if (!new_phi_created) {
  2378     return result;
  2380   GrowableArray<PhiNode *>  phi_list;
  2381   GrowableArray<uint>  cur_input;
  2382   PhiNode *phi = orig_phi;
  2383   uint idx = 1;
  2384   bool finished = false;
  2385   while(!finished) {
  2386     while (idx < phi->req()) {
  2387       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2388       if (mem != NULL && mem->is_Phi()) {
  2389         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2390         if (new_phi_created) {
  2391           // found an phi for which we created a new split, push current one on worklist and begin
  2392           // processing new one
  2393           phi_list.push(phi);
  2394           cur_input.push(idx);
  2395           phi = mem->as_Phi();
  2396           result = newphi;
  2397           idx = 1;
  2398           continue;
  2399         } else {
  2400           mem = newphi;
  2403       if (C->failing()) {
  2404         return NULL;
  2406       result->set_req(idx++, mem);
  2408 #ifdef ASSERT
  2409     // verify that the new Phi has an input for each input of the original
  2410     assert( phi->req() == result->req(), "must have same number of inputs.");
  2411     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2412 #endif
  2413     // Check if all new phi's inputs have specified alias index.
  2414     // Otherwise use old phi.
  2415     for (uint i = 1; i < phi->req(); i++) {
  2416       Node* in = result->in(i);
  2417       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2419     // we have finished processing a Phi, see if there are any more to do
  2420     finished = (phi_list.length() == 0 );
  2421     if (!finished) {
  2422       phi = phi_list.pop();
  2423       idx = cur_input.pop();
  2424       PhiNode *prev_result = get_map_phi(phi->_idx);
  2425       prev_result->set_req(idx++, result);
  2426       result = prev_result;
  2429   return result;
  2432 //
  2433 // The next methods are derived from methods in MemNode.
  2434 //
  2435 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2436   Node *mem = mmem;
  2437   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2438   // means an array I have not precisely typed yet.  Do not do any
  2439   // alias stuff with it any time soon.
  2440   if (toop->base() != Type::AnyPtr &&
  2441       !(toop->klass() != NULL &&
  2442         toop->klass()->is_java_lang_Object() &&
  2443         toop->offset() == Type::OffsetBot)) {
  2444     mem = mmem->memory_at(alias_idx);
  2445     // Update input if it is progress over what we have now
  2447   return mem;
  2450 //
  2451 // Move memory users to their memory slices.
  2452 //
  2453 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2454   Compile* C = _compile;
  2455   PhaseGVN* igvn = _igvn;
  2456   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2457   assert(tp != NULL, "ptr type");
  2458   int alias_idx = C->get_alias_index(tp);
  2459   int general_idx = C->get_general_index(alias_idx);
  2461   // Move users first
  2462   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2463     Node* use = n->fast_out(i);
  2464     if (use->is_MergeMem()) {
  2465       MergeMemNode* mmem = use->as_MergeMem();
  2466       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2467       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2468         continue; // Nothing to do
  2470       // Replace previous general reference to mem node.
  2471       uint orig_uniq = C->unique();
  2472       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2473       assert(orig_uniq == C->unique(), "no new nodes");
  2474       mmem->set_memory_at(general_idx, m);
  2475       --imax;
  2476       --i;
  2477     } else if (use->is_MemBar()) {
  2478       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2479       if (use->req() > MemBarNode::Precedent &&
  2480           use->in(MemBarNode::Precedent) == n) {
  2481         // Don't move related membars.
  2482         record_for_optimizer(use);
  2483         continue;
  2485       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2486       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2487           alias_idx == general_idx) {
  2488         continue; // Nothing to do
  2490       // Move to general memory slice.
  2491       uint orig_uniq = C->unique();
  2492       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2493       assert(orig_uniq == C->unique(), "no new nodes");
  2494       igvn->hash_delete(use);
  2495       imax -= use->replace_edge(n, m);
  2496       igvn->hash_insert(use);
  2497       record_for_optimizer(use);
  2498       --i;
  2499 #ifdef ASSERT
  2500     } else if (use->is_Mem()) {
  2501       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2502         // Don't move related cardmark.
  2503         continue;
  2505       // Memory nodes should have new memory input.
  2506       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2507       assert(tp != NULL, "ptr type");
  2508       int idx = C->get_alias_index(tp);
  2509       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2510              "Following memory nodes should have new memory input or be on the same memory slice");
  2511     } else if (use->is_Phi()) {
  2512       // Phi nodes should be split and moved already.
  2513       tp = use->as_Phi()->adr_type()->isa_ptr();
  2514       assert(tp != NULL, "ptr type");
  2515       int idx = C->get_alias_index(tp);
  2516       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2517     } else {
  2518       use->dump();
  2519       assert(false, "should not be here");
  2520 #endif
  2525 //
  2526 // Search memory chain of "mem" to find a MemNode whose address
  2527 // is the specified alias index.
  2528 //
  2529 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2530   if (orig_mem == NULL)
  2531     return orig_mem;
  2532   Compile* C = _compile;
  2533   PhaseGVN* igvn = _igvn;
  2534   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2535   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2536   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2537   Node *prev = NULL;
  2538   Node *result = orig_mem;
  2539   while (prev != result) {
  2540     prev = result;
  2541     if (result == start_mem)
  2542       break;  // hit one of our sentinels
  2543     if (result->is_Mem()) {
  2544       const Type *at = igvn->type(result->in(MemNode::Address));
  2545       if (at == Type::TOP)
  2546         break; // Dead
  2547       assert (at->isa_ptr() != NULL, "pointer type required.");
  2548       int idx = C->get_alias_index(at->is_ptr());
  2549       if (idx == alias_idx)
  2550         break; // Found
  2551       if (!is_instance && (at->isa_oopptr() == NULL ||
  2552                            !at->is_oopptr()->is_known_instance())) {
  2553         break; // Do not skip store to general memory slice.
  2555       result = result->in(MemNode::Memory);
  2557     if (!is_instance)
  2558       continue;  // don't search further for non-instance types
  2559     // skip over a call which does not affect this memory slice
  2560     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2561       Node *proj_in = result->in(0);
  2562       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2563         break;  // hit one of our sentinels
  2564       } else if (proj_in->is_Call()) {
  2565         CallNode *call = proj_in->as_Call();
  2566         if (!call->may_modify(toop, igvn)) {
  2567           result = call->in(TypeFunc::Memory);
  2569       } else if (proj_in->is_Initialize()) {
  2570         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2571         // Stop if this is the initialization for the object instance which
  2572         // which contains this memory slice, otherwise skip over it.
  2573         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2574           result = proj_in->in(TypeFunc::Memory);
  2576       } else if (proj_in->is_MemBar()) {
  2577         result = proj_in->in(TypeFunc::Memory);
  2579     } else if (result->is_MergeMem()) {
  2580       MergeMemNode *mmem = result->as_MergeMem();
  2581       result = step_through_mergemem(mmem, alias_idx, toop);
  2582       if (result == mmem->base_memory()) {
  2583         // Didn't find instance memory, search through general slice recursively.
  2584         result = mmem->memory_at(C->get_general_index(alias_idx));
  2585         result = find_inst_mem(result, alias_idx, orig_phis);
  2586         if (C->failing()) {
  2587           return NULL;
  2589         mmem->set_memory_at(alias_idx, result);
  2591     } else if (result->is_Phi() &&
  2592                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2593       Node *un = result->as_Phi()->unique_input(igvn);
  2594       if (un != NULL) {
  2595         orig_phis.append_if_missing(result->as_Phi());
  2596         result = un;
  2597       } else {
  2598         break;
  2600     } else if (result->is_ClearArray()) {
  2601       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2602         // Can not bypass initialization of the instance
  2603         // we are looking for.
  2604         break;
  2606       // Otherwise skip it (the call updated 'result' value).
  2607     } else if (result->Opcode() == Op_SCMemProj) {
  2608       Node* mem = result->in(0);
  2609       Node* adr = NULL;
  2610       if (mem->is_LoadStore()) {
  2611         adr = mem->in(MemNode::Address);
  2612       } else {
  2613         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2614         adr = mem->in(3); // Memory edge corresponds to destination array
  2616       const Type *at = igvn->type(adr);
  2617       if (at != Type::TOP) {
  2618         assert (at->isa_ptr() != NULL, "pointer type required.");
  2619         int idx = C->get_alias_index(at->is_ptr());
  2620         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2621         break;
  2623       result = mem->in(MemNode::Memory);
  2626   if (result->is_Phi()) {
  2627     PhiNode *mphi = result->as_Phi();
  2628     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2629     const TypePtr *t = mphi->adr_type();
  2630     if (!is_instance) {
  2631       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2632       // during Phase 4 if needed.
  2633       orig_phis.append_if_missing(mphi);
  2634     } else if (C->get_alias_index(t) != alias_idx) {
  2635       // Create a new Phi with the specified alias index type.
  2636       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2639   // the result is either MemNode, PhiNode, InitializeNode.
  2640   return result;
  2643 //
  2644 //  Convert the types of unescaped object to instance types where possible,
  2645 //  propagate the new type information through the graph, and update memory
  2646 //  edges and MergeMem inputs to reflect the new type.
  2647 //
  2648 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2649 //  The processing is done in 4 phases:
  2650 //
  2651 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2652 //            types for the CheckCastPP for allocations where possible.
  2653 //            Propagate the the new types through users as follows:
  2654 //               casts and Phi:  push users on alloc_worklist
  2655 //               AddP:  cast Base and Address inputs to the instance type
  2656 //                      push any AddP users on alloc_worklist and push any memnode
  2657 //                      users onto memnode_worklist.
  2658 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2659 //            search the Memory chain for a store with the appropriate type
  2660 //            address type.  If a Phi is found, create a new version with
  2661 //            the appropriate memory slices from each of the Phi inputs.
  2662 //            For stores, process the users as follows:
  2663 //               MemNode:  push on memnode_worklist
  2664 //               MergeMem: push on mergemem_worklist
  2665 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2666 //            moving the first node encountered of each  instance type to the
  2667 //            the input corresponding to its alias index.
  2668 //            appropriate memory slice.
  2669 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2670 //
  2671 // In the following example, the CheckCastPP nodes are the cast of allocation
  2672 // results and the allocation of node 29 is unescaped and eligible to be an
  2673 // instance type.
  2674 //
  2675 // We start with:
  2676 //
  2677 //     7 Parm #memory
  2678 //    10  ConI  "12"
  2679 //    19  CheckCastPP   "Foo"
  2680 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2681 //    29  CheckCastPP   "Foo"
  2682 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2683 //
  2684 //    40  StoreP  25   7  20   ... alias_index=4
  2685 //    50  StoreP  35  40  30   ... alias_index=4
  2686 //    60  StoreP  45  50  20   ... alias_index=4
  2687 //    70  LoadP    _  60  30   ... alias_index=4
  2688 //    80  Phi     75  50  60   Memory alias_index=4
  2689 //    90  LoadP    _  80  30   ... alias_index=4
  2690 //   100  LoadP    _  80  20   ... alias_index=4
  2691 //
  2692 //
  2693 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2694 // and creating a new alias index for node 30.  This gives:
  2695 //
  2696 //     7 Parm #memory
  2697 //    10  ConI  "12"
  2698 //    19  CheckCastPP   "Foo"
  2699 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2700 //    29  CheckCastPP   "Foo"  iid=24
  2701 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2702 //
  2703 //    40  StoreP  25   7  20   ... alias_index=4
  2704 //    50  StoreP  35  40  30   ... alias_index=6
  2705 //    60  StoreP  45  50  20   ... alias_index=4
  2706 //    70  LoadP    _  60  30   ... alias_index=6
  2707 //    80  Phi     75  50  60   Memory alias_index=4
  2708 //    90  LoadP    _  80  30   ... alias_index=6
  2709 //   100  LoadP    _  80  20   ... alias_index=4
  2710 //
  2711 // In phase 2, new memory inputs are computed for the loads and stores,
  2712 // And a new version of the phi is created.  In phase 4, the inputs to
  2713 // node 80 are updated and then the memory nodes are updated with the
  2714 // values computed in phase 2.  This results in:
  2715 //
  2716 //     7 Parm #memory
  2717 //    10  ConI  "12"
  2718 //    19  CheckCastPP   "Foo"
  2719 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2720 //    29  CheckCastPP   "Foo"  iid=24
  2721 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2722 //
  2723 //    40  StoreP  25  7   20   ... alias_index=4
  2724 //    50  StoreP  35  7   30   ... alias_index=6
  2725 //    60  StoreP  45  40  20   ... alias_index=4
  2726 //    70  LoadP    _  50  30   ... alias_index=6
  2727 //    80  Phi     75  40  60   Memory alias_index=4
  2728 //   120  Phi     75  50  50   Memory alias_index=6
  2729 //    90  LoadP    _ 120  30   ... alias_index=6
  2730 //   100  LoadP    _  80  20   ... alias_index=4
  2731 //
  2732 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2733   GrowableArray<Node *>  memnode_worklist;
  2734   GrowableArray<PhiNode *>  orig_phis;
  2735   PhaseIterGVN  *igvn = _igvn;
  2736   uint new_index_start = (uint) _compile->num_alias_types();
  2737   Arena* arena = Thread::current()->resource_area();
  2738   VectorSet visited(arena);
  2739   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2740   uint unique_old = _compile->unique();
  2742   //  Phase 1:  Process possible allocations from alloc_worklist.
  2743   //  Create instance types for the CheckCastPP for allocations where possible.
  2744   //
  2745   // (Note: don't forget to change the order of the second AddP node on
  2746   //  the alloc_worklist if the order of the worklist processing is changed,
  2747   //  see the comment in find_second_addp().)
  2748   //
  2749   while (alloc_worklist.length() != 0) {
  2750     Node *n = alloc_worklist.pop();
  2751     uint ni = n->_idx;
  2752     if (n->is_Call()) {
  2753       CallNode *alloc = n->as_Call();
  2754       // copy escape information to call node
  2755       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2756       PointsToNode::EscapeState es = ptn->escape_state();
  2757       // We have an allocation or call which returns a Java object,
  2758       // see if it is unescaped.
  2759       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2760         continue;
  2761       // Find CheckCastPP for the allocate or for the return value of a call
  2762       n = alloc->result_cast();
  2763       if (n == NULL) {            // No uses except Initialize node
  2764         if (alloc->is_Allocate()) {
  2765           // Set the scalar_replaceable flag for allocation
  2766           // so it could be eliminated if it has no uses.
  2767           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2769         if (alloc->is_CallStaticJava()) {
  2770           // Set the scalar_replaceable flag for boxing method
  2771           // so it could be eliminated if it has no uses.
  2772           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2774         continue;
  2776       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2777         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2778         continue;
  2781       // The inline code for Object.clone() casts the allocation result to
  2782       // java.lang.Object and then to the actual type of the allocated
  2783       // object. Detect this case and use the second cast.
  2784       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2785       // the allocation result is cast to java.lang.Object and then
  2786       // to the actual Array type.
  2787       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2788           && (alloc->is_AllocateArray() ||
  2789               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2790         Node *cast2 = NULL;
  2791         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2792           Node *use = n->fast_out(i);
  2793           if (use->is_CheckCastPP()) {
  2794             cast2 = use;
  2795             break;
  2798         if (cast2 != NULL) {
  2799           n = cast2;
  2800         } else {
  2801           // Non-scalar replaceable if the allocation type is unknown statically
  2802           // (reflection allocation), the object can't be restored during
  2803           // deoptimization without precise type.
  2804           continue;
  2807       if (alloc->is_Allocate()) {
  2808         // Set the scalar_replaceable flag for allocation
  2809         // so it could be eliminated.
  2810         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2812       if (alloc->is_CallStaticJava()) {
  2813         // Set the scalar_replaceable flag for boxing method
  2814         // so it could be eliminated.
  2815         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2817       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2818       // in order for an object to be scalar-replaceable, it must be:
  2819       //   - a direct allocation (not a call returning an object)
  2820       //   - non-escaping
  2821       //   - eligible to be a unique type
  2822       //   - not determined to be ineligible by escape analysis
  2823       set_map(alloc, n);
  2824       set_map(n, alloc);
  2825       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2826       if (t == NULL)
  2827         continue;  // not a TypeOopPtr
  2828       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
  2829       igvn->hash_delete(n);
  2830       igvn->set_type(n,  tinst);
  2831       n->raise_bottom_type(tinst);
  2832       igvn->hash_insert(n);
  2833       record_for_optimizer(n);
  2834       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2836         // First, put on the worklist all Field edges from Connection Graph
  2837         // which is more accurate then putting immediate users from Ideal Graph.
  2838         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2839           PointsToNode* tgt = e.get();
  2840           Node* use = tgt->ideal_node();
  2841           assert(tgt->is_Field() && use->is_AddP(),
  2842                  "only AddP nodes are Field edges in CG");
  2843           if (use->outcnt() > 0) { // Don't process dead nodes
  2844             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2845             if (addp2 != NULL) {
  2846               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2847               alloc_worklist.append_if_missing(addp2);
  2849             alloc_worklist.append_if_missing(use);
  2853         // An allocation may have an Initialize which has raw stores. Scan
  2854         // the users of the raw allocation result and push AddP users
  2855         // on alloc_worklist.
  2856         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2857         assert (raw_result != NULL, "must have an allocation result");
  2858         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2859           Node *use = raw_result->fast_out(i);
  2860           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2861             Node* addp2 = find_second_addp(use, raw_result);
  2862             if (addp2 != NULL) {
  2863               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2864               alloc_worklist.append_if_missing(addp2);
  2866             alloc_worklist.append_if_missing(use);
  2867           } else if (use->is_MemBar()) {
  2868             memnode_worklist.append_if_missing(use);
  2872     } else if (n->is_AddP()) {
  2873       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2874       if (jobj == NULL || jobj == phantom_obj) {
  2875 #ifdef ASSERT
  2876         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2877         ptnode_adr(n->_idx)->dump();
  2878         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2879 #endif
  2880         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2881         return;
  2883       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2884       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2885     } else if (n->is_Phi() ||
  2886                n->is_CheckCastPP() ||
  2887                n->is_EncodeP() ||
  2888                n->is_DecodeN() ||
  2889                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2890       if (visited.test_set(n->_idx)) {
  2891         assert(n->is_Phi(), "loops only through Phi's");
  2892         continue;  // already processed
  2894       JavaObjectNode* jobj = unique_java_object(n);
  2895       if (jobj == NULL || jobj == phantom_obj) {
  2896 #ifdef ASSERT
  2897         ptnode_adr(n->_idx)->dump();
  2898         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2899 #endif
  2900         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2901         return;
  2902       } else {
  2903         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2904         TypeNode *tn = n->as_Type();
  2905         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2906         assert(tinst != NULL && tinst->is_known_instance() &&
  2907                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2909         const Type *tn_type = igvn->type(tn);
  2910         const TypeOopPtr *tn_t;
  2911         if (tn_type->isa_narrowoop()) {
  2912           tn_t = tn_type->make_ptr()->isa_oopptr();
  2913         } else {
  2914           tn_t = tn_type->isa_oopptr();
  2916         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2917           if (tn_type->isa_narrowoop()) {
  2918             tn_type = tinst->make_narrowoop();
  2919           } else {
  2920             tn_type = tinst;
  2922           igvn->hash_delete(tn);
  2923           igvn->set_type(tn, tn_type);
  2924           tn->set_type(tn_type);
  2925           igvn->hash_insert(tn);
  2926           record_for_optimizer(n);
  2927         } else {
  2928           assert(tn_type == TypePtr::NULL_PTR ||
  2929                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  2930                  "unexpected type");
  2931           continue; // Skip dead path with different type
  2934     } else {
  2935       debug_only(n->dump();)
  2936       assert(false, "EA: unexpected node");
  2937       continue;
  2939     // push allocation's users on appropriate worklist
  2940     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2941       Node *use = n->fast_out(i);
  2942       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  2943         // Load/store to instance's field
  2944         memnode_worklist.append_if_missing(use);
  2945       } else if (use->is_MemBar()) {
  2946         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  2947           memnode_worklist.append_if_missing(use);
  2949       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  2950         Node* addp2 = find_second_addp(use, n);
  2951         if (addp2 != NULL) {
  2952           alloc_worklist.append_if_missing(addp2);
  2954         alloc_worklist.append_if_missing(use);
  2955       } else if (use->is_Phi() ||
  2956                  use->is_CheckCastPP() ||
  2957                  use->is_EncodeNarrowPtr() ||
  2958                  use->is_DecodeNarrowPtr() ||
  2959                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  2960         alloc_worklist.append_if_missing(use);
  2961 #ifdef ASSERT
  2962       } else if (use->is_Mem()) {
  2963         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  2964       } else if (use->is_MergeMem()) {
  2965         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2966       } else if (use->is_SafePoint()) {
  2967         // Look for MergeMem nodes for calls which reference unique allocation
  2968         // (through CheckCastPP nodes) even for debug info.
  2969         Node* m = use->in(TypeFunc::Memory);
  2970         if (m->is_MergeMem()) {
  2971           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2973       } else if (use->Opcode() == Op_EncodeISOArray) {
  2974         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  2975           // EncodeISOArray overwrites destination array
  2976           memnode_worklist.append_if_missing(use);
  2978       } else {
  2979         uint op = use->Opcode();
  2980         if (!(op == Op_CmpP || op == Op_Conv2B ||
  2981               op == Op_CastP2X || op == Op_StoreCM ||
  2982               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  2983               op == Op_StrEquals || op == Op_StrIndexOf)) {
  2984           n->dump();
  2985           use->dump();
  2986           assert(false, "EA: missing allocation reference path");
  2988 #endif
  2993   // New alias types were created in split_AddP().
  2994   uint new_index_end = (uint) _compile->num_alias_types();
  2995   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  2997   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2998   //            compute new values for Memory inputs  (the Memory inputs are not
  2999   //            actually updated until phase 4.)
  3000   if (memnode_worklist.length() == 0)
  3001     return;  // nothing to do
  3002   while (memnode_worklist.length() != 0) {
  3003     Node *n = memnode_worklist.pop();
  3004     if (visited.test_set(n->_idx))
  3005       continue;
  3006     if (n->is_Phi() || n->is_ClearArray()) {
  3007       // we don't need to do anything, but the users must be pushed
  3008     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3009       // we don't need to do anything, but the users must be pushed
  3010       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3011       if (n == NULL)
  3012         continue;
  3013     } else if (n->Opcode() == Op_EncodeISOArray) {
  3014       // get the memory projection
  3015       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3016         Node *use = n->fast_out(i);
  3017         if (use->Opcode() == Op_SCMemProj) {
  3018           n = use;
  3019           break;
  3022       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3023     } else {
  3024       assert(n->is_Mem(), "memory node required.");
  3025       Node *addr = n->in(MemNode::Address);
  3026       const Type *addr_t = igvn->type(addr);
  3027       if (addr_t == Type::TOP)
  3028         continue;
  3029       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3030       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3031       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3032       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3033       if (_compile->failing()) {
  3034         return;
  3036       if (mem != n->in(MemNode::Memory)) {
  3037         // We delay the memory edge update since we need old one in
  3038         // MergeMem code below when instances memory slices are separated.
  3039         set_map(n, mem);
  3041       if (n->is_Load()) {
  3042         continue;  // don't push users
  3043       } else if (n->is_LoadStore()) {
  3044         // get the memory projection
  3045         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3046           Node *use = n->fast_out(i);
  3047           if (use->Opcode() == Op_SCMemProj) {
  3048             n = use;
  3049             break;
  3052         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3055     // push user on appropriate worklist
  3056     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3057       Node *use = n->fast_out(i);
  3058       if (use->is_Phi() || use->is_ClearArray()) {
  3059         memnode_worklist.append_if_missing(use);
  3060       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3061         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3062           continue;
  3063         memnode_worklist.append_if_missing(use);
  3064       } else if (use->is_MemBar()) {
  3065         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3066           memnode_worklist.append_if_missing(use);
  3068 #ifdef ASSERT
  3069       } else if(use->is_Mem()) {
  3070         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3071       } else if (use->is_MergeMem()) {
  3072         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3073       } else if (use->Opcode() == Op_EncodeISOArray) {
  3074         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3075           // EncodeISOArray overwrites destination array
  3076           memnode_worklist.append_if_missing(use);
  3078       } else {
  3079         uint op = use->Opcode();
  3080         if (!(op == Op_StoreCM ||
  3081               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3082                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3083               op == Op_AryEq || op == Op_StrComp ||
  3084               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3085           n->dump();
  3086           use->dump();
  3087           assert(false, "EA: missing memory path");
  3089 #endif
  3094   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3095   //            Walk each memory slice moving the first node encountered of each
  3096   //            instance type to the the input corresponding to its alias index.
  3097   uint length = _mergemem_worklist.length();
  3098   for( uint next = 0; next < length; ++next ) {
  3099     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3100     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3101     // Note: we don't want to use MergeMemStream here because we only want to
  3102     // scan inputs which exist at the start, not ones we add during processing.
  3103     // Note 2: MergeMem may already contains instance memory slices added
  3104     // during find_inst_mem() call when memory nodes were processed above.
  3105     igvn->hash_delete(nmm);
  3106     uint nslices = nmm->req();
  3107     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3108       Node* mem = nmm->in(i);
  3109       Node* cur = NULL;
  3110       if (mem == NULL || mem->is_top())
  3111         continue;
  3112       // First, update mergemem by moving memory nodes to corresponding slices
  3113       // if their type became more precise since this mergemem was created.
  3114       while (mem->is_Mem()) {
  3115         const Type *at = igvn->type(mem->in(MemNode::Address));
  3116         if (at != Type::TOP) {
  3117           assert (at->isa_ptr() != NULL, "pointer type required.");
  3118           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3119           if (idx == i) {
  3120             if (cur == NULL)
  3121               cur = mem;
  3122           } else {
  3123             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3124               nmm->set_memory_at(idx, mem);
  3128         mem = mem->in(MemNode::Memory);
  3130       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3131       // Find any instance of the current type if we haven't encountered
  3132       // already a memory slice of the instance along the memory chain.
  3133       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3134         if((uint)_compile->get_general_index(ni) == i) {
  3135           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3136           if (nmm->is_empty_memory(m)) {
  3137             Node* result = find_inst_mem(mem, ni, orig_phis);
  3138             if (_compile->failing()) {
  3139               return;
  3141             nmm->set_memory_at(ni, result);
  3146     // Find the rest of instances values
  3147     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3148       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3149       Node* result = step_through_mergemem(nmm, ni, tinst);
  3150       if (result == nmm->base_memory()) {
  3151         // Didn't find instance memory, search through general slice recursively.
  3152         result = nmm->memory_at(_compile->get_general_index(ni));
  3153         result = find_inst_mem(result, ni, orig_phis);
  3154         if (_compile->failing()) {
  3155           return;
  3157         nmm->set_memory_at(ni, result);
  3160     igvn->hash_insert(nmm);
  3161     record_for_optimizer(nmm);
  3164   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3165   //            the Memory input of memnodes
  3166   // First update the inputs of any non-instance Phi's from
  3167   // which we split out an instance Phi.  Note we don't have
  3168   // to recursively process Phi's encounted on the input memory
  3169   // chains as is done in split_memory_phi() since they  will
  3170   // also be processed here.
  3171   for (int j = 0; j < orig_phis.length(); j++) {
  3172     PhiNode *phi = orig_phis.at(j);
  3173     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3174     igvn->hash_delete(phi);
  3175     for (uint i = 1; i < phi->req(); i++) {
  3176       Node *mem = phi->in(i);
  3177       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3178       if (_compile->failing()) {
  3179         return;
  3181       if (mem != new_mem) {
  3182         phi->set_req(i, new_mem);
  3185     igvn->hash_insert(phi);
  3186     record_for_optimizer(phi);
  3189   // Update the memory inputs of MemNodes with the value we computed
  3190   // in Phase 2 and move stores memory users to corresponding memory slices.
  3191   // Disable memory split verification code until the fix for 6984348.
  3192   // Currently it produces false negative results since it does not cover all cases.
  3193 #if 0 // ifdef ASSERT
  3194   visited.Reset();
  3195   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3196 #endif
  3197   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3198     Node*    n = ideal_nodes.at(i);
  3199     Node* nmem = get_map(n->_idx);
  3200     assert(nmem != NULL, "sanity");
  3201     if (n->is_Mem()) {
  3202 #if 0 // ifdef ASSERT
  3203       Node* old_mem = n->in(MemNode::Memory);
  3204       if (!visited.test_set(old_mem->_idx)) {
  3205         old_mems.push(old_mem, old_mem->outcnt());
  3207 #endif
  3208       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3209       if (!n->is_Load()) {
  3210         // Move memory users of a store first.
  3211         move_inst_mem(n, orig_phis);
  3213       // Now update memory input
  3214       igvn->hash_delete(n);
  3215       n->set_req(MemNode::Memory, nmem);
  3216       igvn->hash_insert(n);
  3217       record_for_optimizer(n);
  3218     } else {
  3219       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3220              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3223 #if 0 // ifdef ASSERT
  3224   // Verify that memory was split correctly
  3225   while (old_mems.is_nonempty()) {
  3226     Node* old_mem = old_mems.node();
  3227     uint  old_cnt = old_mems.index();
  3228     old_mems.pop();
  3229     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3231 #endif
  3234 #ifndef PRODUCT
  3235 static const char *node_type_names[] = {
  3236   "UnknownType",
  3237   "JavaObject",
  3238   "LocalVar",
  3239   "Field",
  3240   "Arraycopy"
  3241 };
  3243 static const char *esc_names[] = {
  3244   "UnknownEscape",
  3245   "NoEscape",
  3246   "ArgEscape",
  3247   "GlobalEscape"
  3248 };
  3250 void PointsToNode::dump(bool print_state) const {
  3251   NodeType nt = node_type();
  3252   tty->print("%s ", node_type_names[(int) nt]);
  3253   if (print_state) {
  3254     EscapeState es = escape_state();
  3255     EscapeState fields_es = fields_escape_state();
  3256     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3257     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3258       tty->print("NSR ");
  3260   if (is_Field()) {
  3261     FieldNode* f = (FieldNode*)this;
  3262     if (f->is_oop())
  3263       tty->print("oop ");
  3264     if (f->offset() > 0)
  3265       tty->print("+%d ", f->offset());
  3266     tty->print("(");
  3267     for (BaseIterator i(f); i.has_next(); i.next()) {
  3268       PointsToNode* b = i.get();
  3269       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3271     tty->print(" )");
  3273   tty->print("[");
  3274   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3275     PointsToNode* e = i.get();
  3276     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3278   tty->print(" [");
  3279   for (UseIterator i(this); i.has_next(); i.next()) {
  3280     PointsToNode* u = i.get();
  3281     bool is_base = false;
  3282     if (PointsToNode::is_base_use(u)) {
  3283       is_base = true;
  3284       u = PointsToNode::get_use_node(u)->as_Field();
  3286     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3288   tty->print(" ]]  ");
  3289   if (_node == NULL)
  3290     tty->print_cr("<null>");
  3291   else
  3292     _node->dump();
  3295 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3296   bool first = true;
  3297   int ptnodes_length = ptnodes_worklist.length();
  3298   for (int i = 0; i < ptnodes_length; i++) {
  3299     PointsToNode *ptn = ptnodes_worklist.at(i);
  3300     if (ptn == NULL || !ptn->is_JavaObject())
  3301       continue;
  3302     PointsToNode::EscapeState es = ptn->escape_state();
  3303     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3304       continue;
  3306     Node* n = ptn->ideal_node();
  3307     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3308                              n->as_CallStaticJava()->is_boxing_method())) {
  3309       if (first) {
  3310         tty->cr();
  3311         tty->print("======== Connection graph for ");
  3312         _compile->method()->print_short_name();
  3313         tty->cr();
  3314         first = false;
  3316       ptn->dump();
  3317       // Print all locals and fields which reference this allocation
  3318       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3319         PointsToNode* use = j.get();
  3320         if (use->is_LocalVar()) {
  3321           use->dump(Verbose);
  3322         } else if (Verbose) {
  3323           use->dump();
  3326       tty->cr();
  3330 #endif

mercurial