src/share/vm/runtime/thread.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 6992
2c6ef90f030a
child 7107
966601b12d4f
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/orderAccess.inline.hpp"
    62 #include "runtime/osThread.hpp"
    63 #include "runtime/safepoint.hpp"
    64 #include "runtime/sharedRuntime.hpp"
    65 #include "runtime/statSampler.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/task.hpp"
    68 #include "runtime/thread.inline.hpp"
    69 #include "runtime/threadCritical.hpp"
    70 #include "runtime/threadLocalStorage.hpp"
    71 #include "runtime/vframe.hpp"
    72 #include "runtime/vframeArray.hpp"
    73 #include "runtime/vframe_hp.hpp"
    74 #include "runtime/vmThread.hpp"
    75 #include "runtime/vm_operations.hpp"
    76 #include "services/attachListener.hpp"
    77 #include "services/management.hpp"
    78 #include "services/memTracker.hpp"
    79 #include "services/threadService.hpp"
    80 #include "trace/tracing.hpp"
    81 #include "trace/traceMacros.hpp"
    82 #include "utilities/defaultStream.hpp"
    83 #include "utilities/dtrace.hpp"
    84 #include "utilities/events.hpp"
    85 #include "utilities/preserveException.hpp"
    86 #include "utilities/macros.hpp"
    87 #ifdef TARGET_OS_FAMILY_linux
    88 # include "os_linux.inline.hpp"
    89 #endif
    90 #ifdef TARGET_OS_FAMILY_solaris
    91 # include "os_solaris.inline.hpp"
    92 #endif
    93 #ifdef TARGET_OS_FAMILY_windows
    94 # include "os_windows.inline.hpp"
    95 #endif
    96 #ifdef TARGET_OS_FAMILY_bsd
    97 # include "os_bsd.inline.hpp"
    98 #endif
    99 #if INCLUDE_ALL_GCS
   100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   103 #endif // INCLUDE_ALL_GCS
   104 #ifdef COMPILER1
   105 #include "c1/c1_Compiler.hpp"
   106 #endif
   107 #ifdef COMPILER2
   108 #include "opto/c2compiler.hpp"
   109 #include "opto/idealGraphPrinter.hpp"
   110 #endif
   111 #if INCLUDE_RTM_OPT
   112 #include "runtime/rtmLocking.hpp"
   113 #endif
   115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   117 #ifdef DTRACE_ENABLED
   119 // Only bother with this argument setup if dtrace is available
   121 #ifndef USDT2
   122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   125   intptr_t, intptr_t, bool);
   126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   127   intptr_t, intptr_t, bool);
   129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   130   {                                                                        \
   131     ResourceMark rm(this);                                                 \
   132     int len = 0;                                                           \
   133     const char* name = (javathread)->get_thread_name();                    \
   134     len = strlen(name);                                                    \
   135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   136       name, len,                                                           \
   137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   138       (javathread)->osthread()->thread_id(),                               \
   139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   140   }
   142 #else /* USDT2 */
   144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   148   {                                                                        \
   149     ResourceMark rm(this);                                                 \
   150     int len = 0;                                                           \
   151     const char* name = (javathread)->get_thread_name();                    \
   152     len = strlen(name);                                                    \
   153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   154       (char *) name, len,                                                           \
   155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   158   }
   160 #endif /* USDT2 */
   162 #else //  ndef DTRACE_ENABLED
   164 #define DTRACE_THREAD_PROBE(probe, javathread)
   166 #endif // ndef DTRACE_ENABLED
   169 // Class hierarchy
   170 // - Thread
   171 //   - VMThread
   172 //   - WatcherThread
   173 //   - ConcurrentMarkSweepThread
   174 //   - JavaThread
   175 //     - CompilerThread
   177 // ======= Thread ========
   178 // Support for forcing alignment of thread objects for biased locking
   179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   180   if (UseBiasedLocking) {
   181     const int alignment = markOopDesc::biased_lock_alignment;
   182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   185                                               AllocFailStrategy::RETURN_NULL);
   186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   189            "JavaThread alignment code overflowed allocated storage");
   190     if (TraceBiasedLocking) {
   191       if (aligned_addr != real_malloc_addr)
   192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   193                       real_malloc_addr, aligned_addr);
   194     }
   195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   196     return aligned_addr;
   197   } else {
   198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   200   }
   201 }
   203 void Thread::operator delete(void* p) {
   204   if (UseBiasedLocking) {
   205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   206     FreeHeap(real_malloc_addr, mtThread);
   207   } else {
   208     FreeHeap(p, mtThread);
   209   }
   210 }
   213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   214 // JavaThread
   217 Thread::Thread() {
   218   // stack and get_thread
   219   set_stack_base(NULL);
   220   set_stack_size(0);
   221   set_self_raw_id(0);
   222   set_lgrp_id(-1);
   224   // allocated data structures
   225   set_osthread(NULL);
   226   set_resource_area(new (mtThread)ResourceArea());
   227   DEBUG_ONLY(_current_resource_mark = NULL;)
   228   set_handle_area(new (mtThread) HandleArea(NULL));
   229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
   230   set_active_handles(NULL);
   231   set_free_handle_block(NULL);
   232   set_last_handle_mark(NULL);
   234   // This initial value ==> never claimed.
   235   _oops_do_parity = 0;
   237   // the handle mark links itself to last_handle_mark
   238   new HandleMark(this);
   240   // plain initialization
   241   debug_only(_owned_locks = NULL;)
   242   debug_only(_allow_allocation_count = 0;)
   243   NOT_PRODUCT(_allow_safepoint_count = 0;)
   244   NOT_PRODUCT(_skip_gcalot = false;)
   245   _jvmti_env_iteration_count = 0;
   246   set_allocated_bytes(0);
   247   _vm_operation_started_count = 0;
   248   _vm_operation_completed_count = 0;
   249   _current_pending_monitor = NULL;
   250   _current_pending_monitor_is_from_java = true;
   251   _current_waiting_monitor = NULL;
   252   _num_nested_signal = 0;
   253   omFreeList = NULL ;
   254   omFreeCount = 0 ;
   255   omFreeProvision = 32 ;
   256   omInUseList = NULL ;
   257   omInUseCount = 0 ;
   259 #ifdef ASSERT
   260   _visited_for_critical_count = false;
   261 #endif
   263   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   264   _suspend_flags = 0;
   266   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   267   _hashStateX = os::random() ;
   268   _hashStateY = 842502087 ;
   269   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   270   _hashStateW = 273326509 ;
   272   _OnTrap   = 0 ;
   273   _schedctl = NULL ;
   274   _Stalled  = 0 ;
   275   _TypeTag  = 0x2BAD ;
   277   // Many of the following fields are effectively final - immutable
   278   // Note that nascent threads can't use the Native Monitor-Mutex
   279   // construct until the _MutexEvent is initialized ...
   280   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   281   // we might instead use a stack of ParkEvents that we could provision on-demand.
   282   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   283   // and ::Release()
   284   _ParkEvent   = ParkEvent::Allocate (this) ;
   285   _SleepEvent  = ParkEvent::Allocate (this) ;
   286   _MutexEvent  = ParkEvent::Allocate (this) ;
   287   _MuxEvent    = ParkEvent::Allocate (this) ;
   289 #ifdef CHECK_UNHANDLED_OOPS
   290   if (CheckUnhandledOops) {
   291     _unhandled_oops = new UnhandledOops(this);
   292   }
   293 #endif // CHECK_UNHANDLED_OOPS
   294 #ifdef ASSERT
   295   if (UseBiasedLocking) {
   296     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   297     assert(this == _real_malloc_address ||
   298            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   299            "bug in forced alignment of thread objects");
   300   }
   301 #endif /* ASSERT */
   302 }
   304 void Thread::initialize_thread_local_storage() {
   305   // Note: Make sure this method only calls
   306   // non-blocking operations. Otherwise, it might not work
   307   // with the thread-startup/safepoint interaction.
   309   // During Java thread startup, safepoint code should allow this
   310   // method to complete because it may need to allocate memory to
   311   // store information for the new thread.
   313   // initialize structure dependent on thread local storage
   314   ThreadLocalStorage::set_thread(this);
   315 }
   317 void Thread::record_stack_base_and_size() {
   318   set_stack_base(os::current_stack_base());
   319   set_stack_size(os::current_stack_size());
   320   if (is_Java_thread()) {
   321     ((JavaThread*) this)->set_stack_overflow_limit();
   322   }
   323   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   324   // in initialize_thread(). Without the adjustment, stack size is
   325   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   326   // So far, only Solaris has real implementation of initialize_thread().
   327   //
   328   // set up any platform-specific state.
   329   os::initialize_thread(this);
   331 #if INCLUDE_NMT
   332   // record thread's native stack, stack grows downward
   333   address stack_low_addr = stack_base() - stack_size();
   334   MemTracker::record_thread_stack(stack_low_addr, stack_size());
   335 #endif // INCLUDE_NMT
   336 }
   339 Thread::~Thread() {
   340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   341   ObjectSynchronizer::omFlush (this) ;
   343   EVENT_THREAD_DESTRUCT(this);
   345   // stack_base can be NULL if the thread is never started or exited before
   346   // record_stack_base_and_size called. Although, we would like to ensure
   347   // that all started threads do call record_stack_base_and_size(), there is
   348   // not proper way to enforce that.
   349 #if INCLUDE_NMT
   350   if (_stack_base != NULL) {
   351     address low_stack_addr = stack_base() - stack_size();
   352     MemTracker::release_thread_stack(low_stack_addr, stack_size());
   353 #ifdef ASSERT
   354     set_stack_base(NULL);
   355 #endif
   356   }
   357 #endif // INCLUDE_NMT
   359   // deallocate data structures
   360   delete resource_area();
   361   // since the handle marks are using the handle area, we have to deallocated the root
   362   // handle mark before deallocating the thread's handle area,
   363   assert(last_handle_mark() != NULL, "check we have an element");
   364   delete last_handle_mark();
   365   assert(last_handle_mark() == NULL, "check we have reached the end");
   367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   368   // We NULL out the fields for good hygiene.
   369   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   370   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   371   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   372   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   374   delete handle_area();
   375   delete metadata_handles();
   377   // osthread() can be NULL, if creation of thread failed.
   378   if (osthread() != NULL) os::free_thread(osthread());
   380   delete _SR_lock;
   382   // clear thread local storage if the Thread is deleting itself
   383   if (this == Thread::current()) {
   384     ThreadLocalStorage::set_thread(NULL);
   385   } else {
   386     // In the case where we're not the current thread, invalidate all the
   387     // caches in case some code tries to get the current thread or the
   388     // thread that was destroyed, and gets stale information.
   389     ThreadLocalStorage::invalidate_all();
   390   }
   391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   392 }
   394 // NOTE: dummy function for assertion purpose.
   395 void Thread::run() {
   396   ShouldNotReachHere();
   397 }
   399 #ifdef ASSERT
   400 // Private method to check for dangling thread pointer
   401 void check_for_dangling_thread_pointer(Thread *thread) {
   402  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   403          "possibility of dangling Thread pointer");
   404 }
   405 #endif
   408 #ifndef PRODUCT
   409 // Tracing method for basic thread operations
   410 void Thread::trace(const char* msg, const Thread* const thread) {
   411   if (!TraceThreadEvents) return;
   412   ResourceMark rm;
   413   ThreadCritical tc;
   414   const char *name = "non-Java thread";
   415   int prio = -1;
   416   if (thread->is_Java_thread()
   417       && !thread->is_Compiler_thread()) {
   418     // The Threads_lock must be held to get information about
   419     // this thread but may not be in some situations when
   420     // tracing  thread events.
   421     bool release_Threads_lock = false;
   422     if (!Threads_lock->owned_by_self()) {
   423       Threads_lock->lock();
   424       release_Threads_lock = true;
   425     }
   426     JavaThread* jt = (JavaThread *)thread;
   427     name = (char *)jt->get_thread_name();
   428     oop thread_oop = jt->threadObj();
   429     if (thread_oop != NULL) {
   430       prio = java_lang_Thread::priority(thread_oop);
   431     }
   432     if (release_Threads_lock) {
   433       Threads_lock->unlock();
   434     }
   435   }
   436   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   437 }
   438 #endif
   441 ThreadPriority Thread::get_priority(const Thread* const thread) {
   442   trace("get priority", thread);
   443   ThreadPriority priority;
   444   // Can return an error!
   445   (void)os::get_priority(thread, priority);
   446   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   447   return priority;
   448 }
   450 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   451   trace("set priority", thread);
   452   debug_only(check_for_dangling_thread_pointer(thread);)
   453   // Can return an error!
   454   (void)os::set_priority(thread, priority);
   455 }
   458 void Thread::start(Thread* thread) {
   459   trace("start", thread);
   460   // Start is different from resume in that its safety is guaranteed by context or
   461   // being called from a Java method synchronized on the Thread object.
   462   if (!DisableStartThread) {
   463     if (thread->is_Java_thread()) {
   464       // Initialize the thread state to RUNNABLE before starting this thread.
   465       // Can not set it after the thread started because we do not know the
   466       // exact thread state at that time. It could be in MONITOR_WAIT or
   467       // in SLEEPING or some other state.
   468       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   469                                           java_lang_Thread::RUNNABLE);
   470     }
   471     os::start_thread(thread);
   472   }
   473 }
   475 // Enqueue a VM_Operation to do the job for us - sometime later
   476 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   477   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   478   VMThread::execute(vm_stop);
   479 }
   482 //
   483 // Check if an external suspend request has completed (or has been
   484 // cancelled). Returns true if the thread is externally suspended and
   485 // false otherwise.
   486 //
   487 // The bits parameter returns information about the code path through
   488 // the routine. Useful for debugging:
   489 //
   490 // set in is_ext_suspend_completed():
   491 // 0x00000001 - routine was entered
   492 // 0x00000010 - routine return false at end
   493 // 0x00000100 - thread exited (return false)
   494 // 0x00000200 - suspend request cancelled (return false)
   495 // 0x00000400 - thread suspended (return true)
   496 // 0x00001000 - thread is in a suspend equivalent state (return true)
   497 // 0x00002000 - thread is native and walkable (return true)
   498 // 0x00004000 - thread is native_trans and walkable (needed retry)
   499 //
   500 // set in wait_for_ext_suspend_completion():
   501 // 0x00010000 - routine was entered
   502 // 0x00020000 - suspend request cancelled before loop (return false)
   503 // 0x00040000 - thread suspended before loop (return true)
   504 // 0x00080000 - suspend request cancelled in loop (return false)
   505 // 0x00100000 - thread suspended in loop (return true)
   506 // 0x00200000 - suspend not completed during retry loop (return false)
   507 //
   509 // Helper class for tracing suspend wait debug bits.
   510 //
   511 // 0x00000100 indicates that the target thread exited before it could
   512 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   513 // 0x00080000 each indicate a cancelled suspend request so they don't
   514 // count as wait failures either.
   515 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   517 class TraceSuspendDebugBits : public StackObj {
   518  private:
   519   JavaThread * jt;
   520   bool         is_wait;
   521   bool         called_by_wait;  // meaningful when !is_wait
   522   uint32_t *   bits;
   524  public:
   525   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   526                         uint32_t *_bits) {
   527     jt             = _jt;
   528     is_wait        = _is_wait;
   529     called_by_wait = _called_by_wait;
   530     bits           = _bits;
   531   }
   533   ~TraceSuspendDebugBits() {
   534     if (!is_wait) {
   535 #if 1
   536       // By default, don't trace bits for is_ext_suspend_completed() calls.
   537       // That trace is very chatty.
   538       return;
   539 #else
   540       if (!called_by_wait) {
   541         // If tracing for is_ext_suspend_completed() is enabled, then only
   542         // trace calls to it from wait_for_ext_suspend_completion()
   543         return;
   544       }
   545 #endif
   546     }
   548     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   549       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   550         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   551         ResourceMark rm;
   553         tty->print_cr(
   554             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   555             jt->get_thread_name(), *bits);
   557         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   558       }
   559     }
   560   }
   561 };
   562 #undef DEBUG_FALSE_BITS
   565 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   566   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   568   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   569   bool do_trans_retry;           // flag to force the retry
   571   *bits |= 0x00000001;
   573   do {
   574     do_trans_retry = false;
   576     if (is_exiting()) {
   577       // Thread is in the process of exiting. This is always checked
   578       // first to reduce the risk of dereferencing a freed JavaThread.
   579       *bits |= 0x00000100;
   580       return false;
   581     }
   583     if (!is_external_suspend()) {
   584       // Suspend request is cancelled. This is always checked before
   585       // is_ext_suspended() to reduce the risk of a rogue resume
   586       // confusing the thread that made the suspend request.
   587       *bits |= 0x00000200;
   588       return false;
   589     }
   591     if (is_ext_suspended()) {
   592       // thread is suspended
   593       *bits |= 0x00000400;
   594       return true;
   595     }
   597     // Now that we no longer do hard suspends of threads running
   598     // native code, the target thread can be changing thread state
   599     // while we are in this routine:
   600     //
   601     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   602     //
   603     // We save a copy of the thread state as observed at this moment
   604     // and make our decision about suspend completeness based on the
   605     // copy. This closes the race where the thread state is seen as
   606     // _thread_in_native_trans in the if-thread_blocked check, but is
   607     // seen as _thread_blocked in if-thread_in_native_trans check.
   608     JavaThreadState save_state = thread_state();
   610     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   611       // If the thread's state is _thread_blocked and this blocking
   612       // condition is known to be equivalent to a suspend, then we can
   613       // consider the thread to be externally suspended. This means that
   614       // the code that sets _thread_blocked has been modified to do
   615       // self-suspension if the blocking condition releases. We also
   616       // used to check for CONDVAR_WAIT here, but that is now covered by
   617       // the _thread_blocked with self-suspension check.
   618       //
   619       // Return true since we wouldn't be here unless there was still an
   620       // external suspend request.
   621       *bits |= 0x00001000;
   622       return true;
   623     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   624       // Threads running native code will self-suspend on native==>VM/Java
   625       // transitions. If its stack is walkable (should always be the case
   626       // unless this function is called before the actual java_suspend()
   627       // call), then the wait is done.
   628       *bits |= 0x00002000;
   629       return true;
   630     } else if (!called_by_wait && !did_trans_retry &&
   631                save_state == _thread_in_native_trans &&
   632                frame_anchor()->walkable()) {
   633       // The thread is transitioning from thread_in_native to another
   634       // thread state. check_safepoint_and_suspend_for_native_trans()
   635       // will force the thread to self-suspend. If it hasn't gotten
   636       // there yet we may have caught the thread in-between the native
   637       // code check above and the self-suspend. Lucky us. If we were
   638       // called by wait_for_ext_suspend_completion(), then it
   639       // will be doing the retries so we don't have to.
   640       //
   641       // Since we use the saved thread state in the if-statement above,
   642       // there is a chance that the thread has already transitioned to
   643       // _thread_blocked by the time we get here. In that case, we will
   644       // make a single unnecessary pass through the logic below. This
   645       // doesn't hurt anything since we still do the trans retry.
   647       *bits |= 0x00004000;
   649       // Once the thread leaves thread_in_native_trans for another
   650       // thread state, we break out of this retry loop. We shouldn't
   651       // need this flag to prevent us from getting back here, but
   652       // sometimes paranoia is good.
   653       did_trans_retry = true;
   655       // We wait for the thread to transition to a more usable state.
   656       for (int i = 1; i <= SuspendRetryCount; i++) {
   657         // We used to do an "os::yield_all(i)" call here with the intention
   658         // that yielding would increase on each retry. However, the parameter
   659         // is ignored on Linux which means the yield didn't scale up. Waiting
   660         // on the SR_lock below provides a much more predictable scale up for
   661         // the delay. It also provides a simple/direct point to check for any
   662         // safepoint requests from the VMThread
   664         // temporarily drops SR_lock while doing wait with safepoint check
   665         // (if we're a JavaThread - the WatcherThread can also call this)
   666         // and increase delay with each retry
   667         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   669         // check the actual thread state instead of what we saved above
   670         if (thread_state() != _thread_in_native_trans) {
   671           // the thread has transitioned to another thread state so
   672           // try all the checks (except this one) one more time.
   673           do_trans_retry = true;
   674           break;
   675         }
   676       } // end retry loop
   679     }
   680   } while (do_trans_retry);
   682   *bits |= 0x00000010;
   683   return false;
   684 }
   686 //
   687 // Wait for an external suspend request to complete (or be cancelled).
   688 // Returns true if the thread is externally suspended and false otherwise.
   689 //
   690 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   691        uint32_t *bits) {
   692   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   693                              false /* !called_by_wait */, bits);
   695   // local flag copies to minimize SR_lock hold time
   696   bool is_suspended;
   697   bool pending;
   698   uint32_t reset_bits;
   700   // set a marker so is_ext_suspend_completed() knows we are the caller
   701   *bits |= 0x00010000;
   703   // We use reset_bits to reinitialize the bits value at the top of
   704   // each retry loop. This allows the caller to make use of any
   705   // unused bits for their own marking purposes.
   706   reset_bits = *bits;
   708   {
   709     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   710     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   711                                             delay, bits);
   712     pending = is_external_suspend();
   713   }
   714   // must release SR_lock to allow suspension to complete
   716   if (!pending) {
   717     // A cancelled suspend request is the only false return from
   718     // is_ext_suspend_completed() that keeps us from entering the
   719     // retry loop.
   720     *bits |= 0x00020000;
   721     return false;
   722   }
   724   if (is_suspended) {
   725     *bits |= 0x00040000;
   726     return true;
   727   }
   729   for (int i = 1; i <= retries; i++) {
   730     *bits = reset_bits;  // reinit to only track last retry
   732     // We used to do an "os::yield_all(i)" call here with the intention
   733     // that yielding would increase on each retry. However, the parameter
   734     // is ignored on Linux which means the yield didn't scale up. Waiting
   735     // on the SR_lock below provides a much more predictable scale up for
   736     // the delay. It also provides a simple/direct point to check for any
   737     // safepoint requests from the VMThread
   739     {
   740       MutexLocker ml(SR_lock());
   741       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   742       // can also call this)  and increase delay with each retry
   743       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   745       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   746                                               delay, bits);
   748       // It is possible for the external suspend request to be cancelled
   749       // (by a resume) before the actual suspend operation is completed.
   750       // Refresh our local copy to see if we still need to wait.
   751       pending = is_external_suspend();
   752     }
   754     if (!pending) {
   755       // A cancelled suspend request is the only false return from
   756       // is_ext_suspend_completed() that keeps us from staying in the
   757       // retry loop.
   758       *bits |= 0x00080000;
   759       return false;
   760     }
   762     if (is_suspended) {
   763       *bits |= 0x00100000;
   764       return true;
   765     }
   766   } // end retry loop
   768   // thread did not suspend after all our retries
   769   *bits |= 0x00200000;
   770   return false;
   771 }
   773 #ifndef PRODUCT
   774 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   776   // This should not need to be atomic as the only way for simultaneous
   777   // updates is via interrupts. Even then this should be rare or non-existant
   778   // and we don't care that much anyway.
   780   int index = _jmp_ring_index;
   781   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   782   _jmp_ring[index]._target = (intptr_t) target;
   783   _jmp_ring[index]._instruction = (intptr_t) instr;
   784   _jmp_ring[index]._file = file;
   785   _jmp_ring[index]._line = line;
   786 }
   787 #endif /* PRODUCT */
   789 // Called by flat profiler
   790 // Callers have already called wait_for_ext_suspend_completion
   791 // The assertion for that is currently too complex to put here:
   792 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   793   bool gotframe = false;
   794   // self suspension saves needed state.
   795   if (has_last_Java_frame() && _anchor.walkable()) {
   796      *_fr = pd_last_frame();
   797      gotframe = true;
   798   }
   799   return gotframe;
   800 }
   802 void Thread::interrupt(Thread* thread) {
   803   trace("interrupt", thread);
   804   debug_only(check_for_dangling_thread_pointer(thread);)
   805   os::interrupt(thread);
   806 }
   808 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   809   trace("is_interrupted", thread);
   810   debug_only(check_for_dangling_thread_pointer(thread);)
   811   // Note:  If clear_interrupted==false, this simply fetches and
   812   // returns the value of the field osthread()->interrupted().
   813   return os::is_interrupted(thread, clear_interrupted);
   814 }
   817 // GC Support
   818 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   819   jint thread_parity = _oops_do_parity;
   820   if (thread_parity != strong_roots_parity) {
   821     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   822     if (res == thread_parity) {
   823       return true;
   824     } else {
   825       guarantee(res == strong_roots_parity, "Or else what?");
   826       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   827          "Should only fail when parallel.");
   828       return false;
   829     }
   830   }
   831   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   832          "Should only fail when parallel.");
   833   return false;
   834 }
   836 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
   837   active_handles()->oops_do(f);
   838   // Do oop for ThreadShadow
   839   f->do_oop((oop*)&_pending_exception);
   840   handle_area()->oops_do(f);
   841 }
   843 void Thread::nmethods_do(CodeBlobClosure* cf) {
   844   // no nmethods in a generic thread...
   845 }
   847 void Thread::metadata_do(void f(Metadata*)) {
   848   if (metadata_handles() != NULL) {
   849     for (int i = 0; i< metadata_handles()->length(); i++) {
   850       f(metadata_handles()->at(i));
   851     }
   852   }
   853 }
   855 void Thread::print_on(outputStream* st) const {
   856   // get_priority assumes osthread initialized
   857   if (osthread() != NULL) {
   858     int os_prio;
   859     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   860       st->print("os_prio=%d ", os_prio);
   861     }
   862     st->print("tid=" INTPTR_FORMAT " ", this);
   863     osthread()->print_on(st);
   864   }
   865   debug_only(if (WizardMode) print_owned_locks_on(st);)
   866 }
   868 // Thread::print_on_error() is called by fatal error handler. Don't use
   869 // any lock or allocate memory.
   870 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   871   if      (is_VM_thread())                  st->print("VMThread");
   872   else if (is_Compiler_thread())            st->print("CompilerThread");
   873   else if (is_Java_thread())                st->print("JavaThread");
   874   else if (is_GC_task_thread())             st->print("GCTaskThread");
   875   else if (is_Watcher_thread())             st->print("WatcherThread");
   876   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   877   else st->print("Thread");
   879   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   880             _stack_base - _stack_size, _stack_base);
   882   if (osthread()) {
   883     st->print(" [id=%d]", osthread()->thread_id());
   884   }
   885 }
   887 #ifdef ASSERT
   888 void Thread::print_owned_locks_on(outputStream* st) const {
   889   Monitor *cur = _owned_locks;
   890   if (cur == NULL) {
   891     st->print(" (no locks) ");
   892   } else {
   893     st->print_cr(" Locks owned:");
   894     while(cur) {
   895       cur->print_on(st);
   896       cur = cur->next();
   897     }
   898   }
   899 }
   901 static int ref_use_count  = 0;
   903 bool Thread::owns_locks_but_compiled_lock() const {
   904   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   905     if (cur != Compile_lock) return true;
   906   }
   907   return false;
   908 }
   911 #endif
   913 #ifndef PRODUCT
   915 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   916 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   917 // no threads which allow_vm_block's are held
   918 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   919     // Check if current thread is allowed to block at a safepoint
   920     if (!(_allow_safepoint_count == 0))
   921       fatal("Possible safepoint reached by thread that does not allow it");
   922     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   923       fatal("LEAF method calling lock?");
   924     }
   926 #ifdef ASSERT
   927     if (potential_vm_operation && is_Java_thread()
   928         && !Universe::is_bootstrapping()) {
   929       // Make sure we do not hold any locks that the VM thread also uses.
   930       // This could potentially lead to deadlocks
   931       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   932         // Threads_lock is special, since the safepoint synchronization will not start before this is
   933         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   934         // since it is used to transfer control between JavaThreads and the VMThread
   935         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   936         if ( (cur->allow_vm_block() &&
   937               cur != Threads_lock &&
   938               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   939               cur != VMOperationRequest_lock &&
   940               cur != VMOperationQueue_lock) ||
   941               cur->rank() == Mutex::special) {
   942           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   943         }
   944       }
   945     }
   947     if (GCALotAtAllSafepoints) {
   948       // We could enter a safepoint here and thus have a gc
   949       InterfaceSupport::check_gc_alot();
   950     }
   951 #endif
   952 }
   953 #endif
   955 bool Thread::is_in_stack(address adr) const {
   956   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   957   address end = os::current_stack_pointer();
   958   // Allow non Java threads to call this without stack_base
   959   if (_stack_base == NULL) return true;
   960   if (stack_base() >= adr && adr >= end) return true;
   962   return false;
   963 }
   966 bool Thread::is_in_usable_stack(address adr) const {
   967   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
   968   size_t usable_stack_size = _stack_size - stack_guard_size;
   970   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
   971 }
   974 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   975 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   976 // used for compilation in the future. If that change is made, the need for these methods
   977 // should be revisited, and they should be removed if possible.
   979 bool Thread::is_lock_owned(address adr) const {
   980   return on_local_stack(adr);
   981 }
   983 bool Thread::set_as_starting_thread() {
   984  // NOTE: this must be called inside the main thread.
   985   return os::create_main_thread((JavaThread*)this);
   986 }
   988 static void initialize_class(Symbol* class_name, TRAPS) {
   989   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   990   InstanceKlass::cast(klass)->initialize(CHECK);
   991 }
   994 // Creates the initial ThreadGroup
   995 static Handle create_initial_thread_group(TRAPS) {
   996   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   997   instanceKlassHandle klass (THREAD, k);
   999   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
  1001     JavaValue result(T_VOID);
  1002     JavaCalls::call_special(&result,
  1003                             system_instance,
  1004                             klass,
  1005                             vmSymbols::object_initializer_name(),
  1006                             vmSymbols::void_method_signature(),
  1007                             CHECK_NH);
  1009   Universe::set_system_thread_group(system_instance());
  1011   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  1013     JavaValue result(T_VOID);
  1014     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1015     JavaCalls::call_special(&result,
  1016                             main_instance,
  1017                             klass,
  1018                             vmSymbols::object_initializer_name(),
  1019                             vmSymbols::threadgroup_string_void_signature(),
  1020                             system_instance,
  1021                             string,
  1022                             CHECK_NH);
  1024   return main_instance;
  1027 // Creates the initial Thread
  1028 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1029   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1030   instanceKlassHandle klass (THREAD, k);
  1031   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1033   java_lang_Thread::set_thread(thread_oop(), thread);
  1034   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1035   thread->set_threadObj(thread_oop());
  1037   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1039   JavaValue result(T_VOID);
  1040   JavaCalls::call_special(&result, thread_oop,
  1041                                    klass,
  1042                                    vmSymbols::object_initializer_name(),
  1043                                    vmSymbols::threadgroup_string_void_signature(),
  1044                                    thread_group,
  1045                                    string,
  1046                                    CHECK_NULL);
  1047   return thread_oop();
  1050 static void call_initializeSystemClass(TRAPS) {
  1051   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1052   instanceKlassHandle klass (THREAD, k);
  1054   JavaValue result(T_VOID);
  1055   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1056                                          vmSymbols::void_method_signature(), CHECK);
  1059 char java_runtime_name[128] = "";
  1060 char java_runtime_version[128] = "";
  1062 // extract the JRE name from sun.misc.Version.java_runtime_name
  1063 static const char* get_java_runtime_name(TRAPS) {
  1064   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1065                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1066   fieldDescriptor fd;
  1067   bool found = k != NULL &&
  1068                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1069                                                         vmSymbols::string_signature(), &fd);
  1070   if (found) {
  1071     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1072     if (name_oop == NULL)
  1073       return NULL;
  1074     const char* name = java_lang_String::as_utf8_string(name_oop,
  1075                                                         java_runtime_name,
  1076                                                         sizeof(java_runtime_name));
  1077     return name;
  1078   } else {
  1079     return NULL;
  1083 // extract the JRE version from sun.misc.Version.java_runtime_version
  1084 static const char* get_java_runtime_version(TRAPS) {
  1085   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1086                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1087   fieldDescriptor fd;
  1088   bool found = k != NULL &&
  1089                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1090                                                         vmSymbols::string_signature(), &fd);
  1091   if (found) {
  1092     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1093     if (name_oop == NULL)
  1094       return NULL;
  1095     const char* name = java_lang_String::as_utf8_string(name_oop,
  1096                                                         java_runtime_version,
  1097                                                         sizeof(java_runtime_version));
  1098     return name;
  1099   } else {
  1100     return NULL;
  1104 // General purpose hook into Java code, run once when the VM is initialized.
  1105 // The Java library method itself may be changed independently from the VM.
  1106 static void call_postVMInitHook(TRAPS) {
  1107   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  1108   instanceKlassHandle klass (THREAD, k);
  1109   if (klass.not_null()) {
  1110     JavaValue result(T_VOID);
  1111     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1112                                            vmSymbols::void_method_signature(),
  1113                                            CHECK);
  1117 static void reset_vm_info_property(TRAPS) {
  1118   // the vm info string
  1119   ResourceMark rm(THREAD);
  1120   const char *vm_info = VM_Version::vm_info_string();
  1122   // java.lang.System class
  1123   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1124   instanceKlassHandle klass (THREAD, k);
  1126   // setProperty arguments
  1127   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1128   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1130   // return value
  1131   JavaValue r(T_OBJECT);
  1133   // public static String setProperty(String key, String value);
  1134   JavaCalls::call_static(&r,
  1135                          klass,
  1136                          vmSymbols::setProperty_name(),
  1137                          vmSymbols::string_string_string_signature(),
  1138                          key_str,
  1139                          value_str,
  1140                          CHECK);
  1144 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1145   assert(thread_group.not_null(), "thread group should be specified");
  1146   assert(threadObj() == NULL, "should only create Java thread object once");
  1148   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1149   instanceKlassHandle klass (THREAD, k);
  1150   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1152   java_lang_Thread::set_thread(thread_oop(), this);
  1153   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1154   set_threadObj(thread_oop());
  1156   JavaValue result(T_VOID);
  1157   if (thread_name != NULL) {
  1158     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1159     // Thread gets assigned specified name and null target
  1160     JavaCalls::call_special(&result,
  1161                             thread_oop,
  1162                             klass,
  1163                             vmSymbols::object_initializer_name(),
  1164                             vmSymbols::threadgroup_string_void_signature(),
  1165                             thread_group, // Argument 1
  1166                             name,         // Argument 2
  1167                             THREAD);
  1168   } else {
  1169     // Thread gets assigned name "Thread-nnn" and null target
  1170     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1171     JavaCalls::call_special(&result,
  1172                             thread_oop,
  1173                             klass,
  1174                             vmSymbols::object_initializer_name(),
  1175                             vmSymbols::threadgroup_runnable_void_signature(),
  1176                             thread_group, // Argument 1
  1177                             Handle(),     // Argument 2
  1178                             THREAD);
  1182   if (daemon) {
  1183       java_lang_Thread::set_daemon(thread_oop());
  1186   if (HAS_PENDING_EXCEPTION) {
  1187     return;
  1190   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1191   Handle threadObj(this, this->threadObj());
  1193   JavaCalls::call_special(&result,
  1194                          thread_group,
  1195                          group,
  1196                          vmSymbols::add_method_name(),
  1197                          vmSymbols::thread_void_signature(),
  1198                          threadObj,          // Arg 1
  1199                          THREAD);
  1204 // NamedThread --  non-JavaThread subclasses with multiple
  1205 // uniquely named instances should derive from this.
  1206 NamedThread::NamedThread() : Thread() {
  1207   _name = NULL;
  1208   _processed_thread = NULL;
  1211 NamedThread::~NamedThread() {
  1212   if (_name != NULL) {
  1213     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1214     _name = NULL;
  1218 void NamedThread::set_name(const char* format, ...) {
  1219   guarantee(_name == NULL, "Only get to set name once.");
  1220   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1221   guarantee(_name != NULL, "alloc failure");
  1222   va_list ap;
  1223   va_start(ap, format);
  1224   jio_vsnprintf(_name, max_name_len, format, ap);
  1225   va_end(ap);
  1228 // ======= WatcherThread ========
  1230 // The watcher thread exists to simulate timer interrupts.  It should
  1231 // be replaced by an abstraction over whatever native support for
  1232 // timer interrupts exists on the platform.
  1234 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1235 bool WatcherThread::_startable = false;
  1236 volatile bool  WatcherThread::_should_terminate = false;
  1238 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  1239   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1240   if (os::create_thread(this, os::watcher_thread)) {
  1241     _watcher_thread = this;
  1243     // Set the watcher thread to the highest OS priority which should not be
  1244     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1245     // is created. The only normal thread using this priority is the reference
  1246     // handler thread, which runs for very short intervals only.
  1247     // If the VMThread's priority is not lower than the WatcherThread profiling
  1248     // will be inaccurate.
  1249     os::set_priority(this, MaxPriority);
  1250     if (!DisableStartThread) {
  1251       os::start_thread(this);
  1256 int WatcherThread::sleep() const {
  1257   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1259   // remaining will be zero if there are no tasks,
  1260   // causing the WatcherThread to sleep until a task is
  1261   // enrolled
  1262   int remaining = PeriodicTask::time_to_wait();
  1263   int time_slept = 0;
  1265   // we expect this to timeout - we only ever get unparked when
  1266   // we should terminate or when a new task has been enrolled
  1267   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1269   jlong time_before_loop = os::javaTimeNanos();
  1271   for (;;) {
  1272     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1273     jlong now = os::javaTimeNanos();
  1275     if (remaining == 0) {
  1276         // if we didn't have any tasks we could have waited for a long time
  1277         // consider the time_slept zero and reset time_before_loop
  1278         time_slept = 0;
  1279         time_before_loop = now;
  1280     } else {
  1281         // need to recalulate since we might have new tasks in _tasks
  1282         time_slept = (int) ((now - time_before_loop) / 1000000);
  1285     // Change to task list or spurious wakeup of some kind
  1286     if (timedout || _should_terminate) {
  1287         break;
  1290     remaining = PeriodicTask::time_to_wait();
  1291     if (remaining == 0) {
  1292         // Last task was just disenrolled so loop around and wait until
  1293         // another task gets enrolled
  1294         continue;
  1297     remaining -= time_slept;
  1298     if (remaining <= 0)
  1299       break;
  1302   return time_slept;
  1305 void WatcherThread::run() {
  1306   assert(this == watcher_thread(), "just checking");
  1308   this->record_stack_base_and_size();
  1309   this->initialize_thread_local_storage();
  1310   this->set_active_handles(JNIHandleBlock::allocate_block());
  1311   while(!_should_terminate) {
  1312     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1313     assert(watcher_thread() == this,  "thread consistency check");
  1315     // Calculate how long it'll be until the next PeriodicTask work
  1316     // should be done, and sleep that amount of time.
  1317     int time_waited = sleep();
  1319     if (is_error_reported()) {
  1320       // A fatal error has happened, the error handler(VMError::report_and_die)
  1321       // should abort JVM after creating an error log file. However in some
  1322       // rare cases, the error handler itself might deadlock. Here we try to
  1323       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1324       //
  1325       // This code is in WatcherThread because WatcherThread wakes up
  1326       // periodically so the fatal error handler doesn't need to do anything;
  1327       // also because the WatcherThread is less likely to crash than other
  1328       // threads.
  1330       for (;;) {
  1331         if (!ShowMessageBoxOnError
  1332          && (OnError == NULL || OnError[0] == '\0')
  1333          && Arguments::abort_hook() == NULL) {
  1334              os::sleep(this, 2 * 60 * 1000, false);
  1335              fdStream err(defaultStream::output_fd());
  1336              err.print_raw_cr("# [ timer expired, abort... ]");
  1337              // skip atexit/vm_exit/vm_abort hooks
  1338              os::die();
  1341         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1342         // ShowMessageBoxOnError when it is ready to abort.
  1343         os::sleep(this, 5 * 1000, false);
  1347     PeriodicTask::real_time_tick(time_waited);
  1350   // Signal that it is terminated
  1352     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1353     _watcher_thread = NULL;
  1354     Terminator_lock->notify();
  1357   // Thread destructor usually does this..
  1358   ThreadLocalStorage::set_thread(NULL);
  1361 void WatcherThread::start() {
  1362   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1364   if (watcher_thread() == NULL && _startable) {
  1365     _should_terminate = false;
  1366     // Create the single instance of WatcherThread
  1367     new WatcherThread();
  1371 void WatcherThread::make_startable() {
  1372   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1373   _startable = true;
  1376 void WatcherThread::stop() {
  1378     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1379     _should_terminate = true;
  1380     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1382     WatcherThread* watcher = watcher_thread();
  1383     if (watcher != NULL)
  1384       watcher->unpark();
  1387   // it is ok to take late safepoints here, if needed
  1388   MutexLocker mu(Terminator_lock);
  1390   while(watcher_thread() != NULL) {
  1391     // This wait should make safepoint checks, wait without a timeout,
  1392     // and wait as a suspend-equivalent condition.
  1393     //
  1394     // Note: If the FlatProfiler is running, then this thread is waiting
  1395     // for the WatcherThread to terminate and the WatcherThread, via the
  1396     // FlatProfiler task, is waiting for the external suspend request on
  1397     // this thread to complete. wait_for_ext_suspend_completion() will
  1398     // eventually timeout, but that takes time. Making this wait a
  1399     // suspend-equivalent condition solves that timeout problem.
  1400     //
  1401     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1402                           Mutex::_as_suspend_equivalent_flag);
  1406 void WatcherThread::unpark() {
  1407   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1408   PeriodicTask_lock->notify();
  1411 void WatcherThread::print_on(outputStream* st) const {
  1412   st->print("\"%s\" ", name());
  1413   Thread::print_on(st);
  1414   st->cr();
  1417 // ======= JavaThread ========
  1419 // A JavaThread is a normal Java thread
  1421 void JavaThread::initialize() {
  1422   // Initialize fields
  1424   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
  1425   set_claimed_par_id(UINT_MAX);
  1427   set_saved_exception_pc(NULL);
  1428   set_threadObj(NULL);
  1429   _anchor.clear();
  1430   set_entry_point(NULL);
  1431   set_jni_functions(jni_functions());
  1432   set_callee_target(NULL);
  1433   set_vm_result(NULL);
  1434   set_vm_result_2(NULL);
  1435   set_vframe_array_head(NULL);
  1436   set_vframe_array_last(NULL);
  1437   set_deferred_locals(NULL);
  1438   set_deopt_mark(NULL);
  1439   set_deopt_nmethod(NULL);
  1440   clear_must_deopt_id();
  1441   set_monitor_chunks(NULL);
  1442   set_next(NULL);
  1443   set_thread_state(_thread_new);
  1444   _terminated = _not_terminated;
  1445   _privileged_stack_top = NULL;
  1446   _array_for_gc = NULL;
  1447   _suspend_equivalent = false;
  1448   _in_deopt_handler = 0;
  1449   _doing_unsafe_access = false;
  1450   _stack_guard_state = stack_guard_unused;
  1451   (void)const_cast<oop&>(_exception_oop = NULL);
  1452   _exception_pc  = 0;
  1453   _exception_handler_pc = 0;
  1454   _is_method_handle_return = 0;
  1455   _jvmti_thread_state= NULL;
  1456   _should_post_on_exceptions_flag = JNI_FALSE;
  1457   _jvmti_get_loaded_classes_closure = NULL;
  1458   _interp_only_mode    = 0;
  1459   _special_runtime_exit_condition = _no_async_condition;
  1460   _pending_async_exception = NULL;
  1461   _thread_stat = NULL;
  1462   _thread_stat = new ThreadStatistics();
  1463   _blocked_on_compilation = false;
  1464   _jni_active_critical = 0;
  1465   _do_not_unlock_if_synchronized = false;
  1466   _cached_monitor_info = NULL;
  1467   _parker = Parker::Allocate(this) ;
  1469 #ifndef PRODUCT
  1470   _jmp_ring_index = 0;
  1471   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1472     record_jump(NULL, NULL, NULL, 0);
  1474 #endif /* PRODUCT */
  1476   set_thread_profiler(NULL);
  1477   if (FlatProfiler::is_active()) {
  1478     // This is where we would decide to either give each thread it's own profiler
  1479     // or use one global one from FlatProfiler,
  1480     // or up to some count of the number of profiled threads, etc.
  1481     ThreadProfiler* pp = new ThreadProfiler();
  1482     pp->engage();
  1483     set_thread_profiler(pp);
  1486   // Setup safepoint state info for this thread
  1487   ThreadSafepointState::create(this);
  1489   debug_only(_java_call_counter = 0);
  1491   // JVMTI PopFrame support
  1492   _popframe_condition = popframe_inactive;
  1493   _popframe_preserved_args = NULL;
  1494   _popframe_preserved_args_size = 0;
  1496   pd_initialize();
  1499 #if INCLUDE_ALL_GCS
  1500 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1501 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1502 #endif // INCLUDE_ALL_GCS
  1504 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1505   Thread()
  1506 #if INCLUDE_ALL_GCS
  1507   , _satb_mark_queue(&_satb_mark_queue_set),
  1508   _dirty_card_queue(&_dirty_card_queue_set)
  1509 #endif // INCLUDE_ALL_GCS
  1511   initialize();
  1512   if (is_attaching_via_jni) {
  1513     _jni_attach_state = _attaching_via_jni;
  1514   } else {
  1515     _jni_attach_state = _not_attaching_via_jni;
  1517   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1520 bool JavaThread::reguard_stack(address cur_sp) {
  1521   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1522     return true; // Stack already guarded or guard pages not needed.
  1525   if (register_stack_overflow()) {
  1526     // For those architectures which have separate register and
  1527     // memory stacks, we must check the register stack to see if
  1528     // it has overflowed.
  1529     return false;
  1532   // Java code never executes within the yellow zone: the latter is only
  1533   // there to provoke an exception during stack banging.  If java code
  1534   // is executing there, either StackShadowPages should be larger, or
  1535   // some exception code in c1, c2 or the interpreter isn't unwinding
  1536   // when it should.
  1537   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1539   enable_stack_yellow_zone();
  1540   return true;
  1543 bool JavaThread::reguard_stack(void) {
  1544   return reguard_stack(os::current_stack_pointer());
  1548 void JavaThread::block_if_vm_exited() {
  1549   if (_terminated == _vm_exited) {
  1550     // _vm_exited is set at safepoint, and Threads_lock is never released
  1551     // we will block here forever
  1552     Threads_lock->lock_without_safepoint_check();
  1553     ShouldNotReachHere();
  1558 // Remove this ifdef when C1 is ported to the compiler interface.
  1559 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1561 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1562   Thread()
  1563 #if INCLUDE_ALL_GCS
  1564   , _satb_mark_queue(&_satb_mark_queue_set),
  1565   _dirty_card_queue(&_dirty_card_queue_set)
  1566 #endif // INCLUDE_ALL_GCS
  1568   if (TraceThreadEvents) {
  1569     tty->print_cr("creating thread %p", this);
  1571   initialize();
  1572   _jni_attach_state = _not_attaching_via_jni;
  1573   set_entry_point(entry_point);
  1574   // Create the native thread itself.
  1575   // %note runtime_23
  1576   os::ThreadType thr_type = os::java_thread;
  1577   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1578                                                      os::java_thread;
  1579   os::create_thread(this, thr_type, stack_sz);
  1580   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1581   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1582   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1583   // the exception consists of creating the exception object & initializing it, initialization
  1584   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1585   //
  1586   // The thread is still suspended when we reach here. Thread must be explicit started
  1587   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1588   // by calling Threads:add. The reason why this is not done here, is because the thread
  1589   // object must be fully initialized (take a look at JVM_Start)
  1592 JavaThread::~JavaThread() {
  1593   if (TraceThreadEvents) {
  1594       tty->print_cr("terminate thread %p", this);
  1597   // JSR166 -- return the parker to the free list
  1598   Parker::Release(_parker);
  1599   _parker = NULL ;
  1601   // Free any remaining  previous UnrollBlock
  1602   vframeArray* old_array = vframe_array_last();
  1604   if (old_array != NULL) {
  1605     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1606     old_array->set_unroll_block(NULL);
  1607     delete old_info;
  1608     delete old_array;
  1611   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1612   if (deferred != NULL) {
  1613     // This can only happen if thread is destroyed before deoptimization occurs.
  1614     assert(deferred->length() != 0, "empty array!");
  1615     do {
  1616       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1617       deferred->remove_at(0);
  1618       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1619       delete dlv;
  1620     } while (deferred->length() != 0);
  1621     delete deferred;
  1624   // All Java related clean up happens in exit
  1625   ThreadSafepointState::destroy(this);
  1626   if (_thread_profiler != NULL) delete _thread_profiler;
  1627   if (_thread_stat != NULL) delete _thread_stat;
  1631 // The first routine called by a new Java thread
  1632 void JavaThread::run() {
  1633   // initialize thread-local alloc buffer related fields
  1634   this->initialize_tlab();
  1636   // used to test validitity of stack trace backs
  1637   this->record_base_of_stack_pointer();
  1639   // Record real stack base and size.
  1640   this->record_stack_base_and_size();
  1642   // Initialize thread local storage; set before calling MutexLocker
  1643   this->initialize_thread_local_storage();
  1645   this->create_stack_guard_pages();
  1647   this->cache_global_variables();
  1649   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1650   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1651   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1653   assert(JavaThread::current() == this, "sanity check");
  1654   assert(!Thread::current()->owns_locks(), "sanity check");
  1656   DTRACE_THREAD_PROBE(start, this);
  1658   // This operation might block. We call that after all safepoint checks for a new thread has
  1659   // been completed.
  1660   this->set_active_handles(JNIHandleBlock::allocate_block());
  1662   if (JvmtiExport::should_post_thread_life()) {
  1663     JvmtiExport::post_thread_start(this);
  1666   EventThreadStart event;
  1667   if (event.should_commit()) {
  1668      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1669      event.commit();
  1672   // We call another function to do the rest so we are sure that the stack addresses used
  1673   // from there will be lower than the stack base just computed
  1674   thread_main_inner();
  1676   // Note, thread is no longer valid at this point!
  1680 void JavaThread::thread_main_inner() {
  1681   assert(JavaThread::current() == this, "sanity check");
  1682   assert(this->threadObj() != NULL, "just checking");
  1684   // Execute thread entry point unless this thread has a pending exception
  1685   // or has been stopped before starting.
  1686   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1687   if (!this->has_pending_exception() &&
  1688       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1690       ResourceMark rm(this);
  1691       this->set_native_thread_name(this->get_thread_name());
  1693     HandleMark hm(this);
  1694     this->entry_point()(this, this);
  1697   DTRACE_THREAD_PROBE(stop, this);
  1699   this->exit(false);
  1700   delete this;
  1704 static void ensure_join(JavaThread* thread) {
  1705   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1706   Handle threadObj(thread, thread->threadObj());
  1707   assert(threadObj.not_null(), "java thread object must exist");
  1708   ObjectLocker lock(threadObj, thread);
  1709   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1710   thread->clear_pending_exception();
  1711   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1712   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1713   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1714   // to complete once we've done the notify_all below
  1715   java_lang_Thread::set_thread(threadObj(), NULL);
  1716   lock.notify_all(thread);
  1717   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1718   thread->clear_pending_exception();
  1722 // For any new cleanup additions, please check to see if they need to be applied to
  1723 // cleanup_failed_attach_current_thread as well.
  1724 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1725   assert(this == JavaThread::current(),  "thread consistency check");
  1727   HandleMark hm(this);
  1728   Handle uncaught_exception(this, this->pending_exception());
  1729   this->clear_pending_exception();
  1730   Handle threadObj(this, this->threadObj());
  1731   assert(threadObj.not_null(), "Java thread object should be created");
  1733   if (get_thread_profiler() != NULL) {
  1734     get_thread_profiler()->disengage();
  1735     ResourceMark rm;
  1736     get_thread_profiler()->print(get_thread_name());
  1740   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1742     EXCEPTION_MARK;
  1744     CLEAR_PENDING_EXCEPTION;
  1746   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1747   // has to be fixed by a runtime query method
  1748   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1749     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1750     // java.lang.Thread.dispatchUncaughtException
  1751     if (uncaught_exception.not_null()) {
  1752       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1754         EXCEPTION_MARK;
  1755         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1756         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1757         // so call ThreadGroup.uncaughtException()
  1758         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1759         CallInfo callinfo;
  1760         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1761         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1762                                            vmSymbols::dispatchUncaughtException_name(),
  1763                                            vmSymbols::throwable_void_signature(),
  1764                                            KlassHandle(), false, false, THREAD);
  1765         CLEAR_PENDING_EXCEPTION;
  1766         methodHandle method = callinfo.selected_method();
  1767         if (method.not_null()) {
  1768           JavaValue result(T_VOID);
  1769           JavaCalls::call_virtual(&result,
  1770                                   threadObj, thread_klass,
  1771                                   vmSymbols::dispatchUncaughtException_name(),
  1772                                   vmSymbols::throwable_void_signature(),
  1773                                   uncaught_exception,
  1774                                   THREAD);
  1775         } else {
  1776           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1777           JavaValue result(T_VOID);
  1778           JavaCalls::call_virtual(&result,
  1779                                   group, thread_group,
  1780                                   vmSymbols::uncaughtException_name(),
  1781                                   vmSymbols::thread_throwable_void_signature(),
  1782                                   threadObj,           // Arg 1
  1783                                   uncaught_exception,  // Arg 2
  1784                                   THREAD);
  1786         if (HAS_PENDING_EXCEPTION) {
  1787           ResourceMark rm(this);
  1788           jio_fprintf(defaultStream::error_stream(),
  1789                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1790                 " in thread \"%s\"\n",
  1791                 pending_exception()->klass()->external_name(),
  1792                 get_thread_name());
  1793           CLEAR_PENDING_EXCEPTION;
  1798     // Called before the java thread exit since we want to read info
  1799     // from java_lang_Thread object
  1800     EventThreadEnd event;
  1801     if (event.should_commit()) {
  1802         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1803         event.commit();
  1806     // Call after last event on thread
  1807     EVENT_THREAD_EXIT(this);
  1809     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1810     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1811     // is deprecated anyhow.
  1812     if (!is_Compiler_thread()) {
  1813       int count = 3;
  1814       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1815         EXCEPTION_MARK;
  1816         JavaValue result(T_VOID);
  1817         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1818         JavaCalls::call_virtual(&result,
  1819                               threadObj, thread_klass,
  1820                               vmSymbols::exit_method_name(),
  1821                               vmSymbols::void_method_signature(),
  1822                               THREAD);
  1823         CLEAR_PENDING_EXCEPTION;
  1826     // notify JVMTI
  1827     if (JvmtiExport::should_post_thread_life()) {
  1828       JvmtiExport::post_thread_end(this);
  1831     // We have notified the agents that we are exiting, before we go on,
  1832     // we must check for a pending external suspend request and honor it
  1833     // in order to not surprise the thread that made the suspend request.
  1834     while (true) {
  1836         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1837         if (!is_external_suspend()) {
  1838           set_terminated(_thread_exiting);
  1839           ThreadService::current_thread_exiting(this);
  1840           break;
  1842         // Implied else:
  1843         // Things get a little tricky here. We have a pending external
  1844         // suspend request, but we are holding the SR_lock so we
  1845         // can't just self-suspend. So we temporarily drop the lock
  1846         // and then self-suspend.
  1849       ThreadBlockInVM tbivm(this);
  1850       java_suspend_self();
  1852       // We're done with this suspend request, but we have to loop around
  1853       // and check again. Eventually we will get SR_lock without a pending
  1854       // external suspend request and will be able to mark ourselves as
  1855       // exiting.
  1857     // no more external suspends are allowed at this point
  1858   } else {
  1859     // before_exit() has already posted JVMTI THREAD_END events
  1862   // Notify waiters on thread object. This has to be done after exit() is called
  1863   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1864   // group should have the destroyed bit set before waiters are notified).
  1865   ensure_join(this);
  1866   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1868   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1869   // held by this thread must be released.  A detach operation must only
  1870   // get here if there are no Java frames on the stack.  Therefore, any
  1871   // owned monitors at this point MUST be JNI-acquired monitors which are
  1872   // pre-inflated and in the monitor cache.
  1873   //
  1874   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1875   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1876     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1877     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1878     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1881   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1882   // is in a consistent state, in case GC happens
  1883   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1885   if (active_handles() != NULL) {
  1886     JNIHandleBlock* block = active_handles();
  1887     set_active_handles(NULL);
  1888     JNIHandleBlock::release_block(block);
  1891   if (free_handle_block() != NULL) {
  1892     JNIHandleBlock* block = free_handle_block();
  1893     set_free_handle_block(NULL);
  1894     JNIHandleBlock::release_block(block);
  1897   // These have to be removed while this is still a valid thread.
  1898   remove_stack_guard_pages();
  1900   if (UseTLAB) {
  1901     tlab().make_parsable(true);  // retire TLAB
  1904   if (JvmtiEnv::environments_might_exist()) {
  1905     JvmtiExport::cleanup_thread(this);
  1908   // We must flush any deferred card marks before removing a thread from
  1909   // the list of active threads.
  1910   Universe::heap()->flush_deferred_store_barrier(this);
  1911   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1913 #if INCLUDE_ALL_GCS
  1914   // We must flush the G1-related buffers before removing a thread
  1915   // from the list of active threads. We must do this after any deferred
  1916   // card marks have been flushed (above) so that any entries that are
  1917   // added to the thread's dirty card queue as a result are not lost.
  1918   if (UseG1GC) {
  1919     flush_barrier_queues();
  1921 #endif // INCLUDE_ALL_GCS
  1923   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1924   Threads::remove(this);
  1927 #if INCLUDE_ALL_GCS
  1928 // Flush G1-related queues.
  1929 void JavaThread::flush_barrier_queues() {
  1930   satb_mark_queue().flush();
  1931   dirty_card_queue().flush();
  1934 void JavaThread::initialize_queues() {
  1935   assert(!SafepointSynchronize::is_at_safepoint(),
  1936          "we should not be at a safepoint");
  1938   ObjPtrQueue& satb_queue = satb_mark_queue();
  1939   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1940   // The SATB queue should have been constructed with its active
  1941   // field set to false.
  1942   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1943   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1944   // If we are creating the thread during a marking cycle, we should
  1945   // set the active field of the SATB queue to true.
  1946   if (satb_queue_set.is_active()) {
  1947     satb_queue.set_active(true);
  1950   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1951   // The dirty card queue should have been constructed with its
  1952   // active field set to true.
  1953   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1955 #endif // INCLUDE_ALL_GCS
  1957 void JavaThread::cleanup_failed_attach_current_thread() {
  1958   if (get_thread_profiler() != NULL) {
  1959     get_thread_profiler()->disengage();
  1960     ResourceMark rm;
  1961     get_thread_profiler()->print(get_thread_name());
  1964   if (active_handles() != NULL) {
  1965     JNIHandleBlock* block = active_handles();
  1966     set_active_handles(NULL);
  1967     JNIHandleBlock::release_block(block);
  1970   if (free_handle_block() != NULL) {
  1971     JNIHandleBlock* block = free_handle_block();
  1972     set_free_handle_block(NULL);
  1973     JNIHandleBlock::release_block(block);
  1976   // These have to be removed while this is still a valid thread.
  1977   remove_stack_guard_pages();
  1979   if (UseTLAB) {
  1980     tlab().make_parsable(true);  // retire TLAB, if any
  1983 #if INCLUDE_ALL_GCS
  1984   if (UseG1GC) {
  1985     flush_barrier_queues();
  1987 #endif // INCLUDE_ALL_GCS
  1989   Threads::remove(this);
  1990   delete this;
  1996 JavaThread* JavaThread::active() {
  1997   Thread* thread = ThreadLocalStorage::thread();
  1998   assert(thread != NULL, "just checking");
  1999   if (thread->is_Java_thread()) {
  2000     return (JavaThread*) thread;
  2001   } else {
  2002     assert(thread->is_VM_thread(), "this must be a vm thread");
  2003     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  2004     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  2005     assert(ret->is_Java_thread(), "must be a Java thread");
  2006     return ret;
  2010 bool JavaThread::is_lock_owned(address adr) const {
  2011   if (Thread::is_lock_owned(adr)) return true;
  2013   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2014     if (chunk->contains(adr)) return true;
  2017   return false;
  2021 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2022   chunk->set_next(monitor_chunks());
  2023   set_monitor_chunks(chunk);
  2026 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2027   guarantee(monitor_chunks() != NULL, "must be non empty");
  2028   if (monitor_chunks() == chunk) {
  2029     set_monitor_chunks(chunk->next());
  2030   } else {
  2031     MonitorChunk* prev = monitor_chunks();
  2032     while (prev->next() != chunk) prev = prev->next();
  2033     prev->set_next(chunk->next());
  2037 // JVM support.
  2039 // Note: this function shouldn't block if it's called in
  2040 // _thread_in_native_trans state (such as from
  2041 // check_special_condition_for_native_trans()).
  2042 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2044   if (has_last_Java_frame() && has_async_condition()) {
  2045     // If we are at a polling page safepoint (not a poll return)
  2046     // then we must defer async exception because live registers
  2047     // will be clobbered by the exception path. Poll return is
  2048     // ok because the call we a returning from already collides
  2049     // with exception handling registers and so there is no issue.
  2050     // (The exception handling path kills call result registers but
  2051     //  this is ok since the exception kills the result anyway).
  2053     if (is_at_poll_safepoint()) {
  2054       // if the code we are returning to has deoptimized we must defer
  2055       // the exception otherwise live registers get clobbered on the
  2056       // exception path before deoptimization is able to retrieve them.
  2057       //
  2058       RegisterMap map(this, false);
  2059       frame caller_fr = last_frame().sender(&map);
  2060       assert(caller_fr.is_compiled_frame(), "what?");
  2061       if (caller_fr.is_deoptimized_frame()) {
  2062         if (TraceExceptions) {
  2063           ResourceMark rm;
  2064           tty->print_cr("deferred async exception at compiled safepoint");
  2066         return;
  2071   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2072   if (condition == _no_async_condition) {
  2073     // Conditions have changed since has_special_runtime_exit_condition()
  2074     // was called:
  2075     // - if we were here only because of an external suspend request,
  2076     //   then that was taken care of above (or cancelled) so we are done
  2077     // - if we were here because of another async request, then it has
  2078     //   been cleared between the has_special_runtime_exit_condition()
  2079     //   and now so again we are done
  2080     return;
  2083   // Check for pending async. exception
  2084   if (_pending_async_exception != NULL) {
  2085     // Only overwrite an already pending exception, if it is not a threadDeath.
  2086     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2088       // We cannot call Exceptions::_throw(...) here because we cannot block
  2089       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2091       if (TraceExceptions) {
  2092         ResourceMark rm;
  2093         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2094         if (has_last_Java_frame() ) {
  2095           frame f = last_frame();
  2096           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2098         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2100       _pending_async_exception = NULL;
  2101       clear_has_async_exception();
  2105   if (check_unsafe_error &&
  2106       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2107     condition = _no_async_condition;  // done
  2108     switch (thread_state()) {
  2109     case _thread_in_vm:
  2111         JavaThread* THREAD = this;
  2112         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2114     case _thread_in_native:
  2116         ThreadInVMfromNative tiv(this);
  2117         JavaThread* THREAD = this;
  2118         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2120     case _thread_in_Java:
  2122         ThreadInVMfromJava tiv(this);
  2123         JavaThread* THREAD = this;
  2124         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2126     default:
  2127       ShouldNotReachHere();
  2131   assert(condition == _no_async_condition || has_pending_exception() ||
  2132          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2133          "must have handled the async condition, if no exception");
  2136 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2137   //
  2138   // Check for pending external suspend. Internal suspend requests do
  2139   // not use handle_special_runtime_exit_condition().
  2140   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2141   // thread is not the current thread. In older versions of jdbx, jdbx
  2142   // threads could call into the VM with another thread's JNIEnv so we
  2143   // can be here operating on behalf of a suspended thread (4432884).
  2144   bool do_self_suspend = is_external_suspend_with_lock();
  2145   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2146     //
  2147     // Because thread is external suspended the safepoint code will count
  2148     // thread as at a safepoint. This can be odd because we can be here
  2149     // as _thread_in_Java which would normally transition to _thread_blocked
  2150     // at a safepoint. We would like to mark the thread as _thread_blocked
  2151     // before calling java_suspend_self like all other callers of it but
  2152     // we must then observe proper safepoint protocol. (We can't leave
  2153     // _thread_blocked with a safepoint in progress). However we can be
  2154     // here as _thread_in_native_trans so we can't use a normal transition
  2155     // constructor/destructor pair because they assert on that type of
  2156     // transition. We could do something like:
  2157     //
  2158     // JavaThreadState state = thread_state();
  2159     // set_thread_state(_thread_in_vm);
  2160     // {
  2161     //   ThreadBlockInVM tbivm(this);
  2162     //   java_suspend_self()
  2163     // }
  2164     // set_thread_state(_thread_in_vm_trans);
  2165     // if (safepoint) block;
  2166     // set_thread_state(state);
  2167     //
  2168     // but that is pretty messy. Instead we just go with the way the
  2169     // code has worked before and note that this is the only path to
  2170     // java_suspend_self that doesn't put the thread in _thread_blocked
  2171     // mode.
  2173     frame_anchor()->make_walkable(this);
  2174     java_suspend_self();
  2176     // We might be here for reasons in addition to the self-suspend request
  2177     // so check for other async requests.
  2180   if (check_asyncs) {
  2181     check_and_handle_async_exceptions();
  2185 void JavaThread::send_thread_stop(oop java_throwable)  {
  2186   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2187   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2188   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2190   // Do not throw asynchronous exceptions against the compiler thread
  2191   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2192   if (is_Compiler_thread()) return;
  2195     // Actually throw the Throwable against the target Thread - however
  2196     // only if there is no thread death exception installed already.
  2197     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2198       // If the topmost frame is a runtime stub, then we are calling into
  2199       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2200       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2201       // may not be valid
  2202       if (has_last_Java_frame()) {
  2203         frame f = last_frame();
  2204         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2205           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2206           RegisterMap reg_map(this, UseBiasedLocking);
  2207           frame compiled_frame = f.sender(&reg_map);
  2208           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2209             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2214       // Set async. pending exception in thread.
  2215       set_pending_async_exception(java_throwable);
  2217       if (TraceExceptions) {
  2218        ResourceMark rm;
  2219        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2221       // for AbortVMOnException flag
  2222       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2227   // Interrupt thread so it will wake up from a potential wait()
  2228   Thread::interrupt(this);
  2231 // External suspension mechanism.
  2232 //
  2233 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2234 // to any VM_locks and it is at a transition
  2235 // Self-suspension will happen on the transition out of the vm.
  2236 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2237 //
  2238 // Guarantees on return:
  2239 //   + Target thread will not execute any new bytecode (that's why we need to
  2240 //     force a safepoint)
  2241 //   + Target thread will not enter any new monitors
  2242 //
  2243 void JavaThread::java_suspend() {
  2244   { MutexLocker mu(Threads_lock);
  2245     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2246        return;
  2250   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2251     if (!is_external_suspend()) {
  2252       // a racing resume has cancelled us; bail out now
  2253       return;
  2256     // suspend is done
  2257     uint32_t debug_bits = 0;
  2258     // Warning: is_ext_suspend_completed() may temporarily drop the
  2259     // SR_lock to allow the thread to reach a stable thread state if
  2260     // it is currently in a transient thread state.
  2261     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2262                                  SuspendRetryDelay, &debug_bits) ) {
  2263       return;
  2267   VM_ForceSafepoint vm_suspend;
  2268   VMThread::execute(&vm_suspend);
  2271 // Part II of external suspension.
  2272 // A JavaThread self suspends when it detects a pending external suspend
  2273 // request. This is usually on transitions. It is also done in places
  2274 // where continuing to the next transition would surprise the caller,
  2275 // e.g., monitor entry.
  2276 //
  2277 // Returns the number of times that the thread self-suspended.
  2278 //
  2279 // Note: DO NOT call java_suspend_self() when you just want to block current
  2280 //       thread. java_suspend_self() is the second stage of cooperative
  2281 //       suspension for external suspend requests and should only be used
  2282 //       to complete an external suspend request.
  2283 //
  2284 int JavaThread::java_suspend_self() {
  2285   int ret = 0;
  2287   // we are in the process of exiting so don't suspend
  2288   if (is_exiting()) {
  2289      clear_external_suspend();
  2290      return ret;
  2293   assert(_anchor.walkable() ||
  2294     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2295     "must have walkable stack");
  2297   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2299   assert(!this->is_ext_suspended(),
  2300     "a thread trying to self-suspend should not already be suspended");
  2302   if (this->is_suspend_equivalent()) {
  2303     // If we are self-suspending as a result of the lifting of a
  2304     // suspend equivalent condition, then the suspend_equivalent
  2305     // flag is not cleared until we set the ext_suspended flag so
  2306     // that wait_for_ext_suspend_completion() returns consistent
  2307     // results.
  2308     this->clear_suspend_equivalent();
  2311   // A racing resume may have cancelled us before we grabbed SR_lock
  2312   // above. Or another external suspend request could be waiting for us
  2313   // by the time we return from SR_lock()->wait(). The thread
  2314   // that requested the suspension may already be trying to walk our
  2315   // stack and if we return now, we can change the stack out from under
  2316   // it. This would be a "bad thing (TM)" and cause the stack walker
  2317   // to crash. We stay self-suspended until there are no more pending
  2318   // external suspend requests.
  2319   while (is_external_suspend()) {
  2320     ret++;
  2321     this->set_ext_suspended();
  2323     // _ext_suspended flag is cleared by java_resume()
  2324     while (is_ext_suspended()) {
  2325       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2329   return ret;
  2332 #ifdef ASSERT
  2333 // verify the JavaThread has not yet been published in the Threads::list, and
  2334 // hence doesn't need protection from concurrent access at this stage
  2335 void JavaThread::verify_not_published() {
  2336   if (!Threads_lock->owned_by_self()) {
  2337    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2338    assert( !Threads::includes(this),
  2339            "java thread shouldn't have been published yet!");
  2341   else {
  2342    assert( !Threads::includes(this),
  2343            "java thread shouldn't have been published yet!");
  2346 #endif
  2348 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2349 // progress or when _suspend_flags is non-zero.
  2350 // Current thread needs to self-suspend if there is a suspend request and/or
  2351 // block if a safepoint is in progress.
  2352 // Async exception ISN'T checked.
  2353 // Note only the ThreadInVMfromNative transition can call this function
  2354 // directly and when thread state is _thread_in_native_trans
  2355 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2356   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2358   JavaThread *curJT = JavaThread::current();
  2359   bool do_self_suspend = thread->is_external_suspend();
  2361   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2363   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2364   // thread is not the current thread. In older versions of jdbx, jdbx
  2365   // threads could call into the VM with another thread's JNIEnv so we
  2366   // can be here operating on behalf of a suspended thread (4432884).
  2367   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2368     JavaThreadState state = thread->thread_state();
  2370     // We mark this thread_blocked state as a suspend-equivalent so
  2371     // that a caller to is_ext_suspend_completed() won't be confused.
  2372     // The suspend-equivalent state is cleared by java_suspend_self().
  2373     thread->set_suspend_equivalent();
  2375     // If the safepoint code sees the _thread_in_native_trans state, it will
  2376     // wait until the thread changes to other thread state. There is no
  2377     // guarantee on how soon we can obtain the SR_lock and complete the
  2378     // self-suspend request. It would be a bad idea to let safepoint wait for
  2379     // too long. Temporarily change the state to _thread_blocked to
  2380     // let the VM thread know that this thread is ready for GC. The problem
  2381     // of changing thread state is that safepoint could happen just after
  2382     // java_suspend_self() returns after being resumed, and VM thread will
  2383     // see the _thread_blocked state. We must check for safepoint
  2384     // after restoring the state and make sure we won't leave while a safepoint
  2385     // is in progress.
  2386     thread->set_thread_state(_thread_blocked);
  2387     thread->java_suspend_self();
  2388     thread->set_thread_state(state);
  2389     // Make sure new state is seen by VM thread
  2390     if (os::is_MP()) {
  2391       if (UseMembar) {
  2392         // Force a fence between the write above and read below
  2393         OrderAccess::fence();
  2394       } else {
  2395         // Must use this rather than serialization page in particular on Windows
  2396         InterfaceSupport::serialize_memory(thread);
  2401   if (SafepointSynchronize::do_call_back()) {
  2402     // If we are safepointing, then block the caller which may not be
  2403     // the same as the target thread (see above).
  2404     SafepointSynchronize::block(curJT);
  2407   if (thread->is_deopt_suspend()) {
  2408     thread->clear_deopt_suspend();
  2409     RegisterMap map(thread, false);
  2410     frame f = thread->last_frame();
  2411     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2412       f = f.sender(&map);
  2414     if (f.id() == thread->must_deopt_id()) {
  2415       thread->clear_must_deopt_id();
  2416       f.deoptimize(thread);
  2417     } else {
  2418       fatal("missed deoptimization!");
  2423 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2424 // progress or when _suspend_flags is non-zero.
  2425 // Current thread needs to self-suspend if there is a suspend request and/or
  2426 // block if a safepoint is in progress.
  2427 // Also check for pending async exception (not including unsafe access error).
  2428 // Note only the native==>VM/Java barriers can call this function and when
  2429 // thread state is _thread_in_native_trans.
  2430 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2431   check_safepoint_and_suspend_for_native_trans(thread);
  2433   if (thread->has_async_exception()) {
  2434     // We are in _thread_in_native_trans state, don't handle unsafe
  2435     // access error since that may block.
  2436     thread->check_and_handle_async_exceptions(false);
  2440 // This is a variant of the normal
  2441 // check_special_condition_for_native_trans with slightly different
  2442 // semantics for use by critical native wrappers.  It does all the
  2443 // normal checks but also performs the transition back into
  2444 // thread_in_Java state.  This is required so that critical natives
  2445 // can potentially block and perform a GC if they are the last thread
  2446 // exiting the GC_locker.
  2447 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2448   check_special_condition_for_native_trans(thread);
  2450   // Finish the transition
  2451   thread->set_thread_state(_thread_in_Java);
  2453   if (thread->do_critical_native_unlock()) {
  2454     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2455     GC_locker::unlock_critical(thread);
  2456     thread->clear_critical_native_unlock();
  2460 // We need to guarantee the Threads_lock here, since resumes are not
  2461 // allowed during safepoint synchronization
  2462 // Can only resume from an external suspension
  2463 void JavaThread::java_resume() {
  2464   assert_locked_or_safepoint(Threads_lock);
  2466   // Sanity check: thread is gone, has started exiting or the thread
  2467   // was not externally suspended.
  2468   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2469     return;
  2472   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2474   clear_external_suspend();
  2476   if (is_ext_suspended()) {
  2477     clear_ext_suspended();
  2478     SR_lock()->notify_all();
  2482 void JavaThread::create_stack_guard_pages() {
  2483   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2484   address low_addr = stack_base() - stack_size();
  2485   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2487   int allocate = os::allocate_stack_guard_pages();
  2488   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2490   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2491     warning("Attempt to allocate stack guard pages failed.");
  2492     return;
  2495   if (os::guard_memory((char *) low_addr, len)) {
  2496     _stack_guard_state = stack_guard_enabled;
  2497   } else {
  2498     warning("Attempt to protect stack guard pages failed.");
  2499     if (os::uncommit_memory((char *) low_addr, len)) {
  2500       warning("Attempt to deallocate stack guard pages failed.");
  2505 void JavaThread::remove_stack_guard_pages() {
  2506   assert(Thread::current() == this, "from different thread");
  2507   if (_stack_guard_state == stack_guard_unused) return;
  2508   address low_addr = stack_base() - stack_size();
  2509   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2511   if (os::allocate_stack_guard_pages()) {
  2512     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2513       _stack_guard_state = stack_guard_unused;
  2514     } else {
  2515       warning("Attempt to deallocate stack guard pages failed.");
  2517   } else {
  2518     if (_stack_guard_state == stack_guard_unused) return;
  2519     if (os::unguard_memory((char *) low_addr, len)) {
  2520       _stack_guard_state = stack_guard_unused;
  2521     } else {
  2522         warning("Attempt to unprotect stack guard pages failed.");
  2527 void JavaThread::enable_stack_yellow_zone() {
  2528   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2529   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2531   // The base notation is from the stacks point of view, growing downward.
  2532   // We need to adjust it to work correctly with guard_memory()
  2533   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2535   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2536   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2538   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2539     _stack_guard_state = stack_guard_enabled;
  2540   } else {
  2541     warning("Attempt to guard stack yellow zone failed.");
  2543   enable_register_stack_guard();
  2546 void JavaThread::disable_stack_yellow_zone() {
  2547   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2548   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2550   // Simply return if called for a thread that does not use guard pages.
  2551   if (_stack_guard_state == stack_guard_unused) return;
  2553   // The base notation is from the stacks point of view, growing downward.
  2554   // We need to adjust it to work correctly with guard_memory()
  2555   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2557   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2558     _stack_guard_state = stack_guard_yellow_disabled;
  2559   } else {
  2560     warning("Attempt to unguard stack yellow zone failed.");
  2562   disable_register_stack_guard();
  2565 void JavaThread::enable_stack_red_zone() {
  2566   // The base notation is from the stacks point of view, growing downward.
  2567   // We need to adjust it to work correctly with guard_memory()
  2568   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2569   address base = stack_red_zone_base() - stack_red_zone_size();
  2571   guarantee(base < stack_base(),"Error calculating stack red zone");
  2572   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2574   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2575     warning("Attempt to guard stack red zone failed.");
  2579 void JavaThread::disable_stack_red_zone() {
  2580   // The base notation is from the stacks point of view, growing downward.
  2581   // We need to adjust it to work correctly with guard_memory()
  2582   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2583   address base = stack_red_zone_base() - stack_red_zone_size();
  2584   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2585     warning("Attempt to unguard stack red zone failed.");
  2589 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2590   // ignore is there is no stack
  2591   if (!has_last_Java_frame()) return;
  2592   // traverse the stack frames. Starts from top frame.
  2593   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2594     frame* fr = fst.current();
  2595     f(fr, fst.register_map());
  2600 #ifndef PRODUCT
  2601 // Deoptimization
  2602 // Function for testing deoptimization
  2603 void JavaThread::deoptimize() {
  2604   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2605   StackFrameStream fst(this, UseBiasedLocking);
  2606   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2607   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2608   // Iterate over all frames in the thread and deoptimize
  2609   for(; !fst.is_done(); fst.next()) {
  2610     if(fst.current()->can_be_deoptimized()) {
  2612       if (only_at) {
  2613         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2614         // consists of comma or carriage return separated numbers so
  2615         // search for the current bci in that string.
  2616         address pc = fst.current()->pc();
  2617         nmethod* nm =  (nmethod*) fst.current()->cb();
  2618         ScopeDesc* sd = nm->scope_desc_at( pc);
  2619         char buffer[8];
  2620         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2621         size_t len = strlen(buffer);
  2622         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2623         while (found != NULL) {
  2624           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2625               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2626             // Check that the bci found is bracketed by terminators.
  2627             break;
  2629           found = strstr(found + 1, buffer);
  2631         if (!found) {
  2632           continue;
  2636       if (DebugDeoptimization && !deopt) {
  2637         deopt = true; // One-time only print before deopt
  2638         tty->print_cr("[BEFORE Deoptimization]");
  2639         trace_frames();
  2640         trace_stack();
  2642       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2646   if (DebugDeoptimization && deopt) {
  2647     tty->print_cr("[AFTER Deoptimization]");
  2648     trace_frames();
  2653 // Make zombies
  2654 void JavaThread::make_zombies() {
  2655   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2656     if (fst.current()->can_be_deoptimized()) {
  2657       // it is a Java nmethod
  2658       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2659       nm->make_not_entrant();
  2663 #endif // PRODUCT
  2666 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2667   if (!has_last_Java_frame()) return;
  2668   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2669   StackFrameStream fst(this, UseBiasedLocking);
  2670   for(; !fst.is_done(); fst.next()) {
  2671     if (fst.current()->should_be_deoptimized()) {
  2672       if (LogCompilation && xtty != NULL) {
  2673         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2674         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2675                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2678       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2684 // GC support
  2685 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2687 void JavaThread::gc_epilogue() {
  2688   frames_do(frame_gc_epilogue);
  2692 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2694 void JavaThread::gc_prologue() {
  2695   frames_do(frame_gc_prologue);
  2698 // If the caller is a NamedThread, then remember, in the current scope,
  2699 // the given JavaThread in its _processed_thread field.
  2700 class RememberProcessedThread: public StackObj {
  2701   NamedThread* _cur_thr;
  2702 public:
  2703   RememberProcessedThread(JavaThread* jthr) {
  2704     Thread* thread = Thread::current();
  2705     if (thread->is_Named_thread()) {
  2706       _cur_thr = (NamedThread *)thread;
  2707       _cur_thr->set_processed_thread(jthr);
  2708     } else {
  2709       _cur_thr = NULL;
  2713   ~RememberProcessedThread() {
  2714     if (_cur_thr) {
  2715       _cur_thr->set_processed_thread(NULL);
  2718 };
  2720 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  2721   // Verify that the deferred card marks have been flushed.
  2722   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2724   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2725   // since there may be more than one thread using each ThreadProfiler.
  2727   // Traverse the GCHandles
  2728   Thread::oops_do(f, cld_f, cf);
  2730   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2731           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2733   if (has_last_Java_frame()) {
  2734     // Record JavaThread to GC thread
  2735     RememberProcessedThread rpt(this);
  2737     // Traverse the privileged stack
  2738     if (_privileged_stack_top != NULL) {
  2739       _privileged_stack_top->oops_do(f);
  2742     // traverse the registered growable array
  2743     if (_array_for_gc != NULL) {
  2744       for (int index = 0; index < _array_for_gc->length(); index++) {
  2745         f->do_oop(_array_for_gc->adr_at(index));
  2749     // Traverse the monitor chunks
  2750     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2751       chunk->oops_do(f);
  2754     // Traverse the execution stack
  2755     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2756       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2760   // callee_target is never live across a gc point so NULL it here should
  2761   // it still contain a methdOop.
  2763   set_callee_target(NULL);
  2765   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2766   // If we have deferred set_locals there might be oops waiting to be
  2767   // written
  2768   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2769   if (list != NULL) {
  2770     for (int i = 0; i < list->length(); i++) {
  2771       list->at(i)->oops_do(f);
  2775   // Traverse instance variables at the end since the GC may be moving things
  2776   // around using this function
  2777   f->do_oop((oop*) &_threadObj);
  2778   f->do_oop((oop*) &_vm_result);
  2779   f->do_oop((oop*) &_exception_oop);
  2780   f->do_oop((oop*) &_pending_async_exception);
  2782   if (jvmti_thread_state() != NULL) {
  2783     jvmti_thread_state()->oops_do(f);
  2787 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2788   Thread::nmethods_do(cf);  // (super method is a no-op)
  2790   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2791           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2793   if (has_last_Java_frame()) {
  2794     // Traverse the execution stack
  2795     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2796       fst.current()->nmethods_do(cf);
  2801 void JavaThread::metadata_do(void f(Metadata*)) {
  2802   Thread::metadata_do(f);
  2803   if (has_last_Java_frame()) {
  2804     // Traverse the execution stack to call f() on the methods in the stack
  2805     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2806       fst.current()->metadata_do(f);
  2808   } else if (is_Compiler_thread()) {
  2809     // need to walk ciMetadata in current compile tasks to keep alive.
  2810     CompilerThread* ct = (CompilerThread*)this;
  2811     if (ct->env() != NULL) {
  2812       ct->env()->metadata_do(f);
  2817 // Printing
  2818 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2819   switch (_thread_state) {
  2820   case _thread_uninitialized:     return "_thread_uninitialized";
  2821   case _thread_new:               return "_thread_new";
  2822   case _thread_new_trans:         return "_thread_new_trans";
  2823   case _thread_in_native:         return "_thread_in_native";
  2824   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2825   case _thread_in_vm:             return "_thread_in_vm";
  2826   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2827   case _thread_in_Java:           return "_thread_in_Java";
  2828   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2829   case _thread_blocked:           return "_thread_blocked";
  2830   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2831   default:                        return "unknown thread state";
  2835 #ifndef PRODUCT
  2836 void JavaThread::print_thread_state_on(outputStream *st) const {
  2837   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2838 };
  2839 void JavaThread::print_thread_state() const {
  2840   print_thread_state_on(tty);
  2841 };
  2842 #endif // PRODUCT
  2844 // Called by Threads::print() for VM_PrintThreads operation
  2845 void JavaThread::print_on(outputStream *st) const {
  2846   st->print("\"%s\" ", get_thread_name());
  2847   oop thread_oop = threadObj();
  2848   if (thread_oop != NULL) {
  2849     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2850     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2851     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2853   Thread::print_on(st);
  2854   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2855   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2856   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2857     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2859 #ifndef PRODUCT
  2860   print_thread_state_on(st);
  2861   _safepoint_state->print_on(st);
  2862 #endif // PRODUCT
  2865 // Called by fatal error handler. The difference between this and
  2866 // JavaThread::print() is that we can't grab lock or allocate memory.
  2867 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2868   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2869   oop thread_obj = threadObj();
  2870   if (thread_obj != NULL) {
  2871      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2873   st->print(" [");
  2874   st->print("%s", _get_thread_state_name(_thread_state));
  2875   if (osthread()) {
  2876     st->print(", id=%d", osthread()->thread_id());
  2878   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2879             _stack_base - _stack_size, _stack_base);
  2880   st->print("]");
  2881   return;
  2884 // Verification
  2886 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2888 void JavaThread::verify() {
  2889   // Verify oops in the thread.
  2890   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2892   // Verify the stack frames.
  2893   frames_do(frame_verify);
  2896 // CR 6300358 (sub-CR 2137150)
  2897 // Most callers of this method assume that it can't return NULL but a
  2898 // thread may not have a name whilst it is in the process of attaching to
  2899 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2900 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2901 // if vm exit occurs during initialization). These cases can all be accounted
  2902 // for such that this method never returns NULL.
  2903 const char* JavaThread::get_thread_name() const {
  2904 #ifdef ASSERT
  2905   // early safepoints can hit while current thread does not yet have TLS
  2906   if (!SafepointSynchronize::is_at_safepoint()) {
  2907     Thread *cur = Thread::current();
  2908     if (!(cur->is_Java_thread() && cur == this)) {
  2909       // Current JavaThreads are allowed to get their own name without
  2910       // the Threads_lock.
  2911       assert_locked_or_safepoint(Threads_lock);
  2914 #endif // ASSERT
  2915     return get_thread_name_string();
  2918 // Returns a non-NULL representation of this thread's name, or a suitable
  2919 // descriptive string if there is no set name
  2920 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2921   const char* name_str;
  2922   oop thread_obj = threadObj();
  2923   if (thread_obj != NULL) {
  2924     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2925     if (name != NULL) {
  2926       if (buf == NULL) {
  2927         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2929       else {
  2930         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2933     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2934       name_str = "<no-name - thread is attaching>";
  2936     else {
  2937       name_str = Thread::name();
  2940   else {
  2941     name_str = Thread::name();
  2943   assert(name_str != NULL, "unexpected NULL thread name");
  2944   return name_str;
  2948 const char* JavaThread::get_threadgroup_name() const {
  2949   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2950   oop thread_obj = threadObj();
  2951   if (thread_obj != NULL) {
  2952     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2953     if (thread_group != NULL) {
  2954       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2955       // ThreadGroup.name can be null
  2956       if (name != NULL) {
  2957         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2958         return str;
  2962   return NULL;
  2965 const char* JavaThread::get_parent_name() const {
  2966   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2967   oop thread_obj = threadObj();
  2968   if (thread_obj != NULL) {
  2969     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2970     if (thread_group != NULL) {
  2971       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2972       if (parent != NULL) {
  2973         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2974         // ThreadGroup.name can be null
  2975         if (name != NULL) {
  2976           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2977           return str;
  2982   return NULL;
  2985 ThreadPriority JavaThread::java_priority() const {
  2986   oop thr_oop = threadObj();
  2987   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2988   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2989   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2990   return priority;
  2993 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2995   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2996   // Link Java Thread object <-> C++ Thread
  2998   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2999   // and put it into a new Handle.  The Handle "thread_oop" can then
  3000   // be used to pass the C++ thread object to other methods.
  3002   // Set the Java level thread object (jthread) field of the
  3003   // new thread (a JavaThread *) to C++ thread object using the
  3004   // "thread_oop" handle.
  3006   // Set the thread field (a JavaThread *) of the
  3007   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3009   Handle thread_oop(Thread::current(),
  3010                     JNIHandles::resolve_non_null(jni_thread));
  3011   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3012     "must be initialized");
  3013   set_threadObj(thread_oop());
  3014   java_lang_Thread::set_thread(thread_oop(), this);
  3016   if (prio == NoPriority) {
  3017     prio = java_lang_Thread::priority(thread_oop());
  3018     assert(prio != NoPriority, "A valid priority should be present");
  3021   // Push the Java priority down to the native thread; needs Threads_lock
  3022   Thread::set_priority(this, prio);
  3024   // Add the new thread to the Threads list and set it in motion.
  3025   // We must have threads lock in order to call Threads::add.
  3026   // It is crucial that we do not block before the thread is
  3027   // added to the Threads list for if a GC happens, then the java_thread oop
  3028   // will not be visited by GC.
  3029   Threads::add(this);
  3032 oop JavaThread::current_park_blocker() {
  3033   // Support for JSR-166 locks
  3034   oop thread_oop = threadObj();
  3035   if (thread_oop != NULL &&
  3036       JDK_Version::current().supports_thread_park_blocker()) {
  3037     return java_lang_Thread::park_blocker(thread_oop);
  3039   return NULL;
  3043 void JavaThread::print_stack_on(outputStream* st) {
  3044   if (!has_last_Java_frame()) return;
  3045   ResourceMark rm;
  3046   HandleMark   hm;
  3048   RegisterMap reg_map(this);
  3049   vframe* start_vf = last_java_vframe(&reg_map);
  3050   int count = 0;
  3051   for (vframe* f = start_vf; f; f = f->sender() ) {
  3052     if (f->is_java_frame()) {
  3053       javaVFrame* jvf = javaVFrame::cast(f);
  3054       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3056       // Print out lock information
  3057       if (JavaMonitorsInStackTrace) {
  3058         jvf->print_lock_info_on(st, count);
  3060     } else {
  3061       // Ignore non-Java frames
  3064     // Bail-out case for too deep stacks
  3065     count++;
  3066     if (MaxJavaStackTraceDepth == count) return;
  3071 // JVMTI PopFrame support
  3072 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3073   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3074   if (in_bytes(size_in_bytes) != 0) {
  3075     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3076     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3077     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3081 void* JavaThread::popframe_preserved_args() {
  3082   return _popframe_preserved_args;
  3085 ByteSize JavaThread::popframe_preserved_args_size() {
  3086   return in_ByteSize(_popframe_preserved_args_size);
  3089 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3090   int sz = in_bytes(popframe_preserved_args_size());
  3091   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3092   return in_WordSize(sz / wordSize);
  3095 void JavaThread::popframe_free_preserved_args() {
  3096   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3097   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3098   _popframe_preserved_args = NULL;
  3099   _popframe_preserved_args_size = 0;
  3102 #ifndef PRODUCT
  3104 void JavaThread::trace_frames() {
  3105   tty->print_cr("[Describe stack]");
  3106   int frame_no = 1;
  3107   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3108     tty->print("  %d. ", frame_no++);
  3109     fst.current()->print_value_on(tty,this);
  3110     tty->cr();
  3114 class PrintAndVerifyOopClosure: public OopClosure {
  3115  protected:
  3116   template <class T> inline void do_oop_work(T* p) {
  3117     oop obj = oopDesc::load_decode_heap_oop(p);
  3118     if (obj == NULL) return;
  3119     tty->print(INTPTR_FORMAT ": ", p);
  3120     if (obj->is_oop_or_null()) {
  3121       if (obj->is_objArray()) {
  3122         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3123       } else {
  3124         obj->print();
  3126     } else {
  3127       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3129     tty->cr();
  3131  public:
  3132   virtual void do_oop(oop* p) { do_oop_work(p); }
  3133   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3134 };
  3137 static void oops_print(frame* f, const RegisterMap *map) {
  3138   PrintAndVerifyOopClosure print;
  3139   f->print_value();
  3140   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3143 // Print our all the locations that contain oops and whether they are
  3144 // valid or not.  This useful when trying to find the oldest frame
  3145 // where an oop has gone bad since the frame walk is from youngest to
  3146 // oldest.
  3147 void JavaThread::trace_oops() {
  3148   tty->print_cr("[Trace oops]");
  3149   frames_do(oops_print);
  3153 #ifdef ASSERT
  3154 // Print or validate the layout of stack frames
  3155 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3156   ResourceMark rm;
  3157   PRESERVE_EXCEPTION_MARK;
  3158   FrameValues values;
  3159   int frame_no = 0;
  3160   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3161     fst.current()->describe(values, ++frame_no);
  3162     if (depth == frame_no) break;
  3164   if (validate_only) {
  3165     values.validate();
  3166   } else {
  3167     tty->print_cr("[Describe stack layout]");
  3168     values.print(this);
  3171 #endif
  3173 void JavaThread::trace_stack_from(vframe* start_vf) {
  3174   ResourceMark rm;
  3175   int vframe_no = 1;
  3176   for (vframe* f = start_vf; f; f = f->sender() ) {
  3177     if (f->is_java_frame()) {
  3178       javaVFrame::cast(f)->print_activation(vframe_no++);
  3179     } else {
  3180       f->print();
  3182     if (vframe_no > StackPrintLimit) {
  3183       tty->print_cr("...<more frames>...");
  3184       return;
  3190 void JavaThread::trace_stack() {
  3191   if (!has_last_Java_frame()) return;
  3192   ResourceMark rm;
  3193   HandleMark   hm;
  3194   RegisterMap reg_map(this);
  3195   trace_stack_from(last_java_vframe(&reg_map));
  3199 #endif // PRODUCT
  3202 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3203   assert(reg_map != NULL, "a map must be given");
  3204   frame f = last_frame();
  3205   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3206     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3208   return NULL;
  3212 Klass* JavaThread::security_get_caller_class(int depth) {
  3213   vframeStream vfst(this);
  3214   vfst.security_get_caller_frame(depth);
  3215   if (!vfst.at_end()) {
  3216     return vfst.method()->method_holder();
  3218   return NULL;
  3221 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3222   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3223   CompileBroker::compiler_thread_loop();
  3226 // Create a CompilerThread
  3227 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3228 : JavaThread(&compiler_thread_entry) {
  3229   _env   = NULL;
  3230   _log   = NULL;
  3231   _task  = NULL;
  3232   _queue = queue;
  3233   _counters = counters;
  3234   _buffer_blob = NULL;
  3235   _scanned_nmethod = NULL;
  3236   _compiler = NULL;
  3238 #ifndef PRODUCT
  3239   _ideal_graph_printer = NULL;
  3240 #endif
  3243 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  3244   JavaThread::oops_do(f, cld_f, cf);
  3245   if (_scanned_nmethod != NULL && cf != NULL) {
  3246     // Safepoints can occur when the sweeper is scanning an nmethod so
  3247     // process it here to make sure it isn't unloaded in the middle of
  3248     // a scan.
  3249     cf->do_code_blob(_scanned_nmethod);
  3254 // ======= Threads ========
  3256 // The Threads class links together all active threads, and provides
  3257 // operations over all threads.  It is protected by its own Mutex
  3258 // lock, which is also used in other contexts to protect thread
  3259 // operations from having the thread being operated on from exiting
  3260 // and going away unexpectedly (e.g., safepoint synchronization)
  3262 JavaThread* Threads::_thread_list = NULL;
  3263 int         Threads::_number_of_threads = 0;
  3264 int         Threads::_number_of_non_daemon_threads = 0;
  3265 int         Threads::_return_code = 0;
  3266 size_t      JavaThread::_stack_size_at_create = 0;
  3267 #ifdef ASSERT
  3268 bool        Threads::_vm_complete = false;
  3269 #endif
  3271 // All JavaThreads
  3272 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3274 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3275 void Threads::threads_do(ThreadClosure* tc) {
  3276   assert_locked_or_safepoint(Threads_lock);
  3277   // ALL_JAVA_THREADS iterates through all JavaThreads
  3278   ALL_JAVA_THREADS(p) {
  3279     tc->do_thread(p);
  3281   // Someday we could have a table or list of all non-JavaThreads.
  3282   // For now, just manually iterate through them.
  3283   tc->do_thread(VMThread::vm_thread());
  3284   Universe::heap()->gc_threads_do(tc);
  3285   WatcherThread *wt = WatcherThread::watcher_thread();
  3286   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3287   // the data for WatcherThread is still valid upon being examined. However,
  3288   // considering that WatchThread terminates when the VM is on the way to
  3289   // exit at safepoint, the chance of the above is extremely small. The right
  3290   // way to prevent termination of WatcherThread would be to acquire
  3291   // Terminator_lock, but we can't do that without violating the lock rank
  3292   // checking in some cases.
  3293   if (wt != NULL)
  3294     tc->do_thread(wt);
  3296   // If CompilerThreads ever become non-JavaThreads, add them here
  3299 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3301   extern void JDK_Version_init();
  3303   // Check version
  3304   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3306   // Initialize the output stream module
  3307   ostream_init();
  3309   // Process java launcher properties.
  3310   Arguments::process_sun_java_launcher_properties(args);
  3312   // Initialize the os module before using TLS
  3313   os::init();
  3315   // Initialize system properties.
  3316   Arguments::init_system_properties();
  3318   // So that JDK version can be used as a discrimintor when parsing arguments
  3319   JDK_Version_init();
  3321   // Update/Initialize System properties after JDK version number is known
  3322   Arguments::init_version_specific_system_properties();
  3324   // Parse arguments
  3325   jint parse_result = Arguments::parse(args);
  3326   if (parse_result != JNI_OK) return parse_result;
  3328   os::init_before_ergo();
  3330   jint ergo_result = Arguments::apply_ergo();
  3331   if (ergo_result != JNI_OK) return ergo_result;
  3333   if (PauseAtStartup) {
  3334     os::pause();
  3337 #ifndef USDT2
  3338   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3339 #else /* USDT2 */
  3340   HOTSPOT_VM_INIT_BEGIN();
  3341 #endif /* USDT2 */
  3343   // Record VM creation timing statistics
  3344   TraceVmCreationTime create_vm_timer;
  3345   create_vm_timer.start();
  3347   // Timing (must come after argument parsing)
  3348   TraceTime timer("Create VM", TraceStartupTime);
  3350   // Initialize the os module after parsing the args
  3351   jint os_init_2_result = os::init_2();
  3352   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3354   jint adjust_after_os_result = Arguments::adjust_after_os();
  3355   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3357   // intialize TLS
  3358   ThreadLocalStorage::init();
  3360   // Initialize output stream logging
  3361   ostream_init_log();
  3363   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3364   // Must be before create_vm_init_agents()
  3365   if (Arguments::init_libraries_at_startup()) {
  3366     convert_vm_init_libraries_to_agents();
  3369   // Launch -agentlib/-agentpath and converted -Xrun agents
  3370   if (Arguments::init_agents_at_startup()) {
  3371     create_vm_init_agents();
  3374   // Initialize Threads state
  3375   _thread_list = NULL;
  3376   _number_of_threads = 0;
  3377   _number_of_non_daemon_threads = 0;
  3379   // Initialize global data structures and create system classes in heap
  3380   vm_init_globals();
  3382   // Attach the main thread to this os thread
  3383   JavaThread* main_thread = new JavaThread();
  3384   main_thread->set_thread_state(_thread_in_vm);
  3385   // must do this before set_active_handles and initialize_thread_local_storage
  3386   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3387   // change the stack size recorded here to one based on the java thread
  3388   // stacksize. This adjusted size is what is used to figure the placement
  3389   // of the guard pages.
  3390   main_thread->record_stack_base_and_size();
  3391   main_thread->initialize_thread_local_storage();
  3393   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3395   if (!main_thread->set_as_starting_thread()) {
  3396     vm_shutdown_during_initialization(
  3397       "Failed necessary internal allocation. Out of swap space");
  3398     delete main_thread;
  3399     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3400     return JNI_ENOMEM;
  3403   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3404   // crash Linux VM, see notes in os_linux.cpp.
  3405   main_thread->create_stack_guard_pages();
  3407   // Initialize Java-Level synchronization subsystem
  3408   ObjectMonitor::Initialize() ;
  3410   // Initialize global modules
  3411   jint status = init_globals();
  3412   if (status != JNI_OK) {
  3413     delete main_thread;
  3414     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3415     return status;
  3418   // Should be done after the heap is fully created
  3419   main_thread->cache_global_variables();
  3421   HandleMark hm;
  3423   { MutexLocker mu(Threads_lock);
  3424     Threads::add(main_thread);
  3427   // Any JVMTI raw monitors entered in onload will transition into
  3428   // real raw monitor. VM is setup enough here for raw monitor enter.
  3429   JvmtiExport::transition_pending_onload_raw_monitors();
  3431   // Create the VMThread
  3432   { TraceTime timer("Start VMThread", TraceStartupTime);
  3433     VMThread::create();
  3434     Thread* vmthread = VMThread::vm_thread();
  3436     if (!os::create_thread(vmthread, os::vm_thread))
  3437       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3439     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3440     // Monitors can have spurious returns, must always check another state flag
  3442       MutexLocker ml(Notify_lock);
  3443       os::start_thread(vmthread);
  3444       while (vmthread->active_handles() == NULL) {
  3445         Notify_lock->wait();
  3450   assert (Universe::is_fully_initialized(), "not initialized");
  3451   if (VerifyDuringStartup) {
  3452     // Make sure we're starting with a clean slate.
  3453     VM_Verify verify_op;
  3454     VMThread::execute(&verify_op);
  3457   EXCEPTION_MARK;
  3459   // At this point, the Universe is initialized, but we have not executed
  3460   // any byte code.  Now is a good time (the only time) to dump out the
  3461   // internal state of the JVM for sharing.
  3462   if (DumpSharedSpaces) {
  3463     MetaspaceShared::preload_and_dump(CHECK_0);
  3464     ShouldNotReachHere();
  3467   // Always call even when there are not JVMTI environments yet, since environments
  3468   // may be attached late and JVMTI must track phases of VM execution
  3469   JvmtiExport::enter_start_phase();
  3471   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3472   JvmtiExport::post_vm_start();
  3475     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3477     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3478       create_vm_init_libraries();
  3481     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3483     // Initialize java_lang.System (needed before creating the thread)
  3484     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3485     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3486     Handle thread_group = create_initial_thread_group(CHECK_0);
  3487     Universe::set_main_thread_group(thread_group());
  3488     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3489     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3490     main_thread->set_threadObj(thread_object);
  3491     // Set thread status to running since main thread has
  3492     // been started and running.
  3493     java_lang_Thread::set_thread_status(thread_object,
  3494                                         java_lang_Thread::RUNNABLE);
  3496     // The VM creates & returns objects of this class. Make sure it's initialized.
  3497     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3499     // The VM preresolves methods to these classes. Make sure that they get initialized
  3500     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3501     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3502     call_initializeSystemClass(CHECK_0);
  3504     // get the Java runtime name after java.lang.System is initialized
  3505     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3506     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3508     // an instance of OutOfMemory exception has been allocated earlier
  3509     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3510     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3511     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3512     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3513     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3514     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3515     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3516     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3519   // See        : bugid 4211085.
  3520   // Background : the static initializer of java.lang.Compiler tries to read
  3521   //              property"java.compiler" and read & write property "java.vm.info".
  3522   //              When a security manager is installed through the command line
  3523   //              option "-Djava.security.manager", the above properties are not
  3524   //              readable and the static initializer for java.lang.Compiler fails
  3525   //              resulting in a NoClassDefFoundError.  This can happen in any
  3526   //              user code which calls methods in java.lang.Compiler.
  3527   // Hack :       the hack is to pre-load and initialize this class, so that only
  3528   //              system domains are on the stack when the properties are read.
  3529   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3530   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3531   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3532   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3533   //              Once that is done, we should remove this hack.
  3534   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3536   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3537   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3538   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3539   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3540   // This should also be taken out as soon as 4211383 gets fixed.
  3541   reset_vm_info_property(CHECK_0);
  3543   quicken_jni_functions();
  3545   // Must be run after init_ft which initializes ft_enabled
  3546   if (TRACE_INITIALIZE() != JNI_OK) {
  3547     vm_exit_during_initialization("Failed to initialize tracing backend");
  3550   // Set flag that basic initialization has completed. Used by exceptions and various
  3551   // debug stuff, that does not work until all basic classes have been initialized.
  3552   set_init_completed();
  3554   Metaspace::post_initialize();
  3556 #ifndef USDT2
  3557   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3558 #else /* USDT2 */
  3559   HOTSPOT_VM_INIT_END();
  3560 #endif /* USDT2 */
  3562   // record VM initialization completion time
  3563 #if INCLUDE_MANAGEMENT
  3564   Management::record_vm_init_completed();
  3565 #endif // INCLUDE_MANAGEMENT
  3567   // Compute system loader. Note that this has to occur after set_init_completed, since
  3568   // valid exceptions may be thrown in the process.
  3569   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3570   // set_init_completed has just been called, causing exceptions not to be shortcut
  3571   // anymore. We call vm_exit_during_initialization directly instead.
  3572   SystemDictionary::compute_java_system_loader(THREAD);
  3573   if (HAS_PENDING_EXCEPTION) {
  3574     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3577 #if INCLUDE_ALL_GCS
  3578   // Support for ConcurrentMarkSweep. This should be cleaned up
  3579   // and better encapsulated. The ugly nested if test would go away
  3580   // once things are properly refactored. XXX YSR
  3581   if (UseConcMarkSweepGC || UseG1GC) {
  3582     if (UseConcMarkSweepGC) {
  3583       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3584     } else {
  3585       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3587     if (HAS_PENDING_EXCEPTION) {
  3588       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3591 #endif // INCLUDE_ALL_GCS
  3593   // Always call even when there are not JVMTI environments yet, since environments
  3594   // may be attached late and JVMTI must track phases of VM execution
  3595   JvmtiExport::enter_live_phase();
  3597   // Signal Dispatcher needs to be started before VMInit event is posted
  3598   os::signal_init();
  3600   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3601   if (!DisableAttachMechanism) {
  3602     AttachListener::vm_start();
  3603     if (StartAttachListener || AttachListener::init_at_startup()) {
  3604       AttachListener::init();
  3608   // Launch -Xrun agents
  3609   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3610   // back-end can launch with -Xdebug -Xrunjdwp.
  3611   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3612     create_vm_init_libraries();
  3615   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3616   JvmtiExport::post_vm_initialized();
  3618   if (TRACE_START() != JNI_OK) {
  3619     vm_exit_during_initialization("Failed to start tracing backend.");
  3622   if (CleanChunkPoolAsync) {
  3623     Chunk::start_chunk_pool_cleaner_task();
  3626   // initialize compiler(s)
  3627 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3628   CompileBroker::compilation_init();
  3629 #endif
  3631   if (EnableInvokeDynamic) {
  3632     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
  3633     // It is done after compilers are initialized, because otherwise compilations of
  3634     // signature polymorphic MH intrinsics can be missed
  3635     // (see SystemDictionary::find_method_handle_intrinsic).
  3636     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
  3637     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
  3638     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  3641 #if INCLUDE_MANAGEMENT
  3642   Management::initialize(THREAD);
  3643 #endif // INCLUDE_MANAGEMENT
  3645   if (HAS_PENDING_EXCEPTION) {
  3646     // management agent fails to start possibly due to
  3647     // configuration problem and is responsible for printing
  3648     // stack trace if appropriate. Simply exit VM.
  3649     vm_exit(1);
  3652   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3653   if (MemProfiling)                   MemProfiler::engage();
  3654   StatSampler::engage();
  3655   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3657   BiasedLocking::init();
  3659 #if INCLUDE_RTM_OPT
  3660   RTMLockingCounters::init();
  3661 #endif
  3663   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3664     call_postVMInitHook(THREAD);
  3665     // The Java side of PostVMInitHook.run must deal with all
  3666     // exceptions and provide means of diagnosis.
  3667     if (HAS_PENDING_EXCEPTION) {
  3668       CLEAR_PENDING_EXCEPTION;
  3673       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3674       // Make sure the watcher thread can be started by WatcherThread::start()
  3675       // or by dynamic enrollment.
  3676       WatcherThread::make_startable();
  3677       // Start up the WatcherThread if there are any periodic tasks
  3678       // NOTE:  All PeriodicTasks should be registered by now. If they
  3679       //   aren't, late joiners might appear to start slowly (we might
  3680       //   take a while to process their first tick).
  3681       if (PeriodicTask::num_tasks() > 0) {
  3682           WatcherThread::start();
  3686   // Give os specific code one last chance to start
  3687   os::init_3();
  3689   create_vm_timer.end();
  3690 #ifdef ASSERT
  3691   _vm_complete = true;
  3692 #endif
  3693   return JNI_OK;
  3696 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3697 extern "C" {
  3698   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3700 // Find a command line agent library and return its entry point for
  3701 //         -agentlib:  -agentpath:   -Xrun
  3702 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3703 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3704   OnLoadEntry_t on_load_entry = NULL;
  3705   void *library = NULL;
  3707   if (!agent->valid()) {
  3708     char buffer[JVM_MAXPATHLEN];
  3709     char ebuf[1024];
  3710     const char *name = agent->name();
  3711     const char *msg = "Could not find agent library ";
  3713     // First check to see if agent is statically linked into executable
  3714     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
  3715       library = agent->os_lib();
  3716     } else if (agent->is_absolute_path()) {
  3717       library = os::dll_load(name, ebuf, sizeof ebuf);
  3718       if (library == NULL) {
  3719         const char *sub_msg = " in absolute path, with error: ";
  3720         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3721         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3722         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3723         // If we can't find the agent, exit.
  3724         vm_exit_during_initialization(buf, NULL);
  3725         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3727     } else {
  3728       // Try to load the agent from the standard dll directory
  3729       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3730                              name)) {
  3731         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3733       if (library == NULL) { // Try the local directory
  3734         char ns[1] = {0};
  3735         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3736           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3738         if (library == NULL) {
  3739           const char *sub_msg = " on the library path, with error: ";
  3740           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3741           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3742           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3743           // If we can't find the agent, exit.
  3744           vm_exit_during_initialization(buf, NULL);
  3745           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3749     agent->set_os_lib(library);
  3750     agent->set_valid();
  3753   // Find the OnLoad function.
  3754   on_load_entry =
  3755     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
  3756                                                           false,
  3757                                                           on_load_symbols,
  3758                                                           num_symbol_entries));
  3759   return on_load_entry;
  3762 // Find the JVM_OnLoad entry point
  3763 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3764   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3765   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3768 // Find the Agent_OnLoad entry point
  3769 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3770   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3771   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3774 // For backwards compatibility with -Xrun
  3775 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3776 // treated like -agentpath:
  3777 // Must be called before agent libraries are created
  3778 void Threads::convert_vm_init_libraries_to_agents() {
  3779   AgentLibrary* agent;
  3780   AgentLibrary* next;
  3782   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3783     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3784     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3786     // If there is an JVM_OnLoad function it will get called later,
  3787     // otherwise see if there is an Agent_OnLoad
  3788     if (on_load_entry == NULL) {
  3789       on_load_entry = lookup_agent_on_load(agent);
  3790       if (on_load_entry != NULL) {
  3791         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3792         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3793         Arguments::convert_library_to_agent(agent);
  3794       } else {
  3795         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3801 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3802 // Invokes Agent_OnLoad
  3803 // Called very early -- before JavaThreads exist
  3804 void Threads::create_vm_init_agents() {
  3805   extern struct JavaVM_ main_vm;
  3806   AgentLibrary* agent;
  3808   JvmtiExport::enter_onload_phase();
  3810   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3811     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3813     if (on_load_entry != NULL) {
  3814       // Invoke the Agent_OnLoad function
  3815       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3816       if (err != JNI_OK) {
  3817         vm_exit_during_initialization("agent library failed to init", agent->name());
  3819     } else {
  3820       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3823   JvmtiExport::enter_primordial_phase();
  3826 extern "C" {
  3827   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3830 void Threads::shutdown_vm_agents() {
  3831   // Send any Agent_OnUnload notifications
  3832   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3833   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  3834   extern struct JavaVM_ main_vm;
  3835   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3837     // Find the Agent_OnUnload function.
  3838     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3839       os::find_agent_function(agent,
  3840       false,
  3841       on_unload_symbols,
  3842       num_symbol_entries));
  3844     // Invoke the Agent_OnUnload function
  3845     if (unload_entry != NULL) {
  3846       JavaThread* thread = JavaThread::current();
  3847       ThreadToNativeFromVM ttn(thread);
  3848       HandleMark hm(thread);
  3849       (*unload_entry)(&main_vm);
  3854 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3855 // Invokes JVM_OnLoad
  3856 void Threads::create_vm_init_libraries() {
  3857   extern struct JavaVM_ main_vm;
  3858   AgentLibrary* agent;
  3860   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3861     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3863     if (on_load_entry != NULL) {
  3864       // Invoke the JVM_OnLoad function
  3865       JavaThread* thread = JavaThread::current();
  3866       ThreadToNativeFromVM ttn(thread);
  3867       HandleMark hm(thread);
  3868       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3869       if (err != JNI_OK) {
  3870         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3872     } else {
  3873       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3878 // Last thread running calls java.lang.Shutdown.shutdown()
  3879 void JavaThread::invoke_shutdown_hooks() {
  3880   HandleMark hm(this);
  3882   // We could get here with a pending exception, if so clear it now.
  3883   if (this->has_pending_exception()) {
  3884     this->clear_pending_exception();
  3887   EXCEPTION_MARK;
  3888   Klass* k =
  3889     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3890                                       THREAD);
  3891   if (k != NULL) {
  3892     // SystemDictionary::resolve_or_null will return null if there was
  3893     // an exception.  If we cannot load the Shutdown class, just don't
  3894     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3895     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3896     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3897     // was called, the Shutdown class would have already been loaded
  3898     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3899     instanceKlassHandle shutdown_klass (THREAD, k);
  3900     JavaValue result(T_VOID);
  3901     JavaCalls::call_static(&result,
  3902                            shutdown_klass,
  3903                            vmSymbols::shutdown_method_name(),
  3904                            vmSymbols::void_method_signature(),
  3905                            THREAD);
  3907   CLEAR_PENDING_EXCEPTION;
  3910 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3911 // the program falls off the end of main(). Another VM exit path is through
  3912 // vm_exit() when the program calls System.exit() to return a value or when
  3913 // there is a serious error in VM. The two shutdown paths are not exactly
  3914 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3915 // and VM_Exit op at VM level.
  3916 //
  3917 // Shutdown sequence:
  3918 //   + Shutdown native memory tracking if it is on
  3919 //   + Wait until we are the last non-daemon thread to execute
  3920 //     <-- every thing is still working at this moment -->
  3921 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3922 //        shutdown hooks, run finalizers if finalization-on-exit
  3923 //   + Call before_exit(), prepare for VM exit
  3924 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3925 //        currently the only user of this mechanism is File.deleteOnExit())
  3926 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3927 //        post thread end and vm death events to JVMTI,
  3928 //        stop signal thread
  3929 //   + Call JavaThread::exit(), it will:
  3930 //      > release JNI handle blocks, remove stack guard pages
  3931 //      > remove this thread from Threads list
  3932 //     <-- no more Java code from this thread after this point -->
  3933 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3934 //     the compiler threads at safepoint
  3935 //     <-- do not use anything that could get blocked by Safepoint -->
  3936 //   + Disable tracing at JNI/JVM barriers
  3937 //   + Set _vm_exited flag for threads that are still running native code
  3938 //   + Delete this thread
  3939 //   + Call exit_globals()
  3940 //      > deletes tty
  3941 //      > deletes PerfMemory resources
  3942 //   + Return to caller
  3944 bool Threads::destroy_vm() {
  3945   JavaThread* thread = JavaThread::current();
  3947 #ifdef ASSERT
  3948   _vm_complete = false;
  3949 #endif
  3950   // Wait until we are the last non-daemon thread to execute
  3951   { MutexLocker nu(Threads_lock);
  3952     while (Threads::number_of_non_daemon_threads() > 1 )
  3953       // This wait should make safepoint checks, wait without a timeout,
  3954       // and wait as a suspend-equivalent condition.
  3955       //
  3956       // Note: If the FlatProfiler is running and this thread is waiting
  3957       // for another non-daemon thread to finish, then the FlatProfiler
  3958       // is waiting for the external suspend request on this thread to
  3959       // complete. wait_for_ext_suspend_completion() will eventually
  3960       // timeout, but that takes time. Making this wait a suspend-
  3961       // equivalent condition solves that timeout problem.
  3962       //
  3963       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3964                          Mutex::_as_suspend_equivalent_flag);
  3967   // Hang forever on exit if we are reporting an error.
  3968   if (ShowMessageBoxOnError && is_error_reported()) {
  3969     os::infinite_sleep();
  3971   os::wait_for_keypress_at_exit();
  3973   if (JDK_Version::is_jdk12x_version()) {
  3974     // We are the last thread running, so check if finalizers should be run.
  3975     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3976     HandleMark rm(thread);
  3977     Universe::run_finalizers_on_exit();
  3978   } else {
  3979     // run Java level shutdown hooks
  3980     thread->invoke_shutdown_hooks();
  3983   before_exit(thread);
  3985   thread->exit(true);
  3987   // Stop VM thread.
  3989     // 4945125 The vm thread comes to a safepoint during exit.
  3990     // GC vm_operations can get caught at the safepoint, and the
  3991     // heap is unparseable if they are caught. Grab the Heap_lock
  3992     // to prevent this. The GC vm_operations will not be able to
  3993     // queue until after the vm thread is dead. After this point,
  3994     // we'll never emerge out of the safepoint before the VM exits.
  3996     MutexLocker ml(Heap_lock);
  3998     VMThread::wait_for_vm_thread_exit();
  3999     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4000     VMThread::destroy();
  4003   // clean up ideal graph printers
  4004 #if defined(COMPILER2) && !defined(PRODUCT)
  4005   IdealGraphPrinter::clean_up();
  4006 #endif
  4008   // Now, all Java threads are gone except daemon threads. Daemon threads
  4009   // running Java code or in VM are stopped by the Safepoint. However,
  4010   // daemon threads executing native code are still running.  But they
  4011   // will be stopped at native=>Java/VM barriers. Note that we can't
  4012   // simply kill or suspend them, as it is inherently deadlock-prone.
  4014 #ifndef PRODUCT
  4015   // disable function tracing at JNI/JVM barriers
  4016   TraceJNICalls = false;
  4017   TraceJVMCalls = false;
  4018   TraceRuntimeCalls = false;
  4019 #endif
  4021   VM_Exit::set_vm_exited();
  4023   notify_vm_shutdown();
  4025   delete thread;
  4027   // exit_globals() will delete tty
  4028   exit_globals();
  4030   return true;
  4034 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4035   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4036   return is_supported_jni_version(version);
  4040 jboolean Threads::is_supported_jni_version(jint version) {
  4041   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4042   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4043   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4044   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4045   return JNI_FALSE;
  4049 void Threads::add(JavaThread* p, bool force_daemon) {
  4050   // The threads lock must be owned at this point
  4051   assert_locked_or_safepoint(Threads_lock);
  4053   // See the comment for this method in thread.hpp for its purpose and
  4054   // why it is called here.
  4055   p->initialize_queues();
  4056   p->set_next(_thread_list);
  4057   _thread_list = p;
  4058   _number_of_threads++;
  4059   oop threadObj = p->threadObj();
  4060   bool daemon = true;
  4061   // Bootstrapping problem: threadObj can be null for initial
  4062   // JavaThread (or for threads attached via JNI)
  4063   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4064     _number_of_non_daemon_threads++;
  4065     daemon = false;
  4068   ThreadService::add_thread(p, daemon);
  4070   // Possible GC point.
  4071   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4074 void Threads::remove(JavaThread* p) {
  4075   // Extra scope needed for Thread_lock, so we can check
  4076   // that we do not remove thread without safepoint code notice
  4077   { MutexLocker ml(Threads_lock);
  4079     assert(includes(p), "p must be present");
  4081     JavaThread* current = _thread_list;
  4082     JavaThread* prev    = NULL;
  4084     while (current != p) {
  4085       prev    = current;
  4086       current = current->next();
  4089     if (prev) {
  4090       prev->set_next(current->next());
  4091     } else {
  4092       _thread_list = p->next();
  4094     _number_of_threads--;
  4095     oop threadObj = p->threadObj();
  4096     bool daemon = true;
  4097     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4098       _number_of_non_daemon_threads--;
  4099       daemon = false;
  4101       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4102       // on destroy_vm will wake up.
  4103       if (number_of_non_daemon_threads() == 1)
  4104         Threads_lock->notify_all();
  4106     ThreadService::remove_thread(p, daemon);
  4108     // Make sure that safepoint code disregard this thread. This is needed since
  4109     // the thread might mess around with locks after this point. This can cause it
  4110     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4111     // of this thread since it is removed from the queue.
  4112     p->set_terminated_value();
  4113   } // unlock Threads_lock
  4115   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4116   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4119 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4120 bool Threads::includes(JavaThread* p) {
  4121   assert(Threads_lock->is_locked(), "sanity check");
  4122   ALL_JAVA_THREADS(q) {
  4123     if (q == p ) {
  4124       return true;
  4127   return false;
  4130 // Operations on the Threads list for GC.  These are not explicitly locked,
  4131 // but the garbage collector must provide a safe context for them to run.
  4132 // In particular, these things should never be called when the Threads_lock
  4133 // is held by some other thread. (Note: the Safepoint abstraction also
  4134 // uses the Threads_lock to gurantee this property. It also makes sure that
  4135 // all threads gets blocked when exiting or starting).
  4137 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4138   ALL_JAVA_THREADS(p) {
  4139     p->oops_do(f, cld_f, cf);
  4141   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4144 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4145   // Introduce a mechanism allowing parallel threads to claim threads as
  4146   // root groups.  Overhead should be small enough to use all the time,
  4147   // even in sequential code.
  4148   SharedHeap* sh = SharedHeap::heap();
  4149   // Cannot yet substitute active_workers for n_par_threads
  4150   // because of G1CollectedHeap::verify() use of
  4151   // SharedHeap::process_roots().  n_par_threads == 0 will
  4152   // turn off parallelism in process_roots while active_workers
  4153   // is being used for parallelism elsewhere.
  4154   bool is_par = sh->n_par_threads() > 0;
  4155   assert(!is_par ||
  4156          (SharedHeap::heap()->n_par_threads() ==
  4157           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4158   int cp = SharedHeap::heap()->strong_roots_parity();
  4159   ALL_JAVA_THREADS(p) {
  4160     if (p->claim_oops_do(is_par, cp)) {
  4161       p->oops_do(f, cld_f, cf);
  4164   VMThread* vmt = VMThread::vm_thread();
  4165   if (vmt->claim_oops_do(is_par, cp)) {
  4166     vmt->oops_do(f, cld_f, cf);
  4170 #if INCLUDE_ALL_GCS
  4171 // Used by ParallelScavenge
  4172 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4173   ALL_JAVA_THREADS(p) {
  4174     q->enqueue(new ThreadRootsTask(p));
  4176   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4179 // Used by Parallel Old
  4180 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4181   ALL_JAVA_THREADS(p) {
  4182     q->enqueue(new ThreadRootsMarkingTask(p));
  4184   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4186 #endif // INCLUDE_ALL_GCS
  4188 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4189   ALL_JAVA_THREADS(p) {
  4190     p->nmethods_do(cf);
  4192   VMThread::vm_thread()->nmethods_do(cf);
  4195 void Threads::metadata_do(void f(Metadata*)) {
  4196   ALL_JAVA_THREADS(p) {
  4197     p->metadata_do(f);
  4201 void Threads::gc_epilogue() {
  4202   ALL_JAVA_THREADS(p) {
  4203     p->gc_epilogue();
  4207 void Threads::gc_prologue() {
  4208   ALL_JAVA_THREADS(p) {
  4209     p->gc_prologue();
  4213 void Threads::deoptimized_wrt_marked_nmethods() {
  4214   ALL_JAVA_THREADS(p) {
  4215     p->deoptimized_wrt_marked_nmethods();
  4220 // Get count Java threads that are waiting to enter the specified monitor.
  4221 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4222   address monitor, bool doLock) {
  4223   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4224     "must grab Threads_lock or be at safepoint");
  4225   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4227   int i = 0;
  4229     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4230     ALL_JAVA_THREADS(p) {
  4231       if (p->is_Compiler_thread()) continue;
  4233       address pending = (address)p->current_pending_monitor();
  4234       if (pending == monitor) {             // found a match
  4235         if (i < count) result->append(p);   // save the first count matches
  4236         i++;
  4240   return result;
  4244 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4245   assert(doLock ||
  4246          Threads_lock->owned_by_self() ||
  4247          SafepointSynchronize::is_at_safepoint(),
  4248          "must grab Threads_lock or be at safepoint");
  4250   // NULL owner means not locked so we can skip the search
  4251   if (owner == NULL) return NULL;
  4254     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4255     ALL_JAVA_THREADS(p) {
  4256       // first, see if owner is the address of a Java thread
  4257       if (owner == (address)p) return p;
  4260   // Cannot assert on lack of success here since this function may be
  4261   // used by code that is trying to report useful problem information
  4262   // like deadlock detection.
  4263   if (UseHeavyMonitors) return NULL;
  4265   //
  4266   // If we didn't find a matching Java thread and we didn't force use of
  4267   // heavyweight monitors, then the owner is the stack address of the
  4268   // Lock Word in the owning Java thread's stack.
  4269   //
  4270   JavaThread* the_owner = NULL;
  4272     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4273     ALL_JAVA_THREADS(q) {
  4274       if (q->is_lock_owned(owner)) {
  4275         the_owner = q;
  4276         break;
  4280   // cannot assert on lack of success here; see above comment
  4281   return the_owner;
  4284 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4285 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4286   char buf[32];
  4287   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
  4289   st->print_cr("Full thread dump %s (%s %s):",
  4290                 Abstract_VM_Version::vm_name(),
  4291                 Abstract_VM_Version::vm_release(),
  4292                 Abstract_VM_Version::vm_info_string()
  4293                );
  4294   st->cr();
  4296 #if INCLUDE_ALL_GCS
  4297   // Dump concurrent locks
  4298   ConcurrentLocksDump concurrent_locks;
  4299   if (print_concurrent_locks) {
  4300     concurrent_locks.dump_at_safepoint();
  4302 #endif // INCLUDE_ALL_GCS
  4304   ALL_JAVA_THREADS(p) {
  4305     ResourceMark rm;
  4306     p->print_on(st);
  4307     if (print_stacks) {
  4308       if (internal_format) {
  4309         p->trace_stack();
  4310       } else {
  4311         p->print_stack_on(st);
  4314     st->cr();
  4315 #if INCLUDE_ALL_GCS
  4316     if (print_concurrent_locks) {
  4317       concurrent_locks.print_locks_on(p, st);
  4319 #endif // INCLUDE_ALL_GCS
  4322   VMThread::vm_thread()->print_on(st);
  4323   st->cr();
  4324   Universe::heap()->print_gc_threads_on(st);
  4325   WatcherThread* wt = WatcherThread::watcher_thread();
  4326   if (wt != NULL) {
  4327     wt->print_on(st);
  4328     st->cr();
  4330   CompileBroker::print_compiler_threads_on(st);
  4331   st->flush();
  4334 // Threads::print_on_error() is called by fatal error handler. It's possible
  4335 // that VM is not at safepoint and/or current thread is inside signal handler.
  4336 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4337 // memory (even in resource area), it might deadlock the error handler.
  4338 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4339   bool found_current = false;
  4340   st->print_cr("Java Threads: ( => current thread )");
  4341   ALL_JAVA_THREADS(thread) {
  4342     bool is_current = (current == thread);
  4343     found_current = found_current || is_current;
  4345     st->print("%s", is_current ? "=>" : "  ");
  4347     st->print(PTR_FORMAT, thread);
  4348     st->print(" ");
  4349     thread->print_on_error(st, buf, buflen);
  4350     st->cr();
  4352   st->cr();
  4354   st->print_cr("Other Threads:");
  4355   if (VMThread::vm_thread()) {
  4356     bool is_current = (current == VMThread::vm_thread());
  4357     found_current = found_current || is_current;
  4358     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4360     st->print(PTR_FORMAT, VMThread::vm_thread());
  4361     st->print(" ");
  4362     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4363     st->cr();
  4365   WatcherThread* wt = WatcherThread::watcher_thread();
  4366   if (wt != NULL) {
  4367     bool is_current = (current == wt);
  4368     found_current = found_current || is_current;
  4369     st->print("%s", is_current ? "=>" : "  ");
  4371     st->print(PTR_FORMAT, wt);
  4372     st->print(" ");
  4373     wt->print_on_error(st, buf, buflen);
  4374     st->cr();
  4376   if (!found_current) {
  4377     st->cr();
  4378     st->print("=>" PTR_FORMAT " (exited) ", current);
  4379     current->print_on_error(st, buf, buflen);
  4380     st->cr();
  4384 // Internal SpinLock and Mutex
  4385 // Based on ParkEvent
  4387 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4388 //
  4389 // We employ SpinLocks _only for low-contention, fixed-length
  4390 // short-duration critical sections where we're concerned
  4391 // about native mutex_t or HotSpot Mutex:: latency.
  4392 // The mux construct provides a spin-then-block mutual exclusion
  4393 // mechanism.
  4394 //
  4395 // Testing has shown that contention on the ListLock guarding gFreeList
  4396 // is common.  If we implement ListLock as a simple SpinLock it's common
  4397 // for the JVM to devolve to yielding with little progress.  This is true
  4398 // despite the fact that the critical sections protected by ListLock are
  4399 // extremely short.
  4400 //
  4401 // TODO-FIXME: ListLock should be of type SpinLock.
  4402 // We should make this a 1st-class type, integrated into the lock
  4403 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4404 // should have sufficient padding to avoid false-sharing and excessive
  4405 // cache-coherency traffic.
  4408 typedef volatile int SpinLockT ;
  4410 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4411   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4412      return ;   // normal fast-path return
  4415   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4416   TEVENT (SpinAcquire - ctx) ;
  4417   int ctr = 0 ;
  4418   int Yields = 0 ;
  4419   for (;;) {
  4420      while (*adr != 0) {
  4421         ++ctr ;
  4422         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4423            if (Yields > 5) {
  4424              os::naked_short_sleep(1);
  4425            } else {
  4426              os::NakedYield() ;
  4427              ++Yields ;
  4429         } else {
  4430            SpinPause() ;
  4433      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4437 void Thread::SpinRelease (volatile int * adr) {
  4438   assert (*adr != 0, "invariant") ;
  4439   OrderAccess::fence() ;      // guarantee at least release consistency.
  4440   // Roach-motel semantics.
  4441   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4442   // but prior LDs and STs within the critical section can't be allowed
  4443   // to reorder or float past the ST that releases the lock.
  4444   *adr = 0 ;
  4447 // muxAcquire and muxRelease:
  4448 //
  4449 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4450 //    The LSB of the word is set IFF the lock is held.
  4451 //    The remainder of the word points to the head of a singly-linked list
  4452 //    of threads blocked on the lock.
  4453 //
  4454 // *  The current implementation of muxAcquire-muxRelease uses its own
  4455 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4456 //    minimizing the peak number of extant ParkEvent instances then
  4457 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4458 //    as certain invariants were satisfied.  Specifically, care would need
  4459 //    to be taken with regards to consuming unpark() "permits".
  4460 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4461 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4462 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4463 //    consume an unpark() permit intended for monitorenter, for instance.
  4464 //    One way around this would be to widen the restricted-range semaphore
  4465 //    implemented in park().  Another alternative would be to provide
  4466 //    multiple instances of the PlatformEvent() for each thread.  One
  4467 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4468 //
  4469 // *  Usage:
  4470 //    -- Only as leaf locks
  4471 //    -- for short-term locking only as muxAcquire does not perform
  4472 //       thread state transitions.
  4473 //
  4474 // Alternatives:
  4475 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4476 //    but with parking or spin-then-park instead of pure spinning.
  4477 // *  Use Taura-Oyama-Yonenzawa locks.
  4478 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4479 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4480 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4481 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4482 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4483 //    boundaries by using placement-new.
  4484 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4485 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4486 //    The validity of the backlinks must be ratified before we trust the value.
  4487 //    If the backlinks are invalid the exiting thread must back-track through the
  4488 //    the forward links, which are always trustworthy.
  4489 // *  Add a successor indication.  The LockWord is currently encoded as
  4490 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4491 //    to provide the usual futile-wakeup optimization.
  4492 //    See RTStt for details.
  4493 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4494 //
  4497 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4498 enum MuxBits { LOCKBIT = 1 } ;
  4500 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4501   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4502   if (w == 0) return ;
  4503   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4504      return ;
  4507   TEVENT (muxAcquire - Contention) ;
  4508   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4509   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4510   for (;;) {
  4511      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4513      // Optional spin phase: spin-then-park strategy
  4514      while (--its >= 0) {
  4515        w = *Lock ;
  4516        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4517           return ;
  4521      Self->reset() ;
  4522      Self->OnList = intptr_t(Lock) ;
  4523      // The following fence() isn't _strictly necessary as the subsequent
  4524      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4525      OrderAccess::fence();
  4526      for (;;) {
  4527         w = *Lock ;
  4528         if ((w & LOCKBIT) == 0) {
  4529             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4530                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4531                 return ;
  4533             continue ;      // Interference -- *Lock changed -- Just retry
  4535         assert (w & LOCKBIT, "invariant") ;
  4536         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4537         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4540      while (Self->OnList != 0) {
  4541         Self->park() ;
  4546 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4547   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4548   if (w == 0) return ;
  4549   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4550     return ;
  4553   TEVENT (muxAcquire - Contention) ;
  4554   ParkEvent * ReleaseAfter = NULL ;
  4555   if (ev == NULL) {
  4556     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4558   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4559   for (;;) {
  4560     guarantee (ev->OnList == 0, "invariant") ;
  4561     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4563     // Optional spin phase: spin-then-park strategy
  4564     while (--its >= 0) {
  4565       w = *Lock ;
  4566       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4567         if (ReleaseAfter != NULL) {
  4568           ParkEvent::Release (ReleaseAfter) ;
  4570         return ;
  4574     ev->reset() ;
  4575     ev->OnList = intptr_t(Lock) ;
  4576     // The following fence() isn't _strictly necessary as the subsequent
  4577     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4578     OrderAccess::fence();
  4579     for (;;) {
  4580       w = *Lock ;
  4581       if ((w & LOCKBIT) == 0) {
  4582         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4583           ev->OnList = 0 ;
  4584           // We call ::Release while holding the outer lock, thus
  4585           // artificially lengthening the critical section.
  4586           // Consider deferring the ::Release() until the subsequent unlock(),
  4587           // after we've dropped the outer lock.
  4588           if (ReleaseAfter != NULL) {
  4589             ParkEvent::Release (ReleaseAfter) ;
  4591           return ;
  4593         continue ;      // Interference -- *Lock changed -- Just retry
  4595       assert (w & LOCKBIT, "invariant") ;
  4596       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4597       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4600     while (ev->OnList != 0) {
  4601       ev->park() ;
  4606 // Release() must extract a successor from the list and then wake that thread.
  4607 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4608 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4609 // Release() would :
  4610 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4611 // (B) Extract a successor from the private list "in-hand"
  4612 // (C) attempt to CAS() the residual back into *Lock over null.
  4613 //     If there were any newly arrived threads and the CAS() would fail.
  4614 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4615 //     with the RATs and repeat as needed.  Alternately, Release() might
  4616 //     detach and extract a successor, but then pass the residual list to the wakee.
  4617 //     The wakee would be responsible for reattaching and remerging before it
  4618 //     competed for the lock.
  4619 //
  4620 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4621 // multiple concurrent pushers, but only one popper or detacher.
  4622 // This implementation pops from the head of the list.  This is unfair,
  4623 // but tends to provide excellent throughput as hot threads remain hot.
  4624 // (We wake recently run threads first).
  4626 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4627   for (;;) {
  4628     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4629     assert (w & LOCKBIT, "invariant") ;
  4630     if (w == LOCKBIT) return ;
  4631     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4632     assert (List != NULL, "invariant") ;
  4633     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4634     ParkEvent * nxt = List->ListNext ;
  4636     // The following CAS() releases the lock and pops the head element.
  4637     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4638       continue ;
  4640     List->OnList = 0 ;
  4641     OrderAccess::fence() ;
  4642     List->unpark () ;
  4643     return ;
  4648 void Threads::verify() {
  4649   ALL_JAVA_THREADS(p) {
  4650     p->verify();
  4652   VMThread* thread = VMThread::vm_thread();
  4653   if (thread != NULL) thread->verify();

mercurial