src/share/vm/runtime/thread.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6973
4af19b914f53
child 7074
833b0f92429a
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/orderAccess.inline.hpp"
    62 #include "runtime/osThread.hpp"
    63 #include "runtime/safepoint.hpp"
    64 #include "runtime/sharedRuntime.hpp"
    65 #include "runtime/statSampler.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/task.hpp"
    68 #include "runtime/thread.inline.hpp"
    69 #include "runtime/threadCritical.hpp"
    70 #include "runtime/threadLocalStorage.hpp"
    71 #include "runtime/vframe.hpp"
    72 #include "runtime/vframeArray.hpp"
    73 #include "runtime/vframe_hp.hpp"
    74 #include "runtime/vmThread.hpp"
    75 #include "runtime/vm_operations.hpp"
    76 #include "services/attachListener.hpp"
    77 #include "services/management.hpp"
    78 #include "services/memTracker.hpp"
    79 #include "services/threadService.hpp"
    80 #include "trace/tracing.hpp"
    81 #include "trace/traceMacros.hpp"
    82 #include "utilities/defaultStream.hpp"
    83 #include "utilities/dtrace.hpp"
    84 #include "utilities/events.hpp"
    85 #include "utilities/preserveException.hpp"
    86 #include "utilities/macros.hpp"
    87 #ifdef TARGET_OS_FAMILY_linux
    88 # include "os_linux.inline.hpp"
    89 #endif
    90 #ifdef TARGET_OS_FAMILY_solaris
    91 # include "os_solaris.inline.hpp"
    92 #endif
    93 #ifdef TARGET_OS_FAMILY_windows
    94 # include "os_windows.inline.hpp"
    95 #endif
    96 #ifdef TARGET_OS_FAMILY_bsd
    97 # include "os_bsd.inline.hpp"
    98 #endif
    99 #if INCLUDE_ALL_GCS
   100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   103 #endif // INCLUDE_ALL_GCS
   104 #ifdef COMPILER1
   105 #include "c1/c1_Compiler.hpp"
   106 #endif
   107 #ifdef COMPILER2
   108 #include "opto/c2compiler.hpp"
   109 #include "opto/idealGraphPrinter.hpp"
   110 #endif
   111 #if INCLUDE_RTM_OPT
   112 #include "runtime/rtmLocking.hpp"
   113 #endif
   115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   117 #ifdef DTRACE_ENABLED
   119 // Only bother with this argument setup if dtrace is available
   121 #ifndef USDT2
   122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   125   intptr_t, intptr_t, bool);
   126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   127   intptr_t, intptr_t, bool);
   129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   130   {                                                                        \
   131     ResourceMark rm(this);                                                 \
   132     int len = 0;                                                           \
   133     const char* name = (javathread)->get_thread_name();                    \
   134     len = strlen(name);                                                    \
   135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   136       name, len,                                                           \
   137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   138       (javathread)->osthread()->thread_id(),                               \
   139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   140   }
   142 #else /* USDT2 */
   144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   148   {                                                                        \
   149     ResourceMark rm(this);                                                 \
   150     int len = 0;                                                           \
   151     const char* name = (javathread)->get_thread_name();                    \
   152     len = strlen(name);                                                    \
   153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   154       (char *) name, len,                                                           \
   155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   158   }
   160 #endif /* USDT2 */
   162 #else //  ndef DTRACE_ENABLED
   164 #define DTRACE_THREAD_PROBE(probe, javathread)
   166 #endif // ndef DTRACE_ENABLED
   169 // Class hierarchy
   170 // - Thread
   171 //   - VMThread
   172 //   - WatcherThread
   173 //   - ConcurrentMarkSweepThread
   174 //   - JavaThread
   175 //     - CompilerThread
   177 // ======= Thread ========
   178 // Support for forcing alignment of thread objects for biased locking
   179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   180   if (UseBiasedLocking) {
   181     const int alignment = markOopDesc::biased_lock_alignment;
   182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   185                                               AllocFailStrategy::RETURN_NULL);
   186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   189            "JavaThread alignment code overflowed allocated storage");
   190     if (TraceBiasedLocking) {
   191       if (aligned_addr != real_malloc_addr)
   192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   193                       real_malloc_addr, aligned_addr);
   194     }
   195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   196     return aligned_addr;
   197   } else {
   198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   200   }
   201 }
   203 void Thread::operator delete(void* p) {
   204   if (UseBiasedLocking) {
   205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   206     FreeHeap(real_malloc_addr, mtThread);
   207   } else {
   208     FreeHeap(p, mtThread);
   209   }
   210 }
   213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   214 // JavaThread
   217 Thread::Thread() {
   218   // stack and get_thread
   219   set_stack_base(NULL);
   220   set_stack_size(0);
   221   set_self_raw_id(0);
   222   set_lgrp_id(-1);
   224   // allocated data structures
   225   set_osthread(NULL);
   226   set_resource_area(new (mtThread)ResourceArea());
   227   DEBUG_ONLY(_current_resource_mark = NULL;)
   228   set_handle_area(new (mtThread) HandleArea(NULL));
   229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
   230   set_active_handles(NULL);
   231   set_free_handle_block(NULL);
   232   set_last_handle_mark(NULL);
   234   // This initial value ==> never claimed.
   235   _oops_do_parity = 0;
   237   // the handle mark links itself to last_handle_mark
   238   new HandleMark(this);
   240   // plain initialization
   241   debug_only(_owned_locks = NULL;)
   242   debug_only(_allow_allocation_count = 0;)
   243   NOT_PRODUCT(_allow_safepoint_count = 0;)
   244   NOT_PRODUCT(_skip_gcalot = false;)
   245   _jvmti_env_iteration_count = 0;
   246   set_allocated_bytes(0);
   247   _vm_operation_started_count = 0;
   248   _vm_operation_completed_count = 0;
   249   _current_pending_monitor = NULL;
   250   _current_pending_monitor_is_from_java = true;
   251   _current_waiting_monitor = NULL;
   252   _num_nested_signal = 0;
   253   omFreeList = NULL ;
   254   omFreeCount = 0 ;
   255   omFreeProvision = 32 ;
   256   omInUseList = NULL ;
   257   omInUseCount = 0 ;
   259 #ifdef ASSERT
   260   _visited_for_critical_count = false;
   261 #endif
   263   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   264   _suspend_flags = 0;
   266   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   267   _hashStateX = os::random() ;
   268   _hashStateY = 842502087 ;
   269   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   270   _hashStateW = 273326509 ;
   272   _OnTrap   = 0 ;
   273   _schedctl = NULL ;
   274   _Stalled  = 0 ;
   275   _TypeTag  = 0x2BAD ;
   277   // Many of the following fields are effectively final - immutable
   278   // Note that nascent threads can't use the Native Monitor-Mutex
   279   // construct until the _MutexEvent is initialized ...
   280   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   281   // we might instead use a stack of ParkEvents that we could provision on-demand.
   282   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   283   // and ::Release()
   284   _ParkEvent   = ParkEvent::Allocate (this) ;
   285   _SleepEvent  = ParkEvent::Allocate (this) ;
   286   _MutexEvent  = ParkEvent::Allocate (this) ;
   287   _MuxEvent    = ParkEvent::Allocate (this) ;
   289 #ifdef CHECK_UNHANDLED_OOPS
   290   if (CheckUnhandledOops) {
   291     _unhandled_oops = new UnhandledOops(this);
   292   }
   293 #endif // CHECK_UNHANDLED_OOPS
   294 #ifdef ASSERT
   295   if (UseBiasedLocking) {
   296     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   297     assert(this == _real_malloc_address ||
   298            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   299            "bug in forced alignment of thread objects");
   300   }
   301 #endif /* ASSERT */
   302 }
   304 void Thread::initialize_thread_local_storage() {
   305   // Note: Make sure this method only calls
   306   // non-blocking operations. Otherwise, it might not work
   307   // with the thread-startup/safepoint interaction.
   309   // During Java thread startup, safepoint code should allow this
   310   // method to complete because it may need to allocate memory to
   311   // store information for the new thread.
   313   // initialize structure dependent on thread local storage
   314   ThreadLocalStorage::set_thread(this);
   315 }
   317 void Thread::record_stack_base_and_size() {
   318   set_stack_base(os::current_stack_base());
   319   set_stack_size(os::current_stack_size());
   320   if (is_Java_thread()) {
   321     ((JavaThread*) this)->set_stack_overflow_limit();
   322   }
   323   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   324   // in initialize_thread(). Without the adjustment, stack size is
   325   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   326   // So far, only Solaris has real implementation of initialize_thread().
   327   //
   328   // set up any platform-specific state.
   329   os::initialize_thread(this);
   331 #if INCLUDE_NMT
   332   // record thread's native stack, stack grows downward
   333   address stack_low_addr = stack_base() - stack_size();
   334   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
   335       CURRENT_PC);
   336 #endif // INCLUDE_NMT
   337 }
   340 Thread::~Thread() {
   341   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   342   ObjectSynchronizer::omFlush (this) ;
   344   EVENT_THREAD_DESTRUCT(this);
   346   // stack_base can be NULL if the thread is never started or exited before
   347   // record_stack_base_and_size called. Although, we would like to ensure
   348   // that all started threads do call record_stack_base_and_size(), there is
   349   // not proper way to enforce that.
   350 #if INCLUDE_NMT
   351   if (_stack_base != NULL) {
   352     address low_stack_addr = stack_base() - stack_size();
   353     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
   354 #ifdef ASSERT
   355     set_stack_base(NULL);
   356 #endif
   357   }
   358 #endif // INCLUDE_NMT
   360   // deallocate data structures
   361   delete resource_area();
   362   // since the handle marks are using the handle area, we have to deallocated the root
   363   // handle mark before deallocating the thread's handle area,
   364   assert(last_handle_mark() != NULL, "check we have an element");
   365   delete last_handle_mark();
   366   assert(last_handle_mark() == NULL, "check we have reached the end");
   368   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   369   // We NULL out the fields for good hygiene.
   370   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   371   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   372   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   373   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   375   delete handle_area();
   376   delete metadata_handles();
   378   // osthread() can be NULL, if creation of thread failed.
   379   if (osthread() != NULL) os::free_thread(osthread());
   381   delete _SR_lock;
   383   // clear thread local storage if the Thread is deleting itself
   384   if (this == Thread::current()) {
   385     ThreadLocalStorage::set_thread(NULL);
   386   } else {
   387     // In the case where we're not the current thread, invalidate all the
   388     // caches in case some code tries to get the current thread or the
   389     // thread that was destroyed, and gets stale information.
   390     ThreadLocalStorage::invalidate_all();
   391   }
   392   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   393 }
   395 // NOTE: dummy function for assertion purpose.
   396 void Thread::run() {
   397   ShouldNotReachHere();
   398 }
   400 #ifdef ASSERT
   401 // Private method to check for dangling thread pointer
   402 void check_for_dangling_thread_pointer(Thread *thread) {
   403  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   404          "possibility of dangling Thread pointer");
   405 }
   406 #endif
   409 #ifndef PRODUCT
   410 // Tracing method for basic thread operations
   411 void Thread::trace(const char* msg, const Thread* const thread) {
   412   if (!TraceThreadEvents) return;
   413   ResourceMark rm;
   414   ThreadCritical tc;
   415   const char *name = "non-Java thread";
   416   int prio = -1;
   417   if (thread->is_Java_thread()
   418       && !thread->is_Compiler_thread()) {
   419     // The Threads_lock must be held to get information about
   420     // this thread but may not be in some situations when
   421     // tracing  thread events.
   422     bool release_Threads_lock = false;
   423     if (!Threads_lock->owned_by_self()) {
   424       Threads_lock->lock();
   425       release_Threads_lock = true;
   426     }
   427     JavaThread* jt = (JavaThread *)thread;
   428     name = (char *)jt->get_thread_name();
   429     oop thread_oop = jt->threadObj();
   430     if (thread_oop != NULL) {
   431       prio = java_lang_Thread::priority(thread_oop);
   432     }
   433     if (release_Threads_lock) {
   434       Threads_lock->unlock();
   435     }
   436   }
   437   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   438 }
   439 #endif
   442 ThreadPriority Thread::get_priority(const Thread* const thread) {
   443   trace("get priority", thread);
   444   ThreadPriority priority;
   445   // Can return an error!
   446   (void)os::get_priority(thread, priority);
   447   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   448   return priority;
   449 }
   451 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   452   trace("set priority", thread);
   453   debug_only(check_for_dangling_thread_pointer(thread);)
   454   // Can return an error!
   455   (void)os::set_priority(thread, priority);
   456 }
   459 void Thread::start(Thread* thread) {
   460   trace("start", thread);
   461   // Start is different from resume in that its safety is guaranteed by context or
   462   // being called from a Java method synchronized on the Thread object.
   463   if (!DisableStartThread) {
   464     if (thread->is_Java_thread()) {
   465       // Initialize the thread state to RUNNABLE before starting this thread.
   466       // Can not set it after the thread started because we do not know the
   467       // exact thread state at that time. It could be in MONITOR_WAIT or
   468       // in SLEEPING or some other state.
   469       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   470                                           java_lang_Thread::RUNNABLE);
   471     }
   472     os::start_thread(thread);
   473   }
   474 }
   476 // Enqueue a VM_Operation to do the job for us - sometime later
   477 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   478   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   479   VMThread::execute(vm_stop);
   480 }
   483 //
   484 // Check if an external suspend request has completed (or has been
   485 // cancelled). Returns true if the thread is externally suspended and
   486 // false otherwise.
   487 //
   488 // The bits parameter returns information about the code path through
   489 // the routine. Useful for debugging:
   490 //
   491 // set in is_ext_suspend_completed():
   492 // 0x00000001 - routine was entered
   493 // 0x00000010 - routine return false at end
   494 // 0x00000100 - thread exited (return false)
   495 // 0x00000200 - suspend request cancelled (return false)
   496 // 0x00000400 - thread suspended (return true)
   497 // 0x00001000 - thread is in a suspend equivalent state (return true)
   498 // 0x00002000 - thread is native and walkable (return true)
   499 // 0x00004000 - thread is native_trans and walkable (needed retry)
   500 //
   501 // set in wait_for_ext_suspend_completion():
   502 // 0x00010000 - routine was entered
   503 // 0x00020000 - suspend request cancelled before loop (return false)
   504 // 0x00040000 - thread suspended before loop (return true)
   505 // 0x00080000 - suspend request cancelled in loop (return false)
   506 // 0x00100000 - thread suspended in loop (return true)
   507 // 0x00200000 - suspend not completed during retry loop (return false)
   508 //
   510 // Helper class for tracing suspend wait debug bits.
   511 //
   512 // 0x00000100 indicates that the target thread exited before it could
   513 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   514 // 0x00080000 each indicate a cancelled suspend request so they don't
   515 // count as wait failures either.
   516 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   518 class TraceSuspendDebugBits : public StackObj {
   519  private:
   520   JavaThread * jt;
   521   bool         is_wait;
   522   bool         called_by_wait;  // meaningful when !is_wait
   523   uint32_t *   bits;
   525  public:
   526   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   527                         uint32_t *_bits) {
   528     jt             = _jt;
   529     is_wait        = _is_wait;
   530     called_by_wait = _called_by_wait;
   531     bits           = _bits;
   532   }
   534   ~TraceSuspendDebugBits() {
   535     if (!is_wait) {
   536 #if 1
   537       // By default, don't trace bits for is_ext_suspend_completed() calls.
   538       // That trace is very chatty.
   539       return;
   540 #else
   541       if (!called_by_wait) {
   542         // If tracing for is_ext_suspend_completed() is enabled, then only
   543         // trace calls to it from wait_for_ext_suspend_completion()
   544         return;
   545       }
   546 #endif
   547     }
   549     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   550       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   551         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   552         ResourceMark rm;
   554         tty->print_cr(
   555             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   556             jt->get_thread_name(), *bits);
   558         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   559       }
   560     }
   561   }
   562 };
   563 #undef DEBUG_FALSE_BITS
   566 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   567   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   569   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   570   bool do_trans_retry;           // flag to force the retry
   572   *bits |= 0x00000001;
   574   do {
   575     do_trans_retry = false;
   577     if (is_exiting()) {
   578       // Thread is in the process of exiting. This is always checked
   579       // first to reduce the risk of dereferencing a freed JavaThread.
   580       *bits |= 0x00000100;
   581       return false;
   582     }
   584     if (!is_external_suspend()) {
   585       // Suspend request is cancelled. This is always checked before
   586       // is_ext_suspended() to reduce the risk of a rogue resume
   587       // confusing the thread that made the suspend request.
   588       *bits |= 0x00000200;
   589       return false;
   590     }
   592     if (is_ext_suspended()) {
   593       // thread is suspended
   594       *bits |= 0x00000400;
   595       return true;
   596     }
   598     // Now that we no longer do hard suspends of threads running
   599     // native code, the target thread can be changing thread state
   600     // while we are in this routine:
   601     //
   602     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   603     //
   604     // We save a copy of the thread state as observed at this moment
   605     // and make our decision about suspend completeness based on the
   606     // copy. This closes the race where the thread state is seen as
   607     // _thread_in_native_trans in the if-thread_blocked check, but is
   608     // seen as _thread_blocked in if-thread_in_native_trans check.
   609     JavaThreadState save_state = thread_state();
   611     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   612       // If the thread's state is _thread_blocked and this blocking
   613       // condition is known to be equivalent to a suspend, then we can
   614       // consider the thread to be externally suspended. This means that
   615       // the code that sets _thread_blocked has been modified to do
   616       // self-suspension if the blocking condition releases. We also
   617       // used to check for CONDVAR_WAIT here, but that is now covered by
   618       // the _thread_blocked with self-suspension check.
   619       //
   620       // Return true since we wouldn't be here unless there was still an
   621       // external suspend request.
   622       *bits |= 0x00001000;
   623       return true;
   624     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   625       // Threads running native code will self-suspend on native==>VM/Java
   626       // transitions. If its stack is walkable (should always be the case
   627       // unless this function is called before the actual java_suspend()
   628       // call), then the wait is done.
   629       *bits |= 0x00002000;
   630       return true;
   631     } else if (!called_by_wait && !did_trans_retry &&
   632                save_state == _thread_in_native_trans &&
   633                frame_anchor()->walkable()) {
   634       // The thread is transitioning from thread_in_native to another
   635       // thread state. check_safepoint_and_suspend_for_native_trans()
   636       // will force the thread to self-suspend. If it hasn't gotten
   637       // there yet we may have caught the thread in-between the native
   638       // code check above and the self-suspend. Lucky us. If we were
   639       // called by wait_for_ext_suspend_completion(), then it
   640       // will be doing the retries so we don't have to.
   641       //
   642       // Since we use the saved thread state in the if-statement above,
   643       // there is a chance that the thread has already transitioned to
   644       // _thread_blocked by the time we get here. In that case, we will
   645       // make a single unnecessary pass through the logic below. This
   646       // doesn't hurt anything since we still do the trans retry.
   648       *bits |= 0x00004000;
   650       // Once the thread leaves thread_in_native_trans for another
   651       // thread state, we break out of this retry loop. We shouldn't
   652       // need this flag to prevent us from getting back here, but
   653       // sometimes paranoia is good.
   654       did_trans_retry = true;
   656       // We wait for the thread to transition to a more usable state.
   657       for (int i = 1; i <= SuspendRetryCount; i++) {
   658         // We used to do an "os::yield_all(i)" call here with the intention
   659         // that yielding would increase on each retry. However, the parameter
   660         // is ignored on Linux which means the yield didn't scale up. Waiting
   661         // on the SR_lock below provides a much more predictable scale up for
   662         // the delay. It also provides a simple/direct point to check for any
   663         // safepoint requests from the VMThread
   665         // temporarily drops SR_lock while doing wait with safepoint check
   666         // (if we're a JavaThread - the WatcherThread can also call this)
   667         // and increase delay with each retry
   668         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   670         // check the actual thread state instead of what we saved above
   671         if (thread_state() != _thread_in_native_trans) {
   672           // the thread has transitioned to another thread state so
   673           // try all the checks (except this one) one more time.
   674           do_trans_retry = true;
   675           break;
   676         }
   677       } // end retry loop
   680     }
   681   } while (do_trans_retry);
   683   *bits |= 0x00000010;
   684   return false;
   685 }
   687 //
   688 // Wait for an external suspend request to complete (or be cancelled).
   689 // Returns true if the thread is externally suspended and false otherwise.
   690 //
   691 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   692        uint32_t *bits) {
   693   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   694                              false /* !called_by_wait */, bits);
   696   // local flag copies to minimize SR_lock hold time
   697   bool is_suspended;
   698   bool pending;
   699   uint32_t reset_bits;
   701   // set a marker so is_ext_suspend_completed() knows we are the caller
   702   *bits |= 0x00010000;
   704   // We use reset_bits to reinitialize the bits value at the top of
   705   // each retry loop. This allows the caller to make use of any
   706   // unused bits for their own marking purposes.
   707   reset_bits = *bits;
   709   {
   710     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   711     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   712                                             delay, bits);
   713     pending = is_external_suspend();
   714   }
   715   // must release SR_lock to allow suspension to complete
   717   if (!pending) {
   718     // A cancelled suspend request is the only false return from
   719     // is_ext_suspend_completed() that keeps us from entering the
   720     // retry loop.
   721     *bits |= 0x00020000;
   722     return false;
   723   }
   725   if (is_suspended) {
   726     *bits |= 0x00040000;
   727     return true;
   728   }
   730   for (int i = 1; i <= retries; i++) {
   731     *bits = reset_bits;  // reinit to only track last retry
   733     // We used to do an "os::yield_all(i)" call here with the intention
   734     // that yielding would increase on each retry. However, the parameter
   735     // is ignored on Linux which means the yield didn't scale up. Waiting
   736     // on the SR_lock below provides a much more predictable scale up for
   737     // the delay. It also provides a simple/direct point to check for any
   738     // safepoint requests from the VMThread
   740     {
   741       MutexLocker ml(SR_lock());
   742       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   743       // can also call this)  and increase delay with each retry
   744       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   746       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   747                                               delay, bits);
   749       // It is possible for the external suspend request to be cancelled
   750       // (by a resume) before the actual suspend operation is completed.
   751       // Refresh our local copy to see if we still need to wait.
   752       pending = is_external_suspend();
   753     }
   755     if (!pending) {
   756       // A cancelled suspend request is the only false return from
   757       // is_ext_suspend_completed() that keeps us from staying in the
   758       // retry loop.
   759       *bits |= 0x00080000;
   760       return false;
   761     }
   763     if (is_suspended) {
   764       *bits |= 0x00100000;
   765       return true;
   766     }
   767   } // end retry loop
   769   // thread did not suspend after all our retries
   770   *bits |= 0x00200000;
   771   return false;
   772 }
   774 #ifndef PRODUCT
   775 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   777   // This should not need to be atomic as the only way for simultaneous
   778   // updates is via interrupts. Even then this should be rare or non-existant
   779   // and we don't care that much anyway.
   781   int index = _jmp_ring_index;
   782   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   783   _jmp_ring[index]._target = (intptr_t) target;
   784   _jmp_ring[index]._instruction = (intptr_t) instr;
   785   _jmp_ring[index]._file = file;
   786   _jmp_ring[index]._line = line;
   787 }
   788 #endif /* PRODUCT */
   790 // Called by flat profiler
   791 // Callers have already called wait_for_ext_suspend_completion
   792 // The assertion for that is currently too complex to put here:
   793 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   794   bool gotframe = false;
   795   // self suspension saves needed state.
   796   if (has_last_Java_frame() && _anchor.walkable()) {
   797      *_fr = pd_last_frame();
   798      gotframe = true;
   799   }
   800   return gotframe;
   801 }
   803 void Thread::interrupt(Thread* thread) {
   804   trace("interrupt", thread);
   805   debug_only(check_for_dangling_thread_pointer(thread);)
   806   os::interrupt(thread);
   807 }
   809 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   810   trace("is_interrupted", thread);
   811   debug_only(check_for_dangling_thread_pointer(thread);)
   812   // Note:  If clear_interrupted==false, this simply fetches and
   813   // returns the value of the field osthread()->interrupted().
   814   return os::is_interrupted(thread, clear_interrupted);
   815 }
   818 // GC Support
   819 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   820   jint thread_parity = _oops_do_parity;
   821   if (thread_parity != strong_roots_parity) {
   822     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   823     if (res == thread_parity) {
   824       return true;
   825     } else {
   826       guarantee(res == strong_roots_parity, "Or else what?");
   827       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   828          "Should only fail when parallel.");
   829       return false;
   830     }
   831   }
   832   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   833          "Should only fail when parallel.");
   834   return false;
   835 }
   837 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
   838   active_handles()->oops_do(f);
   839   // Do oop for ThreadShadow
   840   f->do_oop((oop*)&_pending_exception);
   841   handle_area()->oops_do(f);
   842 }
   844 void Thread::nmethods_do(CodeBlobClosure* cf) {
   845   // no nmethods in a generic thread...
   846 }
   848 void Thread::metadata_do(void f(Metadata*)) {
   849   if (metadata_handles() != NULL) {
   850     for (int i = 0; i< metadata_handles()->length(); i++) {
   851       f(metadata_handles()->at(i));
   852     }
   853   }
   854 }
   856 void Thread::print_on(outputStream* st) const {
   857   // get_priority assumes osthread initialized
   858   if (osthread() != NULL) {
   859     int os_prio;
   860     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   861       st->print("os_prio=%d ", os_prio);
   862     }
   863     st->print("tid=" INTPTR_FORMAT " ", this);
   864     osthread()->print_on(st);
   865   }
   866   debug_only(if (WizardMode) print_owned_locks_on(st);)
   867 }
   869 // Thread::print_on_error() is called by fatal error handler. Don't use
   870 // any lock or allocate memory.
   871 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   872   if      (is_VM_thread())                  st->print("VMThread");
   873   else if (is_Compiler_thread())            st->print("CompilerThread");
   874   else if (is_Java_thread())                st->print("JavaThread");
   875   else if (is_GC_task_thread())             st->print("GCTaskThread");
   876   else if (is_Watcher_thread())             st->print("WatcherThread");
   877   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   878   else st->print("Thread");
   880   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   881             _stack_base - _stack_size, _stack_base);
   883   if (osthread()) {
   884     st->print(" [id=%d]", osthread()->thread_id());
   885   }
   886 }
   888 #ifdef ASSERT
   889 void Thread::print_owned_locks_on(outputStream* st) const {
   890   Monitor *cur = _owned_locks;
   891   if (cur == NULL) {
   892     st->print(" (no locks) ");
   893   } else {
   894     st->print_cr(" Locks owned:");
   895     while(cur) {
   896       cur->print_on(st);
   897       cur = cur->next();
   898     }
   899   }
   900 }
   902 static int ref_use_count  = 0;
   904 bool Thread::owns_locks_but_compiled_lock() const {
   905   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   906     if (cur != Compile_lock) return true;
   907   }
   908   return false;
   909 }
   912 #endif
   914 #ifndef PRODUCT
   916 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   917 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   918 // no threads which allow_vm_block's are held
   919 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   920     // Check if current thread is allowed to block at a safepoint
   921     if (!(_allow_safepoint_count == 0))
   922       fatal("Possible safepoint reached by thread that does not allow it");
   923     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   924       fatal("LEAF method calling lock?");
   925     }
   927 #ifdef ASSERT
   928     if (potential_vm_operation && is_Java_thread()
   929         && !Universe::is_bootstrapping()) {
   930       // Make sure we do not hold any locks that the VM thread also uses.
   931       // This could potentially lead to deadlocks
   932       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   933         // Threads_lock is special, since the safepoint synchronization will not start before this is
   934         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   935         // since it is used to transfer control between JavaThreads and the VMThread
   936         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   937         if ( (cur->allow_vm_block() &&
   938               cur != Threads_lock &&
   939               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   940               cur != VMOperationRequest_lock &&
   941               cur != VMOperationQueue_lock) ||
   942               cur->rank() == Mutex::special) {
   943           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   944         }
   945       }
   946     }
   948     if (GCALotAtAllSafepoints) {
   949       // We could enter a safepoint here and thus have a gc
   950       InterfaceSupport::check_gc_alot();
   951     }
   952 #endif
   953 }
   954 #endif
   956 bool Thread::is_in_stack(address adr) const {
   957   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   958   address end = os::current_stack_pointer();
   959   // Allow non Java threads to call this without stack_base
   960   if (_stack_base == NULL) return true;
   961   if (stack_base() >= adr && adr >= end) return true;
   963   return false;
   964 }
   967 bool Thread::is_in_usable_stack(address adr) const {
   968   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
   969   size_t usable_stack_size = _stack_size - stack_guard_size;
   971   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
   972 }
   975 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   976 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   977 // used for compilation in the future. If that change is made, the need for these methods
   978 // should be revisited, and they should be removed if possible.
   980 bool Thread::is_lock_owned(address adr) const {
   981   return on_local_stack(adr);
   982 }
   984 bool Thread::set_as_starting_thread() {
   985  // NOTE: this must be called inside the main thread.
   986   return os::create_main_thread((JavaThread*)this);
   987 }
   989 static void initialize_class(Symbol* class_name, TRAPS) {
   990   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   991   InstanceKlass::cast(klass)->initialize(CHECK);
   992 }
   995 // Creates the initial ThreadGroup
   996 static Handle create_initial_thread_group(TRAPS) {
   997   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   998   instanceKlassHandle klass (THREAD, k);
  1000   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
  1002     JavaValue result(T_VOID);
  1003     JavaCalls::call_special(&result,
  1004                             system_instance,
  1005                             klass,
  1006                             vmSymbols::object_initializer_name(),
  1007                             vmSymbols::void_method_signature(),
  1008                             CHECK_NH);
  1010   Universe::set_system_thread_group(system_instance());
  1012   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  1014     JavaValue result(T_VOID);
  1015     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
  1016     JavaCalls::call_special(&result,
  1017                             main_instance,
  1018                             klass,
  1019                             vmSymbols::object_initializer_name(),
  1020                             vmSymbols::threadgroup_string_void_signature(),
  1021                             system_instance,
  1022                             string,
  1023                             CHECK_NH);
  1025   return main_instance;
  1028 // Creates the initial Thread
  1029 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1030   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1031   instanceKlassHandle klass (THREAD, k);
  1032   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1034   java_lang_Thread::set_thread(thread_oop(), thread);
  1035   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1036   thread->set_threadObj(thread_oop());
  1038   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1040   JavaValue result(T_VOID);
  1041   JavaCalls::call_special(&result, thread_oop,
  1042                                    klass,
  1043                                    vmSymbols::object_initializer_name(),
  1044                                    vmSymbols::threadgroup_string_void_signature(),
  1045                                    thread_group,
  1046                                    string,
  1047                                    CHECK_NULL);
  1048   return thread_oop();
  1051 static void call_initializeSystemClass(TRAPS) {
  1052   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1053   instanceKlassHandle klass (THREAD, k);
  1055   JavaValue result(T_VOID);
  1056   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1057                                          vmSymbols::void_method_signature(), CHECK);
  1060 char java_runtime_name[128] = "";
  1061 char java_runtime_version[128] = "";
  1063 // extract the JRE name from sun.misc.Version.java_runtime_name
  1064 static const char* get_java_runtime_name(TRAPS) {
  1065   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1066                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1067   fieldDescriptor fd;
  1068   bool found = k != NULL &&
  1069                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1070                                                         vmSymbols::string_signature(), &fd);
  1071   if (found) {
  1072     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1073     if (name_oop == NULL)
  1074       return NULL;
  1075     const char* name = java_lang_String::as_utf8_string(name_oop,
  1076                                                         java_runtime_name,
  1077                                                         sizeof(java_runtime_name));
  1078     return name;
  1079   } else {
  1080     return NULL;
  1084 // extract the JRE version from sun.misc.Version.java_runtime_version
  1085 static const char* get_java_runtime_version(TRAPS) {
  1086   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1087                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1088   fieldDescriptor fd;
  1089   bool found = k != NULL &&
  1090                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1091                                                         vmSymbols::string_signature(), &fd);
  1092   if (found) {
  1093     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1094     if (name_oop == NULL)
  1095       return NULL;
  1096     const char* name = java_lang_String::as_utf8_string(name_oop,
  1097                                                         java_runtime_version,
  1098                                                         sizeof(java_runtime_version));
  1099     return name;
  1100   } else {
  1101     return NULL;
  1105 // General purpose hook into Java code, run once when the VM is initialized.
  1106 // The Java library method itself may be changed independently from the VM.
  1107 static void call_postVMInitHook(TRAPS) {
  1108   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  1109   instanceKlassHandle klass (THREAD, k);
  1110   if (klass.not_null()) {
  1111     JavaValue result(T_VOID);
  1112     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1113                                            vmSymbols::void_method_signature(),
  1114                                            CHECK);
  1118 static void reset_vm_info_property(TRAPS) {
  1119   // the vm info string
  1120   ResourceMark rm(THREAD);
  1121   const char *vm_info = VM_Version::vm_info_string();
  1123   // java.lang.System class
  1124   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1125   instanceKlassHandle klass (THREAD, k);
  1127   // setProperty arguments
  1128   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1129   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1131   // return value
  1132   JavaValue r(T_OBJECT);
  1134   // public static String setProperty(String key, String value);
  1135   JavaCalls::call_static(&r,
  1136                          klass,
  1137                          vmSymbols::setProperty_name(),
  1138                          vmSymbols::string_string_string_signature(),
  1139                          key_str,
  1140                          value_str,
  1141                          CHECK);
  1145 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1146   assert(thread_group.not_null(), "thread group should be specified");
  1147   assert(threadObj() == NULL, "should only create Java thread object once");
  1149   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1150   instanceKlassHandle klass (THREAD, k);
  1151   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1153   java_lang_Thread::set_thread(thread_oop(), this);
  1154   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1155   set_threadObj(thread_oop());
  1157   JavaValue result(T_VOID);
  1158   if (thread_name != NULL) {
  1159     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1160     // Thread gets assigned specified name and null target
  1161     JavaCalls::call_special(&result,
  1162                             thread_oop,
  1163                             klass,
  1164                             vmSymbols::object_initializer_name(),
  1165                             vmSymbols::threadgroup_string_void_signature(),
  1166                             thread_group, // Argument 1
  1167                             name,         // Argument 2
  1168                             THREAD);
  1169   } else {
  1170     // Thread gets assigned name "Thread-nnn" and null target
  1171     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1172     JavaCalls::call_special(&result,
  1173                             thread_oop,
  1174                             klass,
  1175                             vmSymbols::object_initializer_name(),
  1176                             vmSymbols::threadgroup_runnable_void_signature(),
  1177                             thread_group, // Argument 1
  1178                             Handle(),     // Argument 2
  1179                             THREAD);
  1183   if (daemon) {
  1184       java_lang_Thread::set_daemon(thread_oop());
  1187   if (HAS_PENDING_EXCEPTION) {
  1188     return;
  1191   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1192   Handle threadObj(this, this->threadObj());
  1194   JavaCalls::call_special(&result,
  1195                          thread_group,
  1196                          group,
  1197                          vmSymbols::add_method_name(),
  1198                          vmSymbols::thread_void_signature(),
  1199                          threadObj,          // Arg 1
  1200                          THREAD);
  1205 // NamedThread --  non-JavaThread subclasses with multiple
  1206 // uniquely named instances should derive from this.
  1207 NamedThread::NamedThread() : Thread() {
  1208   _name = NULL;
  1209   _processed_thread = NULL;
  1212 NamedThread::~NamedThread() {
  1213   if (_name != NULL) {
  1214     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1215     _name = NULL;
  1219 void NamedThread::set_name(const char* format, ...) {
  1220   guarantee(_name == NULL, "Only get to set name once.");
  1221   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1222   guarantee(_name != NULL, "alloc failure");
  1223   va_list ap;
  1224   va_start(ap, format);
  1225   jio_vsnprintf(_name, max_name_len, format, ap);
  1226   va_end(ap);
  1229 // ======= WatcherThread ========
  1231 // The watcher thread exists to simulate timer interrupts.  It should
  1232 // be replaced by an abstraction over whatever native support for
  1233 // timer interrupts exists on the platform.
  1235 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1236 bool WatcherThread::_startable = false;
  1237 volatile bool  WatcherThread::_should_terminate = false;
  1239 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  1240   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1241   if (os::create_thread(this, os::watcher_thread)) {
  1242     _watcher_thread = this;
  1244     // Set the watcher thread to the highest OS priority which should not be
  1245     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1246     // is created. The only normal thread using this priority is the reference
  1247     // handler thread, which runs for very short intervals only.
  1248     // If the VMThread's priority is not lower than the WatcherThread profiling
  1249     // will be inaccurate.
  1250     os::set_priority(this, MaxPriority);
  1251     if (!DisableStartThread) {
  1252       os::start_thread(this);
  1257 int WatcherThread::sleep() const {
  1258   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1260   // remaining will be zero if there are no tasks,
  1261   // causing the WatcherThread to sleep until a task is
  1262   // enrolled
  1263   int remaining = PeriodicTask::time_to_wait();
  1264   int time_slept = 0;
  1266   // we expect this to timeout - we only ever get unparked when
  1267   // we should terminate or when a new task has been enrolled
  1268   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1270   jlong time_before_loop = os::javaTimeNanos();
  1272   for (;;) {
  1273     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1274     jlong now = os::javaTimeNanos();
  1276     if (remaining == 0) {
  1277         // if we didn't have any tasks we could have waited for a long time
  1278         // consider the time_slept zero and reset time_before_loop
  1279         time_slept = 0;
  1280         time_before_loop = now;
  1281     } else {
  1282         // need to recalulate since we might have new tasks in _tasks
  1283         time_slept = (int) ((now - time_before_loop) / 1000000);
  1286     // Change to task list or spurious wakeup of some kind
  1287     if (timedout || _should_terminate) {
  1288         break;
  1291     remaining = PeriodicTask::time_to_wait();
  1292     if (remaining == 0) {
  1293         // Last task was just disenrolled so loop around and wait until
  1294         // another task gets enrolled
  1295         continue;
  1298     remaining -= time_slept;
  1299     if (remaining <= 0)
  1300       break;
  1303   return time_slept;
  1306 void WatcherThread::run() {
  1307   assert(this == watcher_thread(), "just checking");
  1309   this->record_stack_base_and_size();
  1310   this->initialize_thread_local_storage();
  1311   this->set_active_handles(JNIHandleBlock::allocate_block());
  1312   while(!_should_terminate) {
  1313     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1314     assert(watcher_thread() == this,  "thread consistency check");
  1316     // Calculate how long it'll be until the next PeriodicTask work
  1317     // should be done, and sleep that amount of time.
  1318     int time_waited = sleep();
  1320     if (is_error_reported()) {
  1321       // A fatal error has happened, the error handler(VMError::report_and_die)
  1322       // should abort JVM after creating an error log file. However in some
  1323       // rare cases, the error handler itself might deadlock. Here we try to
  1324       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1325       //
  1326       // This code is in WatcherThread because WatcherThread wakes up
  1327       // periodically so the fatal error handler doesn't need to do anything;
  1328       // also because the WatcherThread is less likely to crash than other
  1329       // threads.
  1331       for (;;) {
  1332         if (!ShowMessageBoxOnError
  1333          && (OnError == NULL || OnError[0] == '\0')
  1334          && Arguments::abort_hook() == NULL) {
  1335              os::sleep(this, 2 * 60 * 1000, false);
  1336              fdStream err(defaultStream::output_fd());
  1337              err.print_raw_cr("# [ timer expired, abort... ]");
  1338              // skip atexit/vm_exit/vm_abort hooks
  1339              os::die();
  1342         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1343         // ShowMessageBoxOnError when it is ready to abort.
  1344         os::sleep(this, 5 * 1000, false);
  1348     PeriodicTask::real_time_tick(time_waited);
  1351   // Signal that it is terminated
  1353     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1354     _watcher_thread = NULL;
  1355     Terminator_lock->notify();
  1358   // Thread destructor usually does this..
  1359   ThreadLocalStorage::set_thread(NULL);
  1362 void WatcherThread::start() {
  1363   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1365   if (watcher_thread() == NULL && _startable) {
  1366     _should_terminate = false;
  1367     // Create the single instance of WatcherThread
  1368     new WatcherThread();
  1372 void WatcherThread::make_startable() {
  1373   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1374   _startable = true;
  1377 void WatcherThread::stop() {
  1379     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1380     _should_terminate = true;
  1381     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1383     WatcherThread* watcher = watcher_thread();
  1384     if (watcher != NULL)
  1385       watcher->unpark();
  1388   // it is ok to take late safepoints here, if needed
  1389   MutexLocker mu(Terminator_lock);
  1391   while(watcher_thread() != NULL) {
  1392     // This wait should make safepoint checks, wait without a timeout,
  1393     // and wait as a suspend-equivalent condition.
  1394     //
  1395     // Note: If the FlatProfiler is running, then this thread is waiting
  1396     // for the WatcherThread to terminate and the WatcherThread, via the
  1397     // FlatProfiler task, is waiting for the external suspend request on
  1398     // this thread to complete. wait_for_ext_suspend_completion() will
  1399     // eventually timeout, but that takes time. Making this wait a
  1400     // suspend-equivalent condition solves that timeout problem.
  1401     //
  1402     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1403                           Mutex::_as_suspend_equivalent_flag);
  1407 void WatcherThread::unpark() {
  1408   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1409   PeriodicTask_lock->notify();
  1412 void WatcherThread::print_on(outputStream* st) const {
  1413   st->print("\"%s\" ", name());
  1414   Thread::print_on(st);
  1415   st->cr();
  1418 // ======= JavaThread ========
  1420 // A JavaThread is a normal Java thread
  1422 void JavaThread::initialize() {
  1423   // Initialize fields
  1425   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
  1426   set_claimed_par_id(UINT_MAX);
  1428   set_saved_exception_pc(NULL);
  1429   set_threadObj(NULL);
  1430   _anchor.clear();
  1431   set_entry_point(NULL);
  1432   set_jni_functions(jni_functions());
  1433   set_callee_target(NULL);
  1434   set_vm_result(NULL);
  1435   set_vm_result_2(NULL);
  1436   set_vframe_array_head(NULL);
  1437   set_vframe_array_last(NULL);
  1438   set_deferred_locals(NULL);
  1439   set_deopt_mark(NULL);
  1440   set_deopt_nmethod(NULL);
  1441   clear_must_deopt_id();
  1442   set_monitor_chunks(NULL);
  1443   set_next(NULL);
  1444   set_thread_state(_thread_new);
  1445 #if INCLUDE_NMT
  1446   set_recorder(NULL);
  1447 #endif
  1448   _terminated = _not_terminated;
  1449   _privileged_stack_top = NULL;
  1450   _array_for_gc = NULL;
  1451   _suspend_equivalent = false;
  1452   _in_deopt_handler = 0;
  1453   _doing_unsafe_access = false;
  1454   _stack_guard_state = stack_guard_unused;
  1455   (void)const_cast<oop&>(_exception_oop = NULL);
  1456   _exception_pc  = 0;
  1457   _exception_handler_pc = 0;
  1458   _is_method_handle_return = 0;
  1459   _jvmti_thread_state= NULL;
  1460   _should_post_on_exceptions_flag = JNI_FALSE;
  1461   _jvmti_get_loaded_classes_closure = NULL;
  1462   _interp_only_mode    = 0;
  1463   _special_runtime_exit_condition = _no_async_condition;
  1464   _pending_async_exception = NULL;
  1465   _thread_stat = NULL;
  1466   _thread_stat = new ThreadStatistics();
  1467   _blocked_on_compilation = false;
  1468   _jni_active_critical = 0;
  1469   _do_not_unlock_if_synchronized = false;
  1470   _cached_monitor_info = NULL;
  1471   _parker = Parker::Allocate(this) ;
  1473 #ifndef PRODUCT
  1474   _jmp_ring_index = 0;
  1475   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1476     record_jump(NULL, NULL, NULL, 0);
  1478 #endif /* PRODUCT */
  1480   set_thread_profiler(NULL);
  1481   if (FlatProfiler::is_active()) {
  1482     // This is where we would decide to either give each thread it's own profiler
  1483     // or use one global one from FlatProfiler,
  1484     // or up to some count of the number of profiled threads, etc.
  1485     ThreadProfiler* pp = new ThreadProfiler();
  1486     pp->engage();
  1487     set_thread_profiler(pp);
  1490   // Setup safepoint state info for this thread
  1491   ThreadSafepointState::create(this);
  1493   debug_only(_java_call_counter = 0);
  1495   // JVMTI PopFrame support
  1496   _popframe_condition = popframe_inactive;
  1497   _popframe_preserved_args = NULL;
  1498   _popframe_preserved_args_size = 0;
  1500   pd_initialize();
  1503 #if INCLUDE_ALL_GCS
  1504 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1505 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1506 #endif // INCLUDE_ALL_GCS
  1508 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1509   Thread()
  1510 #if INCLUDE_ALL_GCS
  1511   , _satb_mark_queue(&_satb_mark_queue_set),
  1512   _dirty_card_queue(&_dirty_card_queue_set)
  1513 #endif // INCLUDE_ALL_GCS
  1515   initialize();
  1516   if (is_attaching_via_jni) {
  1517     _jni_attach_state = _attaching_via_jni;
  1518   } else {
  1519     _jni_attach_state = _not_attaching_via_jni;
  1521   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1522   _safepoint_visible = false;
  1525 bool JavaThread::reguard_stack(address cur_sp) {
  1526   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1527     return true; // Stack already guarded or guard pages not needed.
  1530   if (register_stack_overflow()) {
  1531     // For those architectures which have separate register and
  1532     // memory stacks, we must check the register stack to see if
  1533     // it has overflowed.
  1534     return false;
  1537   // Java code never executes within the yellow zone: the latter is only
  1538   // there to provoke an exception during stack banging.  If java code
  1539   // is executing there, either StackShadowPages should be larger, or
  1540   // some exception code in c1, c2 or the interpreter isn't unwinding
  1541   // when it should.
  1542   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1544   enable_stack_yellow_zone();
  1545   return true;
  1548 bool JavaThread::reguard_stack(void) {
  1549   return reguard_stack(os::current_stack_pointer());
  1553 void JavaThread::block_if_vm_exited() {
  1554   if (_terminated == _vm_exited) {
  1555     // _vm_exited is set at safepoint, and Threads_lock is never released
  1556     // we will block here forever
  1557     Threads_lock->lock_without_safepoint_check();
  1558     ShouldNotReachHere();
  1563 // Remove this ifdef when C1 is ported to the compiler interface.
  1564 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1566 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1567   Thread()
  1568 #if INCLUDE_ALL_GCS
  1569   , _satb_mark_queue(&_satb_mark_queue_set),
  1570   _dirty_card_queue(&_dirty_card_queue_set)
  1571 #endif // INCLUDE_ALL_GCS
  1573   if (TraceThreadEvents) {
  1574     tty->print_cr("creating thread %p", this);
  1576   initialize();
  1577   _jni_attach_state = _not_attaching_via_jni;
  1578   set_entry_point(entry_point);
  1579   // Create the native thread itself.
  1580   // %note runtime_23
  1581   os::ThreadType thr_type = os::java_thread;
  1582   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1583                                                      os::java_thread;
  1584   os::create_thread(this, thr_type, stack_sz);
  1585   _safepoint_visible = false;
  1586   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1587   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1588   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1589   // the exception consists of creating the exception object & initializing it, initialization
  1590   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1591   //
  1592   // The thread is still suspended when we reach here. Thread must be explicit started
  1593   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1594   // by calling Threads:add. The reason why this is not done here, is because the thread
  1595   // object must be fully initialized (take a look at JVM_Start)
  1598 JavaThread::~JavaThread() {
  1599   if (TraceThreadEvents) {
  1600       tty->print_cr("terminate thread %p", this);
  1603   // By now, this thread should already be invisible to safepoint,
  1604   // and its per-thread recorder also collected.
  1605   assert(!is_safepoint_visible(), "wrong state");
  1606 #if INCLUDE_NMT
  1607   assert(get_recorder() == NULL, "Already collected");
  1608 #endif // INCLUDE_NMT
  1610   // JSR166 -- return the parker to the free list
  1611   Parker::Release(_parker);
  1612   _parker = NULL ;
  1614   // Free any remaining  previous UnrollBlock
  1615   vframeArray* old_array = vframe_array_last();
  1617   if (old_array != NULL) {
  1618     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1619     old_array->set_unroll_block(NULL);
  1620     delete old_info;
  1621     delete old_array;
  1624   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1625   if (deferred != NULL) {
  1626     // This can only happen if thread is destroyed before deoptimization occurs.
  1627     assert(deferred->length() != 0, "empty array!");
  1628     do {
  1629       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1630       deferred->remove_at(0);
  1631       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1632       delete dlv;
  1633     } while (deferred->length() != 0);
  1634     delete deferred;
  1637   // All Java related clean up happens in exit
  1638   ThreadSafepointState::destroy(this);
  1639   if (_thread_profiler != NULL) delete _thread_profiler;
  1640   if (_thread_stat != NULL) delete _thread_stat;
  1644 // The first routine called by a new Java thread
  1645 void JavaThread::run() {
  1646   // initialize thread-local alloc buffer related fields
  1647   this->initialize_tlab();
  1649   // used to test validitity of stack trace backs
  1650   this->record_base_of_stack_pointer();
  1652   // Record real stack base and size.
  1653   this->record_stack_base_and_size();
  1655   // Initialize thread local storage; set before calling MutexLocker
  1656   this->initialize_thread_local_storage();
  1658   this->create_stack_guard_pages();
  1660   this->cache_global_variables();
  1662   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1663   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1664   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1666   assert(JavaThread::current() == this, "sanity check");
  1667   assert(!Thread::current()->owns_locks(), "sanity check");
  1669   DTRACE_THREAD_PROBE(start, this);
  1671   // This operation might block. We call that after all safepoint checks for a new thread has
  1672   // been completed.
  1673   this->set_active_handles(JNIHandleBlock::allocate_block());
  1675   if (JvmtiExport::should_post_thread_life()) {
  1676     JvmtiExport::post_thread_start(this);
  1679   EventThreadStart event;
  1680   if (event.should_commit()) {
  1681      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1682      event.commit();
  1685   // We call another function to do the rest so we are sure that the stack addresses used
  1686   // from there will be lower than the stack base just computed
  1687   thread_main_inner();
  1689   // Note, thread is no longer valid at this point!
  1693 void JavaThread::thread_main_inner() {
  1694   assert(JavaThread::current() == this, "sanity check");
  1695   assert(this->threadObj() != NULL, "just checking");
  1697   // Execute thread entry point unless this thread has a pending exception
  1698   // or has been stopped before starting.
  1699   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1700   if (!this->has_pending_exception() &&
  1701       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1703       ResourceMark rm(this);
  1704       this->set_native_thread_name(this->get_thread_name());
  1706     HandleMark hm(this);
  1707     this->entry_point()(this, this);
  1710   DTRACE_THREAD_PROBE(stop, this);
  1712   this->exit(false);
  1713   delete this;
  1717 static void ensure_join(JavaThread* thread) {
  1718   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1719   Handle threadObj(thread, thread->threadObj());
  1720   assert(threadObj.not_null(), "java thread object must exist");
  1721   ObjectLocker lock(threadObj, thread);
  1722   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1723   thread->clear_pending_exception();
  1724   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1725   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1726   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1727   // to complete once we've done the notify_all below
  1728   java_lang_Thread::set_thread(threadObj(), NULL);
  1729   lock.notify_all(thread);
  1730   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1731   thread->clear_pending_exception();
  1735 // For any new cleanup additions, please check to see if they need to be applied to
  1736 // cleanup_failed_attach_current_thread as well.
  1737 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1738   assert(this == JavaThread::current(),  "thread consistency check");
  1740   HandleMark hm(this);
  1741   Handle uncaught_exception(this, this->pending_exception());
  1742   this->clear_pending_exception();
  1743   Handle threadObj(this, this->threadObj());
  1744   assert(threadObj.not_null(), "Java thread object should be created");
  1746   if (get_thread_profiler() != NULL) {
  1747     get_thread_profiler()->disengage();
  1748     ResourceMark rm;
  1749     get_thread_profiler()->print(get_thread_name());
  1753   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1755     EXCEPTION_MARK;
  1757     CLEAR_PENDING_EXCEPTION;
  1759   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1760   // has to be fixed by a runtime query method
  1761   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1762     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1763     // java.lang.Thread.dispatchUncaughtException
  1764     if (uncaught_exception.not_null()) {
  1765       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1767         EXCEPTION_MARK;
  1768         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1769         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1770         // so call ThreadGroup.uncaughtException()
  1771         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1772         CallInfo callinfo;
  1773         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1774         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1775                                            vmSymbols::dispatchUncaughtException_name(),
  1776                                            vmSymbols::throwable_void_signature(),
  1777                                            KlassHandle(), false, false, THREAD);
  1778         CLEAR_PENDING_EXCEPTION;
  1779         methodHandle method = callinfo.selected_method();
  1780         if (method.not_null()) {
  1781           JavaValue result(T_VOID);
  1782           JavaCalls::call_virtual(&result,
  1783                                   threadObj, thread_klass,
  1784                                   vmSymbols::dispatchUncaughtException_name(),
  1785                                   vmSymbols::throwable_void_signature(),
  1786                                   uncaught_exception,
  1787                                   THREAD);
  1788         } else {
  1789           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1790           JavaValue result(T_VOID);
  1791           JavaCalls::call_virtual(&result,
  1792                                   group, thread_group,
  1793                                   vmSymbols::uncaughtException_name(),
  1794                                   vmSymbols::thread_throwable_void_signature(),
  1795                                   threadObj,           // Arg 1
  1796                                   uncaught_exception,  // Arg 2
  1797                                   THREAD);
  1799         if (HAS_PENDING_EXCEPTION) {
  1800           ResourceMark rm(this);
  1801           jio_fprintf(defaultStream::error_stream(),
  1802                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1803                 " in thread \"%s\"\n",
  1804                 pending_exception()->klass()->external_name(),
  1805                 get_thread_name());
  1806           CLEAR_PENDING_EXCEPTION;
  1811     // Called before the java thread exit since we want to read info
  1812     // from java_lang_Thread object
  1813     EventThreadEnd event;
  1814     if (event.should_commit()) {
  1815         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
  1816         event.commit();
  1819     // Call after last event on thread
  1820     EVENT_THREAD_EXIT(this);
  1822     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1823     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1824     // is deprecated anyhow.
  1825     if (!is_Compiler_thread()) {
  1826       int count = 3;
  1827       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1828         EXCEPTION_MARK;
  1829         JavaValue result(T_VOID);
  1830         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1831         JavaCalls::call_virtual(&result,
  1832                               threadObj, thread_klass,
  1833                               vmSymbols::exit_method_name(),
  1834                               vmSymbols::void_method_signature(),
  1835                               THREAD);
  1836         CLEAR_PENDING_EXCEPTION;
  1839     // notify JVMTI
  1840     if (JvmtiExport::should_post_thread_life()) {
  1841       JvmtiExport::post_thread_end(this);
  1844     // We have notified the agents that we are exiting, before we go on,
  1845     // we must check for a pending external suspend request and honor it
  1846     // in order to not surprise the thread that made the suspend request.
  1847     while (true) {
  1849         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1850         if (!is_external_suspend()) {
  1851           set_terminated(_thread_exiting);
  1852           ThreadService::current_thread_exiting(this);
  1853           break;
  1855         // Implied else:
  1856         // Things get a little tricky here. We have a pending external
  1857         // suspend request, but we are holding the SR_lock so we
  1858         // can't just self-suspend. So we temporarily drop the lock
  1859         // and then self-suspend.
  1862       ThreadBlockInVM tbivm(this);
  1863       java_suspend_self();
  1865       // We're done with this suspend request, but we have to loop around
  1866       // and check again. Eventually we will get SR_lock without a pending
  1867       // external suspend request and will be able to mark ourselves as
  1868       // exiting.
  1870     // no more external suspends are allowed at this point
  1871   } else {
  1872     // before_exit() has already posted JVMTI THREAD_END events
  1875   // Notify waiters on thread object. This has to be done after exit() is called
  1876   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1877   // group should have the destroyed bit set before waiters are notified).
  1878   ensure_join(this);
  1879   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1881   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1882   // held by this thread must be released.  A detach operation must only
  1883   // get here if there are no Java frames on the stack.  Therefore, any
  1884   // owned monitors at this point MUST be JNI-acquired monitors which are
  1885   // pre-inflated and in the monitor cache.
  1886   //
  1887   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1888   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1889     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1890     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1891     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1894   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1895   // is in a consistent state, in case GC happens
  1896   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1898   if (active_handles() != NULL) {
  1899     JNIHandleBlock* block = active_handles();
  1900     set_active_handles(NULL);
  1901     JNIHandleBlock::release_block(block);
  1904   if (free_handle_block() != NULL) {
  1905     JNIHandleBlock* block = free_handle_block();
  1906     set_free_handle_block(NULL);
  1907     JNIHandleBlock::release_block(block);
  1910   // These have to be removed while this is still a valid thread.
  1911   remove_stack_guard_pages();
  1913   if (UseTLAB) {
  1914     tlab().make_parsable(true);  // retire TLAB
  1917   if (JvmtiEnv::environments_might_exist()) {
  1918     JvmtiExport::cleanup_thread(this);
  1921   // We must flush any deferred card marks before removing a thread from
  1922   // the list of active threads.
  1923   Universe::heap()->flush_deferred_store_barrier(this);
  1924   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1926 #if INCLUDE_ALL_GCS
  1927   // We must flush the G1-related buffers before removing a thread
  1928   // from the list of active threads. We must do this after any deferred
  1929   // card marks have been flushed (above) so that any entries that are
  1930   // added to the thread's dirty card queue as a result are not lost.
  1931   if (UseG1GC) {
  1932     flush_barrier_queues();
  1934 #endif // INCLUDE_ALL_GCS
  1936   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1937   Threads::remove(this);
  1940 #if INCLUDE_ALL_GCS
  1941 // Flush G1-related queues.
  1942 void JavaThread::flush_barrier_queues() {
  1943   satb_mark_queue().flush();
  1944   dirty_card_queue().flush();
  1947 void JavaThread::initialize_queues() {
  1948   assert(!SafepointSynchronize::is_at_safepoint(),
  1949          "we should not be at a safepoint");
  1951   ObjPtrQueue& satb_queue = satb_mark_queue();
  1952   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1953   // The SATB queue should have been constructed with its active
  1954   // field set to false.
  1955   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1956   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1957   // If we are creating the thread during a marking cycle, we should
  1958   // set the active field of the SATB queue to true.
  1959   if (satb_queue_set.is_active()) {
  1960     satb_queue.set_active(true);
  1963   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1964   // The dirty card queue should have been constructed with its
  1965   // active field set to true.
  1966   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1968 #endif // INCLUDE_ALL_GCS
  1970 void JavaThread::cleanup_failed_attach_current_thread() {
  1971   if (get_thread_profiler() != NULL) {
  1972     get_thread_profiler()->disengage();
  1973     ResourceMark rm;
  1974     get_thread_profiler()->print(get_thread_name());
  1977   if (active_handles() != NULL) {
  1978     JNIHandleBlock* block = active_handles();
  1979     set_active_handles(NULL);
  1980     JNIHandleBlock::release_block(block);
  1983   if (free_handle_block() != NULL) {
  1984     JNIHandleBlock* block = free_handle_block();
  1985     set_free_handle_block(NULL);
  1986     JNIHandleBlock::release_block(block);
  1989   // These have to be removed while this is still a valid thread.
  1990   remove_stack_guard_pages();
  1992   if (UseTLAB) {
  1993     tlab().make_parsable(true);  // retire TLAB, if any
  1996 #if INCLUDE_ALL_GCS
  1997   if (UseG1GC) {
  1998     flush_barrier_queues();
  2000 #endif // INCLUDE_ALL_GCS
  2002   Threads::remove(this);
  2003   delete this;
  2009 JavaThread* JavaThread::active() {
  2010   Thread* thread = ThreadLocalStorage::thread();
  2011   assert(thread != NULL, "just checking");
  2012   if (thread->is_Java_thread()) {
  2013     return (JavaThread*) thread;
  2014   } else {
  2015     assert(thread->is_VM_thread(), "this must be a vm thread");
  2016     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  2017     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  2018     assert(ret->is_Java_thread(), "must be a Java thread");
  2019     return ret;
  2023 bool JavaThread::is_lock_owned(address adr) const {
  2024   if (Thread::is_lock_owned(adr)) return true;
  2026   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2027     if (chunk->contains(adr)) return true;
  2030   return false;
  2034 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2035   chunk->set_next(monitor_chunks());
  2036   set_monitor_chunks(chunk);
  2039 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2040   guarantee(monitor_chunks() != NULL, "must be non empty");
  2041   if (monitor_chunks() == chunk) {
  2042     set_monitor_chunks(chunk->next());
  2043   } else {
  2044     MonitorChunk* prev = monitor_chunks();
  2045     while (prev->next() != chunk) prev = prev->next();
  2046     prev->set_next(chunk->next());
  2050 // JVM support.
  2052 // Note: this function shouldn't block if it's called in
  2053 // _thread_in_native_trans state (such as from
  2054 // check_special_condition_for_native_trans()).
  2055 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2057   if (has_last_Java_frame() && has_async_condition()) {
  2058     // If we are at a polling page safepoint (not a poll return)
  2059     // then we must defer async exception because live registers
  2060     // will be clobbered by the exception path. Poll return is
  2061     // ok because the call we a returning from already collides
  2062     // with exception handling registers and so there is no issue.
  2063     // (The exception handling path kills call result registers but
  2064     //  this is ok since the exception kills the result anyway).
  2066     if (is_at_poll_safepoint()) {
  2067       // if the code we are returning to has deoptimized we must defer
  2068       // the exception otherwise live registers get clobbered on the
  2069       // exception path before deoptimization is able to retrieve them.
  2070       //
  2071       RegisterMap map(this, false);
  2072       frame caller_fr = last_frame().sender(&map);
  2073       assert(caller_fr.is_compiled_frame(), "what?");
  2074       if (caller_fr.is_deoptimized_frame()) {
  2075         if (TraceExceptions) {
  2076           ResourceMark rm;
  2077           tty->print_cr("deferred async exception at compiled safepoint");
  2079         return;
  2084   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2085   if (condition == _no_async_condition) {
  2086     // Conditions have changed since has_special_runtime_exit_condition()
  2087     // was called:
  2088     // - if we were here only because of an external suspend request,
  2089     //   then that was taken care of above (or cancelled) so we are done
  2090     // - if we were here because of another async request, then it has
  2091     //   been cleared between the has_special_runtime_exit_condition()
  2092     //   and now so again we are done
  2093     return;
  2096   // Check for pending async. exception
  2097   if (_pending_async_exception != NULL) {
  2098     // Only overwrite an already pending exception, if it is not a threadDeath.
  2099     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2101       // We cannot call Exceptions::_throw(...) here because we cannot block
  2102       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2104       if (TraceExceptions) {
  2105         ResourceMark rm;
  2106         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2107         if (has_last_Java_frame() ) {
  2108           frame f = last_frame();
  2109           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2111         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2113       _pending_async_exception = NULL;
  2114       clear_has_async_exception();
  2118   if (check_unsafe_error &&
  2119       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2120     condition = _no_async_condition;  // done
  2121     switch (thread_state()) {
  2122     case _thread_in_vm:
  2124         JavaThread* THREAD = this;
  2125         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2127     case _thread_in_native:
  2129         ThreadInVMfromNative tiv(this);
  2130         JavaThread* THREAD = this;
  2131         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2133     case _thread_in_Java:
  2135         ThreadInVMfromJava tiv(this);
  2136         JavaThread* THREAD = this;
  2137         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2139     default:
  2140       ShouldNotReachHere();
  2144   assert(condition == _no_async_condition || has_pending_exception() ||
  2145          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2146          "must have handled the async condition, if no exception");
  2149 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2150   //
  2151   // Check for pending external suspend. Internal suspend requests do
  2152   // not use handle_special_runtime_exit_condition().
  2153   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2154   // thread is not the current thread. In older versions of jdbx, jdbx
  2155   // threads could call into the VM with another thread's JNIEnv so we
  2156   // can be here operating on behalf of a suspended thread (4432884).
  2157   bool do_self_suspend = is_external_suspend_with_lock();
  2158   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2159     //
  2160     // Because thread is external suspended the safepoint code will count
  2161     // thread as at a safepoint. This can be odd because we can be here
  2162     // as _thread_in_Java which would normally transition to _thread_blocked
  2163     // at a safepoint. We would like to mark the thread as _thread_blocked
  2164     // before calling java_suspend_self like all other callers of it but
  2165     // we must then observe proper safepoint protocol. (We can't leave
  2166     // _thread_blocked with a safepoint in progress). However we can be
  2167     // here as _thread_in_native_trans so we can't use a normal transition
  2168     // constructor/destructor pair because they assert on that type of
  2169     // transition. We could do something like:
  2170     //
  2171     // JavaThreadState state = thread_state();
  2172     // set_thread_state(_thread_in_vm);
  2173     // {
  2174     //   ThreadBlockInVM tbivm(this);
  2175     //   java_suspend_self()
  2176     // }
  2177     // set_thread_state(_thread_in_vm_trans);
  2178     // if (safepoint) block;
  2179     // set_thread_state(state);
  2180     //
  2181     // but that is pretty messy. Instead we just go with the way the
  2182     // code has worked before and note that this is the only path to
  2183     // java_suspend_self that doesn't put the thread in _thread_blocked
  2184     // mode.
  2186     frame_anchor()->make_walkable(this);
  2187     java_suspend_self();
  2189     // We might be here for reasons in addition to the self-suspend request
  2190     // so check for other async requests.
  2193   if (check_asyncs) {
  2194     check_and_handle_async_exceptions();
  2198 void JavaThread::send_thread_stop(oop java_throwable)  {
  2199   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2200   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2201   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2203   // Do not throw asynchronous exceptions against the compiler thread
  2204   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2205   if (is_Compiler_thread()) return;
  2208     // Actually throw the Throwable against the target Thread - however
  2209     // only if there is no thread death exception installed already.
  2210     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2211       // If the topmost frame is a runtime stub, then we are calling into
  2212       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2213       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2214       // may not be valid
  2215       if (has_last_Java_frame()) {
  2216         frame f = last_frame();
  2217         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2218           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2219           RegisterMap reg_map(this, UseBiasedLocking);
  2220           frame compiled_frame = f.sender(&reg_map);
  2221           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2222             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2227       // Set async. pending exception in thread.
  2228       set_pending_async_exception(java_throwable);
  2230       if (TraceExceptions) {
  2231        ResourceMark rm;
  2232        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2234       // for AbortVMOnException flag
  2235       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2240   // Interrupt thread so it will wake up from a potential wait()
  2241   Thread::interrupt(this);
  2244 // External suspension mechanism.
  2245 //
  2246 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2247 // to any VM_locks and it is at a transition
  2248 // Self-suspension will happen on the transition out of the vm.
  2249 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2250 //
  2251 // Guarantees on return:
  2252 //   + Target thread will not execute any new bytecode (that's why we need to
  2253 //     force a safepoint)
  2254 //   + Target thread will not enter any new monitors
  2255 //
  2256 void JavaThread::java_suspend() {
  2257   { MutexLocker mu(Threads_lock);
  2258     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2259        return;
  2263   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2264     if (!is_external_suspend()) {
  2265       // a racing resume has cancelled us; bail out now
  2266       return;
  2269     // suspend is done
  2270     uint32_t debug_bits = 0;
  2271     // Warning: is_ext_suspend_completed() may temporarily drop the
  2272     // SR_lock to allow the thread to reach a stable thread state if
  2273     // it is currently in a transient thread state.
  2274     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2275                                  SuspendRetryDelay, &debug_bits) ) {
  2276       return;
  2280   VM_ForceSafepoint vm_suspend;
  2281   VMThread::execute(&vm_suspend);
  2284 // Part II of external suspension.
  2285 // A JavaThread self suspends when it detects a pending external suspend
  2286 // request. This is usually on transitions. It is also done in places
  2287 // where continuing to the next transition would surprise the caller,
  2288 // e.g., monitor entry.
  2289 //
  2290 // Returns the number of times that the thread self-suspended.
  2291 //
  2292 // Note: DO NOT call java_suspend_self() when you just want to block current
  2293 //       thread. java_suspend_self() is the second stage of cooperative
  2294 //       suspension for external suspend requests and should only be used
  2295 //       to complete an external suspend request.
  2296 //
  2297 int JavaThread::java_suspend_self() {
  2298   int ret = 0;
  2300   // we are in the process of exiting so don't suspend
  2301   if (is_exiting()) {
  2302      clear_external_suspend();
  2303      return ret;
  2306   assert(_anchor.walkable() ||
  2307     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2308     "must have walkable stack");
  2310   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2312   assert(!this->is_ext_suspended(),
  2313     "a thread trying to self-suspend should not already be suspended");
  2315   if (this->is_suspend_equivalent()) {
  2316     // If we are self-suspending as a result of the lifting of a
  2317     // suspend equivalent condition, then the suspend_equivalent
  2318     // flag is not cleared until we set the ext_suspended flag so
  2319     // that wait_for_ext_suspend_completion() returns consistent
  2320     // results.
  2321     this->clear_suspend_equivalent();
  2324   // A racing resume may have cancelled us before we grabbed SR_lock
  2325   // above. Or another external suspend request could be waiting for us
  2326   // by the time we return from SR_lock()->wait(). The thread
  2327   // that requested the suspension may already be trying to walk our
  2328   // stack and if we return now, we can change the stack out from under
  2329   // it. This would be a "bad thing (TM)" and cause the stack walker
  2330   // to crash. We stay self-suspended until there are no more pending
  2331   // external suspend requests.
  2332   while (is_external_suspend()) {
  2333     ret++;
  2334     this->set_ext_suspended();
  2336     // _ext_suspended flag is cleared by java_resume()
  2337     while (is_ext_suspended()) {
  2338       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2342   return ret;
  2345 #ifdef ASSERT
  2346 // verify the JavaThread has not yet been published in the Threads::list, and
  2347 // hence doesn't need protection from concurrent access at this stage
  2348 void JavaThread::verify_not_published() {
  2349   if (!Threads_lock->owned_by_self()) {
  2350    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2351    assert( !Threads::includes(this),
  2352            "java thread shouldn't have been published yet!");
  2354   else {
  2355    assert( !Threads::includes(this),
  2356            "java thread shouldn't have been published yet!");
  2359 #endif
  2361 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2362 // progress or when _suspend_flags is non-zero.
  2363 // Current thread needs to self-suspend if there is a suspend request and/or
  2364 // block if a safepoint is in progress.
  2365 // Async exception ISN'T checked.
  2366 // Note only the ThreadInVMfromNative transition can call this function
  2367 // directly and when thread state is _thread_in_native_trans
  2368 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2369   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2371   JavaThread *curJT = JavaThread::current();
  2372   bool do_self_suspend = thread->is_external_suspend();
  2374   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2376   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2377   // thread is not the current thread. In older versions of jdbx, jdbx
  2378   // threads could call into the VM with another thread's JNIEnv so we
  2379   // can be here operating on behalf of a suspended thread (4432884).
  2380   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2381     JavaThreadState state = thread->thread_state();
  2383     // We mark this thread_blocked state as a suspend-equivalent so
  2384     // that a caller to is_ext_suspend_completed() won't be confused.
  2385     // The suspend-equivalent state is cleared by java_suspend_self().
  2386     thread->set_suspend_equivalent();
  2388     // If the safepoint code sees the _thread_in_native_trans state, it will
  2389     // wait until the thread changes to other thread state. There is no
  2390     // guarantee on how soon we can obtain the SR_lock and complete the
  2391     // self-suspend request. It would be a bad idea to let safepoint wait for
  2392     // too long. Temporarily change the state to _thread_blocked to
  2393     // let the VM thread know that this thread is ready for GC. The problem
  2394     // of changing thread state is that safepoint could happen just after
  2395     // java_suspend_self() returns after being resumed, and VM thread will
  2396     // see the _thread_blocked state. We must check for safepoint
  2397     // after restoring the state and make sure we won't leave while a safepoint
  2398     // is in progress.
  2399     thread->set_thread_state(_thread_blocked);
  2400     thread->java_suspend_self();
  2401     thread->set_thread_state(state);
  2402     // Make sure new state is seen by VM thread
  2403     if (os::is_MP()) {
  2404       if (UseMembar) {
  2405         // Force a fence between the write above and read below
  2406         OrderAccess::fence();
  2407       } else {
  2408         // Must use this rather than serialization page in particular on Windows
  2409         InterfaceSupport::serialize_memory(thread);
  2414   if (SafepointSynchronize::do_call_back()) {
  2415     // If we are safepointing, then block the caller which may not be
  2416     // the same as the target thread (see above).
  2417     SafepointSynchronize::block(curJT);
  2420   if (thread->is_deopt_suspend()) {
  2421     thread->clear_deopt_suspend();
  2422     RegisterMap map(thread, false);
  2423     frame f = thread->last_frame();
  2424     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2425       f = f.sender(&map);
  2427     if (f.id() == thread->must_deopt_id()) {
  2428       thread->clear_must_deopt_id();
  2429       f.deoptimize(thread);
  2430     } else {
  2431       fatal("missed deoptimization!");
  2436 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2437 // progress or when _suspend_flags is non-zero.
  2438 // Current thread needs to self-suspend if there is a suspend request and/or
  2439 // block if a safepoint is in progress.
  2440 // Also check for pending async exception (not including unsafe access error).
  2441 // Note only the native==>VM/Java barriers can call this function and when
  2442 // thread state is _thread_in_native_trans.
  2443 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2444   check_safepoint_and_suspend_for_native_trans(thread);
  2446   if (thread->has_async_exception()) {
  2447     // We are in _thread_in_native_trans state, don't handle unsafe
  2448     // access error since that may block.
  2449     thread->check_and_handle_async_exceptions(false);
  2453 // This is a variant of the normal
  2454 // check_special_condition_for_native_trans with slightly different
  2455 // semantics for use by critical native wrappers.  It does all the
  2456 // normal checks but also performs the transition back into
  2457 // thread_in_Java state.  This is required so that critical natives
  2458 // can potentially block and perform a GC if they are the last thread
  2459 // exiting the GC_locker.
  2460 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2461   check_special_condition_for_native_trans(thread);
  2463   // Finish the transition
  2464   thread->set_thread_state(_thread_in_Java);
  2466   if (thread->do_critical_native_unlock()) {
  2467     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2468     GC_locker::unlock_critical(thread);
  2469     thread->clear_critical_native_unlock();
  2473 // We need to guarantee the Threads_lock here, since resumes are not
  2474 // allowed during safepoint synchronization
  2475 // Can only resume from an external suspension
  2476 void JavaThread::java_resume() {
  2477   assert_locked_or_safepoint(Threads_lock);
  2479   // Sanity check: thread is gone, has started exiting or the thread
  2480   // was not externally suspended.
  2481   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2482     return;
  2485   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2487   clear_external_suspend();
  2489   if (is_ext_suspended()) {
  2490     clear_ext_suspended();
  2491     SR_lock()->notify_all();
  2495 void JavaThread::create_stack_guard_pages() {
  2496   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2497   address low_addr = stack_base() - stack_size();
  2498   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2500   int allocate = os::allocate_stack_guard_pages();
  2501   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2503   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2504     warning("Attempt to allocate stack guard pages failed.");
  2505     return;
  2508   if (os::guard_memory((char *) low_addr, len)) {
  2509     _stack_guard_state = stack_guard_enabled;
  2510   } else {
  2511     warning("Attempt to protect stack guard pages failed.");
  2512     if (os::uncommit_memory((char *) low_addr, len)) {
  2513       warning("Attempt to deallocate stack guard pages failed.");
  2518 void JavaThread::remove_stack_guard_pages() {
  2519   assert(Thread::current() == this, "from different thread");
  2520   if (_stack_guard_state == stack_guard_unused) return;
  2521   address low_addr = stack_base() - stack_size();
  2522   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2524   if (os::allocate_stack_guard_pages()) {
  2525     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2526       _stack_guard_state = stack_guard_unused;
  2527     } else {
  2528       warning("Attempt to deallocate stack guard pages failed.");
  2530   } else {
  2531     if (_stack_guard_state == stack_guard_unused) return;
  2532     if (os::unguard_memory((char *) low_addr, len)) {
  2533       _stack_guard_state = stack_guard_unused;
  2534     } else {
  2535         warning("Attempt to unprotect stack guard pages failed.");
  2540 void JavaThread::enable_stack_yellow_zone() {
  2541   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2542   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2544   // The base notation is from the stacks point of view, growing downward.
  2545   // We need to adjust it to work correctly with guard_memory()
  2546   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2548   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2549   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2551   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2552     _stack_guard_state = stack_guard_enabled;
  2553   } else {
  2554     warning("Attempt to guard stack yellow zone failed.");
  2556   enable_register_stack_guard();
  2559 void JavaThread::disable_stack_yellow_zone() {
  2560   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2561   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2563   // Simply return if called for a thread that does not use guard pages.
  2564   if (_stack_guard_state == stack_guard_unused) return;
  2566   // The base notation is from the stacks point of view, growing downward.
  2567   // We need to adjust it to work correctly with guard_memory()
  2568   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2570   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2571     _stack_guard_state = stack_guard_yellow_disabled;
  2572   } else {
  2573     warning("Attempt to unguard stack yellow zone failed.");
  2575   disable_register_stack_guard();
  2578 void JavaThread::enable_stack_red_zone() {
  2579   // The base notation is from the stacks point of view, growing downward.
  2580   // We need to adjust it to work correctly with guard_memory()
  2581   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2582   address base = stack_red_zone_base() - stack_red_zone_size();
  2584   guarantee(base < stack_base(),"Error calculating stack red zone");
  2585   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2587   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2588     warning("Attempt to guard stack red zone failed.");
  2592 void JavaThread::disable_stack_red_zone() {
  2593   // The base notation is from the stacks point of view, growing downward.
  2594   // We need to adjust it to work correctly with guard_memory()
  2595   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2596   address base = stack_red_zone_base() - stack_red_zone_size();
  2597   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2598     warning("Attempt to unguard stack red zone failed.");
  2602 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2603   // ignore is there is no stack
  2604   if (!has_last_Java_frame()) return;
  2605   // traverse the stack frames. Starts from top frame.
  2606   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2607     frame* fr = fst.current();
  2608     f(fr, fst.register_map());
  2613 #ifndef PRODUCT
  2614 // Deoptimization
  2615 // Function for testing deoptimization
  2616 void JavaThread::deoptimize() {
  2617   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2618   StackFrameStream fst(this, UseBiasedLocking);
  2619   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2620   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2621   // Iterate over all frames in the thread and deoptimize
  2622   for(; !fst.is_done(); fst.next()) {
  2623     if(fst.current()->can_be_deoptimized()) {
  2625       if (only_at) {
  2626         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2627         // consists of comma or carriage return separated numbers so
  2628         // search for the current bci in that string.
  2629         address pc = fst.current()->pc();
  2630         nmethod* nm =  (nmethod*) fst.current()->cb();
  2631         ScopeDesc* sd = nm->scope_desc_at( pc);
  2632         char buffer[8];
  2633         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2634         size_t len = strlen(buffer);
  2635         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2636         while (found != NULL) {
  2637           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2638               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2639             // Check that the bci found is bracketed by terminators.
  2640             break;
  2642           found = strstr(found + 1, buffer);
  2644         if (!found) {
  2645           continue;
  2649       if (DebugDeoptimization && !deopt) {
  2650         deopt = true; // One-time only print before deopt
  2651         tty->print_cr("[BEFORE Deoptimization]");
  2652         trace_frames();
  2653         trace_stack();
  2655       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2659   if (DebugDeoptimization && deopt) {
  2660     tty->print_cr("[AFTER Deoptimization]");
  2661     trace_frames();
  2666 // Make zombies
  2667 void JavaThread::make_zombies() {
  2668   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2669     if (fst.current()->can_be_deoptimized()) {
  2670       // it is a Java nmethod
  2671       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2672       nm->make_not_entrant();
  2676 #endif // PRODUCT
  2679 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2680   if (!has_last_Java_frame()) return;
  2681   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2682   StackFrameStream fst(this, UseBiasedLocking);
  2683   for(; !fst.is_done(); fst.next()) {
  2684     if (fst.current()->should_be_deoptimized()) {
  2685       if (LogCompilation && xtty != NULL) {
  2686         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2687         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2688                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2691       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2697 // GC support
  2698 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2700 void JavaThread::gc_epilogue() {
  2701   frames_do(frame_gc_epilogue);
  2705 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2707 void JavaThread::gc_prologue() {
  2708   frames_do(frame_gc_prologue);
  2711 // If the caller is a NamedThread, then remember, in the current scope,
  2712 // the given JavaThread in its _processed_thread field.
  2713 class RememberProcessedThread: public StackObj {
  2714   NamedThread* _cur_thr;
  2715 public:
  2716   RememberProcessedThread(JavaThread* jthr) {
  2717     Thread* thread = Thread::current();
  2718     if (thread->is_Named_thread()) {
  2719       _cur_thr = (NamedThread *)thread;
  2720       _cur_thr->set_processed_thread(jthr);
  2721     } else {
  2722       _cur_thr = NULL;
  2726   ~RememberProcessedThread() {
  2727     if (_cur_thr) {
  2728       _cur_thr->set_processed_thread(NULL);
  2731 };
  2733 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  2734   // Verify that the deferred card marks have been flushed.
  2735   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2737   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2738   // since there may be more than one thread using each ThreadProfiler.
  2740   // Traverse the GCHandles
  2741   Thread::oops_do(f, cld_f, cf);
  2743   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2744           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2746   if (has_last_Java_frame()) {
  2747     // Record JavaThread to GC thread
  2748     RememberProcessedThread rpt(this);
  2750     // Traverse the privileged stack
  2751     if (_privileged_stack_top != NULL) {
  2752       _privileged_stack_top->oops_do(f);
  2755     // traverse the registered growable array
  2756     if (_array_for_gc != NULL) {
  2757       for (int index = 0; index < _array_for_gc->length(); index++) {
  2758         f->do_oop(_array_for_gc->adr_at(index));
  2762     // Traverse the monitor chunks
  2763     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2764       chunk->oops_do(f);
  2767     // Traverse the execution stack
  2768     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2769       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2773   // callee_target is never live across a gc point so NULL it here should
  2774   // it still contain a methdOop.
  2776   set_callee_target(NULL);
  2778   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2779   // If we have deferred set_locals there might be oops waiting to be
  2780   // written
  2781   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2782   if (list != NULL) {
  2783     for (int i = 0; i < list->length(); i++) {
  2784       list->at(i)->oops_do(f);
  2788   // Traverse instance variables at the end since the GC may be moving things
  2789   // around using this function
  2790   f->do_oop((oop*) &_threadObj);
  2791   f->do_oop((oop*) &_vm_result);
  2792   f->do_oop((oop*) &_exception_oop);
  2793   f->do_oop((oop*) &_pending_async_exception);
  2795   if (jvmti_thread_state() != NULL) {
  2796     jvmti_thread_state()->oops_do(f);
  2800 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2801   Thread::nmethods_do(cf);  // (super method is a no-op)
  2803   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2804           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2806   if (has_last_Java_frame()) {
  2807     // Traverse the execution stack
  2808     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2809       fst.current()->nmethods_do(cf);
  2814 void JavaThread::metadata_do(void f(Metadata*)) {
  2815   Thread::metadata_do(f);
  2816   if (has_last_Java_frame()) {
  2817     // Traverse the execution stack to call f() on the methods in the stack
  2818     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2819       fst.current()->metadata_do(f);
  2821   } else if (is_Compiler_thread()) {
  2822     // need to walk ciMetadata in current compile tasks to keep alive.
  2823     CompilerThread* ct = (CompilerThread*)this;
  2824     if (ct->env() != NULL) {
  2825       ct->env()->metadata_do(f);
  2830 // Printing
  2831 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2832   switch (_thread_state) {
  2833   case _thread_uninitialized:     return "_thread_uninitialized";
  2834   case _thread_new:               return "_thread_new";
  2835   case _thread_new_trans:         return "_thread_new_trans";
  2836   case _thread_in_native:         return "_thread_in_native";
  2837   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2838   case _thread_in_vm:             return "_thread_in_vm";
  2839   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2840   case _thread_in_Java:           return "_thread_in_Java";
  2841   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2842   case _thread_blocked:           return "_thread_blocked";
  2843   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2844   default:                        return "unknown thread state";
  2848 #ifndef PRODUCT
  2849 void JavaThread::print_thread_state_on(outputStream *st) const {
  2850   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2851 };
  2852 void JavaThread::print_thread_state() const {
  2853   print_thread_state_on(tty);
  2854 };
  2855 #endif // PRODUCT
  2857 // Called by Threads::print() for VM_PrintThreads operation
  2858 void JavaThread::print_on(outputStream *st) const {
  2859   st->print("\"%s\" ", get_thread_name());
  2860   oop thread_oop = threadObj();
  2861   if (thread_oop != NULL) {
  2862     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2863     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2864     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2866   Thread::print_on(st);
  2867   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2868   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2869   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2870     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2872 #ifndef PRODUCT
  2873   print_thread_state_on(st);
  2874   _safepoint_state->print_on(st);
  2875 #endif // PRODUCT
  2878 // Called by fatal error handler. The difference between this and
  2879 // JavaThread::print() is that we can't grab lock or allocate memory.
  2880 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2881   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2882   oop thread_obj = threadObj();
  2883   if (thread_obj != NULL) {
  2884      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2886   st->print(" [");
  2887   st->print("%s", _get_thread_state_name(_thread_state));
  2888   if (osthread()) {
  2889     st->print(", id=%d", osthread()->thread_id());
  2891   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2892             _stack_base - _stack_size, _stack_base);
  2893   st->print("]");
  2894   return;
  2897 // Verification
  2899 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2901 void JavaThread::verify() {
  2902   // Verify oops in the thread.
  2903   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2905   // Verify the stack frames.
  2906   frames_do(frame_verify);
  2909 // CR 6300358 (sub-CR 2137150)
  2910 // Most callers of this method assume that it can't return NULL but a
  2911 // thread may not have a name whilst it is in the process of attaching to
  2912 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2913 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2914 // if vm exit occurs during initialization). These cases can all be accounted
  2915 // for such that this method never returns NULL.
  2916 const char* JavaThread::get_thread_name() const {
  2917 #ifdef ASSERT
  2918   // early safepoints can hit while current thread does not yet have TLS
  2919   if (!SafepointSynchronize::is_at_safepoint()) {
  2920     Thread *cur = Thread::current();
  2921     if (!(cur->is_Java_thread() && cur == this)) {
  2922       // Current JavaThreads are allowed to get their own name without
  2923       // the Threads_lock.
  2924       assert_locked_or_safepoint(Threads_lock);
  2927 #endif // ASSERT
  2928     return get_thread_name_string();
  2931 // Returns a non-NULL representation of this thread's name, or a suitable
  2932 // descriptive string if there is no set name
  2933 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2934   const char* name_str;
  2935   oop thread_obj = threadObj();
  2936   if (thread_obj != NULL) {
  2937     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2938     if (name != NULL) {
  2939       if (buf == NULL) {
  2940         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2942       else {
  2943         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2946     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2947       name_str = "<no-name - thread is attaching>";
  2949     else {
  2950       name_str = Thread::name();
  2953   else {
  2954     name_str = Thread::name();
  2956   assert(name_str != NULL, "unexpected NULL thread name");
  2957   return name_str;
  2961 const char* JavaThread::get_threadgroup_name() const {
  2962   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2963   oop thread_obj = threadObj();
  2964   if (thread_obj != NULL) {
  2965     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2966     if (thread_group != NULL) {
  2967       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2968       // ThreadGroup.name can be null
  2969       if (name != NULL) {
  2970         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2971         return str;
  2975   return NULL;
  2978 const char* JavaThread::get_parent_name() const {
  2979   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2980   oop thread_obj = threadObj();
  2981   if (thread_obj != NULL) {
  2982     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2983     if (thread_group != NULL) {
  2984       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2985       if (parent != NULL) {
  2986         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2987         // ThreadGroup.name can be null
  2988         if (name != NULL) {
  2989           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2990           return str;
  2995   return NULL;
  2998 ThreadPriority JavaThread::java_priority() const {
  2999   oop thr_oop = threadObj();
  3000   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  3001   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  3002   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  3003   return priority;
  3006 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  3008   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  3009   // Link Java Thread object <-> C++ Thread
  3011   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  3012   // and put it into a new Handle.  The Handle "thread_oop" can then
  3013   // be used to pass the C++ thread object to other methods.
  3015   // Set the Java level thread object (jthread) field of the
  3016   // new thread (a JavaThread *) to C++ thread object using the
  3017   // "thread_oop" handle.
  3019   // Set the thread field (a JavaThread *) of the
  3020   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3022   Handle thread_oop(Thread::current(),
  3023                     JNIHandles::resolve_non_null(jni_thread));
  3024   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3025     "must be initialized");
  3026   set_threadObj(thread_oop());
  3027   java_lang_Thread::set_thread(thread_oop(), this);
  3029   if (prio == NoPriority) {
  3030     prio = java_lang_Thread::priority(thread_oop());
  3031     assert(prio != NoPriority, "A valid priority should be present");
  3034   // Push the Java priority down to the native thread; needs Threads_lock
  3035   Thread::set_priority(this, prio);
  3037   // Add the new thread to the Threads list and set it in motion.
  3038   // We must have threads lock in order to call Threads::add.
  3039   // It is crucial that we do not block before the thread is
  3040   // added to the Threads list for if a GC happens, then the java_thread oop
  3041   // will not be visited by GC.
  3042   Threads::add(this);
  3045 oop JavaThread::current_park_blocker() {
  3046   // Support for JSR-166 locks
  3047   oop thread_oop = threadObj();
  3048   if (thread_oop != NULL &&
  3049       JDK_Version::current().supports_thread_park_blocker()) {
  3050     return java_lang_Thread::park_blocker(thread_oop);
  3052   return NULL;
  3056 void JavaThread::print_stack_on(outputStream* st) {
  3057   if (!has_last_Java_frame()) return;
  3058   ResourceMark rm;
  3059   HandleMark   hm;
  3061   RegisterMap reg_map(this);
  3062   vframe* start_vf = last_java_vframe(&reg_map);
  3063   int count = 0;
  3064   for (vframe* f = start_vf; f; f = f->sender() ) {
  3065     if (f->is_java_frame()) {
  3066       javaVFrame* jvf = javaVFrame::cast(f);
  3067       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3069       // Print out lock information
  3070       if (JavaMonitorsInStackTrace) {
  3071         jvf->print_lock_info_on(st, count);
  3073     } else {
  3074       // Ignore non-Java frames
  3077     // Bail-out case for too deep stacks
  3078     count++;
  3079     if (MaxJavaStackTraceDepth == count) return;
  3084 // JVMTI PopFrame support
  3085 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3086   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3087   if (in_bytes(size_in_bytes) != 0) {
  3088     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3089     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3090     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3094 void* JavaThread::popframe_preserved_args() {
  3095   return _popframe_preserved_args;
  3098 ByteSize JavaThread::popframe_preserved_args_size() {
  3099   return in_ByteSize(_popframe_preserved_args_size);
  3102 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3103   int sz = in_bytes(popframe_preserved_args_size());
  3104   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3105   return in_WordSize(sz / wordSize);
  3108 void JavaThread::popframe_free_preserved_args() {
  3109   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3110   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3111   _popframe_preserved_args = NULL;
  3112   _popframe_preserved_args_size = 0;
  3115 #ifndef PRODUCT
  3117 void JavaThread::trace_frames() {
  3118   tty->print_cr("[Describe stack]");
  3119   int frame_no = 1;
  3120   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3121     tty->print("  %d. ", frame_no++);
  3122     fst.current()->print_value_on(tty,this);
  3123     tty->cr();
  3127 class PrintAndVerifyOopClosure: public OopClosure {
  3128  protected:
  3129   template <class T> inline void do_oop_work(T* p) {
  3130     oop obj = oopDesc::load_decode_heap_oop(p);
  3131     if (obj == NULL) return;
  3132     tty->print(INTPTR_FORMAT ": ", p);
  3133     if (obj->is_oop_or_null()) {
  3134       if (obj->is_objArray()) {
  3135         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3136       } else {
  3137         obj->print();
  3139     } else {
  3140       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3142     tty->cr();
  3144  public:
  3145   virtual void do_oop(oop* p) { do_oop_work(p); }
  3146   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3147 };
  3150 static void oops_print(frame* f, const RegisterMap *map) {
  3151   PrintAndVerifyOopClosure print;
  3152   f->print_value();
  3153   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3156 // Print our all the locations that contain oops and whether they are
  3157 // valid or not.  This useful when trying to find the oldest frame
  3158 // where an oop has gone bad since the frame walk is from youngest to
  3159 // oldest.
  3160 void JavaThread::trace_oops() {
  3161   tty->print_cr("[Trace oops]");
  3162   frames_do(oops_print);
  3166 #ifdef ASSERT
  3167 // Print or validate the layout of stack frames
  3168 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3169   ResourceMark rm;
  3170   PRESERVE_EXCEPTION_MARK;
  3171   FrameValues values;
  3172   int frame_no = 0;
  3173   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3174     fst.current()->describe(values, ++frame_no);
  3175     if (depth == frame_no) break;
  3177   if (validate_only) {
  3178     values.validate();
  3179   } else {
  3180     tty->print_cr("[Describe stack layout]");
  3181     values.print(this);
  3184 #endif
  3186 void JavaThread::trace_stack_from(vframe* start_vf) {
  3187   ResourceMark rm;
  3188   int vframe_no = 1;
  3189   for (vframe* f = start_vf; f; f = f->sender() ) {
  3190     if (f->is_java_frame()) {
  3191       javaVFrame::cast(f)->print_activation(vframe_no++);
  3192     } else {
  3193       f->print();
  3195     if (vframe_no > StackPrintLimit) {
  3196       tty->print_cr("...<more frames>...");
  3197       return;
  3203 void JavaThread::trace_stack() {
  3204   if (!has_last_Java_frame()) return;
  3205   ResourceMark rm;
  3206   HandleMark   hm;
  3207   RegisterMap reg_map(this);
  3208   trace_stack_from(last_java_vframe(&reg_map));
  3212 #endif // PRODUCT
  3215 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3216   assert(reg_map != NULL, "a map must be given");
  3217   frame f = last_frame();
  3218   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3219     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3221   return NULL;
  3225 Klass* JavaThread::security_get_caller_class(int depth) {
  3226   vframeStream vfst(this);
  3227   vfst.security_get_caller_frame(depth);
  3228   if (!vfst.at_end()) {
  3229     return vfst.method()->method_holder();
  3231   return NULL;
  3234 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3235   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3236   CompileBroker::compiler_thread_loop();
  3239 // Create a CompilerThread
  3240 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3241 : JavaThread(&compiler_thread_entry) {
  3242   _env   = NULL;
  3243   _log   = NULL;
  3244   _task  = NULL;
  3245   _queue = queue;
  3246   _counters = counters;
  3247   _buffer_blob = NULL;
  3248   _scanned_nmethod = NULL;
  3249   _compiler = NULL;
  3251 #ifndef PRODUCT
  3252   _ideal_graph_printer = NULL;
  3253 #endif
  3256 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  3257   JavaThread::oops_do(f, cld_f, cf);
  3258   if (_scanned_nmethod != NULL && cf != NULL) {
  3259     // Safepoints can occur when the sweeper is scanning an nmethod so
  3260     // process it here to make sure it isn't unloaded in the middle of
  3261     // a scan.
  3262     cf->do_code_blob(_scanned_nmethod);
  3267 // ======= Threads ========
  3269 // The Threads class links together all active threads, and provides
  3270 // operations over all threads.  It is protected by its own Mutex
  3271 // lock, which is also used in other contexts to protect thread
  3272 // operations from having the thread being operated on from exiting
  3273 // and going away unexpectedly (e.g., safepoint synchronization)
  3275 JavaThread* Threads::_thread_list = NULL;
  3276 int         Threads::_number_of_threads = 0;
  3277 int         Threads::_number_of_non_daemon_threads = 0;
  3278 int         Threads::_return_code = 0;
  3279 size_t      JavaThread::_stack_size_at_create = 0;
  3280 #ifdef ASSERT
  3281 bool        Threads::_vm_complete = false;
  3282 #endif
  3284 // All JavaThreads
  3285 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3287 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3288 void Threads::threads_do(ThreadClosure* tc) {
  3289   assert_locked_or_safepoint(Threads_lock);
  3290   // ALL_JAVA_THREADS iterates through all JavaThreads
  3291   ALL_JAVA_THREADS(p) {
  3292     tc->do_thread(p);
  3294   // Someday we could have a table or list of all non-JavaThreads.
  3295   // For now, just manually iterate through them.
  3296   tc->do_thread(VMThread::vm_thread());
  3297   Universe::heap()->gc_threads_do(tc);
  3298   WatcherThread *wt = WatcherThread::watcher_thread();
  3299   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3300   // the data for WatcherThread is still valid upon being examined. However,
  3301   // considering that WatchThread terminates when the VM is on the way to
  3302   // exit at safepoint, the chance of the above is extremely small. The right
  3303   // way to prevent termination of WatcherThread would be to acquire
  3304   // Terminator_lock, but we can't do that without violating the lock rank
  3305   // checking in some cases.
  3306   if (wt != NULL)
  3307     tc->do_thread(wt);
  3309   // If CompilerThreads ever become non-JavaThreads, add them here
  3312 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3314   extern void JDK_Version_init();
  3316   // Check version
  3317   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3319   // Initialize the output stream module
  3320   ostream_init();
  3322   // Process java launcher properties.
  3323   Arguments::process_sun_java_launcher_properties(args);
  3325   // Initialize the os module before using TLS
  3326   os::init();
  3328   // Initialize system properties.
  3329   Arguments::init_system_properties();
  3331   // So that JDK version can be used as a discrimintor when parsing arguments
  3332   JDK_Version_init();
  3334   // Update/Initialize System properties after JDK version number is known
  3335   Arguments::init_version_specific_system_properties();
  3337   // Parse arguments
  3338   jint parse_result = Arguments::parse(args);
  3339   if (parse_result != JNI_OK) return parse_result;
  3341   os::init_before_ergo();
  3343   jint ergo_result = Arguments::apply_ergo();
  3344   if (ergo_result != JNI_OK) return ergo_result;
  3346   if (PauseAtStartup) {
  3347     os::pause();
  3350 #ifndef USDT2
  3351   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3352 #else /* USDT2 */
  3353   HOTSPOT_VM_INIT_BEGIN();
  3354 #endif /* USDT2 */
  3356   // Record VM creation timing statistics
  3357   TraceVmCreationTime create_vm_timer;
  3358   create_vm_timer.start();
  3360   // Timing (must come after argument parsing)
  3361   TraceTime timer("Create VM", TraceStartupTime);
  3363   // Initialize the os module after parsing the args
  3364   jint os_init_2_result = os::init_2();
  3365   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3367   jint adjust_after_os_result = Arguments::adjust_after_os();
  3368   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3370   // intialize TLS
  3371   ThreadLocalStorage::init();
  3373   // Bootstrap native memory tracking, so it can start recording memory
  3374   // activities before worker thread is started. This is the first phase
  3375   // of bootstrapping, VM is currently running in single-thread mode.
  3376   MemTracker::bootstrap_single_thread();
  3378   // Initialize output stream logging
  3379   ostream_init_log();
  3381   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3382   // Must be before create_vm_init_agents()
  3383   if (Arguments::init_libraries_at_startup()) {
  3384     convert_vm_init_libraries_to_agents();
  3387   // Launch -agentlib/-agentpath and converted -Xrun agents
  3388   if (Arguments::init_agents_at_startup()) {
  3389     create_vm_init_agents();
  3392   // Initialize Threads state
  3393   _thread_list = NULL;
  3394   _number_of_threads = 0;
  3395   _number_of_non_daemon_threads = 0;
  3397   // Initialize global data structures and create system classes in heap
  3398   vm_init_globals();
  3400   // Attach the main thread to this os thread
  3401   JavaThread* main_thread = new JavaThread();
  3402   main_thread->set_thread_state(_thread_in_vm);
  3403   // must do this before set_active_handles and initialize_thread_local_storage
  3404   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3405   // change the stack size recorded here to one based on the java thread
  3406   // stacksize. This adjusted size is what is used to figure the placement
  3407   // of the guard pages.
  3408   main_thread->record_stack_base_and_size();
  3409   main_thread->initialize_thread_local_storage();
  3411   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3413   if (!main_thread->set_as_starting_thread()) {
  3414     vm_shutdown_during_initialization(
  3415       "Failed necessary internal allocation. Out of swap space");
  3416     delete main_thread;
  3417     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3418     return JNI_ENOMEM;
  3421   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3422   // crash Linux VM, see notes in os_linux.cpp.
  3423   main_thread->create_stack_guard_pages();
  3425   // Initialize Java-Level synchronization subsystem
  3426   ObjectMonitor::Initialize() ;
  3428   // Second phase of bootstrapping, VM is about entering multi-thread mode
  3429   MemTracker::bootstrap_multi_thread();
  3431   // Initialize global modules
  3432   jint status = init_globals();
  3433   if (status != JNI_OK) {
  3434     delete main_thread;
  3435     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3436     return status;
  3439   // Should be done after the heap is fully created
  3440   main_thread->cache_global_variables();
  3442   HandleMark hm;
  3444   { MutexLocker mu(Threads_lock);
  3445     Threads::add(main_thread);
  3448   // Any JVMTI raw monitors entered in onload will transition into
  3449   // real raw monitor. VM is setup enough here for raw monitor enter.
  3450   JvmtiExport::transition_pending_onload_raw_monitors();
  3452   // Fully start NMT
  3453   MemTracker::start();
  3455   // Create the VMThread
  3456   { TraceTime timer("Start VMThread", TraceStartupTime);
  3457     VMThread::create();
  3458     Thread* vmthread = VMThread::vm_thread();
  3460     if (!os::create_thread(vmthread, os::vm_thread))
  3461       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3463     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3464     // Monitors can have spurious returns, must always check another state flag
  3466       MutexLocker ml(Notify_lock);
  3467       os::start_thread(vmthread);
  3468       while (vmthread->active_handles() == NULL) {
  3469         Notify_lock->wait();
  3474   assert (Universe::is_fully_initialized(), "not initialized");
  3475   if (VerifyDuringStartup) {
  3476     // Make sure we're starting with a clean slate.
  3477     VM_Verify verify_op;
  3478     VMThread::execute(&verify_op);
  3481   EXCEPTION_MARK;
  3483   // At this point, the Universe is initialized, but we have not executed
  3484   // any byte code.  Now is a good time (the only time) to dump out the
  3485   // internal state of the JVM for sharing.
  3486   if (DumpSharedSpaces) {
  3487     MetaspaceShared::preload_and_dump(CHECK_0);
  3488     ShouldNotReachHere();
  3491   // Always call even when there are not JVMTI environments yet, since environments
  3492   // may be attached late and JVMTI must track phases of VM execution
  3493   JvmtiExport::enter_start_phase();
  3495   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3496   JvmtiExport::post_vm_start();
  3499     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3501     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3502       create_vm_init_libraries();
  3505     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3507     // Initialize java_lang.System (needed before creating the thread)
  3508     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3509     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3510     Handle thread_group = create_initial_thread_group(CHECK_0);
  3511     Universe::set_main_thread_group(thread_group());
  3512     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3513     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3514     main_thread->set_threadObj(thread_object);
  3515     // Set thread status to running since main thread has
  3516     // been started and running.
  3517     java_lang_Thread::set_thread_status(thread_object,
  3518                                         java_lang_Thread::RUNNABLE);
  3520     // The VM creates & returns objects of this class. Make sure it's initialized.
  3521     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3523     // The VM preresolves methods to these classes. Make sure that they get initialized
  3524     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3525     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3526     call_initializeSystemClass(CHECK_0);
  3528     // get the Java runtime name after java.lang.System is initialized
  3529     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3530     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3532     // an instance of OutOfMemory exception has been allocated earlier
  3533     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3534     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3535     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3536     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3537     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3538     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3539     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3540     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3543   // See        : bugid 4211085.
  3544   // Background : the static initializer of java.lang.Compiler tries to read
  3545   //              property"java.compiler" and read & write property "java.vm.info".
  3546   //              When a security manager is installed through the command line
  3547   //              option "-Djava.security.manager", the above properties are not
  3548   //              readable and the static initializer for java.lang.Compiler fails
  3549   //              resulting in a NoClassDefFoundError.  This can happen in any
  3550   //              user code which calls methods in java.lang.Compiler.
  3551   // Hack :       the hack is to pre-load and initialize this class, so that only
  3552   //              system domains are on the stack when the properties are read.
  3553   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3554   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3555   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3556   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3557   //              Once that is done, we should remove this hack.
  3558   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3560   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3561   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3562   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3563   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3564   // This should also be taken out as soon as 4211383 gets fixed.
  3565   reset_vm_info_property(CHECK_0);
  3567   quicken_jni_functions();
  3569   // Must be run after init_ft which initializes ft_enabled
  3570   if (TRACE_INITIALIZE() != JNI_OK) {
  3571     vm_exit_during_initialization("Failed to initialize tracing backend");
  3574   // Set flag that basic initialization has completed. Used by exceptions and various
  3575   // debug stuff, that does not work until all basic classes have been initialized.
  3576   set_init_completed();
  3578   Metaspace::post_initialize();
  3580 #ifndef USDT2
  3581   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3582 #else /* USDT2 */
  3583   HOTSPOT_VM_INIT_END();
  3584 #endif /* USDT2 */
  3586   // record VM initialization completion time
  3587 #if INCLUDE_MANAGEMENT
  3588   Management::record_vm_init_completed();
  3589 #endif // INCLUDE_MANAGEMENT
  3591   // Compute system loader. Note that this has to occur after set_init_completed, since
  3592   // valid exceptions may be thrown in the process.
  3593   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3594   // set_init_completed has just been called, causing exceptions not to be shortcut
  3595   // anymore. We call vm_exit_during_initialization directly instead.
  3596   SystemDictionary::compute_java_system_loader(THREAD);
  3597   if (HAS_PENDING_EXCEPTION) {
  3598     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3601 #if INCLUDE_ALL_GCS
  3602   // Support for ConcurrentMarkSweep. This should be cleaned up
  3603   // and better encapsulated. The ugly nested if test would go away
  3604   // once things are properly refactored. XXX YSR
  3605   if (UseConcMarkSweepGC || UseG1GC) {
  3606     if (UseConcMarkSweepGC) {
  3607       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3608     } else {
  3609       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3611     if (HAS_PENDING_EXCEPTION) {
  3612       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3615 #endif // INCLUDE_ALL_GCS
  3617   // Always call even when there are not JVMTI environments yet, since environments
  3618   // may be attached late and JVMTI must track phases of VM execution
  3619   JvmtiExport::enter_live_phase();
  3621   // Signal Dispatcher needs to be started before VMInit event is posted
  3622   os::signal_init();
  3624   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3625   if (!DisableAttachMechanism) {
  3626     AttachListener::vm_start();
  3627     if (StartAttachListener || AttachListener::init_at_startup()) {
  3628       AttachListener::init();
  3632   // Launch -Xrun agents
  3633   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3634   // back-end can launch with -Xdebug -Xrunjdwp.
  3635   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3636     create_vm_init_libraries();
  3639   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3640   JvmtiExport::post_vm_initialized();
  3642   if (TRACE_START() != JNI_OK) {
  3643     vm_exit_during_initialization("Failed to start tracing backend.");
  3646   if (CleanChunkPoolAsync) {
  3647     Chunk::start_chunk_pool_cleaner_task();
  3650   // initialize compiler(s)
  3651 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3652   CompileBroker::compilation_init();
  3653 #endif
  3655   if (EnableInvokeDynamic) {
  3656     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
  3657     // It is done after compilers are initialized, because otherwise compilations of
  3658     // signature polymorphic MH intrinsics can be missed
  3659     // (see SystemDictionary::find_method_handle_intrinsic).
  3660     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
  3661     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
  3662     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  3665 #if INCLUDE_MANAGEMENT
  3666   Management::initialize(THREAD);
  3667 #endif // INCLUDE_MANAGEMENT
  3669   if (HAS_PENDING_EXCEPTION) {
  3670     // management agent fails to start possibly due to
  3671     // configuration problem and is responsible for printing
  3672     // stack trace if appropriate. Simply exit VM.
  3673     vm_exit(1);
  3676   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3677   if (MemProfiling)                   MemProfiler::engage();
  3678   StatSampler::engage();
  3679   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3681   BiasedLocking::init();
  3683 #if INCLUDE_RTM_OPT
  3684   RTMLockingCounters::init();
  3685 #endif
  3687   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3688     call_postVMInitHook(THREAD);
  3689     // The Java side of PostVMInitHook.run must deal with all
  3690     // exceptions and provide means of diagnosis.
  3691     if (HAS_PENDING_EXCEPTION) {
  3692       CLEAR_PENDING_EXCEPTION;
  3697       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3698       // Make sure the watcher thread can be started by WatcherThread::start()
  3699       // or by dynamic enrollment.
  3700       WatcherThread::make_startable();
  3701       // Start up the WatcherThread if there are any periodic tasks
  3702       // NOTE:  All PeriodicTasks should be registered by now. If they
  3703       //   aren't, late joiners might appear to start slowly (we might
  3704       //   take a while to process their first tick).
  3705       if (PeriodicTask::num_tasks() > 0) {
  3706           WatcherThread::start();
  3710   // Give os specific code one last chance to start
  3711   os::init_3();
  3713   create_vm_timer.end();
  3714 #ifdef ASSERT
  3715   _vm_complete = true;
  3716 #endif
  3717   return JNI_OK;
  3720 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3721 extern "C" {
  3722   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3724 // Find a command line agent library and return its entry point for
  3725 //         -agentlib:  -agentpath:   -Xrun
  3726 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3727 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3728   OnLoadEntry_t on_load_entry = NULL;
  3729   void *library = NULL;
  3731   if (!agent->valid()) {
  3732     char buffer[JVM_MAXPATHLEN];
  3733     char ebuf[1024];
  3734     const char *name = agent->name();
  3735     const char *msg = "Could not find agent library ";
  3737     // First check to see if agent is statically linked into executable
  3738     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
  3739       library = agent->os_lib();
  3740     } else if (agent->is_absolute_path()) {
  3741       library = os::dll_load(name, ebuf, sizeof ebuf);
  3742       if (library == NULL) {
  3743         const char *sub_msg = " in absolute path, with error: ";
  3744         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3745         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3746         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3747         // If we can't find the agent, exit.
  3748         vm_exit_during_initialization(buf, NULL);
  3749         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3751     } else {
  3752       // Try to load the agent from the standard dll directory
  3753       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3754                              name)) {
  3755         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3757       if (library == NULL) { // Try the local directory
  3758         char ns[1] = {0};
  3759         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3760           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3762         if (library == NULL) {
  3763           const char *sub_msg = " on the library path, with error: ";
  3764           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3765           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3766           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3767           // If we can't find the agent, exit.
  3768           vm_exit_during_initialization(buf, NULL);
  3769           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3773     agent->set_os_lib(library);
  3774     agent->set_valid();
  3777   // Find the OnLoad function.
  3778   on_load_entry =
  3779     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
  3780                                                           false,
  3781                                                           on_load_symbols,
  3782                                                           num_symbol_entries));
  3783   return on_load_entry;
  3786 // Find the JVM_OnLoad entry point
  3787 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3788   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3789   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3792 // Find the Agent_OnLoad entry point
  3793 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3794   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3795   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3798 // For backwards compatibility with -Xrun
  3799 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3800 // treated like -agentpath:
  3801 // Must be called before agent libraries are created
  3802 void Threads::convert_vm_init_libraries_to_agents() {
  3803   AgentLibrary* agent;
  3804   AgentLibrary* next;
  3806   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3807     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3808     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3810     // If there is an JVM_OnLoad function it will get called later,
  3811     // otherwise see if there is an Agent_OnLoad
  3812     if (on_load_entry == NULL) {
  3813       on_load_entry = lookup_agent_on_load(agent);
  3814       if (on_load_entry != NULL) {
  3815         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3816         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3817         Arguments::convert_library_to_agent(agent);
  3818       } else {
  3819         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3825 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3826 // Invokes Agent_OnLoad
  3827 // Called very early -- before JavaThreads exist
  3828 void Threads::create_vm_init_agents() {
  3829   extern struct JavaVM_ main_vm;
  3830   AgentLibrary* agent;
  3832   JvmtiExport::enter_onload_phase();
  3834   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3835     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3837     if (on_load_entry != NULL) {
  3838       // Invoke the Agent_OnLoad function
  3839       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3840       if (err != JNI_OK) {
  3841         vm_exit_during_initialization("agent library failed to init", agent->name());
  3843     } else {
  3844       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3847   JvmtiExport::enter_primordial_phase();
  3850 extern "C" {
  3851   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3854 void Threads::shutdown_vm_agents() {
  3855   // Send any Agent_OnUnload notifications
  3856   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3857   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  3858   extern struct JavaVM_ main_vm;
  3859   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3861     // Find the Agent_OnUnload function.
  3862     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3863       os::find_agent_function(agent,
  3864       false,
  3865       on_unload_symbols,
  3866       num_symbol_entries));
  3868     // Invoke the Agent_OnUnload function
  3869     if (unload_entry != NULL) {
  3870       JavaThread* thread = JavaThread::current();
  3871       ThreadToNativeFromVM ttn(thread);
  3872       HandleMark hm(thread);
  3873       (*unload_entry)(&main_vm);
  3878 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3879 // Invokes JVM_OnLoad
  3880 void Threads::create_vm_init_libraries() {
  3881   extern struct JavaVM_ main_vm;
  3882   AgentLibrary* agent;
  3884   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3885     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3887     if (on_load_entry != NULL) {
  3888       // Invoke the JVM_OnLoad function
  3889       JavaThread* thread = JavaThread::current();
  3890       ThreadToNativeFromVM ttn(thread);
  3891       HandleMark hm(thread);
  3892       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3893       if (err != JNI_OK) {
  3894         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3896     } else {
  3897       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3902 // Last thread running calls java.lang.Shutdown.shutdown()
  3903 void JavaThread::invoke_shutdown_hooks() {
  3904   HandleMark hm(this);
  3906   // We could get here with a pending exception, if so clear it now.
  3907   if (this->has_pending_exception()) {
  3908     this->clear_pending_exception();
  3911   EXCEPTION_MARK;
  3912   Klass* k =
  3913     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3914                                       THREAD);
  3915   if (k != NULL) {
  3916     // SystemDictionary::resolve_or_null will return null if there was
  3917     // an exception.  If we cannot load the Shutdown class, just don't
  3918     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3919     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3920     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3921     // was called, the Shutdown class would have already been loaded
  3922     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3923     instanceKlassHandle shutdown_klass (THREAD, k);
  3924     JavaValue result(T_VOID);
  3925     JavaCalls::call_static(&result,
  3926                            shutdown_klass,
  3927                            vmSymbols::shutdown_method_name(),
  3928                            vmSymbols::void_method_signature(),
  3929                            THREAD);
  3931   CLEAR_PENDING_EXCEPTION;
  3934 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3935 // the program falls off the end of main(). Another VM exit path is through
  3936 // vm_exit() when the program calls System.exit() to return a value or when
  3937 // there is a serious error in VM. The two shutdown paths are not exactly
  3938 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3939 // and VM_Exit op at VM level.
  3940 //
  3941 // Shutdown sequence:
  3942 //   + Shutdown native memory tracking if it is on
  3943 //   + Wait until we are the last non-daemon thread to execute
  3944 //     <-- every thing is still working at this moment -->
  3945 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3946 //        shutdown hooks, run finalizers if finalization-on-exit
  3947 //   + Call before_exit(), prepare for VM exit
  3948 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3949 //        currently the only user of this mechanism is File.deleteOnExit())
  3950 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3951 //        post thread end and vm death events to JVMTI,
  3952 //        stop signal thread
  3953 //   + Call JavaThread::exit(), it will:
  3954 //      > release JNI handle blocks, remove stack guard pages
  3955 //      > remove this thread from Threads list
  3956 //     <-- no more Java code from this thread after this point -->
  3957 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3958 //     the compiler threads at safepoint
  3959 //     <-- do not use anything that could get blocked by Safepoint -->
  3960 //   + Disable tracing at JNI/JVM barriers
  3961 //   + Set _vm_exited flag for threads that are still running native code
  3962 //   + Delete this thread
  3963 //   + Call exit_globals()
  3964 //      > deletes tty
  3965 //      > deletes PerfMemory resources
  3966 //   + Return to caller
  3968 bool Threads::destroy_vm() {
  3969   JavaThread* thread = JavaThread::current();
  3971 #ifdef ASSERT
  3972   _vm_complete = false;
  3973 #endif
  3974   // Wait until we are the last non-daemon thread to execute
  3975   { MutexLocker nu(Threads_lock);
  3976     while (Threads::number_of_non_daemon_threads() > 1 )
  3977       // This wait should make safepoint checks, wait without a timeout,
  3978       // and wait as a suspend-equivalent condition.
  3979       //
  3980       // Note: If the FlatProfiler is running and this thread is waiting
  3981       // for another non-daemon thread to finish, then the FlatProfiler
  3982       // is waiting for the external suspend request on this thread to
  3983       // complete. wait_for_ext_suspend_completion() will eventually
  3984       // timeout, but that takes time. Making this wait a suspend-
  3985       // equivalent condition solves that timeout problem.
  3986       //
  3987       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3988                          Mutex::_as_suspend_equivalent_flag);
  3991   // Hang forever on exit if we are reporting an error.
  3992   if (ShowMessageBoxOnError && is_error_reported()) {
  3993     os::infinite_sleep();
  3995   os::wait_for_keypress_at_exit();
  3997   if (JDK_Version::is_jdk12x_version()) {
  3998     // We are the last thread running, so check if finalizers should be run.
  3999     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  4000     HandleMark rm(thread);
  4001     Universe::run_finalizers_on_exit();
  4002   } else {
  4003     // run Java level shutdown hooks
  4004     thread->invoke_shutdown_hooks();
  4007   before_exit(thread);
  4009   thread->exit(true);
  4011   // Stop VM thread.
  4013     // 4945125 The vm thread comes to a safepoint during exit.
  4014     // GC vm_operations can get caught at the safepoint, and the
  4015     // heap is unparseable if they are caught. Grab the Heap_lock
  4016     // to prevent this. The GC vm_operations will not be able to
  4017     // queue until after the vm thread is dead. After this point,
  4018     // we'll never emerge out of the safepoint before the VM exits.
  4020     MutexLocker ml(Heap_lock);
  4022     VMThread::wait_for_vm_thread_exit();
  4023     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4024     VMThread::destroy();
  4027   // clean up ideal graph printers
  4028 #if defined(COMPILER2) && !defined(PRODUCT)
  4029   IdealGraphPrinter::clean_up();
  4030 #endif
  4032   // Now, all Java threads are gone except daemon threads. Daemon threads
  4033   // running Java code or in VM are stopped by the Safepoint. However,
  4034   // daemon threads executing native code are still running.  But they
  4035   // will be stopped at native=>Java/VM barriers. Note that we can't
  4036   // simply kill or suspend them, as it is inherently deadlock-prone.
  4038 #ifndef PRODUCT
  4039   // disable function tracing at JNI/JVM barriers
  4040   TraceJNICalls = false;
  4041   TraceJVMCalls = false;
  4042   TraceRuntimeCalls = false;
  4043 #endif
  4045   VM_Exit::set_vm_exited();
  4047   notify_vm_shutdown();
  4049   delete thread;
  4051   // exit_globals() will delete tty
  4052   exit_globals();
  4054   return true;
  4058 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4059   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4060   return is_supported_jni_version(version);
  4064 jboolean Threads::is_supported_jni_version(jint version) {
  4065   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4066   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4067   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4068   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4069   return JNI_FALSE;
  4073 void Threads::add(JavaThread* p, bool force_daemon) {
  4074   // The threads lock must be owned at this point
  4075   assert_locked_or_safepoint(Threads_lock);
  4077   // See the comment for this method in thread.hpp for its purpose and
  4078   // why it is called here.
  4079   p->initialize_queues();
  4080   p->set_next(_thread_list);
  4081   _thread_list = p;
  4082   _number_of_threads++;
  4083   oop threadObj = p->threadObj();
  4084   bool daemon = true;
  4085   // Bootstrapping problem: threadObj can be null for initial
  4086   // JavaThread (or for threads attached via JNI)
  4087   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4088     _number_of_non_daemon_threads++;
  4089     daemon = false;
  4092   p->set_safepoint_visible(true);
  4094   ThreadService::add_thread(p, daemon);
  4096   // Possible GC point.
  4097   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4100 void Threads::remove(JavaThread* p) {
  4101   // Extra scope needed for Thread_lock, so we can check
  4102   // that we do not remove thread without safepoint code notice
  4103   { MutexLocker ml(Threads_lock);
  4105     assert(includes(p), "p must be present");
  4107     JavaThread* current = _thread_list;
  4108     JavaThread* prev    = NULL;
  4110     while (current != p) {
  4111       prev    = current;
  4112       current = current->next();
  4115     if (prev) {
  4116       prev->set_next(current->next());
  4117     } else {
  4118       _thread_list = p->next();
  4120     _number_of_threads--;
  4121     oop threadObj = p->threadObj();
  4122     bool daemon = true;
  4123     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4124       _number_of_non_daemon_threads--;
  4125       daemon = false;
  4127       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4128       // on destroy_vm will wake up.
  4129       if (number_of_non_daemon_threads() == 1)
  4130         Threads_lock->notify_all();
  4132     ThreadService::remove_thread(p, daemon);
  4134     // Make sure that safepoint code disregard this thread. This is needed since
  4135     // the thread might mess around with locks after this point. This can cause it
  4136     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4137     // of this thread since it is removed from the queue.
  4138     p->set_terminated_value();
  4140     // Now, this thread is not visible to safepoint
  4141     p->set_safepoint_visible(false);
  4142     // once the thread becomes safepoint invisible, we can not use its per-thread
  4143     // recorder. And Threads::do_threads() no longer walks this thread, so we have
  4144     // to release its per-thread recorder here.
  4145     MemTracker::thread_exiting(p);
  4146   } // unlock Threads_lock
  4148   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4149   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4152 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4153 bool Threads::includes(JavaThread* p) {
  4154   assert(Threads_lock->is_locked(), "sanity check");
  4155   ALL_JAVA_THREADS(q) {
  4156     if (q == p ) {
  4157       return true;
  4160   return false;
  4163 // Operations on the Threads list for GC.  These are not explicitly locked,
  4164 // but the garbage collector must provide a safe context for them to run.
  4165 // In particular, these things should never be called when the Threads_lock
  4166 // is held by some other thread. (Note: the Safepoint abstraction also
  4167 // uses the Threads_lock to gurantee this property. It also makes sure that
  4168 // all threads gets blocked when exiting or starting).
  4170 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4171   ALL_JAVA_THREADS(p) {
  4172     p->oops_do(f, cld_f, cf);
  4174   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4177 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
  4178   // Introduce a mechanism allowing parallel threads to claim threads as
  4179   // root groups.  Overhead should be small enough to use all the time,
  4180   // even in sequential code.
  4181   SharedHeap* sh = SharedHeap::heap();
  4182   // Cannot yet substitute active_workers for n_par_threads
  4183   // because of G1CollectedHeap::verify() use of
  4184   // SharedHeap::process_roots().  n_par_threads == 0 will
  4185   // turn off parallelism in process_roots while active_workers
  4186   // is being used for parallelism elsewhere.
  4187   bool is_par = sh->n_par_threads() > 0;
  4188   assert(!is_par ||
  4189          (SharedHeap::heap()->n_par_threads() ==
  4190           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4191   int cp = SharedHeap::heap()->strong_roots_parity();
  4192   ALL_JAVA_THREADS(p) {
  4193     if (p->claim_oops_do(is_par, cp)) {
  4194       p->oops_do(f, cld_f, cf);
  4197   VMThread* vmt = VMThread::vm_thread();
  4198   if (vmt->claim_oops_do(is_par, cp)) {
  4199     vmt->oops_do(f, cld_f, cf);
  4203 #if INCLUDE_ALL_GCS
  4204 // Used by ParallelScavenge
  4205 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4206   ALL_JAVA_THREADS(p) {
  4207     q->enqueue(new ThreadRootsTask(p));
  4209   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4212 // Used by Parallel Old
  4213 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4214   ALL_JAVA_THREADS(p) {
  4215     q->enqueue(new ThreadRootsMarkingTask(p));
  4217   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4219 #endif // INCLUDE_ALL_GCS
  4221 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4222   ALL_JAVA_THREADS(p) {
  4223     p->nmethods_do(cf);
  4225   VMThread::vm_thread()->nmethods_do(cf);
  4228 void Threads::metadata_do(void f(Metadata*)) {
  4229   ALL_JAVA_THREADS(p) {
  4230     p->metadata_do(f);
  4234 void Threads::gc_epilogue() {
  4235   ALL_JAVA_THREADS(p) {
  4236     p->gc_epilogue();
  4240 void Threads::gc_prologue() {
  4241   ALL_JAVA_THREADS(p) {
  4242     p->gc_prologue();
  4246 void Threads::deoptimized_wrt_marked_nmethods() {
  4247   ALL_JAVA_THREADS(p) {
  4248     p->deoptimized_wrt_marked_nmethods();
  4253 // Get count Java threads that are waiting to enter the specified monitor.
  4254 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4255   address monitor, bool doLock) {
  4256   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4257     "must grab Threads_lock or be at safepoint");
  4258   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4260   int i = 0;
  4262     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4263     ALL_JAVA_THREADS(p) {
  4264       if (p->is_Compiler_thread()) continue;
  4266       address pending = (address)p->current_pending_monitor();
  4267       if (pending == monitor) {             // found a match
  4268         if (i < count) result->append(p);   // save the first count matches
  4269         i++;
  4273   return result;
  4277 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4278   assert(doLock ||
  4279          Threads_lock->owned_by_self() ||
  4280          SafepointSynchronize::is_at_safepoint(),
  4281          "must grab Threads_lock or be at safepoint");
  4283   // NULL owner means not locked so we can skip the search
  4284   if (owner == NULL) return NULL;
  4287     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4288     ALL_JAVA_THREADS(p) {
  4289       // first, see if owner is the address of a Java thread
  4290       if (owner == (address)p) return p;
  4293   // Cannot assert on lack of success here since this function may be
  4294   // used by code that is trying to report useful problem information
  4295   // like deadlock detection.
  4296   if (UseHeavyMonitors) return NULL;
  4298   //
  4299   // If we didn't find a matching Java thread and we didn't force use of
  4300   // heavyweight monitors, then the owner is the stack address of the
  4301   // Lock Word in the owning Java thread's stack.
  4302   //
  4303   JavaThread* the_owner = NULL;
  4305     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4306     ALL_JAVA_THREADS(q) {
  4307       if (q->is_lock_owned(owner)) {
  4308         the_owner = q;
  4309         break;
  4313   // cannot assert on lack of success here; see above comment
  4314   return the_owner;
  4317 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4318 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4319   char buf[32];
  4320   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
  4322   st->print_cr("Full thread dump %s (%s %s):",
  4323                 Abstract_VM_Version::vm_name(),
  4324                 Abstract_VM_Version::vm_release(),
  4325                 Abstract_VM_Version::vm_info_string()
  4326                );
  4327   st->cr();
  4329 #if INCLUDE_ALL_GCS
  4330   // Dump concurrent locks
  4331   ConcurrentLocksDump concurrent_locks;
  4332   if (print_concurrent_locks) {
  4333     concurrent_locks.dump_at_safepoint();
  4335 #endif // INCLUDE_ALL_GCS
  4337   ALL_JAVA_THREADS(p) {
  4338     ResourceMark rm;
  4339     p->print_on(st);
  4340     if (print_stacks) {
  4341       if (internal_format) {
  4342         p->trace_stack();
  4343       } else {
  4344         p->print_stack_on(st);
  4347     st->cr();
  4348 #if INCLUDE_ALL_GCS
  4349     if (print_concurrent_locks) {
  4350       concurrent_locks.print_locks_on(p, st);
  4352 #endif // INCLUDE_ALL_GCS
  4355   VMThread::vm_thread()->print_on(st);
  4356   st->cr();
  4357   Universe::heap()->print_gc_threads_on(st);
  4358   WatcherThread* wt = WatcherThread::watcher_thread();
  4359   if (wt != NULL) {
  4360     wt->print_on(st);
  4361     st->cr();
  4363   CompileBroker::print_compiler_threads_on(st);
  4364   st->flush();
  4367 // Threads::print_on_error() is called by fatal error handler. It's possible
  4368 // that VM is not at safepoint and/or current thread is inside signal handler.
  4369 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4370 // memory (even in resource area), it might deadlock the error handler.
  4371 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4372   bool found_current = false;
  4373   st->print_cr("Java Threads: ( => current thread )");
  4374   ALL_JAVA_THREADS(thread) {
  4375     bool is_current = (current == thread);
  4376     found_current = found_current || is_current;
  4378     st->print("%s", is_current ? "=>" : "  ");
  4380     st->print(PTR_FORMAT, thread);
  4381     st->print(" ");
  4382     thread->print_on_error(st, buf, buflen);
  4383     st->cr();
  4385   st->cr();
  4387   st->print_cr("Other Threads:");
  4388   if (VMThread::vm_thread()) {
  4389     bool is_current = (current == VMThread::vm_thread());
  4390     found_current = found_current || is_current;
  4391     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4393     st->print(PTR_FORMAT, VMThread::vm_thread());
  4394     st->print(" ");
  4395     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4396     st->cr();
  4398   WatcherThread* wt = WatcherThread::watcher_thread();
  4399   if (wt != NULL) {
  4400     bool is_current = (current == wt);
  4401     found_current = found_current || is_current;
  4402     st->print("%s", is_current ? "=>" : "  ");
  4404     st->print(PTR_FORMAT, wt);
  4405     st->print(" ");
  4406     wt->print_on_error(st, buf, buflen);
  4407     st->cr();
  4409   if (!found_current) {
  4410     st->cr();
  4411     st->print("=>" PTR_FORMAT " (exited) ", current);
  4412     current->print_on_error(st, buf, buflen);
  4413     st->cr();
  4417 // Internal SpinLock and Mutex
  4418 // Based on ParkEvent
  4420 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4421 //
  4422 // We employ SpinLocks _only for low-contention, fixed-length
  4423 // short-duration critical sections where we're concerned
  4424 // about native mutex_t or HotSpot Mutex:: latency.
  4425 // The mux construct provides a spin-then-block mutual exclusion
  4426 // mechanism.
  4427 //
  4428 // Testing has shown that contention on the ListLock guarding gFreeList
  4429 // is common.  If we implement ListLock as a simple SpinLock it's common
  4430 // for the JVM to devolve to yielding with little progress.  This is true
  4431 // despite the fact that the critical sections protected by ListLock are
  4432 // extremely short.
  4433 //
  4434 // TODO-FIXME: ListLock should be of type SpinLock.
  4435 // We should make this a 1st-class type, integrated into the lock
  4436 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4437 // should have sufficient padding to avoid false-sharing and excessive
  4438 // cache-coherency traffic.
  4441 typedef volatile int SpinLockT ;
  4443 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4444   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4445      return ;   // normal fast-path return
  4448   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4449   TEVENT (SpinAcquire - ctx) ;
  4450   int ctr = 0 ;
  4451   int Yields = 0 ;
  4452   for (;;) {
  4453      while (*adr != 0) {
  4454         ++ctr ;
  4455         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4456            if (Yields > 5) {
  4457              os::naked_short_sleep(1);
  4458            } else {
  4459              os::NakedYield() ;
  4460              ++Yields ;
  4462         } else {
  4463            SpinPause() ;
  4466      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4470 void Thread::SpinRelease (volatile int * adr) {
  4471   assert (*adr != 0, "invariant") ;
  4472   OrderAccess::fence() ;      // guarantee at least release consistency.
  4473   // Roach-motel semantics.
  4474   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4475   // but prior LDs and STs within the critical section can't be allowed
  4476   // to reorder or float past the ST that releases the lock.
  4477   *adr = 0 ;
  4480 // muxAcquire and muxRelease:
  4481 //
  4482 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4483 //    The LSB of the word is set IFF the lock is held.
  4484 //    The remainder of the word points to the head of a singly-linked list
  4485 //    of threads blocked on the lock.
  4486 //
  4487 // *  The current implementation of muxAcquire-muxRelease uses its own
  4488 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4489 //    minimizing the peak number of extant ParkEvent instances then
  4490 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4491 //    as certain invariants were satisfied.  Specifically, care would need
  4492 //    to be taken with regards to consuming unpark() "permits".
  4493 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4494 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4495 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4496 //    consume an unpark() permit intended for monitorenter, for instance.
  4497 //    One way around this would be to widen the restricted-range semaphore
  4498 //    implemented in park().  Another alternative would be to provide
  4499 //    multiple instances of the PlatformEvent() for each thread.  One
  4500 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4501 //
  4502 // *  Usage:
  4503 //    -- Only as leaf locks
  4504 //    -- for short-term locking only as muxAcquire does not perform
  4505 //       thread state transitions.
  4506 //
  4507 // Alternatives:
  4508 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4509 //    but with parking or spin-then-park instead of pure spinning.
  4510 // *  Use Taura-Oyama-Yonenzawa locks.
  4511 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4512 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4513 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4514 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4515 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4516 //    boundaries by using placement-new.
  4517 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4518 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4519 //    The validity of the backlinks must be ratified before we trust the value.
  4520 //    If the backlinks are invalid the exiting thread must back-track through the
  4521 //    the forward links, which are always trustworthy.
  4522 // *  Add a successor indication.  The LockWord is currently encoded as
  4523 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4524 //    to provide the usual futile-wakeup optimization.
  4525 //    See RTStt for details.
  4526 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4527 //
  4530 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4531 enum MuxBits { LOCKBIT = 1 } ;
  4533 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4534   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4535   if (w == 0) return ;
  4536   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4537      return ;
  4540   TEVENT (muxAcquire - Contention) ;
  4541   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4542   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4543   for (;;) {
  4544      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4546      // Optional spin phase: spin-then-park strategy
  4547      while (--its >= 0) {
  4548        w = *Lock ;
  4549        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4550           return ;
  4554      Self->reset() ;
  4555      Self->OnList = intptr_t(Lock) ;
  4556      // The following fence() isn't _strictly necessary as the subsequent
  4557      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4558      OrderAccess::fence();
  4559      for (;;) {
  4560         w = *Lock ;
  4561         if ((w & LOCKBIT) == 0) {
  4562             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4563                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4564                 return ;
  4566             continue ;      // Interference -- *Lock changed -- Just retry
  4568         assert (w & LOCKBIT, "invariant") ;
  4569         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4570         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4573      while (Self->OnList != 0) {
  4574         Self->park() ;
  4579 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4580   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4581   if (w == 0) return ;
  4582   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4583     return ;
  4586   TEVENT (muxAcquire - Contention) ;
  4587   ParkEvent * ReleaseAfter = NULL ;
  4588   if (ev == NULL) {
  4589     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4591   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4592   for (;;) {
  4593     guarantee (ev->OnList == 0, "invariant") ;
  4594     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4596     // Optional spin phase: spin-then-park strategy
  4597     while (--its >= 0) {
  4598       w = *Lock ;
  4599       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4600         if (ReleaseAfter != NULL) {
  4601           ParkEvent::Release (ReleaseAfter) ;
  4603         return ;
  4607     ev->reset() ;
  4608     ev->OnList = intptr_t(Lock) ;
  4609     // The following fence() isn't _strictly necessary as the subsequent
  4610     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4611     OrderAccess::fence();
  4612     for (;;) {
  4613       w = *Lock ;
  4614       if ((w & LOCKBIT) == 0) {
  4615         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4616           ev->OnList = 0 ;
  4617           // We call ::Release while holding the outer lock, thus
  4618           // artificially lengthening the critical section.
  4619           // Consider deferring the ::Release() until the subsequent unlock(),
  4620           // after we've dropped the outer lock.
  4621           if (ReleaseAfter != NULL) {
  4622             ParkEvent::Release (ReleaseAfter) ;
  4624           return ;
  4626         continue ;      // Interference -- *Lock changed -- Just retry
  4628       assert (w & LOCKBIT, "invariant") ;
  4629       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4630       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4633     while (ev->OnList != 0) {
  4634       ev->park() ;
  4639 // Release() must extract a successor from the list and then wake that thread.
  4640 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4641 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4642 // Release() would :
  4643 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4644 // (B) Extract a successor from the private list "in-hand"
  4645 // (C) attempt to CAS() the residual back into *Lock over null.
  4646 //     If there were any newly arrived threads and the CAS() would fail.
  4647 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4648 //     with the RATs and repeat as needed.  Alternately, Release() might
  4649 //     detach and extract a successor, but then pass the residual list to the wakee.
  4650 //     The wakee would be responsible for reattaching and remerging before it
  4651 //     competed for the lock.
  4652 //
  4653 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4654 // multiple concurrent pushers, but only one popper or detacher.
  4655 // This implementation pops from the head of the list.  This is unfair,
  4656 // but tends to provide excellent throughput as hot threads remain hot.
  4657 // (We wake recently run threads first).
  4659 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4660   for (;;) {
  4661     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4662     assert (w & LOCKBIT, "invariant") ;
  4663     if (w == LOCKBIT) return ;
  4664     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4665     assert (List != NULL, "invariant") ;
  4666     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4667     ParkEvent * nxt = List->ListNext ;
  4669     // The following CAS() releases the lock and pops the head element.
  4670     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4671       continue ;
  4673     List->OnList = 0 ;
  4674     OrderAccess::fence() ;
  4675     List->unpark () ;
  4676     return ;
  4681 void Threads::verify() {
  4682   ALL_JAVA_THREADS(p) {
  4683     p->verify();
  4685   VMThread* thread = VMThread::vm_thread();
  4686   if (thread != NULL) thread->verify();

mercurial