src/share/vm/runtime/safepoint.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 6911
ce8f6bb717c9
child 7535
7ae4e26cb1e0
child 8199
5d96c022391c
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "memory/resourceArea.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/compilationPolicy.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/frame.inline.hpp"
    42 #include "runtime/interfaceSupport.hpp"
    43 #include "runtime/mutexLocker.hpp"
    44 #include "runtime/orderAccess.inline.hpp"
    45 #include "runtime/osThread.hpp"
    46 #include "runtime/safepoint.hpp"
    47 #include "runtime/signature.hpp"
    48 #include "runtime/stubCodeGenerator.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/sweeper.hpp"
    51 #include "runtime/synchronizer.hpp"
    52 #include "runtime/thread.inline.hpp"
    53 #include "services/runtimeService.hpp"
    54 #include "utilities/events.hpp"
    55 #include "utilities/macros.hpp"
    56 #ifdef TARGET_ARCH_x86
    57 # include "nativeInst_x86.hpp"
    58 # include "vmreg_x86.inline.hpp"
    59 #endif
    60 #ifdef TARGET_ARCH_sparc
    61 # include "nativeInst_sparc.hpp"
    62 # include "vmreg_sparc.inline.hpp"
    63 #endif
    64 #ifdef TARGET_ARCH_zero
    65 # include "nativeInst_zero.hpp"
    66 # include "vmreg_zero.inline.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_arm
    69 # include "nativeInst_arm.hpp"
    70 # include "vmreg_arm.inline.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_ppc
    73 # include "nativeInst_ppc.hpp"
    74 # include "vmreg_ppc.inline.hpp"
    75 #endif
    76 #if INCLUDE_ALL_GCS
    77 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    78 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
    79 #endif // INCLUDE_ALL_GCS
    80 #ifdef COMPILER1
    81 #include "c1/c1_globals.hpp"
    82 #endif
    84 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    86 // --------------------------------------------------------------------------------------------------
    87 // Implementation of Safepoint begin/end
    89 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    90 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    91 volatile int SafepointSynchronize::_safepoint_counter = 0;
    92 int SafepointSynchronize::_current_jni_active_count = 0;
    93 long  SafepointSynchronize::_end_of_last_safepoint = 0;
    94 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
    95 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
    96 static bool timeout_error_printed = false;
    98 // Roll all threads forward to a safepoint and suspend them all
    99 void SafepointSynchronize::begin() {
   101   Thread* myThread = Thread::current();
   102   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   104   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   105     _safepoint_begin_time = os::javaTimeNanos();
   106     _ts_of_current_safepoint = tty->time_stamp().seconds();
   107   }
   109 #if INCLUDE_ALL_GCS
   110   if (UseConcMarkSweepGC) {
   111     // In the future we should investigate whether CMS can use the
   112     // more-general mechanism below.  DLD (01/05).
   113     ConcurrentMarkSweepThread::synchronize(false);
   114   } else if (UseG1GC) {
   115     SuspendibleThreadSet::synchronize();
   116   }
   117 #endif // INCLUDE_ALL_GCS
   119   // By getting the Threads_lock, we assure that no threads are about to start or
   120   // exit. It is released again in SafepointSynchronize::end().
   121   Threads_lock->lock();
   123   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   125   int nof_threads = Threads::number_of_threads();
   127   if (TraceSafepoint) {
   128     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   129   }
   131   RuntimeService::record_safepoint_begin();
   133   MutexLocker mu(Safepoint_lock);
   135   // Reset the count of active JNI critical threads
   136   _current_jni_active_count = 0;
   138   // Set number of threads to wait for, before we initiate the callbacks
   139   _waiting_to_block = nof_threads;
   140   TryingToBlock     = 0 ;
   141   int still_running = nof_threads;
   143   // Save the starting time, so that it can be compared to see if this has taken
   144   // too long to complete.
   145   jlong safepoint_limit_time;
   146   timeout_error_printed = false;
   148   // PrintSafepointStatisticsTimeout can be specified separately. When
   149   // specified, PrintSafepointStatistics will be set to true in
   150   // deferred_initialize_stat method. The initialization has to be done
   151   // early enough to avoid any races. See bug 6880029 for details.
   152   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   153     deferred_initialize_stat();
   154   }
   156   // Begin the process of bringing the system to a safepoint.
   157   // Java threads can be in several different states and are
   158   // stopped by different mechanisms:
   159   //
   160   //  1. Running interpreted
   161   //     The interpeter dispatch table is changed to force it to
   162   //     check for a safepoint condition between bytecodes.
   163   //  2. Running in native code
   164   //     When returning from the native code, a Java thread must check
   165   //     the safepoint _state to see if we must block.  If the
   166   //     VM thread sees a Java thread in native, it does
   167   //     not wait for this thread to block.  The order of the memory
   168   //     writes and reads of both the safepoint state and the Java
   169   //     threads state is critical.  In order to guarantee that the
   170   //     memory writes are serialized with respect to each other,
   171   //     the VM thread issues a memory barrier instruction
   172   //     (on MP systems).  In order to avoid the overhead of issuing
   173   //     a memory barrier for each Java thread making native calls, each Java
   174   //     thread performs a write to a single memory page after changing
   175   //     the thread state.  The VM thread performs a sequence of
   176   //     mprotect OS calls which forces all previous writes from all
   177   //     Java threads to be serialized.  This is done in the
   178   //     os::serialize_thread_states() call.  This has proven to be
   179   //     much more efficient than executing a membar instruction
   180   //     on every call to native code.
   181   //  3. Running compiled Code
   182   //     Compiled code reads a global (Safepoint Polling) page that
   183   //     is set to fault if we are trying to get to a safepoint.
   184   //  4. Blocked
   185   //     A thread which is blocked will not be allowed to return from the
   186   //     block condition until the safepoint operation is complete.
   187   //  5. In VM or Transitioning between states
   188   //     If a Java thread is currently running in the VM or transitioning
   189   //     between states, the safepointing code will wait for the thread to
   190   //     block itself when it attempts transitions to a new state.
   191   //
   192   _state            = _synchronizing;
   193   OrderAccess::fence();
   195   // Flush all thread states to memory
   196   if (!UseMembar) {
   197     os::serialize_thread_states();
   198   }
   200   // Make interpreter safepoint aware
   201   Interpreter::notice_safepoints();
   203   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   204     // Make polling safepoint aware
   205     guarantee (PageArmed == 0, "invariant") ;
   206     PageArmed = 1 ;
   207     os::make_polling_page_unreadable();
   208   }
   210   // Consider using active_processor_count() ... but that call is expensive.
   211   int ncpus = os::processor_count() ;
   213 #ifdef ASSERT
   214   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   215     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   216     // Clear the visited flag to ensure that the critical counts are collected properly.
   217     cur->set_visited_for_critical_count(false);
   218   }
   219 #endif // ASSERT
   221   if (SafepointTimeout)
   222     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   224   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   225   unsigned int iterations = 0;
   226   int steps = 0 ;
   227   while(still_running > 0) {
   228     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   229       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   230       ThreadSafepointState *cur_state = cur->safepoint_state();
   231       if (cur_state->is_running()) {
   232         cur_state->examine_state_of_thread();
   233         if (!cur_state->is_running()) {
   234            still_running--;
   235            // consider adjusting steps downward:
   236            //   steps = 0
   237            //   steps -= NNN
   238            //   steps >>= 1
   239            //   steps = MIN(steps, 2000-100)
   240            //   if (iterations != 0) steps -= NNN
   241         }
   242         if (TraceSafepoint && Verbose) cur_state->print();
   243       }
   244     }
   246     if (PrintSafepointStatistics && iterations == 0) {
   247       begin_statistics(nof_threads, still_running);
   248     }
   250     if (still_running > 0) {
   251       // Check for if it takes to long
   252       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   253         print_safepoint_timeout(_spinning_timeout);
   254       }
   256       // Spin to avoid context switching.
   257       // There's a tension between allowing the mutators to run (and rendezvous)
   258       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   259       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   260       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   261       // Blocking or yielding incur their own penalties in the form of context switching
   262       // and the resultant loss of $ residency.
   263       //
   264       // Further complicating matters is that yield() does not work as naively expected
   265       // on many platforms -- yield() does not guarantee that any other ready threads
   266       // will run.   As such we revert yield_all() after some number of iterations.
   267       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   268       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   269       // can actually increase the time it takes the VM thread to detect that a system-wide
   270       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   271       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   272       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   273       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   274       // will eventually wake up and detect that all mutators are safe, at which point
   275       // we'll again make progress.
   276       //
   277       // Beware too that that the VMThread typically runs at elevated priority.
   278       // Its default priority is higher than the default mutator priority.
   279       // Obviously, this complicates spinning.
   280       //
   281       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   282       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   283       //
   284       // See the comments in synchronizer.cpp for additional remarks on spinning.
   285       //
   286       // In the future we might:
   287       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   288       //    This is tricky as the path used by a thread exiting the JVM (say on
   289       //    on JNI call-out) simply stores into its state field.  The burden
   290       //    is placed on the VM thread, which must poll (spin).
   291       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   292       //    we might aggressively scan the stacks of threads that are already safe.
   293       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   294       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   295       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   296       // 5. Check system saturation.  If the system is not fully saturated then
   297       //    simply spin and avoid sleep/yield.
   298       // 6. As still-running mutators rendezvous they could unpark the sleeping
   299       //    VMthread.  This works well for still-running mutators that become
   300       //    safe.  The VMthread must still poll for mutators that call-out.
   301       // 7. Drive the policy on time-since-begin instead of iterations.
   302       // 8. Consider making the spin duration a function of the # of CPUs:
   303       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   304       //    Alternately, instead of counting iterations of the outer loop
   305       //    we could count the # of threads visited in the inner loop, above.
   306       // 9. On windows consider using the return value from SwitchThreadTo()
   307       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   309       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   310          guarantee (PageArmed == 0, "invariant") ;
   311          PageArmed = 1 ;
   312          os::make_polling_page_unreadable();
   313       }
   315       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   316       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   317       ++steps ;
   318       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   319         SpinPause() ;     // MP-Polite spin
   320       } else
   321       if (steps < DeferThrSuspendLoopCount) {
   322         os::NakedYield() ;
   323       } else {
   324         os::yield_all(steps) ;
   325         // Alternately, the VM thread could transiently depress its scheduling priority or
   326         // transiently increase the priority of the tardy mutator(s).
   327       }
   329       iterations ++ ;
   330     }
   331     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   332   }
   333   assert(still_running == 0, "sanity check");
   335   if (PrintSafepointStatistics) {
   336     update_statistics_on_spin_end();
   337   }
   339   // wait until all threads are stopped
   340   while (_waiting_to_block > 0) {
   341     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   342     if (!SafepointTimeout || timeout_error_printed) {
   343       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   344     } else {
   345       // Compute remaining time
   346       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   348       // If there is no remaining time, then there is an error
   349       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   350         print_safepoint_timeout(_blocking_timeout);
   351       }
   352     }
   353   }
   354   assert(_waiting_to_block == 0, "sanity check");
   356 #ifndef PRODUCT
   357   if (SafepointTimeout) {
   358     jlong current_time = os::javaTimeNanos();
   359     if (safepoint_limit_time < current_time) {
   360       tty->print_cr("# SafepointSynchronize: Finished after "
   361                     INT64_FORMAT_W(6) " ms",
   362                     ((current_time - safepoint_limit_time) / MICROUNITS +
   363                      SafepointTimeoutDelay));
   364     }
   365   }
   366 #endif
   368   assert((_safepoint_counter & 0x1) == 0, "must be even");
   369   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   370   _safepoint_counter ++;
   372   // Record state
   373   _state = _synchronized;
   375   OrderAccess::fence();
   377 #ifdef ASSERT
   378   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   379     // make sure all the threads were visited
   380     assert(cur->was_visited_for_critical_count(), "missed a thread");
   381   }
   382 #endif // ASSERT
   384   // Update the count of active JNI critical regions
   385   GC_locker::set_jni_lock_count(_current_jni_active_count);
   387   if (TraceSafepoint) {
   388     VM_Operation *op = VMThread::vm_operation();
   389     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   390   }
   392   RuntimeService::record_safepoint_synchronized();
   393   if (PrintSafepointStatistics) {
   394     update_statistics_on_sync_end(os::javaTimeNanos());
   395   }
   397   // Call stuff that needs to be run when a safepoint is just about to be completed
   398   do_cleanup_tasks();
   400   if (PrintSafepointStatistics) {
   401     // Record how much time spend on the above cleanup tasks
   402     update_statistics_on_cleanup_end(os::javaTimeNanos());
   403   }
   404 }
   406 // Wake up all threads, so they are ready to resume execution after the safepoint
   407 // operation has been carried out
   408 void SafepointSynchronize::end() {
   410   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   411   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   412   _safepoint_counter ++;
   413   // memory fence isn't required here since an odd _safepoint_counter
   414   // value can do no harm and a fence is issued below anyway.
   416   DEBUG_ONLY(Thread* myThread = Thread::current();)
   417   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   419   if (PrintSafepointStatistics) {
   420     end_statistics(os::javaTimeNanos());
   421   }
   423 #ifdef ASSERT
   424   // A pending_exception cannot be installed during a safepoint.  The threads
   425   // may install an async exception after they come back from a safepoint into
   426   // pending_exception after they unblock.  But that should happen later.
   427   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   428     assert (!(cur->has_pending_exception() &&
   429               cur->safepoint_state()->is_at_poll_safepoint()),
   430             "safepoint installed a pending exception");
   431   }
   432 #endif // ASSERT
   434   if (PageArmed) {
   435     // Make polling safepoint aware
   436     os::make_polling_page_readable();
   437     PageArmed = 0 ;
   438   }
   440   // Remove safepoint check from interpreter
   441   Interpreter::ignore_safepoints();
   443   {
   444     MutexLocker mu(Safepoint_lock);
   446     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   448     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   449     // when they get restarted.
   450     _state = _not_synchronized;
   451     OrderAccess::fence();
   453     if (TraceSafepoint) {
   454        tty->print_cr("Leaving safepoint region");
   455     }
   457     // Start suspended threads
   458     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   459       // A problem occurring on Solaris is when attempting to restart threads
   460       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   461       // to the next one (since it has been running the longest).  We then have
   462       // to wait for a cpu to become available before we can continue restarting
   463       // threads.
   464       // FIXME: This causes the performance of the VM to degrade when active and with
   465       // large numbers of threads.  Apparently this is due to the synchronous nature
   466       // of suspending threads.
   467       //
   468       // TODO-FIXME: the comments above are vestigial and no longer apply.
   469       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   470       if (VMThreadHintNoPreempt) {
   471         os::hint_no_preempt();
   472       }
   473       ThreadSafepointState* cur_state = current->safepoint_state();
   474       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   475       cur_state->restart();
   476       assert(cur_state->is_running(), "safepoint state has not been reset");
   477     }
   479     RuntimeService::record_safepoint_end();
   481     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   482     // blocked in signal_thread_blocked
   483     Threads_lock->unlock();
   485   }
   486 #if INCLUDE_ALL_GCS
   487   // If there are any concurrent GC threads resume them.
   488   if (UseConcMarkSweepGC) {
   489     ConcurrentMarkSweepThread::desynchronize(false);
   490   } else if (UseG1GC) {
   491     SuspendibleThreadSet::desynchronize();
   492   }
   493 #endif // INCLUDE_ALL_GCS
   494   // record this time so VMThread can keep track how much time has elasped
   495   // since last safepoint.
   496   _end_of_last_safepoint = os::javaTimeMillis();
   497 }
   499 bool SafepointSynchronize::is_cleanup_needed() {
   500   // Need a safepoint if some inline cache buffers is non-empty
   501   if (!InlineCacheBuffer::is_empty()) return true;
   502   return false;
   503 }
   507 // Various cleaning tasks that should be done periodically at safepoints
   508 void SafepointSynchronize::do_cleanup_tasks() {
   509   {
   510     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   511     ObjectSynchronizer::deflate_idle_monitors();
   512   }
   514   {
   515     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   516     InlineCacheBuffer::update_inline_caches();
   517   }
   518   {
   519     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   520     CompilationPolicy::policy()->do_safepoint_work();
   521   }
   523   {
   524     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
   525     NMethodSweeper::mark_active_nmethods();
   526   }
   528   if (SymbolTable::needs_rehashing()) {
   529     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
   530     SymbolTable::rehash_table();
   531   }
   533   if (StringTable::needs_rehashing()) {
   534     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
   535     StringTable::rehash_table();
   536   }
   538   // rotate log files?
   539   if (UseGCLogFileRotation) {
   540     gclog_or_tty->rotate_log(false);
   541   }
   543   {
   544     // CMS delays purging the CLDG until the beginning of the next safepoint and to
   545     // make sure concurrent sweep is done
   546     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
   547     ClassLoaderDataGraph::purge_if_needed();
   548   }
   549 }
   552 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   553   switch(state) {
   554   case _thread_in_native:
   555     // native threads are safe if they have no java stack or have walkable stack
   556     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   558    // blocked threads should have already have walkable stack
   559   case _thread_blocked:
   560     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   561     return true;
   563   default:
   564     return false;
   565   }
   566 }
   569 // See if the thread is running inside a lazy critical native and
   570 // update the thread critical count if so.  Also set a suspend flag to
   571 // cause the native wrapper to return into the JVM to do the unlock
   572 // once the native finishes.
   573 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   574   if (state == _thread_in_native &&
   575       thread->has_last_Java_frame() &&
   576       thread->frame_anchor()->walkable()) {
   577     // This thread might be in a critical native nmethod so look at
   578     // the top of the stack and increment the critical count if it
   579     // is.
   580     frame wrapper_frame = thread->last_frame();
   581     CodeBlob* stub_cb = wrapper_frame.cb();
   582     if (stub_cb != NULL &&
   583         stub_cb->is_nmethod() &&
   584         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   585       // A thread could potentially be in a critical native across
   586       // more than one safepoint, so only update the critical state on
   587       // the first one.  When it returns it will perform the unlock.
   588       if (!thread->do_critical_native_unlock()) {
   589 #ifdef ASSERT
   590         if (!thread->in_critical()) {
   591           GC_locker::increment_debug_jni_lock_count();
   592         }
   593 #endif
   594         thread->enter_critical();
   595         // Make sure the native wrapper calls back on return to
   596         // perform the needed critical unlock.
   597         thread->set_critical_native_unlock();
   598       }
   599     }
   600   }
   601 }
   605 // -------------------------------------------------------------------------------------------------------
   606 // Implementation of Safepoint callback point
   608 void SafepointSynchronize::block(JavaThread *thread) {
   609   assert(thread != NULL, "thread must be set");
   610   assert(thread->is_Java_thread(), "not a Java thread");
   612   // Threads shouldn't block if they are in the middle of printing, but...
   613   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   615   // Only bail from the block() call if the thread is gone from the
   616   // thread list; starting to exit should still block.
   617   if (thread->is_terminated()) {
   618      // block current thread if we come here from native code when VM is gone
   619      thread->block_if_vm_exited();
   621      // otherwise do nothing
   622      return;
   623   }
   625   JavaThreadState state = thread->thread_state();
   626   thread->frame_anchor()->make_walkable(thread);
   628   // Check that we have a valid thread_state at this point
   629   switch(state) {
   630     case _thread_in_vm_trans:
   631     case _thread_in_Java:        // From compiled code
   633       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   634       // we pretend we are still in the VM.
   635       thread->set_thread_state(_thread_in_vm);
   637       if (is_synchronizing()) {
   638          Atomic::inc (&TryingToBlock) ;
   639       }
   641       // We will always be holding the Safepoint_lock when we are examine the state
   642       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   643       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   644       Safepoint_lock->lock_without_safepoint_check();
   645       if (is_synchronizing()) {
   646         // Decrement the number of threads to wait for and signal vm thread
   647         assert(_waiting_to_block > 0, "sanity check");
   648         _waiting_to_block--;
   649         thread->safepoint_state()->set_has_called_back(true);
   651         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   652         if (thread->in_critical()) {
   653           // Notice that this thread is in a critical section
   654           increment_jni_active_count();
   655         }
   657         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   658         if (_waiting_to_block == 0) {
   659           Safepoint_lock->notify_all();
   660         }
   661       }
   663       // We transition the thread to state _thread_blocked here, but
   664       // we can't do our usual check for external suspension and then
   665       // self-suspend after the lock_without_safepoint_check() call
   666       // below because we are often called during transitions while
   667       // we hold different locks. That would leave us suspended while
   668       // holding a resource which results in deadlocks.
   669       thread->set_thread_state(_thread_blocked);
   670       Safepoint_lock->unlock();
   672       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   673       // the entire safepoint, the threads will all line up here during the safepoint.
   674       Threads_lock->lock_without_safepoint_check();
   675       // restore original state. This is important if the thread comes from compiled code, so it
   676       // will continue to execute with the _thread_in_Java state.
   677       thread->set_thread_state(state);
   678       Threads_lock->unlock();
   679       break;
   681     case _thread_in_native_trans:
   682     case _thread_blocked_trans:
   683     case _thread_new_trans:
   684       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   685         thread->print_thread_state();
   686         fatal("Deadlock in safepoint code.  "
   687               "Should have called back to the VM before blocking.");
   688       }
   690       // We transition the thread to state _thread_blocked here, but
   691       // we can't do our usual check for external suspension and then
   692       // self-suspend after the lock_without_safepoint_check() call
   693       // below because we are often called during transitions while
   694       // we hold different locks. That would leave us suspended while
   695       // holding a resource which results in deadlocks.
   696       thread->set_thread_state(_thread_blocked);
   698       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   699       // the safepoint code might still be waiting for it to block. We need to change the state here,
   700       // so it can see that it is at a safepoint.
   702       // Block until the safepoint operation is completed.
   703       Threads_lock->lock_without_safepoint_check();
   705       // Restore state
   706       thread->set_thread_state(state);
   708       Threads_lock->unlock();
   709       break;
   711     default:
   712      fatal(err_msg("Illegal threadstate encountered: %d", state));
   713   }
   715   // Check for pending. async. exceptions or suspends - except if the
   716   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   717   // is called last since it grabs a lock and we only want to do that when
   718   // we must.
   719   //
   720   // Note: we never deliver an async exception at a polling point as the
   721   // compiler may not have an exception handler for it. The polling
   722   // code will notice the async and deoptimize and the exception will
   723   // be delivered. (Polling at a return point is ok though). Sure is
   724   // a lot of bother for a deprecated feature...
   725   //
   726   // We don't deliver an async exception if the thread state is
   727   // _thread_in_native_trans so JNI functions won't be called with
   728   // a surprising pending exception. If the thread state is going back to java,
   729   // async exception is checked in check_special_condition_for_native_trans().
   731   if (state != _thread_blocked_trans &&
   732       state != _thread_in_vm_trans &&
   733       thread->has_special_runtime_exit_condition()) {
   734     thread->handle_special_runtime_exit_condition(
   735       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   736   }
   737 }
   739 // ------------------------------------------------------------------------------------------------------
   740 // Exception handlers
   742 #ifndef PRODUCT
   744 #ifdef SPARC
   746 #ifdef _LP64
   747 #define PTR_PAD ""
   748 #else
   749 #define PTR_PAD "        "
   750 #endif
   752 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   753   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
   754   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   755                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   756                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   757 }
   759 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   760   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
   761   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   762                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   763                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   764 }
   766 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   767 #ifdef _LP64
   768   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   769   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   770 #else
   771   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   772   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   773 #endif
   774   tty->print_cr("---SP---|");
   775   for( int i=0; i<16; i++ ) {
   776     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   777   tty->print_cr("--------|");
   778   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   779     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   780   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   781   tty->print_cr("--------|");
   782   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   783   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   784   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   785   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   786   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   787   old_sp += incr; new_sp += incr; was_oops += incr;
   788   // Skip the floats
   789   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   790   tty->print_cr("---FP---|");
   791   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   792   for( int i2=0; i2<16; i2++ ) {
   793     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   794   tty->cr();
   795 }
   796 #endif  // SPARC
   797 #endif  // PRODUCT
   800 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   801   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   802   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   803   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   805   // Uncomment this to get some serious before/after printing of the
   806   // Sparc safepoint-blob frame structure.
   807   /*
   808   intptr_t* sp = thread->last_Java_sp();
   809   intptr_t stack_copy[150];
   810   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   811   bool was_oops[150];
   812   for( int i=0; i<150; i++ )
   813     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   814   */
   816   if (ShowSafepointMsgs) {
   817     tty->print("handle_polling_page_exception: ");
   818   }
   820   if (PrintSafepointStatistics) {
   821     inc_page_trap_count();
   822   }
   824   ThreadSafepointState* state = thread->safepoint_state();
   826   state->handle_polling_page_exception();
   827   // print_me(sp,stack_copy,was_oops);
   828 }
   831 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   832   if (!timeout_error_printed) {
   833     timeout_error_printed = true;
   834     // Print out the thread infor which didn't reach the safepoint for debugging
   835     // purposes (useful when there are lots of threads in the debugger).
   836     tty->cr();
   837     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   838     if (reason ==  _spinning_timeout) {
   839       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   840     } else if (reason == _blocking_timeout) {
   841       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   842     }
   844     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   845     ThreadSafepointState *cur_state;
   846     ResourceMark rm;
   847     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   848         cur_thread = cur_thread->next()) {
   849       cur_state = cur_thread->safepoint_state();
   851       if (cur_thread->thread_state() != _thread_blocked &&
   852           ((reason == _spinning_timeout && cur_state->is_running()) ||
   853            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   854         tty->print("# ");
   855         cur_thread->print();
   856         tty->cr();
   857       }
   858     }
   859     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   860   }
   862   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   863   // ShowMessageBoxOnError.
   864   if (DieOnSafepointTimeout) {
   865     char msg[1024];
   866     VM_Operation *op = VMThread::vm_operation();
   867     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   868             SafepointTimeoutDelay,
   869             op != NULL ? op->name() : "no vm operation");
   870     fatal(msg);
   871   }
   872 }
   875 // -------------------------------------------------------------------------------------------------------
   876 // Implementation of ThreadSafepointState
   878 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   879   _thread = thread;
   880   _type   = _running;
   881   _has_called_back = false;
   882   _at_poll_safepoint = false;
   883 }
   885 void ThreadSafepointState::create(JavaThread *thread) {
   886   ThreadSafepointState *state = new ThreadSafepointState(thread);
   887   thread->set_safepoint_state(state);
   888 }
   890 void ThreadSafepointState::destroy(JavaThread *thread) {
   891   if (thread->safepoint_state()) {
   892     delete(thread->safepoint_state());
   893     thread->set_safepoint_state(NULL);
   894   }
   895 }
   897 void ThreadSafepointState::examine_state_of_thread() {
   898   assert(is_running(), "better be running or just have hit safepoint poll");
   900   JavaThreadState state = _thread->thread_state();
   902   // Save the state at the start of safepoint processing.
   903   _orig_thread_state = state;
   905   // Check for a thread that is suspended. Note that thread resume tries
   906   // to grab the Threads_lock which we own here, so a thread cannot be
   907   // resumed during safepoint synchronization.
   909   // We check to see if this thread is suspended without locking to
   910   // avoid deadlocking with a third thread that is waiting for this
   911   // thread to be suspended. The third thread can notice the safepoint
   912   // that we're trying to start at the beginning of its SR_lock->wait()
   913   // call. If that happens, then the third thread will block on the
   914   // safepoint while still holding the underlying SR_lock. We won't be
   915   // able to get the SR_lock and we'll deadlock.
   916   //
   917   // We don't need to grab the SR_lock here for two reasons:
   918   // 1) The suspend flags are both volatile and are set with an
   919   //    Atomic::cmpxchg() call so we should see the suspended
   920   //    state right away.
   921   // 2) We're being called from the safepoint polling loop; if
   922   //    we don't see the suspended state on this iteration, then
   923   //    we'll come around again.
   924   //
   925   bool is_suspended = _thread->is_ext_suspended();
   926   if (is_suspended) {
   927     roll_forward(_at_safepoint);
   928     return;
   929   }
   931   // Some JavaThread states have an initial safepoint state of
   932   // running, but are actually at a safepoint. We will happily
   933   // agree and update the safepoint state here.
   934   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   935     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   936     roll_forward(_at_safepoint);
   937     return;
   938   }
   940   if (state == _thread_in_vm) {
   941     roll_forward(_call_back);
   942     return;
   943   }
   945   // All other thread states will continue to run until they
   946   // transition and self-block in state _blocked
   947   // Safepoint polling in compiled code causes the Java threads to do the same.
   948   // Note: new threads may require a malloc so they must be allowed to finish
   950   assert(is_running(), "examine_state_of_thread on non-running thread");
   951   return;
   952 }
   954 // Returns true is thread could not be rolled forward at present position.
   955 void ThreadSafepointState::roll_forward(suspend_type type) {
   956   _type = type;
   958   switch(_type) {
   959     case _at_safepoint:
   960       SafepointSynchronize::signal_thread_at_safepoint();
   961       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
   962       if (_thread->in_critical()) {
   963         // Notice that this thread is in a critical section
   964         SafepointSynchronize::increment_jni_active_count();
   965       }
   966       break;
   968     case _call_back:
   969       set_has_called_back(false);
   970       break;
   972     case _running:
   973     default:
   974       ShouldNotReachHere();
   975   }
   976 }
   978 void ThreadSafepointState::restart() {
   979   switch(type()) {
   980     case _at_safepoint:
   981     case _call_back:
   982       break;
   984     case _running:
   985     default:
   986        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   987                       _thread, _type);
   988        _thread->print();
   989       ShouldNotReachHere();
   990   }
   991   _type = _running;
   992   set_has_called_back(false);
   993 }
   996 void ThreadSafepointState::print_on(outputStream *st) const {
   997   const char *s;
   999   switch(_type) {
  1000     case _running                : s = "_running";              break;
  1001     case _at_safepoint           : s = "_at_safepoint";         break;
  1002     case _call_back              : s = "_call_back";            break;
  1003     default:
  1004       ShouldNotReachHere();
  1007   st->print_cr("Thread: " INTPTR_FORMAT
  1008               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1009                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1010                _at_poll_safepoint);
  1012   _thread->print_thread_state_on(st);
  1016 // ---------------------------------------------------------------------------------------------------------------------
  1018 // Block the thread at the safepoint poll or poll return.
  1019 void ThreadSafepointState::handle_polling_page_exception() {
  1021   // Check state.  block() will set thread state to thread_in_vm which will
  1022   // cause the safepoint state _type to become _call_back.
  1023   assert(type() == ThreadSafepointState::_running,
  1024          "polling page exception on thread not running state");
  1026   // Step 1: Find the nmethod from the return address
  1027   if (ShowSafepointMsgs && Verbose) {
  1028     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1030   address real_return_addr = thread()->saved_exception_pc();
  1032   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1033   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1034   nmethod* nm = (nmethod*)cb;
  1036   // Find frame of caller
  1037   frame stub_fr = thread()->last_frame();
  1038   CodeBlob* stub_cb = stub_fr.cb();
  1039   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1040   RegisterMap map(thread(), true);
  1041   frame caller_fr = stub_fr.sender(&map);
  1043   // Should only be poll_return or poll
  1044   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1046   // This is a poll immediately before a return. The exception handling code
  1047   // has already had the effect of causing the return to occur, so the execution
  1048   // will continue immediately after the call. In addition, the oopmap at the
  1049   // return point does not mark the return value as an oop (if it is), so
  1050   // it needs a handle here to be updated.
  1051   if( nm->is_at_poll_return(real_return_addr) ) {
  1052     // See if return type is an oop.
  1053     bool return_oop = nm->method()->is_returning_oop();
  1054     Handle return_value;
  1055     if (return_oop) {
  1056       // The oop result has been saved on the stack together with all
  1057       // the other registers. In order to preserve it over GCs we need
  1058       // to keep it in a handle.
  1059       oop result = caller_fr.saved_oop_result(&map);
  1060       assert(result == NULL || result->is_oop(), "must be oop");
  1061       return_value = Handle(thread(), result);
  1062       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1065     // Block the thread
  1066     SafepointSynchronize::block(thread());
  1068     // restore oop result, if any
  1069     if (return_oop) {
  1070       caller_fr.set_saved_oop_result(&map, return_value());
  1074   // This is a safepoint poll. Verify the return address and block.
  1075   else {
  1076     set_at_poll_safepoint(true);
  1078     // verify the blob built the "return address" correctly
  1079     assert(real_return_addr == caller_fr.pc(), "must match");
  1081     // Block the thread
  1082     SafepointSynchronize::block(thread());
  1083     set_at_poll_safepoint(false);
  1085     // If we have a pending async exception deoptimize the frame
  1086     // as otherwise we may never deliver it.
  1087     if (thread()->has_async_condition()) {
  1088       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1089       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1092     // If an exception has been installed we must check for a pending deoptimization
  1093     // Deoptimize frame if exception has been thrown.
  1095     if (thread()->has_pending_exception() ) {
  1096       RegisterMap map(thread(), true);
  1097       frame caller_fr = stub_fr.sender(&map);
  1098       if (caller_fr.is_deoptimized_frame()) {
  1099         // The exception patch will destroy registers that are still
  1100         // live and will be needed during deoptimization. Defer the
  1101         // Async exception should have defered the exception until the
  1102         // next safepoint which will be detected when we get into
  1103         // the interpreter so if we have an exception now things
  1104         // are messed up.
  1106         fatal("Exception installed and deoptimization is pending");
  1113 //
  1114 //                     Statistics & Instrumentations
  1115 //
  1116 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1117 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1118 int    SafepointSynchronize::_cur_stat_index = 0;
  1119 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1120 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1121 jlong  SafepointSynchronize::_max_sync_time = 0;
  1122 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1123 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1125 static jlong  cleanup_end_time = 0;
  1126 static bool   need_to_track_page_armed_status = false;
  1127 static bool   init_done = false;
  1129 // Helper method to print the header.
  1130 static void print_header() {
  1131   tty->print("         vmop                    "
  1132              "[threads: total initially_running wait_to_block]    ");
  1133   tty->print("[time: spin block sync cleanup vmop] ");
  1135   // no page armed status printed out if it is always armed.
  1136   if (need_to_track_page_armed_status) {
  1137     tty->print("page_armed ");
  1140   tty->print_cr("page_trap_count");
  1143 void SafepointSynchronize::deferred_initialize_stat() {
  1144   if (init_done) return;
  1146   if (PrintSafepointStatisticsCount <= 0) {
  1147     fatal("Wrong PrintSafepointStatisticsCount");
  1150   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1151   // be printed right away, in which case, _safepoint_stats will regress to
  1152   // a single element array. Otherwise, it is a circular ring buffer with default
  1153   // size of PrintSafepointStatisticsCount.
  1154   int stats_array_size;
  1155   if (PrintSafepointStatisticsTimeout > 0) {
  1156     stats_array_size = 1;
  1157     PrintSafepointStatistics = true;
  1158   } else {
  1159     stats_array_size = PrintSafepointStatisticsCount;
  1161   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1162                                                  * sizeof(SafepointStats), mtInternal);
  1163   guarantee(_safepoint_stats != NULL,
  1164             "not enough memory for safepoint instrumentation data");
  1166   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1167     need_to_track_page_armed_status = true;
  1169   init_done = true;
  1172 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1173   assert(init_done, "safepoint statistics array hasn't been initialized");
  1174   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1176   spstat->_time_stamp = _ts_of_current_safepoint;
  1178   VM_Operation *op = VMThread::vm_operation();
  1179   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1180   if (op != NULL) {
  1181     _safepoint_reasons[spstat->_vmop_type]++;
  1184   spstat->_nof_total_threads = nof_threads;
  1185   spstat->_nof_initial_running_threads = nof_running;
  1186   spstat->_nof_threads_hit_page_trap = 0;
  1188   // Records the start time of spinning. The real time spent on spinning
  1189   // will be adjusted when spin is done. Same trick is applied for time
  1190   // spent on waiting for threads to block.
  1191   if (nof_running != 0) {
  1192     spstat->_time_to_spin = os::javaTimeNanos();
  1193   }  else {
  1194     spstat->_time_to_spin = 0;
  1198 void SafepointSynchronize::update_statistics_on_spin_end() {
  1199   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1201   jlong cur_time = os::javaTimeNanos();
  1203   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1204   if (spstat->_nof_initial_running_threads != 0) {
  1205     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1208   if (need_to_track_page_armed_status) {
  1209     spstat->_page_armed = (PageArmed == 1);
  1212   // Records the start time of waiting for to block. Updated when block is done.
  1213   if (_waiting_to_block != 0) {
  1214     spstat->_time_to_wait_to_block = cur_time;
  1215   } else {
  1216     spstat->_time_to_wait_to_block = 0;
  1220 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1221   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1223   if (spstat->_nof_threads_wait_to_block != 0) {
  1224     spstat->_time_to_wait_to_block = end_time -
  1225       spstat->_time_to_wait_to_block;
  1228   // Records the end time of sync which will be used to calculate the total
  1229   // vm operation time. Again, the real time spending in syncing will be deducted
  1230   // from the start of the sync time later when end_statistics is called.
  1231   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1232   if (spstat->_time_to_sync > _max_sync_time) {
  1233     _max_sync_time = spstat->_time_to_sync;
  1236   spstat->_time_to_do_cleanups = end_time;
  1239 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1240   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1242   // Record how long spent in cleanup tasks.
  1243   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1245   cleanup_end_time = end_time;
  1248 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1249   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1251   // Update the vm operation time.
  1252   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1253   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1254     _max_vmop_time = spstat->_time_to_exec_vmop;
  1256   // Only the sync time longer than the specified
  1257   // PrintSafepointStatisticsTimeout will be printed out right away.
  1258   // By default, it is -1 meaning all samples will be put into the list.
  1259   if ( PrintSafepointStatisticsTimeout > 0) {
  1260     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1261       print_statistics();
  1263   } else {
  1264     // The safepoint statistics will be printed out when the _safepoin_stats
  1265     // array fills up.
  1266     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1267       print_statistics();
  1268       _cur_stat_index = 0;
  1269     } else {
  1270       _cur_stat_index++;
  1275 void SafepointSynchronize::print_statistics() {
  1276   SafepointStats* sstats = _safepoint_stats;
  1278   for (int index = 0; index <= _cur_stat_index; index++) {
  1279     if (index % 30 == 0) {
  1280       print_header();
  1282     sstats = &_safepoint_stats[index];
  1283     tty->print("%.3f: ", sstats->_time_stamp);
  1284     tty->print("%-26s       ["
  1285                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1286                "    ]    ",
  1287                sstats->_vmop_type == -1 ? "no vm operation" :
  1288                VM_Operation::name(sstats->_vmop_type),
  1289                sstats->_nof_total_threads,
  1290                sstats->_nof_initial_running_threads,
  1291                sstats->_nof_threads_wait_to_block);
  1292     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1293     tty->print("  ["
  1294                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1295                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1296                INT64_FORMAT_W(6)"    ]  ",
  1297                sstats->_time_to_spin / MICROUNITS,
  1298                sstats->_time_to_wait_to_block / MICROUNITS,
  1299                sstats->_time_to_sync / MICROUNITS,
  1300                sstats->_time_to_do_cleanups / MICROUNITS,
  1301                sstats->_time_to_exec_vmop / MICROUNITS);
  1303     if (need_to_track_page_armed_status) {
  1304       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1306     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1310 // This method will be called when VM exits. It will first call
  1311 // print_statistics to print out the rest of the sampling.  Then
  1312 // it tries to summarize the sampling.
  1313 void SafepointSynchronize::print_stat_on_exit() {
  1314   if (_safepoint_stats == NULL) return;
  1316   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1318   // During VM exit, end_statistics may not get called and in that
  1319   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1320   // don't print it out.
  1321   // Approximate the vm op time.
  1322   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1323     os::javaTimeNanos() - cleanup_end_time;
  1325   if ( PrintSafepointStatisticsTimeout < 0 ||
  1326        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1327     print_statistics();
  1329   tty->cr();
  1331   // Print out polling page sampling status.
  1332   if (!need_to_track_page_armed_status) {
  1333     if (UseCompilerSafepoints) {
  1334       tty->print_cr("Polling page always armed");
  1336   } else {
  1337     tty->print_cr("Defer polling page loop count = %d\n",
  1338                  DeferPollingPageLoopCount);
  1341   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1342     if (_safepoint_reasons[index] != 0) {
  1343       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1344                     _safepoint_reasons[index]);
  1348   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1349                 _coalesced_vmop_count);
  1350   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1351                 _max_sync_time / MICROUNITS);
  1352   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1353                 INT64_FORMAT_W(5)" ms",
  1354                 _max_vmop_time / MICROUNITS);
  1357 // ------------------------------------------------------------------------------------------------
  1358 // Non-product code
  1360 #ifndef PRODUCT
  1362 void SafepointSynchronize::print_state() {
  1363   if (_state == _not_synchronized) {
  1364     tty->print_cr("not synchronized");
  1365   } else if (_state == _synchronizing || _state == _synchronized) {
  1366     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1367                   "synchronized");
  1369     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1370        cur->safepoint_state()->print();
  1375 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1376   if (ShowSafepointMsgs) {
  1377     va_list ap;
  1378     va_start(ap, format);
  1379     tty->vprint_cr(format, ap);
  1380     va_end(ap);
  1384 #endif // !PRODUCT

mercurial