src/share/vm/runtime/safepoint.cpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7074
833b0f92429a
parent 6876
710a3c8b516e
child 8604
04d83ba48607
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/symbolTable.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "code/codeCache.hpp"
    35 #include "code/icBuffer.hpp"
    36 #include "code/nmethod.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/interpreter.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "memory/universe.inline.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "oops/symbol.hpp"
    45 #include "runtime/compilationPolicy.hpp"
    46 #include "runtime/deoptimization.hpp"
    47 #include "runtime/frame.inline.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/orderAccess.inline.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/safepoint.hpp"
    53 #include "runtime/signature.hpp"
    54 #include "runtime/stubCodeGenerator.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/sweeper.hpp"
    57 #include "runtime/synchronizer.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "services/runtimeService.hpp"
    60 #include "utilities/events.hpp"
    61 #include "utilities/macros.hpp"
    62 #ifdef TARGET_ARCH_x86
    63 # include "nativeInst_x86.hpp"
    64 # include "vmreg_x86.inline.hpp"
    65 #endif
    66 #ifdef TARGET_ARCH_sparc
    67 # include "nativeInst_sparc.hpp"
    68 # include "vmreg_sparc.inline.hpp"
    69 #endif
    70 #ifdef TARGET_ARCH_zero
    71 # include "nativeInst_zero.hpp"
    72 # include "vmreg_zero.inline.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_arm
    75 # include "nativeInst_arm.hpp"
    76 # include "vmreg_arm.inline.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_ppc
    79 # include "nativeInst_ppc.hpp"
    80 # include "vmreg_ppc.inline.hpp"
    81 #endif
    82 #ifdef TARGET_ARCH_mips
    83 # include "nativeInst_mips.hpp"
    84 # include "vmreg_mips.inline.hpp"
    85 #endif
    86 #if INCLUDE_ALL_GCS
    87 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    88 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
    89 #endif // INCLUDE_ALL_GCS
    90 #ifdef COMPILER1
    91 #include "c1/c1_globals.hpp"
    92 #endif
    94 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    96 // --------------------------------------------------------------------------------------------------
    97 // Implementation of Safepoint begin/end
    99 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
   100 volatile int  SafepointSynchronize::_waiting_to_block = 0;
   101 volatile int SafepointSynchronize::_safepoint_counter = 0;
   102 int SafepointSynchronize::_current_jni_active_count = 0;
   103 long  SafepointSynchronize::_end_of_last_safepoint = 0;
   104 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   105 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   106 static bool timeout_error_printed = false;
   108 // Roll all threads forward to a safepoint and suspend them all
   109 void SafepointSynchronize::begin() {
   111   Thread* myThread = Thread::current();
   112   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   114   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   115     _safepoint_begin_time = os::javaTimeNanos();
   116     _ts_of_current_safepoint = tty->time_stamp().seconds();
   117   }
   119 #if INCLUDE_ALL_GCS
   120   if (UseConcMarkSweepGC) {
   121     // In the future we should investigate whether CMS can use the
   122     // more-general mechanism below.  DLD (01/05).
   123     ConcurrentMarkSweepThread::synchronize(false);
   124   } else if (UseG1GC) {
   125     SuspendibleThreadSet::synchronize();
   126   }
   127 #endif // INCLUDE_ALL_GCS
   129   // By getting the Threads_lock, we assure that no threads are about to start or
   130   // exit. It is released again in SafepointSynchronize::end().
   131   Threads_lock->lock();
   133   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   135   int nof_threads = Threads::number_of_threads();
   137   if (TraceSafepoint) {
   138     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   139   }
   141   RuntimeService::record_safepoint_begin();
   143   MutexLocker mu(Safepoint_lock);
   145   // Reset the count of active JNI critical threads
   146   _current_jni_active_count = 0;
   148   // Set number of threads to wait for, before we initiate the callbacks
   149   _waiting_to_block = nof_threads;
   150   TryingToBlock     = 0 ;
   151   int still_running = nof_threads;
   153   // Save the starting time, so that it can be compared to see if this has taken
   154   // too long to complete.
   155   jlong safepoint_limit_time;
   156   timeout_error_printed = false;
   158   // PrintSafepointStatisticsTimeout can be specified separately. When
   159   // specified, PrintSafepointStatistics will be set to true in
   160   // deferred_initialize_stat method. The initialization has to be done
   161   // early enough to avoid any races. See bug 6880029 for details.
   162   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   163     deferred_initialize_stat();
   164   }
   166   // Begin the process of bringing the system to a safepoint.
   167   // Java threads can be in several different states and are
   168   // stopped by different mechanisms:
   169   //
   170   //  1. Running interpreted
   171   //     The interpeter dispatch table is changed to force it to
   172   //     check for a safepoint condition between bytecodes.
   173   //  2. Running in native code
   174   //     When returning from the native code, a Java thread must check
   175   //     the safepoint _state to see if we must block.  If the
   176   //     VM thread sees a Java thread in native, it does
   177   //     not wait for this thread to block.  The order of the memory
   178   //     writes and reads of both the safepoint state and the Java
   179   //     threads state is critical.  In order to guarantee that the
   180   //     memory writes are serialized with respect to each other,
   181   //     the VM thread issues a memory barrier instruction
   182   //     (on MP systems).  In order to avoid the overhead of issuing
   183   //     a memory barrier for each Java thread making native calls, each Java
   184   //     thread performs a write to a single memory page after changing
   185   //     the thread state.  The VM thread performs a sequence of
   186   //     mprotect OS calls which forces all previous writes from all
   187   //     Java threads to be serialized.  This is done in the
   188   //     os::serialize_thread_states() call.  This has proven to be
   189   //     much more efficient than executing a membar instruction
   190   //     on every call to native code.
   191   //  3. Running compiled Code
   192   //     Compiled code reads a global (Safepoint Polling) page that
   193   //     is set to fault if we are trying to get to a safepoint.
   194   //  4. Blocked
   195   //     A thread which is blocked will not be allowed to return from the
   196   //     block condition until the safepoint operation is complete.
   197   //  5. In VM or Transitioning between states
   198   //     If a Java thread is currently running in the VM or transitioning
   199   //     between states, the safepointing code will wait for the thread to
   200   //     block itself when it attempts transitions to a new state.
   201   //
   202   _state            = _synchronizing;
   203   OrderAccess::fence();
   205   // Flush all thread states to memory
   206   if (!UseMembar) {
   207     os::serialize_thread_states();
   208   }
   210   // Make interpreter safepoint aware
   211   Interpreter::notice_safepoints();
   213   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   214     // Make polling safepoint aware
   215     guarantee (PageArmed == 0, "invariant") ;
   216     PageArmed = 1 ;
   217     os::make_polling_page_unreadable();
   218   }
   220   // Consider using active_processor_count() ... but that call is expensive.
   221   int ncpus = os::processor_count() ;
   223 #ifdef ASSERT
   224   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   225     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   226     // Clear the visited flag to ensure that the critical counts are collected properly.
   227     cur->set_visited_for_critical_count(false);
   228   }
   229 #endif // ASSERT
   231   if (SafepointTimeout)
   232     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   234   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   235   unsigned int iterations = 0;
   236   int steps = 0 ;
   237   while(still_running > 0) {
   238     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   239       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   240       ThreadSafepointState *cur_state = cur->safepoint_state();
   241       if (cur_state->is_running()) {
   242         cur_state->examine_state_of_thread();
   243         if (!cur_state->is_running()) {
   244            still_running--;
   245            // consider adjusting steps downward:
   246            //   steps = 0
   247            //   steps -= NNN
   248            //   steps >>= 1
   249            //   steps = MIN(steps, 2000-100)
   250            //   if (iterations != 0) steps -= NNN
   251         }
   252         if (TraceSafepoint && Verbose) cur_state->print();
   253       }
   254     }
   256     if (PrintSafepointStatistics && iterations == 0) {
   257       begin_statistics(nof_threads, still_running);
   258     }
   260     if (still_running > 0) {
   261       // Check for if it takes to long
   262       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   263         print_safepoint_timeout(_spinning_timeout);
   264       }
   266       // Spin to avoid context switching.
   267       // There's a tension between allowing the mutators to run (and rendezvous)
   268       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   269       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   270       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   271       // Blocking or yielding incur their own penalties in the form of context switching
   272       // and the resultant loss of $ residency.
   273       //
   274       // Further complicating matters is that yield() does not work as naively expected
   275       // on many platforms -- yield() does not guarantee that any other ready threads
   276       // will run.   As such we revert yield_all() after some number of iterations.
   277       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   278       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   279       // can actually increase the time it takes the VM thread to detect that a system-wide
   280       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   281       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   282       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   283       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   284       // will eventually wake up and detect that all mutators are safe, at which point
   285       // we'll again make progress.
   286       //
   287       // Beware too that that the VMThread typically runs at elevated priority.
   288       // Its default priority is higher than the default mutator priority.
   289       // Obviously, this complicates spinning.
   290       //
   291       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   292       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   293       //
   294       // See the comments in synchronizer.cpp for additional remarks on spinning.
   295       //
   296       // In the future we might:
   297       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   298       //    This is tricky as the path used by a thread exiting the JVM (say on
   299       //    on JNI call-out) simply stores into its state field.  The burden
   300       //    is placed on the VM thread, which must poll (spin).
   301       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   302       //    we might aggressively scan the stacks of threads that are already safe.
   303       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   304       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   305       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   306       // 5. Check system saturation.  If the system is not fully saturated then
   307       //    simply spin and avoid sleep/yield.
   308       // 6. As still-running mutators rendezvous they could unpark the sleeping
   309       //    VMthread.  This works well for still-running mutators that become
   310       //    safe.  The VMthread must still poll for mutators that call-out.
   311       // 7. Drive the policy on time-since-begin instead of iterations.
   312       // 8. Consider making the spin duration a function of the # of CPUs:
   313       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   314       //    Alternately, instead of counting iterations of the outer loop
   315       //    we could count the # of threads visited in the inner loop, above.
   316       // 9. On windows consider using the return value from SwitchThreadTo()
   317       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   319       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   320          guarantee (PageArmed == 0, "invariant") ;
   321          PageArmed = 1 ;
   322          os::make_polling_page_unreadable();
   323       }
   325       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   326       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   327       ++steps ;
   328       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   329         SpinPause() ;     // MP-Polite spin
   330       } else
   331       if (steps < DeferThrSuspendLoopCount) {
   332         os::NakedYield() ;
   333       } else {
   334         os::yield_all(steps) ;
   335         // Alternately, the VM thread could transiently depress its scheduling priority or
   336         // transiently increase the priority of the tardy mutator(s).
   337       }
   339       iterations ++ ;
   340     }
   341     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   342   }
   343   assert(still_running == 0, "sanity check");
   345   if (PrintSafepointStatistics) {
   346     update_statistics_on_spin_end();
   347   }
   349   // wait until all threads are stopped
   350   while (_waiting_to_block > 0) {
   351     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   352     if (!SafepointTimeout || timeout_error_printed) {
   353       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   354     } else {
   355       // Compute remaining time
   356       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   358       // If there is no remaining time, then there is an error
   359       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   360         print_safepoint_timeout(_blocking_timeout);
   361       }
   362     }
   363   }
   364   assert(_waiting_to_block == 0, "sanity check");
   366 #ifndef PRODUCT
   367   if (SafepointTimeout) {
   368     jlong current_time = os::javaTimeNanos();
   369     if (safepoint_limit_time < current_time) {
   370       tty->print_cr("# SafepointSynchronize: Finished after "
   371                     INT64_FORMAT_W(6) " ms",
   372                     ((current_time - safepoint_limit_time) / MICROUNITS +
   373                      SafepointTimeoutDelay));
   374     }
   375   }
   376 #endif
   378   assert((_safepoint_counter & 0x1) == 0, "must be even");
   379   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   380   _safepoint_counter ++;
   382   // Record state
   383   _state = _synchronized;
   385   OrderAccess::fence();
   387 #ifdef ASSERT
   388   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   389     // make sure all the threads were visited
   390     assert(cur->was_visited_for_critical_count(), "missed a thread");
   391   }
   392 #endif // ASSERT
   394   // Update the count of active JNI critical regions
   395   GC_locker::set_jni_lock_count(_current_jni_active_count);
   397   if (TraceSafepoint) {
   398     VM_Operation *op = VMThread::vm_operation();
   399     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   400   }
   402   RuntimeService::record_safepoint_synchronized();
   403   if (PrintSafepointStatistics) {
   404     update_statistics_on_sync_end(os::javaTimeNanos());
   405   }
   407   // Call stuff that needs to be run when a safepoint is just about to be completed
   408   do_cleanup_tasks();
   410   if (PrintSafepointStatistics) {
   411     // Record how much time spend on the above cleanup tasks
   412     update_statistics_on_cleanup_end(os::javaTimeNanos());
   413   }
   414 }
   416 // Wake up all threads, so they are ready to resume execution after the safepoint
   417 // operation has been carried out
   418 void SafepointSynchronize::end() {
   420   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   421   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   422   _safepoint_counter ++;
   423   // memory fence isn't required here since an odd _safepoint_counter
   424   // value can do no harm and a fence is issued below anyway.
   426   DEBUG_ONLY(Thread* myThread = Thread::current();)
   427   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   429   if (PrintSafepointStatistics) {
   430     end_statistics(os::javaTimeNanos());
   431   }
   433 #ifdef ASSERT
   434   // A pending_exception cannot be installed during a safepoint.  The threads
   435   // may install an async exception after they come back from a safepoint into
   436   // pending_exception after they unblock.  But that should happen later.
   437   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   438     assert (!(cur->has_pending_exception() &&
   439               cur->safepoint_state()->is_at_poll_safepoint()),
   440             "safepoint installed a pending exception");
   441   }
   442 #endif // ASSERT
   444   if (PageArmed) {
   445     // Make polling safepoint aware
   446     os::make_polling_page_readable();
   447     PageArmed = 0 ;
   448   }
   450   // Remove safepoint check from interpreter
   451   Interpreter::ignore_safepoints();
   453   {
   454     MutexLocker mu(Safepoint_lock);
   456     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   458     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   459     // when they get restarted.
   460     _state = _not_synchronized;
   461     OrderAccess::fence();
   463     if (TraceSafepoint) {
   464        tty->print_cr("Leaving safepoint region");
   465     }
   467     // Start suspended threads
   468     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   469       // A problem occurring on Solaris is when attempting to restart threads
   470       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   471       // to the next one (since it has been running the longest).  We then have
   472       // to wait for a cpu to become available before we can continue restarting
   473       // threads.
   474       // FIXME: This causes the performance of the VM to degrade when active and with
   475       // large numbers of threads.  Apparently this is due to the synchronous nature
   476       // of suspending threads.
   477       //
   478       // TODO-FIXME: the comments above are vestigial and no longer apply.
   479       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   480       if (VMThreadHintNoPreempt) {
   481         os::hint_no_preempt();
   482       }
   483       ThreadSafepointState* cur_state = current->safepoint_state();
   484       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   485       cur_state->restart();
   486       assert(cur_state->is_running(), "safepoint state has not been reset");
   487     }
   489     RuntimeService::record_safepoint_end();
   491     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   492     // blocked in signal_thread_blocked
   493     Threads_lock->unlock();
   495   }
   496 #if INCLUDE_ALL_GCS
   497   // If there are any concurrent GC threads resume them.
   498   if (UseConcMarkSweepGC) {
   499     ConcurrentMarkSweepThread::desynchronize(false);
   500   } else if (UseG1GC) {
   501     SuspendibleThreadSet::desynchronize();
   502   }
   503 #endif // INCLUDE_ALL_GCS
   504   // record this time so VMThread can keep track how much time has elasped
   505   // since last safepoint.
   506   _end_of_last_safepoint = os::javaTimeMillis();
   507 }
   509 bool SafepointSynchronize::is_cleanup_needed() {
   510   // Need a safepoint if some inline cache buffers is non-empty
   511   if (!InlineCacheBuffer::is_empty()) return true;
   512   return false;
   513 }
   517 // Various cleaning tasks that should be done periodically at safepoints
   518 void SafepointSynchronize::do_cleanup_tasks() {
   519   {
   520     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   521     ObjectSynchronizer::deflate_idle_monitors();
   522   }
   524   {
   525     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   526     InlineCacheBuffer::update_inline_caches();
   527   }
   528   {
   529     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   530     CompilationPolicy::policy()->do_safepoint_work();
   531   }
   533   {
   534     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
   535     NMethodSweeper::mark_active_nmethods();
   536   }
   538   if (SymbolTable::needs_rehashing()) {
   539     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
   540     SymbolTable::rehash_table();
   541   }
   543   if (StringTable::needs_rehashing()) {
   544     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
   545     StringTable::rehash_table();
   546   }
   548   // rotate log files?
   549   if (UseGCLogFileRotation) {
   550     gclog_or_tty->rotate_log(false);
   551   }
   553   {
   554     // CMS delays purging the CLDG until the beginning of the next safepoint and to
   555     // make sure concurrent sweep is done
   556     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
   557     ClassLoaderDataGraph::purge_if_needed();
   558   }
   559 }
   562 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   563   switch(state) {
   564   case _thread_in_native:
   565     // native threads are safe if they have no java stack or have walkable stack
   566     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   568    // blocked threads should have already have walkable stack
   569   case _thread_blocked:
   570     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   571     return true;
   573   default:
   574     return false;
   575   }
   576 }
   579 // See if the thread is running inside a lazy critical native and
   580 // update the thread critical count if so.  Also set a suspend flag to
   581 // cause the native wrapper to return into the JVM to do the unlock
   582 // once the native finishes.
   583 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   584   if (state == _thread_in_native &&
   585       thread->has_last_Java_frame() &&
   586       thread->frame_anchor()->walkable()) {
   587     // This thread might be in a critical native nmethod so look at
   588     // the top of the stack and increment the critical count if it
   589     // is.
   590     frame wrapper_frame = thread->last_frame();
   591     CodeBlob* stub_cb = wrapper_frame.cb();
   592     if (stub_cb != NULL &&
   593         stub_cb->is_nmethod() &&
   594         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   595       // A thread could potentially be in a critical native across
   596       // more than one safepoint, so only update the critical state on
   597       // the first one.  When it returns it will perform the unlock.
   598       if (!thread->do_critical_native_unlock()) {
   599 #ifdef ASSERT
   600         if (!thread->in_critical()) {
   601           GC_locker::increment_debug_jni_lock_count();
   602         }
   603 #endif
   604         thread->enter_critical();
   605         // Make sure the native wrapper calls back on return to
   606         // perform the needed critical unlock.
   607         thread->set_critical_native_unlock();
   608       }
   609     }
   610   }
   611 }
   615 // -------------------------------------------------------------------------------------------------------
   616 // Implementation of Safepoint callback point
   618 void SafepointSynchronize::block(JavaThread *thread) {
   619   assert(thread != NULL, "thread must be set");
   620   assert(thread->is_Java_thread(), "not a Java thread");
   622   // Threads shouldn't block if they are in the middle of printing, but...
   623   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   625   // Only bail from the block() call if the thread is gone from the
   626   // thread list; starting to exit should still block.
   627   if (thread->is_terminated()) {
   628      // block current thread if we come here from native code when VM is gone
   629      thread->block_if_vm_exited();
   631      // otherwise do nothing
   632      return;
   633   }
   635   JavaThreadState state = thread->thread_state();
   636   thread->frame_anchor()->make_walkable(thread);
   638   // Check that we have a valid thread_state at this point
   639   switch(state) {
   640     case _thread_in_vm_trans:
   641     case _thread_in_Java:        // From compiled code
   643       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   644       // we pretend we are still in the VM.
   645       thread->set_thread_state(_thread_in_vm);
   647       if (is_synchronizing()) {
   648          Atomic::inc (&TryingToBlock) ;
   649       }
   651       // We will always be holding the Safepoint_lock when we are examine the state
   652       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   653       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   654       Safepoint_lock->lock_without_safepoint_check();
   655       if (is_synchronizing()) {
   656         // Decrement the number of threads to wait for and signal vm thread
   657         assert(_waiting_to_block > 0, "sanity check");
   658         _waiting_to_block--;
   659         thread->safepoint_state()->set_has_called_back(true);
   661         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   662         if (thread->in_critical()) {
   663           // Notice that this thread is in a critical section
   664           increment_jni_active_count();
   665         }
   667         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   668         if (_waiting_to_block == 0) {
   669           Safepoint_lock->notify_all();
   670         }
   671       }
   673       // We transition the thread to state _thread_blocked here, but
   674       // we can't do our usual check for external suspension and then
   675       // self-suspend after the lock_without_safepoint_check() call
   676       // below because we are often called during transitions while
   677       // we hold different locks. That would leave us suspended while
   678       // holding a resource which results in deadlocks.
   679       thread->set_thread_state(_thread_blocked);
   680       Safepoint_lock->unlock();
   682       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   683       // the entire safepoint, the threads will all line up here during the safepoint.
   684       Threads_lock->lock_without_safepoint_check();
   685       // restore original state. This is important if the thread comes from compiled code, so it
   686       // will continue to execute with the _thread_in_Java state.
   687       thread->set_thread_state(state);
   688       Threads_lock->unlock();
   689       break;
   691     case _thread_in_native_trans:
   692     case _thread_blocked_trans:
   693     case _thread_new_trans:
   694       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   695         thread->print_thread_state();
   696         fatal("Deadlock in safepoint code.  "
   697               "Should have called back to the VM before blocking.");
   698       }
   700       // We transition the thread to state _thread_blocked here, but
   701       // we can't do our usual check for external suspension and then
   702       // self-suspend after the lock_without_safepoint_check() call
   703       // below because we are often called during transitions while
   704       // we hold different locks. That would leave us suspended while
   705       // holding a resource which results in deadlocks.
   706       thread->set_thread_state(_thread_blocked);
   708       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   709       // the safepoint code might still be waiting for it to block. We need to change the state here,
   710       // so it can see that it is at a safepoint.
   712       // Block until the safepoint operation is completed.
   713       Threads_lock->lock_without_safepoint_check();
   715       // Restore state
   716       thread->set_thread_state(state);
   718       Threads_lock->unlock();
   719       break;
   721     default:
   722      fatal(err_msg("Illegal threadstate encountered: %d", state));
   723   }
   725   // Check for pending. async. exceptions or suspends - except if the
   726   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   727   // is called last since it grabs a lock and we only want to do that when
   728   // we must.
   729   //
   730   // Note: we never deliver an async exception at a polling point as the
   731   // compiler may not have an exception handler for it. The polling
   732   // code will notice the async and deoptimize and the exception will
   733   // be delivered. (Polling at a return point is ok though). Sure is
   734   // a lot of bother for a deprecated feature...
   735   //
   736   // We don't deliver an async exception if the thread state is
   737   // _thread_in_native_trans so JNI functions won't be called with
   738   // a surprising pending exception. If the thread state is going back to java,
   739   // async exception is checked in check_special_condition_for_native_trans().
   741   if (state != _thread_blocked_trans &&
   742       state != _thread_in_vm_trans &&
   743       thread->has_special_runtime_exit_condition()) {
   744     thread->handle_special_runtime_exit_condition(
   745       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   746   }
   747 }
   749 // ------------------------------------------------------------------------------------------------------
   750 // Exception handlers
   752 #ifndef PRODUCT
   754 #ifdef SPARC
   756 #ifdef _LP64
   757 #define PTR_PAD ""
   758 #else
   759 #define PTR_PAD "        "
   760 #endif
   762 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   763   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
   764   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   765                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   766                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   767 }
   769 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   770   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
   771   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   772                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   773                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   774 }
   776 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   777 #ifdef _LP64
   778   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   779   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   780 #else
   781   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   782   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   783 #endif
   784   tty->print_cr("---SP---|");
   785   for( int i=0; i<16; i++ ) {
   786     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   787   tty->print_cr("--------|");
   788   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   789     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   790   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   791   tty->print_cr("--------|");
   792   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   793   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   794   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   795   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   796   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   797   old_sp += incr; new_sp += incr; was_oops += incr;
   798   // Skip the floats
   799   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   800   tty->print_cr("---FP---|");
   801   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   802   for( int i2=0; i2<16; i2++ ) {
   803     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   804   tty->cr();
   805 }
   806 #endif  // SPARC
   807 #endif  // PRODUCT
   810 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   811   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   812   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   813   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   815   // Uncomment this to get some serious before/after printing of the
   816   // Sparc safepoint-blob frame structure.
   817   /*
   818   intptr_t* sp = thread->last_Java_sp();
   819   intptr_t stack_copy[150];
   820   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   821   bool was_oops[150];
   822   for( int i=0; i<150; i++ )
   823     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   824   */
   826   if (ShowSafepointMsgs) {
   827     tty->print("handle_polling_page_exception: ");
   828   }
   830   if (PrintSafepointStatistics) {
   831     inc_page_trap_count();
   832   }
   834   ThreadSafepointState* state = thread->safepoint_state();
   836   state->handle_polling_page_exception();
   837   // print_me(sp,stack_copy,was_oops);
   838 }
   841 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   842   if (!timeout_error_printed) {
   843     timeout_error_printed = true;
   844     // Print out the thread infor which didn't reach the safepoint for debugging
   845     // purposes (useful when there are lots of threads in the debugger).
   846     tty->cr();
   847     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   848     if (reason ==  _spinning_timeout) {
   849       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   850     } else if (reason == _blocking_timeout) {
   851       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   852     }
   854     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   855     ThreadSafepointState *cur_state;
   856     ResourceMark rm;
   857     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   858         cur_thread = cur_thread->next()) {
   859       cur_state = cur_thread->safepoint_state();
   861       if (cur_thread->thread_state() != _thread_blocked &&
   862           ((reason == _spinning_timeout && cur_state->is_running()) ||
   863            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   864         tty->print("# ");
   865         cur_thread->print();
   866         tty->cr();
   867       }
   868     }
   869     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   870   }
   872   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   873   // ShowMessageBoxOnError.
   874   if (DieOnSafepointTimeout) {
   875     char msg[1024];
   876     VM_Operation *op = VMThread::vm_operation();
   877     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   878             SafepointTimeoutDelay,
   879             op != NULL ? op->name() : "no vm operation");
   880     fatal(msg);
   881   }
   882 }
   885 // -------------------------------------------------------------------------------------------------------
   886 // Implementation of ThreadSafepointState
   888 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   889   _thread = thread;
   890   _type   = _running;
   891   _has_called_back = false;
   892   _at_poll_safepoint = false;
   893 }
   895 void ThreadSafepointState::create(JavaThread *thread) {
   896   ThreadSafepointState *state = new ThreadSafepointState(thread);
   897   thread->set_safepoint_state(state);
   898 }
   900 void ThreadSafepointState::destroy(JavaThread *thread) {
   901   if (thread->safepoint_state()) {
   902     delete(thread->safepoint_state());
   903     thread->set_safepoint_state(NULL);
   904   }
   905 }
   907 void ThreadSafepointState::examine_state_of_thread() {
   908   assert(is_running(), "better be running or just have hit safepoint poll");
   910   JavaThreadState state = _thread->thread_state();
   912   // Save the state at the start of safepoint processing.
   913   _orig_thread_state = state;
   915   // Check for a thread that is suspended. Note that thread resume tries
   916   // to grab the Threads_lock which we own here, so a thread cannot be
   917   // resumed during safepoint synchronization.
   919   // We check to see if this thread is suspended without locking to
   920   // avoid deadlocking with a third thread that is waiting for this
   921   // thread to be suspended. The third thread can notice the safepoint
   922   // that we're trying to start at the beginning of its SR_lock->wait()
   923   // call. If that happens, then the third thread will block on the
   924   // safepoint while still holding the underlying SR_lock. We won't be
   925   // able to get the SR_lock and we'll deadlock.
   926   //
   927   // We don't need to grab the SR_lock here for two reasons:
   928   // 1) The suspend flags are both volatile and are set with an
   929   //    Atomic::cmpxchg() call so we should see the suspended
   930   //    state right away.
   931   // 2) We're being called from the safepoint polling loop; if
   932   //    we don't see the suspended state on this iteration, then
   933   //    we'll come around again.
   934   //
   935   bool is_suspended = _thread->is_ext_suspended();
   936   if (is_suspended) {
   937     roll_forward(_at_safepoint);
   938     return;
   939   }
   941   // Some JavaThread states have an initial safepoint state of
   942   // running, but are actually at a safepoint. We will happily
   943   // agree and update the safepoint state here.
   944   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   945     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   946     roll_forward(_at_safepoint);
   947     return;
   948   }
   950   if (state == _thread_in_vm) {
   951     roll_forward(_call_back);
   952     return;
   953   }
   955   // All other thread states will continue to run until they
   956   // transition and self-block in state _blocked
   957   // Safepoint polling in compiled code causes the Java threads to do the same.
   958   // Note: new threads may require a malloc so they must be allowed to finish
   960   assert(is_running(), "examine_state_of_thread on non-running thread");
   961   return;
   962 }
   964 // Returns true is thread could not be rolled forward at present position.
   965 void ThreadSafepointState::roll_forward(suspend_type type) {
   966   _type = type;
   968   switch(_type) {
   969     case _at_safepoint:
   970       SafepointSynchronize::signal_thread_at_safepoint();
   971       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
   972       if (_thread->in_critical()) {
   973         // Notice that this thread is in a critical section
   974         SafepointSynchronize::increment_jni_active_count();
   975       }
   976       break;
   978     case _call_back:
   979       set_has_called_back(false);
   980       break;
   982     case _running:
   983     default:
   984       ShouldNotReachHere();
   985   }
   986 }
   988 void ThreadSafepointState::restart() {
   989   switch(type()) {
   990     case _at_safepoint:
   991     case _call_back:
   992       break;
   994     case _running:
   995     default:
   996        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   997                       _thread, _type);
   998        _thread->print();
   999       ShouldNotReachHere();
  1001   _type = _running;
  1002   set_has_called_back(false);
  1006 void ThreadSafepointState::print_on(outputStream *st) const {
  1007   const char *s;
  1009   switch(_type) {
  1010     case _running                : s = "_running";              break;
  1011     case _at_safepoint           : s = "_at_safepoint";         break;
  1012     case _call_back              : s = "_call_back";            break;
  1013     default:
  1014       ShouldNotReachHere();
  1017   st->print_cr("Thread: " INTPTR_FORMAT
  1018               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1019                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1020                _at_poll_safepoint);
  1022   _thread->print_thread_state_on(st);
  1026 // ---------------------------------------------------------------------------------------------------------------------
  1028 // Block the thread at the safepoint poll or poll return.
  1029 void ThreadSafepointState::handle_polling_page_exception() {
  1031   // Check state.  block() will set thread state to thread_in_vm which will
  1032   // cause the safepoint state _type to become _call_back.
  1033   assert(type() == ThreadSafepointState::_running,
  1034          "polling page exception on thread not running state");
  1036   // Step 1: Find the nmethod from the return address
  1037   if (ShowSafepointMsgs && Verbose) {
  1038     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1040   address real_return_addr = thread()->saved_exception_pc();
  1042   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1043   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1044   nmethod* nm = (nmethod*)cb;
  1046   // Find frame of caller
  1047   frame stub_fr = thread()->last_frame();
  1048   CodeBlob* stub_cb = stub_fr.cb();
  1049   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1050   RegisterMap map(thread(), true);
  1051   frame caller_fr = stub_fr.sender(&map);
  1053   // Should only be poll_return or poll
  1054   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1056   // This is a poll immediately before a return. The exception handling code
  1057   // has already had the effect of causing the return to occur, so the execution
  1058   // will continue immediately after the call. In addition, the oopmap at the
  1059   // return point does not mark the return value as an oop (if it is), so
  1060   // it needs a handle here to be updated.
  1061   if( nm->is_at_poll_return(real_return_addr) ) {
  1062     // See if return type is an oop.
  1063     bool return_oop = nm->method()->is_returning_oop();
  1064     Handle return_value;
  1065     if (return_oop) {
  1066       // The oop result has been saved on the stack together with all
  1067       // the other registers. In order to preserve it over GCs we need
  1068       // to keep it in a handle.
  1069       oop result = caller_fr.saved_oop_result(&map);
  1070       assert(result == NULL || result->is_oop(), "must be oop");
  1071       return_value = Handle(thread(), result);
  1072       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1075     // Block the thread
  1076     SafepointSynchronize::block(thread());
  1078     // restore oop result, if any
  1079     if (return_oop) {
  1080       caller_fr.set_saved_oop_result(&map, return_value());
  1084   // This is a safepoint poll. Verify the return address and block.
  1085   else {
  1086     set_at_poll_safepoint(true);
  1088     // verify the blob built the "return address" correctly
  1089     assert(real_return_addr == caller_fr.pc(), "must match");
  1091     // Block the thread
  1092     SafepointSynchronize::block(thread());
  1093     set_at_poll_safepoint(false);
  1095     // If we have a pending async exception deoptimize the frame
  1096     // as otherwise we may never deliver it.
  1097     if (thread()->has_async_condition()) {
  1098       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1099       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1102     // If an exception has been installed we must check for a pending deoptimization
  1103     // Deoptimize frame if exception has been thrown.
  1105     if (thread()->has_pending_exception() ) {
  1106       RegisterMap map(thread(), true);
  1107       frame caller_fr = stub_fr.sender(&map);
  1108       if (caller_fr.is_deoptimized_frame()) {
  1109         // The exception patch will destroy registers that are still
  1110         // live and will be needed during deoptimization. Defer the
  1111         // Async exception should have defered the exception until the
  1112         // next safepoint which will be detected when we get into
  1113         // the interpreter so if we have an exception now things
  1114         // are messed up.
  1116         fatal("Exception installed and deoptimization is pending");
  1123 //
  1124 //                     Statistics & Instrumentations
  1125 //
  1126 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1127 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1128 int    SafepointSynchronize::_cur_stat_index = 0;
  1129 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1130 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1131 jlong  SafepointSynchronize::_max_sync_time = 0;
  1132 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1133 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1135 static jlong  cleanup_end_time = 0;
  1136 static bool   need_to_track_page_armed_status = false;
  1137 static bool   init_done = false;
  1139 // Helper method to print the header.
  1140 static void print_header() {
  1141   tty->print("         vmop                    "
  1142              "[threads: total initially_running wait_to_block]    ");
  1143   tty->print("[time: spin block sync cleanup vmop] ");
  1145   // no page armed status printed out if it is always armed.
  1146   if (need_to_track_page_armed_status) {
  1147     tty->print("page_armed ");
  1150   tty->print_cr("page_trap_count");
  1153 void SafepointSynchronize::deferred_initialize_stat() {
  1154   if (init_done) return;
  1156   if (PrintSafepointStatisticsCount <= 0) {
  1157     fatal("Wrong PrintSafepointStatisticsCount");
  1160   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1161   // be printed right away, in which case, _safepoint_stats will regress to
  1162   // a single element array. Otherwise, it is a circular ring buffer with default
  1163   // size of PrintSafepointStatisticsCount.
  1164   int stats_array_size;
  1165   if (PrintSafepointStatisticsTimeout > 0) {
  1166     stats_array_size = 1;
  1167     PrintSafepointStatistics = true;
  1168   } else {
  1169     stats_array_size = PrintSafepointStatisticsCount;
  1171   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1172                                                  * sizeof(SafepointStats), mtInternal);
  1173   guarantee(_safepoint_stats != NULL,
  1174             "not enough memory for safepoint instrumentation data");
  1176   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1177     need_to_track_page_armed_status = true;
  1179   init_done = true;
  1182 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1183   assert(init_done, "safepoint statistics array hasn't been initialized");
  1184   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1186   spstat->_time_stamp = _ts_of_current_safepoint;
  1188   VM_Operation *op = VMThread::vm_operation();
  1189   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1190   if (op != NULL) {
  1191     _safepoint_reasons[spstat->_vmop_type]++;
  1194   spstat->_nof_total_threads = nof_threads;
  1195   spstat->_nof_initial_running_threads = nof_running;
  1196   spstat->_nof_threads_hit_page_trap = 0;
  1198   // Records the start time of spinning. The real time spent on spinning
  1199   // will be adjusted when spin is done. Same trick is applied for time
  1200   // spent on waiting for threads to block.
  1201   if (nof_running != 0) {
  1202     spstat->_time_to_spin = os::javaTimeNanos();
  1203   }  else {
  1204     spstat->_time_to_spin = 0;
  1208 void SafepointSynchronize::update_statistics_on_spin_end() {
  1209   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1211   jlong cur_time = os::javaTimeNanos();
  1213   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1214   if (spstat->_nof_initial_running_threads != 0) {
  1215     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1218   if (need_to_track_page_armed_status) {
  1219     spstat->_page_armed = (PageArmed == 1);
  1222   // Records the start time of waiting for to block. Updated when block is done.
  1223   if (_waiting_to_block != 0) {
  1224     spstat->_time_to_wait_to_block = cur_time;
  1225   } else {
  1226     spstat->_time_to_wait_to_block = 0;
  1230 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1231   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1233   if (spstat->_nof_threads_wait_to_block != 0) {
  1234     spstat->_time_to_wait_to_block = end_time -
  1235       spstat->_time_to_wait_to_block;
  1238   // Records the end time of sync which will be used to calculate the total
  1239   // vm operation time. Again, the real time spending in syncing will be deducted
  1240   // from the start of the sync time later when end_statistics is called.
  1241   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1242   if (spstat->_time_to_sync > _max_sync_time) {
  1243     _max_sync_time = spstat->_time_to_sync;
  1246   spstat->_time_to_do_cleanups = end_time;
  1249 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1250   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1252   // Record how long spent in cleanup tasks.
  1253   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1255   cleanup_end_time = end_time;
  1258 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1259   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1261   // Update the vm operation time.
  1262   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1263   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1264     _max_vmop_time = spstat->_time_to_exec_vmop;
  1266   // Only the sync time longer than the specified
  1267   // PrintSafepointStatisticsTimeout will be printed out right away.
  1268   // By default, it is -1 meaning all samples will be put into the list.
  1269   if ( PrintSafepointStatisticsTimeout > 0) {
  1270     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1271       print_statistics();
  1273   } else {
  1274     // The safepoint statistics will be printed out when the _safepoin_stats
  1275     // array fills up.
  1276     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1277       print_statistics();
  1278       _cur_stat_index = 0;
  1279     } else {
  1280       _cur_stat_index++;
  1285 void SafepointSynchronize::print_statistics() {
  1286   SafepointStats* sstats = _safepoint_stats;
  1288   for (int index = 0; index <= _cur_stat_index; index++) {
  1289     if (index % 30 == 0) {
  1290       print_header();
  1292     sstats = &_safepoint_stats[index];
  1293     tty->print("%.3f: ", sstats->_time_stamp);
  1294     tty->print("%-26s       ["
  1295                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1296                "    ]    ",
  1297                sstats->_vmop_type == -1 ? "no vm operation" :
  1298                VM_Operation::name(sstats->_vmop_type),
  1299                sstats->_nof_total_threads,
  1300                sstats->_nof_initial_running_threads,
  1301                sstats->_nof_threads_wait_to_block);
  1302     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1303     tty->print("  ["
  1304                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1305                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1306                INT64_FORMAT_W(6)"    ]  ",
  1307                sstats->_time_to_spin / MICROUNITS,
  1308                sstats->_time_to_wait_to_block / MICROUNITS,
  1309                sstats->_time_to_sync / MICROUNITS,
  1310                sstats->_time_to_do_cleanups / MICROUNITS,
  1311                sstats->_time_to_exec_vmop / MICROUNITS);
  1313     if (need_to_track_page_armed_status) {
  1314       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1316     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1320 // This method will be called when VM exits. It will first call
  1321 // print_statistics to print out the rest of the sampling.  Then
  1322 // it tries to summarize the sampling.
  1323 void SafepointSynchronize::print_stat_on_exit() {
  1324   if (_safepoint_stats == NULL) return;
  1326   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1328   // During VM exit, end_statistics may not get called and in that
  1329   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1330   // don't print it out.
  1331   // Approximate the vm op time.
  1332   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1333     os::javaTimeNanos() - cleanup_end_time;
  1335   if ( PrintSafepointStatisticsTimeout < 0 ||
  1336        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1337     print_statistics();
  1339   tty->cr();
  1341   // Print out polling page sampling status.
  1342   if (!need_to_track_page_armed_status) {
  1343     if (UseCompilerSafepoints) {
  1344       tty->print_cr("Polling page always armed");
  1346   } else {
  1347     tty->print_cr("Defer polling page loop count = %d\n",
  1348                  DeferPollingPageLoopCount);
  1351   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1352     if (_safepoint_reasons[index] != 0) {
  1353       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1354                     _safepoint_reasons[index]);
  1358   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1359                 _coalesced_vmop_count);
  1360   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1361                 _max_sync_time / MICROUNITS);
  1362   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1363                 INT64_FORMAT_W(5)" ms",
  1364                 _max_vmop_time / MICROUNITS);
  1367 // ------------------------------------------------------------------------------------------------
  1368 // Non-product code
  1370 #ifndef PRODUCT
  1372 void SafepointSynchronize::print_state() {
  1373   if (_state == _not_synchronized) {
  1374     tty->print_cr("not synchronized");
  1375   } else if (_state == _synchronizing || _state == _synchronized) {
  1376     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1377                   "synchronized");
  1379     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1380        cur->safepoint_state()->print();
  1385 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1386   if (ShowSafepointMsgs) {
  1387     va_list ap;
  1388     va_start(ap, format);
  1389     tty->vprint_cr(format, ap);
  1390     va_end(ap);
  1394 #endif // !PRODUCT

mercurial