src/share/vm/gc_implementation/g1/concurrentMark.cpp

Wed, 26 Jan 2011 09:57:42 -0800

author
johnc
date
Wed, 26 Jan 2011 09:57:42 -0800
changeset 2495
81668b1f4877
parent 2494
234761c55641
parent 2493
97ba643ea3ed
child 2497
3582bf76420e
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    34 #include "gc_implementation/shared/vmGCOperations.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/referencePolicy.hpp"
    37 #include "memory/resourceArea.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/handles.inline.hpp"
    40 #include "runtime/java.hpp"
    42 //
    43 // CMS Bit Map Wrapper
    45 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter):
    46   _bm((uintptr_t*)NULL,0),
    47   _shifter(shifter) {
    48   _bmStartWord = (HeapWord*)(rs.base());
    49   _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
    50   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
    51                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
    53   guarantee(brs.is_reserved(), "couldn't allocate CMS bit map");
    54   // For now we'll just commit all of the bit map up fromt.
    55   // Later on we'll try to be more parsimonious with swap.
    56   guarantee(_virtual_space.initialize(brs, brs.size()),
    57             "couldn't reseve backing store for CMS bit map");
    58   assert(_virtual_space.committed_size() == brs.size(),
    59          "didn't reserve backing store for all of CMS bit map?");
    60   _bm.set_map((uintptr_t*)_virtual_space.low());
    61   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
    62          _bmWordSize, "inconsistency in bit map sizing");
    63   _bm.set_size(_bmWordSize >> _shifter);
    64 }
    66 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
    67                                                HeapWord* limit) const {
    68   // First we must round addr *up* to a possible object boundary.
    69   addr = (HeapWord*)align_size_up((intptr_t)addr,
    70                                   HeapWordSize << _shifter);
    71   size_t addrOffset = heapWordToOffset(addr);
    72   if (limit == NULL) limit = _bmStartWord + _bmWordSize;
    73   size_t limitOffset = heapWordToOffset(limit);
    74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    76   assert(nextAddr >= addr, "get_next_one postcondition");
    77   assert(nextAddr == limit || isMarked(nextAddr),
    78          "get_next_one postcondition");
    79   return nextAddr;
    80 }
    82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
    83                                                  HeapWord* limit) const {
    84   size_t addrOffset = heapWordToOffset(addr);
    85   if (limit == NULL) limit = _bmStartWord + _bmWordSize;
    86   size_t limitOffset = heapWordToOffset(limit);
    87   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    88   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    89   assert(nextAddr >= addr, "get_next_one postcondition");
    90   assert(nextAddr == limit || !isMarked(nextAddr),
    91          "get_next_one postcondition");
    92   return nextAddr;
    93 }
    95 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    96   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    97   return (int) (diff >> _shifter);
    98 }
   100 bool CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
   101   HeapWord* left  = MAX2(_bmStartWord, mr.start());
   102   HeapWord* right = MIN2(_bmStartWord + _bmWordSize, mr.end());
   103   if (right > left) {
   104     // Right-open interval [leftOffset, rightOffset).
   105     return _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
   106   } else {
   107     return true;
   108   }
   109 }
   111 void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
   112                                              size_t    from_start_index,
   113                                              HeapWord* to_start_word,
   114                                              size_t    word_num) {
   115   _bm.mostly_disjoint_range_union(from_bitmap,
   116                                   from_start_index,
   117                                   heapWordToOffset(to_start_word),
   118                                   word_num);
   119 }
   121 #ifndef PRODUCT
   122 bool CMBitMapRO::covers(ReservedSpace rs) const {
   123   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   124   assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
   125          "size inconsistency");
   126   return _bmStartWord == (HeapWord*)(rs.base()) &&
   127          _bmWordSize  == rs.size()>>LogHeapWordSize;
   128 }
   129 #endif
   131 void CMBitMap::clearAll() {
   132   _bm.clear();
   133   return;
   134 }
   136 void CMBitMap::markRange(MemRegion mr) {
   137   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   138   assert(!mr.is_empty(), "unexpected empty region");
   139   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   140           ((HeapWord *) mr.end())),
   141          "markRange memory region end is not card aligned");
   142   // convert address range into offset range
   143   _bm.at_put_range(heapWordToOffset(mr.start()),
   144                    heapWordToOffset(mr.end()), true);
   145 }
   147 void CMBitMap::clearRange(MemRegion mr) {
   148   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   149   assert(!mr.is_empty(), "unexpected empty region");
   150   // convert address range into offset range
   151   _bm.at_put_range(heapWordToOffset(mr.start()),
   152                    heapWordToOffset(mr.end()), false);
   153 }
   155 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   156                                             HeapWord* end_addr) {
   157   HeapWord* start = getNextMarkedWordAddress(addr);
   158   start = MIN2(start, end_addr);
   159   HeapWord* end   = getNextUnmarkedWordAddress(start);
   160   end = MIN2(end, end_addr);
   161   assert(start <= end, "Consistency check");
   162   MemRegion mr(start, end);
   163   if (!mr.is_empty()) {
   164     clearRange(mr);
   165   }
   166   return mr;
   167 }
   169 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   170   _base(NULL), _cm(cm)
   171 #ifdef ASSERT
   172   , _drain_in_progress(false)
   173   , _drain_in_progress_yields(false)
   174 #endif
   175 {}
   177 void CMMarkStack::allocate(size_t size) {
   178   _base = NEW_C_HEAP_ARRAY(oop, size);
   179   if (_base == NULL)
   180     vm_exit_during_initialization("Failed to allocate "
   181                                   "CM region mark stack");
   182   _index = 0;
   183   // QQQQ cast ...
   184   _capacity = (jint) size;
   185   _oops_do_bound = -1;
   186   NOT_PRODUCT(_max_depth = 0);
   187 }
   189 CMMarkStack::~CMMarkStack() {
   190   if (_base != NULL) FREE_C_HEAP_ARRAY(oop, _base);
   191 }
   193 void CMMarkStack::par_push(oop ptr) {
   194   while (true) {
   195     if (isFull()) {
   196       _overflow = true;
   197       return;
   198     }
   199     // Otherwise...
   200     jint index = _index;
   201     jint next_index = index+1;
   202     jint res = Atomic::cmpxchg(next_index, &_index, index);
   203     if (res == index) {
   204       _base[index] = ptr;
   205       // Note that we don't maintain this atomically.  We could, but it
   206       // doesn't seem necessary.
   207       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   208       return;
   209     }
   210     // Otherwise, we need to try again.
   211   }
   212 }
   214 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   215   while (true) {
   216     if (isFull()) {
   217       _overflow = true;
   218       return;
   219     }
   220     // Otherwise...
   221     jint index = _index;
   222     jint next_index = index + n;
   223     if (next_index > _capacity) {
   224       _overflow = true;
   225       return;
   226     }
   227     jint res = Atomic::cmpxchg(next_index, &_index, index);
   228     if (res == index) {
   229       for (int i = 0; i < n; i++) {
   230         int ind = index + i;
   231         assert(ind < _capacity, "By overflow test above.");
   232         _base[ind] = ptr_arr[i];
   233       }
   234       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   235       return;
   236     }
   237     // Otherwise, we need to try again.
   238   }
   239 }
   242 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   243   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   244   jint start = _index;
   245   jint next_index = start + n;
   246   if (next_index > _capacity) {
   247     _overflow = true;
   248     return;
   249   }
   250   // Otherwise.
   251   _index = next_index;
   252   for (int i = 0; i < n; i++) {
   253     int ind = start + i;
   254     assert(ind < _capacity, "By overflow test above.");
   255     _base[ind] = ptr_arr[i];
   256   }
   257 }
   260 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   261   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   262   jint index = _index;
   263   if (index == 0) {
   264     *n = 0;
   265     return false;
   266   } else {
   267     int k = MIN2(max, index);
   268     jint new_ind = index - k;
   269     for (int j = 0; j < k; j++) {
   270       ptr_arr[j] = _base[new_ind + j];
   271     }
   272     _index = new_ind;
   273     *n = k;
   274     return true;
   275   }
   276 }
   279 CMRegionStack::CMRegionStack() : _base(NULL) {}
   281 void CMRegionStack::allocate(size_t size) {
   282   _base = NEW_C_HEAP_ARRAY(MemRegion, size);
   283   if (_base == NULL)
   284     vm_exit_during_initialization("Failed to allocate "
   285                                   "CM region mark stack");
   286   _index = 0;
   287   // QQQQ cast ...
   288   _capacity = (jint) size;
   289 }
   291 CMRegionStack::~CMRegionStack() {
   292   if (_base != NULL) FREE_C_HEAP_ARRAY(oop, _base);
   293 }
   295 void CMRegionStack::push_lock_free(MemRegion mr) {
   296   assert(mr.word_size() > 0, "Precondition");
   297   while (true) {
   298     jint index = _index;
   300     if (index >= _capacity) {
   301       _overflow = true;
   302       return;
   303     }
   304     // Otherwise...
   305     jint next_index = index+1;
   306     jint res = Atomic::cmpxchg(next_index, &_index, index);
   307     if (res == index) {
   308       _base[index] = mr;
   309       return;
   310     }
   311     // Otherwise, we need to try again.
   312   }
   313 }
   315 // Lock-free pop of the region stack. Called during the concurrent
   316 // marking / remark phases. Should only be called in tandem with
   317 // other lock-free pops.
   318 MemRegion CMRegionStack::pop_lock_free() {
   319   while (true) {
   320     jint index = _index;
   322     if (index == 0) {
   323       return MemRegion();
   324     }
   325     // Otherwise...
   326     jint next_index = index-1;
   327     jint res = Atomic::cmpxchg(next_index, &_index, index);
   328     if (res == index) {
   329       MemRegion mr = _base[next_index];
   330       if (mr.start() != NULL) {
   331         assert(mr.end() != NULL, "invariant");
   332         assert(mr.word_size() > 0, "invariant");
   333         return mr;
   334       } else {
   335         // that entry was invalidated... let's skip it
   336         assert(mr.end() == NULL, "invariant");
   337       }
   338     }
   339     // Otherwise, we need to try again.
   340   }
   341 }
   343 #if 0
   344 // The routines that manipulate the region stack with a lock are
   345 // not currently used. They should be retained, however, as a
   346 // diagnostic aid.
   348 void CMRegionStack::push_with_lock(MemRegion mr) {
   349   assert(mr.word_size() > 0, "Precondition");
   350   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
   352   if (isFull()) {
   353     _overflow = true;
   354     return;
   355   }
   357   _base[_index] = mr;
   358   _index += 1;
   359 }
   361 MemRegion CMRegionStack::pop_with_lock() {
   362   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
   364   while (true) {
   365     if (_index == 0) {
   366       return MemRegion();
   367     }
   368     _index -= 1;
   370     MemRegion mr = _base[_index];
   371     if (mr.start() != NULL) {
   372       assert(mr.end() != NULL, "invariant");
   373       assert(mr.word_size() > 0, "invariant");
   374       return mr;
   375     } else {
   376       // that entry was invalidated... let's skip it
   377       assert(mr.end() == NULL, "invariant");
   378     }
   379   }
   380 }
   381 #endif
   383 bool CMRegionStack::invalidate_entries_into_cset() {
   384   bool result = false;
   385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   386   for (int i = 0; i < _oops_do_bound; ++i) {
   387     MemRegion mr = _base[i];
   388     if (mr.start() != NULL) {
   389       assert(mr.end() != NULL, "invariant");
   390       assert(mr.word_size() > 0, "invariant");
   391       HeapRegion* hr = g1h->heap_region_containing(mr.start());
   392       assert(hr != NULL, "invariant");
   393       if (hr->in_collection_set()) {
   394         // The region points into the collection set
   395         _base[i] = MemRegion();
   396         result = true;
   397       }
   398     } else {
   399       // that entry was invalidated... let's skip it
   400       assert(mr.end() == NULL, "invariant");
   401     }
   402   }
   403   return result;
   404 }
   406 template<class OopClosureClass>
   407 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   408   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   409          || SafepointSynchronize::is_at_safepoint(),
   410          "Drain recursion must be yield-safe.");
   411   bool res = true;
   412   debug_only(_drain_in_progress = true);
   413   debug_only(_drain_in_progress_yields = yield_after);
   414   while (!isEmpty()) {
   415     oop newOop = pop();
   416     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   417     assert(newOop->is_oop(), "Expected an oop");
   418     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   419            "only grey objects on this stack");
   420     // iterate over the oops in this oop, marking and pushing
   421     // the ones in CMS generation.
   422     newOop->oop_iterate(cl);
   423     if (yield_after && _cm->do_yield_check()) {
   424       res = false; break;
   425     }
   426   }
   427   debug_only(_drain_in_progress = false);
   428   return res;
   429 }
   431 void CMMarkStack::oops_do(OopClosure* f) {
   432   if (_index == 0) return;
   433   assert(_oops_do_bound != -1 && _oops_do_bound <= _index,
   434          "Bound must be set.");
   435   for (int i = 0; i < _oops_do_bound; i++) {
   436     f->do_oop(&_base[i]);
   437   }
   438   _oops_do_bound = -1;
   439 }
   441 bool ConcurrentMark::not_yet_marked(oop obj) const {
   442   return (_g1h->is_obj_ill(obj)
   443           || (_g1h->is_in_permanent(obj)
   444               && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
   445 }
   447 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   448 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   449 #endif // _MSC_VER
   451 ConcurrentMark::ConcurrentMark(ReservedSpace rs,
   452                                int max_regions) :
   453   _markBitMap1(rs, MinObjAlignment - 1),
   454   _markBitMap2(rs, MinObjAlignment - 1),
   456   _parallel_marking_threads(0),
   457   _sleep_factor(0.0),
   458   _marking_task_overhead(1.0),
   459   _cleanup_sleep_factor(0.0),
   460   _cleanup_task_overhead(1.0),
   461   _cleanup_list("Cleanup List"),
   462   _region_bm(max_regions, false /* in_resource_area*/),
   463   _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
   464            CardTableModRefBS::card_shift,
   465            false /* in_resource_area*/),
   466   _prevMarkBitMap(&_markBitMap1),
   467   _nextMarkBitMap(&_markBitMap2),
   468   _at_least_one_mark_complete(false),
   470   _markStack(this),
   471   _regionStack(),
   472   // _finger set in set_non_marking_state
   474   _max_task_num(MAX2(ParallelGCThreads, (size_t)1)),
   475   // _active_tasks set in set_non_marking_state
   476   // _tasks set inside the constructor
   477   _task_queues(new CMTaskQueueSet((int) _max_task_num)),
   478   _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
   480   _has_overflown(false),
   481   _concurrent(false),
   482   _has_aborted(false),
   483   _restart_for_overflow(false),
   484   _concurrent_marking_in_progress(false),
   485   _should_gray_objects(false),
   487   // _verbose_level set below
   489   _init_times(),
   490   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   491   _cleanup_times(),
   492   _total_counting_time(0.0),
   493   _total_rs_scrub_time(0.0),
   495   _parallel_workers(NULL)
   496 {
   497   CMVerboseLevel verbose_level =
   498     (CMVerboseLevel) G1MarkingVerboseLevel;
   499   if (verbose_level < no_verbose)
   500     verbose_level = no_verbose;
   501   if (verbose_level > high_verbose)
   502     verbose_level = high_verbose;
   503   _verbose_level = verbose_level;
   505   if (verbose_low())
   506     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   507                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
   509   _markStack.allocate(MarkStackSize);
   510   _regionStack.allocate(G1MarkRegionStackSize);
   512   // Create & start a ConcurrentMark thread.
   513   _cmThread = new ConcurrentMarkThread(this);
   514   assert(cmThread() != NULL, "CM Thread should have been created");
   515   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   517   _g1h = G1CollectedHeap::heap();
   518   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   519   assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
   520   assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
   522   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   523   satb_qs.set_buffer_size(G1SATBBufferSize);
   525   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
   526   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);
   528   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   529   _active_tasks = _max_task_num;
   530   for (int i = 0; i < (int) _max_task_num; ++i) {
   531     CMTaskQueue* task_queue = new CMTaskQueue();
   532     task_queue->initialize();
   533     _task_queues->register_queue(i, task_queue);
   535     _tasks[i] = new CMTask(i, this, task_queue, _task_queues);
   536     _accum_task_vtime[i] = 0.0;
   537   }
   539   if (ConcGCThreads > ParallelGCThreads) {
   540     vm_exit_during_initialization("Can't have more ConcGCThreads "
   541                                   "than ParallelGCThreads.");
   542   }
   543   if (ParallelGCThreads == 0) {
   544     // if we are not running with any parallel GC threads we will not
   545     // spawn any marking threads either
   546     _parallel_marking_threads =   0;
   547     _sleep_factor             = 0.0;
   548     _marking_task_overhead    = 1.0;
   549   } else {
   550     if (ConcGCThreads > 0) {
   551       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
   552       // if both are set
   554       _parallel_marking_threads = ConcGCThreads;
   555       _sleep_factor             = 0.0;
   556       _marking_task_overhead    = 1.0;
   557     } else if (G1MarkingOverheadPercent > 0) {
   558       // we will calculate the number of parallel marking threads
   559       // based on a target overhead with respect to the soft real-time
   560       // goal
   562       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   563       double overall_cm_overhead =
   564         (double) MaxGCPauseMillis * marking_overhead /
   565         (double) GCPauseIntervalMillis;
   566       double cpu_ratio = 1.0 / (double) os::processor_count();
   567       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   568       double marking_task_overhead =
   569         overall_cm_overhead / marking_thread_num *
   570                                                 (double) os::processor_count();
   571       double sleep_factor =
   572                          (1.0 - marking_task_overhead) / marking_task_overhead;
   574       _parallel_marking_threads = (size_t) marking_thread_num;
   575       _sleep_factor             = sleep_factor;
   576       _marking_task_overhead    = marking_task_overhead;
   577     } else {
   578       _parallel_marking_threads = MAX2((ParallelGCThreads + 2) / 4, (size_t)1);
   579       _sleep_factor             = 0.0;
   580       _marking_task_overhead    = 1.0;
   581     }
   583     if (parallel_marking_threads() > 1)
   584       _cleanup_task_overhead = 1.0;
   585     else
   586       _cleanup_task_overhead = marking_task_overhead();
   587     _cleanup_sleep_factor =
   588                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   590 #if 0
   591     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   592     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   593     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   594     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   595     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   596 #endif
   598     guarantee(parallel_marking_threads() > 0, "peace of mind");
   599     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   600          (int) _parallel_marking_threads, false, true);
   601     if (_parallel_workers == NULL) {
   602       vm_exit_during_initialization("Failed necessary allocation.");
   603     } else {
   604       _parallel_workers->initialize_workers();
   605     }
   606   }
   608   // so that the call below can read a sensible value
   609   _heap_start = (HeapWord*) rs.base();
   610   set_non_marking_state();
   611 }
   613 void ConcurrentMark::update_g1_committed(bool force) {
   614   // If concurrent marking is not in progress, then we do not need to
   615   // update _heap_end. This has a subtle and important
   616   // side-effect. Imagine that two evacuation pauses happen between
   617   // marking completion and remark. The first one can grow the
   618   // heap (hence now the finger is below the heap end). Then, the
   619   // second one could unnecessarily push regions on the region
   620   // stack. This causes the invariant that the region stack is empty
   621   // at the beginning of remark to be false. By ensuring that we do
   622   // not observe heap expansions after marking is complete, then we do
   623   // not have this problem.
   624   if (!concurrent_marking_in_progress() && !force)
   625     return;
   627   MemRegion committed = _g1h->g1_committed();
   628   assert(committed.start() == _heap_start, "start shouldn't change");
   629   HeapWord* new_end = committed.end();
   630   if (new_end > _heap_end) {
   631     // The heap has been expanded.
   633     _heap_end = new_end;
   634   }
   635   // Notice that the heap can also shrink. However, this only happens
   636   // during a Full GC (at least currently) and the entire marking
   637   // phase will bail out and the task will not be restarted. So, let's
   638   // do nothing.
   639 }
   641 void ConcurrentMark::reset() {
   642   // Starting values for these two. This should be called in a STW
   643   // phase. CM will be notified of any future g1_committed expansions
   644   // will be at the end of evacuation pauses, when tasks are
   645   // inactive.
   646   MemRegion committed = _g1h->g1_committed();
   647   _heap_start = committed.start();
   648   _heap_end   = committed.end();
   650   // Separated the asserts so that we know which one fires.
   651   assert(_heap_start != NULL, "heap bounds should look ok");
   652   assert(_heap_end != NULL, "heap bounds should look ok");
   653   assert(_heap_start < _heap_end, "heap bounds should look ok");
   655   // reset all the marking data structures and any necessary flags
   656   clear_marking_state();
   658   if (verbose_low())
   659     gclog_or_tty->print_cr("[global] resetting");
   661   // We do reset all of them, since different phases will use
   662   // different number of active threads. So, it's easiest to have all
   663   // of them ready.
   664   for (int i = 0; i < (int) _max_task_num; ++i) {
   665     _tasks[i]->reset(_nextMarkBitMap);
   666   }
   668   // we need this to make sure that the flag is on during the evac
   669   // pause with initial mark piggy-backed
   670   set_concurrent_marking_in_progress();
   671 }
   673 void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
   674   assert(active_tasks <= _max_task_num, "we should not have more");
   676   _active_tasks = active_tasks;
   677   // Need to update the three data structures below according to the
   678   // number of active threads for this phase.
   679   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   680   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   681   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   683   _concurrent = concurrent;
   684   // We propagate this to all tasks, not just the active ones.
   685   for (int i = 0; i < (int) _max_task_num; ++i)
   686     _tasks[i]->set_concurrent(concurrent);
   688   if (concurrent) {
   689     set_concurrent_marking_in_progress();
   690   } else {
   691     // We currently assume that the concurrent flag has been set to
   692     // false before we start remark. At this point we should also be
   693     // in a STW phase.
   694     assert(!concurrent_marking_in_progress(), "invariant");
   695     assert(_finger == _heap_end, "only way to get here");
   696     update_g1_committed(true);
   697   }
   698 }
   700 void ConcurrentMark::set_non_marking_state() {
   701   // We set the global marking state to some default values when we're
   702   // not doing marking.
   703   clear_marking_state();
   704   _active_tasks = 0;
   705   clear_concurrent_marking_in_progress();
   706 }
   708 ConcurrentMark::~ConcurrentMark() {
   709   for (int i = 0; i < (int) _max_task_num; ++i) {
   710     delete _task_queues->queue(i);
   711     delete _tasks[i];
   712   }
   713   delete _task_queues;
   714   FREE_C_HEAP_ARRAY(CMTask*, _max_task_num);
   715 }
   717 // This closure is used to mark refs into the g1 generation
   718 // from external roots in the CMS bit map.
   719 // Called at the first checkpoint.
   720 //
   722 void ConcurrentMark::clearNextBitmap() {
   723   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   724   G1CollectorPolicy* g1p = g1h->g1_policy();
   726   // Make sure that the concurrent mark thread looks to still be in
   727   // the current cycle.
   728   guarantee(cmThread()->during_cycle(), "invariant");
   730   // We are finishing up the current cycle by clearing the next
   731   // marking bitmap and getting it ready for the next cycle. During
   732   // this time no other cycle can start. So, let's make sure that this
   733   // is the case.
   734   guarantee(!g1h->mark_in_progress(), "invariant");
   736   // clear the mark bitmap (no grey objects to start with).
   737   // We need to do this in chunks and offer to yield in between
   738   // each chunk.
   739   HeapWord* start  = _nextMarkBitMap->startWord();
   740   HeapWord* end    = _nextMarkBitMap->endWord();
   741   HeapWord* cur    = start;
   742   size_t chunkSize = M;
   743   while (cur < end) {
   744     HeapWord* next = cur + chunkSize;
   745     if (next > end)
   746       next = end;
   747     MemRegion mr(cur,next);
   748     _nextMarkBitMap->clearRange(mr);
   749     cur = next;
   750     do_yield_check();
   752     // Repeat the asserts from above. We'll do them as asserts here to
   753     // minimize their overhead on the product. However, we'll have
   754     // them as guarantees at the beginning / end of the bitmap
   755     // clearing to get some checking in the product.
   756     assert(cmThread()->during_cycle(), "invariant");
   757     assert(!g1h->mark_in_progress(), "invariant");
   758   }
   760   // Repeat the asserts from above.
   761   guarantee(cmThread()->during_cycle(), "invariant");
   762   guarantee(!g1h->mark_in_progress(), "invariant");
   763 }
   765 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   766 public:
   767   bool doHeapRegion(HeapRegion* r) {
   768     if (!r->continuesHumongous()) {
   769       r->note_start_of_marking(true);
   770     }
   771     return false;
   772   }
   773 };
   775 void ConcurrentMark::checkpointRootsInitialPre() {
   776   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   777   G1CollectorPolicy* g1p = g1h->g1_policy();
   779   _has_aborted = false;
   781 #ifndef PRODUCT
   782   if (G1PrintReachableAtInitialMark) {
   783     print_reachable("at-cycle-start",
   784                     true /* use_prev_marking */, true /* all */);
   785   }
   786 #endif
   788   // Initialise marking structures. This has to be done in a STW phase.
   789   reset();
   790 }
   792 class CMMarkRootsClosure: public OopsInGenClosure {
   793 private:
   794   ConcurrentMark*  _cm;
   795   G1CollectedHeap* _g1h;
   796   bool             _do_barrier;
   798 public:
   799   CMMarkRootsClosure(ConcurrentMark* cm,
   800                      G1CollectedHeap* g1h,
   801                      bool do_barrier) : _cm(cm), _g1h(g1h),
   802                                         _do_barrier(do_barrier) { }
   804   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   805   virtual void do_oop(      oop* p) { do_oop_work(p); }
   807   template <class T> void do_oop_work(T* p) {
   808     T heap_oop = oopDesc::load_heap_oop(p);
   809     if (!oopDesc::is_null(heap_oop)) {
   810       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   811       assert(obj->is_oop() || obj->mark() == NULL,
   812              "expected an oop, possibly with mark word displaced");
   813       HeapWord* addr = (HeapWord*)obj;
   814       if (_g1h->is_in_g1_reserved(addr)) {
   815         _cm->grayRoot(obj);
   816       }
   817     }
   818     if (_do_barrier) {
   819       assert(!_g1h->is_in_g1_reserved(p),
   820              "Should be called on external roots");
   821       do_barrier(p);
   822     }
   823   }
   824 };
   826 void ConcurrentMark::checkpointRootsInitialPost() {
   827   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   829   // For each region note start of marking.
   830   NoteStartOfMarkHRClosure startcl;
   831   g1h->heap_region_iterate(&startcl);
   833   // Start weak-reference discovery.
   834   ReferenceProcessor* rp = g1h->ref_processor();
   835   rp->verify_no_references_recorded();
   836   rp->enable_discovery(); // enable ("weak") refs discovery
   837   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   839   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   840   // This is the start of  the marking cycle, we're expected all
   841   // threads to have SATB queues with active set to false.
   842   satb_mq_set.set_active_all_threads(true, /* new active value */
   843                                      false /* expected_active */);
   845   // update_g1_committed() will be called at the end of an evac pause
   846   // when marking is on. So, it's also called at the end of the
   847   // initial-mark pause to update the heap end, if the heap expands
   848   // during it. No need to call it here.
   849 }
   851 // Checkpoint the roots into this generation from outside
   852 // this generation. [Note this initial checkpoint need only
   853 // be approximate -- we'll do a catch up phase subsequently.]
   854 void ConcurrentMark::checkpointRootsInitial() {
   855   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   856   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   858   double start = os::elapsedTime();
   860   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
   861   g1p->record_concurrent_mark_init_start();
   862   checkpointRootsInitialPre();
   864   // YSR: when concurrent precleaning is in place, we'll
   865   // need to clear the cached card table here
   867   ResourceMark rm;
   868   HandleMark  hm;
   870   g1h->ensure_parsability(false);
   871   g1h->perm_gen()->save_marks();
   873   CMMarkRootsClosure notOlder(this, g1h, false);
   874   CMMarkRootsClosure older(this, g1h, true);
   876   g1h->set_marking_started();
   877   g1h->rem_set()->prepare_for_younger_refs_iterate(false);
   879   g1h->process_strong_roots(true,    // activate StrongRootsScope
   880                             false,   // fake perm gen collection
   881                             SharedHeap::SO_AllClasses,
   882                             &notOlder, // Regular roots
   883                             NULL,     // do not visit active blobs
   884                             &older    // Perm Gen Roots
   885                             );
   886   checkpointRootsInitialPost();
   888   // Statistics.
   889   double end = os::elapsedTime();
   890   _init_times.add((end - start) * 1000.0);
   892   g1p->record_concurrent_mark_init_end();
   893 }
   895 /*
   896    Notice that in the next two methods, we actually leave the STS
   897    during the barrier sync and join it immediately afterwards. If we
   898    do not do this, this then the following deadlock can occur: one
   899    thread could be in the barrier sync code, waiting for the other
   900    thread to also sync up, whereas another one could be trying to
   901    yield, while also waiting for the other threads to sync up too.
   903    Because the thread that does the sync barrier has left the STS, it
   904    is possible to be suspended for a Full GC or an evacuation pause
   905    could occur. This is actually safe, since the entering the sync
   906    barrier is one of the last things do_marking_step() does, and it
   907    doesn't manipulate any data structures afterwards.
   908 */
   910 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
   911   if (verbose_low())
   912     gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
   914   ConcurrentGCThread::stsLeave();
   915   _first_overflow_barrier_sync.enter();
   916   ConcurrentGCThread::stsJoin();
   917   // at this point everyone should have synced up and not be doing any
   918   // more work
   920   if (verbose_low())
   921     gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
   923   // let task 0 do this
   924   if (task_num == 0) {
   925     // task 0 is responsible for clearing the global data structures
   926     clear_marking_state();
   928     if (PrintGC) {
   929       gclog_or_tty->date_stamp(PrintGCDateStamps);
   930       gclog_or_tty->stamp(PrintGCTimeStamps);
   931       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
   932     }
   933   }
   935   // after this, each task should reset its own data structures then
   936   // then go into the second barrier
   937 }
   939 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
   940   if (verbose_low())
   941     gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
   943   ConcurrentGCThread::stsLeave();
   944   _second_overflow_barrier_sync.enter();
   945   ConcurrentGCThread::stsJoin();
   946   // at this point everything should be re-initialised and ready to go
   948   if (verbose_low())
   949     gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
   950 }
   952 void ConcurrentMark::grayRoot(oop p) {
   953   HeapWord* addr = (HeapWord*) p;
   954   // We can't really check against _heap_start and _heap_end, since it
   955   // is possible during an evacuation pause with piggy-backed
   956   // initial-mark that the committed space is expanded during the
   957   // pause without CM observing this change. So the assertions below
   958   // is a bit conservative; but better than nothing.
   959   assert(_g1h->g1_committed().contains(addr),
   960          "address should be within the heap bounds");
   962   if (!_nextMarkBitMap->isMarked(addr))
   963     _nextMarkBitMap->parMark(addr);
   964 }
   966 void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
   967   // The objects on the region have already been marked "in bulk" by
   968   // the caller. We only need to decide whether to push the region on
   969   // the region stack or not.
   971   if (!concurrent_marking_in_progress() || !_should_gray_objects)
   972     // We're done with marking and waiting for remark. We do not need to
   973     // push anything else on the region stack.
   974     return;
   976   HeapWord* finger = _finger;
   978   if (verbose_low())
   979     gclog_or_tty->print_cr("[global] attempting to push "
   980                            "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
   981                            PTR_FORMAT, mr.start(), mr.end(), finger);
   983   if (mr.start() < finger) {
   984     // The finger is always heap region aligned and it is not possible
   985     // for mr to span heap regions.
   986     assert(mr.end() <= finger, "invariant");
   988     // Separated the asserts so that we know which one fires.
   989     assert(mr.start() <= mr.end(),
   990            "region boundaries should fall within the committed space");
   991     assert(_heap_start <= mr.start(),
   992            "region boundaries should fall within the committed space");
   993     assert(mr.end() <= _heap_end,
   994            "region boundaries should fall within the committed space");
   995     if (verbose_low())
   996       gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
   997                              "below the finger, pushing it",
   998                              mr.start(), mr.end());
  1000     if (!region_stack_push_lock_free(mr)) {
  1001       if (verbose_low())
  1002         gclog_or_tty->print_cr("[global] region stack has overflown.");
  1007 void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
  1008   // The object is not marked by the caller. We need to at least mark
  1009   // it and maybe push in on the stack.
  1011   HeapWord* addr = (HeapWord*)p;
  1012   if (!_nextMarkBitMap->isMarked(addr)) {
  1013     // We definitely need to mark it, irrespective whether we bail out
  1014     // because we're done with marking.
  1015     if (_nextMarkBitMap->parMark(addr)) {
  1016       if (!concurrent_marking_in_progress() || !_should_gray_objects)
  1017         // If we're done with concurrent marking and we're waiting for
  1018         // remark, then we're not pushing anything on the stack.
  1019         return;
  1021       // No OrderAccess:store_load() is needed. It is implicit in the
  1022       // CAS done in parMark(addr) above
  1023       HeapWord* finger = _finger;
  1025       if (addr < finger) {
  1026         if (!mark_stack_push(oop(addr))) {
  1027           if (verbose_low())
  1028             gclog_or_tty->print_cr("[global] global stack overflow "
  1029                                    "during parMark");
  1036 class CMConcurrentMarkingTask: public AbstractGangTask {
  1037 private:
  1038   ConcurrentMark*       _cm;
  1039   ConcurrentMarkThread* _cmt;
  1041 public:
  1042   void work(int worker_i) {
  1043     assert(Thread::current()->is_ConcurrentGC_thread(),
  1044            "this should only be done by a conc GC thread");
  1045     ResourceMark rm;
  1047     double start_vtime = os::elapsedVTime();
  1049     ConcurrentGCThread::stsJoin();
  1051     assert((size_t) worker_i < _cm->active_tasks(), "invariant");
  1052     CMTask* the_task = _cm->task(worker_i);
  1053     the_task->record_start_time();
  1054     if (!_cm->has_aborted()) {
  1055       do {
  1056         double start_vtime_sec = os::elapsedVTime();
  1057         double start_time_sec = os::elapsedTime();
  1058         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1060         the_task->do_marking_step(mark_step_duration_ms,
  1061                                   true /* do_stealing    */,
  1062                                   true /* do_termination */);
  1064         double end_time_sec = os::elapsedTime();
  1065         double end_vtime_sec = os::elapsedVTime();
  1066         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1067         double elapsed_time_sec = end_time_sec - start_time_sec;
  1068         _cm->clear_has_overflown();
  1070         bool ret = _cm->do_yield_check(worker_i);
  1072         jlong sleep_time_ms;
  1073         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1074           sleep_time_ms =
  1075             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1076           ConcurrentGCThread::stsLeave();
  1077           os::sleep(Thread::current(), sleep_time_ms, false);
  1078           ConcurrentGCThread::stsJoin();
  1080         double end_time2_sec = os::elapsedTime();
  1081         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1083 #if 0
  1084           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1085                                  "overhead %1.4lf",
  1086                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1087                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1088           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1089                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1090 #endif
  1091       } while (!_cm->has_aborted() && the_task->has_aborted());
  1093     the_task->record_end_time();
  1094     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1096     ConcurrentGCThread::stsLeave();
  1098     double end_vtime = os::elapsedVTime();
  1099     _cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
  1102   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1103                           ConcurrentMarkThread* cmt) :
  1104       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1106   ~CMConcurrentMarkingTask() { }
  1107 };
  1109 void ConcurrentMark::markFromRoots() {
  1110   // we might be tempted to assert that:
  1111   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1112   //        "inconsistent argument?");
  1113   // However that wouldn't be right, because it's possible that
  1114   // a safepoint is indeed in progress as a younger generation
  1115   // stop-the-world GC happens even as we mark in this generation.
  1117   _restart_for_overflow = false;
  1119   size_t active_workers = MAX2((size_t) 1, parallel_marking_threads());
  1120   set_phase(active_workers, true /* concurrent */);
  1122   CMConcurrentMarkingTask markingTask(this, cmThread());
  1123   if (parallel_marking_threads() > 0)
  1124     _parallel_workers->run_task(&markingTask);
  1125   else
  1126     markingTask.work(0);
  1127   print_stats();
  1130 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1131   // world is stopped at this checkpoint
  1132   assert(SafepointSynchronize::is_at_safepoint(),
  1133          "world should be stopped");
  1134   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1136   // If a full collection has happened, we shouldn't do this.
  1137   if (has_aborted()) {
  1138     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1139     return;
  1142   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1144   if (VerifyDuringGC) {
  1145     HandleMark hm;  // handle scope
  1146     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1147     Universe::heap()->prepare_for_verify();
  1148     Universe::verify(true, false, true);
  1151   G1CollectorPolicy* g1p = g1h->g1_policy();
  1152   g1p->record_concurrent_mark_remark_start();
  1154   double start = os::elapsedTime();
  1156   checkpointRootsFinalWork();
  1158   double mark_work_end = os::elapsedTime();
  1160   weakRefsWork(clear_all_soft_refs);
  1162   if (has_overflown()) {
  1163     // Oops.  We overflowed.  Restart concurrent marking.
  1164     _restart_for_overflow = true;
  1165     // Clear the flag. We do not need it any more.
  1166     clear_has_overflown();
  1167     if (G1TraceMarkStackOverflow)
  1168       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1169   } else {
  1170     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1171     // We're done with marking.
  1172     // This is the end of  the marking cycle, we're expected all
  1173     // threads to have SATB queues with active set to true.
  1174     satb_mq_set.set_active_all_threads(false, /* new active value */
  1175                                        true /* expected_active */);
  1177     if (VerifyDuringGC) {
  1178       HandleMark hm;  // handle scope
  1179       gclog_or_tty->print(" VerifyDuringGC:(after)");
  1180       Universe::heap()->prepare_for_verify();
  1181       Universe::heap()->verify(/* allow_dirty */      true,
  1182                                /* silent */           false,
  1183                                /* use_prev_marking */ false);
  1185     assert(!restart_for_overflow(), "sanity");
  1188   // Reset the marking state if marking completed
  1189   if (!restart_for_overflow()) {
  1190     set_non_marking_state();
  1193 #if VERIFY_OBJS_PROCESSED
  1194   _scan_obj_cl.objs_processed = 0;
  1195   ThreadLocalObjQueue::objs_enqueued = 0;
  1196 #endif
  1198   // Statistics
  1199   double now = os::elapsedTime();
  1200   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1201   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1202   _remark_times.add((now - start) * 1000.0);
  1204   g1p->record_concurrent_mark_remark_end();
  1208 #define CARD_BM_TEST_MODE 0
  1210 class CalcLiveObjectsClosure: public HeapRegionClosure {
  1212   CMBitMapRO* _bm;
  1213   ConcurrentMark* _cm;
  1214   bool _changed;
  1215   bool _yield;
  1216   size_t _words_done;
  1217   size_t _tot_live;
  1218   size_t _tot_used;
  1219   size_t _regions_done;
  1220   double _start_vtime_sec;
  1222   BitMap* _region_bm;
  1223   BitMap* _card_bm;
  1224   intptr_t _bottom_card_num;
  1225   bool _final;
  1227   void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
  1228     for (intptr_t i = start_card_num; i <= last_card_num; i++) {
  1229 #if CARD_BM_TEST_MODE
  1230       guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
  1231 #else
  1232       _card_bm->par_at_put(i - _bottom_card_num, 1);
  1233 #endif
  1237 public:
  1238   CalcLiveObjectsClosure(bool final,
  1239                          CMBitMapRO *bm, ConcurrentMark *cm,
  1240                          BitMap* region_bm, BitMap* card_bm) :
  1241     _bm(bm), _cm(cm), _changed(false), _yield(true),
  1242     _words_done(0), _tot_live(0), _tot_used(0),
  1243     _region_bm(region_bm), _card_bm(card_bm),_final(final),
  1244     _regions_done(0), _start_vtime_sec(0.0)
  1246     _bottom_card_num =
  1247       intptr_t(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >>
  1248                CardTableModRefBS::card_shift);
  1251   // It takes a region that's not empty (i.e., it has at least one
  1252   // live object in it and sets its corresponding bit on the region
  1253   // bitmap to 1. If the region is "starts humongous" it will also set
  1254   // to 1 the bits on the region bitmap that correspond to its
  1255   // associated "continues humongous" regions.
  1256   void set_bit_for_region(HeapRegion* hr) {
  1257     assert(!hr->continuesHumongous(), "should have filtered those out");
  1259     size_t index = hr->hrs_index();
  1260     if (!hr->startsHumongous()) {
  1261       // Normal (non-humongous) case: just set the bit.
  1262       _region_bm->par_at_put((BitMap::idx_t) index, true);
  1263     } else {
  1264       // Starts humongous case: calculate how many regions are part of
  1265       // this humongous region and then set the bit range. It might
  1266       // have been a bit more efficient to look at the object that
  1267       // spans these humongous regions to calculate their number from
  1268       // the object's size. However, it's a good idea to calculate
  1269       // this based on the metadata itself, and not the region
  1270       // contents, so that this code is not aware of what goes into
  1271       // the humongous regions (in case this changes in the future).
  1272       G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1273       size_t end_index = index + 1;
  1274       while (end_index < g1h->n_regions()) {
  1275         HeapRegion* chr = g1h->region_at(end_index);
  1276         if (!chr->continuesHumongous()) {
  1277           break;
  1279         end_index += 1;
  1281       _region_bm->par_at_put_range((BitMap::idx_t) index,
  1282                                    (BitMap::idx_t) end_index, true);
  1286   bool doHeapRegion(HeapRegion* hr) {
  1287     if (!_final && _regions_done == 0)
  1288       _start_vtime_sec = os::elapsedVTime();
  1290     if (hr->continuesHumongous()) {
  1291       // We will ignore these here and process them when their
  1292       // associated "starts humongous" region is processed (see
  1293       // set_bit_for_heap_region()). Note that we cannot rely on their
  1294       // associated "starts humongous" region to have their bit set to
  1295       // 1 since, due to the region chunking in the parallel region
  1296       // iteration, a "continues humongous" region might be visited
  1297       // before its associated "starts humongous".
  1298       return false;
  1301     HeapWord* nextTop = hr->next_top_at_mark_start();
  1302     HeapWord* start   = hr->top_at_conc_mark_count();
  1303     assert(hr->bottom() <= start && start <= hr->end() &&
  1304            hr->bottom() <= nextTop && nextTop <= hr->end() &&
  1305            start <= nextTop,
  1306            "Preconditions.");
  1307     // Otherwise, record the number of word's we'll examine.
  1308     size_t words_done = (nextTop - start);
  1309     // Find the first marked object at or after "start".
  1310     start = _bm->getNextMarkedWordAddress(start, nextTop);
  1311     size_t marked_bytes = 0;
  1313     // Below, the term "card num" means the result of shifting an address
  1314     // by the card shift -- address 0 corresponds to card number 0.  One
  1315     // must subtract the card num of the bottom of the heap to obtain a
  1316     // card table index.
  1317     // The first card num of the sequence of live cards currently being
  1318     // constructed.  -1 ==> no sequence.
  1319     intptr_t start_card_num = -1;
  1320     // The last card num of the sequence of live cards currently being
  1321     // constructed.  -1 ==> no sequence.
  1322     intptr_t last_card_num = -1;
  1324     while (start < nextTop) {
  1325       if (_yield && _cm->do_yield_check()) {
  1326         // We yielded.  It might be for a full collection, in which case
  1327         // all bets are off; terminate the traversal.
  1328         if (_cm->has_aborted()) {
  1329           _changed = false;
  1330           return true;
  1331         } else {
  1332           // Otherwise, it might be a collection pause, and the region
  1333           // we're looking at might be in the collection set.  We'll
  1334           // abandon this region.
  1335           return false;
  1338       oop obj = oop(start);
  1339       int obj_sz = obj->size();
  1340       // The card num of the start of the current object.
  1341       intptr_t obj_card_num =
  1342         intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);
  1344       HeapWord* obj_last = start + obj_sz - 1;
  1345       intptr_t obj_last_card_num =
  1346         intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);
  1348       if (obj_card_num != last_card_num) {
  1349         if (start_card_num == -1) {
  1350           assert(last_card_num == -1, "Both or neither.");
  1351           start_card_num = obj_card_num;
  1352         } else {
  1353           assert(last_card_num != -1, "Both or neither.");
  1354           assert(obj_card_num >= last_card_num, "Inv");
  1355           if ((obj_card_num - last_card_num) > 1) {
  1356             // Mark the last run, and start a new one.
  1357             mark_card_num_range(start_card_num, last_card_num);
  1358             start_card_num = obj_card_num;
  1361 #if CARD_BM_TEST_MODE
  1362         /*
  1363         gclog_or_tty->print_cr("Setting bits from %d/%d.",
  1364                                obj_card_num - _bottom_card_num,
  1365                                obj_last_card_num - _bottom_card_num);
  1366         */
  1367         for (intptr_t j = obj_card_num; j <= obj_last_card_num; j++) {
  1368           _card_bm->par_at_put(j - _bottom_card_num, 1);
  1370 #endif
  1372       // In any case, we set the last card num.
  1373       last_card_num = obj_last_card_num;
  1375       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1376       // Find the next marked object after this one.
  1377       start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
  1378       _changed = true;
  1380     // Handle the last range, if any.
  1381     if (start_card_num != -1)
  1382       mark_card_num_range(start_card_num, last_card_num);
  1383     if (_final) {
  1384       // Mark the allocated-since-marking portion...
  1385       HeapWord* tp = hr->top();
  1386       if (nextTop < tp) {
  1387         start_card_num =
  1388           intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
  1389         last_card_num =
  1390           intptr_t(uintptr_t(tp) >> CardTableModRefBS::card_shift);
  1391         mark_card_num_range(start_card_num, last_card_num);
  1392         // This definitely means the region has live objects.
  1393         set_bit_for_region(hr);
  1397     hr->add_to_marked_bytes(marked_bytes);
  1398     // Update the live region bitmap.
  1399     if (marked_bytes > 0) {
  1400       set_bit_for_region(hr);
  1402     hr->set_top_at_conc_mark_count(nextTop);
  1403     _tot_live += hr->next_live_bytes();
  1404     _tot_used += hr->used();
  1405     _words_done = words_done;
  1407     if (!_final) {
  1408       ++_regions_done;
  1409       if (_regions_done % 10 == 0) {
  1410         double end_vtime_sec = os::elapsedVTime();
  1411         double elapsed_vtime_sec = end_vtime_sec - _start_vtime_sec;
  1412         if (elapsed_vtime_sec > (10.0 / 1000.0)) {
  1413           jlong sleep_time_ms =
  1414             (jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
  1415           os::sleep(Thread::current(), sleep_time_ms, false);
  1416           _start_vtime_sec = end_vtime_sec;
  1421     return false;
  1424   bool changed() { return _changed;  }
  1425   void reset()   { _changed = false; _words_done = 0; }
  1426   void no_yield() { _yield = false; }
  1427   size_t words_done() { return _words_done; }
  1428   size_t tot_live() { return _tot_live; }
  1429   size_t tot_used() { return _tot_used; }
  1430 };
  1433 void ConcurrentMark::calcDesiredRegions() {
  1434   _region_bm.clear();
  1435   _card_bm.clear();
  1436   CalcLiveObjectsClosure calccl(false /*final*/,
  1437                                 nextMarkBitMap(), this,
  1438                                 &_region_bm, &_card_bm);
  1439   G1CollectedHeap *g1h = G1CollectedHeap::heap();
  1440   g1h->heap_region_iterate(&calccl);
  1442   do {
  1443     calccl.reset();
  1444     g1h->heap_region_iterate(&calccl);
  1445   } while (calccl.changed());
  1448 class G1ParFinalCountTask: public AbstractGangTask {
  1449 protected:
  1450   G1CollectedHeap* _g1h;
  1451   CMBitMap* _bm;
  1452   size_t _n_workers;
  1453   size_t *_live_bytes;
  1454   size_t *_used_bytes;
  1455   BitMap* _region_bm;
  1456   BitMap* _card_bm;
  1457 public:
  1458   G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
  1459                       BitMap* region_bm, BitMap* card_bm) :
  1460     AbstractGangTask("G1 final counting"), _g1h(g1h),
  1461     _bm(bm), _region_bm(region_bm), _card_bm(card_bm)
  1463     if (ParallelGCThreads > 0)
  1464       _n_workers = _g1h->workers()->total_workers();
  1465     else
  1466       _n_workers = 1;
  1467     _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  1468     _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  1471   ~G1ParFinalCountTask() {
  1472     FREE_C_HEAP_ARRAY(size_t, _live_bytes);
  1473     FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  1476   void work(int i) {
  1477     CalcLiveObjectsClosure calccl(true /*final*/,
  1478                                   _bm, _g1h->concurrent_mark(),
  1479                                   _region_bm, _card_bm);
  1480     calccl.no_yield();
  1481     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1482       _g1h->heap_region_par_iterate_chunked(&calccl, i,
  1483                                             HeapRegion::FinalCountClaimValue);
  1484     } else {
  1485       _g1h->heap_region_iterate(&calccl);
  1487     assert(calccl.complete(), "Shouldn't have yielded!");
  1489     assert((size_t) i < _n_workers, "invariant");
  1490     _live_bytes[i] = calccl.tot_live();
  1491     _used_bytes[i] = calccl.tot_used();
  1493   size_t live_bytes()  {
  1494     size_t live_bytes = 0;
  1495     for (size_t i = 0; i < _n_workers; ++i)
  1496       live_bytes += _live_bytes[i];
  1497     return live_bytes;
  1499   size_t used_bytes()  {
  1500     size_t used_bytes = 0;
  1501     for (size_t i = 0; i < _n_workers; ++i)
  1502       used_bytes += _used_bytes[i];
  1503     return used_bytes;
  1505 };
  1507 class G1ParNoteEndTask;
  1509 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1510   G1CollectedHeap* _g1;
  1511   int _worker_num;
  1512   size_t _max_live_bytes;
  1513   size_t _regions_claimed;
  1514   size_t _freed_bytes;
  1515   FreeRegionList* _local_cleanup_list;
  1516   HumongousRegionSet* _humongous_proxy_set;
  1517   HRRSCleanupTask* _hrrs_cleanup_task;
  1518   double _claimed_region_time;
  1519   double _max_region_time;
  1521 public:
  1522   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1523                              int worker_num,
  1524                              FreeRegionList* local_cleanup_list,
  1525                              HumongousRegionSet* humongous_proxy_set,
  1526                              HRRSCleanupTask* hrrs_cleanup_task);
  1527   size_t freed_bytes() { return _freed_bytes; }
  1529   bool doHeapRegion(HeapRegion *r);
  1531   size_t max_live_bytes() { return _max_live_bytes; }
  1532   size_t regions_claimed() { return _regions_claimed; }
  1533   double claimed_region_time_sec() { return _claimed_region_time; }
  1534   double max_region_time_sec() { return _max_region_time; }
  1535 };
  1537 class G1ParNoteEndTask: public AbstractGangTask {
  1538   friend class G1NoteEndOfConcMarkClosure;
  1540 protected:
  1541   G1CollectedHeap* _g1h;
  1542   size_t _max_live_bytes;
  1543   size_t _freed_bytes;
  1544   FreeRegionList* _cleanup_list;
  1546 public:
  1547   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1548                    FreeRegionList* cleanup_list) :
  1549     AbstractGangTask("G1 note end"), _g1h(g1h),
  1550     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1552   void work(int i) {
  1553     double start = os::elapsedTime();
  1554     FreeRegionList local_cleanup_list("Local Cleanup List");
  1555     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
  1556     HRRSCleanupTask hrrs_cleanup_task;
  1557     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, i, &local_cleanup_list,
  1558                                            &humongous_proxy_set,
  1559                                            &hrrs_cleanup_task);
  1560     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1561       _g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
  1562                                             HeapRegion::NoteEndClaimValue);
  1563     } else {
  1564       _g1h->heap_region_iterate(&g1_note_end);
  1566     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1568     // Now update the lists
  1569     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
  1570                                             NULL /* free_list */,
  1571                                             &humongous_proxy_set,
  1572                                             true /* par */);
  1574       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1575       _max_live_bytes += g1_note_end.max_live_bytes();
  1576       _freed_bytes += g1_note_end.freed_bytes();
  1578       _cleanup_list->add_as_tail(&local_cleanup_list);
  1579       assert(local_cleanup_list.is_empty(), "post-condition");
  1581       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1583     double end = os::elapsedTime();
  1584     if (G1PrintParCleanupStats) {
  1585       gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
  1586                           "claimed %d regions (tot = %8.3f ms, max = %8.3f ms).\n",
  1587                           i, start, end, (end-start)*1000.0,
  1588                           g1_note_end.regions_claimed(),
  1589                           g1_note_end.claimed_region_time_sec()*1000.0,
  1590                           g1_note_end.max_region_time_sec()*1000.0);
  1593   size_t max_live_bytes() { return _max_live_bytes; }
  1594   size_t freed_bytes() { return _freed_bytes; }
  1595 };
  1597 class G1ParScrubRemSetTask: public AbstractGangTask {
  1598 protected:
  1599   G1RemSet* _g1rs;
  1600   BitMap* _region_bm;
  1601   BitMap* _card_bm;
  1602 public:
  1603   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1604                        BitMap* region_bm, BitMap* card_bm) :
  1605     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1606     _region_bm(region_bm), _card_bm(card_bm)
  1607   {}
  1609   void work(int i) {
  1610     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1611       _g1rs->scrub_par(_region_bm, _card_bm, i,
  1612                        HeapRegion::ScrubRemSetClaimValue);
  1613     } else {
  1614       _g1rs->scrub(_region_bm, _card_bm);
  1618 };
  1620 G1NoteEndOfConcMarkClosure::
  1621 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1622                            int worker_num,
  1623                            FreeRegionList* local_cleanup_list,
  1624                            HumongousRegionSet* humongous_proxy_set,
  1625                            HRRSCleanupTask* hrrs_cleanup_task)
  1626   : _g1(g1), _worker_num(worker_num),
  1627     _max_live_bytes(0), _regions_claimed(0),
  1628     _freed_bytes(0),
  1629     _claimed_region_time(0.0), _max_region_time(0.0),
  1630     _local_cleanup_list(local_cleanup_list),
  1631     _humongous_proxy_set(humongous_proxy_set),
  1632     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1634 bool G1NoteEndOfConcMarkClosure::doHeapRegion(HeapRegion *hr) {
  1635   // We use a claim value of zero here because all regions
  1636   // were claimed with value 1 in the FinalCount task.
  1637   hr->reset_gc_time_stamp();
  1638   if (!hr->continuesHumongous()) {
  1639     double start = os::elapsedTime();
  1640     _regions_claimed++;
  1641     hr->note_end_of_marking();
  1642     _max_live_bytes += hr->max_live_bytes();
  1643     _g1->free_region_if_empty(hr,
  1644                               &_freed_bytes,
  1645                               _local_cleanup_list,
  1646                               _humongous_proxy_set,
  1647                               _hrrs_cleanup_task,
  1648                               true /* par */);
  1649     double region_time = (os::elapsedTime() - start);
  1650     _claimed_region_time += region_time;
  1651     if (region_time > _max_region_time) _max_region_time = region_time;
  1653   return false;
  1656 void ConcurrentMark::cleanup() {
  1657   // world is stopped at this checkpoint
  1658   assert(SafepointSynchronize::is_at_safepoint(),
  1659          "world should be stopped");
  1660   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1662   // If a full collection has happened, we shouldn't do this.
  1663   if (has_aborted()) {
  1664     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1665     return;
  1668   g1h->verify_region_sets_optional();
  1670   if (VerifyDuringGC) {
  1671     HandleMark hm;  // handle scope
  1672     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1673     Universe::heap()->prepare_for_verify();
  1674     Universe::verify(/* allow dirty  */ true,
  1675                      /* silent       */ false,
  1676                      /* prev marking */ true);
  1679   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  1680   g1p->record_concurrent_mark_cleanup_start();
  1682   double start = os::elapsedTime();
  1684   HeapRegionRemSet::reset_for_cleanup_tasks();
  1686   // Do counting once more with the world stopped for good measure.
  1687   G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
  1688                                         &_region_bm, &_card_bm);
  1689   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1690     assert(g1h->check_heap_region_claim_values(
  1691                                                HeapRegion::InitialClaimValue),
  1692            "sanity check");
  1694     int n_workers = g1h->workers()->total_workers();
  1695     g1h->set_par_threads(n_workers);
  1696     g1h->workers()->run_task(&g1_par_count_task);
  1697     g1h->set_par_threads(0);
  1699     assert(g1h->check_heap_region_claim_values(
  1700                                              HeapRegion::FinalCountClaimValue),
  1701            "sanity check");
  1702   } else {
  1703     g1_par_count_task.work(0);
  1706   size_t known_garbage_bytes =
  1707     g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
  1708 #if 0
  1709   gclog_or_tty->print_cr("used %1.2lf, live %1.2lf, garbage %1.2lf",
  1710                          (double) g1_par_count_task.used_bytes() / (double) (1024 * 1024),
  1711                          (double) g1_par_count_task.live_bytes() / (double) (1024 * 1024),
  1712                          (double) known_garbage_bytes / (double) (1024 * 1024));
  1713 #endif // 0
  1714   g1p->set_known_garbage_bytes(known_garbage_bytes);
  1716   size_t start_used_bytes = g1h->used();
  1717   _at_least_one_mark_complete = true;
  1718   g1h->set_marking_complete();
  1720   double count_end = os::elapsedTime();
  1721   double this_final_counting_time = (count_end - start);
  1722   if (G1PrintParCleanupStats) {
  1723     gclog_or_tty->print_cr("Cleanup:");
  1724     gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
  1725                            this_final_counting_time*1000.0);
  1727   _total_counting_time += this_final_counting_time;
  1729   // Install newly created mark bitMap as "prev".
  1730   swapMarkBitMaps();
  1732   g1h->reset_gc_time_stamp();
  1734   // Note end of marking in all heap regions.
  1735   double note_end_start = os::elapsedTime();
  1736   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  1737   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1738     int n_workers = g1h->workers()->total_workers();
  1739     g1h->set_par_threads(n_workers);
  1740     g1h->workers()->run_task(&g1_par_note_end_task);
  1741     g1h->set_par_threads(0);
  1743     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  1744            "sanity check");
  1745   } else {
  1746     g1_par_note_end_task.work(0);
  1749   if (!cleanup_list_is_empty()) {
  1750     // The cleanup list is not empty, so we'll have to process it
  1751     // concurrently. Notify anyone else that might be wanting free
  1752     // regions that there will be more free regions coming soon.
  1753     g1h->set_free_regions_coming();
  1755   double note_end_end = os::elapsedTime();
  1756   if (G1PrintParCleanupStats) {
  1757     gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
  1758                            (note_end_end - note_end_start)*1000.0);
  1762   // call below, since it affects the metric by which we sort the heap
  1763   // regions.
  1764   if (G1ScrubRemSets) {
  1765     double rs_scrub_start = os::elapsedTime();
  1766     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  1767     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1768       int n_workers = g1h->workers()->total_workers();
  1769       g1h->set_par_threads(n_workers);
  1770       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  1771       g1h->set_par_threads(0);
  1773       assert(g1h->check_heap_region_claim_values(
  1774                                             HeapRegion::ScrubRemSetClaimValue),
  1775              "sanity check");
  1776     } else {
  1777       g1_par_scrub_rs_task.work(0);
  1780     double rs_scrub_end = os::elapsedTime();
  1781     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  1782     _total_rs_scrub_time += this_rs_scrub_time;
  1785   // this will also free any regions totally full of garbage objects,
  1786   // and sort the regions.
  1787   g1h->g1_policy()->record_concurrent_mark_cleanup_end(
  1788                         g1_par_note_end_task.freed_bytes(),
  1789                         g1_par_note_end_task.max_live_bytes());
  1791   // Statistics.
  1792   double end = os::elapsedTime();
  1793   _cleanup_times.add((end - start) * 1000.0);
  1795   // G1CollectedHeap::heap()->print();
  1796   // gclog_or_tty->print_cr("HEAP GC TIME STAMP : %d",
  1797   // G1CollectedHeap::heap()->get_gc_time_stamp());
  1799   if (PrintGC || PrintGCDetails) {
  1800     g1h->print_size_transition(gclog_or_tty,
  1801                                start_used_bytes,
  1802                                g1h->used(),
  1803                                g1h->capacity());
  1806   size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  1807   g1p->decrease_known_garbage_bytes(cleaned_up_bytes);
  1809   // We need to make this be a "collection" so any collection pause that
  1810   // races with it goes around and waits for completeCleanup to finish.
  1811   g1h->increment_total_collections();
  1813   if (VerifyDuringGC) {
  1814     HandleMark hm;  // handle scope
  1815     gclog_or_tty->print(" VerifyDuringGC:(after)");
  1816     Universe::heap()->prepare_for_verify();
  1817     Universe::verify(/* allow dirty  */ true,
  1818                      /* silent       */ false,
  1819                      /* prev marking */ true);
  1822   g1h->verify_region_sets_optional();
  1825 void ConcurrentMark::completeCleanup() {
  1826   if (has_aborted()) return;
  1828   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1830   _cleanup_list.verify_optional();
  1831   FreeRegionList local_free_list("Local Cleanup List");
  1833   if (G1ConcRegionFreeingVerbose) {
  1834     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  1835                            "cleanup list has "SIZE_FORMAT" entries",
  1836                            _cleanup_list.length());
  1839   // Noone else should be accessing the _cleanup_list at this point,
  1840   // so it's not necessary to take any locks
  1841   while (!_cleanup_list.is_empty()) {
  1842     HeapRegion* hr = _cleanup_list.remove_head();
  1843     assert(hr != NULL, "the list was not empty");
  1844     hr->rem_set()->clear();
  1845     local_free_list.add_as_tail(hr);
  1847     // Instead of adding one region at a time to the secondary_free_list,
  1848     // we accumulate them in the local list and move them a few at a
  1849     // time. This also cuts down on the number of notify_all() calls
  1850     // we do during this process. We'll also append the local list when
  1851     // _cleanup_list is empty (which means we just removed the last
  1852     // region from the _cleanup_list).
  1853     if ((local_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  1854         _cleanup_list.is_empty()) {
  1855       if (G1ConcRegionFreeingVerbose) {
  1856         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  1857                                "appending "SIZE_FORMAT" entries to the "
  1858                                "secondary_free_list, clean list still has "
  1859                                SIZE_FORMAT" entries",
  1860                                local_free_list.length(),
  1861                                _cleanup_list.length());
  1865         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1866         g1h->secondary_free_list_add_as_tail(&local_free_list);
  1867         SecondaryFreeList_lock->notify_all();
  1870       if (G1StressConcRegionFreeing) {
  1871         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  1872           os::sleep(Thread::current(), (jlong) 1, false);
  1877   assert(local_free_list.is_empty(), "post-condition");
  1880 // Support closures for reference procssing in G1
  1882 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  1883   HeapWord* addr = (HeapWord*)obj;
  1884   return addr != NULL &&
  1885          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  1888 class G1CMKeepAliveClosure: public OopClosure {
  1889   G1CollectedHeap* _g1;
  1890   ConcurrentMark*  _cm;
  1891   CMBitMap*        _bitMap;
  1892  public:
  1893   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
  1894                        CMBitMap* bitMap) :
  1895     _g1(g1), _cm(cm),
  1896     _bitMap(bitMap) {}
  1898   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  1899   virtual void do_oop(      oop* p) { do_oop_work(p); }
  1901   template <class T> void do_oop_work(T* p) {
  1902     oop obj = oopDesc::load_decode_heap_oop(p);
  1903     HeapWord* addr = (HeapWord*)obj;
  1905     if (_cm->verbose_high())
  1906       gclog_or_tty->print_cr("\t[0] we're looking at location "
  1907                                "*"PTR_FORMAT" = "PTR_FORMAT,
  1908                                p, (void*) obj);
  1910     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
  1911       _bitMap->mark(addr);
  1912       _cm->mark_stack_push(obj);
  1915 };
  1917 class G1CMDrainMarkingStackClosure: public VoidClosure {
  1918   CMMarkStack*                  _markStack;
  1919   CMBitMap*                     _bitMap;
  1920   G1CMKeepAliveClosure*         _oopClosure;
  1921  public:
  1922   G1CMDrainMarkingStackClosure(CMBitMap* bitMap, CMMarkStack* markStack,
  1923                                G1CMKeepAliveClosure* oopClosure) :
  1924     _bitMap(bitMap),
  1925     _markStack(markStack),
  1926     _oopClosure(oopClosure)
  1927   {}
  1929   void do_void() {
  1930     _markStack->drain((OopClosure*)_oopClosure, _bitMap, false);
  1932 };
  1934 // 'Keep Alive' closure used by parallel reference processing.
  1935 // An instance of this closure is used in the parallel reference processing
  1936 // code rather than an instance of G1CMKeepAliveClosure. We could have used
  1937 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
  1938 // placed on to discovered ref lists once so we can mark and push with no
  1939 // need to check whether the object has already been marked. Using the
  1940 // G1CMKeepAliveClosure would mean, however, having all the worker threads
  1941 // operating on the global mark stack. This means that an individual
  1942 // worker would be doing lock-free pushes while it processes its own
  1943 // discovered ref list followed by drain call. If the discovered ref lists
  1944 // are unbalanced then this could cause interference with the other
  1945 // workers. Using a CMTask (and its embedded local data structures)
  1946 // avoids that potential interference.
  1947 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  1948   ConcurrentMark*  _cm;
  1949   CMTask*          _task;
  1950   CMBitMap*        _bitMap;
  1951   int              _ref_counter_limit;
  1952   int              _ref_counter;
  1953  public:
  1954   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm,
  1955                                   CMTask* task,
  1956                                   CMBitMap* bitMap) :
  1957     _cm(cm), _task(task), _bitMap(bitMap),
  1958     _ref_counter_limit(G1RefProcDrainInterval)
  1960     assert(_ref_counter_limit > 0, "sanity");
  1961     _ref_counter = _ref_counter_limit;
  1964   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  1965   virtual void do_oop(      oop* p) { do_oop_work(p); }
  1967   template <class T> void do_oop_work(T* p) {
  1968     if (!_cm->has_overflown()) {
  1969       oop obj = oopDesc::load_decode_heap_oop(p);
  1970       if (_cm->verbose_high())
  1971         gclog_or_tty->print_cr("\t[%d] we're looking at location "
  1972                                "*"PTR_FORMAT" = "PTR_FORMAT,
  1973                                _task->task_id(), p, (void*) obj);
  1975       _task->deal_with_reference(obj);
  1976       _ref_counter--;
  1978       if (_ref_counter == 0) {
  1979         // We have dealt with _ref_counter_limit references, pushing them and objects
  1980         // reachable from them on to the local stack (and possibly the global stack).
  1981         // Call do_marking_step() to process these entries. We call the routine in a
  1982         // loop, which we'll exit if there's nothing more to do (i.e. we're done
  1983         // with the entries that we've pushed as a result of the deal_with_reference
  1984         // calls above) or we overflow.
  1985         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  1986         // while there may still be some work to do. (See the comment at the
  1987         // beginning of CMTask::do_marking_step() for those conditions - one of which
  1988         // is reaching the specified time target.) It is only when
  1989         // CMTask::do_marking_step() returns without setting the has_aborted() flag
  1990         // that the marking has completed.
  1991         do {
  1992           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1993           _task->do_marking_step(mark_step_duration_ms,
  1994                                  false /* do_stealing    */,
  1995                                  false /* do_termination */);
  1996         } while (_task->has_aborted() && !_cm->has_overflown());
  1997         _ref_counter = _ref_counter_limit;
  1999     } else {
  2000        if (_cm->verbose_high())
  2001          gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
  2004 };
  2006 class G1CMParDrainMarkingStackClosure: public VoidClosure {
  2007   ConcurrentMark* _cm;
  2008   CMTask* _task;
  2009  public:
  2010   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
  2011     _cm(cm), _task(task)
  2012   {}
  2014   void do_void() {
  2015     do {
  2016       if (_cm->verbose_high())
  2017         gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step", _task->task_id());
  2019       // We call CMTask::do_marking_step() to completely drain the local and
  2020       // global marking stacks. The routine is called in a loop, which we'll
  2021       // exit if there's nothing more to do (i.e. we'completely drained the
  2022       // entries that were pushed as a result of applying the
  2023       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
  2024       // lists above) or we overflow the global marking stack.
  2025       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  2026       // while there may still be some work to do. (See the comment at the
  2027       // beginning of CMTask::do_marking_step() for those conditions - one of which
  2028       // is reaching the specified time target.) It is only when
  2029       // CMTask::do_marking_step() returns without setting the has_aborted() flag
  2030       // that the marking has completed.
  2032       _task->do_marking_step(1000000000.0 /* something very large */,
  2033                              true /* do_stealing    */,
  2034                              true /* do_termination */);
  2035     } while (_task->has_aborted() && !_cm->has_overflown());
  2037 };
  2039 // Implementation of AbstractRefProcTaskExecutor for G1
  2040 class G1RefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2041 private:
  2042   G1CollectedHeap* _g1h;
  2043   ConcurrentMark*  _cm;
  2044   CMBitMap*        _bitmap;
  2045   WorkGang*        _workers;
  2046   int              _active_workers;
  2048 public:
  2049   G1RefProcTaskExecutor(G1CollectedHeap* g1h,
  2050                         ConcurrentMark* cm,
  2051                         CMBitMap* bitmap,
  2052                         WorkGang* workers,
  2053                         int n_workers) :
  2054     _g1h(g1h), _cm(cm), _bitmap(bitmap),
  2055     _workers(workers), _active_workers(n_workers)
  2056   { }
  2058   // Executes the given task using concurrent marking worker threads.
  2059   virtual void execute(ProcessTask& task);
  2060   virtual void execute(EnqueueTask& task);
  2061 };
  2063 class G1RefProcTaskProxy: public AbstractGangTask {
  2064   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2065   ProcessTask&     _proc_task;
  2066   G1CollectedHeap* _g1h;
  2067   ConcurrentMark*  _cm;
  2068   CMBitMap*        _bitmap;
  2070 public:
  2071   G1RefProcTaskProxy(ProcessTask& proc_task,
  2072                      G1CollectedHeap* g1h,
  2073                      ConcurrentMark* cm,
  2074                      CMBitMap* bitmap) :
  2075     AbstractGangTask("Process reference objects in parallel"),
  2076     _proc_task(proc_task), _g1h(g1h), _cm(cm), _bitmap(bitmap)
  2077   {}
  2079   virtual void work(int i) {
  2080     CMTask* marking_task = _cm->task(i);
  2081     G1CMIsAliveClosure g1_is_alive(_g1h);
  2082     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task, _bitmap);
  2083     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
  2085     _proc_task.work(i, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2087 };
  2089 void G1RefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2090   assert(_workers != NULL, "Need parallel worker threads.");
  2092   G1RefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm, _bitmap);
  2094   // We need to reset the phase for each task execution so that
  2095   // the termination protocol of CMTask::do_marking_step works.
  2096   _cm->set_phase(_active_workers, false /* concurrent */);
  2097   _g1h->set_par_threads(_active_workers);
  2098   _workers->run_task(&proc_task_proxy);
  2099   _g1h->set_par_threads(0);
  2102 class G1RefEnqueueTaskProxy: public AbstractGangTask {
  2103   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2104   EnqueueTask& _enq_task;
  2106 public:
  2107   G1RefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2108     AbstractGangTask("Enqueue reference objects in parallel"),
  2109     _enq_task(enq_task)
  2110   { }
  2112   virtual void work(int i) {
  2113     _enq_task.work(i);
  2115 };
  2117 void G1RefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2118   assert(_workers != NULL, "Need parallel worker threads.");
  2120   G1RefEnqueueTaskProxy enq_task_proxy(enq_task);
  2122   _g1h->set_par_threads(_active_workers);
  2123   _workers->run_task(&enq_task_proxy);
  2124   _g1h->set_par_threads(0);
  2127 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2128   ResourceMark rm;
  2129   HandleMark   hm;
  2130   G1CollectedHeap* g1h   = G1CollectedHeap::heap();
  2131   ReferenceProcessor* rp = g1h->ref_processor();
  2133   // See the comment in G1CollectedHeap::ref_processing_init()
  2134   // about how reference processing currently works in G1.
  2136   // Process weak references.
  2137   rp->setup_policy(clear_all_soft_refs);
  2138   assert(_markStack.isEmpty(), "mark stack should be empty");
  2140   G1CMIsAliveClosure   g1_is_alive(g1h);
  2141   G1CMKeepAliveClosure g1_keep_alive(g1h, this, nextMarkBitMap());
  2142   G1CMDrainMarkingStackClosure
  2143     g1_drain_mark_stack(nextMarkBitMap(), &_markStack, &g1_keep_alive);
  2145   // We use the work gang from the G1CollectedHeap and we utilize all
  2146   // the worker threads.
  2147   int active_workers = MAX2(MIN2(g1h->workers()->total_workers(), (int)_max_task_num), 1);
  2149   G1RefProcTaskExecutor par_task_executor(g1h, this, nextMarkBitMap(),
  2150                                           g1h->workers(), active_workers);
  2152   if (rp->processing_is_mt()) {
  2153     // Set the degree of MT here.  If the discovery is done MT, there
  2154     // may have been a different number of threads doing the discovery
  2155     // and a different number of discovered lists may have Ref objects.
  2156     // That is OK as long as the Reference lists are balanced (see
  2157     // balance_all_queues() and balance_queues()).
  2158     rp->set_mt_degree(active_workers);
  2160     rp->process_discovered_references(&g1_is_alive,
  2161                                       &g1_keep_alive,
  2162                                       &g1_drain_mark_stack,
  2163                                       &par_task_executor);
  2165     // The work routines of the parallel keep_alive and drain_marking_stack
  2166     // will set the has_overflown flag if we overflow the global marking
  2167     // stack.
  2168   } else {
  2169     rp->process_discovered_references(&g1_is_alive,
  2170                                       &g1_keep_alive,
  2171                                       &g1_drain_mark_stack,
  2172                                       NULL);
  2176   assert(_markStack.overflow() || _markStack.isEmpty(),
  2177       "mark stack should be empty (unless it overflowed)");
  2178   if (_markStack.overflow()) {
  2179     // Should have been done already when we tried to push an
  2180     // entry on to the global mark stack. But let's do it again.
  2181     set_has_overflown();
  2184   if (rp->processing_is_mt()) {
  2185     assert(rp->num_q() == active_workers, "why not");
  2186     rp->enqueue_discovered_references(&par_task_executor);
  2187   } else {
  2188     rp->enqueue_discovered_references();
  2191   rp->verify_no_references_recorded();
  2192   assert(!rp->discovery_enabled(), "should have been disabled");
  2194   // Now clean up stale oops in SymbolTable and StringTable
  2195   SymbolTable::unlink(&g1_is_alive);
  2196   StringTable::unlink(&g1_is_alive);
  2199 void ConcurrentMark::swapMarkBitMaps() {
  2200   CMBitMapRO* temp = _prevMarkBitMap;
  2201   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2202   _nextMarkBitMap  = (CMBitMap*)  temp;
  2205 class CMRemarkTask: public AbstractGangTask {
  2206 private:
  2207   ConcurrentMark *_cm;
  2209 public:
  2210   void work(int worker_i) {
  2211     // Since all available tasks are actually started, we should
  2212     // only proceed if we're supposed to be actived.
  2213     if ((size_t)worker_i < _cm->active_tasks()) {
  2214       CMTask* task = _cm->task(worker_i);
  2215       task->record_start_time();
  2216       do {
  2217         task->do_marking_step(1000000000.0 /* something very large */,
  2218                               true /* do_stealing    */,
  2219                               true /* do_termination */);
  2220       } while (task->has_aborted() && !_cm->has_overflown());
  2221       // If we overflow, then we do not want to restart. We instead
  2222       // want to abort remark and do concurrent marking again.
  2223       task->record_end_time();
  2227   CMRemarkTask(ConcurrentMark* cm) :
  2228     AbstractGangTask("Par Remark"), _cm(cm) { }
  2229 };
  2231 void ConcurrentMark::checkpointRootsFinalWork() {
  2232   ResourceMark rm;
  2233   HandleMark   hm;
  2234   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2236   g1h->ensure_parsability(false);
  2238   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2239     G1CollectedHeap::StrongRootsScope srs(g1h);
  2240     // this is remark, so we'll use up all available threads
  2241     int active_workers = ParallelGCThreads;
  2242     set_phase(active_workers, false /* concurrent */);
  2244     CMRemarkTask remarkTask(this);
  2245     // We will start all available threads, even if we decide that the
  2246     // active_workers will be fewer. The extra ones will just bail out
  2247     // immediately.
  2248     int n_workers = g1h->workers()->total_workers();
  2249     g1h->set_par_threads(n_workers);
  2250     g1h->workers()->run_task(&remarkTask);
  2251     g1h->set_par_threads(0);
  2252   } else {
  2253     G1CollectedHeap::StrongRootsScope srs(g1h);
  2254     // this is remark, so we'll use up all available threads
  2255     int active_workers = 1;
  2256     set_phase(active_workers, false /* concurrent */);
  2258     CMRemarkTask remarkTask(this);
  2259     // We will start all available threads, even if we decide that the
  2260     // active_workers will be fewer. The extra ones will just bail out
  2261     // immediately.
  2262     remarkTask.work(0);
  2264   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2265   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
  2267   print_stats();
  2269 #if VERIFY_OBJS_PROCESSED
  2270   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
  2271     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
  2272                            _scan_obj_cl.objs_processed,
  2273                            ThreadLocalObjQueue::objs_enqueued);
  2274     guarantee(_scan_obj_cl.objs_processed ==
  2275               ThreadLocalObjQueue::objs_enqueued,
  2276               "Different number of objs processed and enqueued.");
  2278 #endif
  2281 #ifndef PRODUCT
  2283 class PrintReachableOopClosure: public OopClosure {
  2284 private:
  2285   G1CollectedHeap* _g1h;
  2286   CMBitMapRO*      _bitmap;
  2287   outputStream*    _out;
  2288   bool             _use_prev_marking;
  2289   bool             _all;
  2291 public:
  2292   PrintReachableOopClosure(CMBitMapRO*   bitmap,
  2293                            outputStream* out,
  2294                            bool          use_prev_marking,
  2295                            bool          all) :
  2296     _g1h(G1CollectedHeap::heap()),
  2297     _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
  2299   void do_oop(narrowOop* p) { do_oop_work(p); }
  2300   void do_oop(      oop* p) { do_oop_work(p); }
  2302   template <class T> void do_oop_work(T* p) {
  2303     oop         obj = oopDesc::load_decode_heap_oop(p);
  2304     const char* str = NULL;
  2305     const char* str2 = "";
  2307     if (obj == NULL) {
  2308       str = "";
  2309     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2310       str = " O";
  2311     } else {
  2312       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2313       guarantee(hr != NULL, "invariant");
  2314       bool over_tams = false;
  2315       if (_use_prev_marking) {
  2316         over_tams = hr->obj_allocated_since_prev_marking(obj);
  2317       } else {
  2318         over_tams = hr->obj_allocated_since_next_marking(obj);
  2320       bool marked = _bitmap->isMarked((HeapWord*) obj);
  2322       if (over_tams) {
  2323         str = " >";
  2324         if (marked) {
  2325           str2 = " AND MARKED";
  2327       } else if (marked) {
  2328         str = " M";
  2329       } else {
  2330         str = " NOT";
  2334     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2335                    p, (void*) obj, str, str2);
  2337 };
  2339 class PrintReachableObjectClosure : public ObjectClosure {
  2340 private:
  2341   CMBitMapRO*   _bitmap;
  2342   outputStream* _out;
  2343   bool          _use_prev_marking;
  2344   bool          _all;
  2345   HeapRegion*   _hr;
  2347 public:
  2348   PrintReachableObjectClosure(CMBitMapRO*   bitmap,
  2349                               outputStream* out,
  2350                               bool          use_prev_marking,
  2351                               bool          all,
  2352                               HeapRegion*   hr) :
  2353     _bitmap(bitmap), _out(out),
  2354     _use_prev_marking(use_prev_marking), _all(all), _hr(hr) { }
  2356   void do_object(oop o) {
  2357     bool over_tams;
  2358     if (_use_prev_marking) {
  2359       over_tams = _hr->obj_allocated_since_prev_marking(o);
  2360     } else {
  2361       over_tams = _hr->obj_allocated_since_next_marking(o);
  2363     bool marked = _bitmap->isMarked((HeapWord*) o);
  2364     bool print_it = _all || over_tams || marked;
  2366     if (print_it) {
  2367       _out->print_cr(" "PTR_FORMAT"%s",
  2368                      o, (over_tams) ? " >" : (marked) ? " M" : "");
  2369       PrintReachableOopClosure oopCl(_bitmap, _out, _use_prev_marking, _all);
  2370       o->oop_iterate(&oopCl);
  2373 };
  2375 class PrintReachableRegionClosure : public HeapRegionClosure {
  2376 private:
  2377   CMBitMapRO*   _bitmap;
  2378   outputStream* _out;
  2379   bool          _use_prev_marking;
  2380   bool          _all;
  2382 public:
  2383   bool doHeapRegion(HeapRegion* hr) {
  2384     HeapWord* b = hr->bottom();
  2385     HeapWord* e = hr->end();
  2386     HeapWord* t = hr->top();
  2387     HeapWord* p = NULL;
  2388     if (_use_prev_marking) {
  2389       p = hr->prev_top_at_mark_start();
  2390     } else {
  2391       p = hr->next_top_at_mark_start();
  2393     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2394                    "TAMS: "PTR_FORMAT, b, e, t, p);
  2395     _out->cr();
  2397     HeapWord* from = b;
  2398     HeapWord* to   = t;
  2400     if (to > from) {
  2401       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
  2402       _out->cr();
  2403       PrintReachableObjectClosure ocl(_bitmap, _out,
  2404                                       _use_prev_marking, _all, hr);
  2405       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2406       _out->cr();
  2409     return false;
  2412   PrintReachableRegionClosure(CMBitMapRO*   bitmap,
  2413                               outputStream* out,
  2414                               bool          use_prev_marking,
  2415                               bool          all) :
  2416     _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
  2417 };
  2419 void ConcurrentMark::print_reachable(const char* str,
  2420                                      bool use_prev_marking,
  2421                                      bool all) {
  2422   gclog_or_tty->cr();
  2423   gclog_or_tty->print_cr("== Doing heap dump... ");
  2425   if (G1PrintReachableBaseFile == NULL) {
  2426     gclog_or_tty->print_cr("  #### error: no base file defined");
  2427     return;
  2430   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2431       (JVM_MAXPATHLEN - 1)) {
  2432     gclog_or_tty->print_cr("  #### error: file name too long");
  2433     return;
  2436   char file_name[JVM_MAXPATHLEN];
  2437   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2438   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2440   fileStream fout(file_name);
  2441   if (!fout.is_open()) {
  2442     gclog_or_tty->print_cr("  #### error: could not open file");
  2443     return;
  2446   outputStream* out = &fout;
  2448   CMBitMapRO* bitmap = NULL;
  2449   if (use_prev_marking) {
  2450     bitmap = _prevMarkBitMap;
  2451   } else {
  2452     bitmap = _nextMarkBitMap;
  2455   out->print_cr("-- USING %s", (use_prev_marking) ? "PTAMS" : "NTAMS");
  2456   out->cr();
  2458   out->print_cr("--- ITERATING OVER REGIONS");
  2459   out->cr();
  2460   PrintReachableRegionClosure rcl(bitmap, out, use_prev_marking, all);
  2461   _g1h->heap_region_iterate(&rcl);
  2462   out->cr();
  2464   gclog_or_tty->print_cr("  done");
  2465   gclog_or_tty->flush();
  2468 #endif // PRODUCT
  2470 // This note is for drainAllSATBBuffers and the code in between.
  2471 // In the future we could reuse a task to do this work during an
  2472 // evacuation pause (since now tasks are not active and can be claimed
  2473 // during an evacuation pause). This was a late change to the code and
  2474 // is currently not being taken advantage of.
  2476 class CMGlobalObjectClosure : public ObjectClosure {
  2477 private:
  2478   ConcurrentMark* _cm;
  2480 public:
  2481   void do_object(oop obj) {
  2482     _cm->deal_with_reference(obj);
  2485   CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
  2486 };
  2488 void ConcurrentMark::deal_with_reference(oop obj) {
  2489   if (verbose_high())
  2490     gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
  2491                            (void*) obj);
  2494   HeapWord* objAddr = (HeapWord*) obj;
  2495   assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
  2496   if (_g1h->is_in_g1_reserved(objAddr)) {
  2497     assert(obj != NULL, "is_in_g1_reserved should ensure this");
  2498     HeapRegion* hr = _g1h->heap_region_containing(obj);
  2499     if (_g1h->is_obj_ill(obj, hr)) {
  2500       if (verbose_high())
  2501         gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
  2502                                "marked", (void*) obj);
  2504       // we need to mark it first
  2505       if (_nextMarkBitMap->parMark(objAddr)) {
  2506         // No OrderAccess:store_load() is needed. It is implicit in the
  2507         // CAS done in parMark(objAddr) above
  2508         HeapWord* finger = _finger;
  2509         if (objAddr < finger) {
  2510           if (verbose_high())
  2511             gclog_or_tty->print_cr("[global] below the global finger "
  2512                                    "("PTR_FORMAT"), pushing it", finger);
  2513           if (!mark_stack_push(obj)) {
  2514             if (verbose_low())
  2515               gclog_or_tty->print_cr("[global] global stack overflow during "
  2516                                      "deal_with_reference");
  2524 void ConcurrentMark::drainAllSATBBuffers() {
  2525   CMGlobalObjectClosure oc(this);
  2526   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2527   satb_mq_set.set_closure(&oc);
  2529   while (satb_mq_set.apply_closure_to_completed_buffer()) {
  2530     if (verbose_medium())
  2531       gclog_or_tty->print_cr("[global] processed an SATB buffer");
  2534   // no need to check whether we should do this, as this is only
  2535   // called during an evacuation pause
  2536   satb_mq_set.iterate_closure_all_threads();
  2538   satb_mq_set.set_closure(NULL);
  2539   assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
  2542 void ConcurrentMark::markPrev(oop p) {
  2543   // Note we are overriding the read-only view of the prev map here, via
  2544   // the cast.
  2545   ((CMBitMap*)_prevMarkBitMap)->mark((HeapWord*)p);
  2548 void ConcurrentMark::clear(oop p) {
  2549   assert(p != NULL && p->is_oop(), "expected an oop");
  2550   HeapWord* addr = (HeapWord*)p;
  2551   assert(addr >= _nextMarkBitMap->startWord() ||
  2552          addr < _nextMarkBitMap->endWord(), "in a region");
  2554   _nextMarkBitMap->clear(addr);
  2557 void ConcurrentMark::clearRangeBothMaps(MemRegion mr) {
  2558   // Note we are overriding the read-only view of the prev map here, via
  2559   // the cast.
  2560   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2561   _nextMarkBitMap->clearRange(mr);
  2564 HeapRegion*
  2565 ConcurrentMark::claim_region(int task_num) {
  2566   // "checkpoint" the finger
  2567   HeapWord* finger = _finger;
  2569   // _heap_end will not change underneath our feet; it only changes at
  2570   // yield points.
  2571   while (finger < _heap_end) {
  2572     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2574     // is the gap between reading the finger and doing the CAS too long?
  2576     HeapRegion* curr_region   = _g1h->heap_region_containing(finger);
  2577     HeapWord*   bottom        = curr_region->bottom();
  2578     HeapWord*   end           = curr_region->end();
  2579     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2581     if (verbose_low())
  2582       gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
  2583                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2584                              "limit = "PTR_FORMAT,
  2585                              task_num, curr_region, bottom, end, limit);
  2587     HeapWord* res =
  2588       (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2589     if (res == finger) {
  2590       // we succeeded
  2592       // notice that _finger == end cannot be guaranteed here since,
  2593       // someone else might have moved the finger even further
  2594       assert(_finger >= end, "the finger should have moved forward");
  2596       if (verbose_low())
  2597         gclog_or_tty->print_cr("[%d] we were successful with region = "
  2598                                PTR_FORMAT, task_num, curr_region);
  2600       if (limit > bottom) {
  2601         if (verbose_low())
  2602           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
  2603                                  "returning it ", task_num, curr_region);
  2604         return curr_region;
  2605       } else {
  2606         assert(limit == bottom,
  2607                "the region limit should be at bottom");
  2608         if (verbose_low())
  2609           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
  2610                                  "returning NULL", task_num, curr_region);
  2611         // we return NULL and the caller should try calling
  2612         // claim_region() again.
  2613         return NULL;
  2615     } else {
  2616       assert(_finger > finger, "the finger should have moved forward");
  2617       if (verbose_low())
  2618         gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
  2619                                "global finger = "PTR_FORMAT", "
  2620                                "our finger = "PTR_FORMAT,
  2621                                task_num, _finger, finger);
  2623       // read it again
  2624       finger = _finger;
  2628   return NULL;
  2631 bool ConcurrentMark::invalidate_aborted_regions_in_cset() {
  2632   bool result = false;
  2633   for (int i = 0; i < (int)_max_task_num; ++i) {
  2634     CMTask* the_task = _tasks[i];
  2635     MemRegion mr = the_task->aborted_region();
  2636     if (mr.start() != NULL) {
  2637       assert(mr.end() != NULL, "invariant");
  2638       assert(mr.word_size() > 0, "invariant");
  2639       HeapRegion* hr = _g1h->heap_region_containing(mr.start());
  2640       assert(hr != NULL, "invariant");
  2641       if (hr->in_collection_set()) {
  2642         // The region points into the collection set
  2643         the_task->set_aborted_region(MemRegion());
  2644         result = true;
  2648   return result;
  2651 bool ConcurrentMark::has_aborted_regions() {
  2652   for (int i = 0; i < (int)_max_task_num; ++i) {
  2653     CMTask* the_task = _tasks[i];
  2654     MemRegion mr = the_task->aborted_region();
  2655     if (mr.start() != NULL) {
  2656       assert(mr.end() != NULL, "invariant");
  2657       assert(mr.word_size() > 0, "invariant");
  2658       return true;
  2661   return false;
  2664 void ConcurrentMark::oops_do(OopClosure* cl) {
  2665   if (_markStack.size() > 0 && verbose_low())
  2666     gclog_or_tty->print_cr("[global] scanning the global marking stack, "
  2667                            "size = %d", _markStack.size());
  2668   // we first iterate over the contents of the mark stack...
  2669   _markStack.oops_do(cl);
  2671   for (int i = 0; i < (int)_max_task_num; ++i) {
  2672     OopTaskQueue* queue = _task_queues->queue((int)i);
  2674     if (queue->size() > 0 && verbose_low())
  2675       gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
  2676                              "size = %d", i, queue->size());
  2678     // ...then over the contents of the all the task queues.
  2679     queue->oops_do(cl);
  2682   // Invalidate any entries, that are in the region stack, that
  2683   // point into the collection set
  2684   if (_regionStack.invalidate_entries_into_cset()) {
  2685     // otherwise, any gray objects copied during the evacuation pause
  2686     // might not be visited.
  2687     assert(_should_gray_objects, "invariant");
  2690   // Invalidate any aborted regions, recorded in the individual CM
  2691   // tasks, that point into the collection set.
  2692   if (invalidate_aborted_regions_in_cset()) {
  2693     // otherwise, any gray objects copied during the evacuation pause
  2694     // might not be visited.
  2695     assert(_should_gray_objects, "invariant");
  2700 void ConcurrentMark::clear_marking_state() {
  2701   _markStack.setEmpty();
  2702   _markStack.clear_overflow();
  2703   _regionStack.setEmpty();
  2704   _regionStack.clear_overflow();
  2705   clear_has_overflown();
  2706   _finger = _heap_start;
  2708   for (int i = 0; i < (int)_max_task_num; ++i) {
  2709     OopTaskQueue* queue = _task_queues->queue(i);
  2710     queue->set_empty();
  2711     // Clear any partial regions from the CMTasks
  2712     _tasks[i]->clear_aborted_region();
  2716 void ConcurrentMark::print_stats() {
  2717   if (verbose_stats()) {
  2718     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  2719     for (size_t i = 0; i < _active_tasks; ++i) {
  2720       _tasks[i]->print_stats();
  2721       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  2726 class CSMarkOopClosure: public OopClosure {
  2727   friend class CSMarkBitMapClosure;
  2729   G1CollectedHeap* _g1h;
  2730   CMBitMap*        _bm;
  2731   ConcurrentMark*  _cm;
  2732   oop*             _ms;
  2733   jint*            _array_ind_stack;
  2734   int              _ms_size;
  2735   int              _ms_ind;
  2736   int              _array_increment;
  2738   bool push(oop obj, int arr_ind = 0) {
  2739     if (_ms_ind == _ms_size) {
  2740       gclog_or_tty->print_cr("Mark stack is full.");
  2741       return false;
  2743     _ms[_ms_ind] = obj;
  2744     if (obj->is_objArray()) _array_ind_stack[_ms_ind] = arr_ind;
  2745     _ms_ind++;
  2746     return true;
  2749   oop pop() {
  2750     if (_ms_ind == 0) return NULL;
  2751     else {
  2752       _ms_ind--;
  2753       return _ms[_ms_ind];
  2757   template <class T> bool drain() {
  2758     while (_ms_ind > 0) {
  2759       oop obj = pop();
  2760       assert(obj != NULL, "Since index was non-zero.");
  2761       if (obj->is_objArray()) {
  2762         jint arr_ind = _array_ind_stack[_ms_ind];
  2763         objArrayOop aobj = objArrayOop(obj);
  2764         jint len = aobj->length();
  2765         jint next_arr_ind = arr_ind + _array_increment;
  2766         if (next_arr_ind < len) {
  2767           push(obj, next_arr_ind);
  2769         // Now process this portion of this one.
  2770         int lim = MIN2(next_arr_ind, len);
  2771         for (int j = arr_ind; j < lim; j++) {
  2772           do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
  2775       } else {
  2776         obj->oop_iterate(this);
  2778       if (abort()) return false;
  2780     return true;
  2783 public:
  2784   CSMarkOopClosure(ConcurrentMark* cm, int ms_size) :
  2785     _g1h(G1CollectedHeap::heap()),
  2786     _cm(cm),
  2787     _bm(cm->nextMarkBitMap()),
  2788     _ms_size(ms_size), _ms_ind(0),
  2789     _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
  2790     _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
  2791     _array_increment(MAX2(ms_size/8, 16))
  2792   {}
  2794   ~CSMarkOopClosure() {
  2795     FREE_C_HEAP_ARRAY(oop, _ms);
  2796     FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
  2799   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2800   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2802   template <class T> void do_oop_work(T* p) {
  2803     T heap_oop = oopDesc::load_heap_oop(p);
  2804     if (oopDesc::is_null(heap_oop)) return;
  2805     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2806     if (obj->is_forwarded()) {
  2807       // If the object has already been forwarded, we have to make sure
  2808       // that it's marked.  So follow the forwarding pointer.  Note that
  2809       // this does the right thing for self-forwarding pointers in the
  2810       // evacuation failure case.
  2811       obj = obj->forwardee();
  2813     HeapRegion* hr = _g1h->heap_region_containing(obj);
  2814     if (hr != NULL) {
  2815       if (hr->in_collection_set()) {
  2816         if (_g1h->is_obj_ill(obj)) {
  2817           _bm->mark((HeapWord*)obj);
  2818           if (!push(obj)) {
  2819             gclog_or_tty->print_cr("Setting abort in CSMarkOopClosure because push failed.");
  2820             set_abort();
  2823       } else {
  2824         // Outside the collection set; we need to gray it
  2825         _cm->deal_with_reference(obj);
  2829 };
  2831 class CSMarkBitMapClosure: public BitMapClosure {
  2832   G1CollectedHeap* _g1h;
  2833   CMBitMap*        _bitMap;
  2834   ConcurrentMark*  _cm;
  2835   CSMarkOopClosure _oop_cl;
  2836 public:
  2837   CSMarkBitMapClosure(ConcurrentMark* cm, int ms_size) :
  2838     _g1h(G1CollectedHeap::heap()),
  2839     _bitMap(cm->nextMarkBitMap()),
  2840     _oop_cl(cm, ms_size)
  2841   {}
  2843   ~CSMarkBitMapClosure() {}
  2845   bool do_bit(size_t offset) {
  2846     // convert offset into a HeapWord*
  2847     HeapWord* addr = _bitMap->offsetToHeapWord(offset);
  2848     assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  2849            "address out of range");
  2850     assert(_bitMap->isMarked(addr), "tautology");
  2851     oop obj = oop(addr);
  2852     if (!obj->is_forwarded()) {
  2853       if (!_oop_cl.push(obj)) return false;
  2854       if (UseCompressedOops) {
  2855         if (!_oop_cl.drain<narrowOop>()) return false;
  2856       } else {
  2857         if (!_oop_cl.drain<oop>()) return false;
  2860     // Otherwise...
  2861     return true;
  2863 };
  2866 class CompleteMarkingInCSHRClosure: public HeapRegionClosure {
  2867   CMBitMap* _bm;
  2868   CSMarkBitMapClosure _bit_cl;
  2869   enum SomePrivateConstants {
  2870     MSSize = 1000
  2871   };
  2872   bool _completed;
  2873 public:
  2874   CompleteMarkingInCSHRClosure(ConcurrentMark* cm) :
  2875     _bm(cm->nextMarkBitMap()),
  2876     _bit_cl(cm, MSSize),
  2877     _completed(true)
  2878   {}
  2880   ~CompleteMarkingInCSHRClosure() {}
  2882   bool doHeapRegion(HeapRegion* r) {
  2883     if (!r->evacuation_failed()) {
  2884       MemRegion mr = MemRegion(r->bottom(), r->next_top_at_mark_start());
  2885       if (!mr.is_empty()) {
  2886         if (!_bm->iterate(&_bit_cl, mr)) {
  2887           _completed = false;
  2888           return true;
  2892     return false;
  2895   bool completed() { return _completed; }
  2896 };
  2898 class ClearMarksInHRClosure: public HeapRegionClosure {
  2899   CMBitMap* _bm;
  2900 public:
  2901   ClearMarksInHRClosure(CMBitMap* bm): _bm(bm) { }
  2903   bool doHeapRegion(HeapRegion* r) {
  2904     if (!r->used_region().is_empty() && !r->evacuation_failed()) {
  2905       MemRegion usedMR = r->used_region();
  2906       _bm->clearRange(r->used_region());
  2908     return false;
  2910 };
  2912 void ConcurrentMark::complete_marking_in_collection_set() {
  2913   G1CollectedHeap* g1h =  G1CollectedHeap::heap();
  2915   if (!g1h->mark_in_progress()) {
  2916     g1h->g1_policy()->record_mark_closure_time(0.0);
  2917     return;
  2920   int i = 1;
  2921   double start = os::elapsedTime();
  2922   while (true) {
  2923     i++;
  2924     CompleteMarkingInCSHRClosure cmplt(this);
  2925     g1h->collection_set_iterate(&cmplt);
  2926     if (cmplt.completed()) break;
  2928   double end_time = os::elapsedTime();
  2929   double elapsed_time_ms = (end_time - start) * 1000.0;
  2930   g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
  2932   ClearMarksInHRClosure clr(nextMarkBitMap());
  2933   g1h->collection_set_iterate(&clr);
  2936 // The next two methods deal with the following optimisation. Some
  2937 // objects are gray by being marked and located above the finger. If
  2938 // they are copied, during an evacuation pause, below the finger then
  2939 // the need to be pushed on the stack. The observation is that, if
  2940 // there are no regions in the collection set located above the
  2941 // finger, then the above cannot happen, hence we do not need to
  2942 // explicitly gray any objects when copying them to below the
  2943 // finger. The global stack will be scanned to ensure that, if it
  2944 // points to objects being copied, it will update their
  2945 // location. There is a tricky situation with the gray objects in
  2946 // region stack that are being coped, however. See the comment in
  2947 // newCSet().
  2949 void ConcurrentMark::newCSet() {
  2950   if (!concurrent_marking_in_progress())
  2951     // nothing to do if marking is not in progress
  2952     return;
  2954   // find what the lowest finger is among the global and local fingers
  2955   _min_finger = _finger;
  2956   for (int i = 0; i < (int)_max_task_num; ++i) {
  2957     CMTask* task = _tasks[i];
  2958     HeapWord* task_finger = task->finger();
  2959     if (task_finger != NULL && task_finger < _min_finger)
  2960       _min_finger = task_finger;
  2963   _should_gray_objects = false;
  2965   // This fixes a very subtle and fustrating bug. It might be the case
  2966   // that, during en evacuation pause, heap regions that contain
  2967   // objects that are gray (by being in regions contained in the
  2968   // region stack) are included in the collection set. Since such gray
  2969   // objects will be moved, and because it's not easy to redirect
  2970   // region stack entries to point to a new location (because objects
  2971   // in one region might be scattered to multiple regions after they
  2972   // are copied), one option is to ensure that all marked objects
  2973   // copied during a pause are pushed on the stack. Notice, however,
  2974   // that this problem can only happen when the region stack is not
  2975   // empty during an evacuation pause. So, we make the fix a bit less
  2976   // conservative and ensure that regions are pushed on the stack,
  2977   // irrespective whether all collection set regions are below the
  2978   // finger, if the region stack is not empty. This is expected to be
  2979   // a rare case, so I don't think it's necessary to be smarted about it.
  2980   if (!region_stack_empty() || has_aborted_regions())
  2981     _should_gray_objects = true;
  2984 void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
  2985   if (!concurrent_marking_in_progress())
  2986     return;
  2988   HeapWord* region_end = hr->end();
  2989   if (region_end > _min_finger)
  2990     _should_gray_objects = true;
  2993 // abandon current marking iteration due to a Full GC
  2994 void ConcurrentMark::abort() {
  2995   // Clear all marks to force marking thread to do nothing
  2996   _nextMarkBitMap->clearAll();
  2997   // Empty mark stack
  2998   clear_marking_state();
  2999   for (int i = 0; i < (int)_max_task_num; ++i) {
  3000     _tasks[i]->clear_region_fields();
  3002   _has_aborted = true;
  3004   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3005   satb_mq_set.abandon_partial_marking();
  3006   // This can be called either during or outside marking, we'll read
  3007   // the expected_active value from the SATB queue set.
  3008   satb_mq_set.set_active_all_threads(
  3009                                  false, /* new active value */
  3010                                  satb_mq_set.is_active() /* expected_active */);
  3013 static void print_ms_time_info(const char* prefix, const char* name,
  3014                                NumberSeq& ns) {
  3015   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3016                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3017   if (ns.num() > 0) {
  3018     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3019                            prefix, ns.sd(), ns.maximum());
  3023 void ConcurrentMark::print_summary_info() {
  3024   gclog_or_tty->print_cr(" Concurrent marking:");
  3025   print_ms_time_info("  ", "init marks", _init_times);
  3026   print_ms_time_info("  ", "remarks", _remark_times);
  3028     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3029     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3032   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3033   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3034                          _total_counting_time,
  3035                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3036                           (double)_cleanup_times.num()
  3037                          : 0.0));
  3038   if (G1ScrubRemSets) {
  3039     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3040                            _total_rs_scrub_time,
  3041                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3042                             (double)_cleanup_times.num()
  3043                            : 0.0));
  3045   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3046                          (_init_times.sum() + _remark_times.sum() +
  3047                           _cleanup_times.sum())/1000.0);
  3048   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3049                 "(%8.2f s marking, %8.2f s counting).",
  3050                 cmThread()->vtime_accum(),
  3051                 cmThread()->vtime_mark_accum(),
  3052                 cmThread()->vtime_count_accum());
  3055 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3056   _parallel_workers->print_worker_threads_on(st);
  3059 // Closures
  3060 // XXX: there seems to be a lot of code  duplication here;
  3061 // should refactor and consolidate the shared code.
  3063 // This closure is used to mark refs into the CMS generation in
  3064 // the CMS bit map. Called at the first checkpoint.
  3066 // We take a break if someone is trying to stop the world.
  3067 bool ConcurrentMark::do_yield_check(int worker_i) {
  3068   if (should_yield()) {
  3069     if (worker_i == 0)
  3070       _g1h->g1_policy()->record_concurrent_pause();
  3071     cmThread()->yield();
  3072     if (worker_i == 0)
  3073       _g1h->g1_policy()->record_concurrent_pause_end();
  3074     return true;
  3075   } else {
  3076     return false;
  3080 bool ConcurrentMark::should_yield() {
  3081   return cmThread()->should_yield();
  3084 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3085   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3086   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3089 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3090                                                  void* last) {
  3091   return
  3092     containing_card_is_marked(start) &&
  3093     containing_card_is_marked(last);
  3096 #ifndef PRODUCT
  3097 // for debugging purposes
  3098 void ConcurrentMark::print_finger() {
  3099   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3100                          _heap_start, _heap_end, _finger);
  3101   for (int i = 0; i < (int) _max_task_num; ++i) {
  3102     gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  3104   gclog_or_tty->print_cr("");
  3106 #endif
  3108 // Closure for iteration over bitmaps
  3109 class CMBitMapClosure : public BitMapClosure {
  3110 private:
  3111   // the bitmap that is being iterated over
  3112   CMBitMap*                   _nextMarkBitMap;
  3113   ConcurrentMark*             _cm;
  3114   CMTask*                     _task;
  3115   // true if we're scanning a heap region claimed by the task (so that
  3116   // we move the finger along), false if we're not, i.e. currently when
  3117   // scanning a heap region popped from the region stack (so that we
  3118   // do not move the task finger along; it'd be a mistake if we did so).
  3119   bool                        _scanning_heap_region;
  3121 public:
  3122   CMBitMapClosure(CMTask *task,
  3123                   ConcurrentMark* cm,
  3124                   CMBitMap* nextMarkBitMap)
  3125     :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3127   void set_scanning_heap_region(bool scanning_heap_region) {
  3128     _scanning_heap_region = scanning_heap_region;
  3131   bool do_bit(size_t offset) {
  3132     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3133     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3134     assert( addr < _cm->finger(), "invariant");
  3136     if (_scanning_heap_region) {
  3137       statsOnly( _task->increase_objs_found_on_bitmap() );
  3138       assert(addr >= _task->finger(), "invariant");
  3139       // We move that task's local finger along.
  3140       _task->move_finger_to(addr);
  3141     } else {
  3142       // We move the task's region finger along.
  3143       _task->move_region_finger_to(addr);
  3146     _task->scan_object(oop(addr));
  3147     // we only partially drain the local queue and global stack
  3148     _task->drain_local_queue(true);
  3149     _task->drain_global_stack(true);
  3151     // if the has_aborted flag has been raised, we need to bail out of
  3152     // the iteration
  3153     return !_task->has_aborted();
  3155 };
  3157 // Closure for iterating over objects, currently only used for
  3158 // processing SATB buffers.
  3159 class CMObjectClosure : public ObjectClosure {
  3160 private:
  3161   CMTask* _task;
  3163 public:
  3164   void do_object(oop obj) {
  3165     _task->deal_with_reference(obj);
  3168   CMObjectClosure(CMTask* task) : _task(task) { }
  3169 };
  3171 // Closure for iterating over object fields
  3172 class CMOopClosure : public OopClosure {
  3173 private:
  3174   G1CollectedHeap*   _g1h;
  3175   ConcurrentMark*    _cm;
  3176   CMTask*            _task;
  3178 public:
  3179   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3180   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3182   template <class T> void do_oop_work(T* p) {
  3183     assert( _g1h->is_in_g1_reserved((HeapWord*) p), "invariant");
  3184     assert(!_g1h->is_on_free_list(
  3185                     _g1h->heap_region_containing((HeapWord*) p)), "invariant");
  3187     oop obj = oopDesc::load_decode_heap_oop(p);
  3188     if (_cm->verbose_high())
  3189       gclog_or_tty->print_cr("[%d] we're looking at location "
  3190                              "*"PTR_FORMAT" = "PTR_FORMAT,
  3191                              _task->task_id(), p, (void*) obj);
  3192     _task->deal_with_reference(obj);
  3195   CMOopClosure(G1CollectedHeap* g1h,
  3196                ConcurrentMark* cm,
  3197                CMTask* task)
  3198     : _g1h(g1h), _cm(cm), _task(task)
  3200     _ref_processor = g1h->ref_processor();
  3201     assert(_ref_processor != NULL, "should not be NULL");
  3203 };
  3205 void CMTask::setup_for_region(HeapRegion* hr) {
  3206   // Separated the asserts so that we know which one fires.
  3207   assert(hr != NULL,
  3208         "claim_region() should have filtered out continues humongous regions");
  3209   assert(!hr->continuesHumongous(),
  3210         "claim_region() should have filtered out continues humongous regions");
  3212   if (_cm->verbose_low())
  3213     gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
  3214                            _task_id, hr);
  3216   _curr_region  = hr;
  3217   _finger       = hr->bottom();
  3218   update_region_limit();
  3221 void CMTask::update_region_limit() {
  3222   HeapRegion* hr            = _curr_region;
  3223   HeapWord* bottom          = hr->bottom();
  3224   HeapWord* limit           = hr->next_top_at_mark_start();
  3226   if (limit == bottom) {
  3227     if (_cm->verbose_low())
  3228       gclog_or_tty->print_cr("[%d] found an empty region "
  3229                              "["PTR_FORMAT", "PTR_FORMAT")",
  3230                              _task_id, bottom, limit);
  3231     // The region was collected underneath our feet.
  3232     // We set the finger to bottom to ensure that the bitmap
  3233     // iteration that will follow this will not do anything.
  3234     // (this is not a condition that holds when we set the region up,
  3235     // as the region is not supposed to be empty in the first place)
  3236     _finger = bottom;
  3237   } else if (limit >= _region_limit) {
  3238     assert(limit >= _finger, "peace of mind");
  3239   } else {
  3240     assert(limit < _region_limit, "only way to get here");
  3241     // This can happen under some pretty unusual circumstances.  An
  3242     // evacuation pause empties the region underneath our feet (NTAMS
  3243     // at bottom). We then do some allocation in the region (NTAMS
  3244     // stays at bottom), followed by the region being used as a GC
  3245     // alloc region (NTAMS will move to top() and the objects
  3246     // originally below it will be grayed). All objects now marked in
  3247     // the region are explicitly grayed, if below the global finger,
  3248     // and we do not need in fact to scan anything else. So, we simply
  3249     // set _finger to be limit to ensure that the bitmap iteration
  3250     // doesn't do anything.
  3251     _finger = limit;
  3254   _region_limit = limit;
  3257 void CMTask::giveup_current_region() {
  3258   assert(_curr_region != NULL, "invariant");
  3259   if (_cm->verbose_low())
  3260     gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
  3261                            _task_id, _curr_region);
  3262   clear_region_fields();
  3265 void CMTask::clear_region_fields() {
  3266   // Values for these three fields that indicate that we're not
  3267   // holding on to a region.
  3268   _curr_region   = NULL;
  3269   _finger        = NULL;
  3270   _region_limit  = NULL;
  3272   _region_finger = NULL;
  3275 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3276   guarantee(nextMarkBitMap != NULL, "invariant");
  3278   if (_cm->verbose_low())
  3279     gclog_or_tty->print_cr("[%d] resetting", _task_id);
  3281   _nextMarkBitMap                = nextMarkBitMap;
  3282   clear_region_fields();
  3283   assert(_aborted_region.is_empty(), "should have been cleared");
  3285   _calls                         = 0;
  3286   _elapsed_time_ms               = 0.0;
  3287   _termination_time_ms           = 0.0;
  3288   _termination_start_time_ms     = 0.0;
  3290 #if _MARKING_STATS_
  3291   _local_pushes                  = 0;
  3292   _local_pops                    = 0;
  3293   _local_max_size                = 0;
  3294   _objs_scanned                  = 0;
  3295   _global_pushes                 = 0;
  3296   _global_pops                   = 0;
  3297   _global_max_size               = 0;
  3298   _global_transfers_to           = 0;
  3299   _global_transfers_from         = 0;
  3300   _region_stack_pops             = 0;
  3301   _regions_claimed               = 0;
  3302   _objs_found_on_bitmap          = 0;
  3303   _satb_buffers_processed        = 0;
  3304   _steal_attempts                = 0;
  3305   _steals                        = 0;
  3306   _aborted                       = 0;
  3307   _aborted_overflow              = 0;
  3308   _aborted_cm_aborted            = 0;
  3309   _aborted_yield                 = 0;
  3310   _aborted_timed_out             = 0;
  3311   _aborted_satb                  = 0;
  3312   _aborted_termination           = 0;
  3313 #endif // _MARKING_STATS_
  3316 bool CMTask::should_exit_termination() {
  3317   regular_clock_call();
  3318   // This is called when we are in the termination protocol. We should
  3319   // quit if, for some reason, this task wants to abort or the global
  3320   // stack is not empty (this means that we can get work from it).
  3321   return !_cm->mark_stack_empty() || has_aborted();
  3324 // This determines whether the method below will check both the local
  3325 // and global fingers when determining whether to push on the stack a
  3326 // gray object (value 1) or whether it will only check the global one
  3327 // (value 0). The tradeoffs are that the former will be a bit more
  3328 // accurate and possibly push less on the stack, but it might also be
  3329 // a little bit slower.
  3331 #define _CHECK_BOTH_FINGERS_      1
  3333 void CMTask::deal_with_reference(oop obj) {
  3334   if (_cm->verbose_high())
  3335     gclog_or_tty->print_cr("[%d] we're dealing with reference = "PTR_FORMAT,
  3336                            _task_id, (void*) obj);
  3338   ++_refs_reached;
  3340   HeapWord* objAddr = (HeapWord*) obj;
  3341   assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
  3342   if (_g1h->is_in_g1_reserved(objAddr)) {
  3343     assert(obj != NULL, "is_in_g1_reserved should ensure this");
  3344     HeapRegion* hr =  _g1h->heap_region_containing(obj);
  3345     if (_g1h->is_obj_ill(obj, hr)) {
  3346       if (_cm->verbose_high())
  3347         gclog_or_tty->print_cr("[%d] "PTR_FORMAT" is not considered marked",
  3348                                _task_id, (void*) obj);
  3350       // we need to mark it first
  3351       if (_nextMarkBitMap->parMark(objAddr)) {
  3352         // No OrderAccess:store_load() is needed. It is implicit in the
  3353         // CAS done in parMark(objAddr) above
  3354         HeapWord* global_finger = _cm->finger();
  3356 #if _CHECK_BOTH_FINGERS_
  3357         // we will check both the local and global fingers
  3359         if (_finger != NULL && objAddr < _finger) {
  3360           if (_cm->verbose_high())
  3361             gclog_or_tty->print_cr("[%d] below the local finger ("PTR_FORMAT"), "
  3362                                    "pushing it", _task_id, _finger);
  3363           push(obj);
  3364         } else if (_curr_region != NULL && objAddr < _region_limit) {
  3365           // do nothing
  3366         } else if (objAddr < global_finger) {
  3367           // Notice that the global finger might be moving forward
  3368           // concurrently. This is not a problem. In the worst case, we
  3369           // mark the object while it is above the global finger and, by
  3370           // the time we read the global finger, it has moved forward
  3371           // passed this object. In this case, the object will probably
  3372           // be visited when a task is scanning the region and will also
  3373           // be pushed on the stack. So, some duplicate work, but no
  3374           // correctness problems.
  3376           if (_cm->verbose_high())
  3377             gclog_or_tty->print_cr("[%d] below the global finger "
  3378                                    "("PTR_FORMAT"), pushing it",
  3379                                    _task_id, global_finger);
  3380           push(obj);
  3381         } else {
  3382           // do nothing
  3384 #else // _CHECK_BOTH_FINGERS_
  3385         // we will only check the global finger
  3387         if (objAddr < global_finger) {
  3388           // see long comment above
  3390           if (_cm->verbose_high())
  3391             gclog_or_tty->print_cr("[%d] below the global finger "
  3392                                    "("PTR_FORMAT"), pushing it",
  3393                                    _task_id, global_finger);
  3394           push(obj);
  3396 #endif // _CHECK_BOTH_FINGERS_
  3402 void CMTask::push(oop obj) {
  3403   HeapWord* objAddr = (HeapWord*) obj;
  3404   assert(_g1h->is_in_g1_reserved(objAddr), "invariant");
  3405   assert(!_g1h->is_on_free_list(
  3406               _g1h->heap_region_containing((HeapWord*) objAddr)), "invariant");
  3407   assert(!_g1h->is_obj_ill(obj), "invariant");
  3408   assert(_nextMarkBitMap->isMarked(objAddr), "invariant");
  3410   if (_cm->verbose_high())
  3411     gclog_or_tty->print_cr("[%d] pushing "PTR_FORMAT, _task_id, (void*) obj);
  3413   if (!_task_queue->push(obj)) {
  3414     // The local task queue looks full. We need to push some entries
  3415     // to the global stack.
  3417     if (_cm->verbose_medium())
  3418       gclog_or_tty->print_cr("[%d] task queue overflow, "
  3419                              "moving entries to the global stack",
  3420                              _task_id);
  3421     move_entries_to_global_stack();
  3423     // this should succeed since, even if we overflow the global
  3424     // stack, we should have definitely removed some entries from the
  3425     // local queue. So, there must be space on it.
  3426     bool success = _task_queue->push(obj);
  3427     assert(success, "invariant");
  3430   statsOnly( int tmp_size = _task_queue->size();
  3431              if (tmp_size > _local_max_size)
  3432                _local_max_size = tmp_size;
  3433              ++_local_pushes );
  3436 void CMTask::reached_limit() {
  3437   assert(_words_scanned >= _words_scanned_limit ||
  3438          _refs_reached >= _refs_reached_limit ,
  3439          "shouldn't have been called otherwise");
  3440   regular_clock_call();
  3443 void CMTask::regular_clock_call() {
  3444   if (has_aborted())
  3445     return;
  3447   // First, we need to recalculate the words scanned and refs reached
  3448   // limits for the next clock call.
  3449   recalculate_limits();
  3451   // During the regular clock call we do the following
  3453   // (1) If an overflow has been flagged, then we abort.
  3454   if (_cm->has_overflown()) {
  3455     set_has_aborted();
  3456     return;
  3459   // If we are not concurrent (i.e. we're doing remark) we don't need
  3460   // to check anything else. The other steps are only needed during
  3461   // the concurrent marking phase.
  3462   if (!concurrent())
  3463     return;
  3465   // (2) If marking has been aborted for Full GC, then we also abort.
  3466   if (_cm->has_aborted()) {
  3467     set_has_aborted();
  3468     statsOnly( ++_aborted_cm_aborted );
  3469     return;
  3472   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3474   // (3) If marking stats are enabled, then we update the step history.
  3475 #if _MARKING_STATS_
  3476   if (_words_scanned >= _words_scanned_limit)
  3477     ++_clock_due_to_scanning;
  3478   if (_refs_reached >= _refs_reached_limit)
  3479     ++_clock_due_to_marking;
  3481   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3482   _interval_start_time_ms = curr_time_ms;
  3483   _all_clock_intervals_ms.add(last_interval_ms);
  3485   if (_cm->verbose_medium()) {
  3486     gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
  3487                            "scanned = %d%s, refs reached = %d%s",
  3488                            _task_id, last_interval_ms,
  3489                            _words_scanned,
  3490                            (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3491                            _refs_reached,
  3492                            (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3494 #endif // _MARKING_STATS_
  3496   // (4) We check whether we should yield. If we have to, then we abort.
  3497   if (_cm->should_yield()) {
  3498     // We should yield. To do this we abort the task. The caller is
  3499     // responsible for yielding.
  3500     set_has_aborted();
  3501     statsOnly( ++_aborted_yield );
  3502     return;
  3505   // (5) We check whether we've reached our time quota. If we have,
  3506   // then we abort.
  3507   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3508   if (elapsed_time_ms > _time_target_ms) {
  3509     set_has_aborted();
  3510     _has_timed_out = true;
  3511     statsOnly( ++_aborted_timed_out );
  3512     return;
  3515   // (6) Finally, we check whether there are enough completed STAB
  3516   // buffers available for processing. If there are, we abort.
  3517   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3518   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3519     if (_cm->verbose_low())
  3520       gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
  3521                              _task_id);
  3522     // we do need to process SATB buffers, we'll abort and restart
  3523     // the marking task to do so
  3524     set_has_aborted();
  3525     statsOnly( ++_aborted_satb );
  3526     return;
  3530 void CMTask::recalculate_limits() {
  3531   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3532   _words_scanned_limit      = _real_words_scanned_limit;
  3534   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3535   _refs_reached_limit       = _real_refs_reached_limit;
  3538 void CMTask::decrease_limits() {
  3539   // This is called when we believe that we're going to do an infrequent
  3540   // operation which will increase the per byte scanned cost (i.e. move
  3541   // entries to/from the global stack). It basically tries to decrease the
  3542   // scanning limit so that the clock is called earlier.
  3544   if (_cm->verbose_medium())
  3545     gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
  3547   _words_scanned_limit = _real_words_scanned_limit -
  3548     3 * words_scanned_period / 4;
  3549   _refs_reached_limit  = _real_refs_reached_limit -
  3550     3 * refs_reached_period / 4;
  3553 void CMTask::move_entries_to_global_stack() {
  3554   // local array where we'll store the entries that will be popped
  3555   // from the local queue
  3556   oop buffer[global_stack_transfer_size];
  3558   int n = 0;
  3559   oop obj;
  3560   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3561     buffer[n] = obj;
  3562     ++n;
  3565   if (n > 0) {
  3566     // we popped at least one entry from the local queue
  3568     statsOnly( ++_global_transfers_to; _local_pops += n );
  3570     if (!_cm->mark_stack_push(buffer, n)) {
  3571       if (_cm->verbose_low())
  3572         gclog_or_tty->print_cr("[%d] aborting due to global stack overflow", _task_id);
  3573       set_has_aborted();
  3574     } else {
  3575       // the transfer was successful
  3577       if (_cm->verbose_medium())
  3578         gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
  3579                                _task_id, n);
  3580       statsOnly( int tmp_size = _cm->mark_stack_size();
  3581                  if (tmp_size > _global_max_size)
  3582                    _global_max_size = tmp_size;
  3583                  _global_pushes += n );
  3587   // this operation was quite expensive, so decrease the limits
  3588   decrease_limits();
  3591 void CMTask::get_entries_from_global_stack() {
  3592   // local array where we'll store the entries that will be popped
  3593   // from the global stack.
  3594   oop buffer[global_stack_transfer_size];
  3595   int n;
  3596   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3597   assert(n <= global_stack_transfer_size,
  3598          "we should not pop more than the given limit");
  3599   if (n > 0) {
  3600     // yes, we did actually pop at least one entry
  3602     statsOnly( ++_global_transfers_from; _global_pops += n );
  3603     if (_cm->verbose_medium())
  3604       gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
  3605                              _task_id, n);
  3606     for (int i = 0; i < n; ++i) {
  3607       bool success = _task_queue->push(buffer[i]);
  3608       // We only call this when the local queue is empty or under a
  3609       // given target limit. So, we do not expect this push to fail.
  3610       assert(success, "invariant");
  3613     statsOnly( int tmp_size = _task_queue->size();
  3614                if (tmp_size > _local_max_size)
  3615                  _local_max_size = tmp_size;
  3616                _local_pushes += n );
  3619   // this operation was quite expensive, so decrease the limits
  3620   decrease_limits();
  3623 void CMTask::drain_local_queue(bool partially) {
  3624   if (has_aborted())
  3625     return;
  3627   // Decide what the target size is, depending whether we're going to
  3628   // drain it partially (so that other tasks can steal if they run out
  3629   // of things to do) or totally (at the very end).
  3630   size_t target_size;
  3631   if (partially)
  3632     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3633   else
  3634     target_size = 0;
  3636   if (_task_queue->size() > target_size) {
  3637     if (_cm->verbose_high())
  3638       gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
  3639                              _task_id, target_size);
  3641     oop obj;
  3642     bool ret = _task_queue->pop_local(obj);
  3643     while (ret) {
  3644       statsOnly( ++_local_pops );
  3646       if (_cm->verbose_high())
  3647         gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
  3648                                (void*) obj);
  3650       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3651       assert(!_g1h->is_on_free_list(
  3652                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3654       scan_object(obj);
  3656       if (_task_queue->size() <= target_size || has_aborted())
  3657         ret = false;
  3658       else
  3659         ret = _task_queue->pop_local(obj);
  3662     if (_cm->verbose_high())
  3663       gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
  3664                              _task_id, _task_queue->size());
  3668 void CMTask::drain_global_stack(bool partially) {
  3669   if (has_aborted())
  3670     return;
  3672   // We have a policy to drain the local queue before we attempt to
  3673   // drain the global stack.
  3674   assert(partially || _task_queue->size() == 0, "invariant");
  3676   // Decide what the target size is, depending whether we're going to
  3677   // drain it partially (so that other tasks can steal if they run out
  3678   // of things to do) or totally (at the very end).  Notice that,
  3679   // because we move entries from the global stack in chunks or
  3680   // because another task might be doing the same, we might in fact
  3681   // drop below the target. But, this is not a problem.
  3682   size_t target_size;
  3683   if (partially)
  3684     target_size = _cm->partial_mark_stack_size_target();
  3685   else
  3686     target_size = 0;
  3688   if (_cm->mark_stack_size() > target_size) {
  3689     if (_cm->verbose_low())
  3690       gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
  3691                              _task_id, target_size);
  3693     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3694       get_entries_from_global_stack();
  3695       drain_local_queue(partially);
  3698     if (_cm->verbose_low())
  3699       gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
  3700                              _task_id, _cm->mark_stack_size());
  3704 // SATB Queue has several assumptions on whether to call the par or
  3705 // non-par versions of the methods. this is why some of the code is
  3706 // replicated. We should really get rid of the single-threaded version
  3707 // of the code to simplify things.
  3708 void CMTask::drain_satb_buffers() {
  3709   if (has_aborted())
  3710     return;
  3712   // We set this so that the regular clock knows that we're in the
  3713   // middle of draining buffers and doesn't set the abort flag when it
  3714   // notices that SATB buffers are available for draining. It'd be
  3715   // very counter productive if it did that. :-)
  3716   _draining_satb_buffers = true;
  3718   CMObjectClosure oc(this);
  3719   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3720   if (G1CollectedHeap::use_parallel_gc_threads())
  3721     satb_mq_set.set_par_closure(_task_id, &oc);
  3722   else
  3723     satb_mq_set.set_closure(&oc);
  3725   // This keeps claiming and applying the closure to completed buffers
  3726   // until we run out of buffers or we need to abort.
  3727   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3728     while (!has_aborted() &&
  3729            satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
  3730       if (_cm->verbose_medium())
  3731         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
  3732       statsOnly( ++_satb_buffers_processed );
  3733       regular_clock_call();
  3735   } else {
  3736     while (!has_aborted() &&
  3737            satb_mq_set.apply_closure_to_completed_buffer()) {
  3738       if (_cm->verbose_medium())
  3739         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
  3740       statsOnly( ++_satb_buffers_processed );
  3741       regular_clock_call();
  3745   if (!concurrent() && !has_aborted()) {
  3746     // We should only do this during remark.
  3747     if (G1CollectedHeap::use_parallel_gc_threads())
  3748       satb_mq_set.par_iterate_closure_all_threads(_task_id);
  3749     else
  3750       satb_mq_set.iterate_closure_all_threads();
  3753   _draining_satb_buffers = false;
  3755   assert(has_aborted() ||
  3756          concurrent() ||
  3757          satb_mq_set.completed_buffers_num() == 0, "invariant");
  3759   if (G1CollectedHeap::use_parallel_gc_threads())
  3760     satb_mq_set.set_par_closure(_task_id, NULL);
  3761   else
  3762     satb_mq_set.set_closure(NULL);
  3764   // again, this was a potentially expensive operation, decrease the
  3765   // limits to get the regular clock call early
  3766   decrease_limits();
  3769 void CMTask::drain_region_stack(BitMapClosure* bc) {
  3770   if (has_aborted())
  3771     return;
  3773   assert(_region_finger == NULL,
  3774          "it should be NULL when we're not scanning a region");
  3776   if (!_cm->region_stack_empty() || !_aborted_region.is_empty()) {
  3777     if (_cm->verbose_low())
  3778       gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
  3779                              _task_id, _cm->region_stack_size());
  3781     MemRegion mr;
  3783     if (!_aborted_region.is_empty()) {
  3784       mr = _aborted_region;
  3785       _aborted_region = MemRegion();
  3787       if (_cm->verbose_low())
  3788         gclog_or_tty->print_cr("[%d] scanning aborted region [ " PTR_FORMAT ", " PTR_FORMAT " )",
  3789                              _task_id, mr.start(), mr.end());
  3790     } else {
  3791       mr = _cm->region_stack_pop_lock_free();
  3792       // it returns MemRegion() if the pop fails
  3793       statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
  3796     while (mr.start() != NULL) {
  3797       if (_cm->verbose_medium())
  3798         gclog_or_tty->print_cr("[%d] we are scanning region "
  3799                                "["PTR_FORMAT", "PTR_FORMAT")",
  3800                                _task_id, mr.start(), mr.end());
  3802       assert(mr.end() <= _cm->finger(),
  3803              "otherwise the region shouldn't be on the stack");
  3804       assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
  3805       if (_nextMarkBitMap->iterate(bc, mr)) {
  3806         assert(!has_aborted(),
  3807                "cannot abort the task without aborting the bitmap iteration");
  3809         // We finished iterating over the region without aborting.
  3810         regular_clock_call();
  3811         if (has_aborted())
  3812           mr = MemRegion();
  3813         else {
  3814           mr = _cm->region_stack_pop_lock_free();
  3815           // it returns MemRegion() if the pop fails
  3816           statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
  3818       } else {
  3819         assert(has_aborted(), "currently the only way to do so");
  3821         // The only way to abort the bitmap iteration is to return
  3822         // false from the do_bit() method. However, inside the
  3823         // do_bit() method we move the _region_finger to point to the
  3824         // object currently being looked at. So, if we bail out, we
  3825         // have definitely set _region_finger to something non-null.
  3826         assert(_region_finger != NULL, "invariant");
  3828         // Make sure that any previously aborted region has been
  3829         // cleared.
  3830         assert(_aborted_region.is_empty(), "aborted region not cleared");
  3832         // The iteration was actually aborted. So now _region_finger
  3833         // points to the address of the object we last scanned. If we
  3834         // leave it there, when we restart this task, we will rescan
  3835         // the object. It is easy to avoid this. We move the finger by
  3836         // enough to point to the next possible object header (the
  3837         // bitmap knows by how much we need to move it as it knows its
  3838         // granularity).
  3839         MemRegion newRegion =
  3840           MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());
  3842         if (!newRegion.is_empty()) {
  3843           if (_cm->verbose_low()) {
  3844             gclog_or_tty->print_cr("[%d] recording unscanned region"
  3845                                    "[" PTR_FORMAT "," PTR_FORMAT ") in CMTask",
  3846                                    _task_id,
  3847                                    newRegion.start(), newRegion.end());
  3849           // Now record the part of the region we didn't scan to
  3850           // make sure this task scans it later.
  3851           _aborted_region = newRegion;
  3853         // break from while
  3854         mr = MemRegion();
  3856       _region_finger = NULL;
  3859     if (_cm->verbose_low())
  3860       gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
  3861                              _task_id, _cm->region_stack_size());
  3865 void CMTask::print_stats() {
  3866   gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
  3867                          _task_id, _calls);
  3868   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  3869                          _elapsed_time_ms, _termination_time_ms);
  3870   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3871                          _step_times_ms.num(), _step_times_ms.avg(),
  3872                          _step_times_ms.sd());
  3873   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  3874                          _step_times_ms.maximum(), _step_times_ms.sum());
  3876 #if _MARKING_STATS_
  3877   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3878                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  3879                          _all_clock_intervals_ms.sd());
  3880   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  3881                          _all_clock_intervals_ms.maximum(),
  3882                          _all_clock_intervals_ms.sum());
  3883   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  3884                          _clock_due_to_scanning, _clock_due_to_marking);
  3885   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  3886                          _objs_scanned, _objs_found_on_bitmap);
  3887   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  3888                          _local_pushes, _local_pops, _local_max_size);
  3889   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  3890                          _global_pushes, _global_pops, _global_max_size);
  3891   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  3892                          _global_transfers_to,_global_transfers_from);
  3893   gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
  3894                          _regions_claimed, _region_stack_pops);
  3895   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  3896   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  3897                          _steal_attempts, _steals);
  3898   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  3899   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  3900                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  3901   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  3902                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  3903 #endif // _MARKING_STATS_
  3906 /*****************************************************************************
  3908     The do_marking_step(time_target_ms) method is the building block
  3909     of the parallel marking framework. It can be called in parallel
  3910     with other invocations of do_marking_step() on different tasks
  3911     (but only one per task, obviously) and concurrently with the
  3912     mutator threads, or during remark, hence it eliminates the need
  3913     for two versions of the code. When called during remark, it will
  3914     pick up from where the task left off during the concurrent marking
  3915     phase. Interestingly, tasks are also claimable during evacuation
  3916     pauses too, since do_marking_step() ensures that it aborts before
  3917     it needs to yield.
  3919     The data structures that is uses to do marking work are the
  3920     following:
  3922       (1) Marking Bitmap. If there are gray objects that appear only
  3923       on the bitmap (this happens either when dealing with an overflow
  3924       or when the initial marking phase has simply marked the roots
  3925       and didn't push them on the stack), then tasks claim heap
  3926       regions whose bitmap they then scan to find gray objects. A
  3927       global finger indicates where the end of the last claimed region
  3928       is. A local finger indicates how far into the region a task has
  3929       scanned. The two fingers are used to determine how to gray an
  3930       object (i.e. whether simply marking it is OK, as it will be
  3931       visited by a task in the future, or whether it needs to be also
  3932       pushed on a stack).
  3934       (2) Local Queue. The local queue of the task which is accessed
  3935       reasonably efficiently by the task. Other tasks can steal from
  3936       it when they run out of work. Throughout the marking phase, a
  3937       task attempts to keep its local queue short but not totally
  3938       empty, so that entries are available for stealing by other
  3939       tasks. Only when there is no more work, a task will totally
  3940       drain its local queue.
  3942       (3) Global Mark Stack. This handles local queue overflow. During
  3943       marking only sets of entries are moved between it and the local
  3944       queues, as access to it requires a mutex and more fine-grain
  3945       interaction with it which might cause contention. If it
  3946       overflows, then the marking phase should restart and iterate
  3947       over the bitmap to identify gray objects. Throughout the marking
  3948       phase, tasks attempt to keep the global mark stack at a small
  3949       length but not totally empty, so that entries are available for
  3950       popping by other tasks. Only when there is no more work, tasks
  3951       will totally drain the global mark stack.
  3953       (4) Global Region Stack. Entries on it correspond to areas of
  3954       the bitmap that need to be scanned since they contain gray
  3955       objects. Pushes on the region stack only happen during
  3956       evacuation pauses and typically correspond to areas covered by
  3957       GC LABS. If it overflows, then the marking phase should restart
  3958       and iterate over the bitmap to identify gray objects. Tasks will
  3959       try to totally drain the region stack as soon as possible.
  3961       (5) SATB Buffer Queue. This is where completed SATB buffers are
  3962       made available. Buffers are regularly removed from this queue
  3963       and scanned for roots, so that the queue doesn't get too
  3964       long. During remark, all completed buffers are processed, as
  3965       well as the filled in parts of any uncompleted buffers.
  3967     The do_marking_step() method tries to abort when the time target
  3968     has been reached. There are a few other cases when the
  3969     do_marking_step() method also aborts:
  3971       (1) When the marking phase has been aborted (after a Full GC).
  3973       (2) When a global overflow (either on the global stack or the
  3974       region stack) has been triggered. Before the task aborts, it
  3975       will actually sync up with the other tasks to ensure that all
  3976       the marking data structures (local queues, stacks, fingers etc.)
  3977       are re-initialised so that when do_marking_step() completes,
  3978       the marking phase can immediately restart.
  3980       (3) When enough completed SATB buffers are available. The
  3981       do_marking_step() method only tries to drain SATB buffers right
  3982       at the beginning. So, if enough buffers are available, the
  3983       marking step aborts and the SATB buffers are processed at
  3984       the beginning of the next invocation.
  3986       (4) To yield. when we have to yield then we abort and yield
  3987       right at the end of do_marking_step(). This saves us from a lot
  3988       of hassle as, by yielding we might allow a Full GC. If this
  3989       happens then objects will be compacted underneath our feet, the
  3990       heap might shrink, etc. We save checking for this by just
  3991       aborting and doing the yield right at the end.
  3993     From the above it follows that the do_marking_step() method should
  3994     be called in a loop (or, otherwise, regularly) until it completes.
  3996     If a marking step completes without its has_aborted() flag being
  3997     true, it means it has completed the current marking phase (and
  3998     also all other marking tasks have done so and have all synced up).
  4000     A method called regular_clock_call() is invoked "regularly" (in
  4001     sub ms intervals) throughout marking. It is this clock method that
  4002     checks all the abort conditions which were mentioned above and
  4003     decides when the task should abort. A work-based scheme is used to
  4004     trigger this clock method: when the number of object words the
  4005     marking phase has scanned or the number of references the marking
  4006     phase has visited reach a given limit. Additional invocations to
  4007     the method clock have been planted in a few other strategic places
  4008     too. The initial reason for the clock method was to avoid calling
  4009     vtime too regularly, as it is quite expensive. So, once it was in
  4010     place, it was natural to piggy-back all the other conditions on it
  4011     too and not constantly check them throughout the code.
  4013  *****************************************************************************/
  4015 void CMTask::do_marking_step(double time_target_ms,
  4016                              bool do_stealing,
  4017                              bool do_termination) {
  4018   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4019   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4021   assert(concurrent() || _cm->region_stack_empty(),
  4022          "the region stack should have been cleared before remark");
  4023   assert(concurrent() || !_cm->has_aborted_regions(),
  4024          "aborted regions should have been cleared before remark");
  4025   assert(_region_finger == NULL,
  4026          "this should be non-null only when a region is being scanned");
  4028   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4029   assert(_task_queues != NULL, "invariant");
  4030   assert(_task_queue != NULL, "invariant");
  4031   assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
  4033   assert(!_claimed,
  4034          "only one thread should claim this task at any one time");
  4036   // OK, this doesn't safeguard again all possible scenarios, as it is
  4037   // possible for two threads to set the _claimed flag at the same
  4038   // time. But it is only for debugging purposes anyway and it will
  4039   // catch most problems.
  4040   _claimed = true;
  4042   _start_time_ms = os::elapsedVTime() * 1000.0;
  4043   statsOnly( _interval_start_time_ms = _start_time_ms );
  4045   double diff_prediction_ms =
  4046     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4047   _time_target_ms = time_target_ms - diff_prediction_ms;
  4049   // set up the variables that are used in the work-based scheme to
  4050   // call the regular clock method
  4051   _words_scanned = 0;
  4052   _refs_reached  = 0;
  4053   recalculate_limits();
  4055   // clear all flags
  4056   clear_has_aborted();
  4057   _has_timed_out = false;
  4058   _draining_satb_buffers = false;
  4060   ++_calls;
  4062   if (_cm->verbose_low())
  4063     gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
  4064                            "target = %1.2lfms >>>>>>>>>>",
  4065                            _task_id, _calls, _time_target_ms);
  4067   // Set up the bitmap and oop closures. Anything that uses them is
  4068   // eventually called from this method, so it is OK to allocate these
  4069   // statically.
  4070   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4071   CMOopClosure    oop_closure(_g1h, _cm, this);
  4072   set_oop_closure(&oop_closure);
  4074   if (_cm->has_overflown()) {
  4075     // This can happen if the region stack or the mark stack overflows
  4076     // during a GC pause and this task, after a yield point,
  4077     // restarts. We have to abort as we need to get into the overflow
  4078     // protocol which happens right at the end of this task.
  4079     set_has_aborted();
  4082   // First drain any available SATB buffers. After this, we will not
  4083   // look at SATB buffers before the next invocation of this method.
  4084   // If enough completed SATB buffers are queued up, the regular clock
  4085   // will abort this task so that it restarts.
  4086   drain_satb_buffers();
  4087   // ...then partially drain the local queue and the global stack
  4088   drain_local_queue(true);
  4089   drain_global_stack(true);
  4091   // Then totally drain the region stack.  We will not look at
  4092   // it again before the next invocation of this method. Entries on
  4093   // the region stack are only added during evacuation pauses, for
  4094   // which we have to yield. When we do, we abort the task anyway so
  4095   // it will look at the region stack again when it restarts.
  4096   bitmap_closure.set_scanning_heap_region(false);
  4097   drain_region_stack(&bitmap_closure);
  4098   // ...then partially drain the local queue and the global stack
  4099   drain_local_queue(true);
  4100   drain_global_stack(true);
  4102   do {
  4103     if (!has_aborted() && _curr_region != NULL) {
  4104       // This means that we're already holding on to a region.
  4105       assert(_finger != NULL, "if region is not NULL, then the finger "
  4106              "should not be NULL either");
  4108       // We might have restarted this task after an evacuation pause
  4109       // which might have evacuated the region we're holding on to
  4110       // underneath our feet. Let's read its limit again to make sure
  4111       // that we do not iterate over a region of the heap that
  4112       // contains garbage (update_region_limit() will also move
  4113       // _finger to the start of the region if it is found empty).
  4114       update_region_limit();
  4115       // We will start from _finger not from the start of the region,
  4116       // as we might be restarting this task after aborting half-way
  4117       // through scanning this region. In this case, _finger points to
  4118       // the address where we last found a marked object. If this is a
  4119       // fresh region, _finger points to start().
  4120       MemRegion mr = MemRegion(_finger, _region_limit);
  4122       if (_cm->verbose_low())
  4123         gclog_or_tty->print_cr("[%d] we're scanning part "
  4124                                "["PTR_FORMAT", "PTR_FORMAT") "
  4125                                "of region "PTR_FORMAT,
  4126                                _task_id, _finger, _region_limit, _curr_region);
  4128       // Let's iterate over the bitmap of the part of the
  4129       // region that is left.
  4130       bitmap_closure.set_scanning_heap_region(true);
  4131       if (mr.is_empty() ||
  4132           _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4133         // We successfully completed iterating over the region. Now,
  4134         // let's give up the region.
  4135         giveup_current_region();
  4136         regular_clock_call();
  4137       } else {
  4138         assert(has_aborted(), "currently the only way to do so");
  4139         // The only way to abort the bitmap iteration is to return
  4140         // false from the do_bit() method. However, inside the
  4141         // do_bit() method we move the _finger to point to the
  4142         // object currently being looked at. So, if we bail out, we
  4143         // have definitely set _finger to something non-null.
  4144         assert(_finger != NULL, "invariant");
  4146         // Region iteration was actually aborted. So now _finger
  4147         // points to the address of the object we last scanned. If we
  4148         // leave it there, when we restart this task, we will rescan
  4149         // the object. It is easy to avoid this. We move the finger by
  4150         // enough to point to the next possible object header (the
  4151         // bitmap knows by how much we need to move it as it knows its
  4152         // granularity).
  4153         assert(_finger < _region_limit, "invariant");
  4154         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
  4155         // Check if bitmap iteration was aborted while scanning the last object
  4156         if (new_finger >= _region_limit) {
  4157             giveup_current_region();
  4158         } else {
  4159             move_finger_to(new_finger);
  4163     // At this point we have either completed iterating over the
  4164     // region we were holding on to, or we have aborted.
  4166     // We then partially drain the local queue and the global stack.
  4167     // (Do we really need this?)
  4168     drain_local_queue(true);
  4169     drain_global_stack(true);
  4171     // Read the note on the claim_region() method on why it might
  4172     // return NULL with potentially more regions available for
  4173     // claiming and why we have to check out_of_regions() to determine
  4174     // whether we're done or not.
  4175     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4176       // We are going to try to claim a new region. We should have
  4177       // given up on the previous one.
  4178       // Separated the asserts so that we know which one fires.
  4179       assert(_curr_region  == NULL, "invariant");
  4180       assert(_finger       == NULL, "invariant");
  4181       assert(_region_limit == NULL, "invariant");
  4182       if (_cm->verbose_low())
  4183         gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
  4184       HeapRegion* claimed_region = _cm->claim_region(_task_id);
  4185       if (claimed_region != NULL) {
  4186         // Yes, we managed to claim one
  4187         statsOnly( ++_regions_claimed );
  4189         if (_cm->verbose_low())
  4190           gclog_or_tty->print_cr("[%d] we successfully claimed "
  4191                                  "region "PTR_FORMAT,
  4192                                  _task_id, claimed_region);
  4194         setup_for_region(claimed_region);
  4195         assert(_curr_region == claimed_region, "invariant");
  4197       // It is important to call the regular clock here. It might take
  4198       // a while to claim a region if, for example, we hit a large
  4199       // block of empty regions. So we need to call the regular clock
  4200       // method once round the loop to make sure it's called
  4201       // frequently enough.
  4202       regular_clock_call();
  4205     if (!has_aborted() && _curr_region == NULL) {
  4206       assert(_cm->out_of_regions(),
  4207              "at this point we should be out of regions");
  4209   } while ( _curr_region != NULL && !has_aborted());
  4211   if (!has_aborted()) {
  4212     // We cannot check whether the global stack is empty, since other
  4213     // tasks might be pushing objects to it concurrently. We also cannot
  4214     // check if the region stack is empty because if a thread is aborting
  4215     // it can push a partially done region back.
  4216     assert(_cm->out_of_regions(),
  4217            "at this point we should be out of regions");
  4219     if (_cm->verbose_low())
  4220       gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
  4222     // Try to reduce the number of available SATB buffers so that
  4223     // remark has less work to do.
  4224     drain_satb_buffers();
  4227   // Since we've done everything else, we can now totally drain the
  4228   // local queue and global stack.
  4229   drain_local_queue(false);
  4230   drain_global_stack(false);
  4232   // Attempt at work stealing from other task's queues.
  4233   if (do_stealing && !has_aborted()) {
  4234     // We have not aborted. This means that we have finished all that
  4235     // we could. Let's try to do some stealing...
  4237     // We cannot check whether the global stack is empty, since other
  4238     // tasks might be pushing objects to it concurrently. We also cannot
  4239     // check if the region stack is empty because if a thread is aborting
  4240     // it can push a partially done region back.
  4241     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4242            "only way to reach here");
  4244     if (_cm->verbose_low())
  4245       gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
  4247     while (!has_aborted()) {
  4248       oop obj;
  4249       statsOnly( ++_steal_attempts );
  4251       if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
  4252         if (_cm->verbose_medium())
  4253           gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
  4254                                  _task_id, (void*) obj);
  4256         statsOnly( ++_steals );
  4258         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4259                "any stolen object should be marked");
  4260         scan_object(obj);
  4262         // And since we're towards the end, let's totally drain the
  4263         // local queue and global stack.
  4264         drain_local_queue(false);
  4265         drain_global_stack(false);
  4266       } else {
  4267         break;
  4272   // We still haven't aborted. Now, let's try to get into the
  4273   // termination protocol.
  4274   if (do_termination && !has_aborted()) {
  4275     // We cannot check whether the global stack is empty, since other
  4276     // tasks might be concurrently pushing objects on it. We also cannot
  4277     // check if the region stack is empty because if a thread is aborting
  4278     // it can push a partially done region back.
  4279     // Separated the asserts so that we know which one fires.
  4280     assert(_cm->out_of_regions(), "only way to reach here");
  4281     assert(_task_queue->size() == 0, "only way to reach here");
  4283     if (_cm->verbose_low())
  4284       gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
  4286     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4287     // The CMTask class also extends the TerminatorTerminator class,
  4288     // hence its should_exit_termination() method will also decide
  4289     // whether to exit the termination protocol or not.
  4290     bool finished = _cm->terminator()->offer_termination(this);
  4291     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4292     _termination_time_ms +=
  4293       termination_end_time_ms - _termination_start_time_ms;
  4295     if (finished) {
  4296       // We're all done.
  4298       if (_task_id == 0) {
  4299         // let's allow task 0 to do this
  4300         if (concurrent()) {
  4301           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4302           // we need to set this to false before the next
  4303           // safepoint. This way we ensure that the marking phase
  4304           // doesn't observe any more heap expansions.
  4305           _cm->clear_concurrent_marking_in_progress();
  4309       // We can now guarantee that the global stack is empty, since
  4310       // all other tasks have finished. We separated the guarantees so
  4311       // that, if a condition is false, we can immediately find out
  4312       // which one.
  4313       guarantee(_cm->out_of_regions(), "only way to reach here");
  4314       guarantee(_aborted_region.is_empty(), "only way to reach here");
  4315       guarantee(_cm->region_stack_empty(), "only way to reach here");
  4316       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4317       guarantee(_task_queue->size() == 0, "only way to reach here");
  4318       guarantee(!_cm->has_overflown(), "only way to reach here");
  4319       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4320       guarantee(!_cm->region_stack_overflow(), "only way to reach here");
  4322       if (_cm->verbose_low())
  4323         gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
  4324     } else {
  4325       // Apparently there's more work to do. Let's abort this task. It
  4326       // will restart it and we can hopefully find more things to do.
  4328       if (_cm->verbose_low())
  4329         gclog_or_tty->print_cr("[%d] apparently there is more work to do", _task_id);
  4331       set_has_aborted();
  4332       statsOnly( ++_aborted_termination );
  4336   // Mainly for debugging purposes to make sure that a pointer to the
  4337   // closure which was statically allocated in this frame doesn't
  4338   // escape it by accident.
  4339   set_oop_closure(NULL);
  4340   double end_time_ms = os::elapsedVTime() * 1000.0;
  4341   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4342   // Update the step history.
  4343   _step_times_ms.add(elapsed_time_ms);
  4345   if (has_aborted()) {
  4346     // The task was aborted for some reason.
  4348     statsOnly( ++_aborted );
  4350     if (_has_timed_out) {
  4351       double diff_ms = elapsed_time_ms - _time_target_ms;
  4352       // Keep statistics of how well we did with respect to hitting
  4353       // our target only if we actually timed out (if we aborted for
  4354       // other reasons, then the results might get skewed).
  4355       _marking_step_diffs_ms.add(diff_ms);
  4358     if (_cm->has_overflown()) {
  4359       // This is the interesting one. We aborted because a global
  4360       // overflow was raised. This means we have to restart the
  4361       // marking phase and start iterating over regions. However, in
  4362       // order to do this we have to make sure that all tasks stop
  4363       // what they are doing and re-initialise in a safe manner. We
  4364       // will achieve this with the use of two barrier sync points.
  4366       if (_cm->verbose_low())
  4367         gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
  4369       _cm->enter_first_sync_barrier(_task_id);
  4370       // When we exit this sync barrier we know that all tasks have
  4371       // stopped doing marking work. So, it's now safe to
  4372       // re-initialise our data structures. At the end of this method,
  4373       // task 0 will clear the global data structures.
  4375       statsOnly( ++_aborted_overflow );
  4377       // We clear the local state of this task...
  4378       clear_region_fields();
  4380       // ...and enter the second barrier.
  4381       _cm->enter_second_sync_barrier(_task_id);
  4382       // At this point everything has bee re-initialised and we're
  4383       // ready to restart.
  4386     if (_cm->verbose_low()) {
  4387       gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4388                              "elapsed = %1.2lfms <<<<<<<<<<",
  4389                              _task_id, _time_target_ms, elapsed_time_ms);
  4390       if (_cm->has_aborted())
  4391         gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
  4392                                _task_id);
  4394   } else {
  4395     if (_cm->verbose_low())
  4396       gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4397                              "elapsed = %1.2lfms <<<<<<<<<<",
  4398                              _task_id, _time_target_ms, elapsed_time_ms);
  4401   _claimed = false;
  4404 CMTask::CMTask(int task_id,
  4405                ConcurrentMark* cm,
  4406                CMTaskQueue* task_queue,
  4407                CMTaskQueueSet* task_queues)
  4408   : _g1h(G1CollectedHeap::heap()),
  4409     _task_id(task_id), _cm(cm),
  4410     _claimed(false),
  4411     _nextMarkBitMap(NULL), _hash_seed(17),
  4412     _task_queue(task_queue),
  4413     _task_queues(task_queues),
  4414     _oop_closure(NULL),
  4415     _aborted_region(MemRegion()) {
  4416   guarantee(task_queue != NULL, "invariant");
  4417   guarantee(task_queues != NULL, "invariant");
  4419   statsOnly( _clock_due_to_scanning = 0;
  4420              _clock_due_to_marking  = 0 );
  4422   _marking_step_diffs_ms.add(0.5);

mercurial