src/share/vm/gc_implementation/g1/concurrentMark.cpp

Tue, 25 Jan 2011 10:56:22 -0800

author
johnc
date
Tue, 25 Jan 2011 10:56:22 -0800
changeset 2494
234761c55641
parent 2472
0fa27f37d4d4
child 2495
81668b1f4877
permissions
-rw-r--r--

6608385: G1: need to support parallel reference processing
Summary: Implement support for ParallelRefProcEnabled in the reference processing that takes place at the end of G1 concurrent marking.
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    34 #include "gc_implementation/shared/vmGCOperations.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/referencePolicy.hpp"
    37 #include "memory/resourceArea.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/handles.inline.hpp"
    40 #include "runtime/java.hpp"
    42 //
    43 // CMS Bit Map Wrapper
    45 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter):
    46   _bm((uintptr_t*)NULL,0),
    47   _shifter(shifter) {
    48   _bmStartWord = (HeapWord*)(rs.base());
    49   _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
    50   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
    51                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
    53   guarantee(brs.is_reserved(), "couldn't allocate CMS bit map");
    54   // For now we'll just commit all of the bit map up fromt.
    55   // Later on we'll try to be more parsimonious with swap.
    56   guarantee(_virtual_space.initialize(brs, brs.size()),
    57             "couldn't reseve backing store for CMS bit map");
    58   assert(_virtual_space.committed_size() == brs.size(),
    59          "didn't reserve backing store for all of CMS bit map?");
    60   _bm.set_map((uintptr_t*)_virtual_space.low());
    61   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
    62          _bmWordSize, "inconsistency in bit map sizing");
    63   _bm.set_size(_bmWordSize >> _shifter);
    64 }
    66 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
    67                                                HeapWord* limit) const {
    68   // First we must round addr *up* to a possible object boundary.
    69   addr = (HeapWord*)align_size_up((intptr_t)addr,
    70                                   HeapWordSize << _shifter);
    71   size_t addrOffset = heapWordToOffset(addr);
    72   if (limit == NULL) limit = _bmStartWord + _bmWordSize;
    73   size_t limitOffset = heapWordToOffset(limit);
    74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    76   assert(nextAddr >= addr, "get_next_one postcondition");
    77   assert(nextAddr == limit || isMarked(nextAddr),
    78          "get_next_one postcondition");
    79   return nextAddr;
    80 }
    82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
    83                                                  HeapWord* limit) const {
    84   size_t addrOffset = heapWordToOffset(addr);
    85   if (limit == NULL) limit = _bmStartWord + _bmWordSize;
    86   size_t limitOffset = heapWordToOffset(limit);
    87   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    88   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    89   assert(nextAddr >= addr, "get_next_one postcondition");
    90   assert(nextAddr == limit || !isMarked(nextAddr),
    91          "get_next_one postcondition");
    92   return nextAddr;
    93 }
    95 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    96   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    97   return (int) (diff >> _shifter);
    98 }
   100 bool CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
   101   HeapWord* left  = MAX2(_bmStartWord, mr.start());
   102   HeapWord* right = MIN2(_bmStartWord + _bmWordSize, mr.end());
   103   if (right > left) {
   104     // Right-open interval [leftOffset, rightOffset).
   105     return _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
   106   } else {
   107     return true;
   108   }
   109 }
   111 void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
   112                                              size_t    from_start_index,
   113                                              HeapWord* to_start_word,
   114                                              size_t    word_num) {
   115   _bm.mostly_disjoint_range_union(from_bitmap,
   116                                   from_start_index,
   117                                   heapWordToOffset(to_start_word),
   118                                   word_num);
   119 }
   121 #ifndef PRODUCT
   122 bool CMBitMapRO::covers(ReservedSpace rs) const {
   123   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   124   assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
   125          "size inconsistency");
   126   return _bmStartWord == (HeapWord*)(rs.base()) &&
   127          _bmWordSize  == rs.size()>>LogHeapWordSize;
   128 }
   129 #endif
   131 void CMBitMap::clearAll() {
   132   _bm.clear();
   133   return;
   134 }
   136 void CMBitMap::markRange(MemRegion mr) {
   137   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   138   assert(!mr.is_empty(), "unexpected empty region");
   139   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   140           ((HeapWord *) mr.end())),
   141          "markRange memory region end is not card aligned");
   142   // convert address range into offset range
   143   _bm.at_put_range(heapWordToOffset(mr.start()),
   144                    heapWordToOffset(mr.end()), true);
   145 }
   147 void CMBitMap::clearRange(MemRegion mr) {
   148   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   149   assert(!mr.is_empty(), "unexpected empty region");
   150   // convert address range into offset range
   151   _bm.at_put_range(heapWordToOffset(mr.start()),
   152                    heapWordToOffset(mr.end()), false);
   153 }
   155 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   156                                             HeapWord* end_addr) {
   157   HeapWord* start = getNextMarkedWordAddress(addr);
   158   start = MIN2(start, end_addr);
   159   HeapWord* end   = getNextUnmarkedWordAddress(start);
   160   end = MIN2(end, end_addr);
   161   assert(start <= end, "Consistency check");
   162   MemRegion mr(start, end);
   163   if (!mr.is_empty()) {
   164     clearRange(mr);
   165   }
   166   return mr;
   167 }
   169 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   170   _base(NULL), _cm(cm)
   171 #ifdef ASSERT
   172   , _drain_in_progress(false)
   173   , _drain_in_progress_yields(false)
   174 #endif
   175 {}
   177 void CMMarkStack::allocate(size_t size) {
   178   _base = NEW_C_HEAP_ARRAY(oop, size);
   179   if (_base == NULL)
   180     vm_exit_during_initialization("Failed to allocate "
   181                                   "CM region mark stack");
   182   _index = 0;
   183   // QQQQ cast ...
   184   _capacity = (jint) size;
   185   _oops_do_bound = -1;
   186   NOT_PRODUCT(_max_depth = 0);
   187 }
   189 CMMarkStack::~CMMarkStack() {
   190   if (_base != NULL) FREE_C_HEAP_ARRAY(oop, _base);
   191 }
   193 void CMMarkStack::par_push(oop ptr) {
   194   while (true) {
   195     if (isFull()) {
   196       _overflow = true;
   197       return;
   198     }
   199     // Otherwise...
   200     jint index = _index;
   201     jint next_index = index+1;
   202     jint res = Atomic::cmpxchg(next_index, &_index, index);
   203     if (res == index) {
   204       _base[index] = ptr;
   205       // Note that we don't maintain this atomically.  We could, but it
   206       // doesn't seem necessary.
   207       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   208       return;
   209     }
   210     // Otherwise, we need to try again.
   211   }
   212 }
   214 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   215   while (true) {
   216     if (isFull()) {
   217       _overflow = true;
   218       return;
   219     }
   220     // Otherwise...
   221     jint index = _index;
   222     jint next_index = index + n;
   223     if (next_index > _capacity) {
   224       _overflow = true;
   225       return;
   226     }
   227     jint res = Atomic::cmpxchg(next_index, &_index, index);
   228     if (res == index) {
   229       for (int i = 0; i < n; i++) {
   230         int ind = index + i;
   231         assert(ind < _capacity, "By overflow test above.");
   232         _base[ind] = ptr_arr[i];
   233       }
   234       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   235       return;
   236     }
   237     // Otherwise, we need to try again.
   238   }
   239 }
   242 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   243   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   244   jint start = _index;
   245   jint next_index = start + n;
   246   if (next_index > _capacity) {
   247     _overflow = true;
   248     return;
   249   }
   250   // Otherwise.
   251   _index = next_index;
   252   for (int i = 0; i < n; i++) {
   253     int ind = start + i;
   254     assert(ind < _capacity, "By overflow test above.");
   255     _base[ind] = ptr_arr[i];
   256   }
   257 }
   260 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   261   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   262   jint index = _index;
   263   if (index == 0) {
   264     *n = 0;
   265     return false;
   266   } else {
   267     int k = MIN2(max, index);
   268     jint new_ind = index - k;
   269     for (int j = 0; j < k; j++) {
   270       ptr_arr[j] = _base[new_ind + j];
   271     }
   272     _index = new_ind;
   273     *n = k;
   274     return true;
   275   }
   276 }
   279 CMRegionStack::CMRegionStack() : _base(NULL) {}
   281 void CMRegionStack::allocate(size_t size) {
   282   _base = NEW_C_HEAP_ARRAY(MemRegion, size);
   283   if (_base == NULL)
   284     vm_exit_during_initialization("Failed to allocate "
   285                                   "CM region mark stack");
   286   _index = 0;
   287   // QQQQ cast ...
   288   _capacity = (jint) size;
   289 }
   291 CMRegionStack::~CMRegionStack() {
   292   if (_base != NULL) FREE_C_HEAP_ARRAY(oop, _base);
   293 }
   295 void CMRegionStack::push_lock_free(MemRegion mr) {
   296   assert(mr.word_size() > 0, "Precondition");
   297   while (true) {
   298     jint index = _index;
   300     if (index >= _capacity) {
   301       _overflow = true;
   302       return;
   303     }
   304     // Otherwise...
   305     jint next_index = index+1;
   306     jint res = Atomic::cmpxchg(next_index, &_index, index);
   307     if (res == index) {
   308       _base[index] = mr;
   309       return;
   310     }
   311     // Otherwise, we need to try again.
   312   }
   313 }
   315 // Lock-free pop of the region stack. Called during the concurrent
   316 // marking / remark phases. Should only be called in tandem with
   317 // other lock-free pops.
   318 MemRegion CMRegionStack::pop_lock_free() {
   319   while (true) {
   320     jint index = _index;
   322     if (index == 0) {
   323       return MemRegion();
   324     }
   325     // Otherwise...
   326     jint next_index = index-1;
   327     jint res = Atomic::cmpxchg(next_index, &_index, index);
   328     if (res == index) {
   329       MemRegion mr = _base[next_index];
   330       if (mr.start() != NULL) {
   331         assert(mr.end() != NULL, "invariant");
   332         assert(mr.word_size() > 0, "invariant");
   333         return mr;
   334       } else {
   335         // that entry was invalidated... let's skip it
   336         assert(mr.end() == NULL, "invariant");
   337       }
   338     }
   339     // Otherwise, we need to try again.
   340   }
   341 }
   343 #if 0
   344 // The routines that manipulate the region stack with a lock are
   345 // not currently used. They should be retained, however, as a
   346 // diagnostic aid.
   348 void CMRegionStack::push_with_lock(MemRegion mr) {
   349   assert(mr.word_size() > 0, "Precondition");
   350   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
   352   if (isFull()) {
   353     _overflow = true;
   354     return;
   355   }
   357   _base[_index] = mr;
   358   _index += 1;
   359 }
   361 MemRegion CMRegionStack::pop_with_lock() {
   362   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
   364   while (true) {
   365     if (_index == 0) {
   366       return MemRegion();
   367     }
   368     _index -= 1;
   370     MemRegion mr = _base[_index];
   371     if (mr.start() != NULL) {
   372       assert(mr.end() != NULL, "invariant");
   373       assert(mr.word_size() > 0, "invariant");
   374       return mr;
   375     } else {
   376       // that entry was invalidated... let's skip it
   377       assert(mr.end() == NULL, "invariant");
   378     }
   379   }
   380 }
   381 #endif
   383 bool CMRegionStack::invalidate_entries_into_cset() {
   384   bool result = false;
   385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   386   for (int i = 0; i < _oops_do_bound; ++i) {
   387     MemRegion mr = _base[i];
   388     if (mr.start() != NULL) {
   389       assert(mr.end() != NULL, "invariant");
   390       assert(mr.word_size() > 0, "invariant");
   391       HeapRegion* hr = g1h->heap_region_containing(mr.start());
   392       assert(hr != NULL, "invariant");
   393       if (hr->in_collection_set()) {
   394         // The region points into the collection set
   395         _base[i] = MemRegion();
   396         result = true;
   397       }
   398     } else {
   399       // that entry was invalidated... let's skip it
   400       assert(mr.end() == NULL, "invariant");
   401     }
   402   }
   403   return result;
   404 }
   406 template<class OopClosureClass>
   407 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   408   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   409          || SafepointSynchronize::is_at_safepoint(),
   410          "Drain recursion must be yield-safe.");
   411   bool res = true;
   412   debug_only(_drain_in_progress = true);
   413   debug_only(_drain_in_progress_yields = yield_after);
   414   while (!isEmpty()) {
   415     oop newOop = pop();
   416     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   417     assert(newOop->is_oop(), "Expected an oop");
   418     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   419            "only grey objects on this stack");
   420     // iterate over the oops in this oop, marking and pushing
   421     // the ones in CMS generation.
   422     newOop->oop_iterate(cl);
   423     if (yield_after && _cm->do_yield_check()) {
   424       res = false; break;
   425     }
   426   }
   427   debug_only(_drain_in_progress = false);
   428   return res;
   429 }
   431 void CMMarkStack::oops_do(OopClosure* f) {
   432   if (_index == 0) return;
   433   assert(_oops_do_bound != -1 && _oops_do_bound <= _index,
   434          "Bound must be set.");
   435   for (int i = 0; i < _oops_do_bound; i++) {
   436     f->do_oop(&_base[i]);
   437   }
   438   _oops_do_bound = -1;
   439 }
   441 bool ConcurrentMark::not_yet_marked(oop obj) const {
   442   return (_g1h->is_obj_ill(obj)
   443           || (_g1h->is_in_permanent(obj)
   444               && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
   445 }
   447 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   448 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   449 #endif // _MSC_VER
   451 ConcurrentMark::ConcurrentMark(ReservedSpace rs,
   452                                int max_regions) :
   453   _markBitMap1(rs, MinObjAlignment - 1),
   454   _markBitMap2(rs, MinObjAlignment - 1),
   456   _parallel_marking_threads(0),
   457   _sleep_factor(0.0),
   458   _marking_task_overhead(1.0),
   459   _cleanup_sleep_factor(0.0),
   460   _cleanup_task_overhead(1.0),
   461   _cleanup_list("Cleanup List"),
   462   _region_bm(max_regions, false /* in_resource_area*/),
   463   _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
   464            CardTableModRefBS::card_shift,
   465            false /* in_resource_area*/),
   466   _prevMarkBitMap(&_markBitMap1),
   467   _nextMarkBitMap(&_markBitMap2),
   468   _at_least_one_mark_complete(false),
   470   _markStack(this),
   471   _regionStack(),
   472   // _finger set in set_non_marking_state
   474   _max_task_num(MAX2(ParallelGCThreads, (size_t)1)),
   475   // _active_tasks set in set_non_marking_state
   476   // _tasks set inside the constructor
   477   _task_queues(new CMTaskQueueSet((int) _max_task_num)),
   478   _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
   480   _has_overflown(false),
   481   _concurrent(false),
   482   _has_aborted(false),
   483   _restart_for_overflow(false),
   484   _concurrent_marking_in_progress(false),
   485   _should_gray_objects(false),
   487   // _verbose_level set below
   489   _init_times(),
   490   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   491   _cleanup_times(),
   492   _total_counting_time(0.0),
   493   _total_rs_scrub_time(0.0),
   495   _parallel_workers(NULL)
   496 {
   497   CMVerboseLevel verbose_level =
   498     (CMVerboseLevel) G1MarkingVerboseLevel;
   499   if (verbose_level < no_verbose)
   500     verbose_level = no_verbose;
   501   if (verbose_level > high_verbose)
   502     verbose_level = high_verbose;
   503   _verbose_level = verbose_level;
   505   if (verbose_low())
   506     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   507                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
   509   _markStack.allocate(MarkStackSize);
   510   _regionStack.allocate(G1MarkRegionStackSize);
   512   // Create & start a ConcurrentMark thread.
   513   _cmThread = new ConcurrentMarkThread(this);
   514   assert(cmThread() != NULL, "CM Thread should have been created");
   515   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   517   _g1h = G1CollectedHeap::heap();
   518   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   519   assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
   520   assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
   522   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   523   satb_qs.set_buffer_size(G1SATBBufferSize);
   525   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
   526   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);
   528   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   529   _active_tasks = _max_task_num;
   530   for (int i = 0; i < (int) _max_task_num; ++i) {
   531     CMTaskQueue* task_queue = new CMTaskQueue();
   532     task_queue->initialize();
   533     _task_queues->register_queue(i, task_queue);
   535     _tasks[i] = new CMTask(i, this, task_queue, _task_queues);
   536     _accum_task_vtime[i] = 0.0;
   537   }
   539   if (ConcGCThreads > ParallelGCThreads) {
   540     vm_exit_during_initialization("Can't have more ConcGCThreads "
   541                                   "than ParallelGCThreads.");
   542   }
   543   if (ParallelGCThreads == 0) {
   544     // if we are not running with any parallel GC threads we will not
   545     // spawn any marking threads either
   546     _parallel_marking_threads =   0;
   547     _sleep_factor             = 0.0;
   548     _marking_task_overhead    = 1.0;
   549   } else {
   550     if (ConcGCThreads > 0) {
   551       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
   552       // if both are set
   554       _parallel_marking_threads = ConcGCThreads;
   555       _sleep_factor             = 0.0;
   556       _marking_task_overhead    = 1.0;
   557     } else if (G1MarkingOverheadPercent > 0) {
   558       // we will calculate the number of parallel marking threads
   559       // based on a target overhead with respect to the soft real-time
   560       // goal
   562       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   563       double overall_cm_overhead =
   564         (double) MaxGCPauseMillis * marking_overhead /
   565         (double) GCPauseIntervalMillis;
   566       double cpu_ratio = 1.0 / (double) os::processor_count();
   567       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   568       double marking_task_overhead =
   569         overall_cm_overhead / marking_thread_num *
   570                                                 (double) os::processor_count();
   571       double sleep_factor =
   572                          (1.0 - marking_task_overhead) / marking_task_overhead;
   574       _parallel_marking_threads = (size_t) marking_thread_num;
   575       _sleep_factor             = sleep_factor;
   576       _marking_task_overhead    = marking_task_overhead;
   577     } else {
   578       _parallel_marking_threads = MAX2((ParallelGCThreads + 2) / 4, (size_t)1);
   579       _sleep_factor             = 0.0;
   580       _marking_task_overhead    = 1.0;
   581     }
   583     if (parallel_marking_threads() > 1)
   584       _cleanup_task_overhead = 1.0;
   585     else
   586       _cleanup_task_overhead = marking_task_overhead();
   587     _cleanup_sleep_factor =
   588                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   590 #if 0
   591     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   592     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   593     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   594     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   595     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   596 #endif
   598     guarantee(parallel_marking_threads() > 0, "peace of mind");
   599     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   600          (int) _parallel_marking_threads, false, true);
   601     if (_parallel_workers == NULL) {
   602       vm_exit_during_initialization("Failed necessary allocation.");
   603     } else {
   604       _parallel_workers->initialize_workers();
   605     }
   606   }
   608   // so that the call below can read a sensible value
   609   _heap_start = (HeapWord*) rs.base();
   610   set_non_marking_state();
   611 }
   613 void ConcurrentMark::update_g1_committed(bool force) {
   614   // If concurrent marking is not in progress, then we do not need to
   615   // update _heap_end. This has a subtle and important
   616   // side-effect. Imagine that two evacuation pauses happen between
   617   // marking completion and remark. The first one can grow the
   618   // heap (hence now the finger is below the heap end). Then, the
   619   // second one could unnecessarily push regions on the region
   620   // stack. This causes the invariant that the region stack is empty
   621   // at the beginning of remark to be false. By ensuring that we do
   622   // not observe heap expansions after marking is complete, then we do
   623   // not have this problem.
   624   if (!concurrent_marking_in_progress() && !force)
   625     return;
   627   MemRegion committed = _g1h->g1_committed();
   628   assert(committed.start() == _heap_start, "start shouldn't change");
   629   HeapWord* new_end = committed.end();
   630   if (new_end > _heap_end) {
   631     // The heap has been expanded.
   633     _heap_end = new_end;
   634   }
   635   // Notice that the heap can also shrink. However, this only happens
   636   // during a Full GC (at least currently) and the entire marking
   637   // phase will bail out and the task will not be restarted. So, let's
   638   // do nothing.
   639 }
   641 void ConcurrentMark::reset() {
   642   // Starting values for these two. This should be called in a STW
   643   // phase. CM will be notified of any future g1_committed expansions
   644   // will be at the end of evacuation pauses, when tasks are
   645   // inactive.
   646   MemRegion committed = _g1h->g1_committed();
   647   _heap_start = committed.start();
   648   _heap_end   = committed.end();
   650   // Separated the asserts so that we know which one fires.
   651   assert(_heap_start != NULL, "heap bounds should look ok");
   652   assert(_heap_end != NULL, "heap bounds should look ok");
   653   assert(_heap_start < _heap_end, "heap bounds should look ok");
   655   // reset all the marking data structures and any necessary flags
   656   clear_marking_state();
   658   if (verbose_low())
   659     gclog_or_tty->print_cr("[global] resetting");
   661   // We do reset all of them, since different phases will use
   662   // different number of active threads. So, it's easiest to have all
   663   // of them ready.
   664   for (int i = 0; i < (int) _max_task_num; ++i) {
   665     _tasks[i]->reset(_nextMarkBitMap);
   666   }
   668   // we need this to make sure that the flag is on during the evac
   669   // pause with initial mark piggy-backed
   670   set_concurrent_marking_in_progress();
   671 }
   673 void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
   674   assert(active_tasks <= _max_task_num, "we should not have more");
   676   _active_tasks = active_tasks;
   677   // Need to update the three data structures below according to the
   678   // number of active threads for this phase.
   679   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   680   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   681   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   683   _concurrent = concurrent;
   684   // We propagate this to all tasks, not just the active ones.
   685   for (int i = 0; i < (int) _max_task_num; ++i)
   686     _tasks[i]->set_concurrent(concurrent);
   688   if (concurrent) {
   689     set_concurrent_marking_in_progress();
   690   } else {
   691     // We currently assume that the concurrent flag has been set to
   692     // false before we start remark. At this point we should also be
   693     // in a STW phase.
   694     assert(!concurrent_marking_in_progress(), "invariant");
   695     assert(_finger == _heap_end, "only way to get here");
   696     update_g1_committed(true);
   697   }
   698 }
   700 void ConcurrentMark::set_non_marking_state() {
   701   // We set the global marking state to some default values when we're
   702   // not doing marking.
   703   clear_marking_state();
   704   _active_tasks = 0;
   705   clear_concurrent_marking_in_progress();
   706 }
   708 ConcurrentMark::~ConcurrentMark() {
   709   for (int i = 0; i < (int) _max_task_num; ++i) {
   710     delete _task_queues->queue(i);
   711     delete _tasks[i];
   712   }
   713   delete _task_queues;
   714   FREE_C_HEAP_ARRAY(CMTask*, _max_task_num);
   715 }
   717 // This closure is used to mark refs into the g1 generation
   718 // from external roots in the CMS bit map.
   719 // Called at the first checkpoint.
   720 //
   722 void ConcurrentMark::clearNextBitmap() {
   723   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   724   G1CollectorPolicy* g1p = g1h->g1_policy();
   726   // Make sure that the concurrent mark thread looks to still be in
   727   // the current cycle.
   728   guarantee(cmThread()->during_cycle(), "invariant");
   730   // We are finishing up the current cycle by clearing the next
   731   // marking bitmap and getting it ready for the next cycle. During
   732   // this time no other cycle can start. So, let's make sure that this
   733   // is the case.
   734   guarantee(!g1h->mark_in_progress(), "invariant");
   736   // clear the mark bitmap (no grey objects to start with).
   737   // We need to do this in chunks and offer to yield in between
   738   // each chunk.
   739   HeapWord* start  = _nextMarkBitMap->startWord();
   740   HeapWord* end    = _nextMarkBitMap->endWord();
   741   HeapWord* cur    = start;
   742   size_t chunkSize = M;
   743   while (cur < end) {
   744     HeapWord* next = cur + chunkSize;
   745     if (next > end)
   746       next = end;
   747     MemRegion mr(cur,next);
   748     _nextMarkBitMap->clearRange(mr);
   749     cur = next;
   750     do_yield_check();
   752     // Repeat the asserts from above. We'll do them as asserts here to
   753     // minimize their overhead on the product. However, we'll have
   754     // them as guarantees at the beginning / end of the bitmap
   755     // clearing to get some checking in the product.
   756     assert(cmThread()->during_cycle(), "invariant");
   757     assert(!g1h->mark_in_progress(), "invariant");
   758   }
   760   // Repeat the asserts from above.
   761   guarantee(cmThread()->during_cycle(), "invariant");
   762   guarantee(!g1h->mark_in_progress(), "invariant");
   763 }
   765 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   766 public:
   767   bool doHeapRegion(HeapRegion* r) {
   768     if (!r->continuesHumongous()) {
   769       r->note_start_of_marking(true);
   770     }
   771     return false;
   772   }
   773 };
   775 void ConcurrentMark::checkpointRootsInitialPre() {
   776   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   777   G1CollectorPolicy* g1p = g1h->g1_policy();
   779   _has_aborted = false;
   781 #ifndef PRODUCT
   782   if (G1PrintReachableAtInitialMark) {
   783     print_reachable("at-cycle-start",
   784                     true /* use_prev_marking */, true /* all */);
   785   }
   786 #endif
   788   // Initialise marking structures. This has to be done in a STW phase.
   789   reset();
   790 }
   792 class CMMarkRootsClosure: public OopsInGenClosure {
   793 private:
   794   ConcurrentMark*  _cm;
   795   G1CollectedHeap* _g1h;
   796   bool             _do_barrier;
   798 public:
   799   CMMarkRootsClosure(ConcurrentMark* cm,
   800                      G1CollectedHeap* g1h,
   801                      bool do_barrier) : _cm(cm), _g1h(g1h),
   802                                         _do_barrier(do_barrier) { }
   804   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   805   virtual void do_oop(      oop* p) { do_oop_work(p); }
   807   template <class T> void do_oop_work(T* p) {
   808     T heap_oop = oopDesc::load_heap_oop(p);
   809     if (!oopDesc::is_null(heap_oop)) {
   810       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   811       assert(obj->is_oop() || obj->mark() == NULL,
   812              "expected an oop, possibly with mark word displaced");
   813       HeapWord* addr = (HeapWord*)obj;
   814       if (_g1h->is_in_g1_reserved(addr)) {
   815         _cm->grayRoot(obj);
   816       }
   817     }
   818     if (_do_barrier) {
   819       assert(!_g1h->is_in_g1_reserved(p),
   820              "Should be called on external roots");
   821       do_barrier(p);
   822     }
   823   }
   824 };
   826 void ConcurrentMark::checkpointRootsInitialPost() {
   827   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   829   // For each region note start of marking.
   830   NoteStartOfMarkHRClosure startcl;
   831   g1h->heap_region_iterate(&startcl);
   833   // Start weak-reference discovery.
   834   ReferenceProcessor* rp = g1h->ref_processor();
   835   rp->verify_no_references_recorded();
   836   rp->enable_discovery(); // enable ("weak") refs discovery
   837   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   839   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   840   // This is the start of  the marking cycle, we're expected all
   841   // threads to have SATB queues with active set to false.
   842   satb_mq_set.set_active_all_threads(true, /* new active value */
   843                                      false /* expected_active */);
   845   // update_g1_committed() will be called at the end of an evac pause
   846   // when marking is on. So, it's also called at the end of the
   847   // initial-mark pause to update the heap end, if the heap expands
   848   // during it. No need to call it here.
   849 }
   851 // Checkpoint the roots into this generation from outside
   852 // this generation. [Note this initial checkpoint need only
   853 // be approximate -- we'll do a catch up phase subsequently.]
   854 void ConcurrentMark::checkpointRootsInitial() {
   855   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   856   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   858   double start = os::elapsedTime();
   860   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
   861   g1p->record_concurrent_mark_init_start();
   862   checkpointRootsInitialPre();
   864   // YSR: when concurrent precleaning is in place, we'll
   865   // need to clear the cached card table here
   867   ResourceMark rm;
   868   HandleMark  hm;
   870   g1h->ensure_parsability(false);
   871   g1h->perm_gen()->save_marks();
   873   CMMarkRootsClosure notOlder(this, g1h, false);
   874   CMMarkRootsClosure older(this, g1h, true);
   876   g1h->set_marking_started();
   877   g1h->rem_set()->prepare_for_younger_refs_iterate(false);
   879   g1h->process_strong_roots(true,    // activate StrongRootsScope
   880                             false,   // fake perm gen collection
   881                             SharedHeap::SO_AllClasses,
   882                             &notOlder, // Regular roots
   883                             NULL,     // do not visit active blobs
   884                             &older    // Perm Gen Roots
   885                             );
   886   checkpointRootsInitialPost();
   888   // Statistics.
   889   double end = os::elapsedTime();
   890   _init_times.add((end - start) * 1000.0);
   892   g1p->record_concurrent_mark_init_end();
   893 }
   895 /*
   896    Notice that in the next two methods, we actually leave the STS
   897    during the barrier sync and join it immediately afterwards. If we
   898    do not do this, this then the following deadlock can occur: one
   899    thread could be in the barrier sync code, waiting for the other
   900    thread to also sync up, whereas another one could be trying to
   901    yield, while also waiting for the other threads to sync up too.
   903    Because the thread that does the sync barrier has left the STS, it
   904    is possible to be suspended for a Full GC or an evacuation pause
   905    could occur. This is actually safe, since the entering the sync
   906    barrier is one of the last things do_marking_step() does, and it
   907    doesn't manipulate any data structures afterwards.
   908 */
   910 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
   911   if (verbose_low())
   912     gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
   914   ConcurrentGCThread::stsLeave();
   915   _first_overflow_barrier_sync.enter();
   916   ConcurrentGCThread::stsJoin();
   917   // at this point everyone should have synced up and not be doing any
   918   // more work
   920   if (verbose_low())
   921     gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
   923   // let task 0 do this
   924   if (task_num == 0) {
   925     // task 0 is responsible for clearing the global data structures
   926     clear_marking_state();
   928     if (PrintGC) {
   929       gclog_or_tty->date_stamp(PrintGCDateStamps);
   930       gclog_or_tty->stamp(PrintGCTimeStamps);
   931       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
   932     }
   933   }
   935   // after this, each task should reset its own data structures then
   936   // then go into the second barrier
   937 }
   939 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
   940   if (verbose_low())
   941     gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
   943   ConcurrentGCThread::stsLeave();
   944   _second_overflow_barrier_sync.enter();
   945   ConcurrentGCThread::stsJoin();
   946   // at this point everything should be re-initialised and ready to go
   948   if (verbose_low())
   949     gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
   950 }
   952 void ConcurrentMark::grayRoot(oop p) {
   953   HeapWord* addr = (HeapWord*) p;
   954   // We can't really check against _heap_start and _heap_end, since it
   955   // is possible during an evacuation pause with piggy-backed
   956   // initial-mark that the committed space is expanded during the
   957   // pause without CM observing this change. So the assertions below
   958   // is a bit conservative; but better than nothing.
   959   assert(_g1h->g1_committed().contains(addr),
   960          "address should be within the heap bounds");
   962   if (!_nextMarkBitMap->isMarked(addr))
   963     _nextMarkBitMap->parMark(addr);
   964 }
   966 void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
   967   // The objects on the region have already been marked "in bulk" by
   968   // the caller. We only need to decide whether to push the region on
   969   // the region stack or not.
   971   if (!concurrent_marking_in_progress() || !_should_gray_objects)
   972     // We're done with marking and waiting for remark. We do not need to
   973     // push anything else on the region stack.
   974     return;
   976   HeapWord* finger = _finger;
   978   if (verbose_low())
   979     gclog_or_tty->print_cr("[global] attempting to push "
   980                            "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
   981                            PTR_FORMAT, mr.start(), mr.end(), finger);
   983   if (mr.start() < finger) {
   984     // The finger is always heap region aligned and it is not possible
   985     // for mr to span heap regions.
   986     assert(mr.end() <= finger, "invariant");
   988     // Separated the asserts so that we know which one fires.
   989     assert(mr.start() <= mr.end(),
   990            "region boundaries should fall within the committed space");
   991     assert(_heap_start <= mr.start(),
   992            "region boundaries should fall within the committed space");
   993     assert(mr.end() <= _heap_end,
   994            "region boundaries should fall within the committed space");
   995     if (verbose_low())
   996       gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
   997                              "below the finger, pushing it",
   998                              mr.start(), mr.end());
  1000     if (!region_stack_push_lock_free(mr)) {
  1001       if (verbose_low())
  1002         gclog_or_tty->print_cr("[global] region stack has overflown.");
  1007 void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
  1008   // The object is not marked by the caller. We need to at least mark
  1009   // it and maybe push in on the stack.
  1011   HeapWord* addr = (HeapWord*)p;
  1012   if (!_nextMarkBitMap->isMarked(addr)) {
  1013     // We definitely need to mark it, irrespective whether we bail out
  1014     // because we're done with marking.
  1015     if (_nextMarkBitMap->parMark(addr)) {
  1016       if (!concurrent_marking_in_progress() || !_should_gray_objects)
  1017         // If we're done with concurrent marking and we're waiting for
  1018         // remark, then we're not pushing anything on the stack.
  1019         return;
  1021       // No OrderAccess:store_load() is needed. It is implicit in the
  1022       // CAS done in parMark(addr) above
  1023       HeapWord* finger = _finger;
  1025       if (addr < finger) {
  1026         if (!mark_stack_push(oop(addr))) {
  1027           if (verbose_low())
  1028             gclog_or_tty->print_cr("[global] global stack overflow "
  1029                                    "during parMark");
  1036 class CMConcurrentMarkingTask: public AbstractGangTask {
  1037 private:
  1038   ConcurrentMark*       _cm;
  1039   ConcurrentMarkThread* _cmt;
  1041 public:
  1042   void work(int worker_i) {
  1043     assert(Thread::current()->is_ConcurrentGC_thread(),
  1044            "this should only be done by a conc GC thread");
  1045     ResourceMark rm;
  1047     double start_vtime = os::elapsedVTime();
  1049     ConcurrentGCThread::stsJoin();
  1051     assert((size_t) worker_i < _cm->active_tasks(), "invariant");
  1052     CMTask* the_task = _cm->task(worker_i);
  1053     the_task->record_start_time();
  1054     if (!_cm->has_aborted()) {
  1055       do {
  1056         double start_vtime_sec = os::elapsedVTime();
  1057         double start_time_sec = os::elapsedTime();
  1058         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1060         the_task->do_marking_step(mark_step_duration_ms,
  1061                                   true /* do_stealing    */,
  1062                                   true /* do_termination */);
  1064         double end_time_sec = os::elapsedTime();
  1065         double end_vtime_sec = os::elapsedVTime();
  1066         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1067         double elapsed_time_sec = end_time_sec - start_time_sec;
  1068         _cm->clear_has_overflown();
  1070         bool ret = _cm->do_yield_check(worker_i);
  1072         jlong sleep_time_ms;
  1073         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1074           sleep_time_ms =
  1075             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1076           ConcurrentGCThread::stsLeave();
  1077           os::sleep(Thread::current(), sleep_time_ms, false);
  1078           ConcurrentGCThread::stsJoin();
  1080         double end_time2_sec = os::elapsedTime();
  1081         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1083 #if 0
  1084           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1085                                  "overhead %1.4lf",
  1086                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1087                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1088           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1089                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1090 #endif
  1091       } while (!_cm->has_aborted() && the_task->has_aborted());
  1093     the_task->record_end_time();
  1094     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1096     ConcurrentGCThread::stsLeave();
  1098     double end_vtime = os::elapsedVTime();
  1099     _cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
  1102   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1103                           ConcurrentMarkThread* cmt) :
  1104       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1106   ~CMConcurrentMarkingTask() { }
  1107 };
  1109 void ConcurrentMark::markFromRoots() {
  1110   // we might be tempted to assert that:
  1111   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1112   //        "inconsistent argument?");
  1113   // However that wouldn't be right, because it's possible that
  1114   // a safepoint is indeed in progress as a younger generation
  1115   // stop-the-world GC happens even as we mark in this generation.
  1117   _restart_for_overflow = false;
  1119   size_t active_workers = MAX2((size_t) 1, parallel_marking_threads());
  1120   set_phase(active_workers, true /* concurrent */);
  1122   CMConcurrentMarkingTask markingTask(this, cmThread());
  1123   if (parallel_marking_threads() > 0)
  1124     _parallel_workers->run_task(&markingTask);
  1125   else
  1126     markingTask.work(0);
  1127   print_stats();
  1130 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1131   // world is stopped at this checkpoint
  1132   assert(SafepointSynchronize::is_at_safepoint(),
  1133          "world should be stopped");
  1134   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1136   // If a full collection has happened, we shouldn't do this.
  1137   if (has_aborted()) {
  1138     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1139     return;
  1142   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1144   if (VerifyDuringGC) {
  1145     HandleMark hm;  // handle scope
  1146     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1147     Universe::heap()->prepare_for_verify();
  1148     Universe::verify(true, false, true);
  1151   G1CollectorPolicy* g1p = g1h->g1_policy();
  1152   g1p->record_concurrent_mark_remark_start();
  1154   double start = os::elapsedTime();
  1156   checkpointRootsFinalWork();
  1158   double mark_work_end = os::elapsedTime();
  1160   weakRefsWork(clear_all_soft_refs);
  1162   if (has_overflown()) {
  1163     // Oops.  We overflowed.  Restart concurrent marking.
  1164     _restart_for_overflow = true;
  1165     // Clear the flag. We do not need it any more.
  1166     clear_has_overflown();
  1167     if (G1TraceMarkStackOverflow)
  1168       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1169   } else {
  1170     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1171     // We're done with marking.
  1172     // This is the end of  the marking cycle, we're expected all
  1173     // threads to have SATB queues with active set to true.
  1174     satb_mq_set.set_active_all_threads(false, /* new active value */
  1175                                        true /* expected_active */);
  1177     if (VerifyDuringGC) {
  1178       HandleMark hm;  // handle scope
  1179       gclog_or_tty->print(" VerifyDuringGC:(after)");
  1180       Universe::heap()->prepare_for_verify();
  1181       Universe::heap()->verify(/* allow_dirty */      true,
  1182                                /* silent */           false,
  1183                                /* use_prev_marking */ false);
  1185     assert(!restart_for_overflow(), "sanity");
  1188   // Reset the marking state if marking completed
  1189   if (!restart_for_overflow()) {
  1190     set_non_marking_state();
  1193 #if VERIFY_OBJS_PROCESSED
  1194   _scan_obj_cl.objs_processed = 0;
  1195   ThreadLocalObjQueue::objs_enqueued = 0;
  1196 #endif
  1198   // Statistics
  1199   double now = os::elapsedTime();
  1200   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1201   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1202   _remark_times.add((now - start) * 1000.0);
  1204   g1p->record_concurrent_mark_remark_end();
  1208 #define CARD_BM_TEST_MODE 0
  1210 class CalcLiveObjectsClosure: public HeapRegionClosure {
  1212   CMBitMapRO* _bm;
  1213   ConcurrentMark* _cm;
  1214   bool _changed;
  1215   bool _yield;
  1216   size_t _words_done;
  1217   size_t _tot_live;
  1218   size_t _tot_used;
  1219   size_t _regions_done;
  1220   double _start_vtime_sec;
  1222   BitMap* _region_bm;
  1223   BitMap* _card_bm;
  1224   intptr_t _bottom_card_num;
  1225   bool _final;
  1227   void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
  1228     for (intptr_t i = start_card_num; i <= last_card_num; i++) {
  1229 #if CARD_BM_TEST_MODE
  1230       guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
  1231 #else
  1232       _card_bm->par_at_put(i - _bottom_card_num, 1);
  1233 #endif
  1237 public:
  1238   CalcLiveObjectsClosure(bool final,
  1239                          CMBitMapRO *bm, ConcurrentMark *cm,
  1240                          BitMap* region_bm, BitMap* card_bm) :
  1241     _bm(bm), _cm(cm), _changed(false), _yield(true),
  1242     _words_done(0), _tot_live(0), _tot_used(0),
  1243     _region_bm(region_bm), _card_bm(card_bm),_final(final),
  1244     _regions_done(0), _start_vtime_sec(0.0)
  1246     _bottom_card_num =
  1247       intptr_t(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >>
  1248                CardTableModRefBS::card_shift);
  1251   // It takes a region that's not empty (i.e., it has at least one
  1252   // live object in it and sets its corresponding bit on the region
  1253   // bitmap to 1. If the region is "starts humongous" it will also set
  1254   // to 1 the bits on the region bitmap that correspond to its
  1255   // associated "continues humongous" regions.
  1256   void set_bit_for_region(HeapRegion* hr) {
  1257     assert(!hr->continuesHumongous(), "should have filtered those out");
  1259     size_t index = hr->hrs_index();
  1260     if (!hr->startsHumongous()) {
  1261       // Normal (non-humongous) case: just set the bit.
  1262       _region_bm->par_at_put((BitMap::idx_t) index, true);
  1263     } else {
  1264       // Starts humongous case: calculate how many regions are part of
  1265       // this humongous region and then set the bit range. It might
  1266       // have been a bit more efficient to look at the object that
  1267       // spans these humongous regions to calculate their number from
  1268       // the object's size. However, it's a good idea to calculate
  1269       // this based on the metadata itself, and not the region
  1270       // contents, so that this code is not aware of what goes into
  1271       // the humongous regions (in case this changes in the future).
  1272       G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1273       size_t end_index = index + 1;
  1274       while (end_index < g1h->n_regions()) {
  1275         HeapRegion* chr = g1h->region_at(end_index);
  1276         if (!chr->continuesHumongous()) {
  1277           break;
  1279         end_index += 1;
  1281       _region_bm->par_at_put_range((BitMap::idx_t) index,
  1282                                    (BitMap::idx_t) end_index, true);
  1286   bool doHeapRegion(HeapRegion* hr) {
  1287     if (!_final && _regions_done == 0)
  1288       _start_vtime_sec = os::elapsedVTime();
  1290     if (hr->continuesHumongous()) {
  1291       // We will ignore these here and process them when their
  1292       // associated "starts humongous" region is processed (see
  1293       // set_bit_for_heap_region()). Note that we cannot rely on their
  1294       // associated "starts humongous" region to have their bit set to
  1295       // 1 since, due to the region chunking in the parallel region
  1296       // iteration, a "continues humongous" region might be visited
  1297       // before its associated "starts humongous".
  1298       return false;
  1301     HeapWord* nextTop = hr->next_top_at_mark_start();
  1302     HeapWord* start   = hr->top_at_conc_mark_count();
  1303     assert(hr->bottom() <= start && start <= hr->end() &&
  1304            hr->bottom() <= nextTop && nextTop <= hr->end() &&
  1305            start <= nextTop,
  1306            "Preconditions.");
  1307     // Otherwise, record the number of word's we'll examine.
  1308     size_t words_done = (nextTop - start);
  1309     // Find the first marked object at or after "start".
  1310     start = _bm->getNextMarkedWordAddress(start, nextTop);
  1311     size_t marked_bytes = 0;
  1313     // Below, the term "card num" means the result of shifting an address
  1314     // by the card shift -- address 0 corresponds to card number 0.  One
  1315     // must subtract the card num of the bottom of the heap to obtain a
  1316     // card table index.
  1317     // The first card num of the sequence of live cards currently being
  1318     // constructed.  -1 ==> no sequence.
  1319     intptr_t start_card_num = -1;
  1320     // The last card num of the sequence of live cards currently being
  1321     // constructed.  -1 ==> no sequence.
  1322     intptr_t last_card_num = -1;
  1324     while (start < nextTop) {
  1325       if (_yield && _cm->do_yield_check()) {
  1326         // We yielded.  It might be for a full collection, in which case
  1327         // all bets are off; terminate the traversal.
  1328         if (_cm->has_aborted()) {
  1329           _changed = false;
  1330           return true;
  1331         } else {
  1332           // Otherwise, it might be a collection pause, and the region
  1333           // we're looking at might be in the collection set.  We'll
  1334           // abandon this region.
  1335           return false;
  1338       oop obj = oop(start);
  1339       int obj_sz = obj->size();
  1340       // The card num of the start of the current object.
  1341       intptr_t obj_card_num =
  1342         intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);
  1344       HeapWord* obj_last = start + obj_sz - 1;
  1345       intptr_t obj_last_card_num =
  1346         intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);
  1348       if (obj_card_num != last_card_num) {
  1349         if (start_card_num == -1) {
  1350           assert(last_card_num == -1, "Both or neither.");
  1351           start_card_num = obj_card_num;
  1352         } else {
  1353           assert(last_card_num != -1, "Both or neither.");
  1354           assert(obj_card_num >= last_card_num, "Inv");
  1355           if ((obj_card_num - last_card_num) > 1) {
  1356             // Mark the last run, and start a new one.
  1357             mark_card_num_range(start_card_num, last_card_num);
  1358             start_card_num = obj_card_num;
  1361 #if CARD_BM_TEST_MODE
  1362         /*
  1363         gclog_or_tty->print_cr("Setting bits from %d/%d.",
  1364                                obj_card_num - _bottom_card_num,
  1365                                obj_last_card_num - _bottom_card_num);
  1366         */
  1367         for (intptr_t j = obj_card_num; j <= obj_last_card_num; j++) {
  1368           _card_bm->par_at_put(j - _bottom_card_num, 1);
  1370 #endif
  1372       // In any case, we set the last card num.
  1373       last_card_num = obj_last_card_num;
  1375       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1376       // Find the next marked object after this one.
  1377       start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
  1378       _changed = true;
  1380     // Handle the last range, if any.
  1381     if (start_card_num != -1)
  1382       mark_card_num_range(start_card_num, last_card_num);
  1383     if (_final) {
  1384       // Mark the allocated-since-marking portion...
  1385       HeapWord* tp = hr->top();
  1386       if (nextTop < tp) {
  1387         start_card_num =
  1388           intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
  1389         last_card_num =
  1390           intptr_t(uintptr_t(tp) >> CardTableModRefBS::card_shift);
  1391         mark_card_num_range(start_card_num, last_card_num);
  1392         // This definitely means the region has live objects.
  1393         set_bit_for_region(hr);
  1397     hr->add_to_marked_bytes(marked_bytes);
  1398     // Update the live region bitmap.
  1399     if (marked_bytes > 0) {
  1400       set_bit_for_region(hr);
  1402     hr->set_top_at_conc_mark_count(nextTop);
  1403     _tot_live += hr->next_live_bytes();
  1404     _tot_used += hr->used();
  1405     _words_done = words_done;
  1407     if (!_final) {
  1408       ++_regions_done;
  1409       if (_regions_done % 10 == 0) {
  1410         double end_vtime_sec = os::elapsedVTime();
  1411         double elapsed_vtime_sec = end_vtime_sec - _start_vtime_sec;
  1412         if (elapsed_vtime_sec > (10.0 / 1000.0)) {
  1413           jlong sleep_time_ms =
  1414             (jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
  1415           os::sleep(Thread::current(), sleep_time_ms, false);
  1416           _start_vtime_sec = end_vtime_sec;
  1421     return false;
  1424   bool changed() { return _changed;  }
  1425   void reset()   { _changed = false; _words_done = 0; }
  1426   void no_yield() { _yield = false; }
  1427   size_t words_done() { return _words_done; }
  1428   size_t tot_live() { return _tot_live; }
  1429   size_t tot_used() { return _tot_used; }
  1430 };
  1433 void ConcurrentMark::calcDesiredRegions() {
  1434   _region_bm.clear();
  1435   _card_bm.clear();
  1436   CalcLiveObjectsClosure calccl(false /*final*/,
  1437                                 nextMarkBitMap(), this,
  1438                                 &_region_bm, &_card_bm);
  1439   G1CollectedHeap *g1h = G1CollectedHeap::heap();
  1440   g1h->heap_region_iterate(&calccl);
  1442   do {
  1443     calccl.reset();
  1444     g1h->heap_region_iterate(&calccl);
  1445   } while (calccl.changed());
  1448 class G1ParFinalCountTask: public AbstractGangTask {
  1449 protected:
  1450   G1CollectedHeap* _g1h;
  1451   CMBitMap* _bm;
  1452   size_t _n_workers;
  1453   size_t *_live_bytes;
  1454   size_t *_used_bytes;
  1455   BitMap* _region_bm;
  1456   BitMap* _card_bm;
  1457 public:
  1458   G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
  1459                       BitMap* region_bm, BitMap* card_bm) :
  1460     AbstractGangTask("G1 final counting"), _g1h(g1h),
  1461     _bm(bm), _region_bm(region_bm), _card_bm(card_bm)
  1463     if (ParallelGCThreads > 0)
  1464       _n_workers = _g1h->workers()->total_workers();
  1465     else
  1466       _n_workers = 1;
  1467     _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  1468     _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  1471   ~G1ParFinalCountTask() {
  1472     FREE_C_HEAP_ARRAY(size_t, _live_bytes);
  1473     FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  1476   void work(int i) {
  1477     CalcLiveObjectsClosure calccl(true /*final*/,
  1478                                   _bm, _g1h->concurrent_mark(),
  1479                                   _region_bm, _card_bm);
  1480     calccl.no_yield();
  1481     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1482       _g1h->heap_region_par_iterate_chunked(&calccl, i,
  1483                                             HeapRegion::FinalCountClaimValue);
  1484     } else {
  1485       _g1h->heap_region_iterate(&calccl);
  1487     assert(calccl.complete(), "Shouldn't have yielded!");
  1489     assert((size_t) i < _n_workers, "invariant");
  1490     _live_bytes[i] = calccl.tot_live();
  1491     _used_bytes[i] = calccl.tot_used();
  1493   size_t live_bytes()  {
  1494     size_t live_bytes = 0;
  1495     for (size_t i = 0; i < _n_workers; ++i)
  1496       live_bytes += _live_bytes[i];
  1497     return live_bytes;
  1499   size_t used_bytes()  {
  1500     size_t used_bytes = 0;
  1501     for (size_t i = 0; i < _n_workers; ++i)
  1502       used_bytes += _used_bytes[i];
  1503     return used_bytes;
  1505 };
  1507 class G1ParNoteEndTask;
  1509 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1510   G1CollectedHeap* _g1;
  1511   int _worker_num;
  1512   size_t _max_live_bytes;
  1513   size_t _regions_claimed;
  1514   size_t _freed_bytes;
  1515   FreeRegionList _local_cleanup_list;
  1516   HumongousRegionSet _humongous_proxy_set;
  1517   double _claimed_region_time;
  1518   double _max_region_time;
  1520 public:
  1521   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1522                              int worker_num);
  1523   size_t freed_bytes() { return _freed_bytes; }
  1524   FreeRegionList* local_cleanup_list() {
  1525     return &_local_cleanup_list;
  1527   HumongousRegionSet* humongous_proxy_set() {
  1528     return &_humongous_proxy_set;
  1531   bool doHeapRegion(HeapRegion *r);
  1533   size_t max_live_bytes() { return _max_live_bytes; }
  1534   size_t regions_claimed() { return _regions_claimed; }
  1535   double claimed_region_time_sec() { return _claimed_region_time; }
  1536   double max_region_time_sec() { return _max_region_time; }
  1537 };
  1539 class G1ParNoteEndTask: public AbstractGangTask {
  1540   friend class G1NoteEndOfConcMarkClosure;
  1542 protected:
  1543   G1CollectedHeap* _g1h;
  1544   size_t _max_live_bytes;
  1545   size_t _freed_bytes;
  1546   FreeRegionList* _cleanup_list;
  1548 public:
  1549   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1550                    FreeRegionList* cleanup_list) :
  1551     AbstractGangTask("G1 note end"), _g1h(g1h),
  1552     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1554   void work(int i) {
  1555     double start = os::elapsedTime();
  1556     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, i);
  1557     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1558       _g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
  1559                                             HeapRegion::NoteEndClaimValue);
  1560     } else {
  1561       _g1h->heap_region_iterate(&g1_note_end);
  1563     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1565     // Now update the lists
  1566     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
  1567                                             NULL /* free_list */,
  1568                                             g1_note_end.humongous_proxy_set(),
  1569                                             true /* par */);
  1571       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1572       _max_live_bytes += g1_note_end.max_live_bytes();
  1573       _freed_bytes += g1_note_end.freed_bytes();
  1575       _cleanup_list->add_as_tail(g1_note_end.local_cleanup_list());
  1576       assert(g1_note_end.local_cleanup_list()->is_empty(), "post-condition");
  1578     double end = os::elapsedTime();
  1579     if (G1PrintParCleanupStats) {
  1580       gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
  1581                           "claimed %d regions (tot = %8.3f ms, max = %8.3f ms).\n",
  1582                           i, start, end, (end-start)*1000.0,
  1583                           g1_note_end.regions_claimed(),
  1584                           g1_note_end.claimed_region_time_sec()*1000.0,
  1585                           g1_note_end.max_region_time_sec()*1000.0);
  1588   size_t max_live_bytes() { return _max_live_bytes; }
  1589   size_t freed_bytes() { return _freed_bytes; }
  1590 };
  1592 class G1ParScrubRemSetTask: public AbstractGangTask {
  1593 protected:
  1594   G1RemSet* _g1rs;
  1595   BitMap* _region_bm;
  1596   BitMap* _card_bm;
  1597 public:
  1598   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1599                        BitMap* region_bm, BitMap* card_bm) :
  1600     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1601     _region_bm(region_bm), _card_bm(card_bm)
  1602   {}
  1604   void work(int i) {
  1605     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1606       _g1rs->scrub_par(_region_bm, _card_bm, i,
  1607                        HeapRegion::ScrubRemSetClaimValue);
  1608     } else {
  1609       _g1rs->scrub(_region_bm, _card_bm);
  1613 };
  1615 G1NoteEndOfConcMarkClosure::
  1616 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1617                            int worker_num)
  1618   : _g1(g1), _worker_num(worker_num),
  1619     _max_live_bytes(0), _regions_claimed(0),
  1620     _freed_bytes(0),
  1621     _claimed_region_time(0.0), _max_region_time(0.0),
  1622     _local_cleanup_list("Local Cleanup List"),
  1623     _humongous_proxy_set("Local Cleanup Humongous Proxy Set") { }
  1625 bool G1NoteEndOfConcMarkClosure::doHeapRegion(HeapRegion *hr) {
  1626   // We use a claim value of zero here because all regions
  1627   // were claimed with value 1 in the FinalCount task.
  1628   hr->reset_gc_time_stamp();
  1629   if (!hr->continuesHumongous()) {
  1630     double start = os::elapsedTime();
  1631     _regions_claimed++;
  1632     hr->note_end_of_marking();
  1633     _max_live_bytes += hr->max_live_bytes();
  1634     _g1->free_region_if_totally_empty(hr,
  1635                                       &_freed_bytes,
  1636                                       &_local_cleanup_list,
  1637                                       &_humongous_proxy_set,
  1638                                       true /* par */);
  1639     double region_time = (os::elapsedTime() - start);
  1640     _claimed_region_time += region_time;
  1641     if (region_time > _max_region_time) _max_region_time = region_time;
  1643   return false;
  1646 void ConcurrentMark::cleanup() {
  1647   // world is stopped at this checkpoint
  1648   assert(SafepointSynchronize::is_at_safepoint(),
  1649          "world should be stopped");
  1650   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1652   // If a full collection has happened, we shouldn't do this.
  1653   if (has_aborted()) {
  1654     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1655     return;
  1658   g1h->verify_region_sets_optional();
  1660   if (VerifyDuringGC) {
  1661     HandleMark hm;  // handle scope
  1662     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1663     Universe::heap()->prepare_for_verify();
  1664     Universe::verify(/* allow dirty  */ true,
  1665                      /* silent       */ false,
  1666                      /* prev marking */ true);
  1669   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  1670   g1p->record_concurrent_mark_cleanup_start();
  1672   double start = os::elapsedTime();
  1674   // Do counting once more with the world stopped for good measure.
  1675   G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
  1676                                         &_region_bm, &_card_bm);
  1677   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1678     assert(g1h->check_heap_region_claim_values(
  1679                                                HeapRegion::InitialClaimValue),
  1680            "sanity check");
  1682     int n_workers = g1h->workers()->total_workers();
  1683     g1h->set_par_threads(n_workers);
  1684     g1h->workers()->run_task(&g1_par_count_task);
  1685     g1h->set_par_threads(0);
  1687     assert(g1h->check_heap_region_claim_values(
  1688                                              HeapRegion::FinalCountClaimValue),
  1689            "sanity check");
  1690   } else {
  1691     g1_par_count_task.work(0);
  1694   size_t known_garbage_bytes =
  1695     g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
  1696 #if 0
  1697   gclog_or_tty->print_cr("used %1.2lf, live %1.2lf, garbage %1.2lf",
  1698                          (double) g1_par_count_task.used_bytes() / (double) (1024 * 1024),
  1699                          (double) g1_par_count_task.live_bytes() / (double) (1024 * 1024),
  1700                          (double) known_garbage_bytes / (double) (1024 * 1024));
  1701 #endif // 0
  1702   g1p->set_known_garbage_bytes(known_garbage_bytes);
  1704   size_t start_used_bytes = g1h->used();
  1705   _at_least_one_mark_complete = true;
  1706   g1h->set_marking_complete();
  1708   double count_end = os::elapsedTime();
  1709   double this_final_counting_time = (count_end - start);
  1710   if (G1PrintParCleanupStats) {
  1711     gclog_or_tty->print_cr("Cleanup:");
  1712     gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
  1713                            this_final_counting_time*1000.0);
  1715   _total_counting_time += this_final_counting_time;
  1717   // Install newly created mark bitMap as "prev".
  1718   swapMarkBitMaps();
  1720   g1h->reset_gc_time_stamp();
  1722   // Note end of marking in all heap regions.
  1723   double note_end_start = os::elapsedTime();
  1724   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  1725   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1726     int n_workers = g1h->workers()->total_workers();
  1727     g1h->set_par_threads(n_workers);
  1728     g1h->workers()->run_task(&g1_par_note_end_task);
  1729     g1h->set_par_threads(0);
  1731     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  1732            "sanity check");
  1733   } else {
  1734     g1_par_note_end_task.work(0);
  1737   if (!cleanup_list_is_empty()) {
  1738     // The cleanup list is not empty, so we'll have to process it
  1739     // concurrently. Notify anyone else that might be wanting free
  1740     // regions that there will be more free regions coming soon.
  1741     g1h->set_free_regions_coming();
  1743   double note_end_end = os::elapsedTime();
  1744   if (G1PrintParCleanupStats) {
  1745     gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
  1746                            (note_end_end - note_end_start)*1000.0);
  1750   // call below, since it affects the metric by which we sort the heap
  1751   // regions.
  1752   if (G1ScrubRemSets) {
  1753     double rs_scrub_start = os::elapsedTime();
  1754     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  1755     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1756       int n_workers = g1h->workers()->total_workers();
  1757       g1h->set_par_threads(n_workers);
  1758       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  1759       g1h->set_par_threads(0);
  1761       assert(g1h->check_heap_region_claim_values(
  1762                                             HeapRegion::ScrubRemSetClaimValue),
  1763              "sanity check");
  1764     } else {
  1765       g1_par_scrub_rs_task.work(0);
  1768     double rs_scrub_end = os::elapsedTime();
  1769     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  1770     _total_rs_scrub_time += this_rs_scrub_time;
  1773   // this will also free any regions totally full of garbage objects,
  1774   // and sort the regions.
  1775   g1h->g1_policy()->record_concurrent_mark_cleanup_end(
  1776                         g1_par_note_end_task.freed_bytes(),
  1777                         g1_par_note_end_task.max_live_bytes());
  1779   // Statistics.
  1780   double end = os::elapsedTime();
  1781   _cleanup_times.add((end - start) * 1000.0);
  1783   // G1CollectedHeap::heap()->print();
  1784   // gclog_or_tty->print_cr("HEAP GC TIME STAMP : %d",
  1785   // G1CollectedHeap::heap()->get_gc_time_stamp());
  1787   if (PrintGC || PrintGCDetails) {
  1788     g1h->print_size_transition(gclog_or_tty,
  1789                                start_used_bytes,
  1790                                g1h->used(),
  1791                                g1h->capacity());
  1794   size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  1795   g1p->decrease_known_garbage_bytes(cleaned_up_bytes);
  1797   // We need to make this be a "collection" so any collection pause that
  1798   // races with it goes around and waits for completeCleanup to finish.
  1799   g1h->increment_total_collections();
  1801   if (VerifyDuringGC) {
  1802     HandleMark hm;  // handle scope
  1803     gclog_or_tty->print(" VerifyDuringGC:(after)");
  1804     Universe::heap()->prepare_for_verify();
  1805     Universe::verify(/* allow dirty  */ true,
  1806                      /* silent       */ false,
  1807                      /* prev marking */ true);
  1810   g1h->verify_region_sets_optional();
  1813 void ConcurrentMark::completeCleanup() {
  1814   if (has_aborted()) return;
  1816   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1818   _cleanup_list.verify_optional();
  1819   FreeRegionList local_free_list("Local Cleanup List");
  1821   if (G1ConcRegionFreeingVerbose) {
  1822     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  1823                            "cleanup list has "SIZE_FORMAT" entries",
  1824                            _cleanup_list.length());
  1827   // Noone else should be accessing the _cleanup_list at this point,
  1828   // so it's not necessary to take any locks
  1829   while (!_cleanup_list.is_empty()) {
  1830     HeapRegion* hr = _cleanup_list.remove_head();
  1831     assert(hr != NULL, "the list was not empty");
  1832     hr->rem_set()->clear();
  1833     local_free_list.add_as_tail(hr);
  1835     // Instead of adding one region at a time to the secondary_free_list,
  1836     // we accumulate them in the local list and move them a few at a
  1837     // time. This also cuts down on the number of notify_all() calls
  1838     // we do during this process. We'll also append the local list when
  1839     // _cleanup_list is empty (which means we just removed the last
  1840     // region from the _cleanup_list).
  1841     if ((local_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  1842         _cleanup_list.is_empty()) {
  1843       if (G1ConcRegionFreeingVerbose) {
  1844         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  1845                                "appending "SIZE_FORMAT" entries to the "
  1846                                "secondary_free_list, clean list still has "
  1847                                SIZE_FORMAT" entries",
  1848                                local_free_list.length(),
  1849                                _cleanup_list.length());
  1853         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1854         g1h->secondary_free_list_add_as_tail(&local_free_list);
  1855         SecondaryFreeList_lock->notify_all();
  1858       if (G1StressConcRegionFreeing) {
  1859         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  1860           os::sleep(Thread::current(), (jlong) 1, false);
  1865   assert(local_free_list.is_empty(), "post-condition");
  1868 // Support closures for reference procssing in G1
  1870 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  1871   HeapWord* addr = (HeapWord*)obj;
  1872   return addr != NULL &&
  1873          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  1876 class G1CMKeepAliveClosure: public OopClosure {
  1877   G1CollectedHeap* _g1;
  1878   ConcurrentMark*  _cm;
  1879   CMBitMap*        _bitMap;
  1880  public:
  1881   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
  1882                        CMBitMap* bitMap) :
  1883     _g1(g1), _cm(cm),
  1884     _bitMap(bitMap) {}
  1886   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  1887   virtual void do_oop(      oop* p) { do_oop_work(p); }
  1889   template <class T> void do_oop_work(T* p) {
  1890     oop obj = oopDesc::load_decode_heap_oop(p);
  1891     HeapWord* addr = (HeapWord*)obj;
  1893     if (_cm->verbose_high())
  1894       gclog_or_tty->print_cr("\t[0] we're looking at location "
  1895                                "*"PTR_FORMAT" = "PTR_FORMAT,
  1896                                p, (void*) obj);
  1898     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
  1899       _bitMap->mark(addr);
  1900       _cm->mark_stack_push(obj);
  1903 };
  1905 class G1CMDrainMarkingStackClosure: public VoidClosure {
  1906   CMMarkStack*                  _markStack;
  1907   CMBitMap*                     _bitMap;
  1908   G1CMKeepAliveClosure*         _oopClosure;
  1909  public:
  1910   G1CMDrainMarkingStackClosure(CMBitMap* bitMap, CMMarkStack* markStack,
  1911                                G1CMKeepAliveClosure* oopClosure) :
  1912     _bitMap(bitMap),
  1913     _markStack(markStack),
  1914     _oopClosure(oopClosure)
  1915   {}
  1917   void do_void() {
  1918     _markStack->drain((OopClosure*)_oopClosure, _bitMap, false);
  1920 };
  1922 // 'Keep Alive' closure used by parallel reference processing.
  1923 // An instance of this closure is used in the parallel reference processing
  1924 // code rather than an instance of G1CMKeepAliveClosure. We could have used
  1925 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
  1926 // placed on to discovered ref lists once so we can mark and push with no
  1927 // need to check whether the object has already been marked. Using the
  1928 // G1CMKeepAliveClosure would mean, however, having all the worker threads
  1929 // operating on the global mark stack. This means that an individual
  1930 // worker would be doing lock-free pushes while it processes its own
  1931 // discovered ref list followed by drain call. If the discovered ref lists
  1932 // are unbalanced then this could cause interference with the other
  1933 // workers. Using a CMTask (and its embedded local data structures)
  1934 // avoids that potential interference.
  1935 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  1936   ConcurrentMark*  _cm;
  1937   CMTask*          _task;
  1938   CMBitMap*        _bitMap;
  1939   int              _ref_counter_limit;
  1940   int              _ref_counter;
  1941  public:
  1942   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm,
  1943                                   CMTask* task,
  1944                                   CMBitMap* bitMap) :
  1945     _cm(cm), _task(task), _bitMap(bitMap),
  1946     _ref_counter_limit(G1RefProcDrainInterval)
  1948     assert(_ref_counter_limit > 0, "sanity");
  1949     _ref_counter = _ref_counter_limit;
  1952   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  1953   virtual void do_oop(      oop* p) { do_oop_work(p); }
  1955   template <class T> void do_oop_work(T* p) {
  1956     if (!_cm->has_overflown()) {
  1957       oop obj = oopDesc::load_decode_heap_oop(p);
  1958       if (_cm->verbose_high())
  1959         gclog_or_tty->print_cr("\t[%d] we're looking at location "
  1960                                "*"PTR_FORMAT" = "PTR_FORMAT,
  1961                                _task->task_id(), p, (void*) obj);
  1963       _task->deal_with_reference(obj);
  1964       _ref_counter--;
  1966       if (_ref_counter == 0) {
  1967         // We have dealt with _ref_counter_limit references, pushing them and objects
  1968         // reachable from them on to the local stack (and possibly the global stack).
  1969         // Call do_marking_step() to process these entries. We call the routine in a
  1970         // loop, which we'll exit if there's nothing more to do (i.e. we're done
  1971         // with the entries that we've pushed as a result of the deal_with_reference
  1972         // calls above) or we overflow.
  1973         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  1974         // while there may still be some work to do. (See the comment at the
  1975         // beginning of CMTask::do_marking_step() for those conditions - one of which
  1976         // is reaching the specified time target.) It is only when
  1977         // CMTask::do_marking_step() returns without setting the has_aborted() flag
  1978         // that the marking has completed.
  1979         do {
  1980           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1981           _task->do_marking_step(mark_step_duration_ms,
  1982                                  false /* do_stealing    */,
  1983                                  false /* do_termination */);
  1984         } while (_task->has_aborted() && !_cm->has_overflown());
  1985         _ref_counter = _ref_counter_limit;
  1987     } else {
  1988        if (_cm->verbose_high())
  1989          gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
  1992 };
  1994 class G1CMParDrainMarkingStackClosure: public VoidClosure {
  1995   ConcurrentMark* _cm;
  1996   CMTask* _task;
  1997  public:
  1998   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
  1999     _cm(cm), _task(task)
  2000   {}
  2002   void do_void() {
  2003     do {
  2004       if (_cm->verbose_high())
  2005         gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step", _task->task_id());
  2007       // We call CMTask::do_marking_step() to completely drain the local and
  2008       // global marking stacks. The routine is called in a loop, which we'll
  2009       // exit if there's nothing more to do (i.e. we'completely drained the
  2010       // entries that were pushed as a result of applying the
  2011       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
  2012       // lists above) or we overflow the global marking stack.
  2013       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  2014       // while there may still be some work to do. (See the comment at the
  2015       // beginning of CMTask::do_marking_step() for those conditions - one of which
  2016       // is reaching the specified time target.) It is only when
  2017       // CMTask::do_marking_step() returns without setting the has_aborted() flag
  2018       // that the marking has completed.
  2020       _task->do_marking_step(1000000000.0 /* something very large */,
  2021                              true /* do_stealing    */,
  2022                              true /* do_termination */);
  2023     } while (_task->has_aborted() && !_cm->has_overflown());
  2025 };
  2027 // Implementation of AbstractRefProcTaskExecutor for G1
  2028 class G1RefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2029 private:
  2030   G1CollectedHeap* _g1h;
  2031   ConcurrentMark*  _cm;
  2032   CMBitMap*        _bitmap;
  2033   WorkGang*        _workers;
  2034   int              _active_workers;
  2036 public:
  2037   G1RefProcTaskExecutor(G1CollectedHeap* g1h,
  2038                         ConcurrentMark* cm,
  2039                         CMBitMap* bitmap,
  2040                         WorkGang* workers,
  2041                         int n_workers) :
  2042     _g1h(g1h), _cm(cm), _bitmap(bitmap),
  2043     _workers(workers), _active_workers(n_workers)
  2044   { }
  2046   // Executes the given task using concurrent marking worker threads.
  2047   virtual void execute(ProcessTask& task);
  2048   virtual void execute(EnqueueTask& task);
  2049 };
  2051 class G1RefProcTaskProxy: public AbstractGangTask {
  2052   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2053   ProcessTask&     _proc_task;
  2054   G1CollectedHeap* _g1h;
  2055   ConcurrentMark*  _cm;
  2056   CMBitMap*        _bitmap;
  2058 public:
  2059   G1RefProcTaskProxy(ProcessTask& proc_task,
  2060                      G1CollectedHeap* g1h,
  2061                      ConcurrentMark* cm,
  2062                      CMBitMap* bitmap) :
  2063     AbstractGangTask("Process reference objects in parallel"),
  2064     _proc_task(proc_task), _g1h(g1h), _cm(cm), _bitmap(bitmap)
  2065   {}
  2067   virtual void work(int i) {
  2068     CMTask* marking_task = _cm->task(i);
  2069     G1CMIsAliveClosure g1_is_alive(_g1h);
  2070     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task, _bitmap);
  2071     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
  2073     _proc_task.work(i, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2075 };
  2077 void G1RefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2078   assert(_workers != NULL, "Need parallel worker threads.");
  2080   G1RefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm, _bitmap);
  2082   // We need to reset the phase for each task execution so that
  2083   // the termination protocol of CMTask::do_marking_step works.
  2084   _cm->set_phase(_active_workers, false /* concurrent */);
  2085   _g1h->set_par_threads(_active_workers);
  2086   _workers->run_task(&proc_task_proxy);
  2087   _g1h->set_par_threads(0);
  2090 class G1RefEnqueueTaskProxy: public AbstractGangTask {
  2091   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2092   EnqueueTask& _enq_task;
  2094 public:
  2095   G1RefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2096     AbstractGangTask("Enqueue reference objects in parallel"),
  2097     _enq_task(enq_task)
  2098   { }
  2100   virtual void work(int i) {
  2101     _enq_task.work(i);
  2103 };
  2105 void G1RefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2106   assert(_workers != NULL, "Need parallel worker threads.");
  2108   G1RefEnqueueTaskProxy enq_task_proxy(enq_task);
  2110   _g1h->set_par_threads(_active_workers);
  2111   _workers->run_task(&enq_task_proxy);
  2112   _g1h->set_par_threads(0);
  2115 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2116   ResourceMark rm;
  2117   HandleMark   hm;
  2118   G1CollectedHeap* g1h   = G1CollectedHeap::heap();
  2119   ReferenceProcessor* rp = g1h->ref_processor();
  2121   // See the comment in G1CollectedHeap::ref_processing_init()
  2122   // about how reference processing currently works in G1.
  2124   // Process weak references.
  2125   rp->setup_policy(clear_all_soft_refs);
  2126   assert(_markStack.isEmpty(), "mark stack should be empty");
  2128   G1CMIsAliveClosure   g1_is_alive(g1h);
  2129   G1CMKeepAliveClosure g1_keep_alive(g1h, this, nextMarkBitMap());
  2130   G1CMDrainMarkingStackClosure
  2131     g1_drain_mark_stack(nextMarkBitMap(), &_markStack, &g1_keep_alive);
  2133   // We use the work gang from the G1CollectedHeap and we utilize all
  2134   // the worker threads.
  2135   int active_workers = MAX2(MIN2(g1h->workers()->total_workers(), (int)_max_task_num), 1);
  2137   G1RefProcTaskExecutor par_task_executor(g1h, this, nextMarkBitMap(),
  2138                                           g1h->workers(), active_workers);
  2140   if (rp->processing_is_mt()) {
  2141     // Set the degree of MT here.  If the discovery is done MT, there
  2142     // may have been a different number of threads doing the discovery
  2143     // and a different number of discovered lists may have Ref objects.
  2144     // That is OK as long as the Reference lists are balanced (see
  2145     // balance_all_queues() and balance_queues()).
  2146     rp->set_mt_degree(active_workers);
  2148     rp->process_discovered_references(&g1_is_alive,
  2149                                       &g1_keep_alive,
  2150                                       &g1_drain_mark_stack,
  2151                                       &par_task_executor);
  2153     // The work routines of the parallel keep_alive and drain_marking_stack
  2154     // will set the has_overflown flag if we overflow the global marking
  2155     // stack.
  2156   } else {
  2157     rp->process_discovered_references(&g1_is_alive,
  2158                                       &g1_keep_alive,
  2159                                       &g1_drain_mark_stack,
  2160                                       NULL);
  2164   assert(_markStack.overflow() || _markStack.isEmpty(),
  2165       "mark stack should be empty (unless it overflowed)");
  2166   if (_markStack.overflow()) {
  2167     // Should have been done already when we tried to push an
  2168     // entry on to the global mark stack. But let's do it again.
  2169     set_has_overflown();
  2172   if (rp->processing_is_mt()) {
  2173     assert(rp->num_q() == active_workers, "why not");
  2174     rp->enqueue_discovered_references(&par_task_executor);
  2175   } else {
  2176     rp->enqueue_discovered_references();
  2179   rp->verify_no_references_recorded();
  2180   assert(!rp->discovery_enabled(), "should have been disabled");
  2182   // Now clean up stale oops in SymbolTable and StringTable
  2183   SymbolTable::unlink(&g1_is_alive);
  2184   StringTable::unlink(&g1_is_alive);
  2187 void ConcurrentMark::swapMarkBitMaps() {
  2188   CMBitMapRO* temp = _prevMarkBitMap;
  2189   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2190   _nextMarkBitMap  = (CMBitMap*)  temp;
  2193 class CMRemarkTask: public AbstractGangTask {
  2194 private:
  2195   ConcurrentMark *_cm;
  2197 public:
  2198   void work(int worker_i) {
  2199     // Since all available tasks are actually started, we should
  2200     // only proceed if we're supposed to be actived.
  2201     if ((size_t)worker_i < _cm->active_tasks()) {
  2202       CMTask* task = _cm->task(worker_i);
  2203       task->record_start_time();
  2204       do {
  2205         task->do_marking_step(1000000000.0 /* something very large */,
  2206                               true /* do_stealing    */,
  2207                               true /* do_termination */);
  2208       } while (task->has_aborted() && !_cm->has_overflown());
  2209       // If we overflow, then we do not want to restart. We instead
  2210       // want to abort remark and do concurrent marking again.
  2211       task->record_end_time();
  2215   CMRemarkTask(ConcurrentMark* cm) :
  2216     AbstractGangTask("Par Remark"), _cm(cm) { }
  2217 };
  2219 void ConcurrentMark::checkpointRootsFinalWork() {
  2220   ResourceMark rm;
  2221   HandleMark   hm;
  2222   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2224   g1h->ensure_parsability(false);
  2226   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2227     G1CollectedHeap::StrongRootsScope srs(g1h);
  2228     // this is remark, so we'll use up all available threads
  2229     int active_workers = ParallelGCThreads;
  2230     set_phase(active_workers, false /* concurrent */);
  2232     CMRemarkTask remarkTask(this);
  2233     // We will start all available threads, even if we decide that the
  2234     // active_workers will be fewer. The extra ones will just bail out
  2235     // immediately.
  2236     int n_workers = g1h->workers()->total_workers();
  2237     g1h->set_par_threads(n_workers);
  2238     g1h->workers()->run_task(&remarkTask);
  2239     g1h->set_par_threads(0);
  2240   } else {
  2241     G1CollectedHeap::StrongRootsScope srs(g1h);
  2242     // this is remark, so we'll use up all available threads
  2243     int active_workers = 1;
  2244     set_phase(active_workers, false /* concurrent */);
  2246     CMRemarkTask remarkTask(this);
  2247     // We will start all available threads, even if we decide that the
  2248     // active_workers will be fewer. The extra ones will just bail out
  2249     // immediately.
  2250     remarkTask.work(0);
  2252   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2253   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
  2255   print_stats();
  2257 #if VERIFY_OBJS_PROCESSED
  2258   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
  2259     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
  2260                            _scan_obj_cl.objs_processed,
  2261                            ThreadLocalObjQueue::objs_enqueued);
  2262     guarantee(_scan_obj_cl.objs_processed ==
  2263               ThreadLocalObjQueue::objs_enqueued,
  2264               "Different number of objs processed and enqueued.");
  2266 #endif
  2269 #ifndef PRODUCT
  2271 class PrintReachableOopClosure: public OopClosure {
  2272 private:
  2273   G1CollectedHeap* _g1h;
  2274   CMBitMapRO*      _bitmap;
  2275   outputStream*    _out;
  2276   bool             _use_prev_marking;
  2277   bool             _all;
  2279 public:
  2280   PrintReachableOopClosure(CMBitMapRO*   bitmap,
  2281                            outputStream* out,
  2282                            bool          use_prev_marking,
  2283                            bool          all) :
  2284     _g1h(G1CollectedHeap::heap()),
  2285     _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
  2287   void do_oop(narrowOop* p) { do_oop_work(p); }
  2288   void do_oop(      oop* p) { do_oop_work(p); }
  2290   template <class T> void do_oop_work(T* p) {
  2291     oop         obj = oopDesc::load_decode_heap_oop(p);
  2292     const char* str = NULL;
  2293     const char* str2 = "";
  2295     if (obj == NULL) {
  2296       str = "";
  2297     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2298       str = " O";
  2299     } else {
  2300       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2301       guarantee(hr != NULL, "invariant");
  2302       bool over_tams = false;
  2303       if (_use_prev_marking) {
  2304         over_tams = hr->obj_allocated_since_prev_marking(obj);
  2305       } else {
  2306         over_tams = hr->obj_allocated_since_next_marking(obj);
  2308       bool marked = _bitmap->isMarked((HeapWord*) obj);
  2310       if (over_tams) {
  2311         str = " >";
  2312         if (marked) {
  2313           str2 = " AND MARKED";
  2315       } else if (marked) {
  2316         str = " M";
  2317       } else {
  2318         str = " NOT";
  2322     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2323                    p, (void*) obj, str, str2);
  2325 };
  2327 class PrintReachableObjectClosure : public ObjectClosure {
  2328 private:
  2329   CMBitMapRO*   _bitmap;
  2330   outputStream* _out;
  2331   bool          _use_prev_marking;
  2332   bool          _all;
  2333   HeapRegion*   _hr;
  2335 public:
  2336   PrintReachableObjectClosure(CMBitMapRO*   bitmap,
  2337                               outputStream* out,
  2338                               bool          use_prev_marking,
  2339                               bool          all,
  2340                               HeapRegion*   hr) :
  2341     _bitmap(bitmap), _out(out),
  2342     _use_prev_marking(use_prev_marking), _all(all), _hr(hr) { }
  2344   void do_object(oop o) {
  2345     bool over_tams;
  2346     if (_use_prev_marking) {
  2347       over_tams = _hr->obj_allocated_since_prev_marking(o);
  2348     } else {
  2349       over_tams = _hr->obj_allocated_since_next_marking(o);
  2351     bool marked = _bitmap->isMarked((HeapWord*) o);
  2352     bool print_it = _all || over_tams || marked;
  2354     if (print_it) {
  2355       _out->print_cr(" "PTR_FORMAT"%s",
  2356                      o, (over_tams) ? " >" : (marked) ? " M" : "");
  2357       PrintReachableOopClosure oopCl(_bitmap, _out, _use_prev_marking, _all);
  2358       o->oop_iterate(&oopCl);
  2361 };
  2363 class PrintReachableRegionClosure : public HeapRegionClosure {
  2364 private:
  2365   CMBitMapRO*   _bitmap;
  2366   outputStream* _out;
  2367   bool          _use_prev_marking;
  2368   bool          _all;
  2370 public:
  2371   bool doHeapRegion(HeapRegion* hr) {
  2372     HeapWord* b = hr->bottom();
  2373     HeapWord* e = hr->end();
  2374     HeapWord* t = hr->top();
  2375     HeapWord* p = NULL;
  2376     if (_use_prev_marking) {
  2377       p = hr->prev_top_at_mark_start();
  2378     } else {
  2379       p = hr->next_top_at_mark_start();
  2381     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2382                    "TAMS: "PTR_FORMAT, b, e, t, p);
  2383     _out->cr();
  2385     HeapWord* from = b;
  2386     HeapWord* to   = t;
  2388     if (to > from) {
  2389       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
  2390       _out->cr();
  2391       PrintReachableObjectClosure ocl(_bitmap, _out,
  2392                                       _use_prev_marking, _all, hr);
  2393       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2394       _out->cr();
  2397     return false;
  2400   PrintReachableRegionClosure(CMBitMapRO*   bitmap,
  2401                               outputStream* out,
  2402                               bool          use_prev_marking,
  2403                               bool          all) :
  2404     _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
  2405 };
  2407 void ConcurrentMark::print_reachable(const char* str,
  2408                                      bool use_prev_marking,
  2409                                      bool all) {
  2410   gclog_or_tty->cr();
  2411   gclog_or_tty->print_cr("== Doing heap dump... ");
  2413   if (G1PrintReachableBaseFile == NULL) {
  2414     gclog_or_tty->print_cr("  #### error: no base file defined");
  2415     return;
  2418   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2419       (JVM_MAXPATHLEN - 1)) {
  2420     gclog_or_tty->print_cr("  #### error: file name too long");
  2421     return;
  2424   char file_name[JVM_MAXPATHLEN];
  2425   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2426   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2428   fileStream fout(file_name);
  2429   if (!fout.is_open()) {
  2430     gclog_or_tty->print_cr("  #### error: could not open file");
  2431     return;
  2434   outputStream* out = &fout;
  2436   CMBitMapRO* bitmap = NULL;
  2437   if (use_prev_marking) {
  2438     bitmap = _prevMarkBitMap;
  2439   } else {
  2440     bitmap = _nextMarkBitMap;
  2443   out->print_cr("-- USING %s", (use_prev_marking) ? "PTAMS" : "NTAMS");
  2444   out->cr();
  2446   out->print_cr("--- ITERATING OVER REGIONS");
  2447   out->cr();
  2448   PrintReachableRegionClosure rcl(bitmap, out, use_prev_marking, all);
  2449   _g1h->heap_region_iterate(&rcl);
  2450   out->cr();
  2452   gclog_or_tty->print_cr("  done");
  2453   gclog_or_tty->flush();
  2456 #endif // PRODUCT
  2458 // This note is for drainAllSATBBuffers and the code in between.
  2459 // In the future we could reuse a task to do this work during an
  2460 // evacuation pause (since now tasks are not active and can be claimed
  2461 // during an evacuation pause). This was a late change to the code and
  2462 // is currently not being taken advantage of.
  2464 class CMGlobalObjectClosure : public ObjectClosure {
  2465 private:
  2466   ConcurrentMark* _cm;
  2468 public:
  2469   void do_object(oop obj) {
  2470     _cm->deal_with_reference(obj);
  2473   CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
  2474 };
  2476 void ConcurrentMark::deal_with_reference(oop obj) {
  2477   if (verbose_high())
  2478     gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
  2479                            (void*) obj);
  2482   HeapWord* objAddr = (HeapWord*) obj;
  2483   assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
  2484   if (_g1h->is_in_g1_reserved(objAddr)) {
  2485     assert(obj != NULL, "is_in_g1_reserved should ensure this");
  2486     HeapRegion* hr = _g1h->heap_region_containing(obj);
  2487     if (_g1h->is_obj_ill(obj, hr)) {
  2488       if (verbose_high())
  2489         gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
  2490                                "marked", (void*) obj);
  2492       // we need to mark it first
  2493       if (_nextMarkBitMap->parMark(objAddr)) {
  2494         // No OrderAccess:store_load() is needed. It is implicit in the
  2495         // CAS done in parMark(objAddr) above
  2496         HeapWord* finger = _finger;
  2497         if (objAddr < finger) {
  2498           if (verbose_high())
  2499             gclog_or_tty->print_cr("[global] below the global finger "
  2500                                    "("PTR_FORMAT"), pushing it", finger);
  2501           if (!mark_stack_push(obj)) {
  2502             if (verbose_low())
  2503               gclog_or_tty->print_cr("[global] global stack overflow during "
  2504                                      "deal_with_reference");
  2512 void ConcurrentMark::drainAllSATBBuffers() {
  2513   CMGlobalObjectClosure oc(this);
  2514   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2515   satb_mq_set.set_closure(&oc);
  2517   while (satb_mq_set.apply_closure_to_completed_buffer()) {
  2518     if (verbose_medium())
  2519       gclog_or_tty->print_cr("[global] processed an SATB buffer");
  2522   // no need to check whether we should do this, as this is only
  2523   // called during an evacuation pause
  2524   satb_mq_set.iterate_closure_all_threads();
  2526   satb_mq_set.set_closure(NULL);
  2527   assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
  2530 void ConcurrentMark::markPrev(oop p) {
  2531   // Note we are overriding the read-only view of the prev map here, via
  2532   // the cast.
  2533   ((CMBitMap*)_prevMarkBitMap)->mark((HeapWord*)p);
  2536 void ConcurrentMark::clear(oop p) {
  2537   assert(p != NULL && p->is_oop(), "expected an oop");
  2538   HeapWord* addr = (HeapWord*)p;
  2539   assert(addr >= _nextMarkBitMap->startWord() ||
  2540          addr < _nextMarkBitMap->endWord(), "in a region");
  2542   _nextMarkBitMap->clear(addr);
  2545 void ConcurrentMark::clearRangeBothMaps(MemRegion mr) {
  2546   // Note we are overriding the read-only view of the prev map here, via
  2547   // the cast.
  2548   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2549   _nextMarkBitMap->clearRange(mr);
  2552 HeapRegion*
  2553 ConcurrentMark::claim_region(int task_num) {
  2554   // "checkpoint" the finger
  2555   HeapWord* finger = _finger;
  2557   // _heap_end will not change underneath our feet; it only changes at
  2558   // yield points.
  2559   while (finger < _heap_end) {
  2560     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2562     // is the gap between reading the finger and doing the CAS too long?
  2564     HeapRegion* curr_region   = _g1h->heap_region_containing(finger);
  2565     HeapWord*   bottom        = curr_region->bottom();
  2566     HeapWord*   end           = curr_region->end();
  2567     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2569     if (verbose_low())
  2570       gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
  2571                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2572                              "limit = "PTR_FORMAT,
  2573                              task_num, curr_region, bottom, end, limit);
  2575     HeapWord* res =
  2576       (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2577     if (res == finger) {
  2578       // we succeeded
  2580       // notice that _finger == end cannot be guaranteed here since,
  2581       // someone else might have moved the finger even further
  2582       assert(_finger >= end, "the finger should have moved forward");
  2584       if (verbose_low())
  2585         gclog_or_tty->print_cr("[%d] we were successful with region = "
  2586                                PTR_FORMAT, task_num, curr_region);
  2588       if (limit > bottom) {
  2589         if (verbose_low())
  2590           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
  2591                                  "returning it ", task_num, curr_region);
  2592         return curr_region;
  2593       } else {
  2594         assert(limit == bottom,
  2595                "the region limit should be at bottom");
  2596         if (verbose_low())
  2597           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
  2598                                  "returning NULL", task_num, curr_region);
  2599         // we return NULL and the caller should try calling
  2600         // claim_region() again.
  2601         return NULL;
  2603     } else {
  2604       assert(_finger > finger, "the finger should have moved forward");
  2605       if (verbose_low())
  2606         gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
  2607                                "global finger = "PTR_FORMAT", "
  2608                                "our finger = "PTR_FORMAT,
  2609                                task_num, _finger, finger);
  2611       // read it again
  2612       finger = _finger;
  2616   return NULL;
  2619 bool ConcurrentMark::invalidate_aborted_regions_in_cset() {
  2620   bool result = false;
  2621   for (int i = 0; i < (int)_max_task_num; ++i) {
  2622     CMTask* the_task = _tasks[i];
  2623     MemRegion mr = the_task->aborted_region();
  2624     if (mr.start() != NULL) {
  2625       assert(mr.end() != NULL, "invariant");
  2626       assert(mr.word_size() > 0, "invariant");
  2627       HeapRegion* hr = _g1h->heap_region_containing(mr.start());
  2628       assert(hr != NULL, "invariant");
  2629       if (hr->in_collection_set()) {
  2630         // The region points into the collection set
  2631         the_task->set_aborted_region(MemRegion());
  2632         result = true;
  2636   return result;
  2639 bool ConcurrentMark::has_aborted_regions() {
  2640   for (int i = 0; i < (int)_max_task_num; ++i) {
  2641     CMTask* the_task = _tasks[i];
  2642     MemRegion mr = the_task->aborted_region();
  2643     if (mr.start() != NULL) {
  2644       assert(mr.end() != NULL, "invariant");
  2645       assert(mr.word_size() > 0, "invariant");
  2646       return true;
  2649   return false;
  2652 void ConcurrentMark::oops_do(OopClosure* cl) {
  2653   if (_markStack.size() > 0 && verbose_low())
  2654     gclog_or_tty->print_cr("[global] scanning the global marking stack, "
  2655                            "size = %d", _markStack.size());
  2656   // we first iterate over the contents of the mark stack...
  2657   _markStack.oops_do(cl);
  2659   for (int i = 0; i < (int)_max_task_num; ++i) {
  2660     OopTaskQueue* queue = _task_queues->queue((int)i);
  2662     if (queue->size() > 0 && verbose_low())
  2663       gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
  2664                              "size = %d", i, queue->size());
  2666     // ...then over the contents of the all the task queues.
  2667     queue->oops_do(cl);
  2670   // Invalidate any entries, that are in the region stack, that
  2671   // point into the collection set
  2672   if (_regionStack.invalidate_entries_into_cset()) {
  2673     // otherwise, any gray objects copied during the evacuation pause
  2674     // might not be visited.
  2675     assert(_should_gray_objects, "invariant");
  2678   // Invalidate any aborted regions, recorded in the individual CM
  2679   // tasks, that point into the collection set.
  2680   if (invalidate_aborted_regions_in_cset()) {
  2681     // otherwise, any gray objects copied during the evacuation pause
  2682     // might not be visited.
  2683     assert(_should_gray_objects, "invariant");
  2688 void ConcurrentMark::clear_marking_state() {
  2689   _markStack.setEmpty();
  2690   _markStack.clear_overflow();
  2691   _regionStack.setEmpty();
  2692   _regionStack.clear_overflow();
  2693   clear_has_overflown();
  2694   _finger = _heap_start;
  2696   for (int i = 0; i < (int)_max_task_num; ++i) {
  2697     OopTaskQueue* queue = _task_queues->queue(i);
  2698     queue->set_empty();
  2699     // Clear any partial regions from the CMTasks
  2700     _tasks[i]->clear_aborted_region();
  2704 void ConcurrentMark::print_stats() {
  2705   if (verbose_stats()) {
  2706     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  2707     for (size_t i = 0; i < _active_tasks; ++i) {
  2708       _tasks[i]->print_stats();
  2709       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  2714 class CSMarkOopClosure: public OopClosure {
  2715   friend class CSMarkBitMapClosure;
  2717   G1CollectedHeap* _g1h;
  2718   CMBitMap*        _bm;
  2719   ConcurrentMark*  _cm;
  2720   oop*             _ms;
  2721   jint*            _array_ind_stack;
  2722   int              _ms_size;
  2723   int              _ms_ind;
  2724   int              _array_increment;
  2726   bool push(oop obj, int arr_ind = 0) {
  2727     if (_ms_ind == _ms_size) {
  2728       gclog_or_tty->print_cr("Mark stack is full.");
  2729       return false;
  2731     _ms[_ms_ind] = obj;
  2732     if (obj->is_objArray()) _array_ind_stack[_ms_ind] = arr_ind;
  2733     _ms_ind++;
  2734     return true;
  2737   oop pop() {
  2738     if (_ms_ind == 0) return NULL;
  2739     else {
  2740       _ms_ind--;
  2741       return _ms[_ms_ind];
  2745   template <class T> bool drain() {
  2746     while (_ms_ind > 0) {
  2747       oop obj = pop();
  2748       assert(obj != NULL, "Since index was non-zero.");
  2749       if (obj->is_objArray()) {
  2750         jint arr_ind = _array_ind_stack[_ms_ind];
  2751         objArrayOop aobj = objArrayOop(obj);
  2752         jint len = aobj->length();
  2753         jint next_arr_ind = arr_ind + _array_increment;
  2754         if (next_arr_ind < len) {
  2755           push(obj, next_arr_ind);
  2757         // Now process this portion of this one.
  2758         int lim = MIN2(next_arr_ind, len);
  2759         for (int j = arr_ind; j < lim; j++) {
  2760           do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
  2763       } else {
  2764         obj->oop_iterate(this);
  2766       if (abort()) return false;
  2768     return true;
  2771 public:
  2772   CSMarkOopClosure(ConcurrentMark* cm, int ms_size) :
  2773     _g1h(G1CollectedHeap::heap()),
  2774     _cm(cm),
  2775     _bm(cm->nextMarkBitMap()),
  2776     _ms_size(ms_size), _ms_ind(0),
  2777     _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
  2778     _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
  2779     _array_increment(MAX2(ms_size/8, 16))
  2780   {}
  2782   ~CSMarkOopClosure() {
  2783     FREE_C_HEAP_ARRAY(oop, _ms);
  2784     FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
  2787   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2788   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2790   template <class T> void do_oop_work(T* p) {
  2791     T heap_oop = oopDesc::load_heap_oop(p);
  2792     if (oopDesc::is_null(heap_oop)) return;
  2793     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2794     if (obj->is_forwarded()) {
  2795       // If the object has already been forwarded, we have to make sure
  2796       // that it's marked.  So follow the forwarding pointer.  Note that
  2797       // this does the right thing for self-forwarding pointers in the
  2798       // evacuation failure case.
  2799       obj = obj->forwardee();
  2801     HeapRegion* hr = _g1h->heap_region_containing(obj);
  2802     if (hr != NULL) {
  2803       if (hr->in_collection_set()) {
  2804         if (_g1h->is_obj_ill(obj)) {
  2805           _bm->mark((HeapWord*)obj);
  2806           if (!push(obj)) {
  2807             gclog_or_tty->print_cr("Setting abort in CSMarkOopClosure because push failed.");
  2808             set_abort();
  2811       } else {
  2812         // Outside the collection set; we need to gray it
  2813         _cm->deal_with_reference(obj);
  2817 };
  2819 class CSMarkBitMapClosure: public BitMapClosure {
  2820   G1CollectedHeap* _g1h;
  2821   CMBitMap*        _bitMap;
  2822   ConcurrentMark*  _cm;
  2823   CSMarkOopClosure _oop_cl;
  2824 public:
  2825   CSMarkBitMapClosure(ConcurrentMark* cm, int ms_size) :
  2826     _g1h(G1CollectedHeap::heap()),
  2827     _bitMap(cm->nextMarkBitMap()),
  2828     _oop_cl(cm, ms_size)
  2829   {}
  2831   ~CSMarkBitMapClosure() {}
  2833   bool do_bit(size_t offset) {
  2834     // convert offset into a HeapWord*
  2835     HeapWord* addr = _bitMap->offsetToHeapWord(offset);
  2836     assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  2837            "address out of range");
  2838     assert(_bitMap->isMarked(addr), "tautology");
  2839     oop obj = oop(addr);
  2840     if (!obj->is_forwarded()) {
  2841       if (!_oop_cl.push(obj)) return false;
  2842       if (UseCompressedOops) {
  2843         if (!_oop_cl.drain<narrowOop>()) return false;
  2844       } else {
  2845         if (!_oop_cl.drain<oop>()) return false;
  2848     // Otherwise...
  2849     return true;
  2851 };
  2854 class CompleteMarkingInCSHRClosure: public HeapRegionClosure {
  2855   CMBitMap* _bm;
  2856   CSMarkBitMapClosure _bit_cl;
  2857   enum SomePrivateConstants {
  2858     MSSize = 1000
  2859   };
  2860   bool _completed;
  2861 public:
  2862   CompleteMarkingInCSHRClosure(ConcurrentMark* cm) :
  2863     _bm(cm->nextMarkBitMap()),
  2864     _bit_cl(cm, MSSize),
  2865     _completed(true)
  2866   {}
  2868   ~CompleteMarkingInCSHRClosure() {}
  2870   bool doHeapRegion(HeapRegion* r) {
  2871     if (!r->evacuation_failed()) {
  2872       MemRegion mr = MemRegion(r->bottom(), r->next_top_at_mark_start());
  2873       if (!mr.is_empty()) {
  2874         if (!_bm->iterate(&_bit_cl, mr)) {
  2875           _completed = false;
  2876           return true;
  2880     return false;
  2883   bool completed() { return _completed; }
  2884 };
  2886 class ClearMarksInHRClosure: public HeapRegionClosure {
  2887   CMBitMap* _bm;
  2888 public:
  2889   ClearMarksInHRClosure(CMBitMap* bm): _bm(bm) { }
  2891   bool doHeapRegion(HeapRegion* r) {
  2892     if (!r->used_region().is_empty() && !r->evacuation_failed()) {
  2893       MemRegion usedMR = r->used_region();
  2894       _bm->clearRange(r->used_region());
  2896     return false;
  2898 };
  2900 void ConcurrentMark::complete_marking_in_collection_set() {
  2901   G1CollectedHeap* g1h =  G1CollectedHeap::heap();
  2903   if (!g1h->mark_in_progress()) {
  2904     g1h->g1_policy()->record_mark_closure_time(0.0);
  2905     return;
  2908   int i = 1;
  2909   double start = os::elapsedTime();
  2910   while (true) {
  2911     i++;
  2912     CompleteMarkingInCSHRClosure cmplt(this);
  2913     g1h->collection_set_iterate(&cmplt);
  2914     if (cmplt.completed()) break;
  2916   double end_time = os::elapsedTime();
  2917   double elapsed_time_ms = (end_time - start) * 1000.0;
  2918   g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
  2920   ClearMarksInHRClosure clr(nextMarkBitMap());
  2921   g1h->collection_set_iterate(&clr);
  2924 // The next two methods deal with the following optimisation. Some
  2925 // objects are gray by being marked and located above the finger. If
  2926 // they are copied, during an evacuation pause, below the finger then
  2927 // the need to be pushed on the stack. The observation is that, if
  2928 // there are no regions in the collection set located above the
  2929 // finger, then the above cannot happen, hence we do not need to
  2930 // explicitly gray any objects when copying them to below the
  2931 // finger. The global stack will be scanned to ensure that, if it
  2932 // points to objects being copied, it will update their
  2933 // location. There is a tricky situation with the gray objects in
  2934 // region stack that are being coped, however. See the comment in
  2935 // newCSet().
  2937 void ConcurrentMark::newCSet() {
  2938   if (!concurrent_marking_in_progress())
  2939     // nothing to do if marking is not in progress
  2940     return;
  2942   // find what the lowest finger is among the global and local fingers
  2943   _min_finger = _finger;
  2944   for (int i = 0; i < (int)_max_task_num; ++i) {
  2945     CMTask* task = _tasks[i];
  2946     HeapWord* task_finger = task->finger();
  2947     if (task_finger != NULL && task_finger < _min_finger)
  2948       _min_finger = task_finger;
  2951   _should_gray_objects = false;
  2953   // This fixes a very subtle and fustrating bug. It might be the case
  2954   // that, during en evacuation pause, heap regions that contain
  2955   // objects that are gray (by being in regions contained in the
  2956   // region stack) are included in the collection set. Since such gray
  2957   // objects will be moved, and because it's not easy to redirect
  2958   // region stack entries to point to a new location (because objects
  2959   // in one region might be scattered to multiple regions after they
  2960   // are copied), one option is to ensure that all marked objects
  2961   // copied during a pause are pushed on the stack. Notice, however,
  2962   // that this problem can only happen when the region stack is not
  2963   // empty during an evacuation pause. So, we make the fix a bit less
  2964   // conservative and ensure that regions are pushed on the stack,
  2965   // irrespective whether all collection set regions are below the
  2966   // finger, if the region stack is not empty. This is expected to be
  2967   // a rare case, so I don't think it's necessary to be smarted about it.
  2968   if (!region_stack_empty() || has_aborted_regions())
  2969     _should_gray_objects = true;
  2972 void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
  2973   if (!concurrent_marking_in_progress())
  2974     return;
  2976   HeapWord* region_end = hr->end();
  2977   if (region_end > _min_finger)
  2978     _should_gray_objects = true;
  2981 // abandon current marking iteration due to a Full GC
  2982 void ConcurrentMark::abort() {
  2983   // Clear all marks to force marking thread to do nothing
  2984   _nextMarkBitMap->clearAll();
  2985   // Empty mark stack
  2986   clear_marking_state();
  2987   for (int i = 0; i < (int)_max_task_num; ++i) {
  2988     _tasks[i]->clear_region_fields();
  2990   _has_aborted = true;
  2992   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2993   satb_mq_set.abandon_partial_marking();
  2994   // This can be called either during or outside marking, we'll read
  2995   // the expected_active value from the SATB queue set.
  2996   satb_mq_set.set_active_all_threads(
  2997                                  false, /* new active value */
  2998                                  satb_mq_set.is_active() /* expected_active */);
  3001 static void print_ms_time_info(const char* prefix, const char* name,
  3002                                NumberSeq& ns) {
  3003   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3004                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3005   if (ns.num() > 0) {
  3006     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3007                            prefix, ns.sd(), ns.maximum());
  3011 void ConcurrentMark::print_summary_info() {
  3012   gclog_or_tty->print_cr(" Concurrent marking:");
  3013   print_ms_time_info("  ", "init marks", _init_times);
  3014   print_ms_time_info("  ", "remarks", _remark_times);
  3016     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3017     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3020   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3021   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3022                          _total_counting_time,
  3023                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3024                           (double)_cleanup_times.num()
  3025                          : 0.0));
  3026   if (G1ScrubRemSets) {
  3027     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3028                            _total_rs_scrub_time,
  3029                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3030                             (double)_cleanup_times.num()
  3031                            : 0.0));
  3033   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3034                          (_init_times.sum() + _remark_times.sum() +
  3035                           _cleanup_times.sum())/1000.0);
  3036   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3037                 "(%8.2f s marking, %8.2f s counting).",
  3038                 cmThread()->vtime_accum(),
  3039                 cmThread()->vtime_mark_accum(),
  3040                 cmThread()->vtime_count_accum());
  3043 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3044   _parallel_workers->print_worker_threads_on(st);
  3047 // Closures
  3048 // XXX: there seems to be a lot of code  duplication here;
  3049 // should refactor and consolidate the shared code.
  3051 // This closure is used to mark refs into the CMS generation in
  3052 // the CMS bit map. Called at the first checkpoint.
  3054 // We take a break if someone is trying to stop the world.
  3055 bool ConcurrentMark::do_yield_check(int worker_i) {
  3056   if (should_yield()) {
  3057     if (worker_i == 0)
  3058       _g1h->g1_policy()->record_concurrent_pause();
  3059     cmThread()->yield();
  3060     if (worker_i == 0)
  3061       _g1h->g1_policy()->record_concurrent_pause_end();
  3062     return true;
  3063   } else {
  3064     return false;
  3068 bool ConcurrentMark::should_yield() {
  3069   return cmThread()->should_yield();
  3072 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3073   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3074   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3077 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3078                                                  void* last) {
  3079   return
  3080     containing_card_is_marked(start) &&
  3081     containing_card_is_marked(last);
  3084 #ifndef PRODUCT
  3085 // for debugging purposes
  3086 void ConcurrentMark::print_finger() {
  3087   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3088                          _heap_start, _heap_end, _finger);
  3089   for (int i = 0; i < (int) _max_task_num; ++i) {
  3090     gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  3092   gclog_or_tty->print_cr("");
  3094 #endif
  3096 // Closure for iteration over bitmaps
  3097 class CMBitMapClosure : public BitMapClosure {
  3098 private:
  3099   // the bitmap that is being iterated over
  3100   CMBitMap*                   _nextMarkBitMap;
  3101   ConcurrentMark*             _cm;
  3102   CMTask*                     _task;
  3103   // true if we're scanning a heap region claimed by the task (so that
  3104   // we move the finger along), false if we're not, i.e. currently when
  3105   // scanning a heap region popped from the region stack (so that we
  3106   // do not move the task finger along; it'd be a mistake if we did so).
  3107   bool                        _scanning_heap_region;
  3109 public:
  3110   CMBitMapClosure(CMTask *task,
  3111                   ConcurrentMark* cm,
  3112                   CMBitMap* nextMarkBitMap)
  3113     :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3115   void set_scanning_heap_region(bool scanning_heap_region) {
  3116     _scanning_heap_region = scanning_heap_region;
  3119   bool do_bit(size_t offset) {
  3120     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3121     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3122     assert( addr < _cm->finger(), "invariant");
  3124     if (_scanning_heap_region) {
  3125       statsOnly( _task->increase_objs_found_on_bitmap() );
  3126       assert(addr >= _task->finger(), "invariant");
  3127       // We move that task's local finger along.
  3128       _task->move_finger_to(addr);
  3129     } else {
  3130       // We move the task's region finger along.
  3131       _task->move_region_finger_to(addr);
  3134     _task->scan_object(oop(addr));
  3135     // we only partially drain the local queue and global stack
  3136     _task->drain_local_queue(true);
  3137     _task->drain_global_stack(true);
  3139     // if the has_aborted flag has been raised, we need to bail out of
  3140     // the iteration
  3141     return !_task->has_aborted();
  3143 };
  3145 // Closure for iterating over objects, currently only used for
  3146 // processing SATB buffers.
  3147 class CMObjectClosure : public ObjectClosure {
  3148 private:
  3149   CMTask* _task;
  3151 public:
  3152   void do_object(oop obj) {
  3153     _task->deal_with_reference(obj);
  3156   CMObjectClosure(CMTask* task) : _task(task) { }
  3157 };
  3159 // Closure for iterating over object fields
  3160 class CMOopClosure : public OopClosure {
  3161 private:
  3162   G1CollectedHeap*   _g1h;
  3163   ConcurrentMark*    _cm;
  3164   CMTask*            _task;
  3166 public:
  3167   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3168   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3170   template <class T> void do_oop_work(T* p) {
  3171     assert( _g1h->is_in_g1_reserved((HeapWord*) p), "invariant");
  3172     assert(!_g1h->is_on_free_list(
  3173                     _g1h->heap_region_containing((HeapWord*) p)), "invariant");
  3175     oop obj = oopDesc::load_decode_heap_oop(p);
  3176     if (_cm->verbose_high())
  3177       gclog_or_tty->print_cr("[%d] we're looking at location "
  3178                              "*"PTR_FORMAT" = "PTR_FORMAT,
  3179                              _task->task_id(), p, (void*) obj);
  3180     _task->deal_with_reference(obj);
  3183   CMOopClosure(G1CollectedHeap* g1h,
  3184                ConcurrentMark* cm,
  3185                CMTask* task)
  3186     : _g1h(g1h), _cm(cm), _task(task)
  3188     _ref_processor = g1h->ref_processor();
  3189     assert(_ref_processor != NULL, "should not be NULL");
  3191 };
  3193 void CMTask::setup_for_region(HeapRegion* hr) {
  3194   // Separated the asserts so that we know which one fires.
  3195   assert(hr != NULL,
  3196         "claim_region() should have filtered out continues humongous regions");
  3197   assert(!hr->continuesHumongous(),
  3198         "claim_region() should have filtered out continues humongous regions");
  3200   if (_cm->verbose_low())
  3201     gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
  3202                            _task_id, hr);
  3204   _curr_region  = hr;
  3205   _finger       = hr->bottom();
  3206   update_region_limit();
  3209 void CMTask::update_region_limit() {
  3210   HeapRegion* hr            = _curr_region;
  3211   HeapWord* bottom          = hr->bottom();
  3212   HeapWord* limit           = hr->next_top_at_mark_start();
  3214   if (limit == bottom) {
  3215     if (_cm->verbose_low())
  3216       gclog_or_tty->print_cr("[%d] found an empty region "
  3217                              "["PTR_FORMAT", "PTR_FORMAT")",
  3218                              _task_id, bottom, limit);
  3219     // The region was collected underneath our feet.
  3220     // We set the finger to bottom to ensure that the bitmap
  3221     // iteration that will follow this will not do anything.
  3222     // (this is not a condition that holds when we set the region up,
  3223     // as the region is not supposed to be empty in the first place)
  3224     _finger = bottom;
  3225   } else if (limit >= _region_limit) {
  3226     assert(limit >= _finger, "peace of mind");
  3227   } else {
  3228     assert(limit < _region_limit, "only way to get here");
  3229     // This can happen under some pretty unusual circumstances.  An
  3230     // evacuation pause empties the region underneath our feet (NTAMS
  3231     // at bottom). We then do some allocation in the region (NTAMS
  3232     // stays at bottom), followed by the region being used as a GC
  3233     // alloc region (NTAMS will move to top() and the objects
  3234     // originally below it will be grayed). All objects now marked in
  3235     // the region are explicitly grayed, if below the global finger,
  3236     // and we do not need in fact to scan anything else. So, we simply
  3237     // set _finger to be limit to ensure that the bitmap iteration
  3238     // doesn't do anything.
  3239     _finger = limit;
  3242   _region_limit = limit;
  3245 void CMTask::giveup_current_region() {
  3246   assert(_curr_region != NULL, "invariant");
  3247   if (_cm->verbose_low())
  3248     gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
  3249                            _task_id, _curr_region);
  3250   clear_region_fields();
  3253 void CMTask::clear_region_fields() {
  3254   // Values for these three fields that indicate that we're not
  3255   // holding on to a region.
  3256   _curr_region   = NULL;
  3257   _finger        = NULL;
  3258   _region_limit  = NULL;
  3260   _region_finger = NULL;
  3263 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3264   guarantee(nextMarkBitMap != NULL, "invariant");
  3266   if (_cm->verbose_low())
  3267     gclog_or_tty->print_cr("[%d] resetting", _task_id);
  3269   _nextMarkBitMap                = nextMarkBitMap;
  3270   clear_region_fields();
  3271   assert(_aborted_region.is_empty(), "should have been cleared");
  3273   _calls                         = 0;
  3274   _elapsed_time_ms               = 0.0;
  3275   _termination_time_ms           = 0.0;
  3276   _termination_start_time_ms     = 0.0;
  3278 #if _MARKING_STATS_
  3279   _local_pushes                  = 0;
  3280   _local_pops                    = 0;
  3281   _local_max_size                = 0;
  3282   _objs_scanned                  = 0;
  3283   _global_pushes                 = 0;
  3284   _global_pops                   = 0;
  3285   _global_max_size               = 0;
  3286   _global_transfers_to           = 0;
  3287   _global_transfers_from         = 0;
  3288   _region_stack_pops             = 0;
  3289   _regions_claimed               = 0;
  3290   _objs_found_on_bitmap          = 0;
  3291   _satb_buffers_processed        = 0;
  3292   _steal_attempts                = 0;
  3293   _steals                        = 0;
  3294   _aborted                       = 0;
  3295   _aborted_overflow              = 0;
  3296   _aborted_cm_aborted            = 0;
  3297   _aborted_yield                 = 0;
  3298   _aborted_timed_out             = 0;
  3299   _aborted_satb                  = 0;
  3300   _aborted_termination           = 0;
  3301 #endif // _MARKING_STATS_
  3304 bool CMTask::should_exit_termination() {
  3305   regular_clock_call();
  3306   // This is called when we are in the termination protocol. We should
  3307   // quit if, for some reason, this task wants to abort or the global
  3308   // stack is not empty (this means that we can get work from it).
  3309   return !_cm->mark_stack_empty() || has_aborted();
  3312 // This determines whether the method below will check both the local
  3313 // and global fingers when determining whether to push on the stack a
  3314 // gray object (value 1) or whether it will only check the global one
  3315 // (value 0). The tradeoffs are that the former will be a bit more
  3316 // accurate and possibly push less on the stack, but it might also be
  3317 // a little bit slower.
  3319 #define _CHECK_BOTH_FINGERS_      1
  3321 void CMTask::deal_with_reference(oop obj) {
  3322   if (_cm->verbose_high())
  3323     gclog_or_tty->print_cr("[%d] we're dealing with reference = "PTR_FORMAT,
  3324                            _task_id, (void*) obj);
  3326   ++_refs_reached;
  3328   HeapWord* objAddr = (HeapWord*) obj;
  3329   assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
  3330   if (_g1h->is_in_g1_reserved(objAddr)) {
  3331     assert(obj != NULL, "is_in_g1_reserved should ensure this");
  3332     HeapRegion* hr =  _g1h->heap_region_containing(obj);
  3333     if (_g1h->is_obj_ill(obj, hr)) {
  3334       if (_cm->verbose_high())
  3335         gclog_or_tty->print_cr("[%d] "PTR_FORMAT" is not considered marked",
  3336                                _task_id, (void*) obj);
  3338       // we need to mark it first
  3339       if (_nextMarkBitMap->parMark(objAddr)) {
  3340         // No OrderAccess:store_load() is needed. It is implicit in the
  3341         // CAS done in parMark(objAddr) above
  3342         HeapWord* global_finger = _cm->finger();
  3344 #if _CHECK_BOTH_FINGERS_
  3345         // we will check both the local and global fingers
  3347         if (_finger != NULL && objAddr < _finger) {
  3348           if (_cm->verbose_high())
  3349             gclog_or_tty->print_cr("[%d] below the local finger ("PTR_FORMAT"), "
  3350                                    "pushing it", _task_id, _finger);
  3351           push(obj);
  3352         } else if (_curr_region != NULL && objAddr < _region_limit) {
  3353           // do nothing
  3354         } else if (objAddr < global_finger) {
  3355           // Notice that the global finger might be moving forward
  3356           // concurrently. This is not a problem. In the worst case, we
  3357           // mark the object while it is above the global finger and, by
  3358           // the time we read the global finger, it has moved forward
  3359           // passed this object. In this case, the object will probably
  3360           // be visited when a task is scanning the region and will also
  3361           // be pushed on the stack. So, some duplicate work, but no
  3362           // correctness problems.
  3364           if (_cm->verbose_high())
  3365             gclog_or_tty->print_cr("[%d] below the global finger "
  3366                                    "("PTR_FORMAT"), pushing it",
  3367                                    _task_id, global_finger);
  3368           push(obj);
  3369         } else {
  3370           // do nothing
  3372 #else // _CHECK_BOTH_FINGERS_
  3373         // we will only check the global finger
  3375         if (objAddr < global_finger) {
  3376           // see long comment above
  3378           if (_cm->verbose_high())
  3379             gclog_or_tty->print_cr("[%d] below the global finger "
  3380                                    "("PTR_FORMAT"), pushing it",
  3381                                    _task_id, global_finger);
  3382           push(obj);
  3384 #endif // _CHECK_BOTH_FINGERS_
  3390 void CMTask::push(oop obj) {
  3391   HeapWord* objAddr = (HeapWord*) obj;
  3392   assert(_g1h->is_in_g1_reserved(objAddr), "invariant");
  3393   assert(!_g1h->is_on_free_list(
  3394               _g1h->heap_region_containing((HeapWord*) objAddr)), "invariant");
  3395   assert(!_g1h->is_obj_ill(obj), "invariant");
  3396   assert(_nextMarkBitMap->isMarked(objAddr), "invariant");
  3398   if (_cm->verbose_high())
  3399     gclog_or_tty->print_cr("[%d] pushing "PTR_FORMAT, _task_id, (void*) obj);
  3401   if (!_task_queue->push(obj)) {
  3402     // The local task queue looks full. We need to push some entries
  3403     // to the global stack.
  3405     if (_cm->verbose_medium())
  3406       gclog_or_tty->print_cr("[%d] task queue overflow, "
  3407                              "moving entries to the global stack",
  3408                              _task_id);
  3409     move_entries_to_global_stack();
  3411     // this should succeed since, even if we overflow the global
  3412     // stack, we should have definitely removed some entries from the
  3413     // local queue. So, there must be space on it.
  3414     bool success = _task_queue->push(obj);
  3415     assert(success, "invariant");
  3418   statsOnly( int tmp_size = _task_queue->size();
  3419              if (tmp_size > _local_max_size)
  3420                _local_max_size = tmp_size;
  3421              ++_local_pushes );
  3424 void CMTask::reached_limit() {
  3425   assert(_words_scanned >= _words_scanned_limit ||
  3426          _refs_reached >= _refs_reached_limit ,
  3427          "shouldn't have been called otherwise");
  3428   regular_clock_call();
  3431 void CMTask::regular_clock_call() {
  3432   if (has_aborted())
  3433     return;
  3435   // First, we need to recalculate the words scanned and refs reached
  3436   // limits for the next clock call.
  3437   recalculate_limits();
  3439   // During the regular clock call we do the following
  3441   // (1) If an overflow has been flagged, then we abort.
  3442   if (_cm->has_overflown()) {
  3443     set_has_aborted();
  3444     return;
  3447   // If we are not concurrent (i.e. we're doing remark) we don't need
  3448   // to check anything else. The other steps are only needed during
  3449   // the concurrent marking phase.
  3450   if (!concurrent())
  3451     return;
  3453   // (2) If marking has been aborted for Full GC, then we also abort.
  3454   if (_cm->has_aborted()) {
  3455     set_has_aborted();
  3456     statsOnly( ++_aborted_cm_aborted );
  3457     return;
  3460   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3462   // (3) If marking stats are enabled, then we update the step history.
  3463 #if _MARKING_STATS_
  3464   if (_words_scanned >= _words_scanned_limit)
  3465     ++_clock_due_to_scanning;
  3466   if (_refs_reached >= _refs_reached_limit)
  3467     ++_clock_due_to_marking;
  3469   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3470   _interval_start_time_ms = curr_time_ms;
  3471   _all_clock_intervals_ms.add(last_interval_ms);
  3473   if (_cm->verbose_medium()) {
  3474     gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
  3475                            "scanned = %d%s, refs reached = %d%s",
  3476                            _task_id, last_interval_ms,
  3477                            _words_scanned,
  3478                            (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3479                            _refs_reached,
  3480                            (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3482 #endif // _MARKING_STATS_
  3484   // (4) We check whether we should yield. If we have to, then we abort.
  3485   if (_cm->should_yield()) {
  3486     // We should yield. To do this we abort the task. The caller is
  3487     // responsible for yielding.
  3488     set_has_aborted();
  3489     statsOnly( ++_aborted_yield );
  3490     return;
  3493   // (5) We check whether we've reached our time quota. If we have,
  3494   // then we abort.
  3495   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3496   if (elapsed_time_ms > _time_target_ms) {
  3497     set_has_aborted();
  3498     _has_timed_out = true;
  3499     statsOnly( ++_aborted_timed_out );
  3500     return;
  3503   // (6) Finally, we check whether there are enough completed STAB
  3504   // buffers available for processing. If there are, we abort.
  3505   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3506   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3507     if (_cm->verbose_low())
  3508       gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
  3509                              _task_id);
  3510     // we do need to process SATB buffers, we'll abort and restart
  3511     // the marking task to do so
  3512     set_has_aborted();
  3513     statsOnly( ++_aborted_satb );
  3514     return;
  3518 void CMTask::recalculate_limits() {
  3519   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3520   _words_scanned_limit      = _real_words_scanned_limit;
  3522   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3523   _refs_reached_limit       = _real_refs_reached_limit;
  3526 void CMTask::decrease_limits() {
  3527   // This is called when we believe that we're going to do an infrequent
  3528   // operation which will increase the per byte scanned cost (i.e. move
  3529   // entries to/from the global stack). It basically tries to decrease the
  3530   // scanning limit so that the clock is called earlier.
  3532   if (_cm->verbose_medium())
  3533     gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
  3535   _words_scanned_limit = _real_words_scanned_limit -
  3536     3 * words_scanned_period / 4;
  3537   _refs_reached_limit  = _real_refs_reached_limit -
  3538     3 * refs_reached_period / 4;
  3541 void CMTask::move_entries_to_global_stack() {
  3542   // local array where we'll store the entries that will be popped
  3543   // from the local queue
  3544   oop buffer[global_stack_transfer_size];
  3546   int n = 0;
  3547   oop obj;
  3548   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3549     buffer[n] = obj;
  3550     ++n;
  3553   if (n > 0) {
  3554     // we popped at least one entry from the local queue
  3556     statsOnly( ++_global_transfers_to; _local_pops += n );
  3558     if (!_cm->mark_stack_push(buffer, n)) {
  3559       if (_cm->verbose_low())
  3560         gclog_or_tty->print_cr("[%d] aborting due to global stack overflow", _task_id);
  3561       set_has_aborted();
  3562     } else {
  3563       // the transfer was successful
  3565       if (_cm->verbose_medium())
  3566         gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
  3567                                _task_id, n);
  3568       statsOnly( int tmp_size = _cm->mark_stack_size();
  3569                  if (tmp_size > _global_max_size)
  3570                    _global_max_size = tmp_size;
  3571                  _global_pushes += n );
  3575   // this operation was quite expensive, so decrease the limits
  3576   decrease_limits();
  3579 void CMTask::get_entries_from_global_stack() {
  3580   // local array where we'll store the entries that will be popped
  3581   // from the global stack.
  3582   oop buffer[global_stack_transfer_size];
  3583   int n;
  3584   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3585   assert(n <= global_stack_transfer_size,
  3586          "we should not pop more than the given limit");
  3587   if (n > 0) {
  3588     // yes, we did actually pop at least one entry
  3590     statsOnly( ++_global_transfers_from; _global_pops += n );
  3591     if (_cm->verbose_medium())
  3592       gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
  3593                              _task_id, n);
  3594     for (int i = 0; i < n; ++i) {
  3595       bool success = _task_queue->push(buffer[i]);
  3596       // We only call this when the local queue is empty or under a
  3597       // given target limit. So, we do not expect this push to fail.
  3598       assert(success, "invariant");
  3601     statsOnly( int tmp_size = _task_queue->size();
  3602                if (tmp_size > _local_max_size)
  3603                  _local_max_size = tmp_size;
  3604                _local_pushes += n );
  3607   // this operation was quite expensive, so decrease the limits
  3608   decrease_limits();
  3611 void CMTask::drain_local_queue(bool partially) {
  3612   if (has_aborted())
  3613     return;
  3615   // Decide what the target size is, depending whether we're going to
  3616   // drain it partially (so that other tasks can steal if they run out
  3617   // of things to do) or totally (at the very end).
  3618   size_t target_size;
  3619   if (partially)
  3620     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3621   else
  3622     target_size = 0;
  3624   if (_task_queue->size() > target_size) {
  3625     if (_cm->verbose_high())
  3626       gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
  3627                              _task_id, target_size);
  3629     oop obj;
  3630     bool ret = _task_queue->pop_local(obj);
  3631     while (ret) {
  3632       statsOnly( ++_local_pops );
  3634       if (_cm->verbose_high())
  3635         gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
  3636                                (void*) obj);
  3638       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3639       assert(!_g1h->is_on_free_list(
  3640                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3642       scan_object(obj);
  3644       if (_task_queue->size() <= target_size || has_aborted())
  3645         ret = false;
  3646       else
  3647         ret = _task_queue->pop_local(obj);
  3650     if (_cm->verbose_high())
  3651       gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
  3652                              _task_id, _task_queue->size());
  3656 void CMTask::drain_global_stack(bool partially) {
  3657   if (has_aborted())
  3658     return;
  3660   // We have a policy to drain the local queue before we attempt to
  3661   // drain the global stack.
  3662   assert(partially || _task_queue->size() == 0, "invariant");
  3664   // Decide what the target size is, depending whether we're going to
  3665   // drain it partially (so that other tasks can steal if they run out
  3666   // of things to do) or totally (at the very end).  Notice that,
  3667   // because we move entries from the global stack in chunks or
  3668   // because another task might be doing the same, we might in fact
  3669   // drop below the target. But, this is not a problem.
  3670   size_t target_size;
  3671   if (partially)
  3672     target_size = _cm->partial_mark_stack_size_target();
  3673   else
  3674     target_size = 0;
  3676   if (_cm->mark_stack_size() > target_size) {
  3677     if (_cm->verbose_low())
  3678       gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
  3679                              _task_id, target_size);
  3681     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3682       get_entries_from_global_stack();
  3683       drain_local_queue(partially);
  3686     if (_cm->verbose_low())
  3687       gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
  3688                              _task_id, _cm->mark_stack_size());
  3692 // SATB Queue has several assumptions on whether to call the par or
  3693 // non-par versions of the methods. this is why some of the code is
  3694 // replicated. We should really get rid of the single-threaded version
  3695 // of the code to simplify things.
  3696 void CMTask::drain_satb_buffers() {
  3697   if (has_aborted())
  3698     return;
  3700   // We set this so that the regular clock knows that we're in the
  3701   // middle of draining buffers and doesn't set the abort flag when it
  3702   // notices that SATB buffers are available for draining. It'd be
  3703   // very counter productive if it did that. :-)
  3704   _draining_satb_buffers = true;
  3706   CMObjectClosure oc(this);
  3707   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3708   if (G1CollectedHeap::use_parallel_gc_threads())
  3709     satb_mq_set.set_par_closure(_task_id, &oc);
  3710   else
  3711     satb_mq_set.set_closure(&oc);
  3713   // This keeps claiming and applying the closure to completed buffers
  3714   // until we run out of buffers or we need to abort.
  3715   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3716     while (!has_aborted() &&
  3717            satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
  3718       if (_cm->verbose_medium())
  3719         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
  3720       statsOnly( ++_satb_buffers_processed );
  3721       regular_clock_call();
  3723   } else {
  3724     while (!has_aborted() &&
  3725            satb_mq_set.apply_closure_to_completed_buffer()) {
  3726       if (_cm->verbose_medium())
  3727         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
  3728       statsOnly( ++_satb_buffers_processed );
  3729       regular_clock_call();
  3733   if (!concurrent() && !has_aborted()) {
  3734     // We should only do this during remark.
  3735     if (G1CollectedHeap::use_parallel_gc_threads())
  3736       satb_mq_set.par_iterate_closure_all_threads(_task_id);
  3737     else
  3738       satb_mq_set.iterate_closure_all_threads();
  3741   _draining_satb_buffers = false;
  3743   assert(has_aborted() ||
  3744          concurrent() ||
  3745          satb_mq_set.completed_buffers_num() == 0, "invariant");
  3747   if (G1CollectedHeap::use_parallel_gc_threads())
  3748     satb_mq_set.set_par_closure(_task_id, NULL);
  3749   else
  3750     satb_mq_set.set_closure(NULL);
  3752   // again, this was a potentially expensive operation, decrease the
  3753   // limits to get the regular clock call early
  3754   decrease_limits();
  3757 void CMTask::drain_region_stack(BitMapClosure* bc) {
  3758   if (has_aborted())
  3759     return;
  3761   assert(_region_finger == NULL,
  3762          "it should be NULL when we're not scanning a region");
  3764   if (!_cm->region_stack_empty() || !_aborted_region.is_empty()) {
  3765     if (_cm->verbose_low())
  3766       gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
  3767                              _task_id, _cm->region_stack_size());
  3769     MemRegion mr;
  3771     if (!_aborted_region.is_empty()) {
  3772       mr = _aborted_region;
  3773       _aborted_region = MemRegion();
  3775       if (_cm->verbose_low())
  3776         gclog_or_tty->print_cr("[%d] scanning aborted region [ " PTR_FORMAT ", " PTR_FORMAT " )",
  3777                              _task_id, mr.start(), mr.end());
  3778     } else {
  3779       mr = _cm->region_stack_pop_lock_free();
  3780       // it returns MemRegion() if the pop fails
  3781       statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
  3784     while (mr.start() != NULL) {
  3785       if (_cm->verbose_medium())
  3786         gclog_or_tty->print_cr("[%d] we are scanning region "
  3787                                "["PTR_FORMAT", "PTR_FORMAT")",
  3788                                _task_id, mr.start(), mr.end());
  3790       assert(mr.end() <= _cm->finger(),
  3791              "otherwise the region shouldn't be on the stack");
  3792       assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
  3793       if (_nextMarkBitMap->iterate(bc, mr)) {
  3794         assert(!has_aborted(),
  3795                "cannot abort the task without aborting the bitmap iteration");
  3797         // We finished iterating over the region without aborting.
  3798         regular_clock_call();
  3799         if (has_aborted())
  3800           mr = MemRegion();
  3801         else {
  3802           mr = _cm->region_stack_pop_lock_free();
  3803           // it returns MemRegion() if the pop fails
  3804           statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
  3806       } else {
  3807         assert(has_aborted(), "currently the only way to do so");
  3809         // The only way to abort the bitmap iteration is to return
  3810         // false from the do_bit() method. However, inside the
  3811         // do_bit() method we move the _region_finger to point to the
  3812         // object currently being looked at. So, if we bail out, we
  3813         // have definitely set _region_finger to something non-null.
  3814         assert(_region_finger != NULL, "invariant");
  3816         // Make sure that any previously aborted region has been
  3817         // cleared.
  3818         assert(_aborted_region.is_empty(), "aborted region not cleared");
  3820         // The iteration was actually aborted. So now _region_finger
  3821         // points to the address of the object we last scanned. If we
  3822         // leave it there, when we restart this task, we will rescan
  3823         // the object. It is easy to avoid this. We move the finger by
  3824         // enough to point to the next possible object header (the
  3825         // bitmap knows by how much we need to move it as it knows its
  3826         // granularity).
  3827         MemRegion newRegion =
  3828           MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());
  3830         if (!newRegion.is_empty()) {
  3831           if (_cm->verbose_low()) {
  3832             gclog_or_tty->print_cr("[%d] recording unscanned region"
  3833                                    "[" PTR_FORMAT "," PTR_FORMAT ") in CMTask",
  3834                                    _task_id,
  3835                                    newRegion.start(), newRegion.end());
  3837           // Now record the part of the region we didn't scan to
  3838           // make sure this task scans it later.
  3839           _aborted_region = newRegion;
  3841         // break from while
  3842         mr = MemRegion();
  3844       _region_finger = NULL;
  3847     if (_cm->verbose_low())
  3848       gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
  3849                              _task_id, _cm->region_stack_size());
  3853 void CMTask::print_stats() {
  3854   gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
  3855                          _task_id, _calls);
  3856   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  3857                          _elapsed_time_ms, _termination_time_ms);
  3858   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3859                          _step_times_ms.num(), _step_times_ms.avg(),
  3860                          _step_times_ms.sd());
  3861   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  3862                          _step_times_ms.maximum(), _step_times_ms.sum());
  3864 #if _MARKING_STATS_
  3865   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  3866                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  3867                          _all_clock_intervals_ms.sd());
  3868   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  3869                          _all_clock_intervals_ms.maximum(),
  3870                          _all_clock_intervals_ms.sum());
  3871   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  3872                          _clock_due_to_scanning, _clock_due_to_marking);
  3873   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  3874                          _objs_scanned, _objs_found_on_bitmap);
  3875   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  3876                          _local_pushes, _local_pops, _local_max_size);
  3877   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  3878                          _global_pushes, _global_pops, _global_max_size);
  3879   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  3880                          _global_transfers_to,_global_transfers_from);
  3881   gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
  3882                          _regions_claimed, _region_stack_pops);
  3883   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  3884   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  3885                          _steal_attempts, _steals);
  3886   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  3887   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  3888                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  3889   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  3890                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  3891 #endif // _MARKING_STATS_
  3894 /*****************************************************************************
  3896     The do_marking_step(time_target_ms) method is the building block
  3897     of the parallel marking framework. It can be called in parallel
  3898     with other invocations of do_marking_step() on different tasks
  3899     (but only one per task, obviously) and concurrently with the
  3900     mutator threads, or during remark, hence it eliminates the need
  3901     for two versions of the code. When called during remark, it will
  3902     pick up from where the task left off during the concurrent marking
  3903     phase. Interestingly, tasks are also claimable during evacuation
  3904     pauses too, since do_marking_step() ensures that it aborts before
  3905     it needs to yield.
  3907     The data structures that is uses to do marking work are the
  3908     following:
  3910       (1) Marking Bitmap. If there are gray objects that appear only
  3911       on the bitmap (this happens either when dealing with an overflow
  3912       or when the initial marking phase has simply marked the roots
  3913       and didn't push them on the stack), then tasks claim heap
  3914       regions whose bitmap they then scan to find gray objects. A
  3915       global finger indicates where the end of the last claimed region
  3916       is. A local finger indicates how far into the region a task has
  3917       scanned. The two fingers are used to determine how to gray an
  3918       object (i.e. whether simply marking it is OK, as it will be
  3919       visited by a task in the future, or whether it needs to be also
  3920       pushed on a stack).
  3922       (2) Local Queue. The local queue of the task which is accessed
  3923       reasonably efficiently by the task. Other tasks can steal from
  3924       it when they run out of work. Throughout the marking phase, a
  3925       task attempts to keep its local queue short but not totally
  3926       empty, so that entries are available for stealing by other
  3927       tasks. Only when there is no more work, a task will totally
  3928       drain its local queue.
  3930       (3) Global Mark Stack. This handles local queue overflow. During
  3931       marking only sets of entries are moved between it and the local
  3932       queues, as access to it requires a mutex and more fine-grain
  3933       interaction with it which might cause contention. If it
  3934       overflows, then the marking phase should restart and iterate
  3935       over the bitmap to identify gray objects. Throughout the marking
  3936       phase, tasks attempt to keep the global mark stack at a small
  3937       length but not totally empty, so that entries are available for
  3938       popping by other tasks. Only when there is no more work, tasks
  3939       will totally drain the global mark stack.
  3941       (4) Global Region Stack. Entries on it correspond to areas of
  3942       the bitmap that need to be scanned since they contain gray
  3943       objects. Pushes on the region stack only happen during
  3944       evacuation pauses and typically correspond to areas covered by
  3945       GC LABS. If it overflows, then the marking phase should restart
  3946       and iterate over the bitmap to identify gray objects. Tasks will
  3947       try to totally drain the region stack as soon as possible.
  3949       (5) SATB Buffer Queue. This is where completed SATB buffers are
  3950       made available. Buffers are regularly removed from this queue
  3951       and scanned for roots, so that the queue doesn't get too
  3952       long. During remark, all completed buffers are processed, as
  3953       well as the filled in parts of any uncompleted buffers.
  3955     The do_marking_step() method tries to abort when the time target
  3956     has been reached. There are a few other cases when the
  3957     do_marking_step() method also aborts:
  3959       (1) When the marking phase has been aborted (after a Full GC).
  3961       (2) When a global overflow (either on the global stack or the
  3962       region stack) has been triggered. Before the task aborts, it
  3963       will actually sync up with the other tasks to ensure that all
  3964       the marking data structures (local queues, stacks, fingers etc.)
  3965       are re-initialised so that when do_marking_step() completes,
  3966       the marking phase can immediately restart.
  3968       (3) When enough completed SATB buffers are available. The
  3969       do_marking_step() method only tries to drain SATB buffers right
  3970       at the beginning. So, if enough buffers are available, the
  3971       marking step aborts and the SATB buffers are processed at
  3972       the beginning of the next invocation.
  3974       (4) To yield. when we have to yield then we abort and yield
  3975       right at the end of do_marking_step(). This saves us from a lot
  3976       of hassle as, by yielding we might allow a Full GC. If this
  3977       happens then objects will be compacted underneath our feet, the
  3978       heap might shrink, etc. We save checking for this by just
  3979       aborting and doing the yield right at the end.
  3981     From the above it follows that the do_marking_step() method should
  3982     be called in a loop (or, otherwise, regularly) until it completes.
  3984     If a marking step completes without its has_aborted() flag being
  3985     true, it means it has completed the current marking phase (and
  3986     also all other marking tasks have done so and have all synced up).
  3988     A method called regular_clock_call() is invoked "regularly" (in
  3989     sub ms intervals) throughout marking. It is this clock method that
  3990     checks all the abort conditions which were mentioned above and
  3991     decides when the task should abort. A work-based scheme is used to
  3992     trigger this clock method: when the number of object words the
  3993     marking phase has scanned or the number of references the marking
  3994     phase has visited reach a given limit. Additional invocations to
  3995     the method clock have been planted in a few other strategic places
  3996     too. The initial reason for the clock method was to avoid calling
  3997     vtime too regularly, as it is quite expensive. So, once it was in
  3998     place, it was natural to piggy-back all the other conditions on it
  3999     too and not constantly check them throughout the code.
  4001  *****************************************************************************/
  4003 void CMTask::do_marking_step(double time_target_ms,
  4004                              bool do_stealing,
  4005                              bool do_termination) {
  4006   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4007   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4009   assert(concurrent() || _cm->region_stack_empty(),
  4010          "the region stack should have been cleared before remark");
  4011   assert(concurrent() || !_cm->has_aborted_regions(),
  4012          "aborted regions should have been cleared before remark");
  4013   assert(_region_finger == NULL,
  4014          "this should be non-null only when a region is being scanned");
  4016   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4017   assert(_task_queues != NULL, "invariant");
  4018   assert(_task_queue != NULL, "invariant");
  4019   assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
  4021   assert(!_claimed,
  4022          "only one thread should claim this task at any one time");
  4024   // OK, this doesn't safeguard again all possible scenarios, as it is
  4025   // possible for two threads to set the _claimed flag at the same
  4026   // time. But it is only for debugging purposes anyway and it will
  4027   // catch most problems.
  4028   _claimed = true;
  4030   _start_time_ms = os::elapsedVTime() * 1000.0;
  4031   statsOnly( _interval_start_time_ms = _start_time_ms );
  4033   double diff_prediction_ms =
  4034     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4035   _time_target_ms = time_target_ms - diff_prediction_ms;
  4037   // set up the variables that are used in the work-based scheme to
  4038   // call the regular clock method
  4039   _words_scanned = 0;
  4040   _refs_reached  = 0;
  4041   recalculate_limits();
  4043   // clear all flags
  4044   clear_has_aborted();
  4045   _has_timed_out = false;
  4046   _draining_satb_buffers = false;
  4048   ++_calls;
  4050   if (_cm->verbose_low())
  4051     gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
  4052                            "target = %1.2lfms >>>>>>>>>>",
  4053                            _task_id, _calls, _time_target_ms);
  4055   // Set up the bitmap and oop closures. Anything that uses them is
  4056   // eventually called from this method, so it is OK to allocate these
  4057   // statically.
  4058   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4059   CMOopClosure    oop_closure(_g1h, _cm, this);
  4060   set_oop_closure(&oop_closure);
  4062   if (_cm->has_overflown()) {
  4063     // This can happen if the region stack or the mark stack overflows
  4064     // during a GC pause and this task, after a yield point,
  4065     // restarts. We have to abort as we need to get into the overflow
  4066     // protocol which happens right at the end of this task.
  4067     set_has_aborted();
  4070   // First drain any available SATB buffers. After this, we will not
  4071   // look at SATB buffers before the next invocation of this method.
  4072   // If enough completed SATB buffers are queued up, the regular clock
  4073   // will abort this task so that it restarts.
  4074   drain_satb_buffers();
  4075   // ...then partially drain the local queue and the global stack
  4076   drain_local_queue(true);
  4077   drain_global_stack(true);
  4079   // Then totally drain the region stack.  We will not look at
  4080   // it again before the next invocation of this method. Entries on
  4081   // the region stack are only added during evacuation pauses, for
  4082   // which we have to yield. When we do, we abort the task anyway so
  4083   // it will look at the region stack again when it restarts.
  4084   bitmap_closure.set_scanning_heap_region(false);
  4085   drain_region_stack(&bitmap_closure);
  4086   // ...then partially drain the local queue and the global stack
  4087   drain_local_queue(true);
  4088   drain_global_stack(true);
  4090   do {
  4091     if (!has_aborted() && _curr_region != NULL) {
  4092       // This means that we're already holding on to a region.
  4093       assert(_finger != NULL, "if region is not NULL, then the finger "
  4094              "should not be NULL either");
  4096       // We might have restarted this task after an evacuation pause
  4097       // which might have evacuated the region we're holding on to
  4098       // underneath our feet. Let's read its limit again to make sure
  4099       // that we do not iterate over a region of the heap that
  4100       // contains garbage (update_region_limit() will also move
  4101       // _finger to the start of the region if it is found empty).
  4102       update_region_limit();
  4103       // We will start from _finger not from the start of the region,
  4104       // as we might be restarting this task after aborting half-way
  4105       // through scanning this region. In this case, _finger points to
  4106       // the address where we last found a marked object. If this is a
  4107       // fresh region, _finger points to start().
  4108       MemRegion mr = MemRegion(_finger, _region_limit);
  4110       if (_cm->verbose_low())
  4111         gclog_or_tty->print_cr("[%d] we're scanning part "
  4112                                "["PTR_FORMAT", "PTR_FORMAT") "
  4113                                "of region "PTR_FORMAT,
  4114                                _task_id, _finger, _region_limit, _curr_region);
  4116       // Let's iterate over the bitmap of the part of the
  4117       // region that is left.
  4118       bitmap_closure.set_scanning_heap_region(true);
  4119       if (mr.is_empty() ||
  4120           _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4121         // We successfully completed iterating over the region. Now,
  4122         // let's give up the region.
  4123         giveup_current_region();
  4124         regular_clock_call();
  4125       } else {
  4126         assert(has_aborted(), "currently the only way to do so");
  4127         // The only way to abort the bitmap iteration is to return
  4128         // false from the do_bit() method. However, inside the
  4129         // do_bit() method we move the _finger to point to the
  4130         // object currently being looked at. So, if we bail out, we
  4131         // have definitely set _finger to something non-null.
  4132         assert(_finger != NULL, "invariant");
  4134         // Region iteration was actually aborted. So now _finger
  4135         // points to the address of the object we last scanned. If we
  4136         // leave it there, when we restart this task, we will rescan
  4137         // the object. It is easy to avoid this. We move the finger by
  4138         // enough to point to the next possible object header (the
  4139         // bitmap knows by how much we need to move it as it knows its
  4140         // granularity).
  4141         assert(_finger < _region_limit, "invariant");
  4142         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
  4143         // Check if bitmap iteration was aborted while scanning the last object
  4144         if (new_finger >= _region_limit) {
  4145             giveup_current_region();
  4146         } else {
  4147             move_finger_to(new_finger);
  4151     // At this point we have either completed iterating over the
  4152     // region we were holding on to, or we have aborted.
  4154     // We then partially drain the local queue and the global stack.
  4155     // (Do we really need this?)
  4156     drain_local_queue(true);
  4157     drain_global_stack(true);
  4159     // Read the note on the claim_region() method on why it might
  4160     // return NULL with potentially more regions available for
  4161     // claiming and why we have to check out_of_regions() to determine
  4162     // whether we're done or not.
  4163     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4164       // We are going to try to claim a new region. We should have
  4165       // given up on the previous one.
  4166       // Separated the asserts so that we know which one fires.
  4167       assert(_curr_region  == NULL, "invariant");
  4168       assert(_finger       == NULL, "invariant");
  4169       assert(_region_limit == NULL, "invariant");
  4170       if (_cm->verbose_low())
  4171         gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
  4172       HeapRegion* claimed_region = _cm->claim_region(_task_id);
  4173       if (claimed_region != NULL) {
  4174         // Yes, we managed to claim one
  4175         statsOnly( ++_regions_claimed );
  4177         if (_cm->verbose_low())
  4178           gclog_or_tty->print_cr("[%d] we successfully claimed "
  4179                                  "region "PTR_FORMAT,
  4180                                  _task_id, claimed_region);
  4182         setup_for_region(claimed_region);
  4183         assert(_curr_region == claimed_region, "invariant");
  4185       // It is important to call the regular clock here. It might take
  4186       // a while to claim a region if, for example, we hit a large
  4187       // block of empty regions. So we need to call the regular clock
  4188       // method once round the loop to make sure it's called
  4189       // frequently enough.
  4190       regular_clock_call();
  4193     if (!has_aborted() && _curr_region == NULL) {
  4194       assert(_cm->out_of_regions(),
  4195              "at this point we should be out of regions");
  4197   } while ( _curr_region != NULL && !has_aborted());
  4199   if (!has_aborted()) {
  4200     // We cannot check whether the global stack is empty, since other
  4201     // tasks might be pushing objects to it concurrently. We also cannot
  4202     // check if the region stack is empty because if a thread is aborting
  4203     // it can push a partially done region back.
  4204     assert(_cm->out_of_regions(),
  4205            "at this point we should be out of regions");
  4207     if (_cm->verbose_low())
  4208       gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
  4210     // Try to reduce the number of available SATB buffers so that
  4211     // remark has less work to do.
  4212     drain_satb_buffers();
  4215   // Since we've done everything else, we can now totally drain the
  4216   // local queue and global stack.
  4217   drain_local_queue(false);
  4218   drain_global_stack(false);
  4220   // Attempt at work stealing from other task's queues.
  4221   if (do_stealing && !has_aborted()) {
  4222     // We have not aborted. This means that we have finished all that
  4223     // we could. Let's try to do some stealing...
  4225     // We cannot check whether the global stack is empty, since other
  4226     // tasks might be pushing objects to it concurrently. We also cannot
  4227     // check if the region stack is empty because if a thread is aborting
  4228     // it can push a partially done region back.
  4229     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4230            "only way to reach here");
  4232     if (_cm->verbose_low())
  4233       gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
  4235     while (!has_aborted()) {
  4236       oop obj;
  4237       statsOnly( ++_steal_attempts );
  4239       if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
  4240         if (_cm->verbose_medium())
  4241           gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
  4242                                  _task_id, (void*) obj);
  4244         statsOnly( ++_steals );
  4246         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4247                "any stolen object should be marked");
  4248         scan_object(obj);
  4250         // And since we're towards the end, let's totally drain the
  4251         // local queue and global stack.
  4252         drain_local_queue(false);
  4253         drain_global_stack(false);
  4254       } else {
  4255         break;
  4260   // We still haven't aborted. Now, let's try to get into the
  4261   // termination protocol.
  4262   if (do_termination && !has_aborted()) {
  4263     // We cannot check whether the global stack is empty, since other
  4264     // tasks might be concurrently pushing objects on it. We also cannot
  4265     // check if the region stack is empty because if a thread is aborting
  4266     // it can push a partially done region back.
  4267     // Separated the asserts so that we know which one fires.
  4268     assert(_cm->out_of_regions(), "only way to reach here");
  4269     assert(_task_queue->size() == 0, "only way to reach here");
  4271     if (_cm->verbose_low())
  4272       gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
  4274     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4275     // The CMTask class also extends the TerminatorTerminator class,
  4276     // hence its should_exit_termination() method will also decide
  4277     // whether to exit the termination protocol or not.
  4278     bool finished = _cm->terminator()->offer_termination(this);
  4279     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4280     _termination_time_ms +=
  4281       termination_end_time_ms - _termination_start_time_ms;
  4283     if (finished) {
  4284       // We're all done.
  4286       if (_task_id == 0) {
  4287         // let's allow task 0 to do this
  4288         if (concurrent()) {
  4289           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4290           // we need to set this to false before the next
  4291           // safepoint. This way we ensure that the marking phase
  4292           // doesn't observe any more heap expansions.
  4293           _cm->clear_concurrent_marking_in_progress();
  4297       // We can now guarantee that the global stack is empty, since
  4298       // all other tasks have finished. We separated the guarantees so
  4299       // that, if a condition is false, we can immediately find out
  4300       // which one.
  4301       guarantee(_cm->out_of_regions(), "only way to reach here");
  4302       guarantee(_aborted_region.is_empty(), "only way to reach here");
  4303       guarantee(_cm->region_stack_empty(), "only way to reach here");
  4304       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4305       guarantee(_task_queue->size() == 0, "only way to reach here");
  4306       guarantee(!_cm->has_overflown(), "only way to reach here");
  4307       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4308       guarantee(!_cm->region_stack_overflow(), "only way to reach here");
  4310       if (_cm->verbose_low())
  4311         gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
  4312     } else {
  4313       // Apparently there's more work to do. Let's abort this task. It
  4314       // will restart it and we can hopefully find more things to do.
  4316       if (_cm->verbose_low())
  4317         gclog_or_tty->print_cr("[%d] apparently there is more work to do", _task_id);
  4319       set_has_aborted();
  4320       statsOnly( ++_aborted_termination );
  4324   // Mainly for debugging purposes to make sure that a pointer to the
  4325   // closure which was statically allocated in this frame doesn't
  4326   // escape it by accident.
  4327   set_oop_closure(NULL);
  4328   double end_time_ms = os::elapsedVTime() * 1000.0;
  4329   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4330   // Update the step history.
  4331   _step_times_ms.add(elapsed_time_ms);
  4333   if (has_aborted()) {
  4334     // The task was aborted for some reason.
  4336     statsOnly( ++_aborted );
  4338     if (_has_timed_out) {
  4339       double diff_ms = elapsed_time_ms - _time_target_ms;
  4340       // Keep statistics of how well we did with respect to hitting
  4341       // our target only if we actually timed out (if we aborted for
  4342       // other reasons, then the results might get skewed).
  4343       _marking_step_diffs_ms.add(diff_ms);
  4346     if (_cm->has_overflown()) {
  4347       // This is the interesting one. We aborted because a global
  4348       // overflow was raised. This means we have to restart the
  4349       // marking phase and start iterating over regions. However, in
  4350       // order to do this we have to make sure that all tasks stop
  4351       // what they are doing and re-initialise in a safe manner. We
  4352       // will achieve this with the use of two barrier sync points.
  4354       if (_cm->verbose_low())
  4355         gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
  4357       _cm->enter_first_sync_barrier(_task_id);
  4358       // When we exit this sync barrier we know that all tasks have
  4359       // stopped doing marking work. So, it's now safe to
  4360       // re-initialise our data structures. At the end of this method,
  4361       // task 0 will clear the global data structures.
  4363       statsOnly( ++_aborted_overflow );
  4365       // We clear the local state of this task...
  4366       clear_region_fields();
  4368       // ...and enter the second barrier.
  4369       _cm->enter_second_sync_barrier(_task_id);
  4370       // At this point everything has bee re-initialised and we're
  4371       // ready to restart.
  4374     if (_cm->verbose_low()) {
  4375       gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4376                              "elapsed = %1.2lfms <<<<<<<<<<",
  4377                              _task_id, _time_target_ms, elapsed_time_ms);
  4378       if (_cm->has_aborted())
  4379         gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
  4380                                _task_id);
  4382   } else {
  4383     if (_cm->verbose_low())
  4384       gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4385                              "elapsed = %1.2lfms <<<<<<<<<<",
  4386                              _task_id, _time_target_ms, elapsed_time_ms);
  4389   _claimed = false;
  4392 CMTask::CMTask(int task_id,
  4393                ConcurrentMark* cm,
  4394                CMTaskQueue* task_queue,
  4395                CMTaskQueueSet* task_queues)
  4396   : _g1h(G1CollectedHeap::heap()),
  4397     _task_id(task_id), _cm(cm),
  4398     _claimed(false),
  4399     _nextMarkBitMap(NULL), _hash_seed(17),
  4400     _task_queue(task_queue),
  4401     _task_queues(task_queues),
  4402     _oop_closure(NULL),
  4403     _aborted_region(MemRegion()) {
  4404   guarantee(task_queue != NULL, "invariant");
  4405   guarantee(task_queues != NULL, "invariant");
  4407   statsOnly( _clock_due_to_scanning = 0;
  4408              _clock_due_to_marking  = 0 );
  4410   _marking_step_diffs_ms.add(0.5);

mercurial