src/cpu/sparc/vm/sparc.ad

Fri, 11 Mar 2011 22:34:57 -0800

author
jrose
date
Fri, 11 Mar 2011 22:34:57 -0800
changeset 2639
8033953d67ff
parent 2561
ab42c7e1cf83
child 2683
7e88bdae86ec
permissions
-rw-r--r--

7012648: move JSR 292 to package java.lang.invoke and adjust names
Summary: package and class renaming only; delete unused methods and classes
Reviewed-by: twisti

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   if (MacroAssembler::is_far_target(entry_point())) {
   579     return NativeFarCall::instruction_size;
   580   } else {
   581     return NativeCall::instruction_size;
   582   }
   583 #else
   584   return NativeCall::instruction_size;  // call; delay slot
   585 #endif
   586 }
   588 // Indicate if the safepoint node needs the polling page as an input.
   589 // Since Sparc does not have absolute addressing, it does.
   590 bool SafePointNode::needs_polling_address_input() {
   591   return true;
   592 }
   594 // emit an interrupt that is caught by the debugger (for debugging compiler)
   595 void emit_break(CodeBuffer &cbuf) {
   596   MacroAssembler _masm(&cbuf);
   597   __ breakpoint_trap();
   598 }
   600 #ifndef PRODUCT
   601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   602   st->print("TA");
   603 }
   604 #endif
   606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   607   emit_break(cbuf);
   608 }
   610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   611   return MachNode::size(ra_);
   612 }
   614 // Traceable jump
   615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   616   MacroAssembler _masm(&cbuf);
   617   Register rdest = reg_to_register_object(jump_target);
   618   __ JMP(rdest, 0);
   619   __ delayed()->nop();
   620 }
   622 // Traceable jump and set exception pc
   623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   624   MacroAssembler _masm(&cbuf);
   625   Register rdest = reg_to_register_object(jump_target);
   626   __ JMP(rdest, 0);
   627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   628 }
   630 void emit_nop(CodeBuffer &cbuf) {
   631   MacroAssembler _masm(&cbuf);
   632   __ nop();
   633 }
   635 void emit_illtrap(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ illtrap(0);
   638 }
   641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   642   assert(n->rule() != loadUB_rule, "");
   644   intptr_t offset = 0;
   645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   646   const Node* addr = n->get_base_and_disp(offset, adr_type);
   647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   650   atype = atype->add_offset(offset);
   651   assert(disp32 == offset, "wrong disp32");
   652   return atype->_offset;
   653 }
   656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   657   assert(n->rule() != loadUB_rule, "");
   659   intptr_t offset = 0;
   660   Node* addr = n->in(2);
   661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   663     Node* a = addr->in(2/*AddPNode::Address*/);
   664     Node* o = addr->in(3/*AddPNode::Offset*/);
   665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   667     assert(atype->isa_oop_ptr(), "still an oop");
   668   }
   669   offset = atype->is_ptr()->_offset;
   670   if (offset != Type::OffsetBot)  offset += disp32;
   671   return offset;
   672 }
   674 static inline jdouble replicate_immI(int con, int count, int width) {
   675   // Load a constant replicated "count" times with width "width"
   676   int bit_width = width * 8;
   677   jlong elt_val = con;
   678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   679   jlong val = elt_val;
   680   for (int i = 0; i < count - 1; i++) {
   681     val <<= bit_width;
   682     val |= elt_val;
   683   }
   684   jdouble dval = *((jdouble*) &val);  // coerce to double type
   685   return dval;
   686 }
   688 // Standard Sparc opcode form2 field breakdown
   689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   691   int op = (f30 << 30) |
   692            (f29 << 29) |
   693            (f25 << 25) |
   694            (f22 << 22) |
   695            (f20 << 20) |
   696            (f19 << 19) |
   697            (f0  <<  0);
   698   cbuf.insts()->emit_int32(op);
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   703   f0 >>= 10;           // Drop 10 bits
   704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   705   int op = (f30 << 30) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f0  <<  0);
   709   cbuf.insts()->emit_int32(op);
   710 }
   712 // Standard Sparc opcode form3 field breakdown
   713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   714   int op = (f30 << 30) |
   715            (f25 << 25) |
   716            (f19 << 19) |
   717            (f14 << 14) |
   718            (f5  <<  5) |
   719            (f0  <<  0);
   720   cbuf.insts()->emit_int32(op);
   721 }
   723 // Standard Sparc opcode form3 field breakdown
   724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   725   simm13 &= (1<<13)-1; // Mask to 13 bits
   726   int op = (f30 << 30) |
   727            (f25 << 25) |
   728            (f19 << 19) |
   729            (f14 << 14) |
   730            (1   << 13) | // bit to indicate immediate-mode
   731            (simm13<<0);
   732   cbuf.insts()->emit_int32(op);
   733 }
   735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   736   simm10 &= (1<<10)-1; // Mask to 10 bits
   737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   738 }
   740 #ifdef ASSERT
   741 // Helper function for VerifyOops in emit_form3_mem_reg
   742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   743   warning("VerifyOops encountered unexpected instruction:");
   744   n->dump(2);
   745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   746 }
   747 #endif
   750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   753 #ifdef ASSERT
   754   // The following code implements the +VerifyOops feature.
   755   // It verifies oop values which are loaded into or stored out of
   756   // the current method activation.  +VerifyOops complements techniques
   757   // like ScavengeALot, because it eagerly inspects oops in transit,
   758   // as they enter or leave the stack, as opposed to ScavengeALot,
   759   // which inspects oops "at rest", in the stack or heap, at safepoints.
   760   // For this reason, +VerifyOops can sometimes detect bugs very close
   761   // to their point of creation.  It can also serve as a cross-check
   762   // on the validity of oop maps, when used toegether with ScavengeALot.
   764   // It would be good to verify oops at other points, especially
   765   // when an oop is used as a base pointer for a load or store.
   766   // This is presently difficult, because it is hard to know when
   767   // a base address is biased or not.  (If we had such information,
   768   // it would be easy and useful to make a two-argument version of
   769   // verify_oop which unbiases the base, and performs verification.)
   771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   772   bool is_verified_oop_base  = false;
   773   bool is_verified_oop_load  = false;
   774   bool is_verified_oop_store = false;
   775   int tmp_enc = -1;
   776   if (VerifyOops && src1_enc != R_SP_enc) {
   777     // classify the op, mainly for an assert check
   778     int st_op = 0, ld_op = 0;
   779     switch (primary) {
   780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   784     case Assembler::std_op3:  st_op = Op_StoreL; break;
   785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   800     default: ShouldNotReachHere();
   801     }
   802     if (tertiary == REGP_OP) {
   803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   805       else                          ShouldNotReachHere();
   806       if (st_op) {
   807         // a store
   808         // inputs are (0:control, 1:memory, 2:address, 3:value)
   809         Node* n2 = n->in(3);
   810         if (n2 != NULL) {
   811           const Type* t = n2->bottom_type();
   812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   813         }
   814       } else {
   815         // a load
   816         const Type* t = n->bottom_type();
   817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818       }
   819     }
   821     if (ld_op) {
   822       // a Load
   823       // inputs are (0:control, 1:memory, 2:address)
   824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   842           !(n->rule() == loadUB_rule)) {
   843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   844       }
   845     } else if (st_op) {
   846       // a Store
   847       // inputs are (0:control, 1:memory, 2:address, 3:value)
   848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   858       }
   859     }
   861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   862       Node* addr = n->in(2);
   863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   865         if (atype != NULL) {
   866           intptr_t offset = get_offset_from_base(n, atype, disp32);
   867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   868           if (offset != offset_2) {
   869             get_offset_from_base(n, atype, disp32);
   870             get_offset_from_base_2(n, atype, disp32);
   871           }
   872           assert(offset == offset_2, "different offsets");
   873           if (offset == disp32) {
   874             // we now know that src1 is a true oop pointer
   875             is_verified_oop_base = true;
   876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   877               if( primary == Assembler::ldd_op3 ) {
   878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   879               } else {
   880                 tmp_enc = dst_enc;
   881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   882                 assert(src1_enc != dst_enc, "");
   883               }
   884             }
   885           }
   886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   887                        || offset == oopDesc::mark_offset_in_bytes())) {
   888                       // loading the mark should not be allowed either, but
   889                       // we don't check this since it conflicts with InlineObjectHash
   890                       // usage of LoadINode to get the mark. We could keep the
   891                       // check if we create a new LoadMarkNode
   892             // but do not verify the object before its header is initialized
   893             ShouldNotReachHere();
   894           }
   895         }
   896       }
   897     }
   898   }
   899 #endif
   901   uint instr;
   902   instr = (Assembler::ldst_op << 30)
   903         | (dst_enc        << 25)
   904         | (primary        << 19)
   905         | (src1_enc       << 14);
   907   uint index = src2_enc;
   908   int disp = disp32;
   910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   911     disp += STACK_BIAS;
   913   // We should have a compiler bailout here rather than a guarantee.
   914   // Better yet would be some mechanism to handle variable-size matches correctly.
   915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   917   if( disp == 0 ) {
   918     // use reg-reg form
   919     // bit 13 is already zero
   920     instr |= index;
   921   } else {
   922     // use reg-imm form
   923     instr |= 0x00002000;          // set bit 13 to one
   924     instr |= disp & 0x1FFF;
   925   }
   927   cbuf.insts()->emit_int32(instr);
   929 #ifdef ASSERT
   930   {
   931     MacroAssembler _masm(&cbuf);
   932     if (is_verified_oop_base) {
   933       __ verify_oop(reg_to_register_object(src1_enc));
   934     }
   935     if (is_verified_oop_store) {
   936       __ verify_oop(reg_to_register_object(dst_enc));
   937     }
   938     if (tmp_enc != -1) {
   939       __ mov(O7, reg_to_register_object(tmp_enc));
   940     }
   941     if (is_verified_oop_load) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944   }
   945 #endif
   946 }
   948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   949   // The method which records debug information at every safepoint
   950   // expects the call to be the first instruction in the snippet as
   951   // it creates a PcDesc structure which tracks the offset of a call
   952   // from the start of the codeBlob. This offset is computed as
   953   // code_end() - code_begin() of the code which has been emitted
   954   // so far.
   955   // In this particular case we have skirted around the problem by
   956   // putting the "mov" instruction in the delay slot but the problem
   957   // may bite us again at some other point and a cleaner/generic
   958   // solution using relocations would be needed.
   959   MacroAssembler _masm(&cbuf);
   960   __ set_inst_mark();
   962   // We flush the current window just so that there is a valid stack copy
   963   // the fact that the current window becomes active again instantly is
   964   // not a problem there is nothing live in it.
   966 #ifdef ASSERT
   967   int startpos = __ offset();
   968 #endif /* ASSERT */
   970   __ call((address)entry_point, rtype);
   972   if (preserve_g2)   __ delayed()->mov(G2, L7);
   973   else __ delayed()->nop();
   975   if (preserve_g2)   __ mov(L7, G2);
   977 #ifdef ASSERT
   978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   979 #ifdef _LP64
   980     // Trash argument dump slots.
   981     __ set(0xb0b8ac0db0b8ac0d, G1);
   982     __ mov(G1, G5);
   983     __ stx(G1, SP, STACK_BIAS + 0x80);
   984     __ stx(G1, SP, STACK_BIAS + 0x88);
   985     __ stx(G1, SP, STACK_BIAS + 0x90);
   986     __ stx(G1, SP, STACK_BIAS + 0x98);
   987     __ stx(G1, SP, STACK_BIAS + 0xA0);
   988     __ stx(G1, SP, STACK_BIAS + 0xA8);
   989 #else // _LP64
   990     // this is also a native call, so smash the first 7 stack locations,
   991     // and the various registers
   993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   994     // while [SP+0x44..0x58] are the argument dump slots.
   995     __ set((intptr_t)0xbaadf00d, G1);
   996     __ mov(G1, G5);
   997     __ sllx(G1, 32, G1);
   998     __ or3(G1, G5, G1);
   999     __ mov(G1, G5);
  1000     __ stx(G1, SP, 0x40);
  1001     __ stx(G1, SP, 0x48);
  1002     __ stx(G1, SP, 0x50);
  1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1004 #endif // _LP64
  1006 #endif /*ASSERT*/
  1009 //=============================================================================
  1010 // REQUIRED FUNCTIONALITY for encoding
  1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1015 //=============================================================================
  1016 const bool Matcher::constant_table_absolute_addressing = false;
  1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1020   Compile* C = ra_->C;
  1021   Compile::ConstantTable& constant_table = C->constant_table();
  1022   MacroAssembler _masm(&cbuf);
  1024   Register r = as_Register(ra_->get_encode(this));
  1025   CodeSection* cs = __ code()->consts();
  1026   int consts_size = cs->align_at_start(cs->size());
  1028   if (UseRDPCForConstantTableBase) {
  1029     // For the following RDPC logic to work correctly the consts
  1030     // section must be allocated right before the insts section.  This
  1031     // assert checks for that.  The layout and the SECT_* constants
  1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1034     int offset = __ offset();
  1035     int disp;
  1037     // If the displacement from the current PC to the constant table
  1038     // base fits into simm13 we set the constant table base to the
  1039     // current PC.
  1040     if (__ is_simm13(-(consts_size + offset))) {
  1041       constant_table.set_table_base_offset(-(consts_size + offset));
  1042       disp = 0;
  1043     } else {
  1044       // If the offset of the top constant (last entry in the table)
  1045       // fits into simm13 we set the constant table base to the actual
  1046       // table base.
  1047       if (__ is_simm13(constant_table.top_offset())) {
  1048         constant_table.set_table_base_offset(0);
  1049         disp = consts_size + offset;
  1050       } else {
  1051         // Otherwise we set the constant table base in the middle of the
  1052         // constant table.
  1053         int half_consts_size = consts_size / 2;
  1054         assert(half_consts_size * 2 == consts_size, "sanity");
  1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1056         disp = half_consts_size + offset;
  1060     __ rdpc(r);
  1062     if (disp != 0) {
  1063       assert(r != O7, "need temporary");
  1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1067   else {
  1068     // Materialize the constant table base.
  1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1072     AddressLiteral base(baseaddr, rspec);
  1073     __ set(base, r);
  1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1078   if (UseRDPCForConstantTableBase) {
  1079     // This is really the worst case but generally it's only 1 instruction.
  1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1081   } else {
  1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1086 #ifndef PRODUCT
  1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1088   char reg[128];
  1089   ra_->dump_register(this, reg);
  1090   if (UseRDPCForConstantTableBase) {
  1091     st->print("RDPC   %s\t! constant table base", reg);
  1092   } else {
  1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1096 #endif
  1099 //=============================================================================
  1101 #ifndef PRODUCT
  1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1103   Compile* C = ra_->C;
  1105   for (int i = 0; i < OptoPrologueNops; i++) {
  1106     st->print_cr("NOP"); st->print("\t");
  1109   if( VerifyThread ) {
  1110     st->print_cr("Verify_Thread"); st->print("\t");
  1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1115   // Calls to C2R adapters often do not accept exceptional returns.
  1116   // We require that their callers must bang for them.  But be careful, because
  1117   // some VM calls (such as call site linkage) can use several kilobytes of
  1118   // stack.  But the stack safety zone should account for that.
  1119   // See bugs 4446381, 4468289, 4497237.
  1120   if (C->need_stack_bang(framesize)) {
  1121     st->print_cr("! stack bang"); st->print("\t");
  1124   if (Assembler::is_simm13(-framesize)) {
  1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1126   } else {
  1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1133 #endif
  1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1136   Compile* C = ra_->C;
  1137   MacroAssembler _masm(&cbuf);
  1139   for (int i = 0; i < OptoPrologueNops; i++) {
  1140     __ nop();
  1143   __ verify_thread();
  1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1149   // Calls to C2R adapters often do not accept exceptional returns.
  1150   // We require that their callers must bang for them.  But be careful, because
  1151   // some VM calls (such as call site linkage) can use several kilobytes of
  1152   // stack.  But the stack safety zone should account for that.
  1153   // See bugs 4446381, 4468289, 4497237.
  1154   if (C->need_stack_bang(framesize)) {
  1155     __ generate_stack_overflow_check(framesize);
  1158   if (Assembler::is_simm13(-framesize)) {
  1159     __ save(SP, -framesize, SP);
  1160   } else {
  1161     __ sethi(-framesize & ~0x3ff, G3);
  1162     __ add(G3, -framesize & 0x3ff, G3);
  1163     __ save(SP, G3, SP);
  1165   C->set_frame_complete( __ offset() );
  1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1169   return MachNode::size(ra_);
  1172 int MachPrologNode::reloc() const {
  1173   return 10; // a large enough number
  1176 //=============================================================================
  1177 #ifndef PRODUCT
  1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1179   Compile* C = ra_->C;
  1181   if( do_polling() && ra_->C->is_method_compilation() ) {
  1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1183 #ifdef _LP64
  1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1185 #else
  1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1187 #endif
  1190   if( do_polling() )
  1191     st->print("RET\n\t");
  1193   st->print("RESTORE");
  1195 #endif
  1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1198   MacroAssembler _masm(&cbuf);
  1199   Compile* C = ra_->C;
  1201   __ verify_thread();
  1203   // If this does safepoint polling, then do it here
  1204   if( do_polling() && ra_->C->is_method_compilation() ) {
  1205     AddressLiteral polling_page(os::get_polling_page());
  1206     __ sethi(polling_page, L0);
  1207     __ relocate(relocInfo::poll_return_type);
  1208     __ ld_ptr( L0, 0, G0 );
  1211   // If this is a return, then stuff the restore in the delay slot
  1212   if( do_polling() ) {
  1213     __ ret();
  1214     __ delayed()->restore();
  1215   } else {
  1216     __ restore();
  1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1221   return MachNode::size(ra_);
  1224 int MachEpilogNode::reloc() const {
  1225   return 16; // a large enough number
  1228 const Pipeline * MachEpilogNode::pipeline() const {
  1229   return MachNode::pipeline_class();
  1232 int MachEpilogNode::safepoint_offset() const {
  1233   assert( do_polling(), "no return for this epilog node");
  1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1237 //=============================================================================
  1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1241 static enum RC rc_class( OptoReg::Name reg ) {
  1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1243   if (OptoReg::is_stack(reg)) return rc_stack;
  1244   VMReg r = OptoReg::as_VMReg(reg);
  1245   if (r->is_Register()) return rc_int;
  1246   assert(r->is_FloatRegister(), "must be");
  1247   return rc_float;
  1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1251   if( cbuf ) {
  1252     // Better yet would be some mechanism to handle variable-size matches correctly
  1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1255     } else {
  1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1259 #ifndef PRODUCT
  1260   else if( !do_size ) {
  1261     if( size != 0 ) st->print("\n\t");
  1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1265 #endif
  1266   return size+4;
  1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1271 #ifndef PRODUCT
  1272   else if( !do_size ) {
  1273     if( size != 0 ) st->print("\n\t");
  1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1276 #endif
  1277   return size+4;
  1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1281                                         PhaseRegAlloc *ra_,
  1282                                         bool do_size,
  1283                                         outputStream* st ) const {
  1284   // Get registers to move
  1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1290   enum RC src_second_rc = rc_class(src_second);
  1291   enum RC src_first_rc = rc_class(src_first);
  1292   enum RC dst_second_rc = rc_class(dst_second);
  1293   enum RC dst_first_rc = rc_class(dst_first);
  1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1297   // Generate spill code!
  1298   int size = 0;
  1300   if( src_first == dst_first && src_second == dst_second )
  1301     return size;            // Self copy, no move
  1303   // --------------------------------------
  1304   // Check for mem-mem move.  Load into unused float registers and fall into
  1305   // the float-store case.
  1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1307     int offset = ra_->reg2offset(src_first);
  1308     // Further check for aligned-adjacent pair, so we can use a double load
  1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1310       src_second    = OptoReg::Name(R_F31_num);
  1311       src_second_rc = rc_float;
  1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1313     } else {
  1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1316     src_first    = OptoReg::Name(R_F30_num);
  1317     src_first_rc = rc_float;
  1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1321     int offset = ra_->reg2offset(src_second);
  1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1323     src_second    = OptoReg::Name(R_F31_num);
  1324     src_second_rc = rc_float;
  1327   // --------------------------------------
  1328   // Check for float->int copy; requires a trip through memory
  1329   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1330     int offset = frame::register_save_words*wordSize;
  1331     if( cbuf ) {
  1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1337 #ifndef PRODUCT
  1338     else if( !do_size ) {
  1339       if( size != 0 ) st->print("\n\t");
  1340       st->print(  "SUB    R_SP,16,R_SP\n");
  1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1343       st->print("\tADD    R_SP,16,R_SP\n");
  1345 #endif
  1346     size += 16;
  1349   // --------------------------------------
  1350   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1351   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1352   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1353   // there.  Misaligned sources only come from native-long-returns (handled
  1354   // special below).
  1355 #ifndef _LP64
  1356   if( src_first_rc == rc_int &&     // source is already big-endian
  1357       src_second_rc != rc_bad &&    // 64-bit move
  1358       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1359     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1360     // Do the big-endian flop.
  1361     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1362     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1364 #endif
  1366   // --------------------------------------
  1367   // Check for integer reg-reg copy
  1368   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1369 #ifndef _LP64
  1370     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1371       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1372       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1373       //       operand contains the least significant word of the 64-bit value and vice versa.
  1374       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1375       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1376       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1377       if( cbuf ) {
  1378         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1379         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1380         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1381 #ifndef PRODUCT
  1382       } else if( !do_size ) {
  1383         if( size != 0 ) st->print("\n\t");
  1384         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1385         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1386         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1387 #endif
  1389       return size+12;
  1391     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1392       // returning a long value in I0/I1
  1393       // a SpillCopy must be able to target a return instruction's reg_class
  1394       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1395       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1396       //       operand contains the least significant word of the 64-bit value and vice versa.
  1397       OptoReg::Name tdest = dst_first;
  1399       if (src_first == dst_first) {
  1400         tdest = OptoReg::Name(R_O7_num);
  1401         size += 4;
  1404       if( cbuf ) {
  1405         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1406         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1407         // ShrL_reg_imm6
  1408         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1409         // ShrR_reg_imm6  src, 0, dst
  1410         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1411         if (tdest != dst_first) {
  1412           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1415 #ifndef PRODUCT
  1416       else if( !do_size ) {
  1417         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1418         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1419         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1420         if (tdest != dst_first) {
  1421           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1424 #endif // PRODUCT
  1425       return size+8;
  1427 #endif // !_LP64
  1428     // Else normal reg-reg copy
  1429     assert( src_second != dst_first, "smashed second before evacuating it" );
  1430     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1431     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1432     // This moves an aligned adjacent pair.
  1433     // See if we are done.
  1434     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1435       return size;
  1438   // Check for integer store
  1439   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1440     int offset = ra_->reg2offset(dst_first);
  1441     // Further check for aligned-adjacent pair, so we can use a double store
  1442     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1443       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1444     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1447   // Check for integer load
  1448   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1449     int offset = ra_->reg2offset(src_first);
  1450     // Further check for aligned-adjacent pair, so we can use a double load
  1451     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1452       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1453     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1456   // Check for float reg-reg copy
  1457   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1458     // Further check for aligned-adjacent pair, so we can use a double move
  1459     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1460       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1461     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1464   // Check for float store
  1465   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1466     int offset = ra_->reg2offset(dst_first);
  1467     // Further check for aligned-adjacent pair, so we can use a double store
  1468     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1469       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1470     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1473   // Check for float load
  1474   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1475     int offset = ra_->reg2offset(src_first);
  1476     // Further check for aligned-adjacent pair, so we can use a double load
  1477     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1478       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1479     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1482   // --------------------------------------------------------------------
  1483   // Check for hi bits still needing moving.  Only happens for misaligned
  1484   // arguments to native calls.
  1485   if( src_second == dst_second )
  1486     return size;               // Self copy; no move
  1487   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1489 #ifndef _LP64
  1490   // In the LP64 build, all registers can be moved as aligned/adjacent
  1491   // pairs, so there's never any need to move the high bits separately.
  1492   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1493   // all sorts of silly alignment problems.
  1495   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1496   // 32-bits of a 64-bit register, but are needed in low bits of another
  1497   // register (else it's a hi-bits-to-hi-bits copy which should have
  1498   // happened already as part of a 64-bit move)
  1499   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1500     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1501     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1502     // Shift src_second down to dst_second's low bits.
  1503     if( cbuf ) {
  1504       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1505 #ifndef PRODUCT
  1506     } else if( !do_size ) {
  1507       if( size != 0 ) st->print("\n\t");
  1508       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1509 #endif
  1511     return size+4;
  1514   // Check for high word integer store.  Must down-shift the hi bits
  1515   // into a temp register, then fall into the case of storing int bits.
  1516   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1517     // Shift src_second down to dst_second's low bits.
  1518     if( cbuf ) {
  1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1520 #ifndef PRODUCT
  1521     } else if( !do_size ) {
  1522       if( size != 0 ) st->print("\n\t");
  1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1524 #endif
  1526     size+=4;
  1527     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1530   // Check for high word integer load
  1531   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1532     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1534   // Check for high word integer store
  1535   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1536     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1538   // Check for high word float store
  1539   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1540     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1542 #endif // !_LP64
  1544   Unimplemented();
  1547 #ifndef PRODUCT
  1548 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1549   implementation( NULL, ra_, false, st );
  1551 #endif
  1553 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1554   implementation( &cbuf, ra_, false, NULL );
  1557 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1558   return implementation( NULL, ra_, true, NULL );
  1561 //=============================================================================
  1562 #ifndef PRODUCT
  1563 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1564   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1566 #endif
  1568 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1569   MacroAssembler _masm(&cbuf);
  1570   for(int i = 0; i < _count; i += 1) {
  1571     __ nop();
  1575 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1576   return 4 * _count;
  1580 //=============================================================================
  1581 #ifndef PRODUCT
  1582 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1583   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1584   int reg = ra_->get_reg_first(this);
  1585   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1587 #endif
  1589 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1590   MacroAssembler _masm(&cbuf);
  1591   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1592   int reg = ra_->get_encode(this);
  1594   if (Assembler::is_simm13(offset)) {
  1595      __ add(SP, offset, reg_to_register_object(reg));
  1596   } else {
  1597      __ set(offset, O7);
  1598      __ add(SP, O7, reg_to_register_object(reg));
  1602 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1603   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1604   assert(ra_ == ra_->C->regalloc(), "sanity");
  1605   return ra_->C->scratch_emit_size(this);
  1608 //=============================================================================
  1610 // emit call stub, compiled java to interpretor
  1611 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1613   // Stub is fixed up when the corresponding call is converted from calling
  1614   // compiled code to calling interpreted code.
  1615   // set (empty), G5
  1616   // jmp -1
  1618   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1620   MacroAssembler _masm(&cbuf);
  1622   address base =
  1623   __ start_a_stub(Compile::MAX_stubs_size);
  1624   if (base == NULL)  return;  // CodeBuffer::expand failed
  1626   // static stub relocation stores the instruction address of the call
  1627   __ relocate(static_stub_Relocation::spec(mark));
  1629   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1631   __ set_inst_mark();
  1632   AddressLiteral addrlit(-1);
  1633   __ JUMP(addrlit, G3, 0);
  1635   __ delayed()->nop();
  1637   // Update current stubs pointer and restore code_end.
  1638   __ end_a_stub();
  1641 // size of call stub, compiled java to interpretor
  1642 uint size_java_to_interp() {
  1643   // This doesn't need to be accurate but it must be larger or equal to
  1644   // the real size of the stub.
  1645   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1646           NativeJump::instruction_size + // sethi; jmp; nop
  1647           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1649 // relocation entries for call stub, compiled java to interpretor
  1650 uint reloc_java_to_interp() {
  1651   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1655 //=============================================================================
  1656 #ifndef PRODUCT
  1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1658   st->print_cr("\nUEP:");
  1659 #ifdef    _LP64
  1660   if (UseCompressedOops) {
  1661     assert(Universe::heap() != NULL, "java heap should be initialized");
  1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1663     st->print_cr("\tSLL    R_G5,3,R_G5");
  1664     if (Universe::narrow_oop_base() != NULL)
  1665       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1666   } else {
  1667     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1669   st->print_cr("\tCMP    R_G5,R_G3" );
  1670   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1671 #else  // _LP64
  1672   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1673   st->print_cr("\tCMP    R_G5,R_G3" );
  1674   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1675 #endif // _LP64
  1677 #endif
  1679 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1680   MacroAssembler _masm(&cbuf);
  1681   Label L;
  1682   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1683   Register temp_reg   = G3;
  1684   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1686   // Load klass from receiver
  1687   __ load_klass(O0, temp_reg);
  1688   // Compare against expected klass
  1689   __ cmp(temp_reg, G5_ic_reg);
  1690   // Branch to miss code, checks xcc or icc depending
  1691   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1694 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1695   return MachNode::size(ra_);
  1699 //=============================================================================
  1701 uint size_exception_handler() {
  1702   if (TraceJumps) {
  1703     return (400); // just a guess
  1705   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1708 uint size_deopt_handler() {
  1709   if (TraceJumps) {
  1710     return (400); // just a guess
  1712   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1715 // Emit exception handler code.
  1716 int emit_exception_handler(CodeBuffer& cbuf) {
  1717   Register temp_reg = G3;
  1718   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1719   MacroAssembler _masm(&cbuf);
  1721   address base =
  1722   __ start_a_stub(size_exception_handler());
  1723   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1725   int offset = __ offset();
  1727   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1728   __ delayed()->nop();
  1730   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1732   __ end_a_stub();
  1734   return offset;
  1737 int emit_deopt_handler(CodeBuffer& cbuf) {
  1738   // Can't use any of the current frame's registers as we may have deopted
  1739   // at a poll and everything (including G3) can be live.
  1740   Register temp_reg = L0;
  1741   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1742   MacroAssembler _masm(&cbuf);
  1744   address base =
  1745   __ start_a_stub(size_deopt_handler());
  1746   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1748   int offset = __ offset();
  1749   __ save_frame(0);
  1750   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1751   __ delayed()->restore();
  1753   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1755   __ end_a_stub();
  1756   return offset;
  1760 // Given a register encoding, produce a Integer Register object
  1761 static Register reg_to_register_object(int register_encoding) {
  1762   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1763   return as_Register(register_encoding);
  1766 // Given a register encoding, produce a single-precision Float Register object
  1767 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1768   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1769   return as_SingleFloatRegister(register_encoding);
  1772 // Given a register encoding, produce a double-precision Float Register object
  1773 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1774   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1775   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1776   return as_DoubleFloatRegister(register_encoding);
  1779 const bool Matcher::match_rule_supported(int opcode) {
  1780   if (!has_match_rule(opcode))
  1781     return false;
  1783   switch (opcode) {
  1784   case Op_CountLeadingZerosI:
  1785   case Op_CountLeadingZerosL:
  1786   case Op_CountTrailingZerosI:
  1787   case Op_CountTrailingZerosL:
  1788     if (!UsePopCountInstruction)
  1789       return false;
  1790     break;
  1793   return true;  // Per default match rules are supported.
  1796 int Matcher::regnum_to_fpu_offset(int regnum) {
  1797   return regnum - 32; // The FP registers are in the second chunk
  1800 #ifdef ASSERT
  1801 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1802 #endif
  1804 // Vector width in bytes
  1805 const uint Matcher::vector_width_in_bytes(void) {
  1806   return 8;
  1809 // Vector ideal reg
  1810 const uint Matcher::vector_ideal_reg(void) {
  1811   return Op_RegD;
  1814 // USII supports fxtof through the whole range of number, USIII doesn't
  1815 const bool Matcher::convL2FSupported(void) {
  1816   return VM_Version::has_fast_fxtof();
  1819 // Is this branch offset short enough that a short branch can be used?
  1820 //
  1821 // NOTE: If the platform does not provide any short branch variants, then
  1822 //       this method should return false for offset 0.
  1823 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1824   return false;
  1827 const bool Matcher::isSimpleConstant64(jlong value) {
  1828   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1829   // Depends on optimizations in MacroAssembler::setx.
  1830   int hi = (int)(value >> 32);
  1831   int lo = (int)(value & ~0);
  1832   return (hi == 0) || (hi == -1) || (lo == 0);
  1835 // No scaling for the parameter the ClearArray node.
  1836 const bool Matcher::init_array_count_is_in_bytes = true;
  1838 // Threshold size for cleararray.
  1839 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1841 // Should the Matcher clone shifts on addressing modes, expecting them to
  1842 // be subsumed into complex addressing expressions or compute them into
  1843 // registers?  True for Intel but false for most RISCs
  1844 const bool Matcher::clone_shift_expressions = false;
  1846 bool Matcher::narrow_oop_use_complex_address() {
  1847   NOT_LP64(ShouldNotCallThis());
  1848   assert(UseCompressedOops, "only for compressed oops code");
  1849   return false;
  1852 // Is it better to copy float constants, or load them directly from memory?
  1853 // Intel can load a float constant from a direct address, requiring no
  1854 // extra registers.  Most RISCs will have to materialize an address into a
  1855 // register first, so they would do better to copy the constant from stack.
  1856 const bool Matcher::rematerialize_float_constants = false;
  1858 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1859 // needed.  Else we split the double into 2 integer pieces and move it
  1860 // piece-by-piece.  Only happens when passing doubles into C code as the
  1861 // Java calling convention forces doubles to be aligned.
  1862 #ifdef _LP64
  1863 const bool Matcher::misaligned_doubles_ok = true;
  1864 #else
  1865 const bool Matcher::misaligned_doubles_ok = false;
  1866 #endif
  1868 // No-op on SPARC.
  1869 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1872 // Advertise here if the CPU requires explicit rounding operations
  1873 // to implement the UseStrictFP mode.
  1874 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1876 // Are floats conerted to double when stored to stack during deoptimization?
  1877 // Sparc does not handle callee-save floats.
  1878 bool Matcher::float_in_double() { return false; }
  1880 // Do ints take an entire long register or just half?
  1881 // Note that we if-def off of _LP64.
  1882 // The relevant question is how the int is callee-saved.  In _LP64
  1883 // the whole long is written but de-opt'ing will have to extract
  1884 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1885 #ifdef _LP64
  1886 const bool Matcher::int_in_long = true;
  1887 #else
  1888 const bool Matcher::int_in_long = false;
  1889 #endif
  1891 // Return whether or not this register is ever used as an argument.  This
  1892 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1893 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1894 // arguments in those registers not be available to the callee.
  1895 bool Matcher::can_be_java_arg( int reg ) {
  1896   // Standard sparc 6 args in registers
  1897   if( reg == R_I0_num ||
  1898       reg == R_I1_num ||
  1899       reg == R_I2_num ||
  1900       reg == R_I3_num ||
  1901       reg == R_I4_num ||
  1902       reg == R_I5_num ) return true;
  1903 #ifdef _LP64
  1904   // 64-bit builds can pass 64-bit pointers and longs in
  1905   // the high I registers
  1906   if( reg == R_I0H_num ||
  1907       reg == R_I1H_num ||
  1908       reg == R_I2H_num ||
  1909       reg == R_I3H_num ||
  1910       reg == R_I4H_num ||
  1911       reg == R_I5H_num ) return true;
  1913   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1914     return true;
  1917 #else
  1918   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1919   // Longs cannot be passed in O regs, because O regs become I regs
  1920   // after a 'save' and I regs get their high bits chopped off on
  1921   // interrupt.
  1922   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1923   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1924 #endif
  1925   // A few float args in registers
  1926   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1928   return false;
  1931 bool Matcher::is_spillable_arg( int reg ) {
  1932   return can_be_java_arg(reg);
  1935 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1936   // Use hardware SDIVX instruction when it is
  1937   // faster than a code which use multiply.
  1938   return VM_Version::has_fast_idiv();
  1941 // Register for DIVI projection of divmodI
  1942 RegMask Matcher::divI_proj_mask() {
  1943   ShouldNotReachHere();
  1944   return RegMask();
  1947 // Register for MODI projection of divmodI
  1948 RegMask Matcher::modI_proj_mask() {
  1949   ShouldNotReachHere();
  1950   return RegMask();
  1953 // Register for DIVL projection of divmodL
  1954 RegMask Matcher::divL_proj_mask() {
  1955   ShouldNotReachHere();
  1956   return RegMask();
  1959 // Register for MODL projection of divmodL
  1960 RegMask Matcher::modL_proj_mask() {
  1961   ShouldNotReachHere();
  1962   return RegMask();
  1965 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1966   return L7_REGP_mask;
  1969 %}
  1972 // The intptr_t operand types, defined by textual substitution.
  1973 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1974 #ifdef _LP64
  1975 #define immX      immL
  1976 #define immX13    immL13
  1977 #define immX13m7  immL13m7
  1978 #define iRegX     iRegL
  1979 #define g1RegX    g1RegL
  1980 #else
  1981 #define immX      immI
  1982 #define immX13    immI13
  1983 #define immX13m7  immI13m7
  1984 #define iRegX     iRegI
  1985 #define g1RegX    g1RegI
  1986 #endif
  1988 //----------ENCODING BLOCK-----------------------------------------------------
  1989 // This block specifies the encoding classes used by the compiler to output
  1990 // byte streams.  Encoding classes are parameterized macros used by
  1991 // Machine Instruction Nodes in order to generate the bit encoding of the
  1992 // instruction.  Operands specify their base encoding interface with the
  1993 // interface keyword.  There are currently supported four interfaces,
  1994 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1995 // operand to generate a function which returns its register number when
  1996 // queried.   CONST_INTER causes an operand to generate a function which
  1997 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1998 // operand to generate four functions which return the Base Register, the
  1999 // Index Register, the Scale Value, and the Offset Value of the operand when
  2000 // queried.  COND_INTER causes an operand to generate six functions which
  2001 // return the encoding code (ie - encoding bits for the instruction)
  2002 // associated with each basic boolean condition for a conditional instruction.
  2003 //
  2004 // Instructions specify two basic values for encoding.  Again, a function
  2005 // is available to check if the constant displacement is an oop. They use the
  2006 // ins_encode keyword to specify their encoding classes (which must be
  2007 // a sequence of enc_class names, and their parameters, specified in
  2008 // the encoding block), and they use the
  2009 // opcode keyword to specify, in order, their primary, secondary, and
  2010 // tertiary opcode.  Only the opcode sections which a particular instruction
  2011 // needs for encoding need to be specified.
  2012 encode %{
  2013   enc_class enc_untested %{
  2014 #ifdef ASSERT
  2015     MacroAssembler _masm(&cbuf);
  2016     __ untested("encoding");
  2017 #endif
  2018   %}
  2020   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2021     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2022                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2023   %}
  2025   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2026     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2027                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2028   %}
  2030   enc_class form3_mem_prefetch_read( memory mem ) %{
  2031     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2032                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2033   %}
  2035   enc_class form3_mem_prefetch_write( memory mem ) %{
  2036     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2037                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2038   %}
  2040   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2041     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2042     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2043     guarantee($mem$$index == R_G0_enc, "double index?");
  2044     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2045     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2046     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2047     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2048   %}
  2050   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2051     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2052     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2053     guarantee($mem$$index == R_G0_enc, "double index?");
  2054     // Load long with 2 instructions
  2055     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2056     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2057   %}
  2059   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2060   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2061     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2062     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2063   %}
  2065   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2066     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2067     if( $rs2$$reg != $rd$$reg )
  2068       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2069   %}
  2071   // Target lo half of long
  2072   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2073     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2074     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2075       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2076   %}
  2078   // Source lo half of long
  2079   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2080     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2081     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2082       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2083   %}
  2085   // Target hi half of long
  2086   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2087     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2088   %}
  2090   // Source lo half of long, and leave it sign extended.
  2091   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2092     // Sign extend low half
  2093     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2094   %}
  2096   // Source hi half of long, and leave it sign extended.
  2097   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2098     // Shift high half to low half
  2099     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2100   %}
  2102   // Source hi half of long
  2103   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2104     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2105     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2106       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2107   %}
  2109   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2110     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2111   %}
  2113   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2114     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2115     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2116   %}
  2118   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2119     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2120     // clear if nothing else is happening
  2121     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2122     // blt,a,pn done
  2123     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2124     // mov dst,-1 in delay slot
  2125     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2126   %}
  2128   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2129     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2130   %}
  2132   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2133     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2134   %}
  2136   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2137     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2138   %}
  2140   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2141     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2142   %}
  2144   enc_class move_return_pc_to_o1() %{
  2145     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2146   %}
  2148 #ifdef _LP64
  2149   /* %%% merge with enc_to_bool */
  2150   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2151     MacroAssembler _masm(&cbuf);
  2153     Register   src_reg = reg_to_register_object($src$$reg);
  2154     Register   dst_reg = reg_to_register_object($dst$$reg);
  2155     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2156   %}
  2157 #endif
  2159   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2160     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2161     MacroAssembler _masm(&cbuf);
  2163     Register   p_reg = reg_to_register_object($p$$reg);
  2164     Register   q_reg = reg_to_register_object($q$$reg);
  2165     Register   y_reg = reg_to_register_object($y$$reg);
  2166     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2168     __ subcc( p_reg, q_reg,   p_reg );
  2169     __ add  ( p_reg, y_reg, tmp_reg );
  2170     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2171   %}
  2173   enc_class form_d2i_helper(regD src, regF dst) %{
  2174     // fcmp %fcc0,$src,$src
  2175     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2176     // branch %fcc0 not-nan, predict taken
  2177     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2178     // fdtoi $src,$dst
  2179     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2180     // fitos $dst,$dst (if nan)
  2181     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2182     // clear $dst (if nan)
  2183     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2184     // carry on here...
  2185   %}
  2187   enc_class form_d2l_helper(regD src, regD dst) %{
  2188     // fcmp %fcc0,$src,$src  check for NAN
  2189     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2190     // branch %fcc0 not-nan, predict taken
  2191     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2192     // fdtox $src,$dst   convert in delay slot
  2193     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2194     // fxtod $dst,$dst  (if nan)
  2195     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2196     // clear $dst (if nan)
  2197     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2198     // carry on here...
  2199   %}
  2201   enc_class form_f2i_helper(regF src, regF dst) %{
  2202     // fcmps %fcc0,$src,$src
  2203     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2204     // branch %fcc0 not-nan, predict taken
  2205     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2206     // fstoi $src,$dst
  2207     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2208     // fitos $dst,$dst (if nan)
  2209     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2210     // clear $dst (if nan)
  2211     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2212     // carry on here...
  2213   %}
  2215   enc_class form_f2l_helper(regF src, regD dst) %{
  2216     // fcmps %fcc0,$src,$src
  2217     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2218     // branch %fcc0 not-nan, predict taken
  2219     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2220     // fstox $src,$dst
  2221     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2222     // fxtod $dst,$dst (if nan)
  2223     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2224     // clear $dst (if nan)
  2225     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2226     // carry on here...
  2227   %}
  2229   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2230   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2231   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2232   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2234   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2236   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2237   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2239   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2240     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2241   %}
  2243   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2244     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2245   %}
  2247   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2248     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2249   %}
  2251   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2252     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2253   %}
  2255   enc_class form3_convI2F(regF rs2, regF rd) %{
  2256     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2257   %}
  2259   // Encloding class for traceable jumps
  2260   enc_class form_jmpl(g3RegP dest) %{
  2261     emit_jmpl(cbuf, $dest$$reg);
  2262   %}
  2264   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2265     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2266   %}
  2268   enc_class form2_nop() %{
  2269     emit_nop(cbuf);
  2270   %}
  2272   enc_class form2_illtrap() %{
  2273     emit_illtrap(cbuf);
  2274   %}
  2277   // Compare longs and convert into -1, 0, 1.
  2278   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2279     // CMP $src1,$src2
  2280     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2281     // blt,a,pn done
  2282     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2283     // mov dst,-1 in delay slot
  2284     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2285     // bgt,a,pn done
  2286     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2287     // mov dst,1 in delay slot
  2288     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2289     // CLR    $dst
  2290     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2291   %}
  2293   enc_class enc_PartialSubtypeCheck() %{
  2294     MacroAssembler _masm(&cbuf);
  2295     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2296     __ delayed()->nop();
  2297   %}
  2299   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2300     MacroAssembler _masm(&cbuf);
  2301     Label &L = *($labl$$label);
  2302     Assembler::Predict predict_taken =
  2303       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2305     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2306     __ delayed()->nop();
  2307   %}
  2309   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2310     MacroAssembler _masm(&cbuf);
  2311     Label &L = *($labl$$label);
  2312     Assembler::Predict predict_taken =
  2313       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2315     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2316     __ delayed()->nop();
  2317   %}
  2319   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2320     MacroAssembler _masm(&cbuf);
  2321     Label &L = *($labl$$label);
  2322     Assembler::Predict predict_taken =
  2323       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2325     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2326     __ delayed()->nop();
  2327   %}
  2329   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2330     MacroAssembler _masm(&cbuf);
  2331     Label &L = *($labl$$label);
  2332     Assembler::Predict predict_taken =
  2333       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2335     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2336     __ delayed()->nop();
  2337   %}
  2339   enc_class enc_ba( Label labl ) %{
  2340     MacroAssembler _masm(&cbuf);
  2341     Label &L = *($labl$$label);
  2342     __ ba(false, L);
  2343     __ delayed()->nop();
  2344   %}
  2346   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2347     MacroAssembler _masm(&cbuf);
  2348     Label &L = *$labl$$label;
  2349     Assembler::Predict predict_taken =
  2350       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2352     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2353     __ delayed()->nop();
  2354   %}
  2356   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2357     int op = (Assembler::arith_op << 30) |
  2358              ($dst$$reg << 25) |
  2359              (Assembler::movcc_op3 << 19) |
  2360              (1 << 18) |                    // cc2 bit for 'icc'
  2361              ($cmp$$cmpcode << 14) |
  2362              (0 << 13) |                    // select register move
  2363              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2364              ($src$$reg << 0);
  2365     cbuf.insts()->emit_int32(op);
  2366   %}
  2368   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2369     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2370     int op = (Assembler::arith_op << 30) |
  2371              ($dst$$reg << 25) |
  2372              (Assembler::movcc_op3 << 19) |
  2373              (1 << 18) |                    // cc2 bit for 'icc'
  2374              ($cmp$$cmpcode << 14) |
  2375              (1 << 13) |                    // select immediate move
  2376              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2377              (simm11 << 0);
  2378     cbuf.insts()->emit_int32(op);
  2379   %}
  2381   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2382     int op = (Assembler::arith_op << 30) |
  2383              ($dst$$reg << 25) |
  2384              (Assembler::movcc_op3 << 19) |
  2385              (0 << 18) |                    // cc2 bit for 'fccX'
  2386              ($cmp$$cmpcode << 14) |
  2387              (0 << 13) |                    // select register move
  2388              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2389              ($src$$reg << 0);
  2390     cbuf.insts()->emit_int32(op);
  2391   %}
  2393   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2394     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2395     int op = (Assembler::arith_op << 30) |
  2396              ($dst$$reg << 25) |
  2397              (Assembler::movcc_op3 << 19) |
  2398              (0 << 18) |                    // cc2 bit for 'fccX'
  2399              ($cmp$$cmpcode << 14) |
  2400              (1 << 13) |                    // select immediate move
  2401              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2402              (simm11 << 0);
  2403     cbuf.insts()->emit_int32(op);
  2404   %}
  2406   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2407     int op = (Assembler::arith_op << 30) |
  2408              ($dst$$reg << 25) |
  2409              (Assembler::fpop2_op3 << 19) |
  2410              (0 << 18) |
  2411              ($cmp$$cmpcode << 14) |
  2412              (1 << 13) |                    // select register move
  2413              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2414              ($primary << 5) |              // select single, double or quad
  2415              ($src$$reg << 0);
  2416     cbuf.insts()->emit_int32(op);
  2417   %}
  2419   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2420     int op = (Assembler::arith_op << 30) |
  2421              ($dst$$reg << 25) |
  2422              (Assembler::fpop2_op3 << 19) |
  2423              (0 << 18) |
  2424              ($cmp$$cmpcode << 14) |
  2425              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2426              ($primary << 5) |              // select single, double or quad
  2427              ($src$$reg << 0);
  2428     cbuf.insts()->emit_int32(op);
  2429   %}
  2431   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2432   // the condition comes from opcode-field instead of an argument.
  2433   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2434     int op = (Assembler::arith_op << 30) |
  2435              ($dst$$reg << 25) |
  2436              (Assembler::movcc_op3 << 19) |
  2437              (1 << 18) |                    // cc2 bit for 'icc'
  2438              ($primary << 14) |
  2439              (0 << 13) |                    // select register move
  2440              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2441              ($src$$reg << 0);
  2442     cbuf.insts()->emit_int32(op);
  2443   %}
  2445   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2446     int op = (Assembler::arith_op << 30) |
  2447              ($dst$$reg << 25) |
  2448              (Assembler::movcc_op3 << 19) |
  2449              (6 << 16) |                    // cc2 bit for 'xcc'
  2450              ($primary << 14) |
  2451              (0 << 13) |                    // select register move
  2452              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2453              ($src$$reg << 0);
  2454     cbuf.insts()->emit_int32(op);
  2455   %}
  2457   enc_class Set13( immI13 src, iRegI rd ) %{
  2458     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2459   %}
  2461   enc_class SetHi22( immI src, iRegI rd ) %{
  2462     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2463   %}
  2465   enc_class Set32( immI src, iRegI rd ) %{
  2466     MacroAssembler _masm(&cbuf);
  2467     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2468   %}
  2470   enc_class call_epilog %{
  2471     if( VerifyStackAtCalls ) {
  2472       MacroAssembler _masm(&cbuf);
  2473       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2474       Register temp_reg = G3;
  2475       __ add(SP, framesize, temp_reg);
  2476       __ cmp(temp_reg, FP);
  2477       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2479   %}
  2481   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2482   // to G1 so the register allocator will not have to deal with the misaligned register
  2483   // pair.
  2484   enc_class adjust_long_from_native_call %{
  2485 #ifndef _LP64
  2486     if (returns_long()) {
  2487       //    sllx  O0,32,O0
  2488       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2489       //    srl   O1,0,O1
  2490       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2491       //    or    O0,O1,G1
  2492       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2494 #endif
  2495   %}
  2497   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2498     // CALL directly to the runtime
  2499     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2500     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2501                     /*preserve_g2=*/true);
  2502   %}
  2504   enc_class preserve_SP %{
  2505     MacroAssembler _masm(&cbuf);
  2506     __ mov(SP, L7_mh_SP_save);
  2507   %}
  2509   enc_class restore_SP %{
  2510     MacroAssembler _masm(&cbuf);
  2511     __ mov(L7_mh_SP_save, SP);
  2512   %}
  2514   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2515     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2516     // who we intended to call.
  2517     if ( !_method ) {
  2518       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2519     } else if (_optimized_virtual) {
  2520       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2521     } else {
  2522       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2524     if( _method ) {  // Emit stub for static call
  2525       emit_java_to_interp(cbuf);
  2527   %}
  2529   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2530     MacroAssembler _masm(&cbuf);
  2531     __ set_inst_mark();
  2532     int vtable_index = this->_vtable_index;
  2533     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2534     if (vtable_index < 0) {
  2535       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2536       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2537       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2538       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2539       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2540       // !!!!!
  2541       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2542       // emit_call_dynamic_prologue( cbuf );
  2543       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2545       address  virtual_call_oop_addr = __ inst_mark();
  2546       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2547       // who we intended to call.
  2548       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2549       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2550     } else {
  2551       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2552       // Just go thru the vtable
  2553       // get receiver klass (receiver already checked for non-null)
  2554       // If we end up going thru a c2i adapter interpreter expects method in G5
  2555       int off = __ offset();
  2556       __ load_klass(O0, G3_scratch);
  2557       int klass_load_size;
  2558       if (UseCompressedOops) {
  2559         assert(Universe::heap() != NULL, "java heap should be initialized");
  2560         if (Universe::narrow_oop_base() == NULL)
  2561           klass_load_size = 2*BytesPerInstWord;
  2562         else
  2563           klass_load_size = 3*BytesPerInstWord;
  2564       } else {
  2565         klass_load_size = 1*BytesPerInstWord;
  2567       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2568       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2569       if( __ is_simm13(v_off) ) {
  2570         __ ld_ptr(G3, v_off, G5_method);
  2571       } else {
  2572         // Generate 2 instructions
  2573         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2574         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2575         // ld_ptr, set_hi, set
  2576         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2577                "Unexpected instruction size(s)");
  2578         __ ld_ptr(G3, G5_method, G5_method);
  2580       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2581       // However it may very well end up in handle_wrong_method if the
  2582       // method is abstract for the particular class.
  2583       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2584       // jump to target (either compiled code or c2iadapter)
  2585       __ jmpl(G3_scratch, G0, O7);
  2586       __ delayed()->nop();
  2588   %}
  2590   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2591     MacroAssembler _masm(&cbuf);
  2593     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2594     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2595                               // we might be calling a C2I adapter which needs it.
  2597     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2598     // Load nmethod
  2599     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2601     // CALL to compiled java, indirect the contents of G3
  2602     __ set_inst_mark();
  2603     __ callr(temp_reg, G0);
  2604     __ delayed()->nop();
  2605   %}
  2607 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2608     MacroAssembler _masm(&cbuf);
  2609     Register Rdividend = reg_to_register_object($src1$$reg);
  2610     Register Rdivisor = reg_to_register_object($src2$$reg);
  2611     Register Rresult = reg_to_register_object($dst$$reg);
  2613     __ sra(Rdivisor, 0, Rdivisor);
  2614     __ sra(Rdividend, 0, Rdividend);
  2615     __ sdivx(Rdividend, Rdivisor, Rresult);
  2616 %}
  2618 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2619     MacroAssembler _masm(&cbuf);
  2621     Register Rdividend = reg_to_register_object($src1$$reg);
  2622     int divisor = $imm$$constant;
  2623     Register Rresult = reg_to_register_object($dst$$reg);
  2625     __ sra(Rdividend, 0, Rdividend);
  2626     __ sdivx(Rdividend, divisor, Rresult);
  2627 %}
  2629 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2630     MacroAssembler _masm(&cbuf);
  2631     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2632     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2633     Register Rdst  = reg_to_register_object($dst$$reg);
  2635     __ sra( Rsrc1, 0, Rsrc1 );
  2636     __ sra( Rsrc2, 0, Rsrc2 );
  2637     __ mulx( Rsrc1, Rsrc2, Rdst );
  2638     __ srlx( Rdst, 32, Rdst );
  2639 %}
  2641 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2642     MacroAssembler _masm(&cbuf);
  2643     Register Rdividend = reg_to_register_object($src1$$reg);
  2644     Register Rdivisor = reg_to_register_object($src2$$reg);
  2645     Register Rresult = reg_to_register_object($dst$$reg);
  2646     Register Rscratch = reg_to_register_object($scratch$$reg);
  2648     assert(Rdividend != Rscratch, "");
  2649     assert(Rdivisor  != Rscratch, "");
  2651     __ sra(Rdividend, 0, Rdividend);
  2652     __ sra(Rdivisor, 0, Rdivisor);
  2653     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2654     __ mulx(Rscratch, Rdivisor, Rscratch);
  2655     __ sub(Rdividend, Rscratch, Rresult);
  2656 %}
  2658 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2659     MacroAssembler _masm(&cbuf);
  2661     Register Rdividend = reg_to_register_object($src1$$reg);
  2662     int divisor = $imm$$constant;
  2663     Register Rresult = reg_to_register_object($dst$$reg);
  2664     Register Rscratch = reg_to_register_object($scratch$$reg);
  2666     assert(Rdividend != Rscratch, "");
  2668     __ sra(Rdividend, 0, Rdividend);
  2669     __ sdivx(Rdividend, divisor, Rscratch);
  2670     __ mulx(Rscratch, divisor, Rscratch);
  2671     __ sub(Rdividend, Rscratch, Rresult);
  2672 %}
  2674 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2675     MacroAssembler _masm(&cbuf);
  2677     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2678     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2680     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2681 %}
  2683 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2684     MacroAssembler _masm(&cbuf);
  2686     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2687     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2689     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2690 %}
  2692 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2693     MacroAssembler _masm(&cbuf);
  2695     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2696     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2698     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2699 %}
  2701 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2702     MacroAssembler _masm(&cbuf);
  2704     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2705     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2707     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2708 %}
  2710 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2711     MacroAssembler _masm(&cbuf);
  2713     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2714     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2716     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2717 %}
  2719 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2720     MacroAssembler _masm(&cbuf);
  2722     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2723     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2725     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2726 %}
  2728 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2729     MacroAssembler _masm(&cbuf);
  2731     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2732     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2734     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2735 %}
  2737 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2738     MacroAssembler _masm(&cbuf);
  2740     Register Roop  = reg_to_register_object($oop$$reg);
  2741     Register Rbox  = reg_to_register_object($box$$reg);
  2742     Register Rscratch = reg_to_register_object($scratch$$reg);
  2743     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2745     assert(Roop  != Rscratch, "");
  2746     assert(Roop  != Rmark, "");
  2747     assert(Rbox  != Rscratch, "");
  2748     assert(Rbox  != Rmark, "");
  2750     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2751 %}
  2753 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2754     MacroAssembler _masm(&cbuf);
  2756     Register Roop  = reg_to_register_object($oop$$reg);
  2757     Register Rbox  = reg_to_register_object($box$$reg);
  2758     Register Rscratch = reg_to_register_object($scratch$$reg);
  2759     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2761     assert(Roop  != Rscratch, "");
  2762     assert(Roop  != Rmark, "");
  2763     assert(Rbox  != Rscratch, "");
  2764     assert(Rbox  != Rmark, "");
  2766     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2767   %}
  2769   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2770     MacroAssembler _masm(&cbuf);
  2771     Register Rmem = reg_to_register_object($mem$$reg);
  2772     Register Rold = reg_to_register_object($old$$reg);
  2773     Register Rnew = reg_to_register_object($new$$reg);
  2775     // casx_under_lock picks 1 of 3 encodings:
  2776     // For 32-bit pointers you get a 32-bit CAS
  2777     // For 64-bit pointers you get a 64-bit CASX
  2778     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2779     __ cmp( Rold, Rnew );
  2780   %}
  2782   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2783     Register Rmem = reg_to_register_object($mem$$reg);
  2784     Register Rold = reg_to_register_object($old$$reg);
  2785     Register Rnew = reg_to_register_object($new$$reg);
  2787     MacroAssembler _masm(&cbuf);
  2788     __ mov(Rnew, O7);
  2789     __ casx(Rmem, Rold, O7);
  2790     __ cmp( Rold, O7 );
  2791   %}
  2793   // raw int cas, used for compareAndSwap
  2794   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2795     Register Rmem = reg_to_register_object($mem$$reg);
  2796     Register Rold = reg_to_register_object($old$$reg);
  2797     Register Rnew = reg_to_register_object($new$$reg);
  2799     MacroAssembler _masm(&cbuf);
  2800     __ mov(Rnew, O7);
  2801     __ cas(Rmem, Rold, O7);
  2802     __ cmp( Rold, O7 );
  2803   %}
  2805   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2806     Register Rres = reg_to_register_object($res$$reg);
  2808     MacroAssembler _masm(&cbuf);
  2809     __ mov(1, Rres);
  2810     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2811   %}
  2813   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2814     Register Rres = reg_to_register_object($res$$reg);
  2816     MacroAssembler _masm(&cbuf);
  2817     __ mov(1, Rres);
  2818     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2819   %}
  2821   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2822     MacroAssembler _masm(&cbuf);
  2823     Register Rdst = reg_to_register_object($dst$$reg);
  2824     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2825                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2826     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2827                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2829     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2830     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2831   %}
  2833   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2834   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2835     MacroAssembler _masm(&cbuf);
  2836     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2837     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2838     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2840     Label loop;
  2841     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2843     // Loop and clear, walking backwards through the array.
  2844     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2845     __ bind(loop);
  2846     __ deccc(nof_bytes_tmp, 8);
  2847     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2848     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2849     // %%%% this mini-loop must not cross a cache boundary!
  2850   %}
  2853   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2854     Label Ldone, Lloop;
  2855     MacroAssembler _masm(&cbuf);
  2857     Register   str1_reg = reg_to_register_object($str1$$reg);
  2858     Register   str2_reg = reg_to_register_object($str2$$reg);
  2859     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2860     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2861     Register result_reg = reg_to_register_object($result$$reg);
  2863     assert(result_reg != str1_reg &&
  2864            result_reg != str2_reg &&
  2865            result_reg != cnt1_reg &&
  2866            result_reg != cnt2_reg ,
  2867            "need different registers");
  2869     // Compute the minimum of the string lengths(str1_reg) and the
  2870     // difference of the string lengths (stack)
  2872     // See if the lengths are different, and calculate min in str1_reg.
  2873     // Stash diff in O7 in case we need it for a tie-breaker.
  2874     Label Lskip;
  2875     __ subcc(cnt1_reg, cnt2_reg, O7);
  2876     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2877     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2878     // cnt2 is shorter, so use its count:
  2879     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2880     __ bind(Lskip);
  2882     // reallocate cnt1_reg, cnt2_reg, result_reg
  2883     // Note:  limit_reg holds the string length pre-scaled by 2
  2884     Register limit_reg =   cnt1_reg;
  2885     Register  chr2_reg =   cnt2_reg;
  2886     Register  chr1_reg = result_reg;
  2887     // str{12} are the base pointers
  2889     // Is the minimum length zero?
  2890     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2891     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2892     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2894     // Load first characters
  2895     __ lduh(str1_reg, 0, chr1_reg);
  2896     __ lduh(str2_reg, 0, chr2_reg);
  2898     // Compare first characters
  2899     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2900     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2901     assert(chr1_reg == result_reg, "result must be pre-placed");
  2902     __ delayed()->nop();
  2905       // Check after comparing first character to see if strings are equivalent
  2906       Label LSkip2;
  2907       // Check if the strings start at same location
  2908       __ cmp(str1_reg, str2_reg);
  2909       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2910       __ delayed()->nop();
  2912       // Check if the length difference is zero (in O7)
  2913       __ cmp(G0, O7);
  2914       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2915       __ delayed()->mov(G0, result_reg);  // result is zero
  2917       // Strings might not be equal
  2918       __ bind(LSkip2);
  2921     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2922     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2923     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2925     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2926     __ add(str1_reg, limit_reg, str1_reg);
  2927     __ add(str2_reg, limit_reg, str2_reg);
  2928     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2930     // Compare the rest of the characters
  2931     __ lduh(str1_reg, limit_reg, chr1_reg);
  2932     __ bind(Lloop);
  2933     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2934     __ lduh(str2_reg, limit_reg, chr2_reg);
  2935     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2936     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2937     assert(chr1_reg == result_reg, "result must be pre-placed");
  2938     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2939     // annul LDUH if branch is not taken to prevent access past end of string
  2940     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2941     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2943     // If strings are equal up to min length, return the length difference.
  2944     __ mov(O7, result_reg);
  2946     // Otherwise, return the difference between the first mismatched chars.
  2947     __ bind(Ldone);
  2948   %}
  2950 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2951     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2952     MacroAssembler _masm(&cbuf);
  2954     Register   str1_reg = reg_to_register_object($str1$$reg);
  2955     Register   str2_reg = reg_to_register_object($str2$$reg);
  2956     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2957     Register   tmp1_reg = O7;
  2958     Register result_reg = reg_to_register_object($result$$reg);
  2960     assert(result_reg != str1_reg &&
  2961            result_reg != str2_reg &&
  2962            result_reg !=  cnt_reg &&
  2963            result_reg != tmp1_reg ,
  2964            "need different registers");
  2966     __ cmp(str1_reg, str2_reg); //same char[] ?
  2967     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2968     __ delayed()->add(G0, 1, result_reg);
  2970     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2971     __ delayed()->add(G0, 1, result_reg); // count == 0
  2973     //rename registers
  2974     Register limit_reg =    cnt_reg;
  2975     Register  chr1_reg = result_reg;
  2976     Register  chr2_reg =   tmp1_reg;
  2978     //check for alignment and position the pointers to the ends
  2979     __ or3(str1_reg, str2_reg, chr1_reg);
  2980     __ andcc(chr1_reg, 0x3, chr1_reg);
  2981     // notZero means at least one not 4-byte aligned.
  2982     // We could optimize the case when both arrays are not aligned
  2983     // but it is not frequent case and it requires additional checks.
  2984     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2985     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2987     // Compare char[] arrays aligned to 4 bytes.
  2988     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2989                           chr1_reg, chr2_reg, Ldone);
  2990     __ ba(false,Ldone);
  2991     __ delayed()->add(G0, 1, result_reg);
  2993     // char by char compare
  2994     __ bind(Lchar);
  2995     __ add(str1_reg, limit_reg, str1_reg);
  2996     __ add(str2_reg, limit_reg, str2_reg);
  2997     __ neg(limit_reg); //negate count
  2999     __ lduh(str1_reg, limit_reg, chr1_reg);
  3000     // Lchar_loop
  3001     __ bind(Lchar_loop);
  3002     __ lduh(str2_reg, limit_reg, chr2_reg);
  3003     __ cmp(chr1_reg, chr2_reg);
  3004     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3005     __ delayed()->mov(G0, result_reg); //not equal
  3006     __ inccc(limit_reg, sizeof(jchar));
  3007     // annul LDUH if branch is not taken to prevent access past end of string
  3008     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3009     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3011     __ add(G0, 1, result_reg);  //equal
  3013     __ bind(Ldone);
  3014   %}
  3016 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3017     Label Lvector, Ldone, Lloop;
  3018     MacroAssembler _masm(&cbuf);
  3020     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3021     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3022     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3023     Register   tmp2_reg = O7;
  3024     Register result_reg = reg_to_register_object($result$$reg);
  3026     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3027     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3029     // return true if the same array
  3030     __ cmp(ary1_reg, ary2_reg);
  3031     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3032     __ delayed()->add(G0, 1, result_reg); // equal
  3034     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3035     __ delayed()->mov(G0, result_reg);    // not equal
  3037     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3038     __ delayed()->mov(G0, result_reg);    // not equal
  3040     //load the lengths of arrays
  3041     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3042     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3044     // return false if the two arrays are not equal length
  3045     __ cmp(tmp1_reg, tmp2_reg);
  3046     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3047     __ delayed()->mov(G0, result_reg);     // not equal
  3049     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3050     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3052     // load array addresses
  3053     __ add(ary1_reg, base_offset, ary1_reg);
  3054     __ add(ary2_reg, base_offset, ary2_reg);
  3056     // renaming registers
  3057     Register chr1_reg  =  result_reg; // for characters in ary1
  3058     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3059     Register limit_reg =  tmp1_reg;   // length
  3061     // set byte count
  3062     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3064     // Compare char[] arrays aligned to 4 bytes.
  3065     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3066                           chr1_reg, chr2_reg, Ldone);
  3067     __ add(G0, 1, result_reg); // equals
  3069     __ bind(Ldone);
  3070   %}
  3072   enc_class enc_rethrow() %{
  3073     cbuf.set_insts_mark();
  3074     Register temp_reg = G3;
  3075     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3076     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3077     MacroAssembler _masm(&cbuf);
  3078 #ifdef ASSERT
  3079     __ save_frame(0);
  3080     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3081     __ sethi(last_rethrow_addrlit, L1);
  3082     Address addr(L1, last_rethrow_addrlit.low10());
  3083     __ get_pc(L2);
  3084     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3085     __ st_ptr(L2, addr);
  3086     __ restore();
  3087 #endif
  3088     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3089     __ delayed()->nop();
  3090   %}
  3092   enc_class emit_mem_nop() %{
  3093     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3094     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3095   %}
  3097   enc_class emit_fadd_nop() %{
  3098     // Generates the instruction FMOVS f31,f31
  3099     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3100   %}
  3102   enc_class emit_br_nop() %{
  3103     // Generates the instruction BPN,PN .
  3104     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3105   %}
  3107   enc_class enc_membar_acquire %{
  3108     MacroAssembler _masm(&cbuf);
  3109     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3110   %}
  3112   enc_class enc_membar_release %{
  3113     MacroAssembler _masm(&cbuf);
  3114     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3115   %}
  3117   enc_class enc_membar_volatile %{
  3118     MacroAssembler _masm(&cbuf);
  3119     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3120   %}
  3122   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3123     MacroAssembler _masm(&cbuf);
  3124     Register src_reg = reg_to_register_object($src$$reg);
  3125     Register dst_reg = reg_to_register_object($dst$$reg);
  3126     __ sllx(src_reg, 56, dst_reg);
  3127     __ srlx(dst_reg,  8, O7);
  3128     __ or3 (dst_reg, O7, dst_reg);
  3129     __ srlx(dst_reg, 16, O7);
  3130     __ or3 (dst_reg, O7, dst_reg);
  3131     __ srlx(dst_reg, 32, O7);
  3132     __ or3 (dst_reg, O7, dst_reg);
  3133   %}
  3135   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3136     MacroAssembler _masm(&cbuf);
  3137     Register src_reg = reg_to_register_object($src$$reg);
  3138     Register dst_reg = reg_to_register_object($dst$$reg);
  3139     __ sll(src_reg, 24, dst_reg);
  3140     __ srl(dst_reg,  8, O7);
  3141     __ or3(dst_reg, O7, dst_reg);
  3142     __ srl(dst_reg, 16, O7);
  3143     __ or3(dst_reg, O7, dst_reg);
  3144   %}
  3146   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3147     MacroAssembler _masm(&cbuf);
  3148     Register src_reg = reg_to_register_object($src$$reg);
  3149     Register dst_reg = reg_to_register_object($dst$$reg);
  3150     __ sllx(src_reg, 48, dst_reg);
  3151     __ srlx(dst_reg, 16, O7);
  3152     __ or3 (dst_reg, O7, dst_reg);
  3153     __ srlx(dst_reg, 32, O7);
  3154     __ or3 (dst_reg, O7, dst_reg);
  3155   %}
  3157   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3158     MacroAssembler _masm(&cbuf);
  3159     Register src_reg = reg_to_register_object($src$$reg);
  3160     Register dst_reg = reg_to_register_object($dst$$reg);
  3161     __ sllx(src_reg, 32, dst_reg);
  3162     __ srlx(dst_reg, 32, O7);
  3163     __ or3 (dst_reg, O7, dst_reg);
  3164   %}
  3166 %}
  3168 //----------FRAME--------------------------------------------------------------
  3169 // Definition of frame structure and management information.
  3170 //
  3171 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3172 //                             |   (to get allocators register number
  3173 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3174 //  r   CALLER     |        |
  3175 //  o     |        +--------+      pad to even-align allocators stack-slot
  3176 //  w     V        |  pad0  |        numbers; owned by CALLER
  3177 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3178 //  h     ^        |   in   |  5
  3179 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3180 //  |     |        |        |  3
  3181 //  |     |        +--------+
  3182 //  V     |        | old out|      Empty on Intel, window on Sparc
  3183 //        |    old |preserve|      Must be even aligned.
  3184 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3185 //        |        |   in   |  3   area for Intel ret address
  3186 //     Owned by    |preserve|      Empty on Sparc.
  3187 //       SELF      +--------+
  3188 //        |        |  pad2  |  2   pad to align old SP
  3189 //        |        +--------+  1
  3190 //        |        | locks  |  0
  3191 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3192 //        |        |  pad1  | 11   pad to align new SP
  3193 //        |        +--------+
  3194 //        |        |        | 10
  3195 //        |        | spills |  9   spills
  3196 //        V        |        |  8   (pad0 slot for callee)
  3197 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3198 //        ^        |  out   |  7
  3199 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3200 //     Owned by    +--------+
  3201 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3202 //        |    new |preserve|      Must be even-aligned.
  3203 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3204 //        |        |        |
  3205 //
  3206 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3207 //         known from SELF's arguments and the Java calling convention.
  3208 //         Region 6-7 is determined per call site.
  3209 // Note 2: If the calling convention leaves holes in the incoming argument
  3210 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3211 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3212 //         incoming area, as the Java calling convention is completely under
  3213 //         the control of the AD file.  Doubles can be sorted and packed to
  3214 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3215 //         varargs C calling conventions.
  3216 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3217 //         even aligned with pad0 as needed.
  3218 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3219 //         region 6-11 is even aligned; it may be padded out more so that
  3220 //         the region from SP to FP meets the minimum stack alignment.
  3222 frame %{
  3223   // What direction does stack grow in (assumed to be same for native & Java)
  3224   stack_direction(TOWARDS_LOW);
  3226   // These two registers define part of the calling convention
  3227   // between compiled code and the interpreter.
  3228   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3229   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3231   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3232   cisc_spilling_operand_name(indOffset);
  3234   // Number of stack slots consumed by a Monitor enter
  3235 #ifdef _LP64
  3236   sync_stack_slots(2);
  3237 #else
  3238   sync_stack_slots(1);
  3239 #endif
  3241   // Compiled code's Frame Pointer
  3242   frame_pointer(R_SP);
  3244   // Stack alignment requirement
  3245   stack_alignment(StackAlignmentInBytes);
  3246   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3247   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3249   // Number of stack slots between incoming argument block and the start of
  3250   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3251   // EPILOG must remove this many slots.
  3252   in_preserve_stack_slots(0);
  3254   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3255   // for calls to C.  Supports the var-args backing area for register parms.
  3256   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3257 #ifdef _LP64
  3258   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3259   varargs_C_out_slots_killed(12);
  3260 #else
  3261   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3262   varargs_C_out_slots_killed( 7);
  3263 #endif
  3265   // The after-PROLOG location of the return address.  Location of
  3266   // return address specifies a type (REG or STACK) and a number
  3267   // representing the register number (i.e. - use a register name) or
  3268   // stack slot.
  3269   return_addr(REG R_I7);          // Ret Addr is in register I7
  3271   // Body of function which returns an OptoRegs array locating
  3272   // arguments either in registers or in stack slots for calling
  3273   // java
  3274   calling_convention %{
  3275     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3277   %}
  3279   // Body of function which returns an OptoRegs array locating
  3280   // arguments either in registers or in stack slots for callin
  3281   // C.
  3282   c_calling_convention %{
  3283     // This is obviously always outgoing
  3284     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3285   %}
  3287   // Location of native (C/C++) and interpreter return values.  This is specified to
  3288   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3289   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3290   // to and from the register pairs is done by the appropriate call and epilog
  3291   // opcodes.  This simplifies the register allocator.
  3292   c_return_value %{
  3293     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3294 #ifdef     _LP64
  3295     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3296     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3297     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3298     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3299 #else  // !_LP64
  3300     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3301     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3302     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3303     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3304 #endif
  3305     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3306                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3307   %}
  3309   // Location of compiled Java return values.  Same as C
  3310   return_value %{
  3311     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3312 #ifdef     _LP64
  3313     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3314     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3315     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3316     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3317 #else  // !_LP64
  3318     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3319     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3320     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3321     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3322 #endif
  3323     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3324                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3325   %}
  3327 %}
  3330 //----------ATTRIBUTES---------------------------------------------------------
  3331 //----------Operand Attributes-------------------------------------------------
  3332 op_attrib op_cost(1);          // Required cost attribute
  3334 //----------Instruction Attributes---------------------------------------------
  3335 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3336 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3337 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3338 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3339                                 // non-matching short branch variant of some
  3340                                                             // long branch?
  3342 //----------OPERANDS-----------------------------------------------------------
  3343 // Operand definitions must precede instruction definitions for correct parsing
  3344 // in the ADLC because operands constitute user defined types which are used in
  3345 // instruction definitions.
  3347 //----------Simple Operands----------------------------------------------------
  3348 // Immediate Operands
  3349 // Integer Immediate: 32-bit
  3350 operand immI() %{
  3351   match(ConI);
  3353   op_cost(0);
  3354   // formats are generated automatically for constants and base registers
  3355   format %{ %}
  3356   interface(CONST_INTER);
  3357 %}
  3359 // Integer Immediate: 8-bit
  3360 operand immI8() %{
  3361   predicate(Assembler::is_simm(n->get_int(), 8));
  3362   match(ConI);
  3363   op_cost(0);
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Integer Immediate: 13-bit
  3369 operand immI13() %{
  3370   predicate(Assembler::is_simm13(n->get_int()));
  3371   match(ConI);
  3372   op_cost(0);
  3374   format %{ %}
  3375   interface(CONST_INTER);
  3376 %}
  3378 // Integer Immediate: 13-bit minus 7
  3379 operand immI13m7() %{
  3380   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3381   match(ConI);
  3382   op_cost(0);
  3384   format %{ %}
  3385   interface(CONST_INTER);
  3386 %}
  3388 // Integer Immediate: 16-bit
  3389 operand immI16() %{
  3390   predicate(Assembler::is_simm(n->get_int(), 16));
  3391   match(ConI);
  3392   op_cost(0);
  3393   format %{ %}
  3394   interface(CONST_INTER);
  3395 %}
  3397 // Unsigned (positive) Integer Immediate: 13-bit
  3398 operand immU13() %{
  3399   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3400   match(ConI);
  3401   op_cost(0);
  3403   format %{ %}
  3404   interface(CONST_INTER);
  3405 %}
  3407 // Integer Immediate: 6-bit
  3408 operand immU6() %{
  3409   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3410   match(ConI);
  3411   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Integer Immediate: 11-bit
  3417 operand immI11() %{
  3418   predicate(Assembler::is_simm(n->get_int(),11));
  3419   match(ConI);
  3420   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Integer Immediate: 0-bit
  3426 operand immI0() %{
  3427   predicate(n->get_int() == 0);
  3428   match(ConI);
  3429   op_cost(0);
  3431   format %{ %}
  3432   interface(CONST_INTER);
  3433 %}
  3435 // Integer Immediate: the value 10
  3436 operand immI10() %{
  3437   predicate(n->get_int() == 10);
  3438   match(ConI);
  3439   op_cost(0);
  3441   format %{ %}
  3442   interface(CONST_INTER);
  3443 %}
  3445 // Integer Immediate: the values 0-31
  3446 operand immU5() %{
  3447   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3448   match(ConI);
  3449   op_cost(0);
  3451   format %{ %}
  3452   interface(CONST_INTER);
  3453 %}
  3455 // Integer Immediate: the values 1-31
  3456 operand immI_1_31() %{
  3457   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3458   match(ConI);
  3459   op_cost(0);
  3461   format %{ %}
  3462   interface(CONST_INTER);
  3463 %}
  3465 // Integer Immediate: the values 32-63
  3466 operand immI_32_63() %{
  3467   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3468   match(ConI);
  3469   op_cost(0);
  3471   format %{ %}
  3472   interface(CONST_INTER);
  3473 %}
  3475 // Immediates for special shifts (sign extend)
  3477 // Integer Immediate: the value 16
  3478 operand immI_16() %{
  3479   predicate(n->get_int() == 16);
  3480   match(ConI);
  3481   op_cost(0);
  3483   format %{ %}
  3484   interface(CONST_INTER);
  3485 %}
  3487 // Integer Immediate: the value 24
  3488 operand immI_24() %{
  3489   predicate(n->get_int() == 24);
  3490   match(ConI);
  3491   op_cost(0);
  3493   format %{ %}
  3494   interface(CONST_INTER);
  3495 %}
  3497 // Integer Immediate: the value 255
  3498 operand immI_255() %{
  3499   predicate( n->get_int() == 255 );
  3500   match(ConI);
  3501   op_cost(0);
  3503   format %{ %}
  3504   interface(CONST_INTER);
  3505 %}
  3507 // Integer Immediate: the value 65535
  3508 operand immI_65535() %{
  3509   predicate(n->get_int() == 65535);
  3510   match(ConI);
  3511   op_cost(0);
  3513   format %{ %}
  3514   interface(CONST_INTER);
  3515 %}
  3517 // Long Immediate: the value FF
  3518 operand immL_FF() %{
  3519   predicate( n->get_long() == 0xFFL );
  3520   match(ConL);
  3521   op_cost(0);
  3523   format %{ %}
  3524   interface(CONST_INTER);
  3525 %}
  3527 // Long Immediate: the value FFFF
  3528 operand immL_FFFF() %{
  3529   predicate( n->get_long() == 0xFFFFL );
  3530   match(ConL);
  3531   op_cost(0);
  3533   format %{ %}
  3534   interface(CONST_INTER);
  3535 %}
  3537 // Pointer Immediate: 32 or 64-bit
  3538 operand immP() %{
  3539   match(ConP);
  3541   op_cost(5);
  3542   // formats are generated automatically for constants and base registers
  3543   format %{ %}
  3544   interface(CONST_INTER);
  3545 %}
  3547 #ifdef _LP64
  3548 // Pointer Immediate: 64-bit
  3549 operand immP_set() %{
  3550   predicate(!VM_Version::is_niagara_plus());
  3551   match(ConP);
  3553   op_cost(5);
  3554   // formats are generated automatically for constants and base registers
  3555   format %{ %}
  3556   interface(CONST_INTER);
  3557 %}
  3559 // Pointer Immediate: 64-bit
  3560 // From Niagara2 processors on a load should be better than materializing.
  3561 operand immP_load() %{
  3562   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3563   match(ConP);
  3565   op_cost(5);
  3566   // formats are generated automatically for constants and base registers
  3567   format %{ %}
  3568   interface(CONST_INTER);
  3569 %}
  3571 // Pointer Immediate: 64-bit
  3572 operand immP_no_oop_cheap() %{
  3573   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3574   match(ConP);
  3576   op_cost(5);
  3577   // formats are generated automatically for constants and base registers
  3578   format %{ %}
  3579   interface(CONST_INTER);
  3580 %}
  3581 #endif
  3583 operand immP13() %{
  3584   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3585   match(ConP);
  3586   op_cost(0);
  3588   format %{ %}
  3589   interface(CONST_INTER);
  3590 %}
  3592 operand immP0() %{
  3593   predicate(n->get_ptr() == 0);
  3594   match(ConP);
  3595   op_cost(0);
  3597   format %{ %}
  3598   interface(CONST_INTER);
  3599 %}
  3601 operand immP_poll() %{
  3602   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3603   match(ConP);
  3605   // formats are generated automatically for constants and base registers
  3606   format %{ %}
  3607   interface(CONST_INTER);
  3608 %}
  3610 // Pointer Immediate
  3611 operand immN()
  3612 %{
  3613   match(ConN);
  3615   op_cost(10);
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3620 // NULL Pointer Immediate
  3621 operand immN0()
  3622 %{
  3623   predicate(n->get_narrowcon() == 0);
  3624   match(ConN);
  3626   op_cost(0);
  3627   format %{ %}
  3628   interface(CONST_INTER);
  3629 %}
  3631 operand immL() %{
  3632   match(ConL);
  3633   op_cost(40);
  3634   // formats are generated automatically for constants and base registers
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 operand immL0() %{
  3640   predicate(n->get_long() == 0L);
  3641   match(ConL);
  3642   op_cost(0);
  3643   // formats are generated automatically for constants and base registers
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 // Long Immediate: 13-bit
  3649 operand immL13() %{
  3650   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3651   match(ConL);
  3652   op_cost(0);
  3654   format %{ %}
  3655   interface(CONST_INTER);
  3656 %}
  3658 // Long Immediate: 13-bit minus 7
  3659 operand immL13m7() %{
  3660   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3661   match(ConL);
  3662   op_cost(0);
  3664   format %{ %}
  3665   interface(CONST_INTER);
  3666 %}
  3668 // Long Immediate: low 32-bit mask
  3669 operand immL_32bits() %{
  3670   predicate(n->get_long() == 0xFFFFFFFFL);
  3671   match(ConL);
  3672   op_cost(0);
  3674   format %{ %}
  3675   interface(CONST_INTER);
  3676 %}
  3678 // Long Immediate: cheap (materialize in <= 3 instructions)
  3679 operand immL_cheap() %{
  3680   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3681   match(ConL);
  3682   op_cost(0);
  3684   format %{ %}
  3685   interface(CONST_INTER);
  3686 %}
  3688 // Long Immediate: expensive (materialize in > 3 instructions)
  3689 operand immL_expensive() %{
  3690   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3691   match(ConL);
  3692   op_cost(0);
  3694   format %{ %}
  3695   interface(CONST_INTER);
  3696 %}
  3698 // Double Immediate
  3699 operand immD() %{
  3700   match(ConD);
  3702   op_cost(40);
  3703   format %{ %}
  3704   interface(CONST_INTER);
  3705 %}
  3707 operand immD0() %{
  3708 #ifdef _LP64
  3709   // on 64-bit architectures this comparision is faster
  3710   predicate(jlong_cast(n->getd()) == 0);
  3711 #else
  3712   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3713 #endif
  3714   match(ConD);
  3716   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 // Float Immediate
  3722 operand immF() %{
  3723   match(ConF);
  3725   op_cost(20);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 // Float Immediate: 0
  3731 operand immF0() %{
  3732   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3733   match(ConF);
  3735   op_cost(0);
  3736   format %{ %}
  3737   interface(CONST_INTER);
  3738 %}
  3740 // Integer Register Operands
  3741 // Integer Register
  3742 operand iRegI() %{
  3743   constraint(ALLOC_IN_RC(int_reg));
  3744   match(RegI);
  3746   match(notemp_iRegI);
  3747   match(g1RegI);
  3748   match(o0RegI);
  3749   match(iRegIsafe);
  3751   format %{ %}
  3752   interface(REG_INTER);
  3753 %}
  3755 operand notemp_iRegI() %{
  3756   constraint(ALLOC_IN_RC(notemp_int_reg));
  3757   match(RegI);
  3759   match(o0RegI);
  3761   format %{ %}
  3762   interface(REG_INTER);
  3763 %}
  3765 operand o0RegI() %{
  3766   constraint(ALLOC_IN_RC(o0_regI));
  3767   match(iRegI);
  3769   format %{ %}
  3770   interface(REG_INTER);
  3771 %}
  3773 // Pointer Register
  3774 operand iRegP() %{
  3775   constraint(ALLOC_IN_RC(ptr_reg));
  3776   match(RegP);
  3778   match(lock_ptr_RegP);
  3779   match(g1RegP);
  3780   match(g2RegP);
  3781   match(g3RegP);
  3782   match(g4RegP);
  3783   match(i0RegP);
  3784   match(o0RegP);
  3785   match(o1RegP);
  3786   match(l7RegP);
  3788   format %{ %}
  3789   interface(REG_INTER);
  3790 %}
  3792 operand sp_ptr_RegP() %{
  3793   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3794   match(RegP);
  3795   match(iRegP);
  3797   format %{ %}
  3798   interface(REG_INTER);
  3799 %}
  3801 operand lock_ptr_RegP() %{
  3802   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3803   match(RegP);
  3804   match(i0RegP);
  3805   match(o0RegP);
  3806   match(o1RegP);
  3807   match(l7RegP);
  3809   format %{ %}
  3810   interface(REG_INTER);
  3811 %}
  3813 operand g1RegP() %{
  3814   constraint(ALLOC_IN_RC(g1_regP));
  3815   match(iRegP);
  3817   format %{ %}
  3818   interface(REG_INTER);
  3819 %}
  3821 operand g2RegP() %{
  3822   constraint(ALLOC_IN_RC(g2_regP));
  3823   match(iRegP);
  3825   format %{ %}
  3826   interface(REG_INTER);
  3827 %}
  3829 operand g3RegP() %{
  3830   constraint(ALLOC_IN_RC(g3_regP));
  3831   match(iRegP);
  3833   format %{ %}
  3834   interface(REG_INTER);
  3835 %}
  3837 operand g1RegI() %{
  3838   constraint(ALLOC_IN_RC(g1_regI));
  3839   match(iRegI);
  3841   format %{ %}
  3842   interface(REG_INTER);
  3843 %}
  3845 operand g3RegI() %{
  3846   constraint(ALLOC_IN_RC(g3_regI));
  3847   match(iRegI);
  3849   format %{ %}
  3850   interface(REG_INTER);
  3851 %}
  3853 operand g4RegI() %{
  3854   constraint(ALLOC_IN_RC(g4_regI));
  3855   match(iRegI);
  3857   format %{ %}
  3858   interface(REG_INTER);
  3859 %}
  3861 operand g4RegP() %{
  3862   constraint(ALLOC_IN_RC(g4_regP));
  3863   match(iRegP);
  3865   format %{ %}
  3866   interface(REG_INTER);
  3867 %}
  3869 operand i0RegP() %{
  3870   constraint(ALLOC_IN_RC(i0_regP));
  3871   match(iRegP);
  3873   format %{ %}
  3874   interface(REG_INTER);
  3875 %}
  3877 operand o0RegP() %{
  3878   constraint(ALLOC_IN_RC(o0_regP));
  3879   match(iRegP);
  3881   format %{ %}
  3882   interface(REG_INTER);
  3883 %}
  3885 operand o1RegP() %{
  3886   constraint(ALLOC_IN_RC(o1_regP));
  3887   match(iRegP);
  3889   format %{ %}
  3890   interface(REG_INTER);
  3891 %}
  3893 operand o2RegP() %{
  3894   constraint(ALLOC_IN_RC(o2_regP));
  3895   match(iRegP);
  3897   format %{ %}
  3898   interface(REG_INTER);
  3899 %}
  3901 operand o7RegP() %{
  3902   constraint(ALLOC_IN_RC(o7_regP));
  3903   match(iRegP);
  3905   format %{ %}
  3906   interface(REG_INTER);
  3907 %}
  3909 operand l7RegP() %{
  3910   constraint(ALLOC_IN_RC(l7_regP));
  3911   match(iRegP);
  3913   format %{ %}
  3914   interface(REG_INTER);
  3915 %}
  3917 operand o7RegI() %{
  3918   constraint(ALLOC_IN_RC(o7_regI));
  3919   match(iRegI);
  3921   format %{ %}
  3922   interface(REG_INTER);
  3923 %}
  3925 operand iRegN() %{
  3926   constraint(ALLOC_IN_RC(int_reg));
  3927   match(RegN);
  3929   format %{ %}
  3930   interface(REG_INTER);
  3931 %}
  3933 // Long Register
  3934 operand iRegL() %{
  3935   constraint(ALLOC_IN_RC(long_reg));
  3936   match(RegL);
  3938   format %{ %}
  3939   interface(REG_INTER);
  3940 %}
  3942 operand o2RegL() %{
  3943   constraint(ALLOC_IN_RC(o2_regL));
  3944   match(iRegL);
  3946   format %{ %}
  3947   interface(REG_INTER);
  3948 %}
  3950 operand o7RegL() %{
  3951   constraint(ALLOC_IN_RC(o7_regL));
  3952   match(iRegL);
  3954   format %{ %}
  3955   interface(REG_INTER);
  3956 %}
  3958 operand g1RegL() %{
  3959   constraint(ALLOC_IN_RC(g1_regL));
  3960   match(iRegL);
  3962   format %{ %}
  3963   interface(REG_INTER);
  3964 %}
  3966 operand g3RegL() %{
  3967   constraint(ALLOC_IN_RC(g3_regL));
  3968   match(iRegL);
  3970   format %{ %}
  3971   interface(REG_INTER);
  3972 %}
  3974 // Int Register safe
  3975 // This is 64bit safe
  3976 operand iRegIsafe() %{
  3977   constraint(ALLOC_IN_RC(long_reg));
  3979   match(iRegI);
  3981   format %{ %}
  3982   interface(REG_INTER);
  3983 %}
  3985 // Condition Code Flag Register
  3986 operand flagsReg() %{
  3987   constraint(ALLOC_IN_RC(int_flags));
  3988   match(RegFlags);
  3990   format %{ "ccr" %} // both ICC and XCC
  3991   interface(REG_INTER);
  3992 %}
  3994 // Condition Code Register, unsigned comparisons.
  3995 operand flagsRegU() %{
  3996   constraint(ALLOC_IN_RC(int_flags));
  3997   match(RegFlags);
  3999   format %{ "icc_U" %}
  4000   interface(REG_INTER);
  4001 %}
  4003 // Condition Code Register, pointer comparisons.
  4004 operand flagsRegP() %{
  4005   constraint(ALLOC_IN_RC(int_flags));
  4006   match(RegFlags);
  4008 #ifdef _LP64
  4009   format %{ "xcc_P" %}
  4010 #else
  4011   format %{ "icc_P" %}
  4012 #endif
  4013   interface(REG_INTER);
  4014 %}
  4016 // Condition Code Register, long comparisons.
  4017 operand flagsRegL() %{
  4018   constraint(ALLOC_IN_RC(int_flags));
  4019   match(RegFlags);
  4021   format %{ "xcc_L" %}
  4022   interface(REG_INTER);
  4023 %}
  4025 // Condition Code Register, floating comparisons, unordered same as "less".
  4026 operand flagsRegF() %{
  4027   constraint(ALLOC_IN_RC(float_flags));
  4028   match(RegFlags);
  4029   match(flagsRegF0);
  4031   format %{ %}
  4032   interface(REG_INTER);
  4033 %}
  4035 operand flagsRegF0() %{
  4036   constraint(ALLOC_IN_RC(float_flag0));
  4037   match(RegFlags);
  4039   format %{ %}
  4040   interface(REG_INTER);
  4041 %}
  4044 // Condition Code Flag Register used by long compare
  4045 operand flagsReg_long_LTGE() %{
  4046   constraint(ALLOC_IN_RC(int_flags));
  4047   match(RegFlags);
  4048   format %{ "icc_LTGE" %}
  4049   interface(REG_INTER);
  4050 %}
  4051 operand flagsReg_long_EQNE() %{
  4052   constraint(ALLOC_IN_RC(int_flags));
  4053   match(RegFlags);
  4054   format %{ "icc_EQNE" %}
  4055   interface(REG_INTER);
  4056 %}
  4057 operand flagsReg_long_LEGT() %{
  4058   constraint(ALLOC_IN_RC(int_flags));
  4059   match(RegFlags);
  4060   format %{ "icc_LEGT" %}
  4061   interface(REG_INTER);
  4062 %}
  4065 operand regD() %{
  4066   constraint(ALLOC_IN_RC(dflt_reg));
  4067   match(RegD);
  4069   match(regD_low);
  4071   format %{ %}
  4072   interface(REG_INTER);
  4073 %}
  4075 operand regF() %{
  4076   constraint(ALLOC_IN_RC(sflt_reg));
  4077   match(RegF);
  4079   format %{ %}
  4080   interface(REG_INTER);
  4081 %}
  4083 operand regD_low() %{
  4084   constraint(ALLOC_IN_RC(dflt_low_reg));
  4085   match(regD);
  4087   format %{ %}
  4088   interface(REG_INTER);
  4089 %}
  4091 // Special Registers
  4093 // Method Register
  4094 operand inline_cache_regP(iRegP reg) %{
  4095   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4096   match(reg);
  4097   format %{ %}
  4098   interface(REG_INTER);
  4099 %}
  4101 operand interpreter_method_oop_regP(iRegP reg) %{
  4102   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4103   match(reg);
  4104   format %{ %}
  4105   interface(REG_INTER);
  4106 %}
  4109 //----------Complex Operands---------------------------------------------------
  4110 // Indirect Memory Reference
  4111 operand indirect(sp_ptr_RegP reg) %{
  4112   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4113   match(reg);
  4115   op_cost(100);
  4116   format %{ "[$reg]" %}
  4117   interface(MEMORY_INTER) %{
  4118     base($reg);
  4119     index(0x0);
  4120     scale(0x0);
  4121     disp(0x0);
  4122   %}
  4123 %}
  4125 // Indirect with simm13 Offset
  4126 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4127   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4128   match(AddP reg offset);
  4130   op_cost(100);
  4131   format %{ "[$reg + $offset]" %}
  4132   interface(MEMORY_INTER) %{
  4133     base($reg);
  4134     index(0x0);
  4135     scale(0x0);
  4136     disp($offset);
  4137   %}
  4138 %}
  4140 // Indirect with simm13 Offset minus 7
  4141 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4142   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4143   match(AddP reg offset);
  4145   op_cost(100);
  4146   format %{ "[$reg + $offset]" %}
  4147   interface(MEMORY_INTER) %{
  4148     base($reg);
  4149     index(0x0);
  4150     scale(0x0);
  4151     disp($offset);
  4152   %}
  4153 %}
  4155 // Note:  Intel has a swapped version also, like this:
  4156 //operand indOffsetX(iRegI reg, immP offset) %{
  4157 //  constraint(ALLOC_IN_RC(int_reg));
  4158 //  match(AddP offset reg);
  4159 //
  4160 //  op_cost(100);
  4161 //  format %{ "[$reg + $offset]" %}
  4162 //  interface(MEMORY_INTER) %{
  4163 //    base($reg);
  4164 //    index(0x0);
  4165 //    scale(0x0);
  4166 //    disp($offset);
  4167 //  %}
  4168 //%}
  4169 //// However, it doesn't make sense for SPARC, since
  4170 // we have no particularly good way to embed oops in
  4171 // single instructions.
  4173 // Indirect with Register Index
  4174 operand indIndex(iRegP addr, iRegX index) %{
  4175   constraint(ALLOC_IN_RC(ptr_reg));
  4176   match(AddP addr index);
  4178   op_cost(100);
  4179   format %{ "[$addr + $index]" %}
  4180   interface(MEMORY_INTER) %{
  4181     base($addr);
  4182     index($index);
  4183     scale(0x0);
  4184     disp(0x0);
  4185   %}
  4186 %}
  4188 //----------Special Memory Operands--------------------------------------------
  4189 // Stack Slot Operand - This operand is used for loading and storing temporary
  4190 //                      values on the stack where a match requires a value to
  4191 //                      flow through memory.
  4192 operand stackSlotI(sRegI reg) %{
  4193   constraint(ALLOC_IN_RC(stack_slots));
  4194   op_cost(100);
  4195   //match(RegI);
  4196   format %{ "[$reg]" %}
  4197   interface(MEMORY_INTER) %{
  4198     base(0xE);   // R_SP
  4199     index(0x0);
  4200     scale(0x0);
  4201     disp($reg);  // Stack Offset
  4202   %}
  4203 %}
  4205 operand stackSlotP(sRegP reg) %{
  4206   constraint(ALLOC_IN_RC(stack_slots));
  4207   op_cost(100);
  4208   //match(RegP);
  4209   format %{ "[$reg]" %}
  4210   interface(MEMORY_INTER) %{
  4211     base(0xE);   // R_SP
  4212     index(0x0);
  4213     scale(0x0);
  4214     disp($reg);  // Stack Offset
  4215   %}
  4216 %}
  4218 operand stackSlotF(sRegF reg) %{
  4219   constraint(ALLOC_IN_RC(stack_slots));
  4220   op_cost(100);
  4221   //match(RegF);
  4222   format %{ "[$reg]" %}
  4223   interface(MEMORY_INTER) %{
  4224     base(0xE);   // R_SP
  4225     index(0x0);
  4226     scale(0x0);
  4227     disp($reg);  // Stack Offset
  4228   %}
  4229 %}
  4230 operand stackSlotD(sRegD reg) %{
  4231   constraint(ALLOC_IN_RC(stack_slots));
  4232   op_cost(100);
  4233   //match(RegD);
  4234   format %{ "[$reg]" %}
  4235   interface(MEMORY_INTER) %{
  4236     base(0xE);   // R_SP
  4237     index(0x0);
  4238     scale(0x0);
  4239     disp($reg);  // Stack Offset
  4240   %}
  4241 %}
  4242 operand stackSlotL(sRegL reg) %{
  4243   constraint(ALLOC_IN_RC(stack_slots));
  4244   op_cost(100);
  4245   //match(RegL);
  4246   format %{ "[$reg]" %}
  4247   interface(MEMORY_INTER) %{
  4248     base(0xE);   // R_SP
  4249     index(0x0);
  4250     scale(0x0);
  4251     disp($reg);  // Stack Offset
  4252   %}
  4253 %}
  4255 // Operands for expressing Control Flow
  4256 // NOTE:  Label is a predefined operand which should not be redefined in
  4257 //        the AD file.  It is generically handled within the ADLC.
  4259 //----------Conditional Branch Operands----------------------------------------
  4260 // Comparison Op  - This is the operation of the comparison, and is limited to
  4261 //                  the following set of codes:
  4262 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4263 //
  4264 // Other attributes of the comparison, such as unsignedness, are specified
  4265 // by the comparison instruction that sets a condition code flags register.
  4266 // That result is represented by a flags operand whose subtype is appropriate
  4267 // to the unsignedness (etc.) of the comparison.
  4268 //
  4269 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4270 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4271 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4273 operand cmpOp() %{
  4274   match(Bool);
  4276   format %{ "" %}
  4277   interface(COND_INTER) %{
  4278     equal(0x1);
  4279     not_equal(0x9);
  4280     less(0x3);
  4281     greater_equal(0xB);
  4282     less_equal(0x2);
  4283     greater(0xA);
  4284   %}
  4285 %}
  4287 // Comparison Op, unsigned
  4288 operand cmpOpU() %{
  4289   match(Bool);
  4291   format %{ "u" %}
  4292   interface(COND_INTER) %{
  4293     equal(0x1);
  4294     not_equal(0x9);
  4295     less(0x5);
  4296     greater_equal(0xD);
  4297     less_equal(0x4);
  4298     greater(0xC);
  4299   %}
  4300 %}
  4302 // Comparison Op, pointer (same as unsigned)
  4303 operand cmpOpP() %{
  4304   match(Bool);
  4306   format %{ "p" %}
  4307   interface(COND_INTER) %{
  4308     equal(0x1);
  4309     not_equal(0x9);
  4310     less(0x5);
  4311     greater_equal(0xD);
  4312     less_equal(0x4);
  4313     greater(0xC);
  4314   %}
  4315 %}
  4317 // Comparison Op, branch-register encoding
  4318 operand cmpOp_reg() %{
  4319   match(Bool);
  4321   format %{ "" %}
  4322   interface(COND_INTER) %{
  4323     equal        (0x1);
  4324     not_equal    (0x5);
  4325     less         (0x3);
  4326     greater_equal(0x7);
  4327     less_equal   (0x2);
  4328     greater      (0x6);
  4329   %}
  4330 %}
  4332 // Comparison Code, floating, unordered same as less
  4333 operand cmpOpF() %{
  4334   match(Bool);
  4336   format %{ "fl" %}
  4337   interface(COND_INTER) %{
  4338     equal(0x9);
  4339     not_equal(0x1);
  4340     less(0x3);
  4341     greater_equal(0xB);
  4342     less_equal(0xE);
  4343     greater(0x6);
  4344   %}
  4345 %}
  4347 // Used by long compare
  4348 operand cmpOp_commute() %{
  4349   match(Bool);
  4351   format %{ "" %}
  4352   interface(COND_INTER) %{
  4353     equal(0x1);
  4354     not_equal(0x9);
  4355     less(0xA);
  4356     greater_equal(0x2);
  4357     less_equal(0xB);
  4358     greater(0x3);
  4359   %}
  4360 %}
  4362 //----------OPERAND CLASSES----------------------------------------------------
  4363 // Operand Classes are groups of operands that are used to simplify
  4364 // instruction definitions by not requiring the AD writer to specify separate
  4365 // instructions for every form of operand when the instruction accepts
  4366 // multiple operand types with the same basic encoding and format.  The classic
  4367 // case of this is memory operands.
  4368 opclass memory( indirect, indOffset13, indIndex );
  4369 opclass indIndexMemory( indIndex );
  4371 //----------PIPELINE-----------------------------------------------------------
  4372 pipeline %{
  4374 //----------ATTRIBUTES---------------------------------------------------------
  4375 attributes %{
  4376   fixed_size_instructions;           // Fixed size instructions
  4377   branch_has_delay_slot;             // Branch has delay slot following
  4378   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4379   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4380   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4381   instruction_fetch_units = 1;       // of 16 bytes
  4383   // List of nop instructions
  4384   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4385 %}
  4387 //----------RESOURCES----------------------------------------------------------
  4388 // Resources are the functional units available to the machine
  4389 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4391 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4392 // Pipeline Description specifies the stages in the machine's pipeline
  4394 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4396 //----------PIPELINE CLASSES---------------------------------------------------
  4397 // Pipeline Classes describe the stages in which input and output are
  4398 // referenced by the hardware pipeline.
  4400 // Integer ALU reg-reg operation
  4401 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4402     single_instruction;
  4403     dst   : E(write);
  4404     src1  : R(read);
  4405     src2  : R(read);
  4406     IALU  : R;
  4407 %}
  4409 // Integer ALU reg-reg long operation
  4410 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4411     instruction_count(2);
  4412     dst   : E(write);
  4413     src1  : R(read);
  4414     src2  : R(read);
  4415     IALU  : R;
  4416     IALU  : R;
  4417 %}
  4419 // Integer ALU reg-reg long dependent operation
  4420 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4421     instruction_count(1); multiple_bundles;
  4422     dst   : E(write);
  4423     src1  : R(read);
  4424     src2  : R(read);
  4425     cr    : E(write);
  4426     IALU  : R(2);
  4427 %}
  4429 // Integer ALU reg-imm operaion
  4430 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4431     single_instruction;
  4432     dst   : E(write);
  4433     src1  : R(read);
  4434     IALU  : R;
  4435 %}
  4437 // Integer ALU reg-reg operation with condition code
  4438 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4439     single_instruction;
  4440     dst   : E(write);
  4441     cr    : E(write);
  4442     src1  : R(read);
  4443     src2  : R(read);
  4444     IALU  : R;
  4445 %}
  4447 // Integer ALU reg-imm operation with condition code
  4448 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4449     single_instruction;
  4450     dst   : E(write);
  4451     cr    : E(write);
  4452     src1  : R(read);
  4453     IALU  : R;
  4454 %}
  4456 // Integer ALU zero-reg operation
  4457 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4458     single_instruction;
  4459     dst   : E(write);
  4460     src2  : R(read);
  4461     IALU  : R;
  4462 %}
  4464 // Integer ALU zero-reg operation with condition code only
  4465 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4466     single_instruction;
  4467     cr    : E(write);
  4468     src   : R(read);
  4469     IALU  : R;
  4470 %}
  4472 // Integer ALU reg-reg operation with condition code only
  4473 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4474     single_instruction;
  4475     cr    : E(write);
  4476     src1  : R(read);
  4477     src2  : R(read);
  4478     IALU  : R;
  4479 %}
  4481 // Integer ALU reg-imm operation with condition code only
  4482 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4483     single_instruction;
  4484     cr    : E(write);
  4485     src1  : R(read);
  4486     IALU  : R;
  4487 %}
  4489 // Integer ALU reg-reg-zero operation with condition code only
  4490 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4491     single_instruction;
  4492     cr    : E(write);
  4493     src1  : R(read);
  4494     src2  : R(read);
  4495     IALU  : R;
  4496 %}
  4498 // Integer ALU reg-imm-zero operation with condition code only
  4499 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4500     single_instruction;
  4501     cr    : E(write);
  4502     src1  : R(read);
  4503     IALU  : R;
  4504 %}
  4506 // Integer ALU reg-reg operation with condition code, src1 modified
  4507 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4508     single_instruction;
  4509     cr    : E(write);
  4510     src1  : E(write);
  4511     src1  : R(read);
  4512     src2  : R(read);
  4513     IALU  : R;
  4514 %}
  4516 // Integer ALU reg-imm operation with condition code, src1 modified
  4517 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4518     single_instruction;
  4519     cr    : E(write);
  4520     src1  : E(write);
  4521     src1  : R(read);
  4522     IALU  : R;
  4523 %}
  4525 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4526     multiple_bundles;
  4527     dst   : E(write)+4;
  4528     cr    : E(write);
  4529     src1  : R(read);
  4530     src2  : R(read);
  4531     IALU  : R(3);
  4532     BR    : R(2);
  4533 %}
  4535 // Integer ALU operation
  4536 pipe_class ialu_none(iRegI dst) %{
  4537     single_instruction;
  4538     dst   : E(write);
  4539     IALU  : R;
  4540 %}
  4542 // Integer ALU reg operation
  4543 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4544     single_instruction; may_have_no_code;
  4545     dst   : E(write);
  4546     src   : R(read);
  4547     IALU  : R;
  4548 %}
  4550 // Integer ALU reg conditional operation
  4551 // This instruction has a 1 cycle stall, and cannot execute
  4552 // in the same cycle as the instruction setting the condition
  4553 // code. We kludge this by pretending to read the condition code
  4554 // 1 cycle earlier, and by marking the functional units as busy
  4555 // for 2 cycles with the result available 1 cycle later than
  4556 // is really the case.
  4557 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4558     single_instruction;
  4559     op2_out : C(write);
  4560     op1     : R(read);
  4561     cr      : R(read);       // This is really E, with a 1 cycle stall
  4562     BR      : R(2);
  4563     MS      : R(2);
  4564 %}
  4566 #ifdef _LP64
  4567 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4568     instruction_count(1); multiple_bundles;
  4569     dst     : C(write)+1;
  4570     src     : R(read)+1;
  4571     IALU    : R(1);
  4572     BR      : E(2);
  4573     MS      : E(2);
  4574 %}
  4575 #endif
  4577 // Integer ALU reg operation
  4578 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4579     single_instruction; may_have_no_code;
  4580     dst   : E(write);
  4581     src   : R(read);
  4582     IALU  : R;
  4583 %}
  4584 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4585     single_instruction; may_have_no_code;
  4586     dst   : E(write);
  4587     src   : R(read);
  4588     IALU  : R;
  4589 %}
  4591 // Two integer ALU reg operations
  4592 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4593     instruction_count(2);
  4594     dst   : E(write);
  4595     src   : R(read);
  4596     A0    : R;
  4597     A1    : R;
  4598 %}
  4600 // Two integer ALU reg operations
  4601 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4602     instruction_count(2); may_have_no_code;
  4603     dst   : E(write);
  4604     src   : R(read);
  4605     A0    : R;
  4606     A1    : R;
  4607 %}
  4609 // Integer ALU imm operation
  4610 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4611     single_instruction;
  4612     dst   : E(write);
  4613     IALU  : R;
  4614 %}
  4616 // Integer ALU reg-reg with carry operation
  4617 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4618     single_instruction;
  4619     dst   : E(write);
  4620     src1  : R(read);
  4621     src2  : R(read);
  4622     IALU  : R;
  4623 %}
  4625 // Integer ALU cc operation
  4626 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4627     single_instruction;
  4628     dst   : E(write);
  4629     cc    : R(read);
  4630     IALU  : R;
  4631 %}
  4633 // Integer ALU cc / second IALU operation
  4634 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4635     instruction_count(1); multiple_bundles;
  4636     dst   : E(write)+1;
  4637     src   : R(read);
  4638     IALU  : R;
  4639 %}
  4641 // Integer ALU cc / second IALU operation
  4642 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4643     instruction_count(1); multiple_bundles;
  4644     dst   : E(write)+1;
  4645     p     : R(read);
  4646     q     : R(read);
  4647     IALU  : R;
  4648 %}
  4650 // Integer ALU hi-lo-reg operation
  4651 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4652     instruction_count(1); multiple_bundles;
  4653     dst   : E(write)+1;
  4654     IALU  : R(2);
  4655 %}
  4657 // Float ALU hi-lo-reg operation (with temp)
  4658 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4659     instruction_count(1); multiple_bundles;
  4660     dst   : E(write)+1;
  4661     IALU  : R(2);
  4662 %}
  4664 // Long Constant
  4665 pipe_class loadConL( iRegL dst, immL src ) %{
  4666     instruction_count(2); multiple_bundles;
  4667     dst   : E(write)+1;
  4668     IALU  : R(2);
  4669     IALU  : R(2);
  4670 %}
  4672 // Pointer Constant
  4673 pipe_class loadConP( iRegP dst, immP src ) %{
  4674     instruction_count(0); multiple_bundles;
  4675     fixed_latency(6);
  4676 %}
  4678 // Polling Address
  4679 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4680 #ifdef _LP64
  4681     instruction_count(0); multiple_bundles;
  4682     fixed_latency(6);
  4683 #else
  4684     dst   : E(write);
  4685     IALU  : R;
  4686 #endif
  4687 %}
  4689 // Long Constant small
  4690 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4691     instruction_count(2);
  4692     dst   : E(write);
  4693     IALU  : R;
  4694     IALU  : R;
  4695 %}
  4697 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4698 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4699     instruction_count(1); multiple_bundles;
  4700     src   : R(read);
  4701     dst   : M(write)+1;
  4702     IALU  : R;
  4703     MS    : E;
  4704 %}
  4706 // Integer ALU nop operation
  4707 pipe_class ialu_nop() %{
  4708     single_instruction;
  4709     IALU  : R;
  4710 %}
  4712 // Integer ALU nop operation
  4713 pipe_class ialu_nop_A0() %{
  4714     single_instruction;
  4715     A0    : R;
  4716 %}
  4718 // Integer ALU nop operation
  4719 pipe_class ialu_nop_A1() %{
  4720     single_instruction;
  4721     A1    : R;
  4722 %}
  4724 // Integer Multiply reg-reg operation
  4725 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4726     single_instruction;
  4727     dst   : E(write);
  4728     src1  : R(read);
  4729     src2  : R(read);
  4730     MS    : R(5);
  4731 %}
  4733 // Integer Multiply reg-imm operation
  4734 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4735     single_instruction;
  4736     dst   : E(write);
  4737     src1  : R(read);
  4738     MS    : R(5);
  4739 %}
  4741 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4742     single_instruction;
  4743     dst   : E(write)+4;
  4744     src1  : R(read);
  4745     src2  : R(read);
  4746     MS    : R(6);
  4747 %}
  4749 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4750     single_instruction;
  4751     dst   : E(write)+4;
  4752     src1  : R(read);
  4753     MS    : R(6);
  4754 %}
  4756 // Integer Divide reg-reg
  4757 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4758     instruction_count(1); multiple_bundles;
  4759     dst   : E(write);
  4760     temp  : E(write);
  4761     src1  : R(read);
  4762     src2  : R(read);
  4763     temp  : R(read);
  4764     MS    : R(38);
  4765 %}
  4767 // Integer Divide reg-imm
  4768 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4769     instruction_count(1); multiple_bundles;
  4770     dst   : E(write);
  4771     temp  : E(write);
  4772     src1  : R(read);
  4773     temp  : R(read);
  4774     MS    : R(38);
  4775 %}
  4777 // Long Divide
  4778 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4779     dst  : E(write)+71;
  4780     src1 : R(read);
  4781     src2 : R(read)+1;
  4782     MS   : R(70);
  4783 %}
  4785 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4786     dst  : E(write)+71;
  4787     src1 : R(read);
  4788     MS   : R(70);
  4789 %}
  4791 // Floating Point Add Float
  4792 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4793     single_instruction;
  4794     dst   : X(write);
  4795     src1  : E(read);
  4796     src2  : E(read);
  4797     FA    : R;
  4798 %}
  4800 // Floating Point Add Double
  4801 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4802     single_instruction;
  4803     dst   : X(write);
  4804     src1  : E(read);
  4805     src2  : E(read);
  4806     FA    : R;
  4807 %}
  4809 // Floating Point Conditional Move based on integer flags
  4810 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4811     single_instruction;
  4812     dst   : X(write);
  4813     src   : E(read);
  4814     cr    : R(read);
  4815     FA    : R(2);
  4816     BR    : R(2);
  4817 %}
  4819 // Floating Point Conditional Move based on integer flags
  4820 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4821     single_instruction;
  4822     dst   : X(write);
  4823     src   : E(read);
  4824     cr    : R(read);
  4825     FA    : R(2);
  4826     BR    : R(2);
  4827 %}
  4829 // Floating Point Multiply Float
  4830 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4831     single_instruction;
  4832     dst   : X(write);
  4833     src1  : E(read);
  4834     src2  : E(read);
  4835     FM    : R;
  4836 %}
  4838 // Floating Point Multiply Double
  4839 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4840     single_instruction;
  4841     dst   : X(write);
  4842     src1  : E(read);
  4843     src2  : E(read);
  4844     FM    : R;
  4845 %}
  4847 // Floating Point Divide Float
  4848 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4849     single_instruction;
  4850     dst   : X(write);
  4851     src1  : E(read);
  4852     src2  : E(read);
  4853     FM    : R;
  4854     FDIV  : C(14);
  4855 %}
  4857 // Floating Point Divide Double
  4858 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4859     single_instruction;
  4860     dst   : X(write);
  4861     src1  : E(read);
  4862     src2  : E(read);
  4863     FM    : R;
  4864     FDIV  : C(17);
  4865 %}
  4867 // Floating Point Move/Negate/Abs Float
  4868 pipe_class faddF_reg(regF dst, regF src) %{
  4869     single_instruction;
  4870     dst   : W(write);
  4871     src   : E(read);
  4872     FA    : R(1);
  4873 %}
  4875 // Floating Point Move/Negate/Abs Double
  4876 pipe_class faddD_reg(regD dst, regD src) %{
  4877     single_instruction;
  4878     dst   : W(write);
  4879     src   : E(read);
  4880     FA    : R;
  4881 %}
  4883 // Floating Point Convert F->D
  4884 pipe_class fcvtF2D(regD dst, regF src) %{
  4885     single_instruction;
  4886     dst   : X(write);
  4887     src   : E(read);
  4888     FA    : R;
  4889 %}
  4891 // Floating Point Convert I->D
  4892 pipe_class fcvtI2D(regD dst, regF src) %{
  4893     single_instruction;
  4894     dst   : X(write);
  4895     src   : E(read);
  4896     FA    : R;
  4897 %}
  4899 // Floating Point Convert LHi->D
  4900 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4901     single_instruction;
  4902     dst   : X(write);
  4903     src   : E(read);
  4904     FA    : R;
  4905 %}
  4907 // Floating Point Convert L->D
  4908 pipe_class fcvtL2D(regD dst, regF src) %{
  4909     single_instruction;
  4910     dst   : X(write);
  4911     src   : E(read);
  4912     FA    : R;
  4913 %}
  4915 // Floating Point Convert L->F
  4916 pipe_class fcvtL2F(regD dst, regF src) %{
  4917     single_instruction;
  4918     dst   : X(write);
  4919     src   : E(read);
  4920     FA    : R;
  4921 %}
  4923 // Floating Point Convert D->F
  4924 pipe_class fcvtD2F(regD dst, regF src) %{
  4925     single_instruction;
  4926     dst   : X(write);
  4927     src   : E(read);
  4928     FA    : R;
  4929 %}
  4931 // Floating Point Convert I->L
  4932 pipe_class fcvtI2L(regD dst, regF src) %{
  4933     single_instruction;
  4934     dst   : X(write);
  4935     src   : E(read);
  4936     FA    : R;
  4937 %}
  4939 // Floating Point Convert D->F
  4940 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4941     instruction_count(1); multiple_bundles;
  4942     dst   : X(write)+6;
  4943     src   : E(read);
  4944     FA    : R;
  4945 %}
  4947 // Floating Point Convert D->L
  4948 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4949     instruction_count(1); multiple_bundles;
  4950     dst   : X(write)+6;
  4951     src   : E(read);
  4952     FA    : R;
  4953 %}
  4955 // Floating Point Convert F->I
  4956 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4957     instruction_count(1); multiple_bundles;
  4958     dst   : X(write)+6;
  4959     src   : E(read);
  4960     FA    : R;
  4961 %}
  4963 // Floating Point Convert F->L
  4964 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4965     instruction_count(1); multiple_bundles;
  4966     dst   : X(write)+6;
  4967     src   : E(read);
  4968     FA    : R;
  4969 %}
  4971 // Floating Point Convert I->F
  4972 pipe_class fcvtI2F(regF dst, regF src) %{
  4973     single_instruction;
  4974     dst   : X(write);
  4975     src   : E(read);
  4976     FA    : R;
  4977 %}
  4979 // Floating Point Compare
  4980 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4981     single_instruction;
  4982     cr    : X(write);
  4983     src1  : E(read);
  4984     src2  : E(read);
  4985     FA    : R;
  4986 %}
  4988 // Floating Point Compare
  4989 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4990     single_instruction;
  4991     cr    : X(write);
  4992     src1  : E(read);
  4993     src2  : E(read);
  4994     FA    : R;
  4995 %}
  4997 // Floating Add Nop
  4998 pipe_class fadd_nop() %{
  4999     single_instruction;
  5000     FA  : R;
  5001 %}
  5003 // Integer Store to Memory
  5004 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5005     single_instruction;
  5006     mem   : R(read);
  5007     src   : C(read);
  5008     MS    : R;
  5009 %}
  5011 // Integer Store to Memory
  5012 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5013     single_instruction;
  5014     mem   : R(read);
  5015     src   : C(read);
  5016     MS    : R;
  5017 %}
  5019 // Integer Store Zero to Memory
  5020 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5021     single_instruction;
  5022     mem   : R(read);
  5023     MS    : R;
  5024 %}
  5026 // Special Stack Slot Store
  5027 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5028     single_instruction;
  5029     stkSlot : R(read);
  5030     src     : C(read);
  5031     MS      : R;
  5032 %}
  5034 // Special Stack Slot Store
  5035 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5036     instruction_count(2); multiple_bundles;
  5037     stkSlot : R(read);
  5038     src     : C(read);
  5039     MS      : R(2);
  5040 %}
  5042 // Float Store
  5043 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5044     single_instruction;
  5045     mem : R(read);
  5046     src : C(read);
  5047     MS  : R;
  5048 %}
  5050 // Float Store
  5051 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5052     single_instruction;
  5053     mem : R(read);
  5054     MS  : R;
  5055 %}
  5057 // Double Store
  5058 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5059     instruction_count(1);
  5060     mem : R(read);
  5061     src : C(read);
  5062     MS  : R;
  5063 %}
  5065 // Double Store
  5066 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5067     single_instruction;
  5068     mem : R(read);
  5069     MS  : R;
  5070 %}
  5072 // Special Stack Slot Float Store
  5073 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5074     single_instruction;
  5075     stkSlot : R(read);
  5076     src     : C(read);
  5077     MS      : R;
  5078 %}
  5080 // Special Stack Slot Double Store
  5081 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5082     single_instruction;
  5083     stkSlot : R(read);
  5084     src     : C(read);
  5085     MS      : R;
  5086 %}
  5088 // Integer Load (when sign bit propagation not needed)
  5089 pipe_class iload_mem(iRegI dst, memory mem) %{
  5090     single_instruction;
  5091     mem : R(read);
  5092     dst : C(write);
  5093     MS  : R;
  5094 %}
  5096 // Integer Load from stack operand
  5097 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5098     single_instruction;
  5099     mem : R(read);
  5100     dst : C(write);
  5101     MS  : R;
  5102 %}
  5104 // Integer Load (when sign bit propagation or masking is needed)
  5105 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5106     single_instruction;
  5107     mem : R(read);
  5108     dst : M(write);
  5109     MS  : R;
  5110 %}
  5112 // Float Load
  5113 pipe_class floadF_mem(regF dst, memory mem) %{
  5114     single_instruction;
  5115     mem : R(read);
  5116     dst : M(write);
  5117     MS  : R;
  5118 %}
  5120 // Float Load
  5121 pipe_class floadD_mem(regD dst, memory mem) %{
  5122     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5123     mem : R(read);
  5124     dst : M(write);
  5125     MS  : R;
  5126 %}
  5128 // Float Load
  5129 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5130     single_instruction;
  5131     stkSlot : R(read);
  5132     dst : M(write);
  5133     MS  : R;
  5134 %}
  5136 // Float Load
  5137 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5138     single_instruction;
  5139     stkSlot : R(read);
  5140     dst : M(write);
  5141     MS  : R;
  5142 %}
  5144 // Memory Nop
  5145 pipe_class mem_nop() %{
  5146     single_instruction;
  5147     MS  : R;
  5148 %}
  5150 pipe_class sethi(iRegP dst, immI src) %{
  5151     single_instruction;
  5152     dst  : E(write);
  5153     IALU : R;
  5154 %}
  5156 pipe_class loadPollP(iRegP poll) %{
  5157     single_instruction;
  5158     poll : R(read);
  5159     MS   : R;
  5160 %}
  5162 pipe_class br(Universe br, label labl) %{
  5163     single_instruction_with_delay_slot;
  5164     BR  : R;
  5165 %}
  5167 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5168     single_instruction_with_delay_slot;
  5169     cr    : E(read);
  5170     BR    : R;
  5171 %}
  5173 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5174     single_instruction_with_delay_slot;
  5175     op1 : E(read);
  5176     BR  : R;
  5177     MS  : R;
  5178 %}
  5180 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5181     single_instruction_with_delay_slot;
  5182     cr    : E(read);
  5183     BR    : R;
  5184 %}
  5186 pipe_class br_nop() %{
  5187     single_instruction;
  5188     BR  : R;
  5189 %}
  5191 pipe_class simple_call(method meth) %{
  5192     instruction_count(2); multiple_bundles; force_serialization;
  5193     fixed_latency(100);
  5194     BR  : R(1);
  5195     MS  : R(1);
  5196     A0  : R(1);
  5197 %}
  5199 pipe_class compiled_call(method meth) %{
  5200     instruction_count(1); multiple_bundles; force_serialization;
  5201     fixed_latency(100);
  5202     MS  : R(1);
  5203 %}
  5205 pipe_class call(method meth) %{
  5206     instruction_count(0); multiple_bundles; force_serialization;
  5207     fixed_latency(100);
  5208 %}
  5210 pipe_class tail_call(Universe ignore, label labl) %{
  5211     single_instruction; has_delay_slot;
  5212     fixed_latency(100);
  5213     BR  : R(1);
  5214     MS  : R(1);
  5215 %}
  5217 pipe_class ret(Universe ignore) %{
  5218     single_instruction; has_delay_slot;
  5219     BR  : R(1);
  5220     MS  : R(1);
  5221 %}
  5223 pipe_class ret_poll(g3RegP poll) %{
  5224     instruction_count(3); has_delay_slot;
  5225     poll : E(read);
  5226     MS   : R;
  5227 %}
  5229 // The real do-nothing guy
  5230 pipe_class empty( ) %{
  5231     instruction_count(0);
  5232 %}
  5234 pipe_class long_memory_op() %{
  5235     instruction_count(0); multiple_bundles; force_serialization;
  5236     fixed_latency(25);
  5237     MS  : R(1);
  5238 %}
  5240 // Check-cast
  5241 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5242     array : R(read);
  5243     match  : R(read);
  5244     IALU   : R(2);
  5245     BR     : R(2);
  5246     MS     : R;
  5247 %}
  5249 // Convert FPU flags into +1,0,-1
  5250 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5251     src1  : E(read);
  5252     src2  : E(read);
  5253     dst   : E(write);
  5254     FA    : R;
  5255     MS    : R(2);
  5256     BR    : R(2);
  5257 %}
  5259 // Compare for p < q, and conditionally add y
  5260 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5261     p     : E(read);
  5262     q     : E(read);
  5263     y     : E(read);
  5264     IALU  : R(3)
  5265 %}
  5267 // Perform a compare, then move conditionally in a branch delay slot.
  5268 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5269     src2   : E(read);
  5270     srcdst : E(read);
  5271     IALU   : R;
  5272     BR     : R;
  5273 %}
  5275 // Define the class for the Nop node
  5276 define %{
  5277    MachNop = ialu_nop;
  5278 %}
  5280 %}
  5282 //----------INSTRUCTIONS-------------------------------------------------------
  5284 //------------Special Stack Slot instructions - no match rules-----------------
  5285 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5286   // No match rule to avoid chain rule match.
  5287   effect(DEF dst, USE src);
  5288   ins_cost(MEMORY_REF_COST);
  5289   size(4);
  5290   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5291   opcode(Assembler::ldf_op3);
  5292   ins_encode(simple_form3_mem_reg(src, dst));
  5293   ins_pipe(floadF_stk);
  5294 %}
  5296 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5297   // No match rule to avoid chain rule match.
  5298   effect(DEF dst, USE src);
  5299   ins_cost(MEMORY_REF_COST);
  5300   size(4);
  5301   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5302   opcode(Assembler::lddf_op3);
  5303   ins_encode(simple_form3_mem_reg(src, dst));
  5304   ins_pipe(floadD_stk);
  5305 %}
  5307 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5308   // No match rule to avoid chain rule match.
  5309   effect(DEF dst, USE src);
  5310   ins_cost(MEMORY_REF_COST);
  5311   size(4);
  5312   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5313   opcode(Assembler::stf_op3);
  5314   ins_encode(simple_form3_mem_reg(dst, src));
  5315   ins_pipe(fstoreF_stk_reg);
  5316 %}
  5318 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5319   // No match rule to avoid chain rule match.
  5320   effect(DEF dst, USE src);
  5321   ins_cost(MEMORY_REF_COST);
  5322   size(4);
  5323   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5324   opcode(Assembler::stdf_op3);
  5325   ins_encode(simple_form3_mem_reg(dst, src));
  5326   ins_pipe(fstoreD_stk_reg);
  5327 %}
  5329 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5330   effect(DEF dst, USE src);
  5331   ins_cost(MEMORY_REF_COST*2);
  5332   size(8);
  5333   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5334             "STW    R_G0,$dst.lo" %}
  5335   opcode(Assembler::stw_op3);
  5336   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5337   ins_pipe(lstoreI_stk_reg);
  5338 %}
  5340 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5341   // No match rule to avoid chain rule match.
  5342   effect(DEF dst, USE src);
  5343   ins_cost(MEMORY_REF_COST);
  5344   size(4);
  5345   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5346   opcode(Assembler::stx_op3);
  5347   ins_encode(simple_form3_mem_reg( dst, src ) );
  5348   ins_pipe(istore_stk_reg);
  5349 %}
  5351 //---------- Chain stack slots between similar types --------
  5353 // Load integer from stack slot
  5354 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5355   match(Set dst src);
  5356   ins_cost(MEMORY_REF_COST);
  5358   size(4);
  5359   format %{ "LDUW   $src,$dst\t!stk" %}
  5360   opcode(Assembler::lduw_op3);
  5361   ins_encode(simple_form3_mem_reg( src, dst ) );
  5362   ins_pipe(iload_mem);
  5363 %}
  5365 // Store integer to stack slot
  5366 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5367   match(Set dst src);
  5368   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5371   format %{ "STW    $src,$dst\t!stk" %}
  5372   opcode(Assembler::stw_op3);
  5373   ins_encode(simple_form3_mem_reg( dst, src ) );
  5374   ins_pipe(istore_mem_reg);
  5375 %}
  5377 // Load long from stack slot
  5378 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5379   match(Set dst src);
  5381   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5383   format %{ "LDX    $src,$dst\t! long" %}
  5384   opcode(Assembler::ldx_op3);
  5385   ins_encode(simple_form3_mem_reg( src, dst ) );
  5386   ins_pipe(iload_mem);
  5387 %}
  5389 // Store long to stack slot
  5390 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5391   match(Set dst src);
  5393   ins_cost(MEMORY_REF_COST);
  5394   size(4);
  5395   format %{ "STX    $src,$dst\t! long" %}
  5396   opcode(Assembler::stx_op3);
  5397   ins_encode(simple_form3_mem_reg( dst, src ) );
  5398   ins_pipe(istore_mem_reg);
  5399 %}
  5401 #ifdef _LP64
  5402 // Load pointer from stack slot, 64-bit encoding
  5403 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5404   match(Set dst src);
  5405   ins_cost(MEMORY_REF_COST);
  5406   size(4);
  5407   format %{ "LDX    $src,$dst\t!ptr" %}
  5408   opcode(Assembler::ldx_op3);
  5409   ins_encode(simple_form3_mem_reg( src, dst ) );
  5410   ins_pipe(iload_mem);
  5411 %}
  5413 // Store pointer to stack slot
  5414 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5415   match(Set dst src);
  5416   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "STX    $src,$dst\t!ptr" %}
  5419   opcode(Assembler::stx_op3);
  5420   ins_encode(simple_form3_mem_reg( dst, src ) );
  5421   ins_pipe(istore_mem_reg);
  5422 %}
  5423 #else // _LP64
  5424 // Load pointer from stack slot, 32-bit encoding
  5425 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5426   match(Set dst src);
  5427   ins_cost(MEMORY_REF_COST);
  5428   format %{ "LDUW   $src,$dst\t!ptr" %}
  5429   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5430   ins_encode(simple_form3_mem_reg( src, dst ) );
  5431   ins_pipe(iload_mem);
  5432 %}
  5434 // Store pointer to stack slot
  5435 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5436   match(Set dst src);
  5437   ins_cost(MEMORY_REF_COST);
  5438   format %{ "STW    $src,$dst\t!ptr" %}
  5439   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5440   ins_encode(simple_form3_mem_reg( dst, src ) );
  5441   ins_pipe(istore_mem_reg);
  5442 %}
  5443 #endif // _LP64
  5445 //------------Special Nop instructions for bundling - no match rules-----------
  5446 // Nop using the A0 functional unit
  5447 instruct Nop_A0() %{
  5448   ins_cost(0);
  5450   format %{ "NOP    ! Alu Pipeline" %}
  5451   opcode(Assembler::or_op3, Assembler::arith_op);
  5452   ins_encode( form2_nop() );
  5453   ins_pipe(ialu_nop_A0);
  5454 %}
  5456 // Nop using the A1 functional unit
  5457 instruct Nop_A1( ) %{
  5458   ins_cost(0);
  5460   format %{ "NOP    ! Alu Pipeline" %}
  5461   opcode(Assembler::or_op3, Assembler::arith_op);
  5462   ins_encode( form2_nop() );
  5463   ins_pipe(ialu_nop_A1);
  5464 %}
  5466 // Nop using the memory functional unit
  5467 instruct Nop_MS( ) %{
  5468   ins_cost(0);
  5470   format %{ "NOP    ! Memory Pipeline" %}
  5471   ins_encode( emit_mem_nop );
  5472   ins_pipe(mem_nop);
  5473 %}
  5475 // Nop using the floating add functional unit
  5476 instruct Nop_FA( ) %{
  5477   ins_cost(0);
  5479   format %{ "NOP    ! Floating Add Pipeline" %}
  5480   ins_encode( emit_fadd_nop );
  5481   ins_pipe(fadd_nop);
  5482 %}
  5484 // Nop using the branch functional unit
  5485 instruct Nop_BR( ) %{
  5486   ins_cost(0);
  5488   format %{ "NOP    ! Branch Pipeline" %}
  5489   ins_encode( emit_br_nop );
  5490   ins_pipe(br_nop);
  5491 %}
  5493 //----------Load/Store/Move Instructions---------------------------------------
  5494 //----------Load Instructions--------------------------------------------------
  5495 // Load Byte (8bit signed)
  5496 instruct loadB(iRegI dst, memory mem) %{
  5497   match(Set dst (LoadB mem));
  5498   ins_cost(MEMORY_REF_COST);
  5500   size(4);
  5501   format %{ "LDSB   $mem,$dst\t! byte" %}
  5502   ins_encode %{
  5503     __ ldsb($mem$$Address, $dst$$Register);
  5504   %}
  5505   ins_pipe(iload_mask_mem);
  5506 %}
  5508 // Load Byte (8bit signed) into a Long Register
  5509 instruct loadB2L(iRegL dst, memory mem) %{
  5510   match(Set dst (ConvI2L (LoadB mem)));
  5511   ins_cost(MEMORY_REF_COST);
  5513   size(4);
  5514   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5515   ins_encode %{
  5516     __ ldsb($mem$$Address, $dst$$Register);
  5517   %}
  5518   ins_pipe(iload_mask_mem);
  5519 %}
  5521 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5522 instruct loadUB(iRegI dst, memory mem) %{
  5523   match(Set dst (LoadUB mem));
  5524   ins_cost(MEMORY_REF_COST);
  5526   size(4);
  5527   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5528   ins_encode %{
  5529     __ ldub($mem$$Address, $dst$$Register);
  5530   %}
  5531   ins_pipe(iload_mem);
  5532 %}
  5534 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5535 instruct loadUB2L(iRegL dst, memory mem) %{
  5536   match(Set dst (ConvI2L (LoadUB mem)));
  5537   ins_cost(MEMORY_REF_COST);
  5539   size(4);
  5540   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5541   ins_encode %{
  5542     __ ldub($mem$$Address, $dst$$Register);
  5543   %}
  5544   ins_pipe(iload_mem);
  5545 %}
  5547 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5548 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5549   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5550   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5552   size(2*4);
  5553   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5554             "AND    $dst,$mask,$dst" %}
  5555   ins_encode %{
  5556     __ ldub($mem$$Address, $dst$$Register);
  5557     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5558   %}
  5559   ins_pipe(iload_mem);
  5560 %}
  5562 // Load Short (16bit signed)
  5563 instruct loadS(iRegI dst, memory mem) %{
  5564   match(Set dst (LoadS mem));
  5565   ins_cost(MEMORY_REF_COST);
  5567   size(4);
  5568   format %{ "LDSH   $mem,$dst\t! short" %}
  5569   ins_encode %{
  5570     __ ldsh($mem$$Address, $dst$$Register);
  5571   %}
  5572   ins_pipe(iload_mask_mem);
  5573 %}
  5575 // Load Short (16 bit signed) to Byte (8 bit signed)
  5576 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5577   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5578   ins_cost(MEMORY_REF_COST);
  5580   size(4);
  5582   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5583   ins_encode %{
  5584     __ ldsb($mem$$Address, $dst$$Register, 1);
  5585   %}
  5586   ins_pipe(iload_mask_mem);
  5587 %}
  5589 // Load Short (16bit signed) into a Long Register
  5590 instruct loadS2L(iRegL dst, memory mem) %{
  5591   match(Set dst (ConvI2L (LoadS mem)));
  5592   ins_cost(MEMORY_REF_COST);
  5594   size(4);
  5595   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5596   ins_encode %{
  5597     __ ldsh($mem$$Address, $dst$$Register);
  5598   %}
  5599   ins_pipe(iload_mask_mem);
  5600 %}
  5602 // Load Unsigned Short/Char (16bit UNsigned)
  5603 instruct loadUS(iRegI dst, memory mem) %{
  5604   match(Set dst (LoadUS mem));
  5605   ins_cost(MEMORY_REF_COST);
  5607   size(4);
  5608   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5609   ins_encode %{
  5610     __ lduh($mem$$Address, $dst$$Register);
  5611   %}
  5612   ins_pipe(iload_mem);
  5613 %}
  5615 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5616 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5617   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5618   ins_cost(MEMORY_REF_COST);
  5620   size(4);
  5621   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5622   ins_encode %{
  5623     __ ldsb($mem$$Address, $dst$$Register, 1);
  5624   %}
  5625   ins_pipe(iload_mask_mem);
  5626 %}
  5628 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5629 instruct loadUS2L(iRegL dst, memory mem) %{
  5630   match(Set dst (ConvI2L (LoadUS mem)));
  5631   ins_cost(MEMORY_REF_COST);
  5633   size(4);
  5634   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5635   ins_encode %{
  5636     __ lduh($mem$$Address, $dst$$Register);
  5637   %}
  5638   ins_pipe(iload_mem);
  5639 %}
  5641 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5642 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5643   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5644   ins_cost(MEMORY_REF_COST);
  5646   size(4);
  5647   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5648   ins_encode %{
  5649     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5650   %}
  5651   ins_pipe(iload_mem);
  5652 %}
  5654 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5655 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5656   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5657   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5659   size(2*4);
  5660   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5661             "AND    $dst,$mask,$dst" %}
  5662   ins_encode %{
  5663     Register Rdst = $dst$$Register;
  5664     __ lduh($mem$$Address, Rdst);
  5665     __ and3(Rdst, $mask$$constant, Rdst);
  5666   %}
  5667   ins_pipe(iload_mem);
  5668 %}
  5670 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5671 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5672   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5673   effect(TEMP dst, TEMP tmp);
  5674   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5676   size((3+1)*4);  // set may use two instructions.
  5677   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5678             "SET    $mask,$tmp\n\t"
  5679             "AND    $dst,$tmp,$dst" %}
  5680   ins_encode %{
  5681     Register Rdst = $dst$$Register;
  5682     Register Rtmp = $tmp$$Register;
  5683     __ lduh($mem$$Address, Rdst);
  5684     __ set($mask$$constant, Rtmp);
  5685     __ and3(Rdst, Rtmp, Rdst);
  5686   %}
  5687   ins_pipe(iload_mem);
  5688 %}
  5690 // Load Integer
  5691 instruct loadI(iRegI dst, memory mem) %{
  5692   match(Set dst (LoadI mem));
  5693   ins_cost(MEMORY_REF_COST);
  5695   size(4);
  5696   format %{ "LDUW   $mem,$dst\t! int" %}
  5697   ins_encode %{
  5698     __ lduw($mem$$Address, $dst$$Register);
  5699   %}
  5700   ins_pipe(iload_mem);
  5701 %}
  5703 // Load Integer to Byte (8 bit signed)
  5704 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5705   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5706   ins_cost(MEMORY_REF_COST);
  5708   size(4);
  5710   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5711   ins_encode %{
  5712     __ ldsb($mem$$Address, $dst$$Register, 3);
  5713   %}
  5714   ins_pipe(iload_mask_mem);
  5715 %}
  5717 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5718 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5719   match(Set dst (AndI (LoadI mem) mask));
  5720   ins_cost(MEMORY_REF_COST);
  5722   size(4);
  5724   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5725   ins_encode %{
  5726     __ ldub($mem$$Address, $dst$$Register, 3);
  5727   %}
  5728   ins_pipe(iload_mask_mem);
  5729 %}
  5731 // Load Integer to Short (16 bit signed)
  5732 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5733   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5734   ins_cost(MEMORY_REF_COST);
  5736   size(4);
  5738   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5739   ins_encode %{
  5740     __ ldsh($mem$$Address, $dst$$Register, 2);
  5741   %}
  5742   ins_pipe(iload_mask_mem);
  5743 %}
  5745 // Load Integer to Unsigned Short (16 bit UNsigned)
  5746 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5747   match(Set dst (AndI (LoadI mem) mask));
  5748   ins_cost(MEMORY_REF_COST);
  5750   size(4);
  5752   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5753   ins_encode %{
  5754     __ lduh($mem$$Address, $dst$$Register, 2);
  5755   %}
  5756   ins_pipe(iload_mask_mem);
  5757 %}
  5759 // Load Integer into a Long Register
  5760 instruct loadI2L(iRegL dst, memory mem) %{
  5761   match(Set dst (ConvI2L (LoadI mem)));
  5762   ins_cost(MEMORY_REF_COST);
  5764   size(4);
  5765   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5766   ins_encode %{
  5767     __ ldsw($mem$$Address, $dst$$Register);
  5768   %}
  5769   ins_pipe(iload_mask_mem);
  5770 %}
  5772 // Load Integer with mask 0xFF into a Long Register
  5773 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5774   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5775   ins_cost(MEMORY_REF_COST);
  5777   size(4);
  5778   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5779   ins_encode %{
  5780     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5781   %}
  5782   ins_pipe(iload_mem);
  5783 %}
  5785 // Load Integer with mask 0xFFFF into a Long Register
  5786 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5787   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5788   ins_cost(MEMORY_REF_COST);
  5790   size(4);
  5791   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5792   ins_encode %{
  5793     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5794   %}
  5795   ins_pipe(iload_mem);
  5796 %}
  5798 // Load Integer with a 13-bit mask into a Long Register
  5799 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5800   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5801   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5803   size(2*4);
  5804   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5805             "AND    $dst,$mask,$dst" %}
  5806   ins_encode %{
  5807     Register Rdst = $dst$$Register;
  5808     __ lduw($mem$$Address, Rdst);
  5809     __ and3(Rdst, $mask$$constant, Rdst);
  5810   %}
  5811   ins_pipe(iload_mem);
  5812 %}
  5814 // Load Integer with a 32-bit mask into a Long Register
  5815 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5816   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5817   effect(TEMP dst, TEMP tmp);
  5818   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5820   size((3+1)*4);  // set may use two instructions.
  5821   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5822             "SET    $mask,$tmp\n\t"
  5823             "AND    $dst,$tmp,$dst" %}
  5824   ins_encode %{
  5825     Register Rdst = $dst$$Register;
  5826     Register Rtmp = $tmp$$Register;
  5827     __ lduw($mem$$Address, Rdst);
  5828     __ set($mask$$constant, Rtmp);
  5829     __ and3(Rdst, Rtmp, Rdst);
  5830   %}
  5831   ins_pipe(iload_mem);
  5832 %}
  5834 // Load Unsigned Integer into a Long Register
  5835 instruct loadUI2L(iRegL dst, memory mem) %{
  5836   match(Set dst (LoadUI2L mem));
  5837   ins_cost(MEMORY_REF_COST);
  5839   size(4);
  5840   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5841   ins_encode %{
  5842     __ lduw($mem$$Address, $dst$$Register);
  5843   %}
  5844   ins_pipe(iload_mem);
  5845 %}
  5847 // Load Long - aligned
  5848 instruct loadL(iRegL dst, memory mem ) %{
  5849   match(Set dst (LoadL mem));
  5850   ins_cost(MEMORY_REF_COST);
  5852   size(4);
  5853   format %{ "LDX    $mem,$dst\t! long" %}
  5854   ins_encode %{
  5855     __ ldx($mem$$Address, $dst$$Register);
  5856   %}
  5857   ins_pipe(iload_mem);
  5858 %}
  5860 // Load Long - UNaligned
  5861 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5862   match(Set dst (LoadL_unaligned mem));
  5863   effect(KILL tmp);
  5864   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5865   size(16);
  5866   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5867           "\tLDUW   $mem  ,$dst\n"
  5868           "\tSLLX   #32, $dst, $dst\n"
  5869           "\tOR     $dst, R_O7, $dst" %}
  5870   opcode(Assembler::lduw_op3);
  5871   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5872   ins_pipe(iload_mem);
  5873 %}
  5875 // Load Aligned Packed Byte into a Double Register
  5876 instruct loadA8B(regD dst, memory mem) %{
  5877   match(Set dst (Load8B mem));
  5878   ins_cost(MEMORY_REF_COST);
  5879   size(4);
  5880   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5881   opcode(Assembler::lddf_op3);
  5882   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5883   ins_pipe(floadD_mem);
  5884 %}
  5886 // Load Aligned Packed Char into a Double Register
  5887 instruct loadA4C(regD dst, memory mem) %{
  5888   match(Set dst (Load4C mem));
  5889   ins_cost(MEMORY_REF_COST);
  5890   size(4);
  5891   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5892   opcode(Assembler::lddf_op3);
  5893   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5894   ins_pipe(floadD_mem);
  5895 %}
  5897 // Load Aligned Packed Short into a Double Register
  5898 instruct loadA4S(regD dst, memory mem) %{
  5899   match(Set dst (Load4S mem));
  5900   ins_cost(MEMORY_REF_COST);
  5901   size(4);
  5902   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5903   opcode(Assembler::lddf_op3);
  5904   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5905   ins_pipe(floadD_mem);
  5906 %}
  5908 // Load Aligned Packed Int into a Double Register
  5909 instruct loadA2I(regD dst, memory mem) %{
  5910   match(Set dst (Load2I mem));
  5911   ins_cost(MEMORY_REF_COST);
  5912   size(4);
  5913   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5914   opcode(Assembler::lddf_op3);
  5915   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5916   ins_pipe(floadD_mem);
  5917 %}
  5919 // Load Range
  5920 instruct loadRange(iRegI dst, memory mem) %{
  5921   match(Set dst (LoadRange mem));
  5922   ins_cost(MEMORY_REF_COST);
  5924   size(4);
  5925   format %{ "LDUW   $mem,$dst\t! range" %}
  5926   opcode(Assembler::lduw_op3);
  5927   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5928   ins_pipe(iload_mem);
  5929 %}
  5931 // Load Integer into %f register (for fitos/fitod)
  5932 instruct loadI_freg(regF dst, memory mem) %{
  5933   match(Set dst (LoadI mem));
  5934   ins_cost(MEMORY_REF_COST);
  5935   size(4);
  5937   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5938   opcode(Assembler::ldf_op3);
  5939   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5940   ins_pipe(floadF_mem);
  5941 %}
  5943 // Load Pointer
  5944 instruct loadP(iRegP dst, memory mem) %{
  5945   match(Set dst (LoadP mem));
  5946   ins_cost(MEMORY_REF_COST);
  5947   size(4);
  5949 #ifndef _LP64
  5950   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5951   ins_encode %{
  5952     __ lduw($mem$$Address, $dst$$Register);
  5953   %}
  5954 #else
  5955   format %{ "LDX    $mem,$dst\t! ptr" %}
  5956   ins_encode %{
  5957     __ ldx($mem$$Address, $dst$$Register);
  5958   %}
  5959 #endif
  5960   ins_pipe(iload_mem);
  5961 %}
  5963 // Load Compressed Pointer
  5964 instruct loadN(iRegN dst, memory mem) %{
  5965   match(Set dst (LoadN mem));
  5966   ins_cost(MEMORY_REF_COST);
  5967   size(4);
  5969   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5970   ins_encode %{
  5971     __ lduw($mem$$Address, $dst$$Register);
  5972   %}
  5973   ins_pipe(iload_mem);
  5974 %}
  5976 // Load Klass Pointer
  5977 instruct loadKlass(iRegP dst, memory mem) %{
  5978   match(Set dst (LoadKlass mem));
  5979   ins_cost(MEMORY_REF_COST);
  5980   size(4);
  5982 #ifndef _LP64
  5983   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5984   ins_encode %{
  5985     __ lduw($mem$$Address, $dst$$Register);
  5986   %}
  5987 #else
  5988   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5989   ins_encode %{
  5990     __ ldx($mem$$Address, $dst$$Register);
  5991   %}
  5992 #endif
  5993   ins_pipe(iload_mem);
  5994 %}
  5996 // Load narrow Klass Pointer
  5997 instruct loadNKlass(iRegN dst, memory mem) %{
  5998   match(Set dst (LoadNKlass mem));
  5999   ins_cost(MEMORY_REF_COST);
  6000   size(4);
  6002   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6003   ins_encode %{
  6004     __ lduw($mem$$Address, $dst$$Register);
  6005   %}
  6006   ins_pipe(iload_mem);
  6007 %}
  6009 // Load Double
  6010 instruct loadD(regD dst, memory mem) %{
  6011   match(Set dst (LoadD mem));
  6012   ins_cost(MEMORY_REF_COST);
  6014   size(4);
  6015   format %{ "LDDF   $mem,$dst" %}
  6016   opcode(Assembler::lddf_op3);
  6017   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6018   ins_pipe(floadD_mem);
  6019 %}
  6021 // Load Double - UNaligned
  6022 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6023   match(Set dst (LoadD_unaligned mem));
  6024   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6025   size(8);
  6026   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6027           "\tLDF    $mem+4,$dst.lo\t!" %}
  6028   opcode(Assembler::ldf_op3);
  6029   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6030   ins_pipe(iload_mem);
  6031 %}
  6033 // Load Float
  6034 instruct loadF(regF dst, memory mem) %{
  6035   match(Set dst (LoadF mem));
  6036   ins_cost(MEMORY_REF_COST);
  6038   size(4);
  6039   format %{ "LDF    $mem,$dst" %}
  6040   opcode(Assembler::ldf_op3);
  6041   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6042   ins_pipe(floadF_mem);
  6043 %}
  6045 // Load Constant
  6046 instruct loadConI( iRegI dst, immI src ) %{
  6047   match(Set dst src);
  6048   ins_cost(DEFAULT_COST * 3/2);
  6049   format %{ "SET    $src,$dst" %}
  6050   ins_encode( Set32(src, dst) );
  6051   ins_pipe(ialu_hi_lo_reg);
  6052 %}
  6054 instruct loadConI13( iRegI dst, immI13 src ) %{
  6055   match(Set dst src);
  6057   size(4);
  6058   format %{ "MOV    $src,$dst" %}
  6059   ins_encode( Set13( src, dst ) );
  6060   ins_pipe(ialu_imm);
  6061 %}
  6063 #ifndef _LP64
  6064 instruct loadConP(iRegP dst, immP con) %{
  6065   match(Set dst con);
  6066   ins_cost(DEFAULT_COST * 3/2);
  6067   format %{ "SET    $con,$dst\t!ptr" %}
  6068   ins_encode %{
  6069     // [RGV] This next line should be generated from ADLC
  6070     if (_opnds[1]->constant_is_oop()) {
  6071       intptr_t val = $con$$constant;
  6072       __ set_oop_constant((jobject) val, $dst$$Register);
  6073     } else {          // non-oop pointers, e.g. card mark base, heap top
  6074       __ set($con$$constant, $dst$$Register);
  6076   %}
  6077   ins_pipe(loadConP);
  6078 %}
  6079 #else
  6080 instruct loadConP_set(iRegP dst, immP_set con) %{
  6081   match(Set dst con);
  6082   ins_cost(DEFAULT_COST * 3/2);
  6083   format %{ "SET    $con,$dst\t! ptr" %}
  6084   ins_encode %{
  6085     // [RGV] This next line should be generated from ADLC
  6086     if (_opnds[1]->constant_is_oop()) {
  6087       intptr_t val = $con$$constant;
  6088       __ set_oop_constant((jobject) val, $dst$$Register);
  6089     } else {          // non-oop pointers, e.g. card mark base, heap top
  6090       __ set($con$$constant, $dst$$Register);
  6092   %}
  6093   ins_pipe(loadConP);
  6094 %}
  6096 instruct loadConP_load(iRegP dst, immP_load con) %{
  6097   match(Set dst con);
  6098   ins_cost(MEMORY_REF_COST);
  6099   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6100   ins_encode %{
  6101     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6102     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6103   %}
  6104   ins_pipe(loadConP);
  6105 %}
  6107 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6108   match(Set dst con);
  6109   ins_cost(DEFAULT_COST * 3/2);
  6110   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6111   ins_encode %{
  6112     __ set($con$$constant, $dst$$Register);
  6113   %}
  6114   ins_pipe(loadConP);
  6115 %}
  6116 #endif // _LP64
  6118 instruct loadConP0(iRegP dst, immP0 src) %{
  6119   match(Set dst src);
  6121   size(4);
  6122   format %{ "CLR    $dst\t!ptr" %}
  6123   ins_encode %{
  6124     __ clr($dst$$Register);
  6125   %}
  6126   ins_pipe(ialu_imm);
  6127 %}
  6129 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6130   match(Set dst src);
  6131   ins_cost(DEFAULT_COST);
  6132   format %{ "SET    $src,$dst\t!ptr" %}
  6133   ins_encode %{
  6134     AddressLiteral polling_page(os::get_polling_page());
  6135     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6136   %}
  6137   ins_pipe(loadConP_poll);
  6138 %}
  6140 instruct loadConN0(iRegN dst, immN0 src) %{
  6141   match(Set dst src);
  6143   size(4);
  6144   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6145   ins_encode %{
  6146     __ clr($dst$$Register);
  6147   %}
  6148   ins_pipe(ialu_imm);
  6149 %}
  6151 instruct loadConN(iRegN dst, immN src) %{
  6152   match(Set dst src);
  6153   ins_cost(DEFAULT_COST * 3/2);
  6154   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6155   ins_encode %{
  6156     Register dst = $dst$$Register;
  6157     __ set_narrow_oop((jobject)$src$$constant, dst);
  6158   %}
  6159   ins_pipe(ialu_hi_lo_reg);
  6160 %}
  6162 // Materialize long value (predicated by immL_cheap).
  6163 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6164   match(Set dst con);
  6165   effect(KILL tmp);
  6166   ins_cost(DEFAULT_COST * 3);
  6167   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6168   ins_encode %{
  6169     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6170   %}
  6171   ins_pipe(loadConL);
  6172 %}
  6174 // Load long value from constant table (predicated by immL_expensive).
  6175 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6176   match(Set dst con);
  6177   ins_cost(MEMORY_REF_COST);
  6178   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6179   ins_encode %{
  6180       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6181     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6182   %}
  6183   ins_pipe(loadConL);
  6184 %}
  6186 instruct loadConL0( iRegL dst, immL0 src ) %{
  6187   match(Set dst src);
  6188   ins_cost(DEFAULT_COST);
  6189   size(4);
  6190   format %{ "CLR    $dst\t! long" %}
  6191   ins_encode( Set13( src, dst ) );
  6192   ins_pipe(ialu_imm);
  6193 %}
  6195 instruct loadConL13( iRegL dst, immL13 src ) %{
  6196   match(Set dst src);
  6197   ins_cost(DEFAULT_COST * 2);
  6199   size(4);
  6200   format %{ "MOV    $src,$dst\t! long" %}
  6201   ins_encode( Set13( src, dst ) );
  6202   ins_pipe(ialu_imm);
  6203 %}
  6205 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6206   match(Set dst con);
  6207   effect(KILL tmp);
  6208   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6209   ins_encode %{
  6210       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6211     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6212   %}
  6213   ins_pipe(loadConFD);
  6214 %}
  6216 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6217   match(Set dst con);
  6218   effect(KILL tmp);
  6219   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6220   ins_encode %{
  6221     // XXX This is a quick fix for 6833573.
  6222     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6223     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6224     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6225   %}
  6226   ins_pipe(loadConFD);
  6227 %}
  6229 // Prefetch instructions.
  6230 // Must be safe to execute with invalid address (cannot fault).
  6232 instruct prefetchr( memory mem ) %{
  6233   match( PrefetchRead mem );
  6234   ins_cost(MEMORY_REF_COST);
  6236   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6237   opcode(Assembler::prefetch_op3);
  6238   ins_encode( form3_mem_prefetch_read( mem ) );
  6239   ins_pipe(iload_mem);
  6240 %}
  6242 instruct prefetchw( memory mem ) %{
  6243   predicate(AllocatePrefetchStyle != 3 );
  6244   match( PrefetchWrite mem );
  6245   ins_cost(MEMORY_REF_COST);
  6247   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6248   opcode(Assembler::prefetch_op3);
  6249   ins_encode( form3_mem_prefetch_write( mem ) );
  6250   ins_pipe(iload_mem);
  6251 %}
  6253 // Use BIS instruction to prefetch.
  6254 instruct prefetchw_bis( memory mem ) %{
  6255   predicate(AllocatePrefetchStyle == 3);
  6256   match( PrefetchWrite mem );
  6257   ins_cost(MEMORY_REF_COST);
  6259   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6260   ins_encode %{
  6261      Register base = as_Register($mem$$base);
  6262      int disp = $mem$$disp;
  6263      if (disp != 0) {
  6264        __ add(base, AllocatePrefetchStepSize, base);
  6266      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6267   %}
  6268   ins_pipe(istore_mem_reg);
  6269 %}
  6271 //----------Store Instructions-------------------------------------------------
  6272 // Store Byte
  6273 instruct storeB(memory mem, iRegI src) %{
  6274   match(Set mem (StoreB mem src));
  6275   ins_cost(MEMORY_REF_COST);
  6277   size(4);
  6278   format %{ "STB    $src,$mem\t! byte" %}
  6279   opcode(Assembler::stb_op3);
  6280   ins_encode(simple_form3_mem_reg( mem, src ) );
  6281   ins_pipe(istore_mem_reg);
  6282 %}
  6284 instruct storeB0(memory mem, immI0 src) %{
  6285   match(Set mem (StoreB mem src));
  6286   ins_cost(MEMORY_REF_COST);
  6288   size(4);
  6289   format %{ "STB    $src,$mem\t! byte" %}
  6290   opcode(Assembler::stb_op3);
  6291   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6292   ins_pipe(istore_mem_zero);
  6293 %}
  6295 instruct storeCM0(memory mem, immI0 src) %{
  6296   match(Set mem (StoreCM mem src));
  6297   ins_cost(MEMORY_REF_COST);
  6299   size(4);
  6300   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6301   opcode(Assembler::stb_op3);
  6302   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6303   ins_pipe(istore_mem_zero);
  6304 %}
  6306 // Store Char/Short
  6307 instruct storeC(memory mem, iRegI src) %{
  6308   match(Set mem (StoreC mem src));
  6309   ins_cost(MEMORY_REF_COST);
  6311   size(4);
  6312   format %{ "STH    $src,$mem\t! short" %}
  6313   opcode(Assembler::sth_op3);
  6314   ins_encode(simple_form3_mem_reg( mem, src ) );
  6315   ins_pipe(istore_mem_reg);
  6316 %}
  6318 instruct storeC0(memory mem, immI0 src) %{
  6319   match(Set mem (StoreC mem src));
  6320   ins_cost(MEMORY_REF_COST);
  6322   size(4);
  6323   format %{ "STH    $src,$mem\t! short" %}
  6324   opcode(Assembler::sth_op3);
  6325   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6326   ins_pipe(istore_mem_zero);
  6327 %}
  6329 // Store Integer
  6330 instruct storeI(memory mem, iRegI src) %{
  6331   match(Set mem (StoreI mem src));
  6332   ins_cost(MEMORY_REF_COST);
  6334   size(4);
  6335   format %{ "STW    $src,$mem" %}
  6336   opcode(Assembler::stw_op3);
  6337   ins_encode(simple_form3_mem_reg( mem, src ) );
  6338   ins_pipe(istore_mem_reg);
  6339 %}
  6341 // Store Long
  6342 instruct storeL(memory mem, iRegL src) %{
  6343   match(Set mem (StoreL mem src));
  6344   ins_cost(MEMORY_REF_COST);
  6345   size(4);
  6346   format %{ "STX    $src,$mem\t! long" %}
  6347   opcode(Assembler::stx_op3);
  6348   ins_encode(simple_form3_mem_reg( mem, src ) );
  6349   ins_pipe(istore_mem_reg);
  6350 %}
  6352 instruct storeI0(memory mem, immI0 src) %{
  6353   match(Set mem (StoreI mem src));
  6354   ins_cost(MEMORY_REF_COST);
  6356   size(4);
  6357   format %{ "STW    $src,$mem" %}
  6358   opcode(Assembler::stw_op3);
  6359   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6360   ins_pipe(istore_mem_zero);
  6361 %}
  6363 instruct storeL0(memory mem, immL0 src) %{
  6364   match(Set mem (StoreL mem src));
  6365   ins_cost(MEMORY_REF_COST);
  6367   size(4);
  6368   format %{ "STX    $src,$mem" %}
  6369   opcode(Assembler::stx_op3);
  6370   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6371   ins_pipe(istore_mem_zero);
  6372 %}
  6374 // Store Integer from float register (used after fstoi)
  6375 instruct storeI_Freg(memory mem, regF src) %{
  6376   match(Set mem (StoreI mem src));
  6377   ins_cost(MEMORY_REF_COST);
  6379   size(4);
  6380   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6381   opcode(Assembler::stf_op3);
  6382   ins_encode(simple_form3_mem_reg( mem, src ) );
  6383   ins_pipe(fstoreF_mem_reg);
  6384 %}
  6386 // Store Pointer
  6387 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6388   match(Set dst (StoreP dst src));
  6389   ins_cost(MEMORY_REF_COST);
  6390   size(4);
  6392 #ifndef _LP64
  6393   format %{ "STW    $src,$dst\t! ptr" %}
  6394   opcode(Assembler::stw_op3, 0, REGP_OP);
  6395 #else
  6396   format %{ "STX    $src,$dst\t! ptr" %}
  6397   opcode(Assembler::stx_op3, 0, REGP_OP);
  6398 #endif
  6399   ins_encode( form3_mem_reg( dst, src ) );
  6400   ins_pipe(istore_mem_spORreg);
  6401 %}
  6403 instruct storeP0(memory dst, immP0 src) %{
  6404   match(Set dst (StoreP dst src));
  6405   ins_cost(MEMORY_REF_COST);
  6406   size(4);
  6408 #ifndef _LP64
  6409   format %{ "STW    $src,$dst\t! ptr" %}
  6410   opcode(Assembler::stw_op3, 0, REGP_OP);
  6411 #else
  6412   format %{ "STX    $src,$dst\t! ptr" %}
  6413   opcode(Assembler::stx_op3, 0, REGP_OP);
  6414 #endif
  6415   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6416   ins_pipe(istore_mem_zero);
  6417 %}
  6419 // Store Compressed Pointer
  6420 instruct storeN(memory dst, iRegN src) %{
  6421    match(Set dst (StoreN dst src));
  6422    ins_cost(MEMORY_REF_COST);
  6423    size(4);
  6425    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6426    ins_encode %{
  6427      Register base = as_Register($dst$$base);
  6428      Register index = as_Register($dst$$index);
  6429      Register src = $src$$Register;
  6430      if (index != G0) {
  6431        __ stw(src, base, index);
  6432      } else {
  6433        __ stw(src, base, $dst$$disp);
  6435    %}
  6436    ins_pipe(istore_mem_spORreg);
  6437 %}
  6439 instruct storeN0(memory dst, immN0 src) %{
  6440    match(Set dst (StoreN dst src));
  6441    ins_cost(MEMORY_REF_COST);
  6442    size(4);
  6444    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6445    ins_encode %{
  6446      Register base = as_Register($dst$$base);
  6447      Register index = as_Register($dst$$index);
  6448      if (index != G0) {
  6449        __ stw(0, base, index);
  6450      } else {
  6451        __ stw(0, base, $dst$$disp);
  6453    %}
  6454    ins_pipe(istore_mem_zero);
  6455 %}
  6457 // Store Double
  6458 instruct storeD( memory mem, regD src) %{
  6459   match(Set mem (StoreD mem src));
  6460   ins_cost(MEMORY_REF_COST);
  6462   size(4);
  6463   format %{ "STDF   $src,$mem" %}
  6464   opcode(Assembler::stdf_op3);
  6465   ins_encode(simple_form3_mem_reg( mem, src ) );
  6466   ins_pipe(fstoreD_mem_reg);
  6467 %}
  6469 instruct storeD0( memory mem, immD0 src) %{
  6470   match(Set mem (StoreD mem src));
  6471   ins_cost(MEMORY_REF_COST);
  6473   size(4);
  6474   format %{ "STX    $src,$mem" %}
  6475   opcode(Assembler::stx_op3);
  6476   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6477   ins_pipe(fstoreD_mem_zero);
  6478 %}
  6480 // Store Float
  6481 instruct storeF( memory mem, regF src) %{
  6482   match(Set mem (StoreF mem src));
  6483   ins_cost(MEMORY_REF_COST);
  6485   size(4);
  6486   format %{ "STF    $src,$mem" %}
  6487   opcode(Assembler::stf_op3);
  6488   ins_encode(simple_form3_mem_reg( mem, src ) );
  6489   ins_pipe(fstoreF_mem_reg);
  6490 %}
  6492 instruct storeF0( memory mem, immF0 src) %{
  6493   match(Set mem (StoreF mem src));
  6494   ins_cost(MEMORY_REF_COST);
  6496   size(4);
  6497   format %{ "STW    $src,$mem\t! storeF0" %}
  6498   opcode(Assembler::stw_op3);
  6499   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6500   ins_pipe(fstoreF_mem_zero);
  6501 %}
  6503 // Store Aligned Packed Bytes in Double register to memory
  6504 instruct storeA8B(memory mem, regD src) %{
  6505   match(Set mem (Store8B mem src));
  6506   ins_cost(MEMORY_REF_COST);
  6507   size(4);
  6508   format %{ "STDF   $src,$mem\t! packed8B" %}
  6509   opcode(Assembler::stdf_op3);
  6510   ins_encode(simple_form3_mem_reg( mem, src ) );
  6511   ins_pipe(fstoreD_mem_reg);
  6512 %}
  6514 // Convert oop pointer into compressed form
  6515 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6516   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6517   match(Set dst (EncodeP src));
  6518   format %{ "encode_heap_oop $src, $dst" %}
  6519   ins_encode %{
  6520     __ encode_heap_oop($src$$Register, $dst$$Register);
  6521   %}
  6522   ins_pipe(ialu_reg);
  6523 %}
  6525 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6526   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6527   match(Set dst (EncodeP src));
  6528   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6529   ins_encode %{
  6530     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6531   %}
  6532   ins_pipe(ialu_reg);
  6533 %}
  6535 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6536   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6537             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6538   match(Set dst (DecodeN src));
  6539   format %{ "decode_heap_oop $src, $dst" %}
  6540   ins_encode %{
  6541     __ decode_heap_oop($src$$Register, $dst$$Register);
  6542   %}
  6543   ins_pipe(ialu_reg);
  6544 %}
  6546 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6547   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6548             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6549   match(Set dst (DecodeN src));
  6550   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6551   ins_encode %{
  6552     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6553   %}
  6554   ins_pipe(ialu_reg);
  6555 %}
  6558 // Store Zero into Aligned Packed Bytes
  6559 instruct storeA8B0(memory mem, immI0 zero) %{
  6560   match(Set mem (Store8B mem zero));
  6561   ins_cost(MEMORY_REF_COST);
  6562   size(4);
  6563   format %{ "STX    $zero,$mem\t! packed8B" %}
  6564   opcode(Assembler::stx_op3);
  6565   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6566   ins_pipe(fstoreD_mem_zero);
  6567 %}
  6569 // Store Aligned Packed Chars/Shorts in Double register to memory
  6570 instruct storeA4C(memory mem, regD src) %{
  6571   match(Set mem (Store4C mem src));
  6572   ins_cost(MEMORY_REF_COST);
  6573   size(4);
  6574   format %{ "STDF   $src,$mem\t! packed4C" %}
  6575   opcode(Assembler::stdf_op3);
  6576   ins_encode(simple_form3_mem_reg( mem, src ) );
  6577   ins_pipe(fstoreD_mem_reg);
  6578 %}
  6580 // Store Zero into Aligned Packed Chars/Shorts
  6581 instruct storeA4C0(memory mem, immI0 zero) %{
  6582   match(Set mem (Store4C mem (Replicate4C zero)));
  6583   ins_cost(MEMORY_REF_COST);
  6584   size(4);
  6585   format %{ "STX    $zero,$mem\t! packed4C" %}
  6586   opcode(Assembler::stx_op3);
  6587   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6588   ins_pipe(fstoreD_mem_zero);
  6589 %}
  6591 // Store Aligned Packed Ints in Double register to memory
  6592 instruct storeA2I(memory mem, regD src) %{
  6593   match(Set mem (Store2I mem src));
  6594   ins_cost(MEMORY_REF_COST);
  6595   size(4);
  6596   format %{ "STDF   $src,$mem\t! packed2I" %}
  6597   opcode(Assembler::stdf_op3);
  6598   ins_encode(simple_form3_mem_reg( mem, src ) );
  6599   ins_pipe(fstoreD_mem_reg);
  6600 %}
  6602 // Store Zero into Aligned Packed Ints
  6603 instruct storeA2I0(memory mem, immI0 zero) %{
  6604   match(Set mem (Store2I mem zero));
  6605   ins_cost(MEMORY_REF_COST);
  6606   size(4);
  6607   format %{ "STX    $zero,$mem\t! packed2I" %}
  6608   opcode(Assembler::stx_op3);
  6609   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6610   ins_pipe(fstoreD_mem_zero);
  6611 %}
  6614 //----------MemBar Instructions-----------------------------------------------
  6615 // Memory barrier flavors
  6617 instruct membar_acquire() %{
  6618   match(MemBarAcquire);
  6619   ins_cost(4*MEMORY_REF_COST);
  6621   size(0);
  6622   format %{ "MEMBAR-acquire" %}
  6623   ins_encode( enc_membar_acquire );
  6624   ins_pipe(long_memory_op);
  6625 %}
  6627 instruct membar_acquire_lock() %{
  6628   match(MemBarAcquire);
  6629   predicate(Matcher::prior_fast_lock(n));
  6630   ins_cost(0);
  6632   size(0);
  6633   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6634   ins_encode( );
  6635   ins_pipe(empty);
  6636 %}
  6638 instruct membar_release() %{
  6639   match(MemBarRelease);
  6640   ins_cost(4*MEMORY_REF_COST);
  6642   size(0);
  6643   format %{ "MEMBAR-release" %}
  6644   ins_encode( enc_membar_release );
  6645   ins_pipe(long_memory_op);
  6646 %}
  6648 instruct membar_release_lock() %{
  6649   match(MemBarRelease);
  6650   predicate(Matcher::post_fast_unlock(n));
  6651   ins_cost(0);
  6653   size(0);
  6654   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6655   ins_encode( );
  6656   ins_pipe(empty);
  6657 %}
  6659 instruct membar_volatile() %{
  6660   match(MemBarVolatile);
  6661   ins_cost(4*MEMORY_REF_COST);
  6663   size(4);
  6664   format %{ "MEMBAR-volatile" %}
  6665   ins_encode( enc_membar_volatile );
  6666   ins_pipe(long_memory_op);
  6667 %}
  6669 instruct unnecessary_membar_volatile() %{
  6670   match(MemBarVolatile);
  6671   predicate(Matcher::post_store_load_barrier(n));
  6672   ins_cost(0);
  6674   size(0);
  6675   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6676   ins_encode( );
  6677   ins_pipe(empty);
  6678 %}
  6680 //----------Register Move Instructions-----------------------------------------
  6681 instruct roundDouble_nop(regD dst) %{
  6682   match(Set dst (RoundDouble dst));
  6683   ins_cost(0);
  6684   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6685   ins_encode( );
  6686   ins_pipe(empty);
  6687 %}
  6690 instruct roundFloat_nop(regF dst) %{
  6691   match(Set dst (RoundFloat dst));
  6692   ins_cost(0);
  6693   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6694   ins_encode( );
  6695   ins_pipe(empty);
  6696 %}
  6699 // Cast Index to Pointer for unsafe natives
  6700 instruct castX2P(iRegX src, iRegP dst) %{
  6701   match(Set dst (CastX2P src));
  6703   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6704   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6705   ins_pipe(ialu_reg);
  6706 %}
  6708 // Cast Pointer to Index for unsafe natives
  6709 instruct castP2X(iRegP src, iRegX dst) %{
  6710   match(Set dst (CastP2X src));
  6712   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6713   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6714   ins_pipe(ialu_reg);
  6715 %}
  6717 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6718   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6719   match(Set stkSlot src);   // chain rule
  6720   ins_cost(MEMORY_REF_COST);
  6721   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6722   opcode(Assembler::stdf_op3);
  6723   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6724   ins_pipe(fstoreD_stk_reg);
  6725 %}
  6727 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6728   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6729   match(Set dst stkSlot);   // chain rule
  6730   ins_cost(MEMORY_REF_COST);
  6731   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6732   opcode(Assembler::lddf_op3);
  6733   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6734   ins_pipe(floadD_stk);
  6735 %}
  6737 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6738   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6739   match(Set stkSlot src);   // chain rule
  6740   ins_cost(MEMORY_REF_COST);
  6741   format %{ "STF   $src,$stkSlot\t!stk" %}
  6742   opcode(Assembler::stf_op3);
  6743   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6744   ins_pipe(fstoreF_stk_reg);
  6745 %}
  6747 //----------Conditional Move---------------------------------------------------
  6748 // Conditional move
  6749 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6750   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6751   ins_cost(150);
  6752   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6753   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6754   ins_pipe(ialu_reg);
  6755 %}
  6757 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6758   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6759   ins_cost(140);
  6760   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6761   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6762   ins_pipe(ialu_imm);
  6763 %}
  6765 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6766   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6767   ins_cost(150);
  6768   size(4);
  6769   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6770   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6771   ins_pipe(ialu_reg);
  6772 %}
  6774 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6775   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6776   ins_cost(140);
  6777   size(4);
  6778   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6779   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6780   ins_pipe(ialu_imm);
  6781 %}
  6783 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6784   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6785   ins_cost(150);
  6786   size(4);
  6787   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6788   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6789   ins_pipe(ialu_reg);
  6790 %}
  6792 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6793   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6794   ins_cost(140);
  6795   size(4);
  6796   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6797   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6798   ins_pipe(ialu_imm);
  6799 %}
  6801 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6802   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6803   ins_cost(150);
  6804   size(4);
  6805   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6806   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6807   ins_pipe(ialu_reg);
  6808 %}
  6810 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6811   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6812   ins_cost(140);
  6813   size(4);
  6814   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6815   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6816   ins_pipe(ialu_imm);
  6817 %}
  6819 // Conditional move for RegN. Only cmov(reg,reg).
  6820 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6821   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6822   ins_cost(150);
  6823   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6824   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6825   ins_pipe(ialu_reg);
  6826 %}
  6828 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6829 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6830   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6831   ins_cost(150);
  6832   size(4);
  6833   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6834   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6835   ins_pipe(ialu_reg);
  6836 %}
  6838 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6839 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6840   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6841   ins_cost(150);
  6842   size(4);
  6843   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6844   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6845   ins_pipe(ialu_reg);
  6846 %}
  6848 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6849   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6850   ins_cost(150);
  6851   size(4);
  6852   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6853   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6854   ins_pipe(ialu_reg);
  6855 %}
  6857 // Conditional move
  6858 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6859   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6860   ins_cost(150);
  6861   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6862   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6863   ins_pipe(ialu_reg);
  6864 %}
  6866 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6867   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6868   ins_cost(140);
  6869   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6870   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6871   ins_pipe(ialu_imm);
  6872 %}
  6874 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6875 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6876   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6877   ins_cost(150);
  6879   size(4);
  6880   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6881   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6882   ins_pipe(ialu_reg);
  6883 %}
  6885 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6886   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6887   ins_cost(150);
  6889   size(4);
  6890   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6891   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6892   ins_pipe(ialu_reg);
  6893 %}
  6895 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6896   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6897   ins_cost(140);
  6899   size(4);
  6900   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6901   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6902   ins_pipe(ialu_imm);
  6903 %}
  6905 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6906   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6907   ins_cost(140);
  6909   size(4);
  6910   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6911   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6912   ins_pipe(ialu_imm);
  6913 %}
  6915 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6916   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6917   ins_cost(150);
  6918   size(4);
  6919   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6920   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6921   ins_pipe(ialu_imm);
  6922 %}
  6924 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6925   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6926   ins_cost(140);
  6927   size(4);
  6928   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6929   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6930   ins_pipe(ialu_imm);
  6931 %}
  6933 // Conditional move
  6934 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6935   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6936   ins_cost(150);
  6937   opcode(0x101);
  6938   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6939   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6940   ins_pipe(int_conditional_float_move);
  6941 %}
  6943 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6944   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6945   ins_cost(150);
  6947   size(4);
  6948   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6949   opcode(0x101);
  6950   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6951   ins_pipe(int_conditional_float_move);
  6952 %}
  6954 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6955   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6956   ins_cost(150);
  6958   size(4);
  6959   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6960   opcode(0x101);
  6961   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6962   ins_pipe(int_conditional_float_move);
  6963 %}
  6965 // Conditional move,
  6966 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6967   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6968   ins_cost(150);
  6969   size(4);
  6970   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6971   opcode(0x1);
  6972   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6973   ins_pipe(int_conditional_double_move);
  6974 %}
  6976 // Conditional move
  6977 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6978   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6979   ins_cost(150);
  6980   size(4);
  6981   opcode(0x102);
  6982   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6983   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6984   ins_pipe(int_conditional_double_move);
  6985 %}
  6987 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6988   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6989   ins_cost(150);
  6991   size(4);
  6992   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6993   opcode(0x102);
  6994   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6995   ins_pipe(int_conditional_double_move);
  6996 %}
  6998 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6999   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7000   ins_cost(150);
  7002   size(4);
  7003   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7004   opcode(0x102);
  7005   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7006   ins_pipe(int_conditional_double_move);
  7007 %}
  7009 // Conditional move,
  7010 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7011   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7012   ins_cost(150);
  7013   size(4);
  7014   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7015   opcode(0x2);
  7016   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7017   ins_pipe(int_conditional_double_move);
  7018 %}
  7020 // Conditional move
  7021 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7022   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7023   ins_cost(150);
  7024   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7025   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7026   ins_pipe(ialu_reg);
  7027 %}
  7029 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7030   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7031   ins_cost(140);
  7032   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7033   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7034   ins_pipe(ialu_imm);
  7035 %}
  7037 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7038   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7039   ins_cost(150);
  7041   size(4);
  7042   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7043   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7044   ins_pipe(ialu_reg);
  7045 %}
  7048 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7049   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7050   ins_cost(150);
  7052   size(4);
  7053   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7054   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7055   ins_pipe(ialu_reg);
  7056 %}
  7059 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7060   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7061   ins_cost(150);
  7063   size(4);
  7064   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7065   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7066   ins_pipe(ialu_reg);
  7067 %}
  7071 //----------OS and Locking Instructions----------------------------------------
  7073 // This name is KNOWN by the ADLC and cannot be changed.
  7074 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7075 // for this guy.
  7076 instruct tlsLoadP(g2RegP dst) %{
  7077   match(Set dst (ThreadLocal));
  7079   size(0);
  7080   ins_cost(0);
  7081   format %{ "# TLS is in G2" %}
  7082   ins_encode( /*empty encoding*/ );
  7083   ins_pipe(ialu_none);
  7084 %}
  7086 instruct checkCastPP( iRegP dst ) %{
  7087   match(Set dst (CheckCastPP dst));
  7089   size(0);
  7090   format %{ "# checkcastPP of $dst" %}
  7091   ins_encode( /*empty encoding*/ );
  7092   ins_pipe(empty);
  7093 %}
  7096 instruct castPP( iRegP dst ) %{
  7097   match(Set dst (CastPP dst));
  7098   format %{ "# castPP of $dst" %}
  7099   ins_encode( /*empty encoding*/ );
  7100   ins_pipe(empty);
  7101 %}
  7103 instruct castII( iRegI dst ) %{
  7104   match(Set dst (CastII dst));
  7105   format %{ "# castII of $dst" %}
  7106   ins_encode( /*empty encoding*/ );
  7107   ins_cost(0);
  7108   ins_pipe(empty);
  7109 %}
  7111 //----------Arithmetic Instructions--------------------------------------------
  7112 // Addition Instructions
  7113 // Register Addition
  7114 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7115   match(Set dst (AddI src1 src2));
  7117   size(4);
  7118   format %{ "ADD    $src1,$src2,$dst" %}
  7119   ins_encode %{
  7120     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7121   %}
  7122   ins_pipe(ialu_reg_reg);
  7123 %}
  7125 // Immediate Addition
  7126 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7127   match(Set dst (AddI src1 src2));
  7129   size(4);
  7130   format %{ "ADD    $src1,$src2,$dst" %}
  7131   opcode(Assembler::add_op3, Assembler::arith_op);
  7132   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7133   ins_pipe(ialu_reg_imm);
  7134 %}
  7136 // Pointer Register Addition
  7137 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7138   match(Set dst (AddP src1 src2));
  7140   size(4);
  7141   format %{ "ADD    $src1,$src2,$dst" %}
  7142   opcode(Assembler::add_op3, Assembler::arith_op);
  7143   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7144   ins_pipe(ialu_reg_reg);
  7145 %}
  7147 // Pointer Immediate Addition
  7148 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7149   match(Set dst (AddP src1 src2));
  7151   size(4);
  7152   format %{ "ADD    $src1,$src2,$dst" %}
  7153   opcode(Assembler::add_op3, Assembler::arith_op);
  7154   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7155   ins_pipe(ialu_reg_imm);
  7156 %}
  7158 // Long Addition
  7159 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7160   match(Set dst (AddL src1 src2));
  7162   size(4);
  7163   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7164   opcode(Assembler::add_op3, Assembler::arith_op);
  7165   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7166   ins_pipe(ialu_reg_reg);
  7167 %}
  7169 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7170   match(Set dst (AddL src1 con));
  7172   size(4);
  7173   format %{ "ADD    $src1,$con,$dst" %}
  7174   opcode(Assembler::add_op3, Assembler::arith_op);
  7175   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7176   ins_pipe(ialu_reg_imm);
  7177 %}
  7179 //----------Conditional_store--------------------------------------------------
  7180 // Conditional-store of the updated heap-top.
  7181 // Used during allocation of the shared heap.
  7182 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7184 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7185 instruct loadPLocked(iRegP dst, memory mem) %{
  7186   match(Set dst (LoadPLocked mem));
  7187   ins_cost(MEMORY_REF_COST);
  7189 #ifndef _LP64
  7190   size(4);
  7191   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7192   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7193 #else
  7194   format %{ "LDX    $mem,$dst\t! ptr" %}
  7195   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7196 #endif
  7197   ins_encode( form3_mem_reg( mem, dst ) );
  7198   ins_pipe(iload_mem);
  7199 %}
  7201 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7202 instruct loadLLocked(iRegL dst, memory mem) %{
  7203   match(Set dst (LoadLLocked mem));
  7204   ins_cost(MEMORY_REF_COST);
  7205   size(4);
  7206   format %{ "LDX    $mem,$dst\t! long" %}
  7207   opcode(Assembler::ldx_op3);
  7208   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7209   ins_pipe(iload_mem);
  7210 %}
  7212 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7213   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7214   effect( KILL newval );
  7215   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7216             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7217   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7218   ins_pipe( long_memory_op );
  7219 %}
  7221 // Conditional-store of an int value.
  7222 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7223   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7224   effect( KILL newval );
  7225   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7226             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7227   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7228   ins_pipe( long_memory_op );
  7229 %}
  7231 // Conditional-store of a long value.
  7232 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7233   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7234   effect( KILL newval );
  7235   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7236             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7237   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7238   ins_pipe( long_memory_op );
  7239 %}
  7241 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7243 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7244   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7245   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7246   format %{
  7247             "MOV    $newval,O7\n\t"
  7248             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7249             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7250             "MOV    1,$res\n\t"
  7251             "MOVne  xcc,R_G0,$res"
  7252   %}
  7253   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7254               enc_lflags_ne_to_boolean(res) );
  7255   ins_pipe( long_memory_op );
  7256 %}
  7259 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7260   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7261   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7262   format %{
  7263             "MOV    $newval,O7\n\t"
  7264             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7265             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7266             "MOV    1,$res\n\t"
  7267             "MOVne  icc,R_G0,$res"
  7268   %}
  7269   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7270               enc_iflags_ne_to_boolean(res) );
  7271   ins_pipe( long_memory_op );
  7272 %}
  7274 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7275   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7276   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7277   format %{
  7278             "MOV    $newval,O7\n\t"
  7279             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7280             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7281             "MOV    1,$res\n\t"
  7282             "MOVne  xcc,R_G0,$res"
  7283   %}
  7284 #ifdef _LP64
  7285   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7286               enc_lflags_ne_to_boolean(res) );
  7287 #else
  7288   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7289               enc_iflags_ne_to_boolean(res) );
  7290 #endif
  7291   ins_pipe( long_memory_op );
  7292 %}
  7294 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7295   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7296   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7297   format %{
  7298             "MOV    $newval,O7\n\t"
  7299             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7300             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7301             "MOV    1,$res\n\t"
  7302             "MOVne  icc,R_G0,$res"
  7303   %}
  7304   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7305               enc_iflags_ne_to_boolean(res) );
  7306   ins_pipe( long_memory_op );
  7307 %}
  7309 //---------------------
  7310 // Subtraction Instructions
  7311 // Register Subtraction
  7312 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7313   match(Set dst (SubI src1 src2));
  7315   size(4);
  7316   format %{ "SUB    $src1,$src2,$dst" %}
  7317   opcode(Assembler::sub_op3, Assembler::arith_op);
  7318   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7319   ins_pipe(ialu_reg_reg);
  7320 %}
  7322 // Immediate Subtraction
  7323 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7324   match(Set dst (SubI src1 src2));
  7326   size(4);
  7327   format %{ "SUB    $src1,$src2,$dst" %}
  7328   opcode(Assembler::sub_op3, Assembler::arith_op);
  7329   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7330   ins_pipe(ialu_reg_imm);
  7331 %}
  7333 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7334   match(Set dst (SubI zero src2));
  7336   size(4);
  7337   format %{ "NEG    $src2,$dst" %}
  7338   opcode(Assembler::sub_op3, Assembler::arith_op);
  7339   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7340   ins_pipe(ialu_zero_reg);
  7341 %}
  7343 // Long subtraction
  7344 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7345   match(Set dst (SubL src1 src2));
  7347   size(4);
  7348   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7349   opcode(Assembler::sub_op3, Assembler::arith_op);
  7350   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7351   ins_pipe(ialu_reg_reg);
  7352 %}
  7354 // Immediate Subtraction
  7355 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7356   match(Set dst (SubL src1 con));
  7358   size(4);
  7359   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7360   opcode(Assembler::sub_op3, Assembler::arith_op);
  7361   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7362   ins_pipe(ialu_reg_imm);
  7363 %}
  7365 // Long negation
  7366 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7367   match(Set dst (SubL zero src2));
  7369   size(4);
  7370   format %{ "NEG    $src2,$dst\t! long" %}
  7371   opcode(Assembler::sub_op3, Assembler::arith_op);
  7372   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7373   ins_pipe(ialu_zero_reg);
  7374 %}
  7376 // Multiplication Instructions
  7377 // Integer Multiplication
  7378 // Register Multiplication
  7379 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7380   match(Set dst (MulI src1 src2));
  7382   size(4);
  7383   format %{ "MULX   $src1,$src2,$dst" %}
  7384   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7385   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7386   ins_pipe(imul_reg_reg);
  7387 %}
  7389 // Immediate Multiplication
  7390 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7391   match(Set dst (MulI src1 src2));
  7393   size(4);
  7394   format %{ "MULX   $src1,$src2,$dst" %}
  7395   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7396   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7397   ins_pipe(imul_reg_imm);
  7398 %}
  7400 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7401   match(Set dst (MulL src1 src2));
  7402   ins_cost(DEFAULT_COST * 5);
  7403   size(4);
  7404   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7405   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7406   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7407   ins_pipe(mulL_reg_reg);
  7408 %}
  7410 // Immediate Multiplication
  7411 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7412   match(Set dst (MulL src1 src2));
  7413   ins_cost(DEFAULT_COST * 5);
  7414   size(4);
  7415   format %{ "MULX   $src1,$src2,$dst" %}
  7416   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7417   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7418   ins_pipe(mulL_reg_imm);
  7419 %}
  7421 // Integer Division
  7422 // Register Division
  7423 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7424   match(Set dst (DivI src1 src2));
  7425   ins_cost((2+71)*DEFAULT_COST);
  7427   format %{ "SRA     $src2,0,$src2\n\t"
  7428             "SRA     $src1,0,$src1\n\t"
  7429             "SDIVX   $src1,$src2,$dst" %}
  7430   ins_encode( idiv_reg( src1, src2, dst ) );
  7431   ins_pipe(sdiv_reg_reg);
  7432 %}
  7434 // Immediate Division
  7435 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7436   match(Set dst (DivI src1 src2));
  7437   ins_cost((2+71)*DEFAULT_COST);
  7439   format %{ "SRA     $src1,0,$src1\n\t"
  7440             "SDIVX   $src1,$src2,$dst" %}
  7441   ins_encode( idiv_imm( src1, src2, dst ) );
  7442   ins_pipe(sdiv_reg_imm);
  7443 %}
  7445 //----------Div-By-10-Expansion------------------------------------------------
  7446 // Extract hi bits of a 32x32->64 bit multiply.
  7447 // Expand rule only, not matched
  7448 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7449   effect( DEF dst, USE src1, USE src2 );
  7450   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7451             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7452   ins_encode( enc_mul_hi(dst,src1,src2));
  7453   ins_pipe(sdiv_reg_reg);
  7454 %}
  7456 // Magic constant, reciprocal of 10
  7457 instruct loadConI_x66666667(iRegIsafe dst) %{
  7458   effect( DEF dst );
  7460   size(8);
  7461   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7462   ins_encode( Set32(0x66666667, dst) );
  7463   ins_pipe(ialu_hi_lo_reg);
  7464 %}
  7466 // Register Shift Right Arithmetic Long by 32-63
  7467 instruct sra_31( iRegI dst, iRegI src ) %{
  7468   effect( DEF dst, USE src );
  7469   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7470   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7471   ins_pipe(ialu_reg_reg);
  7472 %}
  7474 // Arithmetic Shift Right by 8-bit immediate
  7475 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7476   effect( DEF dst, USE src );
  7477   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7478   opcode(Assembler::sra_op3, Assembler::arith_op);
  7479   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7480   ins_pipe(ialu_reg_imm);
  7481 %}
  7483 // Integer DIV with 10
  7484 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7485   match(Set dst (DivI src div));
  7486   ins_cost((6+6)*DEFAULT_COST);
  7487   expand %{
  7488     iRegIsafe tmp1;               // Killed temps;
  7489     iRegIsafe tmp2;               // Killed temps;
  7490     iRegI tmp3;                   // Killed temps;
  7491     iRegI tmp4;                   // Killed temps;
  7492     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7493     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7494     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7495     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7496     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7497   %}
  7498 %}
  7500 // Register Long Division
  7501 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7502   match(Set dst (DivL src1 src2));
  7503   ins_cost(DEFAULT_COST*71);
  7504   size(4);
  7505   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7506   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7507   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7508   ins_pipe(divL_reg_reg);
  7509 %}
  7511 // Register Long Division
  7512 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7513   match(Set dst (DivL src1 src2));
  7514   ins_cost(DEFAULT_COST*71);
  7515   size(4);
  7516   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7517   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7518   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7519   ins_pipe(divL_reg_imm);
  7520 %}
  7522 // Integer Remainder
  7523 // Register Remainder
  7524 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7525   match(Set dst (ModI src1 src2));
  7526   effect( KILL ccr, KILL temp);
  7528   format %{ "SREM   $src1,$src2,$dst" %}
  7529   ins_encode( irem_reg(src1, src2, dst, temp) );
  7530   ins_pipe(sdiv_reg_reg);
  7531 %}
  7533 // Immediate Remainder
  7534 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7535   match(Set dst (ModI src1 src2));
  7536   effect( KILL ccr, KILL temp);
  7538   format %{ "SREM   $src1,$src2,$dst" %}
  7539   ins_encode( irem_imm(src1, src2, dst, temp) );
  7540   ins_pipe(sdiv_reg_imm);
  7541 %}
  7543 // Register Long Remainder
  7544 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7545   effect(DEF dst, USE src1, USE src2);
  7546   size(4);
  7547   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7548   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7549   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7550   ins_pipe(divL_reg_reg);
  7551 %}
  7553 // Register Long Division
  7554 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7555   effect(DEF dst, USE src1, USE src2);
  7556   size(4);
  7557   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7558   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7559   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7560   ins_pipe(divL_reg_imm);
  7561 %}
  7563 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7564   effect(DEF dst, USE src1, USE src2);
  7565   size(4);
  7566   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7567   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7568   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7569   ins_pipe(mulL_reg_reg);
  7570 %}
  7572 // Immediate Multiplication
  7573 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7574   effect(DEF dst, USE src1, USE src2);
  7575   size(4);
  7576   format %{ "MULX   $src1,$src2,$dst" %}
  7577   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7578   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7579   ins_pipe(mulL_reg_imm);
  7580 %}
  7582 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7583   effect(DEF dst, USE src1, USE src2);
  7584   size(4);
  7585   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7586   opcode(Assembler::sub_op3, Assembler::arith_op);
  7587   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7588   ins_pipe(ialu_reg_reg);
  7589 %}
  7591 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7592   effect(DEF dst, USE src1, USE src2);
  7593   size(4);
  7594   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7595   opcode(Assembler::sub_op3, Assembler::arith_op);
  7596   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7597   ins_pipe(ialu_reg_reg);
  7598 %}
  7600 // Register Long Remainder
  7601 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7602   match(Set dst (ModL src1 src2));
  7603   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7604   expand %{
  7605     iRegL tmp1;
  7606     iRegL tmp2;
  7607     divL_reg_reg_1(tmp1, src1, src2);
  7608     mulL_reg_reg_1(tmp2, tmp1, src2);
  7609     subL_reg_reg_1(dst,  src1, tmp2);
  7610   %}
  7611 %}
  7613 // Register Long Remainder
  7614 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7615   match(Set dst (ModL src1 src2));
  7616   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7617   expand %{
  7618     iRegL tmp1;
  7619     iRegL tmp2;
  7620     divL_reg_imm13_1(tmp1, src1, src2);
  7621     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7622     subL_reg_reg_2  (dst,  src1, tmp2);
  7623   %}
  7624 %}
  7626 // Integer Shift Instructions
  7627 // Register Shift Left
  7628 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7629   match(Set dst (LShiftI src1 src2));
  7631   size(4);
  7632   format %{ "SLL    $src1,$src2,$dst" %}
  7633   opcode(Assembler::sll_op3, Assembler::arith_op);
  7634   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7635   ins_pipe(ialu_reg_reg);
  7636 %}
  7638 // Register Shift Left Immediate
  7639 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7640   match(Set dst (LShiftI src1 src2));
  7642   size(4);
  7643   format %{ "SLL    $src1,$src2,$dst" %}
  7644   opcode(Assembler::sll_op3, Assembler::arith_op);
  7645   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7646   ins_pipe(ialu_reg_imm);
  7647 %}
  7649 // Register Shift Left
  7650 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7651   match(Set dst (LShiftL src1 src2));
  7653   size(4);
  7654   format %{ "SLLX   $src1,$src2,$dst" %}
  7655   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7656   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7657   ins_pipe(ialu_reg_reg);
  7658 %}
  7660 // Register Shift Left Immediate
  7661 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7662   match(Set dst (LShiftL src1 src2));
  7664   size(4);
  7665   format %{ "SLLX   $src1,$src2,$dst" %}
  7666   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7667   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7668   ins_pipe(ialu_reg_imm);
  7669 %}
  7671 // Register Arithmetic Shift Right
  7672 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7673   match(Set dst (RShiftI src1 src2));
  7674   size(4);
  7675   format %{ "SRA    $src1,$src2,$dst" %}
  7676   opcode(Assembler::sra_op3, Assembler::arith_op);
  7677   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7678   ins_pipe(ialu_reg_reg);
  7679 %}
  7681 // Register Arithmetic Shift Right Immediate
  7682 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7683   match(Set dst (RShiftI src1 src2));
  7685   size(4);
  7686   format %{ "SRA    $src1,$src2,$dst" %}
  7687   opcode(Assembler::sra_op3, Assembler::arith_op);
  7688   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7689   ins_pipe(ialu_reg_imm);
  7690 %}
  7692 // Register Shift Right Arithmatic Long
  7693 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7694   match(Set dst (RShiftL src1 src2));
  7696   size(4);
  7697   format %{ "SRAX   $src1,$src2,$dst" %}
  7698   opcode(Assembler::srax_op3, Assembler::arith_op);
  7699   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7700   ins_pipe(ialu_reg_reg);
  7701 %}
  7703 // Register Shift Left Immediate
  7704 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7705   match(Set dst (RShiftL src1 src2));
  7707   size(4);
  7708   format %{ "SRAX   $src1,$src2,$dst" %}
  7709   opcode(Assembler::srax_op3, Assembler::arith_op);
  7710   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7711   ins_pipe(ialu_reg_imm);
  7712 %}
  7714 // Register Shift Right
  7715 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7716   match(Set dst (URShiftI src1 src2));
  7718   size(4);
  7719   format %{ "SRL    $src1,$src2,$dst" %}
  7720   opcode(Assembler::srl_op3, Assembler::arith_op);
  7721   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7722   ins_pipe(ialu_reg_reg);
  7723 %}
  7725 // Register Shift Right Immediate
  7726 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7727   match(Set dst (URShiftI src1 src2));
  7729   size(4);
  7730   format %{ "SRL    $src1,$src2,$dst" %}
  7731   opcode(Assembler::srl_op3, Assembler::arith_op);
  7732   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7733   ins_pipe(ialu_reg_imm);
  7734 %}
  7736 // Register Shift Right
  7737 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7738   match(Set dst (URShiftL src1 src2));
  7740   size(4);
  7741   format %{ "SRLX   $src1,$src2,$dst" %}
  7742   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7743   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7744   ins_pipe(ialu_reg_reg);
  7745 %}
  7747 // Register Shift Right Immediate
  7748 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7749   match(Set dst (URShiftL src1 src2));
  7751   size(4);
  7752   format %{ "SRLX   $src1,$src2,$dst" %}
  7753   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7754   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7755   ins_pipe(ialu_reg_imm);
  7756 %}
  7758 // Register Shift Right Immediate with a CastP2X
  7759 #ifdef _LP64
  7760 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7761   match(Set dst (URShiftL (CastP2X src1) src2));
  7762   size(4);
  7763   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7764   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7765   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7766   ins_pipe(ialu_reg_imm);
  7767 %}
  7768 #else
  7769 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7770   match(Set dst (URShiftI (CastP2X src1) src2));
  7771   size(4);
  7772   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7773   opcode(Assembler::srl_op3, Assembler::arith_op);
  7774   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7775   ins_pipe(ialu_reg_imm);
  7776 %}
  7777 #endif
  7780 //----------Floating Point Arithmetic Instructions-----------------------------
  7782 //  Add float single precision
  7783 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7784   match(Set dst (AddF src1 src2));
  7786   size(4);
  7787   format %{ "FADDS  $src1,$src2,$dst" %}
  7788   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7789   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7790   ins_pipe(faddF_reg_reg);
  7791 %}
  7793 //  Add float double precision
  7794 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7795   match(Set dst (AddD src1 src2));
  7797   size(4);
  7798   format %{ "FADDD  $src1,$src2,$dst" %}
  7799   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7800   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7801   ins_pipe(faddD_reg_reg);
  7802 %}
  7804 //  Sub float single precision
  7805 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7806   match(Set dst (SubF src1 src2));
  7808   size(4);
  7809   format %{ "FSUBS  $src1,$src2,$dst" %}
  7810   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7811   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7812   ins_pipe(faddF_reg_reg);
  7813 %}
  7815 //  Sub float double precision
  7816 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7817   match(Set dst (SubD src1 src2));
  7819   size(4);
  7820   format %{ "FSUBD  $src1,$src2,$dst" %}
  7821   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7822   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7823   ins_pipe(faddD_reg_reg);
  7824 %}
  7826 //  Mul float single precision
  7827 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7828   match(Set dst (MulF src1 src2));
  7830   size(4);
  7831   format %{ "FMULS  $src1,$src2,$dst" %}
  7832   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7833   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7834   ins_pipe(fmulF_reg_reg);
  7835 %}
  7837 //  Mul float double precision
  7838 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7839   match(Set dst (MulD src1 src2));
  7841   size(4);
  7842   format %{ "FMULD  $src1,$src2,$dst" %}
  7843   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7844   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7845   ins_pipe(fmulD_reg_reg);
  7846 %}
  7848 //  Div float single precision
  7849 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7850   match(Set dst (DivF src1 src2));
  7852   size(4);
  7853   format %{ "FDIVS  $src1,$src2,$dst" %}
  7854   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7855   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7856   ins_pipe(fdivF_reg_reg);
  7857 %}
  7859 //  Div float double precision
  7860 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7861   match(Set dst (DivD src1 src2));
  7863   size(4);
  7864   format %{ "FDIVD  $src1,$src2,$dst" %}
  7865   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7866   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7867   ins_pipe(fdivD_reg_reg);
  7868 %}
  7870 //  Absolute float double precision
  7871 instruct absD_reg(regD dst, regD src) %{
  7872   match(Set dst (AbsD src));
  7874   format %{ "FABSd  $src,$dst" %}
  7875   ins_encode(fabsd(dst, src));
  7876   ins_pipe(faddD_reg);
  7877 %}
  7879 //  Absolute float single precision
  7880 instruct absF_reg(regF dst, regF src) %{
  7881   match(Set dst (AbsF src));
  7883   format %{ "FABSs  $src,$dst" %}
  7884   ins_encode(fabss(dst, src));
  7885   ins_pipe(faddF_reg);
  7886 %}
  7888 instruct negF_reg(regF dst, regF src) %{
  7889   match(Set dst (NegF src));
  7891   size(4);
  7892   format %{ "FNEGs  $src,$dst" %}
  7893   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7894   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7895   ins_pipe(faddF_reg);
  7896 %}
  7898 instruct negD_reg(regD dst, regD src) %{
  7899   match(Set dst (NegD src));
  7901   format %{ "FNEGd  $src,$dst" %}
  7902   ins_encode(fnegd(dst, src));
  7903   ins_pipe(faddD_reg);
  7904 %}
  7906 //  Sqrt float double precision
  7907 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7908   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7910   size(4);
  7911   format %{ "FSQRTS $src,$dst" %}
  7912   ins_encode(fsqrts(dst, src));
  7913   ins_pipe(fdivF_reg_reg);
  7914 %}
  7916 //  Sqrt float double precision
  7917 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7918   match(Set dst (SqrtD src));
  7920   size(4);
  7921   format %{ "FSQRTD $src,$dst" %}
  7922   ins_encode(fsqrtd(dst, src));
  7923   ins_pipe(fdivD_reg_reg);
  7924 %}
  7926 //----------Logical Instructions-----------------------------------------------
  7927 // And Instructions
  7928 // Register And
  7929 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7930   match(Set dst (AndI src1 src2));
  7932   size(4);
  7933   format %{ "AND    $src1,$src2,$dst" %}
  7934   opcode(Assembler::and_op3, Assembler::arith_op);
  7935   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7936   ins_pipe(ialu_reg_reg);
  7937 %}
  7939 // Immediate And
  7940 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7941   match(Set dst (AndI src1 src2));
  7943   size(4);
  7944   format %{ "AND    $src1,$src2,$dst" %}
  7945   opcode(Assembler::and_op3, Assembler::arith_op);
  7946   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7947   ins_pipe(ialu_reg_imm);
  7948 %}
  7950 // Register And Long
  7951 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7952   match(Set dst (AndL src1 src2));
  7954   ins_cost(DEFAULT_COST);
  7955   size(4);
  7956   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7957   opcode(Assembler::and_op3, Assembler::arith_op);
  7958   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7959   ins_pipe(ialu_reg_reg);
  7960 %}
  7962 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7963   match(Set dst (AndL src1 con));
  7965   ins_cost(DEFAULT_COST);
  7966   size(4);
  7967   format %{ "AND    $src1,$con,$dst\t! long" %}
  7968   opcode(Assembler::and_op3, Assembler::arith_op);
  7969   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7970   ins_pipe(ialu_reg_imm);
  7971 %}
  7973 // Or Instructions
  7974 // Register Or
  7975 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7976   match(Set dst (OrI src1 src2));
  7978   size(4);
  7979   format %{ "OR     $src1,$src2,$dst" %}
  7980   opcode(Assembler::or_op3, Assembler::arith_op);
  7981   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7982   ins_pipe(ialu_reg_reg);
  7983 %}
  7985 // Immediate Or
  7986 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7987   match(Set dst (OrI src1 src2));
  7989   size(4);
  7990   format %{ "OR     $src1,$src2,$dst" %}
  7991   opcode(Assembler::or_op3, Assembler::arith_op);
  7992   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7993   ins_pipe(ialu_reg_imm);
  7994 %}
  7996 // Register Or Long
  7997 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7998   match(Set dst (OrL src1 src2));
  8000   ins_cost(DEFAULT_COST);
  8001   size(4);
  8002   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8003   opcode(Assembler::or_op3, Assembler::arith_op);
  8004   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8005   ins_pipe(ialu_reg_reg);
  8006 %}
  8008 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8009   match(Set dst (OrL src1 con));
  8010   ins_cost(DEFAULT_COST*2);
  8012   ins_cost(DEFAULT_COST);
  8013   size(4);
  8014   format %{ "OR     $src1,$con,$dst\t! long" %}
  8015   opcode(Assembler::or_op3, Assembler::arith_op);
  8016   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8017   ins_pipe(ialu_reg_imm);
  8018 %}
  8020 #ifndef _LP64
  8022 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8023 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8024   match(Set dst (OrI src1 (CastP2X src2)));
  8026   size(4);
  8027   format %{ "OR     $src1,$src2,$dst" %}
  8028   opcode(Assembler::or_op3, Assembler::arith_op);
  8029   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8030   ins_pipe(ialu_reg_reg);
  8031 %}
  8033 #else
  8035 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8036   match(Set dst (OrL src1 (CastP2X src2)));
  8038   ins_cost(DEFAULT_COST);
  8039   size(4);
  8040   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8041   opcode(Assembler::or_op3, Assembler::arith_op);
  8042   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8043   ins_pipe(ialu_reg_reg);
  8044 %}
  8046 #endif
  8048 // Xor Instructions
  8049 // Register Xor
  8050 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8051   match(Set dst (XorI src1 src2));
  8053   size(4);
  8054   format %{ "XOR    $src1,$src2,$dst" %}
  8055   opcode(Assembler::xor_op3, Assembler::arith_op);
  8056   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8057   ins_pipe(ialu_reg_reg);
  8058 %}
  8060 // Immediate Xor
  8061 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8062   match(Set dst (XorI src1 src2));
  8064   size(4);
  8065   format %{ "XOR    $src1,$src2,$dst" %}
  8066   opcode(Assembler::xor_op3, Assembler::arith_op);
  8067   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8068   ins_pipe(ialu_reg_imm);
  8069 %}
  8071 // Register Xor Long
  8072 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8073   match(Set dst (XorL src1 src2));
  8075   ins_cost(DEFAULT_COST);
  8076   size(4);
  8077   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8078   opcode(Assembler::xor_op3, Assembler::arith_op);
  8079   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8080   ins_pipe(ialu_reg_reg);
  8081 %}
  8083 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8084   match(Set dst (XorL src1 con));
  8086   ins_cost(DEFAULT_COST);
  8087   size(4);
  8088   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8089   opcode(Assembler::xor_op3, Assembler::arith_op);
  8090   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8091   ins_pipe(ialu_reg_imm);
  8092 %}
  8094 //----------Convert to Boolean-------------------------------------------------
  8095 // Nice hack for 32-bit tests but doesn't work for
  8096 // 64-bit pointers.
  8097 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8098   match(Set dst (Conv2B src));
  8099   effect( KILL ccr );
  8100   ins_cost(DEFAULT_COST*2);
  8101   format %{ "CMP    R_G0,$src\n\t"
  8102             "ADDX   R_G0,0,$dst" %}
  8103   ins_encode( enc_to_bool( src, dst ) );
  8104   ins_pipe(ialu_reg_ialu);
  8105 %}
  8107 #ifndef _LP64
  8108 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8109   match(Set dst (Conv2B src));
  8110   effect( KILL ccr );
  8111   ins_cost(DEFAULT_COST*2);
  8112   format %{ "CMP    R_G0,$src\n\t"
  8113             "ADDX   R_G0,0,$dst" %}
  8114   ins_encode( enc_to_bool( src, dst ) );
  8115   ins_pipe(ialu_reg_ialu);
  8116 %}
  8117 #else
  8118 instruct convP2B( iRegI dst, iRegP src ) %{
  8119   match(Set dst (Conv2B src));
  8120   ins_cost(DEFAULT_COST*2);
  8121   format %{ "MOV    $src,$dst\n\t"
  8122             "MOVRNZ $src,1,$dst" %}
  8123   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8124   ins_pipe(ialu_clr_and_mover);
  8125 %}
  8126 #endif
  8128 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8129   match(Set dst (CmpLTMask src zero));
  8130   effect(KILL ccr);
  8131   size(4);
  8132   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8133   ins_encode %{
  8134     __ sra($src$$Register, 31, $dst$$Register);
  8135   %}
  8136   ins_pipe(ialu_reg_imm);
  8137 %}
  8139 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8140   match(Set dst (CmpLTMask p q));
  8141   effect( KILL ccr );
  8142   ins_cost(DEFAULT_COST*4);
  8143   format %{ "CMP    $p,$q\n\t"
  8144             "MOV    #0,$dst\n\t"
  8145             "BLT,a  .+8\n\t"
  8146             "MOV    #-1,$dst" %}
  8147   ins_encode( enc_ltmask(p,q,dst) );
  8148   ins_pipe(ialu_reg_reg_ialu);
  8149 %}
  8151 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8152   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8153   effect(KILL ccr, TEMP tmp);
  8154   ins_cost(DEFAULT_COST*3);
  8156   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8157             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8158             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8159   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8160   ins_pipe( cadd_cmpltmask );
  8161 %}
  8163 //----------Arithmetic Conversion Instructions---------------------------------
  8164 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8166 instruct convD2F_reg(regF dst, regD src) %{
  8167   match(Set dst (ConvD2F src));
  8168   size(4);
  8169   format %{ "FDTOS  $src,$dst" %}
  8170   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8171   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8172   ins_pipe(fcvtD2F);
  8173 %}
  8176 // Convert a double to an int in a float register.
  8177 // If the double is a NAN, stuff a zero in instead.
  8178 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8179   effect(DEF dst, USE src, KILL fcc0);
  8180   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8181             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8182             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8183             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8184             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8185       "skip:" %}
  8186   ins_encode(form_d2i_helper(src,dst));
  8187   ins_pipe(fcvtD2I);
  8188 %}
  8190 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8191   match(Set dst (ConvD2I src));
  8192   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8193   expand %{
  8194     regF tmp;
  8195     convD2I_helper(tmp, src);
  8196     regF_to_stkI(dst, tmp);
  8197   %}
  8198 %}
  8200 // Convert a double to a long in a double register.
  8201 // If the double is a NAN, stuff a zero in instead.
  8202 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8203   effect(DEF dst, USE src, KILL fcc0);
  8204   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8205             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8206             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8207             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8208             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8209       "skip:" %}
  8210   ins_encode(form_d2l_helper(src,dst));
  8211   ins_pipe(fcvtD2L);
  8212 %}
  8215 // Double to Long conversion
  8216 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8217   match(Set dst (ConvD2L src));
  8218   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8219   expand %{
  8220     regD tmp;
  8221     convD2L_helper(tmp, src);
  8222     regD_to_stkL(dst, tmp);
  8223   %}
  8224 %}
  8227 instruct convF2D_reg(regD dst, regF src) %{
  8228   match(Set dst (ConvF2D src));
  8229   format %{ "FSTOD  $src,$dst" %}
  8230   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8231   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8232   ins_pipe(fcvtF2D);
  8233 %}
  8236 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8237   effect(DEF dst, USE src, KILL fcc0);
  8238   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8239             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8240             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8241             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8242             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8243       "skip:" %}
  8244   ins_encode(form_f2i_helper(src,dst));
  8245   ins_pipe(fcvtF2I);
  8246 %}
  8248 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8249   match(Set dst (ConvF2I src));
  8250   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8251   expand %{
  8252     regF tmp;
  8253     convF2I_helper(tmp, src);
  8254     regF_to_stkI(dst, tmp);
  8255   %}
  8256 %}
  8259 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8260   effect(DEF dst, USE src, KILL fcc0);
  8261   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8262             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8263             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8264             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8265             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8266       "skip:" %}
  8267   ins_encode(form_f2l_helper(src,dst));
  8268   ins_pipe(fcvtF2L);
  8269 %}
  8271 // Float to Long conversion
  8272 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8273   match(Set dst (ConvF2L src));
  8274   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8275   expand %{
  8276     regD tmp;
  8277     convF2L_helper(tmp, src);
  8278     regD_to_stkL(dst, tmp);
  8279   %}
  8280 %}
  8283 instruct convI2D_helper(regD dst, regF tmp) %{
  8284   effect(USE tmp, DEF dst);
  8285   format %{ "FITOD  $tmp,$dst" %}
  8286   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8287   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8288   ins_pipe(fcvtI2D);
  8289 %}
  8291 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8292   match(Set dst (ConvI2D src));
  8293   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8294   expand %{
  8295     regF tmp;
  8296     stkI_to_regF( tmp, src);
  8297     convI2D_helper( dst, tmp);
  8298   %}
  8299 %}
  8301 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8302   match(Set dst (ConvI2D (LoadI mem)));
  8303   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8304   size(8);
  8305   format %{ "LDF    $mem,$dst\n\t"
  8306             "FITOD  $dst,$dst" %}
  8307   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8308   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8309   ins_pipe(floadF_mem);
  8310 %}
  8313 instruct convI2F_helper(regF dst, regF tmp) %{
  8314   effect(DEF dst, USE tmp);
  8315   format %{ "FITOS  $tmp,$dst" %}
  8316   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8317   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8318   ins_pipe(fcvtI2F);
  8319 %}
  8321 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8322   match(Set dst (ConvI2F src));
  8323   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8324   expand %{
  8325     regF tmp;
  8326     stkI_to_regF(tmp,src);
  8327     convI2F_helper(dst, tmp);
  8328   %}
  8329 %}
  8331 instruct convI2F_mem( regF dst, memory mem ) %{
  8332   match(Set dst (ConvI2F (LoadI mem)));
  8333   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8334   size(8);
  8335   format %{ "LDF    $mem,$dst\n\t"
  8336             "FITOS  $dst,$dst" %}
  8337   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8338   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8339   ins_pipe(floadF_mem);
  8340 %}
  8343 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8344   match(Set dst (ConvI2L src));
  8345   size(4);
  8346   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8347   opcode(Assembler::sra_op3, Assembler::arith_op);
  8348   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8349   ins_pipe(ialu_reg_reg);
  8350 %}
  8352 // Zero-extend convert int to long
  8353 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8354   match(Set dst (AndL (ConvI2L src) mask) );
  8355   size(4);
  8356   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8357   opcode(Assembler::srl_op3, Assembler::arith_op);
  8358   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8359   ins_pipe(ialu_reg_reg);
  8360 %}
  8362 // Zero-extend long
  8363 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8364   match(Set dst (AndL src mask) );
  8365   size(4);
  8366   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8367   opcode(Assembler::srl_op3, Assembler::arith_op);
  8368   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8369   ins_pipe(ialu_reg_reg);
  8370 %}
  8372 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8373   match(Set dst (MoveF2I src));
  8374   effect(DEF dst, USE src);
  8375   ins_cost(MEMORY_REF_COST);
  8377   size(4);
  8378   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8379   opcode(Assembler::lduw_op3);
  8380   ins_encode(simple_form3_mem_reg( src, dst ) );
  8381   ins_pipe(iload_mem);
  8382 %}
  8384 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8385   match(Set dst (MoveI2F src));
  8386   effect(DEF dst, USE src);
  8387   ins_cost(MEMORY_REF_COST);
  8389   size(4);
  8390   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8391   opcode(Assembler::ldf_op3);
  8392   ins_encode(simple_form3_mem_reg(src, dst));
  8393   ins_pipe(floadF_stk);
  8394 %}
  8396 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8397   match(Set dst (MoveD2L src));
  8398   effect(DEF dst, USE src);
  8399   ins_cost(MEMORY_REF_COST);
  8401   size(4);
  8402   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8403   opcode(Assembler::ldx_op3);
  8404   ins_encode(simple_form3_mem_reg( src, dst ) );
  8405   ins_pipe(iload_mem);
  8406 %}
  8408 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8409   match(Set dst (MoveL2D src));
  8410   effect(DEF dst, USE src);
  8411   ins_cost(MEMORY_REF_COST);
  8413   size(4);
  8414   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8415   opcode(Assembler::lddf_op3);
  8416   ins_encode(simple_form3_mem_reg(src, dst));
  8417   ins_pipe(floadD_stk);
  8418 %}
  8420 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8421   match(Set dst (MoveF2I src));
  8422   effect(DEF dst, USE src);
  8423   ins_cost(MEMORY_REF_COST);
  8425   size(4);
  8426   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8427   opcode(Assembler::stf_op3);
  8428   ins_encode(simple_form3_mem_reg(dst, src));
  8429   ins_pipe(fstoreF_stk_reg);
  8430 %}
  8432 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8433   match(Set dst (MoveI2F src));
  8434   effect(DEF dst, USE src);
  8435   ins_cost(MEMORY_REF_COST);
  8437   size(4);
  8438   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8439   opcode(Assembler::stw_op3);
  8440   ins_encode(simple_form3_mem_reg( dst, src ) );
  8441   ins_pipe(istore_mem_reg);
  8442 %}
  8444 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8445   match(Set dst (MoveD2L src));
  8446   effect(DEF dst, USE src);
  8447   ins_cost(MEMORY_REF_COST);
  8449   size(4);
  8450   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8451   opcode(Assembler::stdf_op3);
  8452   ins_encode(simple_form3_mem_reg(dst, src));
  8453   ins_pipe(fstoreD_stk_reg);
  8454 %}
  8456 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8457   match(Set dst (MoveL2D src));
  8458   effect(DEF dst, USE src);
  8459   ins_cost(MEMORY_REF_COST);
  8461   size(4);
  8462   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8463   opcode(Assembler::stx_op3);
  8464   ins_encode(simple_form3_mem_reg( dst, src ) );
  8465   ins_pipe(istore_mem_reg);
  8466 %}
  8469 //-----------
  8470 // Long to Double conversion using V8 opcodes.
  8471 // Still useful because cheetah traps and becomes
  8472 // amazingly slow for some common numbers.
  8474 // Magic constant, 0x43300000
  8475 instruct loadConI_x43300000(iRegI dst) %{
  8476   effect(DEF dst);
  8477   size(4);
  8478   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8479   ins_encode(SetHi22(0x43300000, dst));
  8480   ins_pipe(ialu_none);
  8481 %}
  8483 // Magic constant, 0x41f00000
  8484 instruct loadConI_x41f00000(iRegI dst) %{
  8485   effect(DEF dst);
  8486   size(4);
  8487   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8488   ins_encode(SetHi22(0x41f00000, dst));
  8489   ins_pipe(ialu_none);
  8490 %}
  8492 // Construct a double from two float halves
  8493 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8494   effect(DEF dst, USE src1, USE src2);
  8495   size(8);
  8496   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8497             "FMOVS  $src2.lo,$dst.lo" %}
  8498   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8499   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8500   ins_pipe(faddD_reg_reg);
  8501 %}
  8503 // Convert integer in high half of a double register (in the lower half of
  8504 // the double register file) to double
  8505 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8506   effect(DEF dst, USE src);
  8507   size(4);
  8508   format %{ "FITOD  $src,$dst" %}
  8509   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8510   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8511   ins_pipe(fcvtLHi2D);
  8512 %}
  8514 // Add float double precision
  8515 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8516   effect(DEF dst, USE src1, USE src2);
  8517   size(4);
  8518   format %{ "FADDD  $src1,$src2,$dst" %}
  8519   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8520   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8521   ins_pipe(faddD_reg_reg);
  8522 %}
  8524 // Sub float double precision
  8525 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8526   effect(DEF dst, USE src1, USE src2);
  8527   size(4);
  8528   format %{ "FSUBD  $src1,$src2,$dst" %}
  8529   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8530   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8531   ins_pipe(faddD_reg_reg);
  8532 %}
  8534 // Mul float double precision
  8535 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8536   effect(DEF dst, USE src1, USE src2);
  8537   size(4);
  8538   format %{ "FMULD  $src1,$src2,$dst" %}
  8539   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8540   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8541   ins_pipe(fmulD_reg_reg);
  8542 %}
  8544 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8545   match(Set dst (ConvL2D src));
  8546   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8548   expand %{
  8549     regD_low   tmpsrc;
  8550     iRegI      ix43300000;
  8551     iRegI      ix41f00000;
  8552     stackSlotL lx43300000;
  8553     stackSlotL lx41f00000;
  8554     regD_low   dx43300000;
  8555     regD       dx41f00000;
  8556     regD       tmp1;
  8557     regD_low   tmp2;
  8558     regD       tmp3;
  8559     regD       tmp4;
  8561     stkL_to_regD(tmpsrc, src);
  8563     loadConI_x43300000(ix43300000);
  8564     loadConI_x41f00000(ix41f00000);
  8565     regI_to_stkLHi(lx43300000, ix43300000);
  8566     regI_to_stkLHi(lx41f00000, ix41f00000);
  8567     stkL_to_regD(dx43300000, lx43300000);
  8568     stkL_to_regD(dx41f00000, lx41f00000);
  8570     convI2D_regDHi_regD(tmp1, tmpsrc);
  8571     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8572     subD_regD_regD(tmp3, tmp2, dx43300000);
  8573     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8574     addD_regD_regD(dst, tmp3, tmp4);
  8575   %}
  8576 %}
  8578 // Long to Double conversion using fast fxtof
  8579 instruct convL2D_helper(regD dst, regD tmp) %{
  8580   effect(DEF dst, USE tmp);
  8581   size(4);
  8582   format %{ "FXTOD  $tmp,$dst" %}
  8583   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8584   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8585   ins_pipe(fcvtL2D);
  8586 %}
  8588 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8589   predicate(VM_Version::has_fast_fxtof());
  8590   match(Set dst (ConvL2D src));
  8591   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8592   expand %{
  8593     regD tmp;
  8594     stkL_to_regD(tmp, src);
  8595     convL2D_helper(dst, tmp);
  8596   %}
  8597 %}
  8599 //-----------
  8600 // Long to Float conversion using V8 opcodes.
  8601 // Still useful because cheetah traps and becomes
  8602 // amazingly slow for some common numbers.
  8604 // Long to Float conversion using fast fxtof
  8605 instruct convL2F_helper(regF dst, regD tmp) %{
  8606   effect(DEF dst, USE tmp);
  8607   size(4);
  8608   format %{ "FXTOS  $tmp,$dst" %}
  8609   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8610   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8611   ins_pipe(fcvtL2F);
  8612 %}
  8614 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8615   match(Set dst (ConvL2F src));
  8616   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8617   expand %{
  8618     regD tmp;
  8619     stkL_to_regD(tmp, src);
  8620     convL2F_helper(dst, tmp);
  8621   %}
  8622 %}
  8623 //-----------
  8625 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8626   match(Set dst (ConvL2I src));
  8627 #ifndef _LP64
  8628   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8629   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8630   ins_pipe(ialu_move_reg_I_to_L);
  8631 #else
  8632   size(4);
  8633   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8634   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8635   ins_pipe(ialu_reg);
  8636 #endif
  8637 %}
  8639 // Register Shift Right Immediate
  8640 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8641   match(Set dst (ConvL2I (RShiftL src cnt)));
  8643   size(4);
  8644   format %{ "SRAX   $src,$cnt,$dst" %}
  8645   opcode(Assembler::srax_op3, Assembler::arith_op);
  8646   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8647   ins_pipe(ialu_reg_imm);
  8648 %}
  8650 // Replicate scalar to packed byte values in Double register
  8651 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8652   effect(DEF dst, USE src);
  8653   format %{ "SLLX  $src,56,$dst\n\t"
  8654             "SRLX  $dst, 8,O7\n\t"
  8655             "OR    $dst,O7,$dst\n\t"
  8656             "SRLX  $dst,16,O7\n\t"
  8657             "OR    $dst,O7,$dst\n\t"
  8658             "SRLX  $dst,32,O7\n\t"
  8659             "OR    $dst,O7,$dst\t! replicate8B" %}
  8660   ins_encode( enc_repl8b(src, dst));
  8661   ins_pipe(ialu_reg);
  8662 %}
  8664 // Replicate scalar to packed byte values in Double register
  8665 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8666   match(Set dst (Replicate8B src));
  8667   expand %{
  8668     iRegL tmp;
  8669     Repl8B_reg_helper(tmp, src);
  8670     regL_to_stkD(dst, tmp);
  8671   %}
  8672 %}
  8674 // Replicate scalar constant to packed byte values in Double register
  8675 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8676   match(Set dst (Replicate8B con));
  8677   effect(KILL tmp);
  8678   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8679   ins_encode %{
  8680     // XXX This is a quick fix for 6833573.
  8681     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8682     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8683     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8684   %}
  8685   ins_pipe(loadConFD);
  8686 %}
  8688 // Replicate scalar to packed char values into stack slot
  8689 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8690   effect(DEF dst, USE src);
  8691   format %{ "SLLX  $src,48,$dst\n\t"
  8692             "SRLX  $dst,16,O7\n\t"
  8693             "OR    $dst,O7,$dst\n\t"
  8694             "SRLX  $dst,32,O7\n\t"
  8695             "OR    $dst,O7,$dst\t! replicate4C" %}
  8696   ins_encode( enc_repl4s(src, dst) );
  8697   ins_pipe(ialu_reg);
  8698 %}
  8700 // Replicate scalar to packed char values into stack slot
  8701 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8702   match(Set dst (Replicate4C src));
  8703   expand %{
  8704     iRegL tmp;
  8705     Repl4C_reg_helper(tmp, src);
  8706     regL_to_stkD(dst, tmp);
  8707   %}
  8708 %}
  8710 // Replicate scalar constant to packed char values in Double register
  8711 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8712   match(Set dst (Replicate4C con));
  8713   effect(KILL tmp);
  8714   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8715   ins_encode %{
  8716     // XXX This is a quick fix for 6833573.
  8717     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8718     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8719     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8720   %}
  8721   ins_pipe(loadConFD);
  8722 %}
  8724 // Replicate scalar to packed short values into stack slot
  8725 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8726   effect(DEF dst, USE src);
  8727   format %{ "SLLX  $src,48,$dst\n\t"
  8728             "SRLX  $dst,16,O7\n\t"
  8729             "OR    $dst,O7,$dst\n\t"
  8730             "SRLX  $dst,32,O7\n\t"
  8731             "OR    $dst,O7,$dst\t! replicate4S" %}
  8732   ins_encode( enc_repl4s(src, dst) );
  8733   ins_pipe(ialu_reg);
  8734 %}
  8736 // Replicate scalar to packed short values into stack slot
  8737 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8738   match(Set dst (Replicate4S src));
  8739   expand %{
  8740     iRegL tmp;
  8741     Repl4S_reg_helper(tmp, src);
  8742     regL_to_stkD(dst, tmp);
  8743   %}
  8744 %}
  8746 // Replicate scalar constant to packed short values in Double register
  8747 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8748   match(Set dst (Replicate4S con));
  8749   effect(KILL tmp);
  8750   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8751   ins_encode %{
  8752     // XXX This is a quick fix for 6833573.
  8753     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8754     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8755     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8756   %}
  8757   ins_pipe(loadConFD);
  8758 %}
  8760 // Replicate scalar to packed int values in Double register
  8761 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8762   effect(DEF dst, USE src);
  8763   format %{ "SLLX  $src,32,$dst\n\t"
  8764             "SRLX  $dst,32,O7\n\t"
  8765             "OR    $dst,O7,$dst\t! replicate2I" %}
  8766   ins_encode( enc_repl2i(src, dst));
  8767   ins_pipe(ialu_reg);
  8768 %}
  8770 // Replicate scalar to packed int values in Double register
  8771 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8772   match(Set dst (Replicate2I src));
  8773   expand %{
  8774     iRegL tmp;
  8775     Repl2I_reg_helper(tmp, src);
  8776     regL_to_stkD(dst, tmp);
  8777   %}
  8778 %}
  8780 // Replicate scalar zero constant to packed int values in Double register
  8781 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8782   match(Set dst (Replicate2I con));
  8783   effect(KILL tmp);
  8784   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8785   ins_encode %{
  8786     // XXX This is a quick fix for 6833573.
  8787     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8788     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8789     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8790   %}
  8791   ins_pipe(loadConFD);
  8792 %}
  8794 //----------Control Flow Instructions------------------------------------------
  8795 // Compare Instructions
  8796 // Compare Integers
  8797 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8798   match(Set icc (CmpI op1 op2));
  8799   effect( DEF icc, USE op1, USE op2 );
  8801   size(4);
  8802   format %{ "CMP    $op1,$op2" %}
  8803   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8804   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8805   ins_pipe(ialu_cconly_reg_reg);
  8806 %}
  8808 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8809   match(Set icc (CmpU op1 op2));
  8811   size(4);
  8812   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8813   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8814   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8815   ins_pipe(ialu_cconly_reg_reg);
  8816 %}
  8818 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8819   match(Set icc (CmpI op1 op2));
  8820   effect( DEF icc, USE op1 );
  8822   size(4);
  8823   format %{ "CMP    $op1,$op2" %}
  8824   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8825   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8826   ins_pipe(ialu_cconly_reg_imm);
  8827 %}
  8829 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8830   match(Set icc (CmpI (AndI op1 op2) zero));
  8832   size(4);
  8833   format %{ "BTST   $op2,$op1" %}
  8834   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8835   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8836   ins_pipe(ialu_cconly_reg_reg_zero);
  8837 %}
  8839 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8840   match(Set icc (CmpI (AndI op1 op2) zero));
  8842   size(4);
  8843   format %{ "BTST   $op2,$op1" %}
  8844   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8845   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8846   ins_pipe(ialu_cconly_reg_imm_zero);
  8847 %}
  8849 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8850   match(Set xcc (CmpL op1 op2));
  8851   effect( DEF xcc, USE op1, USE op2 );
  8853   size(4);
  8854   format %{ "CMP    $op1,$op2\t\t! long" %}
  8855   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8856   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8857   ins_pipe(ialu_cconly_reg_reg);
  8858 %}
  8860 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8861   match(Set xcc (CmpL op1 con));
  8862   effect( DEF xcc, USE op1, USE con );
  8864   size(4);
  8865   format %{ "CMP    $op1,$con\t\t! long" %}
  8866   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8867   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8868   ins_pipe(ialu_cconly_reg_reg);
  8869 %}
  8871 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8872   match(Set xcc (CmpL (AndL op1 op2) zero));
  8873   effect( DEF xcc, USE op1, USE op2 );
  8875   size(4);
  8876   format %{ "BTST   $op1,$op2\t\t! long" %}
  8877   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8878   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8879   ins_pipe(ialu_cconly_reg_reg);
  8880 %}
  8882 // useful for checking the alignment of a pointer:
  8883 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8884   match(Set xcc (CmpL (AndL op1 con) zero));
  8885   effect( DEF xcc, USE op1, USE con );
  8887   size(4);
  8888   format %{ "BTST   $op1,$con\t\t! long" %}
  8889   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8890   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8891   ins_pipe(ialu_cconly_reg_reg);
  8892 %}
  8894 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8895   match(Set icc (CmpU op1 op2));
  8897   size(4);
  8898   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8899   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8900   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8901   ins_pipe(ialu_cconly_reg_imm);
  8902 %}
  8904 // Compare Pointers
  8905 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8906   match(Set pcc (CmpP op1 op2));
  8908   size(4);
  8909   format %{ "CMP    $op1,$op2\t! ptr" %}
  8910   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8911   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8912   ins_pipe(ialu_cconly_reg_reg);
  8913 %}
  8915 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8916   match(Set pcc (CmpP op1 op2));
  8918   size(4);
  8919   format %{ "CMP    $op1,$op2\t! ptr" %}
  8920   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8921   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8922   ins_pipe(ialu_cconly_reg_imm);
  8923 %}
  8925 // Compare Narrow oops
  8926 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8927   match(Set icc (CmpN op1 op2));
  8929   size(4);
  8930   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8931   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8932   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8933   ins_pipe(ialu_cconly_reg_reg);
  8934 %}
  8936 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8937   match(Set icc (CmpN op1 op2));
  8939   size(4);
  8940   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8941   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8942   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8943   ins_pipe(ialu_cconly_reg_imm);
  8944 %}
  8946 //----------Max and Min--------------------------------------------------------
  8947 // Min Instructions
  8948 // Conditional move for min
  8949 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8950   effect( USE_DEF op2, USE op1, USE icc );
  8952   size(4);
  8953   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8954   opcode(Assembler::less);
  8955   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8956   ins_pipe(ialu_reg_flags);
  8957 %}
  8959 // Min Register with Register.
  8960 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8961   match(Set op2 (MinI op1 op2));
  8962   ins_cost(DEFAULT_COST*2);
  8963   expand %{
  8964     flagsReg icc;
  8965     compI_iReg(icc,op1,op2);
  8966     cmovI_reg_lt(op2,op1,icc);
  8967   %}
  8968 %}
  8970 // Max Instructions
  8971 // Conditional move for max
  8972 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8973   effect( USE_DEF op2, USE op1, USE icc );
  8974   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8975   opcode(Assembler::greater);
  8976   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8977   ins_pipe(ialu_reg_flags);
  8978 %}
  8980 // Max Register with Register
  8981 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8982   match(Set op2 (MaxI op1 op2));
  8983   ins_cost(DEFAULT_COST*2);
  8984   expand %{
  8985     flagsReg icc;
  8986     compI_iReg(icc,op1,op2);
  8987     cmovI_reg_gt(op2,op1,icc);
  8988   %}
  8989 %}
  8992 //----------Float Compares----------------------------------------------------
  8993 // Compare floating, generate condition code
  8994 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8995   match(Set fcc (CmpF src1 src2));
  8997   size(4);
  8998   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8999   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9000   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9001   ins_pipe(faddF_fcc_reg_reg_zero);
  9002 %}
  9004 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9005   match(Set fcc (CmpD src1 src2));
  9007   size(4);
  9008   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9009   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9010   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9011   ins_pipe(faddD_fcc_reg_reg_zero);
  9012 %}
  9015 // Compare floating, generate -1,0,1
  9016 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9017   match(Set dst (CmpF3 src1 src2));
  9018   effect(KILL fcc0);
  9019   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9020   format %{ "fcmpl  $dst,$src1,$src2" %}
  9021   // Primary = float
  9022   opcode( true );
  9023   ins_encode( floating_cmp( dst, src1, src2 ) );
  9024   ins_pipe( floating_cmp );
  9025 %}
  9027 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9028   match(Set dst (CmpD3 src1 src2));
  9029   effect(KILL fcc0);
  9030   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9031   format %{ "dcmpl  $dst,$src1,$src2" %}
  9032   // Primary = double (not float)
  9033   opcode( false );
  9034   ins_encode( floating_cmp( dst, src1, src2 ) );
  9035   ins_pipe( floating_cmp );
  9036 %}
  9038 //----------Branches---------------------------------------------------------
  9039 // Jump
  9040 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9041 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9042   match(Jump switch_val);
  9044   ins_cost(350);
  9046   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9047              "LD     [O7 + $switch_val], O7\n\t"
  9048              "JUMP   O7"
  9049          %}
  9050   ins_encode %{
  9051     // Calculate table address into a register.
  9052     Register table_reg;
  9053     Register label_reg = O7;
  9054     if (constant_offset() == 0) {
  9055       table_reg = $constanttablebase;
  9056     } else {
  9057       table_reg = O7;
  9058       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9059       __ add($constanttablebase, con_offset, table_reg);
  9062     // Jump to base address + switch value
  9063     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9064     __ jmp(label_reg, G0);
  9065     __ delayed()->nop();
  9066   %}
  9067   ins_pc_relative(1);
  9068   ins_pipe(ialu_reg_reg);
  9069 %}
  9071 // Direct Branch.  Use V8 version with longer range.
  9072 instruct branch(label labl) %{
  9073   match(Goto);
  9074   effect(USE labl);
  9076   size(8);
  9077   ins_cost(BRANCH_COST);
  9078   format %{ "BA     $labl" %}
  9079   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  9080   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  9081   ins_encode( enc_ba( labl ) );
  9082   ins_pc_relative(1);
  9083   ins_pipe(br);
  9084 %}
  9086 // Conditional Direct Branch
  9087 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9088   match(If cmp icc);
  9089   effect(USE labl);
  9091   size(8);
  9092   ins_cost(BRANCH_COST);
  9093   format %{ "BP$cmp   $icc,$labl" %}
  9094   // Prim = bits 24-22, Secnd = bits 31-30
  9095   ins_encode( enc_bp( labl, cmp, icc ) );
  9096   ins_pc_relative(1);
  9097   ins_pipe(br_cc);
  9098 %}
  9100 // Branch-on-register tests all 64 bits.  We assume that values
  9101 // in 64-bit registers always remains zero or sign extended
  9102 // unless our code munges the high bits.  Interrupts can chop
  9103 // the high order bits to zero or sign at any time.
  9104 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9105   match(If cmp (CmpI op1 zero));
  9106   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9107   effect(USE labl);
  9109   size(8);
  9110   ins_cost(BRANCH_COST);
  9111   format %{ "BR$cmp   $op1,$labl" %}
  9112   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9113   ins_pc_relative(1);
  9114   ins_pipe(br_reg);
  9115 %}
  9117 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9118   match(If cmp (CmpP op1 null));
  9119   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9120   effect(USE labl);
  9122   size(8);
  9123   ins_cost(BRANCH_COST);
  9124   format %{ "BR$cmp   $op1,$labl" %}
  9125   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9126   ins_pc_relative(1);
  9127   ins_pipe(br_reg);
  9128 %}
  9130 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9131   match(If cmp (CmpL op1 zero));
  9132   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9133   effect(USE labl);
  9135   size(8);
  9136   ins_cost(BRANCH_COST);
  9137   format %{ "BR$cmp   $op1,$labl" %}
  9138   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9139   ins_pc_relative(1);
  9140   ins_pipe(br_reg);
  9141 %}
  9143 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9144   match(If cmp icc);
  9145   effect(USE labl);
  9147   format %{ "BP$cmp  $icc,$labl" %}
  9148   // Prim = bits 24-22, Secnd = bits 31-30
  9149   ins_encode( enc_bp( labl, cmp, icc ) );
  9150   ins_pc_relative(1);
  9151   ins_pipe(br_cc);
  9152 %}
  9154 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9155   match(If cmp pcc);
  9156   effect(USE labl);
  9158   size(8);
  9159   ins_cost(BRANCH_COST);
  9160   format %{ "BP$cmp  $pcc,$labl" %}
  9161   // Prim = bits 24-22, Secnd = bits 31-30
  9162   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9163   ins_pc_relative(1);
  9164   ins_pipe(br_cc);
  9165 %}
  9167 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9168   match(If cmp fcc);
  9169   effect(USE labl);
  9171   size(8);
  9172   ins_cost(BRANCH_COST);
  9173   format %{ "FBP$cmp $fcc,$labl" %}
  9174   // Prim = bits 24-22, Secnd = bits 31-30
  9175   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9176   ins_pc_relative(1);
  9177   ins_pipe(br_fcc);
  9178 %}
  9180 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9181   match(CountedLoopEnd cmp icc);
  9182   effect(USE labl);
  9184   size(8);
  9185   ins_cost(BRANCH_COST);
  9186   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9187   // Prim = bits 24-22, Secnd = bits 31-30
  9188   ins_encode( enc_bp( labl, cmp, icc ) );
  9189   ins_pc_relative(1);
  9190   ins_pipe(br_cc);
  9191 %}
  9193 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9194   match(CountedLoopEnd cmp icc);
  9195   effect(USE labl);
  9197   size(8);
  9198   ins_cost(BRANCH_COST);
  9199   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9200   // Prim = bits 24-22, Secnd = bits 31-30
  9201   ins_encode( enc_bp( labl, cmp, icc ) );
  9202   ins_pc_relative(1);
  9203   ins_pipe(br_cc);
  9204 %}
  9206 // ============================================================================
  9207 // Long Compare
  9208 //
  9209 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9210 // is tricky.  The flavor of compare used depends on whether we are testing
  9211 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9212 // The GE test is the negated LT test.  The LE test can be had by commuting
  9213 // the operands (yielding a GE test) and then negating; negate again for the
  9214 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9215 // NE test is negated from that.
  9217 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9218 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9219 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9220 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9221 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9222 // foo match ends up with the wrong leaf.  One fix is to not match both
  9223 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9224 // both forms beat the trinary form of long-compare and both are very useful
  9225 // on Intel which has so few registers.
  9227 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9228   match(If cmp xcc);
  9229   effect(USE labl);
  9231   size(8);
  9232   ins_cost(BRANCH_COST);
  9233   format %{ "BP$cmp   $xcc,$labl" %}
  9234   // Prim = bits 24-22, Secnd = bits 31-30
  9235   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9236   ins_pc_relative(1);
  9237   ins_pipe(br_cc);
  9238 %}
  9240 // Manifest a CmpL3 result in an integer register.  Very painful.
  9241 // This is the test to avoid.
  9242 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9243   match(Set dst (CmpL3 src1 src2) );
  9244   effect( KILL ccr );
  9245   ins_cost(6*DEFAULT_COST);
  9246   size(24);
  9247   format %{ "CMP    $src1,$src2\t\t! long\n"
  9248           "\tBLT,a,pn done\n"
  9249           "\tMOV    -1,$dst\t! delay slot\n"
  9250           "\tBGT,a,pn done\n"
  9251           "\tMOV    1,$dst\t! delay slot\n"
  9252           "\tCLR    $dst\n"
  9253     "done:"     %}
  9254   ins_encode( cmpl_flag(src1,src2,dst) );
  9255   ins_pipe(cmpL_reg);
  9256 %}
  9258 // Conditional move
  9259 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9260   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9261   ins_cost(150);
  9262   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9263   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9264   ins_pipe(ialu_reg);
  9265 %}
  9267 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9268   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9269   ins_cost(140);
  9270   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9271   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9272   ins_pipe(ialu_imm);
  9273 %}
  9275 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9276   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9277   ins_cost(150);
  9278   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9279   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9280   ins_pipe(ialu_reg);
  9281 %}
  9283 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9284   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9285   ins_cost(140);
  9286   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9287   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9288   ins_pipe(ialu_imm);
  9289 %}
  9291 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9292   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9293   ins_cost(150);
  9294   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9295   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9296   ins_pipe(ialu_reg);
  9297 %}
  9299 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9300   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9301   ins_cost(150);
  9302   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9303   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9304   ins_pipe(ialu_reg);
  9305 %}
  9307 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9308   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9309   ins_cost(140);
  9310   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9311   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9312   ins_pipe(ialu_imm);
  9313 %}
  9315 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9316   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9317   ins_cost(150);
  9318   opcode(0x101);
  9319   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9320   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9321   ins_pipe(int_conditional_float_move);
  9322 %}
  9324 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9325   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9326   ins_cost(150);
  9327   opcode(0x102);
  9328   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9329   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9330   ins_pipe(int_conditional_float_move);
  9331 %}
  9333 // ============================================================================
  9334 // Safepoint Instruction
  9335 instruct safePoint_poll(iRegP poll) %{
  9336   match(SafePoint poll);
  9337   effect(USE poll);
  9339   size(4);
  9340 #ifdef _LP64
  9341   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9342 #else
  9343   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9344 #endif
  9345   ins_encode %{
  9346     __ relocate(relocInfo::poll_type);
  9347     __ ld_ptr($poll$$Register, 0, G0);
  9348   %}
  9349   ins_pipe(loadPollP);
  9350 %}
  9352 // ============================================================================
  9353 // Call Instructions
  9354 // Call Java Static Instruction
  9355 instruct CallStaticJavaDirect( method meth ) %{
  9356   match(CallStaticJava);
  9357   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9358   effect(USE meth);
  9360   size(8);
  9361   ins_cost(CALL_COST);
  9362   format %{ "CALL,static  ; NOP ==> " %}
  9363   ins_encode( Java_Static_Call( meth ), call_epilog );
  9364   ins_pc_relative(1);
  9365   ins_pipe(simple_call);
  9366 %}
  9368 // Call Java Static Instruction (method handle version)
  9369 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9370   match(CallStaticJava);
  9371   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9372   effect(USE meth, KILL l7_mh_SP_save);
  9374   size(8);
  9375   ins_cost(CALL_COST);
  9376   format %{ "CALL,static/MethodHandle" %}
  9377   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9378   ins_pc_relative(1);
  9379   ins_pipe(simple_call);
  9380 %}
  9382 // Call Java Dynamic Instruction
  9383 instruct CallDynamicJavaDirect( method meth ) %{
  9384   match(CallDynamicJava);
  9385   effect(USE meth);
  9387   ins_cost(CALL_COST);
  9388   format %{ "SET    (empty),R_G5\n\t"
  9389             "CALL,dynamic  ; NOP ==> " %}
  9390   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9391   ins_pc_relative(1);
  9392   ins_pipe(call);
  9393 %}
  9395 // Call Runtime Instruction
  9396 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9397   match(CallRuntime);
  9398   effect(USE meth, KILL l7);
  9399   ins_cost(CALL_COST);
  9400   format %{ "CALL,runtime" %}
  9401   ins_encode( Java_To_Runtime( meth ),
  9402               call_epilog, adjust_long_from_native_call );
  9403   ins_pc_relative(1);
  9404   ins_pipe(simple_call);
  9405 %}
  9407 // Call runtime without safepoint - same as CallRuntime
  9408 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9409   match(CallLeaf);
  9410   effect(USE meth, KILL l7);
  9411   ins_cost(CALL_COST);
  9412   format %{ "CALL,runtime leaf" %}
  9413   ins_encode( Java_To_Runtime( meth ),
  9414               call_epilog,
  9415               adjust_long_from_native_call );
  9416   ins_pc_relative(1);
  9417   ins_pipe(simple_call);
  9418 %}
  9420 // Call runtime without safepoint - same as CallLeaf
  9421 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9422   match(CallLeafNoFP);
  9423   effect(USE meth, KILL l7);
  9424   ins_cost(CALL_COST);
  9425   format %{ "CALL,runtime leaf nofp" %}
  9426   ins_encode( Java_To_Runtime( meth ),
  9427               call_epilog,
  9428               adjust_long_from_native_call );
  9429   ins_pc_relative(1);
  9430   ins_pipe(simple_call);
  9431 %}
  9433 // Tail Call; Jump from runtime stub to Java code.
  9434 // Also known as an 'interprocedural jump'.
  9435 // Target of jump will eventually return to caller.
  9436 // TailJump below removes the return address.
  9437 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9438   match(TailCall jump_target method_oop );
  9440   ins_cost(CALL_COST);
  9441   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9442   ins_encode(form_jmpl(jump_target));
  9443   ins_pipe(tail_call);
  9444 %}
  9447 // Return Instruction
  9448 instruct Ret() %{
  9449   match(Return);
  9451   // The epilogue node did the ret already.
  9452   size(0);
  9453   format %{ "! return" %}
  9454   ins_encode();
  9455   ins_pipe(empty);
  9456 %}
  9459 // Tail Jump; remove the return address; jump to target.
  9460 // TailCall above leaves the return address around.
  9461 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9462 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9463 // "restore" before this instruction (in Epilogue), we need to materialize it
  9464 // in %i0.
  9465 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9466   match( TailJump jump_target ex_oop );
  9467   ins_cost(CALL_COST);
  9468   format %{ "! discard R_O7\n\t"
  9469             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9470   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9471   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9472   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9473   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9474   ins_pipe(tail_call);
  9475 %}
  9477 // Create exception oop: created by stack-crawling runtime code.
  9478 // Created exception is now available to this handler, and is setup
  9479 // just prior to jumping to this handler.  No code emitted.
  9480 instruct CreateException( o0RegP ex_oop )
  9481 %{
  9482   match(Set ex_oop (CreateEx));
  9483   ins_cost(0);
  9485   size(0);
  9486   // use the following format syntax
  9487   format %{ "! exception oop is in R_O0; no code emitted" %}
  9488   ins_encode();
  9489   ins_pipe(empty);
  9490 %}
  9493 // Rethrow exception:
  9494 // The exception oop will come in the first argument position.
  9495 // Then JUMP (not call) to the rethrow stub code.
  9496 instruct RethrowException()
  9497 %{
  9498   match(Rethrow);
  9499   ins_cost(CALL_COST);
  9501   // use the following format syntax
  9502   format %{ "Jmp    rethrow_stub" %}
  9503   ins_encode(enc_rethrow);
  9504   ins_pipe(tail_call);
  9505 %}
  9508 // Die now
  9509 instruct ShouldNotReachHere( )
  9510 %{
  9511   match(Halt);
  9512   ins_cost(CALL_COST);
  9514   size(4);
  9515   // Use the following format syntax
  9516   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9517   ins_encode( form2_illtrap() );
  9518   ins_pipe(tail_call);
  9519 %}
  9521 // ============================================================================
  9522 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9523 // array for an instance of the superklass.  Set a hidden internal cache on a
  9524 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9525 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9526 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9527   match(Set index (PartialSubtypeCheck sub super));
  9528   effect( KILL pcc, KILL o7 );
  9529   ins_cost(DEFAULT_COST*10);
  9530   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9531   ins_encode( enc_PartialSubtypeCheck() );
  9532   ins_pipe(partial_subtype_check_pipe);
  9533 %}
  9535 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9536   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9537   effect( KILL idx, KILL o7 );
  9538   ins_cost(DEFAULT_COST*10);
  9539   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9540   ins_encode( enc_PartialSubtypeCheck() );
  9541   ins_pipe(partial_subtype_check_pipe);
  9542 %}
  9545 // ============================================================================
  9546 // inlined locking and unlocking
  9548 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9549   match(Set pcc (FastLock object box));
  9551   effect(KILL scratch, TEMP scratch2);
  9552   ins_cost(100);
  9554   size(4*112);       // conservative overestimation ...
  9555   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9556   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9557   ins_pipe(long_memory_op);
  9558 %}
  9561 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9562   match(Set pcc (FastUnlock object box));
  9563   effect(KILL scratch, TEMP scratch2);
  9564   ins_cost(100);
  9566   size(4*120);       // conservative overestimation ...
  9567   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9568   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9569   ins_pipe(long_memory_op);
  9570 %}
  9572 // Count and Base registers are fixed because the allocator cannot
  9573 // kill unknown registers.  The encodings are generic.
  9574 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9575   match(Set dummy (ClearArray cnt base));
  9576   effect(TEMP temp, KILL ccr);
  9577   ins_cost(300);
  9578   format %{ "MOV    $cnt,$temp\n"
  9579     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9580     "        BRge   loop\t\t! Clearing loop\n"
  9581     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9582   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9583   ins_pipe(long_memory_op);
  9584 %}
  9586 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9587                         o7RegI tmp, flagsReg ccr) %{
  9588   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9589   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9590   ins_cost(300);
  9591   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9592   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9593   ins_pipe(long_memory_op);
  9594 %}
  9596 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9597                        o7RegI tmp, flagsReg ccr) %{
  9598   match(Set result (StrEquals (Binary str1 str2) cnt));
  9599   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9600   ins_cost(300);
  9601   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9602   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9603   ins_pipe(long_memory_op);
  9604 %}
  9606 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9607                       o7RegI tmp2, flagsReg ccr) %{
  9608   match(Set result (AryEq ary1 ary2));
  9609   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9610   ins_cost(300);
  9611   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9612   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9613   ins_pipe(long_memory_op);
  9614 %}
  9617 //---------- Zeros Count Instructions ------------------------------------------
  9619 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9620   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9621   match(Set dst (CountLeadingZerosI src));
  9622   effect(TEMP dst, TEMP tmp, KILL cr);
  9624   // x |= (x >> 1);
  9625   // x |= (x >> 2);
  9626   // x |= (x >> 4);
  9627   // x |= (x >> 8);
  9628   // x |= (x >> 16);
  9629   // return (WORDBITS - popc(x));
  9630   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9631             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9632             "OR      $dst,$tmp,$dst\n\t"
  9633             "SRL     $dst,2,$tmp\n\t"
  9634             "OR      $dst,$tmp,$dst\n\t"
  9635             "SRL     $dst,4,$tmp\n\t"
  9636             "OR      $dst,$tmp,$dst\n\t"
  9637             "SRL     $dst,8,$tmp\n\t"
  9638             "OR      $dst,$tmp,$dst\n\t"
  9639             "SRL     $dst,16,$tmp\n\t"
  9640             "OR      $dst,$tmp,$dst\n\t"
  9641             "POPC    $dst,$dst\n\t"
  9642             "MOV     32,$tmp\n\t"
  9643             "SUB     $tmp,$dst,$dst" %}
  9644   ins_encode %{
  9645     Register Rdst = $dst$$Register;
  9646     Register Rsrc = $src$$Register;
  9647     Register Rtmp = $tmp$$Register;
  9648     __ srl(Rsrc, 1,    Rtmp);
  9649     __ srl(Rsrc, 0,    Rdst);
  9650     __ or3(Rdst, Rtmp, Rdst);
  9651     __ srl(Rdst, 2,    Rtmp);
  9652     __ or3(Rdst, Rtmp, Rdst);
  9653     __ srl(Rdst, 4,    Rtmp);
  9654     __ or3(Rdst, Rtmp, Rdst);
  9655     __ srl(Rdst, 8,    Rtmp);
  9656     __ or3(Rdst, Rtmp, Rdst);
  9657     __ srl(Rdst, 16,   Rtmp);
  9658     __ or3(Rdst, Rtmp, Rdst);
  9659     __ popc(Rdst, Rdst);
  9660     __ mov(BitsPerInt, Rtmp);
  9661     __ sub(Rtmp, Rdst, Rdst);
  9662   %}
  9663   ins_pipe(ialu_reg);
  9664 %}
  9666 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9667   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9668   match(Set dst (CountLeadingZerosL src));
  9669   effect(TEMP dst, TEMP tmp, KILL cr);
  9671   // x |= (x >> 1);
  9672   // x |= (x >> 2);
  9673   // x |= (x >> 4);
  9674   // x |= (x >> 8);
  9675   // x |= (x >> 16);
  9676   // x |= (x >> 32);
  9677   // return (WORDBITS - popc(x));
  9678   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9679             "OR      $src,$tmp,$dst\n\t"
  9680             "SRLX    $dst,2,$tmp\n\t"
  9681             "OR      $dst,$tmp,$dst\n\t"
  9682             "SRLX    $dst,4,$tmp\n\t"
  9683             "OR      $dst,$tmp,$dst\n\t"
  9684             "SRLX    $dst,8,$tmp\n\t"
  9685             "OR      $dst,$tmp,$dst\n\t"
  9686             "SRLX    $dst,16,$tmp\n\t"
  9687             "OR      $dst,$tmp,$dst\n\t"
  9688             "SRLX    $dst,32,$tmp\n\t"
  9689             "OR      $dst,$tmp,$dst\n\t"
  9690             "POPC    $dst,$dst\n\t"
  9691             "MOV     64,$tmp\n\t"
  9692             "SUB     $tmp,$dst,$dst" %}
  9693   ins_encode %{
  9694     Register Rdst = $dst$$Register;
  9695     Register Rsrc = $src$$Register;
  9696     Register Rtmp = $tmp$$Register;
  9697     __ srlx(Rsrc, 1,    Rtmp);
  9698     __ or3( Rsrc, Rtmp, Rdst);
  9699     __ srlx(Rdst, 2,    Rtmp);
  9700     __ or3( Rdst, Rtmp, Rdst);
  9701     __ srlx(Rdst, 4,    Rtmp);
  9702     __ or3( Rdst, Rtmp, Rdst);
  9703     __ srlx(Rdst, 8,    Rtmp);
  9704     __ or3( Rdst, Rtmp, Rdst);
  9705     __ srlx(Rdst, 16,   Rtmp);
  9706     __ or3( Rdst, Rtmp, Rdst);
  9707     __ srlx(Rdst, 32,   Rtmp);
  9708     __ or3( Rdst, Rtmp, Rdst);
  9709     __ popc(Rdst, Rdst);
  9710     __ mov(BitsPerLong, Rtmp);
  9711     __ sub(Rtmp, Rdst, Rdst);
  9712   %}
  9713   ins_pipe(ialu_reg);
  9714 %}
  9716 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9717   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9718   match(Set dst (CountTrailingZerosI src));
  9719   effect(TEMP dst, KILL cr);
  9721   // return popc(~x & (x - 1));
  9722   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9723             "ANDN    $dst,$src,$dst\n\t"
  9724             "SRL     $dst,R_G0,$dst\n\t"
  9725             "POPC    $dst,$dst" %}
  9726   ins_encode %{
  9727     Register Rdst = $dst$$Register;
  9728     Register Rsrc = $src$$Register;
  9729     __ sub(Rsrc, 1, Rdst);
  9730     __ andn(Rdst, Rsrc, Rdst);
  9731     __ srl(Rdst, G0, Rdst);
  9732     __ popc(Rdst, Rdst);
  9733   %}
  9734   ins_pipe(ialu_reg);
  9735 %}
  9737 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9738   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9739   match(Set dst (CountTrailingZerosL src));
  9740   effect(TEMP dst, KILL cr);
  9742   // return popc(~x & (x - 1));
  9743   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9744             "ANDN    $dst,$src,$dst\n\t"
  9745             "POPC    $dst,$dst" %}
  9746   ins_encode %{
  9747     Register Rdst = $dst$$Register;
  9748     Register Rsrc = $src$$Register;
  9749     __ sub(Rsrc, 1, Rdst);
  9750     __ andn(Rdst, Rsrc, Rdst);
  9751     __ popc(Rdst, Rdst);
  9752   %}
  9753   ins_pipe(ialu_reg);
  9754 %}
  9757 //---------- Population Count Instructions -------------------------------------
  9759 instruct popCountI(iRegI dst, iRegI src) %{
  9760   predicate(UsePopCountInstruction);
  9761   match(Set dst (PopCountI src));
  9763   format %{ "POPC   $src, $dst" %}
  9764   ins_encode %{
  9765     __ popc($src$$Register, $dst$$Register);
  9766   %}
  9767   ins_pipe(ialu_reg);
  9768 %}
  9770 // Note: Long.bitCount(long) returns an int.
  9771 instruct popCountL(iRegI dst, iRegL src) %{
  9772   predicate(UsePopCountInstruction);
  9773   match(Set dst (PopCountL src));
  9775   format %{ "POPC   $src, $dst" %}
  9776   ins_encode %{
  9777     __ popc($src$$Register, $dst$$Register);
  9778   %}
  9779   ins_pipe(ialu_reg);
  9780 %}
  9783 // ============================================================================
  9784 //------------Bytes reverse--------------------------------------------------
  9786 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9787   match(Set dst (ReverseBytesI src));
  9789   // Op cost is artificially doubled to make sure that load or store
  9790   // instructions are preferred over this one which requires a spill
  9791   // onto a stack slot.
  9792   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9793   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9795   ins_encode %{
  9796     __ set($src$$disp + STACK_BIAS, O7);
  9797     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9798   %}
  9799   ins_pipe( iload_mem );
  9800 %}
  9802 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9803   match(Set dst (ReverseBytesL src));
  9805   // Op cost is artificially doubled to make sure that load or store
  9806   // instructions are preferred over this one which requires a spill
  9807   // onto a stack slot.
  9808   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9809   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9811   ins_encode %{
  9812     __ set($src$$disp + STACK_BIAS, O7);
  9813     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9814   %}
  9815   ins_pipe( iload_mem );
  9816 %}
  9818 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9819   match(Set dst (ReverseBytesUS src));
  9821   // Op cost is artificially doubled to make sure that load or store
  9822   // instructions are preferred over this one which requires a spill
  9823   // onto a stack slot.
  9824   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9825   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9827   ins_encode %{
  9828     // the value was spilled as an int so bias the load
  9829     __ set($src$$disp + STACK_BIAS + 2, O7);
  9830     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9831   %}
  9832   ins_pipe( iload_mem );
  9833 %}
  9835 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9836   match(Set dst (ReverseBytesS src));
  9838   // Op cost is artificially doubled to make sure that load or store
  9839   // instructions are preferred over this one which requires a spill
  9840   // onto a stack slot.
  9841   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9842   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9844   ins_encode %{
  9845     // the value was spilled as an int so bias the load
  9846     __ set($src$$disp + STACK_BIAS + 2, O7);
  9847     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9848   %}
  9849   ins_pipe( iload_mem );
  9850 %}
  9852 // Load Integer reversed byte order
  9853 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9854   match(Set dst (ReverseBytesI (LoadI src)));
  9856   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9857   size(4);
  9858   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9860   ins_encode %{
  9861     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9862   %}
  9863   ins_pipe(iload_mem);
  9864 %}
  9866 // Load Long - aligned and reversed
  9867 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9868   match(Set dst (ReverseBytesL (LoadL src)));
  9870   ins_cost(MEMORY_REF_COST);
  9871   size(4);
  9872   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9874   ins_encode %{
  9875     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9876   %}
  9877   ins_pipe(iload_mem);
  9878 %}
  9880 // Load unsigned short / char reversed byte order
  9881 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9882   match(Set dst (ReverseBytesUS (LoadUS src)));
  9884   ins_cost(MEMORY_REF_COST);
  9885   size(4);
  9886   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9888   ins_encode %{
  9889     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9890   %}
  9891   ins_pipe(iload_mem);
  9892 %}
  9894 // Load short reversed byte order
  9895 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9896   match(Set dst (ReverseBytesS (LoadS src)));
  9898   ins_cost(MEMORY_REF_COST);
  9899   size(4);
  9900   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9902   ins_encode %{
  9903     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9904   %}
  9905   ins_pipe(iload_mem);
  9906 %}
  9908 // Store Integer reversed byte order
  9909 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9910   match(Set dst (StoreI dst (ReverseBytesI src)));
  9912   ins_cost(MEMORY_REF_COST);
  9913   size(4);
  9914   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9916   ins_encode %{
  9917     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9918   %}
  9919   ins_pipe(istore_mem_reg);
  9920 %}
  9922 // Store Long reversed byte order
  9923 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9924   match(Set dst (StoreL dst (ReverseBytesL src)));
  9926   ins_cost(MEMORY_REF_COST);
  9927   size(4);
  9928   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9930   ins_encode %{
  9931     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9932   %}
  9933   ins_pipe(istore_mem_reg);
  9934 %}
  9936 // Store unsighed short/char reversed byte order
  9937 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9938   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9940   ins_cost(MEMORY_REF_COST);
  9941   size(4);
  9942   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9944   ins_encode %{
  9945     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9946   %}
  9947   ins_pipe(istore_mem_reg);
  9948 %}
  9950 // Store short reversed byte order
  9951 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9952   match(Set dst (StoreC dst (ReverseBytesS src)));
  9954   ins_cost(MEMORY_REF_COST);
  9955   size(4);
  9956   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9958   ins_encode %{
  9959     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9960   %}
  9961   ins_pipe(istore_mem_reg);
  9962 %}
  9964 //----------PEEPHOLE RULES-----------------------------------------------------
  9965 // These must follow all instruction definitions as they use the names
  9966 // defined in the instructions definitions.
  9967 //
  9968 // peepmatch ( root_instr_name [preceding_instruction]* );
  9969 //
  9970 // peepconstraint %{
  9971 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9972 //  [, ...] );
  9973 // // instruction numbers are zero-based using left to right order in peepmatch
  9974 //
  9975 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9976 // // provide an instruction_number.operand_name for each operand that appears
  9977 // // in the replacement instruction's match rule
  9978 //
  9979 // ---------VM FLAGS---------------------------------------------------------
  9980 //
  9981 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9982 //
  9983 // Each peephole rule is given an identifying number starting with zero and
  9984 // increasing by one in the order seen by the parser.  An individual peephole
  9985 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9986 // on the command-line.
  9987 //
  9988 // ---------CURRENT LIMITATIONS----------------------------------------------
  9989 //
  9990 // Only match adjacent instructions in same basic block
  9991 // Only equality constraints
  9992 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9993 // Only one replacement instruction
  9994 //
  9995 // ---------EXAMPLE----------------------------------------------------------
  9996 //
  9997 // // pertinent parts of existing instructions in architecture description
  9998 // instruct movI(eRegI dst, eRegI src) %{
  9999 //   match(Set dst (CopyI src));
 10000 // %}
 10001 //
 10002 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10003 //   match(Set dst (AddI dst src));
 10004 //   effect(KILL cr);
 10005 // %}
 10006 //
 10007 // // Change (inc mov) to lea
 10008 // peephole %{
 10009 //   // increment preceeded by register-register move
 10010 //   peepmatch ( incI_eReg movI );
 10011 //   // require that the destination register of the increment
 10012 //   // match the destination register of the move
 10013 //   peepconstraint ( 0.dst == 1.dst );
 10014 //   // construct a replacement instruction that sets
 10015 //   // the destination to ( move's source register + one )
 10016 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10017 // %}
 10018 //
 10020 // // Change load of spilled value to only a spill
 10021 // instruct storeI(memory mem, eRegI src) %{
 10022 //   match(Set mem (StoreI mem src));
 10023 // %}
 10024 //
 10025 // instruct loadI(eRegI dst, memory mem) %{
 10026 //   match(Set dst (LoadI mem));
 10027 // %}
 10028 //
 10029 // peephole %{
 10030 //   peepmatch ( loadI storeI );
 10031 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10032 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10033 // %}
 10035 //----------SMARTSPILL RULES---------------------------------------------------
 10036 // These must follow all instruction definitions as they use the names
 10037 // defined in the instructions definitions.
 10038 //
 10039 // SPARC will probably not have any of these rules due to RISC instruction set.
 10041 //----------PIPELINE-----------------------------------------------------------
 10042 // Rules which define the behavior of the target architectures pipeline.

mercurial