src/cpu/sparc/vm/sparc.ad

Fri, 25 Mar 2011 09:35:39 +0100

author
roland
date
Fri, 25 Mar 2011 09:35:39 +0100
changeset 2683
7e88bdae86ec
parent 2561
ab42c7e1cf83
child 3001
faa472957b38
permissions
-rw-r--r--

7029017: Additional architecture support for c2 compiler
Summary: Enables cross building of a c2 VM. Support masking of shift counts when the processor architecture mandates it.
Reviewed-by: kvn, never

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   if (MacroAssembler::is_far_target(entry_point())) {
   579     return NativeFarCall::instruction_size;
   580   } else {
   581     return NativeCall::instruction_size;
   582   }
   583 #else
   584   return NativeCall::instruction_size;  // call; delay slot
   585 #endif
   586 }
   588 // Indicate if the safepoint node needs the polling page as an input.
   589 // Since Sparc does not have absolute addressing, it does.
   590 bool SafePointNode::needs_polling_address_input() {
   591   return true;
   592 }
   594 // emit an interrupt that is caught by the debugger (for debugging compiler)
   595 void emit_break(CodeBuffer &cbuf) {
   596   MacroAssembler _masm(&cbuf);
   597   __ breakpoint_trap();
   598 }
   600 #ifndef PRODUCT
   601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   602   st->print("TA");
   603 }
   604 #endif
   606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   607   emit_break(cbuf);
   608 }
   610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   611   return MachNode::size(ra_);
   612 }
   614 // Traceable jump
   615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   616   MacroAssembler _masm(&cbuf);
   617   Register rdest = reg_to_register_object(jump_target);
   618   __ JMP(rdest, 0);
   619   __ delayed()->nop();
   620 }
   622 // Traceable jump and set exception pc
   623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   624   MacroAssembler _masm(&cbuf);
   625   Register rdest = reg_to_register_object(jump_target);
   626   __ JMP(rdest, 0);
   627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   628 }
   630 void emit_nop(CodeBuffer &cbuf) {
   631   MacroAssembler _masm(&cbuf);
   632   __ nop();
   633 }
   635 void emit_illtrap(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ illtrap(0);
   638 }
   641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   642   assert(n->rule() != loadUB_rule, "");
   644   intptr_t offset = 0;
   645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   646   const Node* addr = n->get_base_and_disp(offset, adr_type);
   647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   650   atype = atype->add_offset(offset);
   651   assert(disp32 == offset, "wrong disp32");
   652   return atype->_offset;
   653 }
   656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   657   assert(n->rule() != loadUB_rule, "");
   659   intptr_t offset = 0;
   660   Node* addr = n->in(2);
   661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   663     Node* a = addr->in(2/*AddPNode::Address*/);
   664     Node* o = addr->in(3/*AddPNode::Offset*/);
   665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   667     assert(atype->isa_oop_ptr(), "still an oop");
   668   }
   669   offset = atype->is_ptr()->_offset;
   670   if (offset != Type::OffsetBot)  offset += disp32;
   671   return offset;
   672 }
   674 static inline jdouble replicate_immI(int con, int count, int width) {
   675   // Load a constant replicated "count" times with width "width"
   676   int bit_width = width * 8;
   677   jlong elt_val = con;
   678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   679   jlong val = elt_val;
   680   for (int i = 0; i < count - 1; i++) {
   681     val <<= bit_width;
   682     val |= elt_val;
   683   }
   684   jdouble dval = *((jdouble*) &val);  // coerce to double type
   685   return dval;
   686 }
   688 // Standard Sparc opcode form2 field breakdown
   689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   691   int op = (f30 << 30) |
   692            (f29 << 29) |
   693            (f25 << 25) |
   694            (f22 << 22) |
   695            (f20 << 20) |
   696            (f19 << 19) |
   697            (f0  <<  0);
   698   cbuf.insts()->emit_int32(op);
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   703   f0 >>= 10;           // Drop 10 bits
   704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   705   int op = (f30 << 30) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f0  <<  0);
   709   cbuf.insts()->emit_int32(op);
   710 }
   712 // Standard Sparc opcode form3 field breakdown
   713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   714   int op = (f30 << 30) |
   715            (f25 << 25) |
   716            (f19 << 19) |
   717            (f14 << 14) |
   718            (f5  <<  5) |
   719            (f0  <<  0);
   720   cbuf.insts()->emit_int32(op);
   721 }
   723 // Standard Sparc opcode form3 field breakdown
   724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   725   simm13 &= (1<<13)-1; // Mask to 13 bits
   726   int op = (f30 << 30) |
   727            (f25 << 25) |
   728            (f19 << 19) |
   729            (f14 << 14) |
   730            (1   << 13) | // bit to indicate immediate-mode
   731            (simm13<<0);
   732   cbuf.insts()->emit_int32(op);
   733 }
   735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   736   simm10 &= (1<<10)-1; // Mask to 10 bits
   737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   738 }
   740 #ifdef ASSERT
   741 // Helper function for VerifyOops in emit_form3_mem_reg
   742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   743   warning("VerifyOops encountered unexpected instruction:");
   744   n->dump(2);
   745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   746 }
   747 #endif
   750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   753 #ifdef ASSERT
   754   // The following code implements the +VerifyOops feature.
   755   // It verifies oop values which are loaded into or stored out of
   756   // the current method activation.  +VerifyOops complements techniques
   757   // like ScavengeALot, because it eagerly inspects oops in transit,
   758   // as they enter or leave the stack, as opposed to ScavengeALot,
   759   // which inspects oops "at rest", in the stack or heap, at safepoints.
   760   // For this reason, +VerifyOops can sometimes detect bugs very close
   761   // to their point of creation.  It can also serve as a cross-check
   762   // on the validity of oop maps, when used toegether with ScavengeALot.
   764   // It would be good to verify oops at other points, especially
   765   // when an oop is used as a base pointer for a load or store.
   766   // This is presently difficult, because it is hard to know when
   767   // a base address is biased or not.  (If we had such information,
   768   // it would be easy and useful to make a two-argument version of
   769   // verify_oop which unbiases the base, and performs verification.)
   771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   772   bool is_verified_oop_base  = false;
   773   bool is_verified_oop_load  = false;
   774   bool is_verified_oop_store = false;
   775   int tmp_enc = -1;
   776   if (VerifyOops && src1_enc != R_SP_enc) {
   777     // classify the op, mainly for an assert check
   778     int st_op = 0, ld_op = 0;
   779     switch (primary) {
   780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   784     case Assembler::std_op3:  st_op = Op_StoreL; break;
   785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   800     default: ShouldNotReachHere();
   801     }
   802     if (tertiary == REGP_OP) {
   803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   805       else                          ShouldNotReachHere();
   806       if (st_op) {
   807         // a store
   808         // inputs are (0:control, 1:memory, 2:address, 3:value)
   809         Node* n2 = n->in(3);
   810         if (n2 != NULL) {
   811           const Type* t = n2->bottom_type();
   812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   813         }
   814       } else {
   815         // a load
   816         const Type* t = n->bottom_type();
   817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818       }
   819     }
   821     if (ld_op) {
   822       // a Load
   823       // inputs are (0:control, 1:memory, 2:address)
   824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   842           !(n->rule() == loadUB_rule)) {
   843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   844       }
   845     } else if (st_op) {
   846       // a Store
   847       // inputs are (0:control, 1:memory, 2:address, 3:value)
   848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   858       }
   859     }
   861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   862       Node* addr = n->in(2);
   863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   865         if (atype != NULL) {
   866           intptr_t offset = get_offset_from_base(n, atype, disp32);
   867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   868           if (offset != offset_2) {
   869             get_offset_from_base(n, atype, disp32);
   870             get_offset_from_base_2(n, atype, disp32);
   871           }
   872           assert(offset == offset_2, "different offsets");
   873           if (offset == disp32) {
   874             // we now know that src1 is a true oop pointer
   875             is_verified_oop_base = true;
   876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   877               if( primary == Assembler::ldd_op3 ) {
   878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   879               } else {
   880                 tmp_enc = dst_enc;
   881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   882                 assert(src1_enc != dst_enc, "");
   883               }
   884             }
   885           }
   886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   887                        || offset == oopDesc::mark_offset_in_bytes())) {
   888                       // loading the mark should not be allowed either, but
   889                       // we don't check this since it conflicts with InlineObjectHash
   890                       // usage of LoadINode to get the mark. We could keep the
   891                       // check if we create a new LoadMarkNode
   892             // but do not verify the object before its header is initialized
   893             ShouldNotReachHere();
   894           }
   895         }
   896       }
   897     }
   898   }
   899 #endif
   901   uint instr;
   902   instr = (Assembler::ldst_op << 30)
   903         | (dst_enc        << 25)
   904         | (primary        << 19)
   905         | (src1_enc       << 14);
   907   uint index = src2_enc;
   908   int disp = disp32;
   910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   911     disp += STACK_BIAS;
   913   // We should have a compiler bailout here rather than a guarantee.
   914   // Better yet would be some mechanism to handle variable-size matches correctly.
   915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   917   if( disp == 0 ) {
   918     // use reg-reg form
   919     // bit 13 is already zero
   920     instr |= index;
   921   } else {
   922     // use reg-imm form
   923     instr |= 0x00002000;          // set bit 13 to one
   924     instr |= disp & 0x1FFF;
   925   }
   927   cbuf.insts()->emit_int32(instr);
   929 #ifdef ASSERT
   930   {
   931     MacroAssembler _masm(&cbuf);
   932     if (is_verified_oop_base) {
   933       __ verify_oop(reg_to_register_object(src1_enc));
   934     }
   935     if (is_verified_oop_store) {
   936       __ verify_oop(reg_to_register_object(dst_enc));
   937     }
   938     if (tmp_enc != -1) {
   939       __ mov(O7, reg_to_register_object(tmp_enc));
   940     }
   941     if (is_verified_oop_load) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944   }
   945 #endif
   946 }
   948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   949   // The method which records debug information at every safepoint
   950   // expects the call to be the first instruction in the snippet as
   951   // it creates a PcDesc structure which tracks the offset of a call
   952   // from the start of the codeBlob. This offset is computed as
   953   // code_end() - code_begin() of the code which has been emitted
   954   // so far.
   955   // In this particular case we have skirted around the problem by
   956   // putting the "mov" instruction in the delay slot but the problem
   957   // may bite us again at some other point and a cleaner/generic
   958   // solution using relocations would be needed.
   959   MacroAssembler _masm(&cbuf);
   960   __ set_inst_mark();
   962   // We flush the current window just so that there is a valid stack copy
   963   // the fact that the current window becomes active again instantly is
   964   // not a problem there is nothing live in it.
   966 #ifdef ASSERT
   967   int startpos = __ offset();
   968 #endif /* ASSERT */
   970   __ call((address)entry_point, rtype);
   972   if (preserve_g2)   __ delayed()->mov(G2, L7);
   973   else __ delayed()->nop();
   975   if (preserve_g2)   __ mov(L7, G2);
   977 #ifdef ASSERT
   978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   979 #ifdef _LP64
   980     // Trash argument dump slots.
   981     __ set(0xb0b8ac0db0b8ac0d, G1);
   982     __ mov(G1, G5);
   983     __ stx(G1, SP, STACK_BIAS + 0x80);
   984     __ stx(G1, SP, STACK_BIAS + 0x88);
   985     __ stx(G1, SP, STACK_BIAS + 0x90);
   986     __ stx(G1, SP, STACK_BIAS + 0x98);
   987     __ stx(G1, SP, STACK_BIAS + 0xA0);
   988     __ stx(G1, SP, STACK_BIAS + 0xA8);
   989 #else // _LP64
   990     // this is also a native call, so smash the first 7 stack locations,
   991     // and the various registers
   993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   994     // while [SP+0x44..0x58] are the argument dump slots.
   995     __ set((intptr_t)0xbaadf00d, G1);
   996     __ mov(G1, G5);
   997     __ sllx(G1, 32, G1);
   998     __ or3(G1, G5, G1);
   999     __ mov(G1, G5);
  1000     __ stx(G1, SP, 0x40);
  1001     __ stx(G1, SP, 0x48);
  1002     __ stx(G1, SP, 0x50);
  1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1004 #endif // _LP64
  1006 #endif /*ASSERT*/
  1009 //=============================================================================
  1010 // REQUIRED FUNCTIONALITY for encoding
  1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1015 //=============================================================================
  1016 const bool Matcher::constant_table_absolute_addressing = false;
  1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1020   Compile* C = ra_->C;
  1021   Compile::ConstantTable& constant_table = C->constant_table();
  1022   MacroAssembler _masm(&cbuf);
  1024   Register r = as_Register(ra_->get_encode(this));
  1025   CodeSection* cs = __ code()->consts();
  1026   int consts_size = cs->align_at_start(cs->size());
  1028   if (UseRDPCForConstantTableBase) {
  1029     // For the following RDPC logic to work correctly the consts
  1030     // section must be allocated right before the insts section.  This
  1031     // assert checks for that.  The layout and the SECT_* constants
  1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1034     int offset = __ offset();
  1035     int disp;
  1037     // If the displacement from the current PC to the constant table
  1038     // base fits into simm13 we set the constant table base to the
  1039     // current PC.
  1040     if (__ is_simm13(-(consts_size + offset))) {
  1041       constant_table.set_table_base_offset(-(consts_size + offset));
  1042       disp = 0;
  1043     } else {
  1044       // If the offset of the top constant (last entry in the table)
  1045       // fits into simm13 we set the constant table base to the actual
  1046       // table base.
  1047       if (__ is_simm13(constant_table.top_offset())) {
  1048         constant_table.set_table_base_offset(0);
  1049         disp = consts_size + offset;
  1050       } else {
  1051         // Otherwise we set the constant table base in the middle of the
  1052         // constant table.
  1053         int half_consts_size = consts_size / 2;
  1054         assert(half_consts_size * 2 == consts_size, "sanity");
  1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1056         disp = half_consts_size + offset;
  1060     __ rdpc(r);
  1062     if (disp != 0) {
  1063       assert(r != O7, "need temporary");
  1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1067   else {
  1068     // Materialize the constant table base.
  1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1072     AddressLiteral base(baseaddr, rspec);
  1073     __ set(base, r);
  1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1078   if (UseRDPCForConstantTableBase) {
  1079     // This is really the worst case but generally it's only 1 instruction.
  1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1081   } else {
  1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1086 #ifndef PRODUCT
  1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1088   char reg[128];
  1089   ra_->dump_register(this, reg);
  1090   if (UseRDPCForConstantTableBase) {
  1091     st->print("RDPC   %s\t! constant table base", reg);
  1092   } else {
  1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1096 #endif
  1099 //=============================================================================
  1101 #ifndef PRODUCT
  1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1103   Compile* C = ra_->C;
  1105   for (int i = 0; i < OptoPrologueNops; i++) {
  1106     st->print_cr("NOP"); st->print("\t");
  1109   if( VerifyThread ) {
  1110     st->print_cr("Verify_Thread"); st->print("\t");
  1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1115   // Calls to C2R adapters often do not accept exceptional returns.
  1116   // We require that their callers must bang for them.  But be careful, because
  1117   // some VM calls (such as call site linkage) can use several kilobytes of
  1118   // stack.  But the stack safety zone should account for that.
  1119   // See bugs 4446381, 4468289, 4497237.
  1120   if (C->need_stack_bang(framesize)) {
  1121     st->print_cr("! stack bang"); st->print("\t");
  1124   if (Assembler::is_simm13(-framesize)) {
  1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1126   } else {
  1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1133 #endif
  1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1136   Compile* C = ra_->C;
  1137   MacroAssembler _masm(&cbuf);
  1139   for (int i = 0; i < OptoPrologueNops; i++) {
  1140     __ nop();
  1143   __ verify_thread();
  1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1149   // Calls to C2R adapters often do not accept exceptional returns.
  1150   // We require that their callers must bang for them.  But be careful, because
  1151   // some VM calls (such as call site linkage) can use several kilobytes of
  1152   // stack.  But the stack safety zone should account for that.
  1153   // See bugs 4446381, 4468289, 4497237.
  1154   if (C->need_stack_bang(framesize)) {
  1155     __ generate_stack_overflow_check(framesize);
  1158   if (Assembler::is_simm13(-framesize)) {
  1159     __ save(SP, -framesize, SP);
  1160   } else {
  1161     __ sethi(-framesize & ~0x3ff, G3);
  1162     __ add(G3, -framesize & 0x3ff, G3);
  1163     __ save(SP, G3, SP);
  1165   C->set_frame_complete( __ offset() );
  1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1169   return MachNode::size(ra_);
  1172 int MachPrologNode::reloc() const {
  1173   return 10; // a large enough number
  1176 //=============================================================================
  1177 #ifndef PRODUCT
  1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1179   Compile* C = ra_->C;
  1181   if( do_polling() && ra_->C->is_method_compilation() ) {
  1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1183 #ifdef _LP64
  1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1185 #else
  1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1187 #endif
  1190   if( do_polling() )
  1191     st->print("RET\n\t");
  1193   st->print("RESTORE");
  1195 #endif
  1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1198   MacroAssembler _masm(&cbuf);
  1199   Compile* C = ra_->C;
  1201   __ verify_thread();
  1203   // If this does safepoint polling, then do it here
  1204   if( do_polling() && ra_->C->is_method_compilation() ) {
  1205     AddressLiteral polling_page(os::get_polling_page());
  1206     __ sethi(polling_page, L0);
  1207     __ relocate(relocInfo::poll_return_type);
  1208     __ ld_ptr( L0, 0, G0 );
  1211   // If this is a return, then stuff the restore in the delay slot
  1212   if( do_polling() ) {
  1213     __ ret();
  1214     __ delayed()->restore();
  1215   } else {
  1216     __ restore();
  1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1221   return MachNode::size(ra_);
  1224 int MachEpilogNode::reloc() const {
  1225   return 16; // a large enough number
  1228 const Pipeline * MachEpilogNode::pipeline() const {
  1229   return MachNode::pipeline_class();
  1232 int MachEpilogNode::safepoint_offset() const {
  1233   assert( do_polling(), "no return for this epilog node");
  1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1237 //=============================================================================
  1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1241 static enum RC rc_class( OptoReg::Name reg ) {
  1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1243   if (OptoReg::is_stack(reg)) return rc_stack;
  1244   VMReg r = OptoReg::as_VMReg(reg);
  1245   if (r->is_Register()) return rc_int;
  1246   assert(r->is_FloatRegister(), "must be");
  1247   return rc_float;
  1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1251   if( cbuf ) {
  1252     // Better yet would be some mechanism to handle variable-size matches correctly
  1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1255     } else {
  1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1259 #ifndef PRODUCT
  1260   else if( !do_size ) {
  1261     if( size != 0 ) st->print("\n\t");
  1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1265 #endif
  1266   return size+4;
  1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1271 #ifndef PRODUCT
  1272   else if( !do_size ) {
  1273     if( size != 0 ) st->print("\n\t");
  1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1276 #endif
  1277   return size+4;
  1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1281                                         PhaseRegAlloc *ra_,
  1282                                         bool do_size,
  1283                                         outputStream* st ) const {
  1284   // Get registers to move
  1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1290   enum RC src_second_rc = rc_class(src_second);
  1291   enum RC src_first_rc = rc_class(src_first);
  1292   enum RC dst_second_rc = rc_class(dst_second);
  1293   enum RC dst_first_rc = rc_class(dst_first);
  1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1297   // Generate spill code!
  1298   int size = 0;
  1300   if( src_first == dst_first && src_second == dst_second )
  1301     return size;            // Self copy, no move
  1303   // --------------------------------------
  1304   // Check for mem-mem move.  Load into unused float registers and fall into
  1305   // the float-store case.
  1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1307     int offset = ra_->reg2offset(src_first);
  1308     // Further check for aligned-adjacent pair, so we can use a double load
  1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1310       src_second    = OptoReg::Name(R_F31_num);
  1311       src_second_rc = rc_float;
  1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1313     } else {
  1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1316     src_first    = OptoReg::Name(R_F30_num);
  1317     src_first_rc = rc_float;
  1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1321     int offset = ra_->reg2offset(src_second);
  1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1323     src_second    = OptoReg::Name(R_F31_num);
  1324     src_second_rc = rc_float;
  1327   // --------------------------------------
  1328   // Check for float->int copy; requires a trip through memory
  1329   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1330     int offset = frame::register_save_words*wordSize;
  1331     if( cbuf ) {
  1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1337 #ifndef PRODUCT
  1338     else if( !do_size ) {
  1339       if( size != 0 ) st->print("\n\t");
  1340       st->print(  "SUB    R_SP,16,R_SP\n");
  1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1343       st->print("\tADD    R_SP,16,R_SP\n");
  1345 #endif
  1346     size += 16;
  1349   // --------------------------------------
  1350   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1351   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1352   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1353   // there.  Misaligned sources only come from native-long-returns (handled
  1354   // special below).
  1355 #ifndef _LP64
  1356   if( src_first_rc == rc_int &&     // source is already big-endian
  1357       src_second_rc != rc_bad &&    // 64-bit move
  1358       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1359     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1360     // Do the big-endian flop.
  1361     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1362     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1364 #endif
  1366   // --------------------------------------
  1367   // Check for integer reg-reg copy
  1368   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1369 #ifndef _LP64
  1370     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1371       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1372       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1373       //       operand contains the least significant word of the 64-bit value and vice versa.
  1374       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1375       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1376       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1377       if( cbuf ) {
  1378         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1379         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1380         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1381 #ifndef PRODUCT
  1382       } else if( !do_size ) {
  1383         if( size != 0 ) st->print("\n\t");
  1384         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1385         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1386         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1387 #endif
  1389       return size+12;
  1391     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1392       // returning a long value in I0/I1
  1393       // a SpillCopy must be able to target a return instruction's reg_class
  1394       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1395       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1396       //       operand contains the least significant word of the 64-bit value and vice versa.
  1397       OptoReg::Name tdest = dst_first;
  1399       if (src_first == dst_first) {
  1400         tdest = OptoReg::Name(R_O7_num);
  1401         size += 4;
  1404       if( cbuf ) {
  1405         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1406         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1407         // ShrL_reg_imm6
  1408         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1409         // ShrR_reg_imm6  src, 0, dst
  1410         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1411         if (tdest != dst_first) {
  1412           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1415 #ifndef PRODUCT
  1416       else if( !do_size ) {
  1417         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1418         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1419         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1420         if (tdest != dst_first) {
  1421           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1424 #endif // PRODUCT
  1425       return size+8;
  1427 #endif // !_LP64
  1428     // Else normal reg-reg copy
  1429     assert( src_second != dst_first, "smashed second before evacuating it" );
  1430     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1431     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1432     // This moves an aligned adjacent pair.
  1433     // See if we are done.
  1434     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1435       return size;
  1438   // Check for integer store
  1439   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1440     int offset = ra_->reg2offset(dst_first);
  1441     // Further check for aligned-adjacent pair, so we can use a double store
  1442     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1443       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1444     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1447   // Check for integer load
  1448   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1449     int offset = ra_->reg2offset(src_first);
  1450     // Further check for aligned-adjacent pair, so we can use a double load
  1451     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1452       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1453     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1456   // Check for float reg-reg copy
  1457   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1458     // Further check for aligned-adjacent pair, so we can use a double move
  1459     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1460       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1461     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1464   // Check for float store
  1465   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1466     int offset = ra_->reg2offset(dst_first);
  1467     // Further check for aligned-adjacent pair, so we can use a double store
  1468     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1469       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1470     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1473   // Check for float load
  1474   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1475     int offset = ra_->reg2offset(src_first);
  1476     // Further check for aligned-adjacent pair, so we can use a double load
  1477     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1478       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1479     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1482   // --------------------------------------------------------------------
  1483   // Check for hi bits still needing moving.  Only happens for misaligned
  1484   // arguments to native calls.
  1485   if( src_second == dst_second )
  1486     return size;               // Self copy; no move
  1487   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1489 #ifndef _LP64
  1490   // In the LP64 build, all registers can be moved as aligned/adjacent
  1491   // pairs, so there's never any need to move the high bits separately.
  1492   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1493   // all sorts of silly alignment problems.
  1495   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1496   // 32-bits of a 64-bit register, but are needed in low bits of another
  1497   // register (else it's a hi-bits-to-hi-bits copy which should have
  1498   // happened already as part of a 64-bit move)
  1499   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1500     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1501     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1502     // Shift src_second down to dst_second's low bits.
  1503     if( cbuf ) {
  1504       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1505 #ifndef PRODUCT
  1506     } else if( !do_size ) {
  1507       if( size != 0 ) st->print("\n\t");
  1508       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1509 #endif
  1511     return size+4;
  1514   // Check for high word integer store.  Must down-shift the hi bits
  1515   // into a temp register, then fall into the case of storing int bits.
  1516   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1517     // Shift src_second down to dst_second's low bits.
  1518     if( cbuf ) {
  1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1520 #ifndef PRODUCT
  1521     } else if( !do_size ) {
  1522       if( size != 0 ) st->print("\n\t");
  1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1524 #endif
  1526     size+=4;
  1527     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1530   // Check for high word integer load
  1531   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1532     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1534   // Check for high word integer store
  1535   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1536     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1538   // Check for high word float store
  1539   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1540     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1542 #endif // !_LP64
  1544   Unimplemented();
  1547 #ifndef PRODUCT
  1548 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1549   implementation( NULL, ra_, false, st );
  1551 #endif
  1553 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1554   implementation( &cbuf, ra_, false, NULL );
  1557 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1558   return implementation( NULL, ra_, true, NULL );
  1561 //=============================================================================
  1562 #ifndef PRODUCT
  1563 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1564   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1566 #endif
  1568 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1569   MacroAssembler _masm(&cbuf);
  1570   for(int i = 0; i < _count; i += 1) {
  1571     __ nop();
  1575 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1576   return 4 * _count;
  1580 //=============================================================================
  1581 #ifndef PRODUCT
  1582 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1583   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1584   int reg = ra_->get_reg_first(this);
  1585   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1587 #endif
  1589 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1590   MacroAssembler _masm(&cbuf);
  1591   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1592   int reg = ra_->get_encode(this);
  1594   if (Assembler::is_simm13(offset)) {
  1595      __ add(SP, offset, reg_to_register_object(reg));
  1596   } else {
  1597      __ set(offset, O7);
  1598      __ add(SP, O7, reg_to_register_object(reg));
  1602 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1603   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1604   assert(ra_ == ra_->C->regalloc(), "sanity");
  1605   return ra_->C->scratch_emit_size(this);
  1608 //=============================================================================
  1610 // emit call stub, compiled java to interpretor
  1611 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1613   // Stub is fixed up when the corresponding call is converted from calling
  1614   // compiled code to calling interpreted code.
  1615   // set (empty), G5
  1616   // jmp -1
  1618   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1620   MacroAssembler _masm(&cbuf);
  1622   address base =
  1623   __ start_a_stub(Compile::MAX_stubs_size);
  1624   if (base == NULL)  return;  // CodeBuffer::expand failed
  1626   // static stub relocation stores the instruction address of the call
  1627   __ relocate(static_stub_Relocation::spec(mark));
  1629   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1631   __ set_inst_mark();
  1632   AddressLiteral addrlit(-1);
  1633   __ JUMP(addrlit, G3, 0);
  1635   __ delayed()->nop();
  1637   // Update current stubs pointer and restore code_end.
  1638   __ end_a_stub();
  1641 // size of call stub, compiled java to interpretor
  1642 uint size_java_to_interp() {
  1643   // This doesn't need to be accurate but it must be larger or equal to
  1644   // the real size of the stub.
  1645   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1646           NativeJump::instruction_size + // sethi; jmp; nop
  1647           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1649 // relocation entries for call stub, compiled java to interpretor
  1650 uint reloc_java_to_interp() {
  1651   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1655 //=============================================================================
  1656 #ifndef PRODUCT
  1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1658   st->print_cr("\nUEP:");
  1659 #ifdef    _LP64
  1660   if (UseCompressedOops) {
  1661     assert(Universe::heap() != NULL, "java heap should be initialized");
  1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1663     st->print_cr("\tSLL    R_G5,3,R_G5");
  1664     if (Universe::narrow_oop_base() != NULL)
  1665       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1666   } else {
  1667     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1669   st->print_cr("\tCMP    R_G5,R_G3" );
  1670   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1671 #else  // _LP64
  1672   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1673   st->print_cr("\tCMP    R_G5,R_G3" );
  1674   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1675 #endif // _LP64
  1677 #endif
  1679 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1680   MacroAssembler _masm(&cbuf);
  1681   Label L;
  1682   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1683   Register temp_reg   = G3;
  1684   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1686   // Load klass from receiver
  1687   __ load_klass(O0, temp_reg);
  1688   // Compare against expected klass
  1689   __ cmp(temp_reg, G5_ic_reg);
  1690   // Branch to miss code, checks xcc or icc depending
  1691   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1694 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1695   return MachNode::size(ra_);
  1699 //=============================================================================
  1701 uint size_exception_handler() {
  1702   if (TraceJumps) {
  1703     return (400); // just a guess
  1705   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1708 uint size_deopt_handler() {
  1709   if (TraceJumps) {
  1710     return (400); // just a guess
  1712   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1715 // Emit exception handler code.
  1716 int emit_exception_handler(CodeBuffer& cbuf) {
  1717   Register temp_reg = G3;
  1718   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1719   MacroAssembler _masm(&cbuf);
  1721   address base =
  1722   __ start_a_stub(size_exception_handler());
  1723   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1725   int offset = __ offset();
  1727   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1728   __ delayed()->nop();
  1730   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1732   __ end_a_stub();
  1734   return offset;
  1737 int emit_deopt_handler(CodeBuffer& cbuf) {
  1738   // Can't use any of the current frame's registers as we may have deopted
  1739   // at a poll and everything (including G3) can be live.
  1740   Register temp_reg = L0;
  1741   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1742   MacroAssembler _masm(&cbuf);
  1744   address base =
  1745   __ start_a_stub(size_deopt_handler());
  1746   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1748   int offset = __ offset();
  1749   __ save_frame(0);
  1750   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1751   __ delayed()->restore();
  1753   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1755   __ end_a_stub();
  1756   return offset;
  1760 // Given a register encoding, produce a Integer Register object
  1761 static Register reg_to_register_object(int register_encoding) {
  1762   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1763   return as_Register(register_encoding);
  1766 // Given a register encoding, produce a single-precision Float Register object
  1767 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1768   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1769   return as_SingleFloatRegister(register_encoding);
  1772 // Given a register encoding, produce a double-precision Float Register object
  1773 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1774   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1775   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1776   return as_DoubleFloatRegister(register_encoding);
  1779 const bool Matcher::match_rule_supported(int opcode) {
  1780   if (!has_match_rule(opcode))
  1781     return false;
  1783   switch (opcode) {
  1784   case Op_CountLeadingZerosI:
  1785   case Op_CountLeadingZerosL:
  1786   case Op_CountTrailingZerosI:
  1787   case Op_CountTrailingZerosL:
  1788     if (!UsePopCountInstruction)
  1789       return false;
  1790     break;
  1793   return true;  // Per default match rules are supported.
  1796 int Matcher::regnum_to_fpu_offset(int regnum) {
  1797   return regnum - 32; // The FP registers are in the second chunk
  1800 #ifdef ASSERT
  1801 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1802 #endif
  1804 // Vector width in bytes
  1805 const uint Matcher::vector_width_in_bytes(void) {
  1806   return 8;
  1809 // Vector ideal reg
  1810 const uint Matcher::vector_ideal_reg(void) {
  1811   return Op_RegD;
  1814 // USII supports fxtof through the whole range of number, USIII doesn't
  1815 const bool Matcher::convL2FSupported(void) {
  1816   return VM_Version::has_fast_fxtof();
  1819 // Is this branch offset short enough that a short branch can be used?
  1820 //
  1821 // NOTE: If the platform does not provide any short branch variants, then
  1822 //       this method should return false for offset 0.
  1823 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1824   return false;
  1827 const bool Matcher::isSimpleConstant64(jlong value) {
  1828   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1829   // Depends on optimizations in MacroAssembler::setx.
  1830   int hi = (int)(value >> 32);
  1831   int lo = (int)(value & ~0);
  1832   return (hi == 0) || (hi == -1) || (lo == 0);
  1835 // No scaling for the parameter the ClearArray node.
  1836 const bool Matcher::init_array_count_is_in_bytes = true;
  1838 // Threshold size for cleararray.
  1839 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1841 // Should the Matcher clone shifts on addressing modes, expecting them to
  1842 // be subsumed into complex addressing expressions or compute them into
  1843 // registers?  True for Intel but false for most RISCs
  1844 const bool Matcher::clone_shift_expressions = false;
  1846 // Do we need to mask the count passed to shift instructions or does
  1847 // the cpu only look at the lower 5/6 bits anyway?
  1848 const bool Matcher::need_masked_shift_count = false;
  1850 bool Matcher::narrow_oop_use_complex_address() {
  1851   NOT_LP64(ShouldNotCallThis());
  1852   assert(UseCompressedOops, "only for compressed oops code");
  1853   return false;
  1856 // Is it better to copy float constants, or load them directly from memory?
  1857 // Intel can load a float constant from a direct address, requiring no
  1858 // extra registers.  Most RISCs will have to materialize an address into a
  1859 // register first, so they would do better to copy the constant from stack.
  1860 const bool Matcher::rematerialize_float_constants = false;
  1862 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1863 // needed.  Else we split the double into 2 integer pieces and move it
  1864 // piece-by-piece.  Only happens when passing doubles into C code as the
  1865 // Java calling convention forces doubles to be aligned.
  1866 #ifdef _LP64
  1867 const bool Matcher::misaligned_doubles_ok = true;
  1868 #else
  1869 const bool Matcher::misaligned_doubles_ok = false;
  1870 #endif
  1872 // No-op on SPARC.
  1873 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1876 // Advertise here if the CPU requires explicit rounding operations
  1877 // to implement the UseStrictFP mode.
  1878 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1880 // Are floats conerted to double when stored to stack during deoptimization?
  1881 // Sparc does not handle callee-save floats.
  1882 bool Matcher::float_in_double() { return false; }
  1884 // Do ints take an entire long register or just half?
  1885 // Note that we if-def off of _LP64.
  1886 // The relevant question is how the int is callee-saved.  In _LP64
  1887 // the whole long is written but de-opt'ing will have to extract
  1888 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1889 #ifdef _LP64
  1890 const bool Matcher::int_in_long = true;
  1891 #else
  1892 const bool Matcher::int_in_long = false;
  1893 #endif
  1895 // Return whether or not this register is ever used as an argument.  This
  1896 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1897 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1898 // arguments in those registers not be available to the callee.
  1899 bool Matcher::can_be_java_arg( int reg ) {
  1900   // Standard sparc 6 args in registers
  1901   if( reg == R_I0_num ||
  1902       reg == R_I1_num ||
  1903       reg == R_I2_num ||
  1904       reg == R_I3_num ||
  1905       reg == R_I4_num ||
  1906       reg == R_I5_num ) return true;
  1907 #ifdef _LP64
  1908   // 64-bit builds can pass 64-bit pointers and longs in
  1909   // the high I registers
  1910   if( reg == R_I0H_num ||
  1911       reg == R_I1H_num ||
  1912       reg == R_I2H_num ||
  1913       reg == R_I3H_num ||
  1914       reg == R_I4H_num ||
  1915       reg == R_I5H_num ) return true;
  1917   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1918     return true;
  1921 #else
  1922   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1923   // Longs cannot be passed in O regs, because O regs become I regs
  1924   // after a 'save' and I regs get their high bits chopped off on
  1925   // interrupt.
  1926   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1927   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1928 #endif
  1929   // A few float args in registers
  1930   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1932   return false;
  1935 bool Matcher::is_spillable_arg( int reg ) {
  1936   return can_be_java_arg(reg);
  1939 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1940   // Use hardware SDIVX instruction when it is
  1941   // faster than a code which use multiply.
  1942   return VM_Version::has_fast_idiv();
  1945 // Register for DIVI projection of divmodI
  1946 RegMask Matcher::divI_proj_mask() {
  1947   ShouldNotReachHere();
  1948   return RegMask();
  1951 // Register for MODI projection of divmodI
  1952 RegMask Matcher::modI_proj_mask() {
  1953   ShouldNotReachHere();
  1954   return RegMask();
  1957 // Register for DIVL projection of divmodL
  1958 RegMask Matcher::divL_proj_mask() {
  1959   ShouldNotReachHere();
  1960   return RegMask();
  1963 // Register for MODL projection of divmodL
  1964 RegMask Matcher::modL_proj_mask() {
  1965   ShouldNotReachHere();
  1966   return RegMask();
  1969 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1970   return L7_REGP_mask;
  1973 %}
  1976 // The intptr_t operand types, defined by textual substitution.
  1977 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1978 #ifdef _LP64
  1979 #define immX      immL
  1980 #define immX13    immL13
  1981 #define immX13m7  immL13m7
  1982 #define iRegX     iRegL
  1983 #define g1RegX    g1RegL
  1984 #else
  1985 #define immX      immI
  1986 #define immX13    immI13
  1987 #define immX13m7  immI13m7
  1988 #define iRegX     iRegI
  1989 #define g1RegX    g1RegI
  1990 #endif
  1992 //----------ENCODING BLOCK-----------------------------------------------------
  1993 // This block specifies the encoding classes used by the compiler to output
  1994 // byte streams.  Encoding classes are parameterized macros used by
  1995 // Machine Instruction Nodes in order to generate the bit encoding of the
  1996 // instruction.  Operands specify their base encoding interface with the
  1997 // interface keyword.  There are currently supported four interfaces,
  1998 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1999 // operand to generate a function which returns its register number when
  2000 // queried.   CONST_INTER causes an operand to generate a function which
  2001 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2002 // operand to generate four functions which return the Base Register, the
  2003 // Index Register, the Scale Value, and the Offset Value of the operand when
  2004 // queried.  COND_INTER causes an operand to generate six functions which
  2005 // return the encoding code (ie - encoding bits for the instruction)
  2006 // associated with each basic boolean condition for a conditional instruction.
  2007 //
  2008 // Instructions specify two basic values for encoding.  Again, a function
  2009 // is available to check if the constant displacement is an oop. They use the
  2010 // ins_encode keyword to specify their encoding classes (which must be
  2011 // a sequence of enc_class names, and their parameters, specified in
  2012 // the encoding block), and they use the
  2013 // opcode keyword to specify, in order, their primary, secondary, and
  2014 // tertiary opcode.  Only the opcode sections which a particular instruction
  2015 // needs for encoding need to be specified.
  2016 encode %{
  2017   enc_class enc_untested %{
  2018 #ifdef ASSERT
  2019     MacroAssembler _masm(&cbuf);
  2020     __ untested("encoding");
  2021 #endif
  2022   %}
  2024   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2025     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2026                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2027   %}
  2029   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2030     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2031                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2032   %}
  2034   enc_class form3_mem_prefetch_read( memory mem ) %{
  2035     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2036                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2037   %}
  2039   enc_class form3_mem_prefetch_write( memory mem ) %{
  2040     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2041                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2042   %}
  2044   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2045     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2046     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2047     guarantee($mem$$index == R_G0_enc, "double index?");
  2048     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2049     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2050     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2051     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2052   %}
  2054   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2055     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2056     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2057     guarantee($mem$$index == R_G0_enc, "double index?");
  2058     // Load long with 2 instructions
  2059     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2060     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2061   %}
  2063   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2064   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2065     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2066     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2067   %}
  2069   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2070     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2071     if( $rs2$$reg != $rd$$reg )
  2072       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2073   %}
  2075   // Target lo half of long
  2076   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2077     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2078     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2079       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2080   %}
  2082   // Source lo half of long
  2083   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2084     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2085     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2086       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2087   %}
  2089   // Target hi half of long
  2090   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2091     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2092   %}
  2094   // Source lo half of long, and leave it sign extended.
  2095   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2096     // Sign extend low half
  2097     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2098   %}
  2100   // Source hi half of long, and leave it sign extended.
  2101   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2102     // Shift high half to low half
  2103     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2104   %}
  2106   // Source hi half of long
  2107   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2108     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2109     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2110       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2111   %}
  2113   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2114     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2115   %}
  2117   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2118     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2119     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2120   %}
  2122   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2123     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2124     // clear if nothing else is happening
  2125     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2126     // blt,a,pn done
  2127     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2128     // mov dst,-1 in delay slot
  2129     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2130   %}
  2132   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2133     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2134   %}
  2136   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2137     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2138   %}
  2140   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2141     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2142   %}
  2144   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2145     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2146   %}
  2148   enc_class move_return_pc_to_o1() %{
  2149     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2150   %}
  2152 #ifdef _LP64
  2153   /* %%% merge with enc_to_bool */
  2154   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2155     MacroAssembler _masm(&cbuf);
  2157     Register   src_reg = reg_to_register_object($src$$reg);
  2158     Register   dst_reg = reg_to_register_object($dst$$reg);
  2159     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2160   %}
  2161 #endif
  2163   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2164     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2165     MacroAssembler _masm(&cbuf);
  2167     Register   p_reg = reg_to_register_object($p$$reg);
  2168     Register   q_reg = reg_to_register_object($q$$reg);
  2169     Register   y_reg = reg_to_register_object($y$$reg);
  2170     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2172     __ subcc( p_reg, q_reg,   p_reg );
  2173     __ add  ( p_reg, y_reg, tmp_reg );
  2174     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2175   %}
  2177   enc_class form_d2i_helper(regD src, regF dst) %{
  2178     // fcmp %fcc0,$src,$src
  2179     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2180     // branch %fcc0 not-nan, predict taken
  2181     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2182     // fdtoi $src,$dst
  2183     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2184     // fitos $dst,$dst (if nan)
  2185     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2186     // clear $dst (if nan)
  2187     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2188     // carry on here...
  2189   %}
  2191   enc_class form_d2l_helper(regD src, regD dst) %{
  2192     // fcmp %fcc0,$src,$src  check for NAN
  2193     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2194     // branch %fcc0 not-nan, predict taken
  2195     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2196     // fdtox $src,$dst   convert in delay slot
  2197     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2198     // fxtod $dst,$dst  (if nan)
  2199     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2200     // clear $dst (if nan)
  2201     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2202     // carry on here...
  2203   %}
  2205   enc_class form_f2i_helper(regF src, regF dst) %{
  2206     // fcmps %fcc0,$src,$src
  2207     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2208     // branch %fcc0 not-nan, predict taken
  2209     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2210     // fstoi $src,$dst
  2211     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2212     // fitos $dst,$dst (if nan)
  2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2214     // clear $dst (if nan)
  2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2216     // carry on here...
  2217   %}
  2219   enc_class form_f2l_helper(regF src, regD dst) %{
  2220     // fcmps %fcc0,$src,$src
  2221     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2222     // branch %fcc0 not-nan, predict taken
  2223     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2224     // fstox $src,$dst
  2225     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2226     // fxtod $dst,$dst (if nan)
  2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2228     // clear $dst (if nan)
  2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2230     // carry on here...
  2231   %}
  2233   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2234   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2235   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2236   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2238   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2240   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2241   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2243   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2244     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2245   %}
  2247   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2248     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2249   %}
  2251   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2252     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2253   %}
  2255   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2256     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2257   %}
  2259   enc_class form3_convI2F(regF rs2, regF rd) %{
  2260     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2261   %}
  2263   // Encloding class for traceable jumps
  2264   enc_class form_jmpl(g3RegP dest) %{
  2265     emit_jmpl(cbuf, $dest$$reg);
  2266   %}
  2268   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2269     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2270   %}
  2272   enc_class form2_nop() %{
  2273     emit_nop(cbuf);
  2274   %}
  2276   enc_class form2_illtrap() %{
  2277     emit_illtrap(cbuf);
  2278   %}
  2281   // Compare longs and convert into -1, 0, 1.
  2282   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2283     // CMP $src1,$src2
  2284     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2285     // blt,a,pn done
  2286     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2287     // mov dst,-1 in delay slot
  2288     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2289     // bgt,a,pn done
  2290     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2291     // mov dst,1 in delay slot
  2292     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2293     // CLR    $dst
  2294     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2295   %}
  2297   enc_class enc_PartialSubtypeCheck() %{
  2298     MacroAssembler _masm(&cbuf);
  2299     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2300     __ delayed()->nop();
  2301   %}
  2303   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2304     MacroAssembler _masm(&cbuf);
  2305     Label &L = *($labl$$label);
  2306     Assembler::Predict predict_taken =
  2307       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2309     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2310     __ delayed()->nop();
  2311   %}
  2313   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2314     MacroAssembler _masm(&cbuf);
  2315     Label &L = *($labl$$label);
  2316     Assembler::Predict predict_taken =
  2317       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2319     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2320     __ delayed()->nop();
  2321   %}
  2323   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2324     MacroAssembler _masm(&cbuf);
  2325     Label &L = *($labl$$label);
  2326     Assembler::Predict predict_taken =
  2327       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2329     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2330     __ delayed()->nop();
  2331   %}
  2333   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2334     MacroAssembler _masm(&cbuf);
  2335     Label &L = *($labl$$label);
  2336     Assembler::Predict predict_taken =
  2337       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2339     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2340     __ delayed()->nop();
  2341   %}
  2343   enc_class enc_ba( Label labl ) %{
  2344     MacroAssembler _masm(&cbuf);
  2345     Label &L = *($labl$$label);
  2346     __ ba(false, L);
  2347     __ delayed()->nop();
  2348   %}
  2350   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2351     MacroAssembler _masm(&cbuf);
  2352     Label &L = *$labl$$label;
  2353     Assembler::Predict predict_taken =
  2354       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2356     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2357     __ delayed()->nop();
  2358   %}
  2360   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2361     int op = (Assembler::arith_op << 30) |
  2362              ($dst$$reg << 25) |
  2363              (Assembler::movcc_op3 << 19) |
  2364              (1 << 18) |                    // cc2 bit for 'icc'
  2365              ($cmp$$cmpcode << 14) |
  2366              (0 << 13) |                    // select register move
  2367              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2368              ($src$$reg << 0);
  2369     cbuf.insts()->emit_int32(op);
  2370   %}
  2372   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2373     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2374     int op = (Assembler::arith_op << 30) |
  2375              ($dst$$reg << 25) |
  2376              (Assembler::movcc_op3 << 19) |
  2377              (1 << 18) |                    // cc2 bit for 'icc'
  2378              ($cmp$$cmpcode << 14) |
  2379              (1 << 13) |                    // select immediate move
  2380              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2381              (simm11 << 0);
  2382     cbuf.insts()->emit_int32(op);
  2383   %}
  2385   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2386     int op = (Assembler::arith_op << 30) |
  2387              ($dst$$reg << 25) |
  2388              (Assembler::movcc_op3 << 19) |
  2389              (0 << 18) |                    // cc2 bit for 'fccX'
  2390              ($cmp$$cmpcode << 14) |
  2391              (0 << 13) |                    // select register move
  2392              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2393              ($src$$reg << 0);
  2394     cbuf.insts()->emit_int32(op);
  2395   %}
  2397   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2398     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2399     int op = (Assembler::arith_op << 30) |
  2400              ($dst$$reg << 25) |
  2401              (Assembler::movcc_op3 << 19) |
  2402              (0 << 18) |                    // cc2 bit for 'fccX'
  2403              ($cmp$$cmpcode << 14) |
  2404              (1 << 13) |                    // select immediate move
  2405              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2406              (simm11 << 0);
  2407     cbuf.insts()->emit_int32(op);
  2408   %}
  2410   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2411     int op = (Assembler::arith_op << 30) |
  2412              ($dst$$reg << 25) |
  2413              (Assembler::fpop2_op3 << 19) |
  2414              (0 << 18) |
  2415              ($cmp$$cmpcode << 14) |
  2416              (1 << 13) |                    // select register move
  2417              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2418              ($primary << 5) |              // select single, double or quad
  2419              ($src$$reg << 0);
  2420     cbuf.insts()->emit_int32(op);
  2421   %}
  2423   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2424     int op = (Assembler::arith_op << 30) |
  2425              ($dst$$reg << 25) |
  2426              (Assembler::fpop2_op3 << 19) |
  2427              (0 << 18) |
  2428              ($cmp$$cmpcode << 14) |
  2429              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2430              ($primary << 5) |              // select single, double or quad
  2431              ($src$$reg << 0);
  2432     cbuf.insts()->emit_int32(op);
  2433   %}
  2435   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2436   // the condition comes from opcode-field instead of an argument.
  2437   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2438     int op = (Assembler::arith_op << 30) |
  2439              ($dst$$reg << 25) |
  2440              (Assembler::movcc_op3 << 19) |
  2441              (1 << 18) |                    // cc2 bit for 'icc'
  2442              ($primary << 14) |
  2443              (0 << 13) |                    // select register move
  2444              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2445              ($src$$reg << 0);
  2446     cbuf.insts()->emit_int32(op);
  2447   %}
  2449   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2450     int op = (Assembler::arith_op << 30) |
  2451              ($dst$$reg << 25) |
  2452              (Assembler::movcc_op3 << 19) |
  2453              (6 << 16) |                    // cc2 bit for 'xcc'
  2454              ($primary << 14) |
  2455              (0 << 13) |                    // select register move
  2456              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2457              ($src$$reg << 0);
  2458     cbuf.insts()->emit_int32(op);
  2459   %}
  2461   enc_class Set13( immI13 src, iRegI rd ) %{
  2462     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2463   %}
  2465   enc_class SetHi22( immI src, iRegI rd ) %{
  2466     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2467   %}
  2469   enc_class Set32( immI src, iRegI rd ) %{
  2470     MacroAssembler _masm(&cbuf);
  2471     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2472   %}
  2474   enc_class call_epilog %{
  2475     if( VerifyStackAtCalls ) {
  2476       MacroAssembler _masm(&cbuf);
  2477       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2478       Register temp_reg = G3;
  2479       __ add(SP, framesize, temp_reg);
  2480       __ cmp(temp_reg, FP);
  2481       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2483   %}
  2485   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2486   // to G1 so the register allocator will not have to deal with the misaligned register
  2487   // pair.
  2488   enc_class adjust_long_from_native_call %{
  2489 #ifndef _LP64
  2490     if (returns_long()) {
  2491       //    sllx  O0,32,O0
  2492       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2493       //    srl   O1,0,O1
  2494       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2495       //    or    O0,O1,G1
  2496       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2498 #endif
  2499   %}
  2501   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2502     // CALL directly to the runtime
  2503     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2504     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2505                     /*preserve_g2=*/true);
  2506   %}
  2508   enc_class preserve_SP %{
  2509     MacroAssembler _masm(&cbuf);
  2510     __ mov(SP, L7_mh_SP_save);
  2511   %}
  2513   enc_class restore_SP %{
  2514     MacroAssembler _masm(&cbuf);
  2515     __ mov(L7_mh_SP_save, SP);
  2516   %}
  2518   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2519     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2520     // who we intended to call.
  2521     if ( !_method ) {
  2522       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2523     } else if (_optimized_virtual) {
  2524       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2525     } else {
  2526       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2528     if( _method ) {  // Emit stub for static call
  2529       emit_java_to_interp(cbuf);
  2531   %}
  2533   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2534     MacroAssembler _masm(&cbuf);
  2535     __ set_inst_mark();
  2536     int vtable_index = this->_vtable_index;
  2537     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2538     if (vtable_index < 0) {
  2539       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2540       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2541       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2542       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2543       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2544       // !!!!!
  2545       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2546       // emit_call_dynamic_prologue( cbuf );
  2547       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2549       address  virtual_call_oop_addr = __ inst_mark();
  2550       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2551       // who we intended to call.
  2552       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2553       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2554     } else {
  2555       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2556       // Just go thru the vtable
  2557       // get receiver klass (receiver already checked for non-null)
  2558       // If we end up going thru a c2i adapter interpreter expects method in G5
  2559       int off = __ offset();
  2560       __ load_klass(O0, G3_scratch);
  2561       int klass_load_size;
  2562       if (UseCompressedOops) {
  2563         assert(Universe::heap() != NULL, "java heap should be initialized");
  2564         if (Universe::narrow_oop_base() == NULL)
  2565           klass_load_size = 2*BytesPerInstWord;
  2566         else
  2567           klass_load_size = 3*BytesPerInstWord;
  2568       } else {
  2569         klass_load_size = 1*BytesPerInstWord;
  2571       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2572       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2573       if( __ is_simm13(v_off) ) {
  2574         __ ld_ptr(G3, v_off, G5_method);
  2575       } else {
  2576         // Generate 2 instructions
  2577         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2578         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2579         // ld_ptr, set_hi, set
  2580         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2581                "Unexpected instruction size(s)");
  2582         __ ld_ptr(G3, G5_method, G5_method);
  2584       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2585       // However it may very well end up in handle_wrong_method if the
  2586       // method is abstract for the particular class.
  2587       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2588       // jump to target (either compiled code or c2iadapter)
  2589       __ jmpl(G3_scratch, G0, O7);
  2590       __ delayed()->nop();
  2592   %}
  2594   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2595     MacroAssembler _masm(&cbuf);
  2597     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2598     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2599                               // we might be calling a C2I adapter which needs it.
  2601     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2602     // Load nmethod
  2603     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2605     // CALL to compiled java, indirect the contents of G3
  2606     __ set_inst_mark();
  2607     __ callr(temp_reg, G0);
  2608     __ delayed()->nop();
  2609   %}
  2611 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2612     MacroAssembler _masm(&cbuf);
  2613     Register Rdividend = reg_to_register_object($src1$$reg);
  2614     Register Rdivisor = reg_to_register_object($src2$$reg);
  2615     Register Rresult = reg_to_register_object($dst$$reg);
  2617     __ sra(Rdivisor, 0, Rdivisor);
  2618     __ sra(Rdividend, 0, Rdividend);
  2619     __ sdivx(Rdividend, Rdivisor, Rresult);
  2620 %}
  2622 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2623     MacroAssembler _masm(&cbuf);
  2625     Register Rdividend = reg_to_register_object($src1$$reg);
  2626     int divisor = $imm$$constant;
  2627     Register Rresult = reg_to_register_object($dst$$reg);
  2629     __ sra(Rdividend, 0, Rdividend);
  2630     __ sdivx(Rdividend, divisor, Rresult);
  2631 %}
  2633 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2634     MacroAssembler _masm(&cbuf);
  2635     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2636     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2637     Register Rdst  = reg_to_register_object($dst$$reg);
  2639     __ sra( Rsrc1, 0, Rsrc1 );
  2640     __ sra( Rsrc2, 0, Rsrc2 );
  2641     __ mulx( Rsrc1, Rsrc2, Rdst );
  2642     __ srlx( Rdst, 32, Rdst );
  2643 %}
  2645 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2646     MacroAssembler _masm(&cbuf);
  2647     Register Rdividend = reg_to_register_object($src1$$reg);
  2648     Register Rdivisor = reg_to_register_object($src2$$reg);
  2649     Register Rresult = reg_to_register_object($dst$$reg);
  2650     Register Rscratch = reg_to_register_object($scratch$$reg);
  2652     assert(Rdividend != Rscratch, "");
  2653     assert(Rdivisor  != Rscratch, "");
  2655     __ sra(Rdividend, 0, Rdividend);
  2656     __ sra(Rdivisor, 0, Rdivisor);
  2657     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2658     __ mulx(Rscratch, Rdivisor, Rscratch);
  2659     __ sub(Rdividend, Rscratch, Rresult);
  2660 %}
  2662 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2663     MacroAssembler _masm(&cbuf);
  2665     Register Rdividend = reg_to_register_object($src1$$reg);
  2666     int divisor = $imm$$constant;
  2667     Register Rresult = reg_to_register_object($dst$$reg);
  2668     Register Rscratch = reg_to_register_object($scratch$$reg);
  2670     assert(Rdividend != Rscratch, "");
  2672     __ sra(Rdividend, 0, Rdividend);
  2673     __ sdivx(Rdividend, divisor, Rscratch);
  2674     __ mulx(Rscratch, divisor, Rscratch);
  2675     __ sub(Rdividend, Rscratch, Rresult);
  2676 %}
  2678 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2679     MacroAssembler _masm(&cbuf);
  2681     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2682     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2684     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2685 %}
  2687 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2688     MacroAssembler _masm(&cbuf);
  2690     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2691     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2693     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2694 %}
  2696 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2697     MacroAssembler _masm(&cbuf);
  2699     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2700     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2702     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2703 %}
  2705 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2706     MacroAssembler _masm(&cbuf);
  2708     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2709     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2711     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2712 %}
  2714 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2715     MacroAssembler _masm(&cbuf);
  2717     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2718     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2720     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2721 %}
  2723 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2724     MacroAssembler _masm(&cbuf);
  2726     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2727     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2729     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2730 %}
  2732 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2733     MacroAssembler _masm(&cbuf);
  2735     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2736     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2738     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2739 %}
  2741 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2742     MacroAssembler _masm(&cbuf);
  2744     Register Roop  = reg_to_register_object($oop$$reg);
  2745     Register Rbox  = reg_to_register_object($box$$reg);
  2746     Register Rscratch = reg_to_register_object($scratch$$reg);
  2747     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2749     assert(Roop  != Rscratch, "");
  2750     assert(Roop  != Rmark, "");
  2751     assert(Rbox  != Rscratch, "");
  2752     assert(Rbox  != Rmark, "");
  2754     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2755 %}
  2757 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2758     MacroAssembler _masm(&cbuf);
  2760     Register Roop  = reg_to_register_object($oop$$reg);
  2761     Register Rbox  = reg_to_register_object($box$$reg);
  2762     Register Rscratch = reg_to_register_object($scratch$$reg);
  2763     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2765     assert(Roop  != Rscratch, "");
  2766     assert(Roop  != Rmark, "");
  2767     assert(Rbox  != Rscratch, "");
  2768     assert(Rbox  != Rmark, "");
  2770     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2771   %}
  2773   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2774     MacroAssembler _masm(&cbuf);
  2775     Register Rmem = reg_to_register_object($mem$$reg);
  2776     Register Rold = reg_to_register_object($old$$reg);
  2777     Register Rnew = reg_to_register_object($new$$reg);
  2779     // casx_under_lock picks 1 of 3 encodings:
  2780     // For 32-bit pointers you get a 32-bit CAS
  2781     // For 64-bit pointers you get a 64-bit CASX
  2782     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2783     __ cmp( Rold, Rnew );
  2784   %}
  2786   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2787     Register Rmem = reg_to_register_object($mem$$reg);
  2788     Register Rold = reg_to_register_object($old$$reg);
  2789     Register Rnew = reg_to_register_object($new$$reg);
  2791     MacroAssembler _masm(&cbuf);
  2792     __ mov(Rnew, O7);
  2793     __ casx(Rmem, Rold, O7);
  2794     __ cmp( Rold, O7 );
  2795   %}
  2797   // raw int cas, used for compareAndSwap
  2798   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2799     Register Rmem = reg_to_register_object($mem$$reg);
  2800     Register Rold = reg_to_register_object($old$$reg);
  2801     Register Rnew = reg_to_register_object($new$$reg);
  2803     MacroAssembler _masm(&cbuf);
  2804     __ mov(Rnew, O7);
  2805     __ cas(Rmem, Rold, O7);
  2806     __ cmp( Rold, O7 );
  2807   %}
  2809   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2810     Register Rres = reg_to_register_object($res$$reg);
  2812     MacroAssembler _masm(&cbuf);
  2813     __ mov(1, Rres);
  2814     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2815   %}
  2817   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2818     Register Rres = reg_to_register_object($res$$reg);
  2820     MacroAssembler _masm(&cbuf);
  2821     __ mov(1, Rres);
  2822     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2823   %}
  2825   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2826     MacroAssembler _masm(&cbuf);
  2827     Register Rdst = reg_to_register_object($dst$$reg);
  2828     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2829                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2830     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2831                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2833     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2834     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2835   %}
  2837   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2838   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2839     MacroAssembler _masm(&cbuf);
  2840     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2841     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2842     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2844     Label loop;
  2845     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2847     // Loop and clear, walking backwards through the array.
  2848     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2849     __ bind(loop);
  2850     __ deccc(nof_bytes_tmp, 8);
  2851     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2852     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2853     // %%%% this mini-loop must not cross a cache boundary!
  2854   %}
  2857   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2858     Label Ldone, Lloop;
  2859     MacroAssembler _masm(&cbuf);
  2861     Register   str1_reg = reg_to_register_object($str1$$reg);
  2862     Register   str2_reg = reg_to_register_object($str2$$reg);
  2863     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2864     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2865     Register result_reg = reg_to_register_object($result$$reg);
  2867     assert(result_reg != str1_reg &&
  2868            result_reg != str2_reg &&
  2869            result_reg != cnt1_reg &&
  2870            result_reg != cnt2_reg ,
  2871            "need different registers");
  2873     // Compute the minimum of the string lengths(str1_reg) and the
  2874     // difference of the string lengths (stack)
  2876     // See if the lengths are different, and calculate min in str1_reg.
  2877     // Stash diff in O7 in case we need it for a tie-breaker.
  2878     Label Lskip;
  2879     __ subcc(cnt1_reg, cnt2_reg, O7);
  2880     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2881     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2882     // cnt2 is shorter, so use its count:
  2883     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2884     __ bind(Lskip);
  2886     // reallocate cnt1_reg, cnt2_reg, result_reg
  2887     // Note:  limit_reg holds the string length pre-scaled by 2
  2888     Register limit_reg =   cnt1_reg;
  2889     Register  chr2_reg =   cnt2_reg;
  2890     Register  chr1_reg = result_reg;
  2891     // str{12} are the base pointers
  2893     // Is the minimum length zero?
  2894     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2895     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2896     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2898     // Load first characters
  2899     __ lduh(str1_reg, 0, chr1_reg);
  2900     __ lduh(str2_reg, 0, chr2_reg);
  2902     // Compare first characters
  2903     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2904     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2905     assert(chr1_reg == result_reg, "result must be pre-placed");
  2906     __ delayed()->nop();
  2909       // Check after comparing first character to see if strings are equivalent
  2910       Label LSkip2;
  2911       // Check if the strings start at same location
  2912       __ cmp(str1_reg, str2_reg);
  2913       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2914       __ delayed()->nop();
  2916       // Check if the length difference is zero (in O7)
  2917       __ cmp(G0, O7);
  2918       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2919       __ delayed()->mov(G0, result_reg);  // result is zero
  2921       // Strings might not be equal
  2922       __ bind(LSkip2);
  2925     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2926     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2927     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2929     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2930     __ add(str1_reg, limit_reg, str1_reg);
  2931     __ add(str2_reg, limit_reg, str2_reg);
  2932     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2934     // Compare the rest of the characters
  2935     __ lduh(str1_reg, limit_reg, chr1_reg);
  2936     __ bind(Lloop);
  2937     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2938     __ lduh(str2_reg, limit_reg, chr2_reg);
  2939     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2940     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2941     assert(chr1_reg == result_reg, "result must be pre-placed");
  2942     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2943     // annul LDUH if branch is not taken to prevent access past end of string
  2944     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2945     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2947     // If strings are equal up to min length, return the length difference.
  2948     __ mov(O7, result_reg);
  2950     // Otherwise, return the difference between the first mismatched chars.
  2951     __ bind(Ldone);
  2952   %}
  2954 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2955     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2956     MacroAssembler _masm(&cbuf);
  2958     Register   str1_reg = reg_to_register_object($str1$$reg);
  2959     Register   str2_reg = reg_to_register_object($str2$$reg);
  2960     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2961     Register   tmp1_reg = O7;
  2962     Register result_reg = reg_to_register_object($result$$reg);
  2964     assert(result_reg != str1_reg &&
  2965            result_reg != str2_reg &&
  2966            result_reg !=  cnt_reg &&
  2967            result_reg != tmp1_reg ,
  2968            "need different registers");
  2970     __ cmp(str1_reg, str2_reg); //same char[] ?
  2971     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2972     __ delayed()->add(G0, 1, result_reg);
  2974     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2975     __ delayed()->add(G0, 1, result_reg); // count == 0
  2977     //rename registers
  2978     Register limit_reg =    cnt_reg;
  2979     Register  chr1_reg = result_reg;
  2980     Register  chr2_reg =   tmp1_reg;
  2982     //check for alignment and position the pointers to the ends
  2983     __ or3(str1_reg, str2_reg, chr1_reg);
  2984     __ andcc(chr1_reg, 0x3, chr1_reg);
  2985     // notZero means at least one not 4-byte aligned.
  2986     // We could optimize the case when both arrays are not aligned
  2987     // but it is not frequent case and it requires additional checks.
  2988     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2989     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2991     // Compare char[] arrays aligned to 4 bytes.
  2992     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2993                           chr1_reg, chr2_reg, Ldone);
  2994     __ ba(false,Ldone);
  2995     __ delayed()->add(G0, 1, result_reg);
  2997     // char by char compare
  2998     __ bind(Lchar);
  2999     __ add(str1_reg, limit_reg, str1_reg);
  3000     __ add(str2_reg, limit_reg, str2_reg);
  3001     __ neg(limit_reg); //negate count
  3003     __ lduh(str1_reg, limit_reg, chr1_reg);
  3004     // Lchar_loop
  3005     __ bind(Lchar_loop);
  3006     __ lduh(str2_reg, limit_reg, chr2_reg);
  3007     __ cmp(chr1_reg, chr2_reg);
  3008     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3009     __ delayed()->mov(G0, result_reg); //not equal
  3010     __ inccc(limit_reg, sizeof(jchar));
  3011     // annul LDUH if branch is not taken to prevent access past end of string
  3012     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3013     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3015     __ add(G0, 1, result_reg);  //equal
  3017     __ bind(Ldone);
  3018   %}
  3020 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3021     Label Lvector, Ldone, Lloop;
  3022     MacroAssembler _masm(&cbuf);
  3024     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3025     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3026     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3027     Register   tmp2_reg = O7;
  3028     Register result_reg = reg_to_register_object($result$$reg);
  3030     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3031     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3033     // return true if the same array
  3034     __ cmp(ary1_reg, ary2_reg);
  3035     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3036     __ delayed()->add(G0, 1, result_reg); // equal
  3038     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3039     __ delayed()->mov(G0, result_reg);    // not equal
  3041     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3042     __ delayed()->mov(G0, result_reg);    // not equal
  3044     //load the lengths of arrays
  3045     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3046     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3048     // return false if the two arrays are not equal length
  3049     __ cmp(tmp1_reg, tmp2_reg);
  3050     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3051     __ delayed()->mov(G0, result_reg);     // not equal
  3053     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3054     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3056     // load array addresses
  3057     __ add(ary1_reg, base_offset, ary1_reg);
  3058     __ add(ary2_reg, base_offset, ary2_reg);
  3060     // renaming registers
  3061     Register chr1_reg  =  result_reg; // for characters in ary1
  3062     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3063     Register limit_reg =  tmp1_reg;   // length
  3065     // set byte count
  3066     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3068     // Compare char[] arrays aligned to 4 bytes.
  3069     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3070                           chr1_reg, chr2_reg, Ldone);
  3071     __ add(G0, 1, result_reg); // equals
  3073     __ bind(Ldone);
  3074   %}
  3076   enc_class enc_rethrow() %{
  3077     cbuf.set_insts_mark();
  3078     Register temp_reg = G3;
  3079     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3080     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3081     MacroAssembler _masm(&cbuf);
  3082 #ifdef ASSERT
  3083     __ save_frame(0);
  3084     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3085     __ sethi(last_rethrow_addrlit, L1);
  3086     Address addr(L1, last_rethrow_addrlit.low10());
  3087     __ get_pc(L2);
  3088     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3089     __ st_ptr(L2, addr);
  3090     __ restore();
  3091 #endif
  3092     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3093     __ delayed()->nop();
  3094   %}
  3096   enc_class emit_mem_nop() %{
  3097     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3098     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3099   %}
  3101   enc_class emit_fadd_nop() %{
  3102     // Generates the instruction FMOVS f31,f31
  3103     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3104   %}
  3106   enc_class emit_br_nop() %{
  3107     // Generates the instruction BPN,PN .
  3108     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3109   %}
  3111   enc_class enc_membar_acquire %{
  3112     MacroAssembler _masm(&cbuf);
  3113     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3114   %}
  3116   enc_class enc_membar_release %{
  3117     MacroAssembler _masm(&cbuf);
  3118     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3119   %}
  3121   enc_class enc_membar_volatile %{
  3122     MacroAssembler _masm(&cbuf);
  3123     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3124   %}
  3126   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3127     MacroAssembler _masm(&cbuf);
  3128     Register src_reg = reg_to_register_object($src$$reg);
  3129     Register dst_reg = reg_to_register_object($dst$$reg);
  3130     __ sllx(src_reg, 56, dst_reg);
  3131     __ srlx(dst_reg,  8, O7);
  3132     __ or3 (dst_reg, O7, dst_reg);
  3133     __ srlx(dst_reg, 16, O7);
  3134     __ or3 (dst_reg, O7, dst_reg);
  3135     __ srlx(dst_reg, 32, O7);
  3136     __ or3 (dst_reg, O7, dst_reg);
  3137   %}
  3139   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3140     MacroAssembler _masm(&cbuf);
  3141     Register src_reg = reg_to_register_object($src$$reg);
  3142     Register dst_reg = reg_to_register_object($dst$$reg);
  3143     __ sll(src_reg, 24, dst_reg);
  3144     __ srl(dst_reg,  8, O7);
  3145     __ or3(dst_reg, O7, dst_reg);
  3146     __ srl(dst_reg, 16, O7);
  3147     __ or3(dst_reg, O7, dst_reg);
  3148   %}
  3150   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3151     MacroAssembler _masm(&cbuf);
  3152     Register src_reg = reg_to_register_object($src$$reg);
  3153     Register dst_reg = reg_to_register_object($dst$$reg);
  3154     __ sllx(src_reg, 48, dst_reg);
  3155     __ srlx(dst_reg, 16, O7);
  3156     __ or3 (dst_reg, O7, dst_reg);
  3157     __ srlx(dst_reg, 32, O7);
  3158     __ or3 (dst_reg, O7, dst_reg);
  3159   %}
  3161   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3162     MacroAssembler _masm(&cbuf);
  3163     Register src_reg = reg_to_register_object($src$$reg);
  3164     Register dst_reg = reg_to_register_object($dst$$reg);
  3165     __ sllx(src_reg, 32, dst_reg);
  3166     __ srlx(dst_reg, 32, O7);
  3167     __ or3 (dst_reg, O7, dst_reg);
  3168   %}
  3170 %}
  3172 //----------FRAME--------------------------------------------------------------
  3173 // Definition of frame structure and management information.
  3174 //
  3175 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3176 //                             |   (to get allocators register number
  3177 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3178 //  r   CALLER     |        |
  3179 //  o     |        +--------+      pad to even-align allocators stack-slot
  3180 //  w     V        |  pad0  |        numbers; owned by CALLER
  3181 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3182 //  h     ^        |   in   |  5
  3183 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3184 //  |     |        |        |  3
  3185 //  |     |        +--------+
  3186 //  V     |        | old out|      Empty on Intel, window on Sparc
  3187 //        |    old |preserve|      Must be even aligned.
  3188 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3189 //        |        |   in   |  3   area for Intel ret address
  3190 //     Owned by    |preserve|      Empty on Sparc.
  3191 //       SELF      +--------+
  3192 //        |        |  pad2  |  2   pad to align old SP
  3193 //        |        +--------+  1
  3194 //        |        | locks  |  0
  3195 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3196 //        |        |  pad1  | 11   pad to align new SP
  3197 //        |        +--------+
  3198 //        |        |        | 10
  3199 //        |        | spills |  9   spills
  3200 //        V        |        |  8   (pad0 slot for callee)
  3201 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3202 //        ^        |  out   |  7
  3203 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3204 //     Owned by    +--------+
  3205 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3206 //        |    new |preserve|      Must be even-aligned.
  3207 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3208 //        |        |        |
  3209 //
  3210 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3211 //         known from SELF's arguments and the Java calling convention.
  3212 //         Region 6-7 is determined per call site.
  3213 // Note 2: If the calling convention leaves holes in the incoming argument
  3214 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3215 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3216 //         incoming area, as the Java calling convention is completely under
  3217 //         the control of the AD file.  Doubles can be sorted and packed to
  3218 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3219 //         varargs C calling conventions.
  3220 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3221 //         even aligned with pad0 as needed.
  3222 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3223 //         region 6-11 is even aligned; it may be padded out more so that
  3224 //         the region from SP to FP meets the minimum stack alignment.
  3226 frame %{
  3227   // What direction does stack grow in (assumed to be same for native & Java)
  3228   stack_direction(TOWARDS_LOW);
  3230   // These two registers define part of the calling convention
  3231   // between compiled code and the interpreter.
  3232   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3233   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3235   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3236   cisc_spilling_operand_name(indOffset);
  3238   // Number of stack slots consumed by a Monitor enter
  3239 #ifdef _LP64
  3240   sync_stack_slots(2);
  3241 #else
  3242   sync_stack_slots(1);
  3243 #endif
  3245   // Compiled code's Frame Pointer
  3246   frame_pointer(R_SP);
  3248   // Stack alignment requirement
  3249   stack_alignment(StackAlignmentInBytes);
  3250   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3251   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3253   // Number of stack slots between incoming argument block and the start of
  3254   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3255   // EPILOG must remove this many slots.
  3256   in_preserve_stack_slots(0);
  3258   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3259   // for calls to C.  Supports the var-args backing area for register parms.
  3260   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3261 #ifdef _LP64
  3262   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3263   varargs_C_out_slots_killed(12);
  3264 #else
  3265   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3266   varargs_C_out_slots_killed( 7);
  3267 #endif
  3269   // The after-PROLOG location of the return address.  Location of
  3270   // return address specifies a type (REG or STACK) and a number
  3271   // representing the register number (i.e. - use a register name) or
  3272   // stack slot.
  3273   return_addr(REG R_I7);          // Ret Addr is in register I7
  3275   // Body of function which returns an OptoRegs array locating
  3276   // arguments either in registers or in stack slots for calling
  3277   // java
  3278   calling_convention %{
  3279     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3281   %}
  3283   // Body of function which returns an OptoRegs array locating
  3284   // arguments either in registers or in stack slots for callin
  3285   // C.
  3286   c_calling_convention %{
  3287     // This is obviously always outgoing
  3288     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3289   %}
  3291   // Location of native (C/C++) and interpreter return values.  This is specified to
  3292   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3293   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3294   // to and from the register pairs is done by the appropriate call and epilog
  3295   // opcodes.  This simplifies the register allocator.
  3296   c_return_value %{
  3297     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3298 #ifdef     _LP64
  3299     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3300     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3301     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3302     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3303 #else  // !_LP64
  3304     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3305     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3306     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3307     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3308 #endif
  3309     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3310                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3311   %}
  3313   // Location of compiled Java return values.  Same as C
  3314   return_value %{
  3315     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3316 #ifdef     _LP64
  3317     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3318     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3319     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3320     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3321 #else  // !_LP64
  3322     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3323     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3324     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3325     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3326 #endif
  3327     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3328                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3329   %}
  3331 %}
  3334 //----------ATTRIBUTES---------------------------------------------------------
  3335 //----------Operand Attributes-------------------------------------------------
  3336 op_attrib op_cost(1);          // Required cost attribute
  3338 //----------Instruction Attributes---------------------------------------------
  3339 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3340 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3341 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3342 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3343                                 // non-matching short branch variant of some
  3344                                                             // long branch?
  3346 //----------OPERANDS-----------------------------------------------------------
  3347 // Operand definitions must precede instruction definitions for correct parsing
  3348 // in the ADLC because operands constitute user defined types which are used in
  3349 // instruction definitions.
  3351 //----------Simple Operands----------------------------------------------------
  3352 // Immediate Operands
  3353 // Integer Immediate: 32-bit
  3354 operand immI() %{
  3355   match(ConI);
  3357   op_cost(0);
  3358   // formats are generated automatically for constants and base registers
  3359   format %{ %}
  3360   interface(CONST_INTER);
  3361 %}
  3363 // Integer Immediate: 8-bit
  3364 operand immI8() %{
  3365   predicate(Assembler::is_simm(n->get_int(), 8));
  3366   match(ConI);
  3367   op_cost(0);
  3368   format %{ %}
  3369   interface(CONST_INTER);
  3370 %}
  3372 // Integer Immediate: 13-bit
  3373 operand immI13() %{
  3374   predicate(Assembler::is_simm13(n->get_int()));
  3375   match(ConI);
  3376   op_cost(0);
  3378   format %{ %}
  3379   interface(CONST_INTER);
  3380 %}
  3382 // Integer Immediate: 13-bit minus 7
  3383 operand immI13m7() %{
  3384   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3385   match(ConI);
  3386   op_cost(0);
  3388   format %{ %}
  3389   interface(CONST_INTER);
  3390 %}
  3392 // Integer Immediate: 16-bit
  3393 operand immI16() %{
  3394   predicate(Assembler::is_simm(n->get_int(), 16));
  3395   match(ConI);
  3396   op_cost(0);
  3397   format %{ %}
  3398   interface(CONST_INTER);
  3399 %}
  3401 // Unsigned (positive) Integer Immediate: 13-bit
  3402 operand immU13() %{
  3403   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3404   match(ConI);
  3405   op_cost(0);
  3407   format %{ %}
  3408   interface(CONST_INTER);
  3409 %}
  3411 // Integer Immediate: 6-bit
  3412 operand immU6() %{
  3413   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3414   match(ConI);
  3415   op_cost(0);
  3416   format %{ %}
  3417   interface(CONST_INTER);
  3418 %}
  3420 // Integer Immediate: 11-bit
  3421 operand immI11() %{
  3422   predicate(Assembler::is_simm(n->get_int(),11));
  3423   match(ConI);
  3424   op_cost(0);
  3425   format %{ %}
  3426   interface(CONST_INTER);
  3427 %}
  3429 // Integer Immediate: 0-bit
  3430 operand immI0() %{
  3431   predicate(n->get_int() == 0);
  3432   match(ConI);
  3433   op_cost(0);
  3435   format %{ %}
  3436   interface(CONST_INTER);
  3437 %}
  3439 // Integer Immediate: the value 10
  3440 operand immI10() %{
  3441   predicate(n->get_int() == 10);
  3442   match(ConI);
  3443   op_cost(0);
  3445   format %{ %}
  3446   interface(CONST_INTER);
  3447 %}
  3449 // Integer Immediate: the values 0-31
  3450 operand immU5() %{
  3451   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3452   match(ConI);
  3453   op_cost(0);
  3455   format %{ %}
  3456   interface(CONST_INTER);
  3457 %}
  3459 // Integer Immediate: the values 1-31
  3460 operand immI_1_31() %{
  3461   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3462   match(ConI);
  3463   op_cost(0);
  3465   format %{ %}
  3466   interface(CONST_INTER);
  3467 %}
  3469 // Integer Immediate: the values 32-63
  3470 operand immI_32_63() %{
  3471   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3472   match(ConI);
  3473   op_cost(0);
  3475   format %{ %}
  3476   interface(CONST_INTER);
  3477 %}
  3479 // Immediates for special shifts (sign extend)
  3481 // Integer Immediate: the value 16
  3482 operand immI_16() %{
  3483   predicate(n->get_int() == 16);
  3484   match(ConI);
  3485   op_cost(0);
  3487   format %{ %}
  3488   interface(CONST_INTER);
  3489 %}
  3491 // Integer Immediate: the value 24
  3492 operand immI_24() %{
  3493   predicate(n->get_int() == 24);
  3494   match(ConI);
  3495   op_cost(0);
  3497   format %{ %}
  3498   interface(CONST_INTER);
  3499 %}
  3501 // Integer Immediate: the value 255
  3502 operand immI_255() %{
  3503   predicate( n->get_int() == 255 );
  3504   match(ConI);
  3505   op_cost(0);
  3507   format %{ %}
  3508   interface(CONST_INTER);
  3509 %}
  3511 // Integer Immediate: the value 65535
  3512 operand immI_65535() %{
  3513   predicate(n->get_int() == 65535);
  3514   match(ConI);
  3515   op_cost(0);
  3517   format %{ %}
  3518   interface(CONST_INTER);
  3519 %}
  3521 // Long Immediate: the value FF
  3522 operand immL_FF() %{
  3523   predicate( n->get_long() == 0xFFL );
  3524   match(ConL);
  3525   op_cost(0);
  3527   format %{ %}
  3528   interface(CONST_INTER);
  3529 %}
  3531 // Long Immediate: the value FFFF
  3532 operand immL_FFFF() %{
  3533   predicate( n->get_long() == 0xFFFFL );
  3534   match(ConL);
  3535   op_cost(0);
  3537   format %{ %}
  3538   interface(CONST_INTER);
  3539 %}
  3541 // Pointer Immediate: 32 or 64-bit
  3542 operand immP() %{
  3543   match(ConP);
  3545   op_cost(5);
  3546   // formats are generated automatically for constants and base registers
  3547   format %{ %}
  3548   interface(CONST_INTER);
  3549 %}
  3551 #ifdef _LP64
  3552 // Pointer Immediate: 64-bit
  3553 operand immP_set() %{
  3554   predicate(!VM_Version::is_niagara_plus());
  3555   match(ConP);
  3557   op_cost(5);
  3558   // formats are generated automatically for constants and base registers
  3559   format %{ %}
  3560   interface(CONST_INTER);
  3561 %}
  3563 // Pointer Immediate: 64-bit
  3564 // From Niagara2 processors on a load should be better than materializing.
  3565 operand immP_load() %{
  3566   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3567   match(ConP);
  3569   op_cost(5);
  3570   // formats are generated automatically for constants and base registers
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // Pointer Immediate: 64-bit
  3576 operand immP_no_oop_cheap() %{
  3577   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3578   match(ConP);
  3580   op_cost(5);
  3581   // formats are generated automatically for constants and base registers
  3582   format %{ %}
  3583   interface(CONST_INTER);
  3584 %}
  3585 #endif
  3587 operand immP13() %{
  3588   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3589   match(ConP);
  3590   op_cost(0);
  3592   format %{ %}
  3593   interface(CONST_INTER);
  3594 %}
  3596 operand immP0() %{
  3597   predicate(n->get_ptr() == 0);
  3598   match(ConP);
  3599   op_cost(0);
  3601   format %{ %}
  3602   interface(CONST_INTER);
  3603 %}
  3605 operand immP_poll() %{
  3606   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3607   match(ConP);
  3609   // formats are generated automatically for constants and base registers
  3610   format %{ %}
  3611   interface(CONST_INTER);
  3612 %}
  3614 // Pointer Immediate
  3615 operand immN()
  3616 %{
  3617   match(ConN);
  3619   op_cost(10);
  3620   format %{ %}
  3621   interface(CONST_INTER);
  3622 %}
  3624 // NULL Pointer Immediate
  3625 operand immN0()
  3626 %{
  3627   predicate(n->get_narrowcon() == 0);
  3628   match(ConN);
  3630   op_cost(0);
  3631   format %{ %}
  3632   interface(CONST_INTER);
  3633 %}
  3635 operand immL() %{
  3636   match(ConL);
  3637   op_cost(40);
  3638   // formats are generated automatically for constants and base registers
  3639   format %{ %}
  3640   interface(CONST_INTER);
  3641 %}
  3643 operand immL0() %{
  3644   predicate(n->get_long() == 0L);
  3645   match(ConL);
  3646   op_cost(0);
  3647   // formats are generated automatically for constants and base registers
  3648   format %{ %}
  3649   interface(CONST_INTER);
  3650 %}
  3652 // Long Immediate: 13-bit
  3653 operand immL13() %{
  3654   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3655   match(ConL);
  3656   op_cost(0);
  3658   format %{ %}
  3659   interface(CONST_INTER);
  3660 %}
  3662 // Long Immediate: 13-bit minus 7
  3663 operand immL13m7() %{
  3664   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3665   match(ConL);
  3666   op_cost(0);
  3668   format %{ %}
  3669   interface(CONST_INTER);
  3670 %}
  3672 // Long Immediate: low 32-bit mask
  3673 operand immL_32bits() %{
  3674   predicate(n->get_long() == 0xFFFFFFFFL);
  3675   match(ConL);
  3676   op_cost(0);
  3678   format %{ %}
  3679   interface(CONST_INTER);
  3680 %}
  3682 // Long Immediate: cheap (materialize in <= 3 instructions)
  3683 operand immL_cheap() %{
  3684   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3685   match(ConL);
  3686   op_cost(0);
  3688   format %{ %}
  3689   interface(CONST_INTER);
  3690 %}
  3692 // Long Immediate: expensive (materialize in > 3 instructions)
  3693 operand immL_expensive() %{
  3694   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3695   match(ConL);
  3696   op_cost(0);
  3698   format %{ %}
  3699   interface(CONST_INTER);
  3700 %}
  3702 // Double Immediate
  3703 operand immD() %{
  3704   match(ConD);
  3706   op_cost(40);
  3707   format %{ %}
  3708   interface(CONST_INTER);
  3709 %}
  3711 operand immD0() %{
  3712 #ifdef _LP64
  3713   // on 64-bit architectures this comparision is faster
  3714   predicate(jlong_cast(n->getd()) == 0);
  3715 #else
  3716   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3717 #endif
  3718   match(ConD);
  3720   op_cost(0);
  3721   format %{ %}
  3722   interface(CONST_INTER);
  3723 %}
  3725 // Float Immediate
  3726 operand immF() %{
  3727   match(ConF);
  3729   op_cost(20);
  3730   format %{ %}
  3731   interface(CONST_INTER);
  3732 %}
  3734 // Float Immediate: 0
  3735 operand immF0() %{
  3736   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3737   match(ConF);
  3739   op_cost(0);
  3740   format %{ %}
  3741   interface(CONST_INTER);
  3742 %}
  3744 // Integer Register Operands
  3745 // Integer Register
  3746 operand iRegI() %{
  3747   constraint(ALLOC_IN_RC(int_reg));
  3748   match(RegI);
  3750   match(notemp_iRegI);
  3751   match(g1RegI);
  3752   match(o0RegI);
  3753   match(iRegIsafe);
  3755   format %{ %}
  3756   interface(REG_INTER);
  3757 %}
  3759 operand notemp_iRegI() %{
  3760   constraint(ALLOC_IN_RC(notemp_int_reg));
  3761   match(RegI);
  3763   match(o0RegI);
  3765   format %{ %}
  3766   interface(REG_INTER);
  3767 %}
  3769 operand o0RegI() %{
  3770   constraint(ALLOC_IN_RC(o0_regI));
  3771   match(iRegI);
  3773   format %{ %}
  3774   interface(REG_INTER);
  3775 %}
  3777 // Pointer Register
  3778 operand iRegP() %{
  3779   constraint(ALLOC_IN_RC(ptr_reg));
  3780   match(RegP);
  3782   match(lock_ptr_RegP);
  3783   match(g1RegP);
  3784   match(g2RegP);
  3785   match(g3RegP);
  3786   match(g4RegP);
  3787   match(i0RegP);
  3788   match(o0RegP);
  3789   match(o1RegP);
  3790   match(l7RegP);
  3792   format %{ %}
  3793   interface(REG_INTER);
  3794 %}
  3796 operand sp_ptr_RegP() %{
  3797   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3798   match(RegP);
  3799   match(iRegP);
  3801   format %{ %}
  3802   interface(REG_INTER);
  3803 %}
  3805 operand lock_ptr_RegP() %{
  3806   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3807   match(RegP);
  3808   match(i0RegP);
  3809   match(o0RegP);
  3810   match(o1RegP);
  3811   match(l7RegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand g1RegP() %{
  3818   constraint(ALLOC_IN_RC(g1_regP));
  3819   match(iRegP);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g2RegP() %{
  3826   constraint(ALLOC_IN_RC(g2_regP));
  3827   match(iRegP);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand g3RegP() %{
  3834   constraint(ALLOC_IN_RC(g3_regP));
  3835   match(iRegP);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand g1RegI() %{
  3842   constraint(ALLOC_IN_RC(g1_regI));
  3843   match(iRegI);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand g3RegI() %{
  3850   constraint(ALLOC_IN_RC(g3_regI));
  3851   match(iRegI);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand g4RegI() %{
  3858   constraint(ALLOC_IN_RC(g4_regI));
  3859   match(iRegI);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand g4RegP() %{
  3866   constraint(ALLOC_IN_RC(g4_regP));
  3867   match(iRegP);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand i0RegP() %{
  3874   constraint(ALLOC_IN_RC(i0_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand o0RegP() %{
  3882   constraint(ALLOC_IN_RC(o0_regP));
  3883   match(iRegP);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand o1RegP() %{
  3890   constraint(ALLOC_IN_RC(o1_regP));
  3891   match(iRegP);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 operand o2RegP() %{
  3898   constraint(ALLOC_IN_RC(o2_regP));
  3899   match(iRegP);
  3901   format %{ %}
  3902   interface(REG_INTER);
  3903 %}
  3905 operand o7RegP() %{
  3906   constraint(ALLOC_IN_RC(o7_regP));
  3907   match(iRegP);
  3909   format %{ %}
  3910   interface(REG_INTER);
  3911 %}
  3913 operand l7RegP() %{
  3914   constraint(ALLOC_IN_RC(l7_regP));
  3915   match(iRegP);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3921 operand o7RegI() %{
  3922   constraint(ALLOC_IN_RC(o7_regI));
  3923   match(iRegI);
  3925   format %{ %}
  3926   interface(REG_INTER);
  3927 %}
  3929 operand iRegN() %{
  3930   constraint(ALLOC_IN_RC(int_reg));
  3931   match(RegN);
  3933   format %{ %}
  3934   interface(REG_INTER);
  3935 %}
  3937 // Long Register
  3938 operand iRegL() %{
  3939   constraint(ALLOC_IN_RC(long_reg));
  3940   match(RegL);
  3942   format %{ %}
  3943   interface(REG_INTER);
  3944 %}
  3946 operand o2RegL() %{
  3947   constraint(ALLOC_IN_RC(o2_regL));
  3948   match(iRegL);
  3950   format %{ %}
  3951   interface(REG_INTER);
  3952 %}
  3954 operand o7RegL() %{
  3955   constraint(ALLOC_IN_RC(o7_regL));
  3956   match(iRegL);
  3958   format %{ %}
  3959   interface(REG_INTER);
  3960 %}
  3962 operand g1RegL() %{
  3963   constraint(ALLOC_IN_RC(g1_regL));
  3964   match(iRegL);
  3966   format %{ %}
  3967   interface(REG_INTER);
  3968 %}
  3970 operand g3RegL() %{
  3971   constraint(ALLOC_IN_RC(g3_regL));
  3972   match(iRegL);
  3974   format %{ %}
  3975   interface(REG_INTER);
  3976 %}
  3978 // Int Register safe
  3979 // This is 64bit safe
  3980 operand iRegIsafe() %{
  3981   constraint(ALLOC_IN_RC(long_reg));
  3983   match(iRegI);
  3985   format %{ %}
  3986   interface(REG_INTER);
  3987 %}
  3989 // Condition Code Flag Register
  3990 operand flagsReg() %{
  3991   constraint(ALLOC_IN_RC(int_flags));
  3992   match(RegFlags);
  3994   format %{ "ccr" %} // both ICC and XCC
  3995   interface(REG_INTER);
  3996 %}
  3998 // Condition Code Register, unsigned comparisons.
  3999 operand flagsRegU() %{
  4000   constraint(ALLOC_IN_RC(int_flags));
  4001   match(RegFlags);
  4003   format %{ "icc_U" %}
  4004   interface(REG_INTER);
  4005 %}
  4007 // Condition Code Register, pointer comparisons.
  4008 operand flagsRegP() %{
  4009   constraint(ALLOC_IN_RC(int_flags));
  4010   match(RegFlags);
  4012 #ifdef _LP64
  4013   format %{ "xcc_P" %}
  4014 #else
  4015   format %{ "icc_P" %}
  4016 #endif
  4017   interface(REG_INTER);
  4018 %}
  4020 // Condition Code Register, long comparisons.
  4021 operand flagsRegL() %{
  4022   constraint(ALLOC_IN_RC(int_flags));
  4023   match(RegFlags);
  4025   format %{ "xcc_L" %}
  4026   interface(REG_INTER);
  4027 %}
  4029 // Condition Code Register, floating comparisons, unordered same as "less".
  4030 operand flagsRegF() %{
  4031   constraint(ALLOC_IN_RC(float_flags));
  4032   match(RegFlags);
  4033   match(flagsRegF0);
  4035   format %{ %}
  4036   interface(REG_INTER);
  4037 %}
  4039 operand flagsRegF0() %{
  4040   constraint(ALLOC_IN_RC(float_flag0));
  4041   match(RegFlags);
  4043   format %{ %}
  4044   interface(REG_INTER);
  4045 %}
  4048 // Condition Code Flag Register used by long compare
  4049 operand flagsReg_long_LTGE() %{
  4050   constraint(ALLOC_IN_RC(int_flags));
  4051   match(RegFlags);
  4052   format %{ "icc_LTGE" %}
  4053   interface(REG_INTER);
  4054 %}
  4055 operand flagsReg_long_EQNE() %{
  4056   constraint(ALLOC_IN_RC(int_flags));
  4057   match(RegFlags);
  4058   format %{ "icc_EQNE" %}
  4059   interface(REG_INTER);
  4060 %}
  4061 operand flagsReg_long_LEGT() %{
  4062   constraint(ALLOC_IN_RC(int_flags));
  4063   match(RegFlags);
  4064   format %{ "icc_LEGT" %}
  4065   interface(REG_INTER);
  4066 %}
  4069 operand regD() %{
  4070   constraint(ALLOC_IN_RC(dflt_reg));
  4071   match(RegD);
  4073   match(regD_low);
  4075   format %{ %}
  4076   interface(REG_INTER);
  4077 %}
  4079 operand regF() %{
  4080   constraint(ALLOC_IN_RC(sflt_reg));
  4081   match(RegF);
  4083   format %{ %}
  4084   interface(REG_INTER);
  4085 %}
  4087 operand regD_low() %{
  4088   constraint(ALLOC_IN_RC(dflt_low_reg));
  4089   match(regD);
  4091   format %{ %}
  4092   interface(REG_INTER);
  4093 %}
  4095 // Special Registers
  4097 // Method Register
  4098 operand inline_cache_regP(iRegP reg) %{
  4099   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4100   match(reg);
  4101   format %{ %}
  4102   interface(REG_INTER);
  4103 %}
  4105 operand interpreter_method_oop_regP(iRegP reg) %{
  4106   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4107   match(reg);
  4108   format %{ %}
  4109   interface(REG_INTER);
  4110 %}
  4113 //----------Complex Operands---------------------------------------------------
  4114 // Indirect Memory Reference
  4115 operand indirect(sp_ptr_RegP reg) %{
  4116   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4117   match(reg);
  4119   op_cost(100);
  4120   format %{ "[$reg]" %}
  4121   interface(MEMORY_INTER) %{
  4122     base($reg);
  4123     index(0x0);
  4124     scale(0x0);
  4125     disp(0x0);
  4126   %}
  4127 %}
  4129 // Indirect with simm13 Offset
  4130 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4131   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4132   match(AddP reg offset);
  4134   op_cost(100);
  4135   format %{ "[$reg + $offset]" %}
  4136   interface(MEMORY_INTER) %{
  4137     base($reg);
  4138     index(0x0);
  4139     scale(0x0);
  4140     disp($offset);
  4141   %}
  4142 %}
  4144 // Indirect with simm13 Offset minus 7
  4145 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4146   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4147   match(AddP reg offset);
  4149   op_cost(100);
  4150   format %{ "[$reg + $offset]" %}
  4151   interface(MEMORY_INTER) %{
  4152     base($reg);
  4153     index(0x0);
  4154     scale(0x0);
  4155     disp($offset);
  4156   %}
  4157 %}
  4159 // Note:  Intel has a swapped version also, like this:
  4160 //operand indOffsetX(iRegI reg, immP offset) %{
  4161 //  constraint(ALLOC_IN_RC(int_reg));
  4162 //  match(AddP offset reg);
  4163 //
  4164 //  op_cost(100);
  4165 //  format %{ "[$reg + $offset]" %}
  4166 //  interface(MEMORY_INTER) %{
  4167 //    base($reg);
  4168 //    index(0x0);
  4169 //    scale(0x0);
  4170 //    disp($offset);
  4171 //  %}
  4172 //%}
  4173 //// However, it doesn't make sense for SPARC, since
  4174 // we have no particularly good way to embed oops in
  4175 // single instructions.
  4177 // Indirect with Register Index
  4178 operand indIndex(iRegP addr, iRegX index) %{
  4179   constraint(ALLOC_IN_RC(ptr_reg));
  4180   match(AddP addr index);
  4182   op_cost(100);
  4183   format %{ "[$addr + $index]" %}
  4184   interface(MEMORY_INTER) %{
  4185     base($addr);
  4186     index($index);
  4187     scale(0x0);
  4188     disp(0x0);
  4189   %}
  4190 %}
  4192 //----------Special Memory Operands--------------------------------------------
  4193 // Stack Slot Operand - This operand is used for loading and storing temporary
  4194 //                      values on the stack where a match requires a value to
  4195 //                      flow through memory.
  4196 operand stackSlotI(sRegI reg) %{
  4197   constraint(ALLOC_IN_RC(stack_slots));
  4198   op_cost(100);
  4199   //match(RegI);
  4200   format %{ "[$reg]" %}
  4201   interface(MEMORY_INTER) %{
  4202     base(0xE);   // R_SP
  4203     index(0x0);
  4204     scale(0x0);
  4205     disp($reg);  // Stack Offset
  4206   %}
  4207 %}
  4209 operand stackSlotP(sRegP reg) %{
  4210   constraint(ALLOC_IN_RC(stack_slots));
  4211   op_cost(100);
  4212   //match(RegP);
  4213   format %{ "[$reg]" %}
  4214   interface(MEMORY_INTER) %{
  4215     base(0xE);   // R_SP
  4216     index(0x0);
  4217     scale(0x0);
  4218     disp($reg);  // Stack Offset
  4219   %}
  4220 %}
  4222 operand stackSlotF(sRegF reg) %{
  4223   constraint(ALLOC_IN_RC(stack_slots));
  4224   op_cost(100);
  4225   //match(RegF);
  4226   format %{ "[$reg]" %}
  4227   interface(MEMORY_INTER) %{
  4228     base(0xE);   // R_SP
  4229     index(0x0);
  4230     scale(0x0);
  4231     disp($reg);  // Stack Offset
  4232   %}
  4233 %}
  4234 operand stackSlotD(sRegD reg) %{
  4235   constraint(ALLOC_IN_RC(stack_slots));
  4236   op_cost(100);
  4237   //match(RegD);
  4238   format %{ "[$reg]" %}
  4239   interface(MEMORY_INTER) %{
  4240     base(0xE);   // R_SP
  4241     index(0x0);
  4242     scale(0x0);
  4243     disp($reg);  // Stack Offset
  4244   %}
  4245 %}
  4246 operand stackSlotL(sRegL reg) %{
  4247   constraint(ALLOC_IN_RC(stack_slots));
  4248   op_cost(100);
  4249   //match(RegL);
  4250   format %{ "[$reg]" %}
  4251   interface(MEMORY_INTER) %{
  4252     base(0xE);   // R_SP
  4253     index(0x0);
  4254     scale(0x0);
  4255     disp($reg);  // Stack Offset
  4256   %}
  4257 %}
  4259 // Operands for expressing Control Flow
  4260 // NOTE:  Label is a predefined operand which should not be redefined in
  4261 //        the AD file.  It is generically handled within the ADLC.
  4263 //----------Conditional Branch Operands----------------------------------------
  4264 // Comparison Op  - This is the operation of the comparison, and is limited to
  4265 //                  the following set of codes:
  4266 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4267 //
  4268 // Other attributes of the comparison, such as unsignedness, are specified
  4269 // by the comparison instruction that sets a condition code flags register.
  4270 // That result is represented by a flags operand whose subtype is appropriate
  4271 // to the unsignedness (etc.) of the comparison.
  4272 //
  4273 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4274 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4275 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4277 operand cmpOp() %{
  4278   match(Bool);
  4280   format %{ "" %}
  4281   interface(COND_INTER) %{
  4282     equal(0x1);
  4283     not_equal(0x9);
  4284     less(0x3);
  4285     greater_equal(0xB);
  4286     less_equal(0x2);
  4287     greater(0xA);
  4288   %}
  4289 %}
  4291 // Comparison Op, unsigned
  4292 operand cmpOpU() %{
  4293   match(Bool);
  4295   format %{ "u" %}
  4296   interface(COND_INTER) %{
  4297     equal(0x1);
  4298     not_equal(0x9);
  4299     less(0x5);
  4300     greater_equal(0xD);
  4301     less_equal(0x4);
  4302     greater(0xC);
  4303   %}
  4304 %}
  4306 // Comparison Op, pointer (same as unsigned)
  4307 operand cmpOpP() %{
  4308   match(Bool);
  4310   format %{ "p" %}
  4311   interface(COND_INTER) %{
  4312     equal(0x1);
  4313     not_equal(0x9);
  4314     less(0x5);
  4315     greater_equal(0xD);
  4316     less_equal(0x4);
  4317     greater(0xC);
  4318   %}
  4319 %}
  4321 // Comparison Op, branch-register encoding
  4322 operand cmpOp_reg() %{
  4323   match(Bool);
  4325   format %{ "" %}
  4326   interface(COND_INTER) %{
  4327     equal        (0x1);
  4328     not_equal    (0x5);
  4329     less         (0x3);
  4330     greater_equal(0x7);
  4331     less_equal   (0x2);
  4332     greater      (0x6);
  4333   %}
  4334 %}
  4336 // Comparison Code, floating, unordered same as less
  4337 operand cmpOpF() %{
  4338   match(Bool);
  4340   format %{ "fl" %}
  4341   interface(COND_INTER) %{
  4342     equal(0x9);
  4343     not_equal(0x1);
  4344     less(0x3);
  4345     greater_equal(0xB);
  4346     less_equal(0xE);
  4347     greater(0x6);
  4348   %}
  4349 %}
  4351 // Used by long compare
  4352 operand cmpOp_commute() %{
  4353   match(Bool);
  4355   format %{ "" %}
  4356   interface(COND_INTER) %{
  4357     equal(0x1);
  4358     not_equal(0x9);
  4359     less(0xA);
  4360     greater_equal(0x2);
  4361     less_equal(0xB);
  4362     greater(0x3);
  4363   %}
  4364 %}
  4366 //----------OPERAND CLASSES----------------------------------------------------
  4367 // Operand Classes are groups of operands that are used to simplify
  4368 // instruction definitions by not requiring the AD writer to specify separate
  4369 // instructions for every form of operand when the instruction accepts
  4370 // multiple operand types with the same basic encoding and format.  The classic
  4371 // case of this is memory operands.
  4372 opclass memory( indirect, indOffset13, indIndex );
  4373 opclass indIndexMemory( indIndex );
  4375 //----------PIPELINE-----------------------------------------------------------
  4376 pipeline %{
  4378 //----------ATTRIBUTES---------------------------------------------------------
  4379 attributes %{
  4380   fixed_size_instructions;           // Fixed size instructions
  4381   branch_has_delay_slot;             // Branch has delay slot following
  4382   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4383   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4384   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4385   instruction_fetch_units = 1;       // of 16 bytes
  4387   // List of nop instructions
  4388   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4389 %}
  4391 //----------RESOURCES----------------------------------------------------------
  4392 // Resources are the functional units available to the machine
  4393 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4395 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4396 // Pipeline Description specifies the stages in the machine's pipeline
  4398 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4400 //----------PIPELINE CLASSES---------------------------------------------------
  4401 // Pipeline Classes describe the stages in which input and output are
  4402 // referenced by the hardware pipeline.
  4404 // Integer ALU reg-reg operation
  4405 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4406     single_instruction;
  4407     dst   : E(write);
  4408     src1  : R(read);
  4409     src2  : R(read);
  4410     IALU  : R;
  4411 %}
  4413 // Integer ALU reg-reg long operation
  4414 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4415     instruction_count(2);
  4416     dst   : E(write);
  4417     src1  : R(read);
  4418     src2  : R(read);
  4419     IALU  : R;
  4420     IALU  : R;
  4421 %}
  4423 // Integer ALU reg-reg long dependent operation
  4424 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4425     instruction_count(1); multiple_bundles;
  4426     dst   : E(write);
  4427     src1  : R(read);
  4428     src2  : R(read);
  4429     cr    : E(write);
  4430     IALU  : R(2);
  4431 %}
  4433 // Integer ALU reg-imm operaion
  4434 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4435     single_instruction;
  4436     dst   : E(write);
  4437     src1  : R(read);
  4438     IALU  : R;
  4439 %}
  4441 // Integer ALU reg-reg operation with condition code
  4442 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4443     single_instruction;
  4444     dst   : E(write);
  4445     cr    : E(write);
  4446     src1  : R(read);
  4447     src2  : R(read);
  4448     IALU  : R;
  4449 %}
  4451 // Integer ALU reg-imm operation with condition code
  4452 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4453     single_instruction;
  4454     dst   : E(write);
  4455     cr    : E(write);
  4456     src1  : R(read);
  4457     IALU  : R;
  4458 %}
  4460 // Integer ALU zero-reg operation
  4461 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4462     single_instruction;
  4463     dst   : E(write);
  4464     src2  : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU zero-reg operation with condition code only
  4469 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4470     single_instruction;
  4471     cr    : E(write);
  4472     src   : R(read);
  4473     IALU  : R;
  4474 %}
  4476 // Integer ALU reg-reg operation with condition code only
  4477 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4478     single_instruction;
  4479     cr    : E(write);
  4480     src1  : R(read);
  4481     src2  : R(read);
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU reg-imm operation with condition code only
  4486 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4487     single_instruction;
  4488     cr    : E(write);
  4489     src1  : R(read);
  4490     IALU  : R;
  4491 %}
  4493 // Integer ALU reg-reg-zero operation with condition code only
  4494 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4495     single_instruction;
  4496     cr    : E(write);
  4497     src1  : R(read);
  4498     src2  : R(read);
  4499     IALU  : R;
  4500 %}
  4502 // Integer ALU reg-imm-zero operation with condition code only
  4503 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4504     single_instruction;
  4505     cr    : E(write);
  4506     src1  : R(read);
  4507     IALU  : R;
  4508 %}
  4510 // Integer ALU reg-reg operation with condition code, src1 modified
  4511 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4512     single_instruction;
  4513     cr    : E(write);
  4514     src1  : E(write);
  4515     src1  : R(read);
  4516     src2  : R(read);
  4517     IALU  : R;
  4518 %}
  4520 // Integer ALU reg-imm operation with condition code, src1 modified
  4521 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4522     single_instruction;
  4523     cr    : E(write);
  4524     src1  : E(write);
  4525     src1  : R(read);
  4526     IALU  : R;
  4527 %}
  4529 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4530     multiple_bundles;
  4531     dst   : E(write)+4;
  4532     cr    : E(write);
  4533     src1  : R(read);
  4534     src2  : R(read);
  4535     IALU  : R(3);
  4536     BR    : R(2);
  4537 %}
  4539 // Integer ALU operation
  4540 pipe_class ialu_none(iRegI dst) %{
  4541     single_instruction;
  4542     dst   : E(write);
  4543     IALU  : R;
  4544 %}
  4546 // Integer ALU reg operation
  4547 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4548     single_instruction; may_have_no_code;
  4549     dst   : E(write);
  4550     src   : R(read);
  4551     IALU  : R;
  4552 %}
  4554 // Integer ALU reg conditional operation
  4555 // This instruction has a 1 cycle stall, and cannot execute
  4556 // in the same cycle as the instruction setting the condition
  4557 // code. We kludge this by pretending to read the condition code
  4558 // 1 cycle earlier, and by marking the functional units as busy
  4559 // for 2 cycles with the result available 1 cycle later than
  4560 // is really the case.
  4561 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4562     single_instruction;
  4563     op2_out : C(write);
  4564     op1     : R(read);
  4565     cr      : R(read);       // This is really E, with a 1 cycle stall
  4566     BR      : R(2);
  4567     MS      : R(2);
  4568 %}
  4570 #ifdef _LP64
  4571 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4572     instruction_count(1); multiple_bundles;
  4573     dst     : C(write)+1;
  4574     src     : R(read)+1;
  4575     IALU    : R(1);
  4576     BR      : E(2);
  4577     MS      : E(2);
  4578 %}
  4579 #endif
  4581 // Integer ALU reg operation
  4582 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4583     single_instruction; may_have_no_code;
  4584     dst   : E(write);
  4585     src   : R(read);
  4586     IALU  : R;
  4587 %}
  4588 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4589     single_instruction; may_have_no_code;
  4590     dst   : E(write);
  4591     src   : R(read);
  4592     IALU  : R;
  4593 %}
  4595 // Two integer ALU reg operations
  4596 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4597     instruction_count(2);
  4598     dst   : E(write);
  4599     src   : R(read);
  4600     A0    : R;
  4601     A1    : R;
  4602 %}
  4604 // Two integer ALU reg operations
  4605 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4606     instruction_count(2); may_have_no_code;
  4607     dst   : E(write);
  4608     src   : R(read);
  4609     A0    : R;
  4610     A1    : R;
  4611 %}
  4613 // Integer ALU imm operation
  4614 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4615     single_instruction;
  4616     dst   : E(write);
  4617     IALU  : R;
  4618 %}
  4620 // Integer ALU reg-reg with carry operation
  4621 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4622     single_instruction;
  4623     dst   : E(write);
  4624     src1  : R(read);
  4625     src2  : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU cc operation
  4630 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4631     single_instruction;
  4632     dst   : E(write);
  4633     cc    : R(read);
  4634     IALU  : R;
  4635 %}
  4637 // Integer ALU cc / second IALU operation
  4638 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4639     instruction_count(1); multiple_bundles;
  4640     dst   : E(write)+1;
  4641     src   : R(read);
  4642     IALU  : R;
  4643 %}
  4645 // Integer ALU cc / second IALU operation
  4646 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4647     instruction_count(1); multiple_bundles;
  4648     dst   : E(write)+1;
  4649     p     : R(read);
  4650     q     : R(read);
  4651     IALU  : R;
  4652 %}
  4654 // Integer ALU hi-lo-reg operation
  4655 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4656     instruction_count(1); multiple_bundles;
  4657     dst   : E(write)+1;
  4658     IALU  : R(2);
  4659 %}
  4661 // Float ALU hi-lo-reg operation (with temp)
  4662 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4663     instruction_count(1); multiple_bundles;
  4664     dst   : E(write)+1;
  4665     IALU  : R(2);
  4666 %}
  4668 // Long Constant
  4669 pipe_class loadConL( iRegL dst, immL src ) %{
  4670     instruction_count(2); multiple_bundles;
  4671     dst   : E(write)+1;
  4672     IALU  : R(2);
  4673     IALU  : R(2);
  4674 %}
  4676 // Pointer Constant
  4677 pipe_class loadConP( iRegP dst, immP src ) %{
  4678     instruction_count(0); multiple_bundles;
  4679     fixed_latency(6);
  4680 %}
  4682 // Polling Address
  4683 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4684 #ifdef _LP64
  4685     instruction_count(0); multiple_bundles;
  4686     fixed_latency(6);
  4687 #else
  4688     dst   : E(write);
  4689     IALU  : R;
  4690 #endif
  4691 %}
  4693 // Long Constant small
  4694 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4695     instruction_count(2);
  4696     dst   : E(write);
  4697     IALU  : R;
  4698     IALU  : R;
  4699 %}
  4701 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4702 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4703     instruction_count(1); multiple_bundles;
  4704     src   : R(read);
  4705     dst   : M(write)+1;
  4706     IALU  : R;
  4707     MS    : E;
  4708 %}
  4710 // Integer ALU nop operation
  4711 pipe_class ialu_nop() %{
  4712     single_instruction;
  4713     IALU  : R;
  4714 %}
  4716 // Integer ALU nop operation
  4717 pipe_class ialu_nop_A0() %{
  4718     single_instruction;
  4719     A0    : R;
  4720 %}
  4722 // Integer ALU nop operation
  4723 pipe_class ialu_nop_A1() %{
  4724     single_instruction;
  4725     A1    : R;
  4726 %}
  4728 // Integer Multiply reg-reg operation
  4729 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4730     single_instruction;
  4731     dst   : E(write);
  4732     src1  : R(read);
  4733     src2  : R(read);
  4734     MS    : R(5);
  4735 %}
  4737 // Integer Multiply reg-imm operation
  4738 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4739     single_instruction;
  4740     dst   : E(write);
  4741     src1  : R(read);
  4742     MS    : R(5);
  4743 %}
  4745 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4746     single_instruction;
  4747     dst   : E(write)+4;
  4748     src1  : R(read);
  4749     src2  : R(read);
  4750     MS    : R(6);
  4751 %}
  4753 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4754     single_instruction;
  4755     dst   : E(write)+4;
  4756     src1  : R(read);
  4757     MS    : R(6);
  4758 %}
  4760 // Integer Divide reg-reg
  4761 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4762     instruction_count(1); multiple_bundles;
  4763     dst   : E(write);
  4764     temp  : E(write);
  4765     src1  : R(read);
  4766     src2  : R(read);
  4767     temp  : R(read);
  4768     MS    : R(38);
  4769 %}
  4771 // Integer Divide reg-imm
  4772 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4773     instruction_count(1); multiple_bundles;
  4774     dst   : E(write);
  4775     temp  : E(write);
  4776     src1  : R(read);
  4777     temp  : R(read);
  4778     MS    : R(38);
  4779 %}
  4781 // Long Divide
  4782 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4783     dst  : E(write)+71;
  4784     src1 : R(read);
  4785     src2 : R(read)+1;
  4786     MS   : R(70);
  4787 %}
  4789 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4790     dst  : E(write)+71;
  4791     src1 : R(read);
  4792     MS   : R(70);
  4793 %}
  4795 // Floating Point Add Float
  4796 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4797     single_instruction;
  4798     dst   : X(write);
  4799     src1  : E(read);
  4800     src2  : E(read);
  4801     FA    : R;
  4802 %}
  4804 // Floating Point Add Double
  4805 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4806     single_instruction;
  4807     dst   : X(write);
  4808     src1  : E(read);
  4809     src2  : E(read);
  4810     FA    : R;
  4811 %}
  4813 // Floating Point Conditional Move based on integer flags
  4814 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4815     single_instruction;
  4816     dst   : X(write);
  4817     src   : E(read);
  4818     cr    : R(read);
  4819     FA    : R(2);
  4820     BR    : R(2);
  4821 %}
  4823 // Floating Point Conditional Move based on integer flags
  4824 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4825     single_instruction;
  4826     dst   : X(write);
  4827     src   : E(read);
  4828     cr    : R(read);
  4829     FA    : R(2);
  4830     BR    : R(2);
  4831 %}
  4833 // Floating Point Multiply Float
  4834 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4835     single_instruction;
  4836     dst   : X(write);
  4837     src1  : E(read);
  4838     src2  : E(read);
  4839     FM    : R;
  4840 %}
  4842 // Floating Point Multiply Double
  4843 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4844     single_instruction;
  4845     dst   : X(write);
  4846     src1  : E(read);
  4847     src2  : E(read);
  4848     FM    : R;
  4849 %}
  4851 // Floating Point Divide Float
  4852 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4853     single_instruction;
  4854     dst   : X(write);
  4855     src1  : E(read);
  4856     src2  : E(read);
  4857     FM    : R;
  4858     FDIV  : C(14);
  4859 %}
  4861 // Floating Point Divide Double
  4862 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4863     single_instruction;
  4864     dst   : X(write);
  4865     src1  : E(read);
  4866     src2  : E(read);
  4867     FM    : R;
  4868     FDIV  : C(17);
  4869 %}
  4871 // Floating Point Move/Negate/Abs Float
  4872 pipe_class faddF_reg(regF dst, regF src) %{
  4873     single_instruction;
  4874     dst   : W(write);
  4875     src   : E(read);
  4876     FA    : R(1);
  4877 %}
  4879 // Floating Point Move/Negate/Abs Double
  4880 pipe_class faddD_reg(regD dst, regD src) %{
  4881     single_instruction;
  4882     dst   : W(write);
  4883     src   : E(read);
  4884     FA    : R;
  4885 %}
  4887 // Floating Point Convert F->D
  4888 pipe_class fcvtF2D(regD dst, regF src) %{
  4889     single_instruction;
  4890     dst   : X(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert I->D
  4896 pipe_class fcvtI2D(regD dst, regF src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert LHi->D
  4904 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4905     single_instruction;
  4906     dst   : X(write);
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert L->D
  4912 pipe_class fcvtL2D(regD dst, regF src) %{
  4913     single_instruction;
  4914     dst   : X(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert L->F
  4920 pipe_class fcvtL2F(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert D->F
  4928 pipe_class fcvtD2F(regD dst, regF src) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert I->L
  4936 pipe_class fcvtI2L(regD dst, regF src) %{
  4937     single_instruction;
  4938     dst   : X(write);
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert D->F
  4944 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4945     instruction_count(1); multiple_bundles;
  4946     dst   : X(write)+6;
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert D->L
  4952 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4953     instruction_count(1); multiple_bundles;
  4954     dst   : X(write)+6;
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert F->I
  4960 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4961     instruction_count(1); multiple_bundles;
  4962     dst   : X(write)+6;
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Convert F->L
  4968 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4969     instruction_count(1); multiple_bundles;
  4970     dst   : X(write)+6;
  4971     src   : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Convert I->F
  4976 pipe_class fcvtI2F(regF dst, regF src) %{
  4977     single_instruction;
  4978     dst   : X(write);
  4979     src   : E(read);
  4980     FA    : R;
  4981 %}
  4983 // Floating Point Compare
  4984 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4985     single_instruction;
  4986     cr    : X(write);
  4987     src1  : E(read);
  4988     src2  : E(read);
  4989     FA    : R;
  4990 %}
  4992 // Floating Point Compare
  4993 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4994     single_instruction;
  4995     cr    : X(write);
  4996     src1  : E(read);
  4997     src2  : E(read);
  4998     FA    : R;
  4999 %}
  5001 // Floating Add Nop
  5002 pipe_class fadd_nop() %{
  5003     single_instruction;
  5004     FA  : R;
  5005 %}
  5007 // Integer Store to Memory
  5008 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5009     single_instruction;
  5010     mem   : R(read);
  5011     src   : C(read);
  5012     MS    : R;
  5013 %}
  5015 // Integer Store to Memory
  5016 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5017     single_instruction;
  5018     mem   : R(read);
  5019     src   : C(read);
  5020     MS    : R;
  5021 %}
  5023 // Integer Store Zero to Memory
  5024 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5025     single_instruction;
  5026     mem   : R(read);
  5027     MS    : R;
  5028 %}
  5030 // Special Stack Slot Store
  5031 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5032     single_instruction;
  5033     stkSlot : R(read);
  5034     src     : C(read);
  5035     MS      : R;
  5036 %}
  5038 // Special Stack Slot Store
  5039 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5040     instruction_count(2); multiple_bundles;
  5041     stkSlot : R(read);
  5042     src     : C(read);
  5043     MS      : R(2);
  5044 %}
  5046 // Float Store
  5047 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5048     single_instruction;
  5049     mem : R(read);
  5050     src : C(read);
  5051     MS  : R;
  5052 %}
  5054 // Float Store
  5055 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5056     single_instruction;
  5057     mem : R(read);
  5058     MS  : R;
  5059 %}
  5061 // Double Store
  5062 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5063     instruction_count(1);
  5064     mem : R(read);
  5065     src : C(read);
  5066     MS  : R;
  5067 %}
  5069 // Double Store
  5070 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5071     single_instruction;
  5072     mem : R(read);
  5073     MS  : R;
  5074 %}
  5076 // Special Stack Slot Float Store
  5077 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5078     single_instruction;
  5079     stkSlot : R(read);
  5080     src     : C(read);
  5081     MS      : R;
  5082 %}
  5084 // Special Stack Slot Double Store
  5085 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5086     single_instruction;
  5087     stkSlot : R(read);
  5088     src     : C(read);
  5089     MS      : R;
  5090 %}
  5092 // Integer Load (when sign bit propagation not needed)
  5093 pipe_class iload_mem(iRegI dst, memory mem) %{
  5094     single_instruction;
  5095     mem : R(read);
  5096     dst : C(write);
  5097     MS  : R;
  5098 %}
  5100 // Integer Load from stack operand
  5101 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5102     single_instruction;
  5103     mem : R(read);
  5104     dst : C(write);
  5105     MS  : R;
  5106 %}
  5108 // Integer Load (when sign bit propagation or masking is needed)
  5109 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5110     single_instruction;
  5111     mem : R(read);
  5112     dst : M(write);
  5113     MS  : R;
  5114 %}
  5116 // Float Load
  5117 pipe_class floadF_mem(regF dst, memory mem) %{
  5118     single_instruction;
  5119     mem : R(read);
  5120     dst : M(write);
  5121     MS  : R;
  5122 %}
  5124 // Float Load
  5125 pipe_class floadD_mem(regD dst, memory mem) %{
  5126     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5127     mem : R(read);
  5128     dst : M(write);
  5129     MS  : R;
  5130 %}
  5132 // Float Load
  5133 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5134     single_instruction;
  5135     stkSlot : R(read);
  5136     dst : M(write);
  5137     MS  : R;
  5138 %}
  5140 // Float Load
  5141 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5142     single_instruction;
  5143     stkSlot : R(read);
  5144     dst : M(write);
  5145     MS  : R;
  5146 %}
  5148 // Memory Nop
  5149 pipe_class mem_nop() %{
  5150     single_instruction;
  5151     MS  : R;
  5152 %}
  5154 pipe_class sethi(iRegP dst, immI src) %{
  5155     single_instruction;
  5156     dst  : E(write);
  5157     IALU : R;
  5158 %}
  5160 pipe_class loadPollP(iRegP poll) %{
  5161     single_instruction;
  5162     poll : R(read);
  5163     MS   : R;
  5164 %}
  5166 pipe_class br(Universe br, label labl) %{
  5167     single_instruction_with_delay_slot;
  5168     BR  : R;
  5169 %}
  5171 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5172     single_instruction_with_delay_slot;
  5173     cr    : E(read);
  5174     BR    : R;
  5175 %}
  5177 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5178     single_instruction_with_delay_slot;
  5179     op1 : E(read);
  5180     BR  : R;
  5181     MS  : R;
  5182 %}
  5184 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5185     single_instruction_with_delay_slot;
  5186     cr    : E(read);
  5187     BR    : R;
  5188 %}
  5190 pipe_class br_nop() %{
  5191     single_instruction;
  5192     BR  : R;
  5193 %}
  5195 pipe_class simple_call(method meth) %{
  5196     instruction_count(2); multiple_bundles; force_serialization;
  5197     fixed_latency(100);
  5198     BR  : R(1);
  5199     MS  : R(1);
  5200     A0  : R(1);
  5201 %}
  5203 pipe_class compiled_call(method meth) %{
  5204     instruction_count(1); multiple_bundles; force_serialization;
  5205     fixed_latency(100);
  5206     MS  : R(1);
  5207 %}
  5209 pipe_class call(method meth) %{
  5210     instruction_count(0); multiple_bundles; force_serialization;
  5211     fixed_latency(100);
  5212 %}
  5214 pipe_class tail_call(Universe ignore, label labl) %{
  5215     single_instruction; has_delay_slot;
  5216     fixed_latency(100);
  5217     BR  : R(1);
  5218     MS  : R(1);
  5219 %}
  5221 pipe_class ret(Universe ignore) %{
  5222     single_instruction; has_delay_slot;
  5223     BR  : R(1);
  5224     MS  : R(1);
  5225 %}
  5227 pipe_class ret_poll(g3RegP poll) %{
  5228     instruction_count(3); has_delay_slot;
  5229     poll : E(read);
  5230     MS   : R;
  5231 %}
  5233 // The real do-nothing guy
  5234 pipe_class empty( ) %{
  5235     instruction_count(0);
  5236 %}
  5238 pipe_class long_memory_op() %{
  5239     instruction_count(0); multiple_bundles; force_serialization;
  5240     fixed_latency(25);
  5241     MS  : R(1);
  5242 %}
  5244 // Check-cast
  5245 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5246     array : R(read);
  5247     match  : R(read);
  5248     IALU   : R(2);
  5249     BR     : R(2);
  5250     MS     : R;
  5251 %}
  5253 // Convert FPU flags into +1,0,-1
  5254 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5255     src1  : E(read);
  5256     src2  : E(read);
  5257     dst   : E(write);
  5258     FA    : R;
  5259     MS    : R(2);
  5260     BR    : R(2);
  5261 %}
  5263 // Compare for p < q, and conditionally add y
  5264 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5265     p     : E(read);
  5266     q     : E(read);
  5267     y     : E(read);
  5268     IALU  : R(3)
  5269 %}
  5271 // Perform a compare, then move conditionally in a branch delay slot.
  5272 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5273     src2   : E(read);
  5274     srcdst : E(read);
  5275     IALU   : R;
  5276     BR     : R;
  5277 %}
  5279 // Define the class for the Nop node
  5280 define %{
  5281    MachNop = ialu_nop;
  5282 %}
  5284 %}
  5286 //----------INSTRUCTIONS-------------------------------------------------------
  5288 //------------Special Stack Slot instructions - no match rules-----------------
  5289 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5290   // No match rule to avoid chain rule match.
  5291   effect(DEF dst, USE src);
  5292   ins_cost(MEMORY_REF_COST);
  5293   size(4);
  5294   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5295   opcode(Assembler::ldf_op3);
  5296   ins_encode(simple_form3_mem_reg(src, dst));
  5297   ins_pipe(floadF_stk);
  5298 %}
  5300 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5301   // No match rule to avoid chain rule match.
  5302   effect(DEF dst, USE src);
  5303   ins_cost(MEMORY_REF_COST);
  5304   size(4);
  5305   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5306   opcode(Assembler::lddf_op3);
  5307   ins_encode(simple_form3_mem_reg(src, dst));
  5308   ins_pipe(floadD_stk);
  5309 %}
  5311 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5312   // No match rule to avoid chain rule match.
  5313   effect(DEF dst, USE src);
  5314   ins_cost(MEMORY_REF_COST);
  5315   size(4);
  5316   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5317   opcode(Assembler::stf_op3);
  5318   ins_encode(simple_form3_mem_reg(dst, src));
  5319   ins_pipe(fstoreF_stk_reg);
  5320 %}
  5322 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5323   // No match rule to avoid chain rule match.
  5324   effect(DEF dst, USE src);
  5325   ins_cost(MEMORY_REF_COST);
  5326   size(4);
  5327   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5328   opcode(Assembler::stdf_op3);
  5329   ins_encode(simple_form3_mem_reg(dst, src));
  5330   ins_pipe(fstoreD_stk_reg);
  5331 %}
  5333 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5334   effect(DEF dst, USE src);
  5335   ins_cost(MEMORY_REF_COST*2);
  5336   size(8);
  5337   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5338             "STW    R_G0,$dst.lo" %}
  5339   opcode(Assembler::stw_op3);
  5340   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5341   ins_pipe(lstoreI_stk_reg);
  5342 %}
  5344 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5345   // No match rule to avoid chain rule match.
  5346   effect(DEF dst, USE src);
  5347   ins_cost(MEMORY_REF_COST);
  5348   size(4);
  5349   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5350   opcode(Assembler::stx_op3);
  5351   ins_encode(simple_form3_mem_reg( dst, src ) );
  5352   ins_pipe(istore_stk_reg);
  5353 %}
  5355 //---------- Chain stack slots between similar types --------
  5357 // Load integer from stack slot
  5358 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5359   match(Set dst src);
  5360   ins_cost(MEMORY_REF_COST);
  5362   size(4);
  5363   format %{ "LDUW   $src,$dst\t!stk" %}
  5364   opcode(Assembler::lduw_op3);
  5365   ins_encode(simple_form3_mem_reg( src, dst ) );
  5366   ins_pipe(iload_mem);
  5367 %}
  5369 // Store integer to stack slot
  5370 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5371   match(Set dst src);
  5372   ins_cost(MEMORY_REF_COST);
  5374   size(4);
  5375   format %{ "STW    $src,$dst\t!stk" %}
  5376   opcode(Assembler::stw_op3);
  5377   ins_encode(simple_form3_mem_reg( dst, src ) );
  5378   ins_pipe(istore_mem_reg);
  5379 %}
  5381 // Load long from stack slot
  5382 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5383   match(Set dst src);
  5385   ins_cost(MEMORY_REF_COST);
  5386   size(4);
  5387   format %{ "LDX    $src,$dst\t! long" %}
  5388   opcode(Assembler::ldx_op3);
  5389   ins_encode(simple_form3_mem_reg( src, dst ) );
  5390   ins_pipe(iload_mem);
  5391 %}
  5393 // Store long to stack slot
  5394 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5395   match(Set dst src);
  5397   ins_cost(MEMORY_REF_COST);
  5398   size(4);
  5399   format %{ "STX    $src,$dst\t! long" %}
  5400   opcode(Assembler::stx_op3);
  5401   ins_encode(simple_form3_mem_reg( dst, src ) );
  5402   ins_pipe(istore_mem_reg);
  5403 %}
  5405 #ifdef _LP64
  5406 // Load pointer from stack slot, 64-bit encoding
  5407 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5408   match(Set dst src);
  5409   ins_cost(MEMORY_REF_COST);
  5410   size(4);
  5411   format %{ "LDX    $src,$dst\t!ptr" %}
  5412   opcode(Assembler::ldx_op3);
  5413   ins_encode(simple_form3_mem_reg( src, dst ) );
  5414   ins_pipe(iload_mem);
  5415 %}
  5417 // Store pointer to stack slot
  5418 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5419   match(Set dst src);
  5420   ins_cost(MEMORY_REF_COST);
  5421   size(4);
  5422   format %{ "STX    $src,$dst\t!ptr" %}
  5423   opcode(Assembler::stx_op3);
  5424   ins_encode(simple_form3_mem_reg( dst, src ) );
  5425   ins_pipe(istore_mem_reg);
  5426 %}
  5427 #else // _LP64
  5428 // Load pointer from stack slot, 32-bit encoding
  5429 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5430   match(Set dst src);
  5431   ins_cost(MEMORY_REF_COST);
  5432   format %{ "LDUW   $src,$dst\t!ptr" %}
  5433   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5434   ins_encode(simple_form3_mem_reg( src, dst ) );
  5435   ins_pipe(iload_mem);
  5436 %}
  5438 // Store pointer to stack slot
  5439 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5440   match(Set dst src);
  5441   ins_cost(MEMORY_REF_COST);
  5442   format %{ "STW    $src,$dst\t!ptr" %}
  5443   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5444   ins_encode(simple_form3_mem_reg( dst, src ) );
  5445   ins_pipe(istore_mem_reg);
  5446 %}
  5447 #endif // _LP64
  5449 //------------Special Nop instructions for bundling - no match rules-----------
  5450 // Nop using the A0 functional unit
  5451 instruct Nop_A0() %{
  5452   ins_cost(0);
  5454   format %{ "NOP    ! Alu Pipeline" %}
  5455   opcode(Assembler::or_op3, Assembler::arith_op);
  5456   ins_encode( form2_nop() );
  5457   ins_pipe(ialu_nop_A0);
  5458 %}
  5460 // Nop using the A1 functional unit
  5461 instruct Nop_A1( ) %{
  5462   ins_cost(0);
  5464   format %{ "NOP    ! Alu Pipeline" %}
  5465   opcode(Assembler::or_op3, Assembler::arith_op);
  5466   ins_encode( form2_nop() );
  5467   ins_pipe(ialu_nop_A1);
  5468 %}
  5470 // Nop using the memory functional unit
  5471 instruct Nop_MS( ) %{
  5472   ins_cost(0);
  5474   format %{ "NOP    ! Memory Pipeline" %}
  5475   ins_encode( emit_mem_nop );
  5476   ins_pipe(mem_nop);
  5477 %}
  5479 // Nop using the floating add functional unit
  5480 instruct Nop_FA( ) %{
  5481   ins_cost(0);
  5483   format %{ "NOP    ! Floating Add Pipeline" %}
  5484   ins_encode( emit_fadd_nop );
  5485   ins_pipe(fadd_nop);
  5486 %}
  5488 // Nop using the branch functional unit
  5489 instruct Nop_BR( ) %{
  5490   ins_cost(0);
  5492   format %{ "NOP    ! Branch Pipeline" %}
  5493   ins_encode( emit_br_nop );
  5494   ins_pipe(br_nop);
  5495 %}
  5497 //----------Load/Store/Move Instructions---------------------------------------
  5498 //----------Load Instructions--------------------------------------------------
  5499 // Load Byte (8bit signed)
  5500 instruct loadB(iRegI dst, memory mem) %{
  5501   match(Set dst (LoadB mem));
  5502   ins_cost(MEMORY_REF_COST);
  5504   size(4);
  5505   format %{ "LDSB   $mem,$dst\t! byte" %}
  5506   ins_encode %{
  5507     __ ldsb($mem$$Address, $dst$$Register);
  5508   %}
  5509   ins_pipe(iload_mask_mem);
  5510 %}
  5512 // Load Byte (8bit signed) into a Long Register
  5513 instruct loadB2L(iRegL dst, memory mem) %{
  5514   match(Set dst (ConvI2L (LoadB mem)));
  5515   ins_cost(MEMORY_REF_COST);
  5517   size(4);
  5518   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5519   ins_encode %{
  5520     __ ldsb($mem$$Address, $dst$$Register);
  5521   %}
  5522   ins_pipe(iload_mask_mem);
  5523 %}
  5525 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5526 instruct loadUB(iRegI dst, memory mem) %{
  5527   match(Set dst (LoadUB mem));
  5528   ins_cost(MEMORY_REF_COST);
  5530   size(4);
  5531   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5532   ins_encode %{
  5533     __ ldub($mem$$Address, $dst$$Register);
  5534   %}
  5535   ins_pipe(iload_mem);
  5536 %}
  5538 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5539 instruct loadUB2L(iRegL dst, memory mem) %{
  5540   match(Set dst (ConvI2L (LoadUB mem)));
  5541   ins_cost(MEMORY_REF_COST);
  5543   size(4);
  5544   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5545   ins_encode %{
  5546     __ ldub($mem$$Address, $dst$$Register);
  5547   %}
  5548   ins_pipe(iload_mem);
  5549 %}
  5551 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5552 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5553   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5554   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5556   size(2*4);
  5557   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5558             "AND    $dst,$mask,$dst" %}
  5559   ins_encode %{
  5560     __ ldub($mem$$Address, $dst$$Register);
  5561     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5562   %}
  5563   ins_pipe(iload_mem);
  5564 %}
  5566 // Load Short (16bit signed)
  5567 instruct loadS(iRegI dst, memory mem) %{
  5568   match(Set dst (LoadS mem));
  5569   ins_cost(MEMORY_REF_COST);
  5571   size(4);
  5572   format %{ "LDSH   $mem,$dst\t! short" %}
  5573   ins_encode %{
  5574     __ ldsh($mem$$Address, $dst$$Register);
  5575   %}
  5576   ins_pipe(iload_mask_mem);
  5577 %}
  5579 // Load Short (16 bit signed) to Byte (8 bit signed)
  5580 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5581   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5582   ins_cost(MEMORY_REF_COST);
  5584   size(4);
  5586   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5587   ins_encode %{
  5588     __ ldsb($mem$$Address, $dst$$Register, 1);
  5589   %}
  5590   ins_pipe(iload_mask_mem);
  5591 %}
  5593 // Load Short (16bit signed) into a Long Register
  5594 instruct loadS2L(iRegL dst, memory mem) %{
  5595   match(Set dst (ConvI2L (LoadS mem)));
  5596   ins_cost(MEMORY_REF_COST);
  5598   size(4);
  5599   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5600   ins_encode %{
  5601     __ ldsh($mem$$Address, $dst$$Register);
  5602   %}
  5603   ins_pipe(iload_mask_mem);
  5604 %}
  5606 // Load Unsigned Short/Char (16bit UNsigned)
  5607 instruct loadUS(iRegI dst, memory mem) %{
  5608   match(Set dst (LoadUS mem));
  5609   ins_cost(MEMORY_REF_COST);
  5611   size(4);
  5612   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5613   ins_encode %{
  5614     __ lduh($mem$$Address, $dst$$Register);
  5615   %}
  5616   ins_pipe(iload_mem);
  5617 %}
  5619 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5620 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5621   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5622   ins_cost(MEMORY_REF_COST);
  5624   size(4);
  5625   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5626   ins_encode %{
  5627     __ ldsb($mem$$Address, $dst$$Register, 1);
  5628   %}
  5629   ins_pipe(iload_mask_mem);
  5630 %}
  5632 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5633 instruct loadUS2L(iRegL dst, memory mem) %{
  5634   match(Set dst (ConvI2L (LoadUS mem)));
  5635   ins_cost(MEMORY_REF_COST);
  5637   size(4);
  5638   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5639   ins_encode %{
  5640     __ lduh($mem$$Address, $dst$$Register);
  5641   %}
  5642   ins_pipe(iload_mem);
  5643 %}
  5645 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5646 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5647   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5648   ins_cost(MEMORY_REF_COST);
  5650   size(4);
  5651   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5652   ins_encode %{
  5653     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5654   %}
  5655   ins_pipe(iload_mem);
  5656 %}
  5658 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5659 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5660   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5661   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5663   size(2*4);
  5664   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5665             "AND    $dst,$mask,$dst" %}
  5666   ins_encode %{
  5667     Register Rdst = $dst$$Register;
  5668     __ lduh($mem$$Address, Rdst);
  5669     __ and3(Rdst, $mask$$constant, Rdst);
  5670   %}
  5671   ins_pipe(iload_mem);
  5672 %}
  5674 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5675 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5676   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5677   effect(TEMP dst, TEMP tmp);
  5678   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5680   size((3+1)*4);  // set may use two instructions.
  5681   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5682             "SET    $mask,$tmp\n\t"
  5683             "AND    $dst,$tmp,$dst" %}
  5684   ins_encode %{
  5685     Register Rdst = $dst$$Register;
  5686     Register Rtmp = $tmp$$Register;
  5687     __ lduh($mem$$Address, Rdst);
  5688     __ set($mask$$constant, Rtmp);
  5689     __ and3(Rdst, Rtmp, Rdst);
  5690   %}
  5691   ins_pipe(iload_mem);
  5692 %}
  5694 // Load Integer
  5695 instruct loadI(iRegI dst, memory mem) %{
  5696   match(Set dst (LoadI mem));
  5697   ins_cost(MEMORY_REF_COST);
  5699   size(4);
  5700   format %{ "LDUW   $mem,$dst\t! int" %}
  5701   ins_encode %{
  5702     __ lduw($mem$$Address, $dst$$Register);
  5703   %}
  5704   ins_pipe(iload_mem);
  5705 %}
  5707 // Load Integer to Byte (8 bit signed)
  5708 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5709   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5710   ins_cost(MEMORY_REF_COST);
  5712   size(4);
  5714   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5715   ins_encode %{
  5716     __ ldsb($mem$$Address, $dst$$Register, 3);
  5717   %}
  5718   ins_pipe(iload_mask_mem);
  5719 %}
  5721 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5722 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5723   match(Set dst (AndI (LoadI mem) mask));
  5724   ins_cost(MEMORY_REF_COST);
  5726   size(4);
  5728   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5729   ins_encode %{
  5730     __ ldub($mem$$Address, $dst$$Register, 3);
  5731   %}
  5732   ins_pipe(iload_mask_mem);
  5733 %}
  5735 // Load Integer to Short (16 bit signed)
  5736 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5737   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5738   ins_cost(MEMORY_REF_COST);
  5740   size(4);
  5742   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5743   ins_encode %{
  5744     __ ldsh($mem$$Address, $dst$$Register, 2);
  5745   %}
  5746   ins_pipe(iload_mask_mem);
  5747 %}
  5749 // Load Integer to Unsigned Short (16 bit UNsigned)
  5750 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5751   match(Set dst (AndI (LoadI mem) mask));
  5752   ins_cost(MEMORY_REF_COST);
  5754   size(4);
  5756   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5757   ins_encode %{
  5758     __ lduh($mem$$Address, $dst$$Register, 2);
  5759   %}
  5760   ins_pipe(iload_mask_mem);
  5761 %}
  5763 // Load Integer into a Long Register
  5764 instruct loadI2L(iRegL dst, memory mem) %{
  5765   match(Set dst (ConvI2L (LoadI mem)));
  5766   ins_cost(MEMORY_REF_COST);
  5768   size(4);
  5769   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5770   ins_encode %{
  5771     __ ldsw($mem$$Address, $dst$$Register);
  5772   %}
  5773   ins_pipe(iload_mask_mem);
  5774 %}
  5776 // Load Integer with mask 0xFF into a Long Register
  5777 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5778   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5779   ins_cost(MEMORY_REF_COST);
  5781   size(4);
  5782   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5783   ins_encode %{
  5784     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5785   %}
  5786   ins_pipe(iload_mem);
  5787 %}
  5789 // Load Integer with mask 0xFFFF into a Long Register
  5790 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5791   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5792   ins_cost(MEMORY_REF_COST);
  5794   size(4);
  5795   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5796   ins_encode %{
  5797     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5798   %}
  5799   ins_pipe(iload_mem);
  5800 %}
  5802 // Load Integer with a 13-bit mask into a Long Register
  5803 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5804   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5805   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5807   size(2*4);
  5808   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5809             "AND    $dst,$mask,$dst" %}
  5810   ins_encode %{
  5811     Register Rdst = $dst$$Register;
  5812     __ lduw($mem$$Address, Rdst);
  5813     __ and3(Rdst, $mask$$constant, Rdst);
  5814   %}
  5815   ins_pipe(iload_mem);
  5816 %}
  5818 // Load Integer with a 32-bit mask into a Long Register
  5819 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5820   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5821   effect(TEMP dst, TEMP tmp);
  5822   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5824   size((3+1)*4);  // set may use two instructions.
  5825   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5826             "SET    $mask,$tmp\n\t"
  5827             "AND    $dst,$tmp,$dst" %}
  5828   ins_encode %{
  5829     Register Rdst = $dst$$Register;
  5830     Register Rtmp = $tmp$$Register;
  5831     __ lduw($mem$$Address, Rdst);
  5832     __ set($mask$$constant, Rtmp);
  5833     __ and3(Rdst, Rtmp, Rdst);
  5834   %}
  5835   ins_pipe(iload_mem);
  5836 %}
  5838 // Load Unsigned Integer into a Long Register
  5839 instruct loadUI2L(iRegL dst, memory mem) %{
  5840   match(Set dst (LoadUI2L mem));
  5841   ins_cost(MEMORY_REF_COST);
  5843   size(4);
  5844   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5845   ins_encode %{
  5846     __ lduw($mem$$Address, $dst$$Register);
  5847   %}
  5848   ins_pipe(iload_mem);
  5849 %}
  5851 // Load Long - aligned
  5852 instruct loadL(iRegL dst, memory mem ) %{
  5853   match(Set dst (LoadL mem));
  5854   ins_cost(MEMORY_REF_COST);
  5856   size(4);
  5857   format %{ "LDX    $mem,$dst\t! long" %}
  5858   ins_encode %{
  5859     __ ldx($mem$$Address, $dst$$Register);
  5860   %}
  5861   ins_pipe(iload_mem);
  5862 %}
  5864 // Load Long - UNaligned
  5865 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5866   match(Set dst (LoadL_unaligned mem));
  5867   effect(KILL tmp);
  5868   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5869   size(16);
  5870   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5871           "\tLDUW   $mem  ,$dst\n"
  5872           "\tSLLX   #32, $dst, $dst\n"
  5873           "\tOR     $dst, R_O7, $dst" %}
  5874   opcode(Assembler::lduw_op3);
  5875   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5876   ins_pipe(iload_mem);
  5877 %}
  5879 // Load Aligned Packed Byte into a Double Register
  5880 instruct loadA8B(regD dst, memory mem) %{
  5881   match(Set dst (Load8B mem));
  5882   ins_cost(MEMORY_REF_COST);
  5883   size(4);
  5884   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5885   opcode(Assembler::lddf_op3);
  5886   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5887   ins_pipe(floadD_mem);
  5888 %}
  5890 // Load Aligned Packed Char into a Double Register
  5891 instruct loadA4C(regD dst, memory mem) %{
  5892   match(Set dst (Load4C mem));
  5893   ins_cost(MEMORY_REF_COST);
  5894   size(4);
  5895   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5896   opcode(Assembler::lddf_op3);
  5897   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5898   ins_pipe(floadD_mem);
  5899 %}
  5901 // Load Aligned Packed Short into a Double Register
  5902 instruct loadA4S(regD dst, memory mem) %{
  5903   match(Set dst (Load4S mem));
  5904   ins_cost(MEMORY_REF_COST);
  5905   size(4);
  5906   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5907   opcode(Assembler::lddf_op3);
  5908   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5909   ins_pipe(floadD_mem);
  5910 %}
  5912 // Load Aligned Packed Int into a Double Register
  5913 instruct loadA2I(regD dst, memory mem) %{
  5914   match(Set dst (Load2I mem));
  5915   ins_cost(MEMORY_REF_COST);
  5916   size(4);
  5917   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5918   opcode(Assembler::lddf_op3);
  5919   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5920   ins_pipe(floadD_mem);
  5921 %}
  5923 // Load Range
  5924 instruct loadRange(iRegI dst, memory mem) %{
  5925   match(Set dst (LoadRange mem));
  5926   ins_cost(MEMORY_REF_COST);
  5928   size(4);
  5929   format %{ "LDUW   $mem,$dst\t! range" %}
  5930   opcode(Assembler::lduw_op3);
  5931   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5932   ins_pipe(iload_mem);
  5933 %}
  5935 // Load Integer into %f register (for fitos/fitod)
  5936 instruct loadI_freg(regF dst, memory mem) %{
  5937   match(Set dst (LoadI mem));
  5938   ins_cost(MEMORY_REF_COST);
  5939   size(4);
  5941   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5942   opcode(Assembler::ldf_op3);
  5943   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5944   ins_pipe(floadF_mem);
  5945 %}
  5947 // Load Pointer
  5948 instruct loadP(iRegP dst, memory mem) %{
  5949   match(Set dst (LoadP mem));
  5950   ins_cost(MEMORY_REF_COST);
  5951   size(4);
  5953 #ifndef _LP64
  5954   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5955   ins_encode %{
  5956     __ lduw($mem$$Address, $dst$$Register);
  5957   %}
  5958 #else
  5959   format %{ "LDX    $mem,$dst\t! ptr" %}
  5960   ins_encode %{
  5961     __ ldx($mem$$Address, $dst$$Register);
  5962   %}
  5963 #endif
  5964   ins_pipe(iload_mem);
  5965 %}
  5967 // Load Compressed Pointer
  5968 instruct loadN(iRegN dst, memory mem) %{
  5969   match(Set dst (LoadN mem));
  5970   ins_cost(MEMORY_REF_COST);
  5971   size(4);
  5973   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5974   ins_encode %{
  5975     __ lduw($mem$$Address, $dst$$Register);
  5976   %}
  5977   ins_pipe(iload_mem);
  5978 %}
  5980 // Load Klass Pointer
  5981 instruct loadKlass(iRegP dst, memory mem) %{
  5982   match(Set dst (LoadKlass mem));
  5983   ins_cost(MEMORY_REF_COST);
  5984   size(4);
  5986 #ifndef _LP64
  5987   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5988   ins_encode %{
  5989     __ lduw($mem$$Address, $dst$$Register);
  5990   %}
  5991 #else
  5992   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5993   ins_encode %{
  5994     __ ldx($mem$$Address, $dst$$Register);
  5995   %}
  5996 #endif
  5997   ins_pipe(iload_mem);
  5998 %}
  6000 // Load narrow Klass Pointer
  6001 instruct loadNKlass(iRegN dst, memory mem) %{
  6002   match(Set dst (LoadNKlass mem));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6006   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6007   ins_encode %{
  6008     __ lduw($mem$$Address, $dst$$Register);
  6009   %}
  6010   ins_pipe(iload_mem);
  6011 %}
  6013 // Load Double
  6014 instruct loadD(regD dst, memory mem) %{
  6015   match(Set dst (LoadD mem));
  6016   ins_cost(MEMORY_REF_COST);
  6018   size(4);
  6019   format %{ "LDDF   $mem,$dst" %}
  6020   opcode(Assembler::lddf_op3);
  6021   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6022   ins_pipe(floadD_mem);
  6023 %}
  6025 // Load Double - UNaligned
  6026 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6027   match(Set dst (LoadD_unaligned mem));
  6028   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6029   size(8);
  6030   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6031           "\tLDF    $mem+4,$dst.lo\t!" %}
  6032   opcode(Assembler::ldf_op3);
  6033   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6034   ins_pipe(iload_mem);
  6035 %}
  6037 // Load Float
  6038 instruct loadF(regF dst, memory mem) %{
  6039   match(Set dst (LoadF mem));
  6040   ins_cost(MEMORY_REF_COST);
  6042   size(4);
  6043   format %{ "LDF    $mem,$dst" %}
  6044   opcode(Assembler::ldf_op3);
  6045   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6046   ins_pipe(floadF_mem);
  6047 %}
  6049 // Load Constant
  6050 instruct loadConI( iRegI dst, immI src ) %{
  6051   match(Set dst src);
  6052   ins_cost(DEFAULT_COST * 3/2);
  6053   format %{ "SET    $src,$dst" %}
  6054   ins_encode( Set32(src, dst) );
  6055   ins_pipe(ialu_hi_lo_reg);
  6056 %}
  6058 instruct loadConI13( iRegI dst, immI13 src ) %{
  6059   match(Set dst src);
  6061   size(4);
  6062   format %{ "MOV    $src,$dst" %}
  6063   ins_encode( Set13( src, dst ) );
  6064   ins_pipe(ialu_imm);
  6065 %}
  6067 #ifndef _LP64
  6068 instruct loadConP(iRegP dst, immP con) %{
  6069   match(Set dst con);
  6070   ins_cost(DEFAULT_COST * 3/2);
  6071   format %{ "SET    $con,$dst\t!ptr" %}
  6072   ins_encode %{
  6073     // [RGV] This next line should be generated from ADLC
  6074     if (_opnds[1]->constant_is_oop()) {
  6075       intptr_t val = $con$$constant;
  6076       __ set_oop_constant((jobject) val, $dst$$Register);
  6077     } else {          // non-oop pointers, e.g. card mark base, heap top
  6078       __ set($con$$constant, $dst$$Register);
  6080   %}
  6081   ins_pipe(loadConP);
  6082 %}
  6083 #else
  6084 instruct loadConP_set(iRegP dst, immP_set con) %{
  6085   match(Set dst con);
  6086   ins_cost(DEFAULT_COST * 3/2);
  6087   format %{ "SET    $con,$dst\t! ptr" %}
  6088   ins_encode %{
  6089     // [RGV] This next line should be generated from ADLC
  6090     if (_opnds[1]->constant_is_oop()) {
  6091       intptr_t val = $con$$constant;
  6092       __ set_oop_constant((jobject) val, $dst$$Register);
  6093     } else {          // non-oop pointers, e.g. card mark base, heap top
  6094       __ set($con$$constant, $dst$$Register);
  6096   %}
  6097   ins_pipe(loadConP);
  6098 %}
  6100 instruct loadConP_load(iRegP dst, immP_load con) %{
  6101   match(Set dst con);
  6102   ins_cost(MEMORY_REF_COST);
  6103   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6104   ins_encode %{
  6105     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6106     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6107   %}
  6108   ins_pipe(loadConP);
  6109 %}
  6111 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6112   match(Set dst con);
  6113   ins_cost(DEFAULT_COST * 3/2);
  6114   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6115   ins_encode %{
  6116     __ set($con$$constant, $dst$$Register);
  6117   %}
  6118   ins_pipe(loadConP);
  6119 %}
  6120 #endif // _LP64
  6122 instruct loadConP0(iRegP dst, immP0 src) %{
  6123   match(Set dst src);
  6125   size(4);
  6126   format %{ "CLR    $dst\t!ptr" %}
  6127   ins_encode %{
  6128     __ clr($dst$$Register);
  6129   %}
  6130   ins_pipe(ialu_imm);
  6131 %}
  6133 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6134   match(Set dst src);
  6135   ins_cost(DEFAULT_COST);
  6136   format %{ "SET    $src,$dst\t!ptr" %}
  6137   ins_encode %{
  6138     AddressLiteral polling_page(os::get_polling_page());
  6139     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6140   %}
  6141   ins_pipe(loadConP_poll);
  6142 %}
  6144 instruct loadConN0(iRegN dst, immN0 src) %{
  6145   match(Set dst src);
  6147   size(4);
  6148   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6149   ins_encode %{
  6150     __ clr($dst$$Register);
  6151   %}
  6152   ins_pipe(ialu_imm);
  6153 %}
  6155 instruct loadConN(iRegN dst, immN src) %{
  6156   match(Set dst src);
  6157   ins_cost(DEFAULT_COST * 3/2);
  6158   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6159   ins_encode %{
  6160     Register dst = $dst$$Register;
  6161     __ set_narrow_oop((jobject)$src$$constant, dst);
  6162   %}
  6163   ins_pipe(ialu_hi_lo_reg);
  6164 %}
  6166 // Materialize long value (predicated by immL_cheap).
  6167 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6168   match(Set dst con);
  6169   effect(KILL tmp);
  6170   ins_cost(DEFAULT_COST * 3);
  6171   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6172   ins_encode %{
  6173     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6174   %}
  6175   ins_pipe(loadConL);
  6176 %}
  6178 // Load long value from constant table (predicated by immL_expensive).
  6179 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6180   match(Set dst con);
  6181   ins_cost(MEMORY_REF_COST);
  6182   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6183   ins_encode %{
  6184       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6185     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6186   %}
  6187   ins_pipe(loadConL);
  6188 %}
  6190 instruct loadConL0( iRegL dst, immL0 src ) %{
  6191   match(Set dst src);
  6192   ins_cost(DEFAULT_COST);
  6193   size(4);
  6194   format %{ "CLR    $dst\t! long" %}
  6195   ins_encode( Set13( src, dst ) );
  6196   ins_pipe(ialu_imm);
  6197 %}
  6199 instruct loadConL13( iRegL dst, immL13 src ) %{
  6200   match(Set dst src);
  6201   ins_cost(DEFAULT_COST * 2);
  6203   size(4);
  6204   format %{ "MOV    $src,$dst\t! long" %}
  6205   ins_encode( Set13( src, dst ) );
  6206   ins_pipe(ialu_imm);
  6207 %}
  6209 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6210   match(Set dst con);
  6211   effect(KILL tmp);
  6212   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6213   ins_encode %{
  6214       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6215     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6216   %}
  6217   ins_pipe(loadConFD);
  6218 %}
  6220 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6221   match(Set dst con);
  6222   effect(KILL tmp);
  6223   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6224   ins_encode %{
  6225     // XXX This is a quick fix for 6833573.
  6226     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6227     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6228     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6229   %}
  6230   ins_pipe(loadConFD);
  6231 %}
  6233 // Prefetch instructions.
  6234 // Must be safe to execute with invalid address (cannot fault).
  6236 instruct prefetchr( memory mem ) %{
  6237   match( PrefetchRead mem );
  6238   ins_cost(MEMORY_REF_COST);
  6240   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6241   opcode(Assembler::prefetch_op3);
  6242   ins_encode( form3_mem_prefetch_read( mem ) );
  6243   ins_pipe(iload_mem);
  6244 %}
  6246 instruct prefetchw( memory mem ) %{
  6247   predicate(AllocatePrefetchStyle != 3 );
  6248   match( PrefetchWrite mem );
  6249   ins_cost(MEMORY_REF_COST);
  6251   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6252   opcode(Assembler::prefetch_op3);
  6253   ins_encode( form3_mem_prefetch_write( mem ) );
  6254   ins_pipe(iload_mem);
  6255 %}
  6257 // Use BIS instruction to prefetch.
  6258 instruct prefetchw_bis( memory mem ) %{
  6259   predicate(AllocatePrefetchStyle == 3);
  6260   match( PrefetchWrite mem );
  6261   ins_cost(MEMORY_REF_COST);
  6263   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6264   ins_encode %{
  6265      Register base = as_Register($mem$$base);
  6266      int disp = $mem$$disp;
  6267      if (disp != 0) {
  6268        __ add(base, AllocatePrefetchStepSize, base);
  6270      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6271   %}
  6272   ins_pipe(istore_mem_reg);
  6273 %}
  6275 //----------Store Instructions-------------------------------------------------
  6276 // Store Byte
  6277 instruct storeB(memory mem, iRegI src) %{
  6278   match(Set mem (StoreB mem src));
  6279   ins_cost(MEMORY_REF_COST);
  6281   size(4);
  6282   format %{ "STB    $src,$mem\t! byte" %}
  6283   opcode(Assembler::stb_op3);
  6284   ins_encode(simple_form3_mem_reg( mem, src ) );
  6285   ins_pipe(istore_mem_reg);
  6286 %}
  6288 instruct storeB0(memory mem, immI0 src) %{
  6289   match(Set mem (StoreB mem src));
  6290   ins_cost(MEMORY_REF_COST);
  6292   size(4);
  6293   format %{ "STB    $src,$mem\t! byte" %}
  6294   opcode(Assembler::stb_op3);
  6295   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6296   ins_pipe(istore_mem_zero);
  6297 %}
  6299 instruct storeCM0(memory mem, immI0 src) %{
  6300   match(Set mem (StoreCM mem src));
  6301   ins_cost(MEMORY_REF_COST);
  6303   size(4);
  6304   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6305   opcode(Assembler::stb_op3);
  6306   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6307   ins_pipe(istore_mem_zero);
  6308 %}
  6310 // Store Char/Short
  6311 instruct storeC(memory mem, iRegI src) %{
  6312   match(Set mem (StoreC mem src));
  6313   ins_cost(MEMORY_REF_COST);
  6315   size(4);
  6316   format %{ "STH    $src,$mem\t! short" %}
  6317   opcode(Assembler::sth_op3);
  6318   ins_encode(simple_form3_mem_reg( mem, src ) );
  6319   ins_pipe(istore_mem_reg);
  6320 %}
  6322 instruct storeC0(memory mem, immI0 src) %{
  6323   match(Set mem (StoreC mem src));
  6324   ins_cost(MEMORY_REF_COST);
  6326   size(4);
  6327   format %{ "STH    $src,$mem\t! short" %}
  6328   opcode(Assembler::sth_op3);
  6329   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6330   ins_pipe(istore_mem_zero);
  6331 %}
  6333 // Store Integer
  6334 instruct storeI(memory mem, iRegI src) %{
  6335   match(Set mem (StoreI mem src));
  6336   ins_cost(MEMORY_REF_COST);
  6338   size(4);
  6339   format %{ "STW    $src,$mem" %}
  6340   opcode(Assembler::stw_op3);
  6341   ins_encode(simple_form3_mem_reg( mem, src ) );
  6342   ins_pipe(istore_mem_reg);
  6343 %}
  6345 // Store Long
  6346 instruct storeL(memory mem, iRegL src) %{
  6347   match(Set mem (StoreL mem src));
  6348   ins_cost(MEMORY_REF_COST);
  6349   size(4);
  6350   format %{ "STX    $src,$mem\t! long" %}
  6351   opcode(Assembler::stx_op3);
  6352   ins_encode(simple_form3_mem_reg( mem, src ) );
  6353   ins_pipe(istore_mem_reg);
  6354 %}
  6356 instruct storeI0(memory mem, immI0 src) %{
  6357   match(Set mem (StoreI mem src));
  6358   ins_cost(MEMORY_REF_COST);
  6360   size(4);
  6361   format %{ "STW    $src,$mem" %}
  6362   opcode(Assembler::stw_op3);
  6363   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6364   ins_pipe(istore_mem_zero);
  6365 %}
  6367 instruct storeL0(memory mem, immL0 src) %{
  6368   match(Set mem (StoreL mem src));
  6369   ins_cost(MEMORY_REF_COST);
  6371   size(4);
  6372   format %{ "STX    $src,$mem" %}
  6373   opcode(Assembler::stx_op3);
  6374   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6375   ins_pipe(istore_mem_zero);
  6376 %}
  6378 // Store Integer from float register (used after fstoi)
  6379 instruct storeI_Freg(memory mem, regF src) %{
  6380   match(Set mem (StoreI mem src));
  6381   ins_cost(MEMORY_REF_COST);
  6383   size(4);
  6384   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6385   opcode(Assembler::stf_op3);
  6386   ins_encode(simple_form3_mem_reg( mem, src ) );
  6387   ins_pipe(fstoreF_mem_reg);
  6388 %}
  6390 // Store Pointer
  6391 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6392   match(Set dst (StoreP dst src));
  6393   ins_cost(MEMORY_REF_COST);
  6394   size(4);
  6396 #ifndef _LP64
  6397   format %{ "STW    $src,$dst\t! ptr" %}
  6398   opcode(Assembler::stw_op3, 0, REGP_OP);
  6399 #else
  6400   format %{ "STX    $src,$dst\t! ptr" %}
  6401   opcode(Assembler::stx_op3, 0, REGP_OP);
  6402 #endif
  6403   ins_encode( form3_mem_reg( dst, src ) );
  6404   ins_pipe(istore_mem_spORreg);
  6405 %}
  6407 instruct storeP0(memory dst, immP0 src) %{
  6408   match(Set dst (StoreP dst src));
  6409   ins_cost(MEMORY_REF_COST);
  6410   size(4);
  6412 #ifndef _LP64
  6413   format %{ "STW    $src,$dst\t! ptr" %}
  6414   opcode(Assembler::stw_op3, 0, REGP_OP);
  6415 #else
  6416   format %{ "STX    $src,$dst\t! ptr" %}
  6417   opcode(Assembler::stx_op3, 0, REGP_OP);
  6418 #endif
  6419   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6420   ins_pipe(istore_mem_zero);
  6421 %}
  6423 // Store Compressed Pointer
  6424 instruct storeN(memory dst, iRegN src) %{
  6425    match(Set dst (StoreN dst src));
  6426    ins_cost(MEMORY_REF_COST);
  6427    size(4);
  6429    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6430    ins_encode %{
  6431      Register base = as_Register($dst$$base);
  6432      Register index = as_Register($dst$$index);
  6433      Register src = $src$$Register;
  6434      if (index != G0) {
  6435        __ stw(src, base, index);
  6436      } else {
  6437        __ stw(src, base, $dst$$disp);
  6439    %}
  6440    ins_pipe(istore_mem_spORreg);
  6441 %}
  6443 instruct storeN0(memory dst, immN0 src) %{
  6444    match(Set dst (StoreN dst src));
  6445    ins_cost(MEMORY_REF_COST);
  6446    size(4);
  6448    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6449    ins_encode %{
  6450      Register base = as_Register($dst$$base);
  6451      Register index = as_Register($dst$$index);
  6452      if (index != G0) {
  6453        __ stw(0, base, index);
  6454      } else {
  6455        __ stw(0, base, $dst$$disp);
  6457    %}
  6458    ins_pipe(istore_mem_zero);
  6459 %}
  6461 // Store Double
  6462 instruct storeD( memory mem, regD src) %{
  6463   match(Set mem (StoreD mem src));
  6464   ins_cost(MEMORY_REF_COST);
  6466   size(4);
  6467   format %{ "STDF   $src,$mem" %}
  6468   opcode(Assembler::stdf_op3);
  6469   ins_encode(simple_form3_mem_reg( mem, src ) );
  6470   ins_pipe(fstoreD_mem_reg);
  6471 %}
  6473 instruct storeD0( memory mem, immD0 src) %{
  6474   match(Set mem (StoreD mem src));
  6475   ins_cost(MEMORY_REF_COST);
  6477   size(4);
  6478   format %{ "STX    $src,$mem" %}
  6479   opcode(Assembler::stx_op3);
  6480   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6481   ins_pipe(fstoreD_mem_zero);
  6482 %}
  6484 // Store Float
  6485 instruct storeF( memory mem, regF src) %{
  6486   match(Set mem (StoreF mem src));
  6487   ins_cost(MEMORY_REF_COST);
  6489   size(4);
  6490   format %{ "STF    $src,$mem" %}
  6491   opcode(Assembler::stf_op3);
  6492   ins_encode(simple_form3_mem_reg( mem, src ) );
  6493   ins_pipe(fstoreF_mem_reg);
  6494 %}
  6496 instruct storeF0( memory mem, immF0 src) %{
  6497   match(Set mem (StoreF mem src));
  6498   ins_cost(MEMORY_REF_COST);
  6500   size(4);
  6501   format %{ "STW    $src,$mem\t! storeF0" %}
  6502   opcode(Assembler::stw_op3);
  6503   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6504   ins_pipe(fstoreF_mem_zero);
  6505 %}
  6507 // Store Aligned Packed Bytes in Double register to memory
  6508 instruct storeA8B(memory mem, regD src) %{
  6509   match(Set mem (Store8B mem src));
  6510   ins_cost(MEMORY_REF_COST);
  6511   size(4);
  6512   format %{ "STDF   $src,$mem\t! packed8B" %}
  6513   opcode(Assembler::stdf_op3);
  6514   ins_encode(simple_form3_mem_reg( mem, src ) );
  6515   ins_pipe(fstoreD_mem_reg);
  6516 %}
  6518 // Convert oop pointer into compressed form
  6519 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6520   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6521   match(Set dst (EncodeP src));
  6522   format %{ "encode_heap_oop $src, $dst" %}
  6523   ins_encode %{
  6524     __ encode_heap_oop($src$$Register, $dst$$Register);
  6525   %}
  6526   ins_pipe(ialu_reg);
  6527 %}
  6529 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6530   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6531   match(Set dst (EncodeP src));
  6532   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6533   ins_encode %{
  6534     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6535   %}
  6536   ins_pipe(ialu_reg);
  6537 %}
  6539 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6540   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6541             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6542   match(Set dst (DecodeN src));
  6543   format %{ "decode_heap_oop $src, $dst" %}
  6544   ins_encode %{
  6545     __ decode_heap_oop($src$$Register, $dst$$Register);
  6546   %}
  6547   ins_pipe(ialu_reg);
  6548 %}
  6550 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6551   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6552             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6553   match(Set dst (DecodeN src));
  6554   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6555   ins_encode %{
  6556     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6557   %}
  6558   ins_pipe(ialu_reg);
  6559 %}
  6562 // Store Zero into Aligned Packed Bytes
  6563 instruct storeA8B0(memory mem, immI0 zero) %{
  6564   match(Set mem (Store8B mem zero));
  6565   ins_cost(MEMORY_REF_COST);
  6566   size(4);
  6567   format %{ "STX    $zero,$mem\t! packed8B" %}
  6568   opcode(Assembler::stx_op3);
  6569   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6570   ins_pipe(fstoreD_mem_zero);
  6571 %}
  6573 // Store Aligned Packed Chars/Shorts in Double register to memory
  6574 instruct storeA4C(memory mem, regD src) %{
  6575   match(Set mem (Store4C mem src));
  6576   ins_cost(MEMORY_REF_COST);
  6577   size(4);
  6578   format %{ "STDF   $src,$mem\t! packed4C" %}
  6579   opcode(Assembler::stdf_op3);
  6580   ins_encode(simple_form3_mem_reg( mem, src ) );
  6581   ins_pipe(fstoreD_mem_reg);
  6582 %}
  6584 // Store Zero into Aligned Packed Chars/Shorts
  6585 instruct storeA4C0(memory mem, immI0 zero) %{
  6586   match(Set mem (Store4C mem (Replicate4C zero)));
  6587   ins_cost(MEMORY_REF_COST);
  6588   size(4);
  6589   format %{ "STX    $zero,$mem\t! packed4C" %}
  6590   opcode(Assembler::stx_op3);
  6591   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6592   ins_pipe(fstoreD_mem_zero);
  6593 %}
  6595 // Store Aligned Packed Ints in Double register to memory
  6596 instruct storeA2I(memory mem, regD src) %{
  6597   match(Set mem (Store2I mem src));
  6598   ins_cost(MEMORY_REF_COST);
  6599   size(4);
  6600   format %{ "STDF   $src,$mem\t! packed2I" %}
  6601   opcode(Assembler::stdf_op3);
  6602   ins_encode(simple_form3_mem_reg( mem, src ) );
  6603   ins_pipe(fstoreD_mem_reg);
  6604 %}
  6606 // Store Zero into Aligned Packed Ints
  6607 instruct storeA2I0(memory mem, immI0 zero) %{
  6608   match(Set mem (Store2I mem zero));
  6609   ins_cost(MEMORY_REF_COST);
  6610   size(4);
  6611   format %{ "STX    $zero,$mem\t! packed2I" %}
  6612   opcode(Assembler::stx_op3);
  6613   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6614   ins_pipe(fstoreD_mem_zero);
  6615 %}
  6618 //----------MemBar Instructions-----------------------------------------------
  6619 // Memory barrier flavors
  6621 instruct membar_acquire() %{
  6622   match(MemBarAcquire);
  6623   ins_cost(4*MEMORY_REF_COST);
  6625   size(0);
  6626   format %{ "MEMBAR-acquire" %}
  6627   ins_encode( enc_membar_acquire );
  6628   ins_pipe(long_memory_op);
  6629 %}
  6631 instruct membar_acquire_lock() %{
  6632   match(MemBarAcquire);
  6633   predicate(Matcher::prior_fast_lock(n));
  6634   ins_cost(0);
  6636   size(0);
  6637   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6638   ins_encode( );
  6639   ins_pipe(empty);
  6640 %}
  6642 instruct membar_release() %{
  6643   match(MemBarRelease);
  6644   ins_cost(4*MEMORY_REF_COST);
  6646   size(0);
  6647   format %{ "MEMBAR-release" %}
  6648   ins_encode( enc_membar_release );
  6649   ins_pipe(long_memory_op);
  6650 %}
  6652 instruct membar_release_lock() %{
  6653   match(MemBarRelease);
  6654   predicate(Matcher::post_fast_unlock(n));
  6655   ins_cost(0);
  6657   size(0);
  6658   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6659   ins_encode( );
  6660   ins_pipe(empty);
  6661 %}
  6663 instruct membar_volatile() %{
  6664   match(MemBarVolatile);
  6665   ins_cost(4*MEMORY_REF_COST);
  6667   size(4);
  6668   format %{ "MEMBAR-volatile" %}
  6669   ins_encode( enc_membar_volatile );
  6670   ins_pipe(long_memory_op);
  6671 %}
  6673 instruct unnecessary_membar_volatile() %{
  6674   match(MemBarVolatile);
  6675   predicate(Matcher::post_store_load_barrier(n));
  6676   ins_cost(0);
  6678   size(0);
  6679   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6680   ins_encode( );
  6681   ins_pipe(empty);
  6682 %}
  6684 //----------Register Move Instructions-----------------------------------------
  6685 instruct roundDouble_nop(regD dst) %{
  6686   match(Set dst (RoundDouble dst));
  6687   ins_cost(0);
  6688   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6689   ins_encode( );
  6690   ins_pipe(empty);
  6691 %}
  6694 instruct roundFloat_nop(regF dst) %{
  6695   match(Set dst (RoundFloat dst));
  6696   ins_cost(0);
  6697   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6698   ins_encode( );
  6699   ins_pipe(empty);
  6700 %}
  6703 // Cast Index to Pointer for unsafe natives
  6704 instruct castX2P(iRegX src, iRegP dst) %{
  6705   match(Set dst (CastX2P src));
  6707   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6708   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6709   ins_pipe(ialu_reg);
  6710 %}
  6712 // Cast Pointer to Index for unsafe natives
  6713 instruct castP2X(iRegP src, iRegX dst) %{
  6714   match(Set dst (CastP2X src));
  6716   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6717   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6718   ins_pipe(ialu_reg);
  6719 %}
  6721 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6722   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6723   match(Set stkSlot src);   // chain rule
  6724   ins_cost(MEMORY_REF_COST);
  6725   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6726   opcode(Assembler::stdf_op3);
  6727   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6728   ins_pipe(fstoreD_stk_reg);
  6729 %}
  6731 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6732   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6733   match(Set dst stkSlot);   // chain rule
  6734   ins_cost(MEMORY_REF_COST);
  6735   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6736   opcode(Assembler::lddf_op3);
  6737   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6738   ins_pipe(floadD_stk);
  6739 %}
  6741 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6742   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6743   match(Set stkSlot src);   // chain rule
  6744   ins_cost(MEMORY_REF_COST);
  6745   format %{ "STF   $src,$stkSlot\t!stk" %}
  6746   opcode(Assembler::stf_op3);
  6747   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6748   ins_pipe(fstoreF_stk_reg);
  6749 %}
  6751 //----------Conditional Move---------------------------------------------------
  6752 // Conditional move
  6753 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6754   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6755   ins_cost(150);
  6756   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6757   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6758   ins_pipe(ialu_reg);
  6759 %}
  6761 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6762   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6763   ins_cost(140);
  6764   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6765   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6766   ins_pipe(ialu_imm);
  6767 %}
  6769 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6770   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6771   ins_cost(150);
  6772   size(4);
  6773   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6774   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6775   ins_pipe(ialu_reg);
  6776 %}
  6778 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6779   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6780   ins_cost(140);
  6781   size(4);
  6782   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6783   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6784   ins_pipe(ialu_imm);
  6785 %}
  6787 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6788   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6789   ins_cost(150);
  6790   size(4);
  6791   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6792   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6793   ins_pipe(ialu_reg);
  6794 %}
  6796 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6797   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6798   ins_cost(140);
  6799   size(4);
  6800   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6801   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6802   ins_pipe(ialu_imm);
  6803 %}
  6805 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6806   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6807   ins_cost(150);
  6808   size(4);
  6809   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6810   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6811   ins_pipe(ialu_reg);
  6812 %}
  6814 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6815   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6816   ins_cost(140);
  6817   size(4);
  6818   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6819   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6820   ins_pipe(ialu_imm);
  6821 %}
  6823 // Conditional move for RegN. Only cmov(reg,reg).
  6824 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6825   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6826   ins_cost(150);
  6827   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6828   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6829   ins_pipe(ialu_reg);
  6830 %}
  6832 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6833 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6834   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6835   ins_cost(150);
  6836   size(4);
  6837   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6838   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6839   ins_pipe(ialu_reg);
  6840 %}
  6842 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6843 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6844   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6845   ins_cost(150);
  6846   size(4);
  6847   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6848   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6849   ins_pipe(ialu_reg);
  6850 %}
  6852 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6853   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6854   ins_cost(150);
  6855   size(4);
  6856   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6857   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6858   ins_pipe(ialu_reg);
  6859 %}
  6861 // Conditional move
  6862 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6863   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6864   ins_cost(150);
  6865   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6866   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6867   ins_pipe(ialu_reg);
  6868 %}
  6870 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6871   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6872   ins_cost(140);
  6873   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6874   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6875   ins_pipe(ialu_imm);
  6876 %}
  6878 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6879 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6880   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6881   ins_cost(150);
  6883   size(4);
  6884   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6885   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6886   ins_pipe(ialu_reg);
  6887 %}
  6889 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6890   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6891   ins_cost(150);
  6893   size(4);
  6894   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6895   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6896   ins_pipe(ialu_reg);
  6897 %}
  6899 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6900   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6901   ins_cost(140);
  6903   size(4);
  6904   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6905   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6906   ins_pipe(ialu_imm);
  6907 %}
  6909 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6910   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6911   ins_cost(140);
  6913   size(4);
  6914   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6915   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6916   ins_pipe(ialu_imm);
  6917 %}
  6919 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6920   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6921   ins_cost(150);
  6922   size(4);
  6923   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6924   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6925   ins_pipe(ialu_imm);
  6926 %}
  6928 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6929   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6930   ins_cost(140);
  6931   size(4);
  6932   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6933   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6934   ins_pipe(ialu_imm);
  6935 %}
  6937 // Conditional move
  6938 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6939   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6940   ins_cost(150);
  6941   opcode(0x101);
  6942   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6943   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6944   ins_pipe(int_conditional_float_move);
  6945 %}
  6947 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6948   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6949   ins_cost(150);
  6951   size(4);
  6952   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6953   opcode(0x101);
  6954   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6955   ins_pipe(int_conditional_float_move);
  6956 %}
  6958 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6959   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6960   ins_cost(150);
  6962   size(4);
  6963   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6964   opcode(0x101);
  6965   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6966   ins_pipe(int_conditional_float_move);
  6967 %}
  6969 // Conditional move,
  6970 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6971   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6972   ins_cost(150);
  6973   size(4);
  6974   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6975   opcode(0x1);
  6976   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6977   ins_pipe(int_conditional_double_move);
  6978 %}
  6980 // Conditional move
  6981 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6982   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6983   ins_cost(150);
  6984   size(4);
  6985   opcode(0x102);
  6986   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6987   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6988   ins_pipe(int_conditional_double_move);
  6989 %}
  6991 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6992   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6993   ins_cost(150);
  6995   size(4);
  6996   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6997   opcode(0x102);
  6998   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6999   ins_pipe(int_conditional_double_move);
  7000 %}
  7002 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7003   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7004   ins_cost(150);
  7006   size(4);
  7007   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7008   opcode(0x102);
  7009   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7010   ins_pipe(int_conditional_double_move);
  7011 %}
  7013 // Conditional move,
  7014 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7015   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7016   ins_cost(150);
  7017   size(4);
  7018   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7019   opcode(0x2);
  7020   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7021   ins_pipe(int_conditional_double_move);
  7022 %}
  7024 // Conditional move
  7025 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7026   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7027   ins_cost(150);
  7028   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7029   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7030   ins_pipe(ialu_reg);
  7031 %}
  7033 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7034   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7035   ins_cost(140);
  7036   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7037   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7038   ins_pipe(ialu_imm);
  7039 %}
  7041 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7042   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7043   ins_cost(150);
  7045   size(4);
  7046   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7047   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7048   ins_pipe(ialu_reg);
  7049 %}
  7052 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7053   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7054   ins_cost(150);
  7056   size(4);
  7057   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7058   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7059   ins_pipe(ialu_reg);
  7060 %}
  7063 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7064   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7065   ins_cost(150);
  7067   size(4);
  7068   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7069   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7070   ins_pipe(ialu_reg);
  7071 %}
  7075 //----------OS and Locking Instructions----------------------------------------
  7077 // This name is KNOWN by the ADLC and cannot be changed.
  7078 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7079 // for this guy.
  7080 instruct tlsLoadP(g2RegP dst) %{
  7081   match(Set dst (ThreadLocal));
  7083   size(0);
  7084   ins_cost(0);
  7085   format %{ "# TLS is in G2" %}
  7086   ins_encode( /*empty encoding*/ );
  7087   ins_pipe(ialu_none);
  7088 %}
  7090 instruct checkCastPP( iRegP dst ) %{
  7091   match(Set dst (CheckCastPP dst));
  7093   size(0);
  7094   format %{ "# checkcastPP of $dst" %}
  7095   ins_encode( /*empty encoding*/ );
  7096   ins_pipe(empty);
  7097 %}
  7100 instruct castPP( iRegP dst ) %{
  7101   match(Set dst (CastPP dst));
  7102   format %{ "# castPP of $dst" %}
  7103   ins_encode( /*empty encoding*/ );
  7104   ins_pipe(empty);
  7105 %}
  7107 instruct castII( iRegI dst ) %{
  7108   match(Set dst (CastII dst));
  7109   format %{ "# castII of $dst" %}
  7110   ins_encode( /*empty encoding*/ );
  7111   ins_cost(0);
  7112   ins_pipe(empty);
  7113 %}
  7115 //----------Arithmetic Instructions--------------------------------------------
  7116 // Addition Instructions
  7117 // Register Addition
  7118 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7119   match(Set dst (AddI src1 src2));
  7121   size(4);
  7122   format %{ "ADD    $src1,$src2,$dst" %}
  7123   ins_encode %{
  7124     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7125   %}
  7126   ins_pipe(ialu_reg_reg);
  7127 %}
  7129 // Immediate Addition
  7130 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7131   match(Set dst (AddI src1 src2));
  7133   size(4);
  7134   format %{ "ADD    $src1,$src2,$dst" %}
  7135   opcode(Assembler::add_op3, Assembler::arith_op);
  7136   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7137   ins_pipe(ialu_reg_imm);
  7138 %}
  7140 // Pointer Register Addition
  7141 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7142   match(Set dst (AddP src1 src2));
  7144   size(4);
  7145   format %{ "ADD    $src1,$src2,$dst" %}
  7146   opcode(Assembler::add_op3, Assembler::arith_op);
  7147   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7148   ins_pipe(ialu_reg_reg);
  7149 %}
  7151 // Pointer Immediate Addition
  7152 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7153   match(Set dst (AddP src1 src2));
  7155   size(4);
  7156   format %{ "ADD    $src1,$src2,$dst" %}
  7157   opcode(Assembler::add_op3, Assembler::arith_op);
  7158   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7159   ins_pipe(ialu_reg_imm);
  7160 %}
  7162 // Long Addition
  7163 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7164   match(Set dst (AddL src1 src2));
  7166   size(4);
  7167   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7168   opcode(Assembler::add_op3, Assembler::arith_op);
  7169   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7170   ins_pipe(ialu_reg_reg);
  7171 %}
  7173 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7174   match(Set dst (AddL src1 con));
  7176   size(4);
  7177   format %{ "ADD    $src1,$con,$dst" %}
  7178   opcode(Assembler::add_op3, Assembler::arith_op);
  7179   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7180   ins_pipe(ialu_reg_imm);
  7181 %}
  7183 //----------Conditional_store--------------------------------------------------
  7184 // Conditional-store of the updated heap-top.
  7185 // Used during allocation of the shared heap.
  7186 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7188 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7189 instruct loadPLocked(iRegP dst, memory mem) %{
  7190   match(Set dst (LoadPLocked mem));
  7191   ins_cost(MEMORY_REF_COST);
  7193 #ifndef _LP64
  7194   size(4);
  7195   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7196   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7197 #else
  7198   format %{ "LDX    $mem,$dst\t! ptr" %}
  7199   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7200 #endif
  7201   ins_encode( form3_mem_reg( mem, dst ) );
  7202   ins_pipe(iload_mem);
  7203 %}
  7205 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7206 instruct loadLLocked(iRegL dst, memory mem) %{
  7207   match(Set dst (LoadLLocked mem));
  7208   ins_cost(MEMORY_REF_COST);
  7209   size(4);
  7210   format %{ "LDX    $mem,$dst\t! long" %}
  7211   opcode(Assembler::ldx_op3);
  7212   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7213   ins_pipe(iload_mem);
  7214 %}
  7216 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7217   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7218   effect( KILL newval );
  7219   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7220             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7221   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7222   ins_pipe( long_memory_op );
  7223 %}
  7225 // Conditional-store of an int value.
  7226 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7227   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7228   effect( KILL newval );
  7229   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7230             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7231   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7232   ins_pipe( long_memory_op );
  7233 %}
  7235 // Conditional-store of a long value.
  7236 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7237   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7238   effect( KILL newval );
  7239   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7240             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7241   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7242   ins_pipe( long_memory_op );
  7243 %}
  7245 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7247 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7248   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7249   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7250   format %{
  7251             "MOV    $newval,O7\n\t"
  7252             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7253             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7254             "MOV    1,$res\n\t"
  7255             "MOVne  xcc,R_G0,$res"
  7256   %}
  7257   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7258               enc_lflags_ne_to_boolean(res) );
  7259   ins_pipe( long_memory_op );
  7260 %}
  7263 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7264   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7265   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7266   format %{
  7267             "MOV    $newval,O7\n\t"
  7268             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7269             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7270             "MOV    1,$res\n\t"
  7271             "MOVne  icc,R_G0,$res"
  7272   %}
  7273   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7274               enc_iflags_ne_to_boolean(res) );
  7275   ins_pipe( long_memory_op );
  7276 %}
  7278 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7279   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7280   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7281   format %{
  7282             "MOV    $newval,O7\n\t"
  7283             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7284             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7285             "MOV    1,$res\n\t"
  7286             "MOVne  xcc,R_G0,$res"
  7287   %}
  7288 #ifdef _LP64
  7289   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7290               enc_lflags_ne_to_boolean(res) );
  7291 #else
  7292   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7293               enc_iflags_ne_to_boolean(res) );
  7294 #endif
  7295   ins_pipe( long_memory_op );
  7296 %}
  7298 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7299   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7300   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7301   format %{
  7302             "MOV    $newval,O7\n\t"
  7303             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7304             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7305             "MOV    1,$res\n\t"
  7306             "MOVne  icc,R_G0,$res"
  7307   %}
  7308   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7309               enc_iflags_ne_to_boolean(res) );
  7310   ins_pipe( long_memory_op );
  7311 %}
  7313 //---------------------
  7314 // Subtraction Instructions
  7315 // Register Subtraction
  7316 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7317   match(Set dst (SubI src1 src2));
  7319   size(4);
  7320   format %{ "SUB    $src1,$src2,$dst" %}
  7321   opcode(Assembler::sub_op3, Assembler::arith_op);
  7322   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7323   ins_pipe(ialu_reg_reg);
  7324 %}
  7326 // Immediate Subtraction
  7327 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7328   match(Set dst (SubI src1 src2));
  7330   size(4);
  7331   format %{ "SUB    $src1,$src2,$dst" %}
  7332   opcode(Assembler::sub_op3, Assembler::arith_op);
  7333   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7334   ins_pipe(ialu_reg_imm);
  7335 %}
  7337 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7338   match(Set dst (SubI zero src2));
  7340   size(4);
  7341   format %{ "NEG    $src2,$dst" %}
  7342   opcode(Assembler::sub_op3, Assembler::arith_op);
  7343   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7344   ins_pipe(ialu_zero_reg);
  7345 %}
  7347 // Long subtraction
  7348 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7349   match(Set dst (SubL src1 src2));
  7351   size(4);
  7352   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7353   opcode(Assembler::sub_op3, Assembler::arith_op);
  7354   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7355   ins_pipe(ialu_reg_reg);
  7356 %}
  7358 // Immediate Subtraction
  7359 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7360   match(Set dst (SubL src1 con));
  7362   size(4);
  7363   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7364   opcode(Assembler::sub_op3, Assembler::arith_op);
  7365   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7366   ins_pipe(ialu_reg_imm);
  7367 %}
  7369 // Long negation
  7370 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7371   match(Set dst (SubL zero src2));
  7373   size(4);
  7374   format %{ "NEG    $src2,$dst\t! long" %}
  7375   opcode(Assembler::sub_op3, Assembler::arith_op);
  7376   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7377   ins_pipe(ialu_zero_reg);
  7378 %}
  7380 // Multiplication Instructions
  7381 // Integer Multiplication
  7382 // Register Multiplication
  7383 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7384   match(Set dst (MulI src1 src2));
  7386   size(4);
  7387   format %{ "MULX   $src1,$src2,$dst" %}
  7388   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7389   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7390   ins_pipe(imul_reg_reg);
  7391 %}
  7393 // Immediate Multiplication
  7394 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7395   match(Set dst (MulI src1 src2));
  7397   size(4);
  7398   format %{ "MULX   $src1,$src2,$dst" %}
  7399   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7400   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7401   ins_pipe(imul_reg_imm);
  7402 %}
  7404 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7405   match(Set dst (MulL src1 src2));
  7406   ins_cost(DEFAULT_COST * 5);
  7407   size(4);
  7408   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7409   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7410   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7411   ins_pipe(mulL_reg_reg);
  7412 %}
  7414 // Immediate Multiplication
  7415 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7416   match(Set dst (MulL src1 src2));
  7417   ins_cost(DEFAULT_COST * 5);
  7418   size(4);
  7419   format %{ "MULX   $src1,$src2,$dst" %}
  7420   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7421   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7422   ins_pipe(mulL_reg_imm);
  7423 %}
  7425 // Integer Division
  7426 // Register Division
  7427 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7428   match(Set dst (DivI src1 src2));
  7429   ins_cost((2+71)*DEFAULT_COST);
  7431   format %{ "SRA     $src2,0,$src2\n\t"
  7432             "SRA     $src1,0,$src1\n\t"
  7433             "SDIVX   $src1,$src2,$dst" %}
  7434   ins_encode( idiv_reg( src1, src2, dst ) );
  7435   ins_pipe(sdiv_reg_reg);
  7436 %}
  7438 // Immediate Division
  7439 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7440   match(Set dst (DivI src1 src2));
  7441   ins_cost((2+71)*DEFAULT_COST);
  7443   format %{ "SRA     $src1,0,$src1\n\t"
  7444             "SDIVX   $src1,$src2,$dst" %}
  7445   ins_encode( idiv_imm( src1, src2, dst ) );
  7446   ins_pipe(sdiv_reg_imm);
  7447 %}
  7449 //----------Div-By-10-Expansion------------------------------------------------
  7450 // Extract hi bits of a 32x32->64 bit multiply.
  7451 // Expand rule only, not matched
  7452 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7453   effect( DEF dst, USE src1, USE src2 );
  7454   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7455             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7456   ins_encode( enc_mul_hi(dst,src1,src2));
  7457   ins_pipe(sdiv_reg_reg);
  7458 %}
  7460 // Magic constant, reciprocal of 10
  7461 instruct loadConI_x66666667(iRegIsafe dst) %{
  7462   effect( DEF dst );
  7464   size(8);
  7465   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7466   ins_encode( Set32(0x66666667, dst) );
  7467   ins_pipe(ialu_hi_lo_reg);
  7468 %}
  7470 // Register Shift Right Arithmetic Long by 32-63
  7471 instruct sra_31( iRegI dst, iRegI src ) %{
  7472   effect( DEF dst, USE src );
  7473   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7474   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7475   ins_pipe(ialu_reg_reg);
  7476 %}
  7478 // Arithmetic Shift Right by 8-bit immediate
  7479 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7480   effect( DEF dst, USE src );
  7481   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7482   opcode(Assembler::sra_op3, Assembler::arith_op);
  7483   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7484   ins_pipe(ialu_reg_imm);
  7485 %}
  7487 // Integer DIV with 10
  7488 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7489   match(Set dst (DivI src div));
  7490   ins_cost((6+6)*DEFAULT_COST);
  7491   expand %{
  7492     iRegIsafe tmp1;               // Killed temps;
  7493     iRegIsafe tmp2;               // Killed temps;
  7494     iRegI tmp3;                   // Killed temps;
  7495     iRegI tmp4;                   // Killed temps;
  7496     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7497     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7498     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7499     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7500     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7501   %}
  7502 %}
  7504 // Register Long Division
  7505 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7506   match(Set dst (DivL src1 src2));
  7507   ins_cost(DEFAULT_COST*71);
  7508   size(4);
  7509   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7510   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7511   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7512   ins_pipe(divL_reg_reg);
  7513 %}
  7515 // Register Long Division
  7516 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7517   match(Set dst (DivL src1 src2));
  7518   ins_cost(DEFAULT_COST*71);
  7519   size(4);
  7520   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7521   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7522   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7523   ins_pipe(divL_reg_imm);
  7524 %}
  7526 // Integer Remainder
  7527 // Register Remainder
  7528 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7529   match(Set dst (ModI src1 src2));
  7530   effect( KILL ccr, KILL temp);
  7532   format %{ "SREM   $src1,$src2,$dst" %}
  7533   ins_encode( irem_reg(src1, src2, dst, temp) );
  7534   ins_pipe(sdiv_reg_reg);
  7535 %}
  7537 // Immediate Remainder
  7538 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7539   match(Set dst (ModI src1 src2));
  7540   effect( KILL ccr, KILL temp);
  7542   format %{ "SREM   $src1,$src2,$dst" %}
  7543   ins_encode( irem_imm(src1, src2, dst, temp) );
  7544   ins_pipe(sdiv_reg_imm);
  7545 %}
  7547 // Register Long Remainder
  7548 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7549   effect(DEF dst, USE src1, USE src2);
  7550   size(4);
  7551   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7552   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7553   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7554   ins_pipe(divL_reg_reg);
  7555 %}
  7557 // Register Long Division
  7558 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7559   effect(DEF dst, USE src1, USE src2);
  7560   size(4);
  7561   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7562   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7563   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7564   ins_pipe(divL_reg_imm);
  7565 %}
  7567 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7568   effect(DEF dst, USE src1, USE src2);
  7569   size(4);
  7570   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7571   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7572   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7573   ins_pipe(mulL_reg_reg);
  7574 %}
  7576 // Immediate Multiplication
  7577 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7578   effect(DEF dst, USE src1, USE src2);
  7579   size(4);
  7580   format %{ "MULX   $src1,$src2,$dst" %}
  7581   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7582   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7583   ins_pipe(mulL_reg_imm);
  7584 %}
  7586 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7587   effect(DEF dst, USE src1, USE src2);
  7588   size(4);
  7589   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7590   opcode(Assembler::sub_op3, Assembler::arith_op);
  7591   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7592   ins_pipe(ialu_reg_reg);
  7593 %}
  7595 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7596   effect(DEF dst, USE src1, USE src2);
  7597   size(4);
  7598   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7599   opcode(Assembler::sub_op3, Assembler::arith_op);
  7600   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7601   ins_pipe(ialu_reg_reg);
  7602 %}
  7604 // Register Long Remainder
  7605 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7606   match(Set dst (ModL src1 src2));
  7607   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7608   expand %{
  7609     iRegL tmp1;
  7610     iRegL tmp2;
  7611     divL_reg_reg_1(tmp1, src1, src2);
  7612     mulL_reg_reg_1(tmp2, tmp1, src2);
  7613     subL_reg_reg_1(dst,  src1, tmp2);
  7614   %}
  7615 %}
  7617 // Register Long Remainder
  7618 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7619   match(Set dst (ModL src1 src2));
  7620   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7621   expand %{
  7622     iRegL tmp1;
  7623     iRegL tmp2;
  7624     divL_reg_imm13_1(tmp1, src1, src2);
  7625     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7626     subL_reg_reg_2  (dst,  src1, tmp2);
  7627   %}
  7628 %}
  7630 // Integer Shift Instructions
  7631 // Register Shift Left
  7632 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7633   match(Set dst (LShiftI src1 src2));
  7635   size(4);
  7636   format %{ "SLL    $src1,$src2,$dst" %}
  7637   opcode(Assembler::sll_op3, Assembler::arith_op);
  7638   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7639   ins_pipe(ialu_reg_reg);
  7640 %}
  7642 // Register Shift Left Immediate
  7643 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7644   match(Set dst (LShiftI src1 src2));
  7646   size(4);
  7647   format %{ "SLL    $src1,$src2,$dst" %}
  7648   opcode(Assembler::sll_op3, Assembler::arith_op);
  7649   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7650   ins_pipe(ialu_reg_imm);
  7651 %}
  7653 // Register Shift Left
  7654 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7655   match(Set dst (LShiftL src1 src2));
  7657   size(4);
  7658   format %{ "SLLX   $src1,$src2,$dst" %}
  7659   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7660   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7661   ins_pipe(ialu_reg_reg);
  7662 %}
  7664 // Register Shift Left Immediate
  7665 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7666   match(Set dst (LShiftL src1 src2));
  7668   size(4);
  7669   format %{ "SLLX   $src1,$src2,$dst" %}
  7670   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7671   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7672   ins_pipe(ialu_reg_imm);
  7673 %}
  7675 // Register Arithmetic Shift Right
  7676 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7677   match(Set dst (RShiftI src1 src2));
  7678   size(4);
  7679   format %{ "SRA    $src1,$src2,$dst" %}
  7680   opcode(Assembler::sra_op3, Assembler::arith_op);
  7681   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7682   ins_pipe(ialu_reg_reg);
  7683 %}
  7685 // Register Arithmetic Shift Right Immediate
  7686 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7687   match(Set dst (RShiftI src1 src2));
  7689   size(4);
  7690   format %{ "SRA    $src1,$src2,$dst" %}
  7691   opcode(Assembler::sra_op3, Assembler::arith_op);
  7692   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7693   ins_pipe(ialu_reg_imm);
  7694 %}
  7696 // Register Shift Right Arithmatic Long
  7697 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7698   match(Set dst (RShiftL src1 src2));
  7700   size(4);
  7701   format %{ "SRAX   $src1,$src2,$dst" %}
  7702   opcode(Assembler::srax_op3, Assembler::arith_op);
  7703   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7704   ins_pipe(ialu_reg_reg);
  7705 %}
  7707 // Register Shift Left Immediate
  7708 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7709   match(Set dst (RShiftL src1 src2));
  7711   size(4);
  7712   format %{ "SRAX   $src1,$src2,$dst" %}
  7713   opcode(Assembler::srax_op3, Assembler::arith_op);
  7714   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7715   ins_pipe(ialu_reg_imm);
  7716 %}
  7718 // Register Shift Right
  7719 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7720   match(Set dst (URShiftI src1 src2));
  7722   size(4);
  7723   format %{ "SRL    $src1,$src2,$dst" %}
  7724   opcode(Assembler::srl_op3, Assembler::arith_op);
  7725   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7726   ins_pipe(ialu_reg_reg);
  7727 %}
  7729 // Register Shift Right Immediate
  7730 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7731   match(Set dst (URShiftI src1 src2));
  7733   size(4);
  7734   format %{ "SRL    $src1,$src2,$dst" %}
  7735   opcode(Assembler::srl_op3, Assembler::arith_op);
  7736   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7737   ins_pipe(ialu_reg_imm);
  7738 %}
  7740 // Register Shift Right
  7741 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7742   match(Set dst (URShiftL src1 src2));
  7744   size(4);
  7745   format %{ "SRLX   $src1,$src2,$dst" %}
  7746   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7747   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7748   ins_pipe(ialu_reg_reg);
  7749 %}
  7751 // Register Shift Right Immediate
  7752 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7753   match(Set dst (URShiftL src1 src2));
  7755   size(4);
  7756   format %{ "SRLX   $src1,$src2,$dst" %}
  7757   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7758   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7759   ins_pipe(ialu_reg_imm);
  7760 %}
  7762 // Register Shift Right Immediate with a CastP2X
  7763 #ifdef _LP64
  7764 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7765   match(Set dst (URShiftL (CastP2X src1) src2));
  7766   size(4);
  7767   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7768   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7769   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7770   ins_pipe(ialu_reg_imm);
  7771 %}
  7772 #else
  7773 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7774   match(Set dst (URShiftI (CastP2X src1) src2));
  7775   size(4);
  7776   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7777   opcode(Assembler::srl_op3, Assembler::arith_op);
  7778   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7779   ins_pipe(ialu_reg_imm);
  7780 %}
  7781 #endif
  7784 //----------Floating Point Arithmetic Instructions-----------------------------
  7786 //  Add float single precision
  7787 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7788   match(Set dst (AddF src1 src2));
  7790   size(4);
  7791   format %{ "FADDS  $src1,$src2,$dst" %}
  7792   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7793   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7794   ins_pipe(faddF_reg_reg);
  7795 %}
  7797 //  Add float double precision
  7798 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7799   match(Set dst (AddD src1 src2));
  7801   size(4);
  7802   format %{ "FADDD  $src1,$src2,$dst" %}
  7803   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7804   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7805   ins_pipe(faddD_reg_reg);
  7806 %}
  7808 //  Sub float single precision
  7809 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7810   match(Set dst (SubF src1 src2));
  7812   size(4);
  7813   format %{ "FSUBS  $src1,$src2,$dst" %}
  7814   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7815   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7816   ins_pipe(faddF_reg_reg);
  7817 %}
  7819 //  Sub float double precision
  7820 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7821   match(Set dst (SubD src1 src2));
  7823   size(4);
  7824   format %{ "FSUBD  $src1,$src2,$dst" %}
  7825   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7826   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7827   ins_pipe(faddD_reg_reg);
  7828 %}
  7830 //  Mul float single precision
  7831 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7832   match(Set dst (MulF src1 src2));
  7834   size(4);
  7835   format %{ "FMULS  $src1,$src2,$dst" %}
  7836   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7837   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7838   ins_pipe(fmulF_reg_reg);
  7839 %}
  7841 //  Mul float double precision
  7842 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7843   match(Set dst (MulD src1 src2));
  7845   size(4);
  7846   format %{ "FMULD  $src1,$src2,$dst" %}
  7847   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7848   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7849   ins_pipe(fmulD_reg_reg);
  7850 %}
  7852 //  Div float single precision
  7853 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7854   match(Set dst (DivF src1 src2));
  7856   size(4);
  7857   format %{ "FDIVS  $src1,$src2,$dst" %}
  7858   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7859   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7860   ins_pipe(fdivF_reg_reg);
  7861 %}
  7863 //  Div float double precision
  7864 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7865   match(Set dst (DivD src1 src2));
  7867   size(4);
  7868   format %{ "FDIVD  $src1,$src2,$dst" %}
  7869   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7870   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7871   ins_pipe(fdivD_reg_reg);
  7872 %}
  7874 //  Absolute float double precision
  7875 instruct absD_reg(regD dst, regD src) %{
  7876   match(Set dst (AbsD src));
  7878   format %{ "FABSd  $src,$dst" %}
  7879   ins_encode(fabsd(dst, src));
  7880   ins_pipe(faddD_reg);
  7881 %}
  7883 //  Absolute float single precision
  7884 instruct absF_reg(regF dst, regF src) %{
  7885   match(Set dst (AbsF src));
  7887   format %{ "FABSs  $src,$dst" %}
  7888   ins_encode(fabss(dst, src));
  7889   ins_pipe(faddF_reg);
  7890 %}
  7892 instruct negF_reg(regF dst, regF src) %{
  7893   match(Set dst (NegF src));
  7895   size(4);
  7896   format %{ "FNEGs  $src,$dst" %}
  7897   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7898   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7899   ins_pipe(faddF_reg);
  7900 %}
  7902 instruct negD_reg(regD dst, regD src) %{
  7903   match(Set dst (NegD src));
  7905   format %{ "FNEGd  $src,$dst" %}
  7906   ins_encode(fnegd(dst, src));
  7907   ins_pipe(faddD_reg);
  7908 %}
  7910 //  Sqrt float double precision
  7911 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7912   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7914   size(4);
  7915   format %{ "FSQRTS $src,$dst" %}
  7916   ins_encode(fsqrts(dst, src));
  7917   ins_pipe(fdivF_reg_reg);
  7918 %}
  7920 //  Sqrt float double precision
  7921 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7922   match(Set dst (SqrtD src));
  7924   size(4);
  7925   format %{ "FSQRTD $src,$dst" %}
  7926   ins_encode(fsqrtd(dst, src));
  7927   ins_pipe(fdivD_reg_reg);
  7928 %}
  7930 //----------Logical Instructions-----------------------------------------------
  7931 // And Instructions
  7932 // Register And
  7933 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7934   match(Set dst (AndI src1 src2));
  7936   size(4);
  7937   format %{ "AND    $src1,$src2,$dst" %}
  7938   opcode(Assembler::and_op3, Assembler::arith_op);
  7939   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7940   ins_pipe(ialu_reg_reg);
  7941 %}
  7943 // Immediate And
  7944 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7945   match(Set dst (AndI src1 src2));
  7947   size(4);
  7948   format %{ "AND    $src1,$src2,$dst" %}
  7949   opcode(Assembler::and_op3, Assembler::arith_op);
  7950   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7951   ins_pipe(ialu_reg_imm);
  7952 %}
  7954 // Register And Long
  7955 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7956   match(Set dst (AndL src1 src2));
  7958   ins_cost(DEFAULT_COST);
  7959   size(4);
  7960   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7961   opcode(Assembler::and_op3, Assembler::arith_op);
  7962   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7963   ins_pipe(ialu_reg_reg);
  7964 %}
  7966 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7967   match(Set dst (AndL src1 con));
  7969   ins_cost(DEFAULT_COST);
  7970   size(4);
  7971   format %{ "AND    $src1,$con,$dst\t! long" %}
  7972   opcode(Assembler::and_op3, Assembler::arith_op);
  7973   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7974   ins_pipe(ialu_reg_imm);
  7975 %}
  7977 // Or Instructions
  7978 // Register Or
  7979 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7980   match(Set dst (OrI src1 src2));
  7982   size(4);
  7983   format %{ "OR     $src1,$src2,$dst" %}
  7984   opcode(Assembler::or_op3, Assembler::arith_op);
  7985   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7986   ins_pipe(ialu_reg_reg);
  7987 %}
  7989 // Immediate Or
  7990 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7991   match(Set dst (OrI src1 src2));
  7993   size(4);
  7994   format %{ "OR     $src1,$src2,$dst" %}
  7995   opcode(Assembler::or_op3, Assembler::arith_op);
  7996   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7997   ins_pipe(ialu_reg_imm);
  7998 %}
  8000 // Register Or Long
  8001 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8002   match(Set dst (OrL src1 src2));
  8004   ins_cost(DEFAULT_COST);
  8005   size(4);
  8006   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8007   opcode(Assembler::or_op3, Assembler::arith_op);
  8008   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8009   ins_pipe(ialu_reg_reg);
  8010 %}
  8012 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8013   match(Set dst (OrL src1 con));
  8014   ins_cost(DEFAULT_COST*2);
  8016   ins_cost(DEFAULT_COST);
  8017   size(4);
  8018   format %{ "OR     $src1,$con,$dst\t! long" %}
  8019   opcode(Assembler::or_op3, Assembler::arith_op);
  8020   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8021   ins_pipe(ialu_reg_imm);
  8022 %}
  8024 #ifndef _LP64
  8026 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8027 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8028   match(Set dst (OrI src1 (CastP2X src2)));
  8030   size(4);
  8031   format %{ "OR     $src1,$src2,$dst" %}
  8032   opcode(Assembler::or_op3, Assembler::arith_op);
  8033   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8034   ins_pipe(ialu_reg_reg);
  8035 %}
  8037 #else
  8039 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8040   match(Set dst (OrL src1 (CastP2X src2)));
  8042   ins_cost(DEFAULT_COST);
  8043   size(4);
  8044   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8045   opcode(Assembler::or_op3, Assembler::arith_op);
  8046   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8047   ins_pipe(ialu_reg_reg);
  8048 %}
  8050 #endif
  8052 // Xor Instructions
  8053 // Register Xor
  8054 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8055   match(Set dst (XorI src1 src2));
  8057   size(4);
  8058   format %{ "XOR    $src1,$src2,$dst" %}
  8059   opcode(Assembler::xor_op3, Assembler::arith_op);
  8060   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8061   ins_pipe(ialu_reg_reg);
  8062 %}
  8064 // Immediate Xor
  8065 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8066   match(Set dst (XorI src1 src2));
  8068   size(4);
  8069   format %{ "XOR    $src1,$src2,$dst" %}
  8070   opcode(Assembler::xor_op3, Assembler::arith_op);
  8071   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8072   ins_pipe(ialu_reg_imm);
  8073 %}
  8075 // Register Xor Long
  8076 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8077   match(Set dst (XorL src1 src2));
  8079   ins_cost(DEFAULT_COST);
  8080   size(4);
  8081   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8082   opcode(Assembler::xor_op3, Assembler::arith_op);
  8083   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8084   ins_pipe(ialu_reg_reg);
  8085 %}
  8087 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8088   match(Set dst (XorL src1 con));
  8090   ins_cost(DEFAULT_COST);
  8091   size(4);
  8092   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8093   opcode(Assembler::xor_op3, Assembler::arith_op);
  8094   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8095   ins_pipe(ialu_reg_imm);
  8096 %}
  8098 //----------Convert to Boolean-------------------------------------------------
  8099 // Nice hack for 32-bit tests but doesn't work for
  8100 // 64-bit pointers.
  8101 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8102   match(Set dst (Conv2B src));
  8103   effect( KILL ccr );
  8104   ins_cost(DEFAULT_COST*2);
  8105   format %{ "CMP    R_G0,$src\n\t"
  8106             "ADDX   R_G0,0,$dst" %}
  8107   ins_encode( enc_to_bool( src, dst ) );
  8108   ins_pipe(ialu_reg_ialu);
  8109 %}
  8111 #ifndef _LP64
  8112 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8113   match(Set dst (Conv2B src));
  8114   effect( KILL ccr );
  8115   ins_cost(DEFAULT_COST*2);
  8116   format %{ "CMP    R_G0,$src\n\t"
  8117             "ADDX   R_G0,0,$dst" %}
  8118   ins_encode( enc_to_bool( src, dst ) );
  8119   ins_pipe(ialu_reg_ialu);
  8120 %}
  8121 #else
  8122 instruct convP2B( iRegI dst, iRegP src ) %{
  8123   match(Set dst (Conv2B src));
  8124   ins_cost(DEFAULT_COST*2);
  8125   format %{ "MOV    $src,$dst\n\t"
  8126             "MOVRNZ $src,1,$dst" %}
  8127   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8128   ins_pipe(ialu_clr_and_mover);
  8129 %}
  8130 #endif
  8132 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8133   match(Set dst (CmpLTMask src zero));
  8134   effect(KILL ccr);
  8135   size(4);
  8136   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8137   ins_encode %{
  8138     __ sra($src$$Register, 31, $dst$$Register);
  8139   %}
  8140   ins_pipe(ialu_reg_imm);
  8141 %}
  8143 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8144   match(Set dst (CmpLTMask p q));
  8145   effect( KILL ccr );
  8146   ins_cost(DEFAULT_COST*4);
  8147   format %{ "CMP    $p,$q\n\t"
  8148             "MOV    #0,$dst\n\t"
  8149             "BLT,a  .+8\n\t"
  8150             "MOV    #-1,$dst" %}
  8151   ins_encode( enc_ltmask(p,q,dst) );
  8152   ins_pipe(ialu_reg_reg_ialu);
  8153 %}
  8155 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8156   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8157   effect(KILL ccr, TEMP tmp);
  8158   ins_cost(DEFAULT_COST*3);
  8160   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8161             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8162             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8163   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8164   ins_pipe( cadd_cmpltmask );
  8165 %}
  8167 //----------Arithmetic Conversion Instructions---------------------------------
  8168 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8170 instruct convD2F_reg(regF dst, regD src) %{
  8171   match(Set dst (ConvD2F src));
  8172   size(4);
  8173   format %{ "FDTOS  $src,$dst" %}
  8174   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8175   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8176   ins_pipe(fcvtD2F);
  8177 %}
  8180 // Convert a double to an int in a float register.
  8181 // If the double is a NAN, stuff a zero in instead.
  8182 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8183   effect(DEF dst, USE src, KILL fcc0);
  8184   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8185             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8186             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8187             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8188             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8189       "skip:" %}
  8190   ins_encode(form_d2i_helper(src,dst));
  8191   ins_pipe(fcvtD2I);
  8192 %}
  8194 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8195   match(Set dst (ConvD2I src));
  8196   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8197   expand %{
  8198     regF tmp;
  8199     convD2I_helper(tmp, src);
  8200     regF_to_stkI(dst, tmp);
  8201   %}
  8202 %}
  8204 // Convert a double to a long in a double register.
  8205 // If the double is a NAN, stuff a zero in instead.
  8206 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8207   effect(DEF dst, USE src, KILL fcc0);
  8208   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8209             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8210             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8211             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8212             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8213       "skip:" %}
  8214   ins_encode(form_d2l_helper(src,dst));
  8215   ins_pipe(fcvtD2L);
  8216 %}
  8219 // Double to Long conversion
  8220 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8221   match(Set dst (ConvD2L src));
  8222   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8223   expand %{
  8224     regD tmp;
  8225     convD2L_helper(tmp, src);
  8226     regD_to_stkL(dst, tmp);
  8227   %}
  8228 %}
  8231 instruct convF2D_reg(regD dst, regF src) %{
  8232   match(Set dst (ConvF2D src));
  8233   format %{ "FSTOD  $src,$dst" %}
  8234   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8235   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8236   ins_pipe(fcvtF2D);
  8237 %}
  8240 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8241   effect(DEF dst, USE src, KILL fcc0);
  8242   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8243             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8244             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8245             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8246             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8247       "skip:" %}
  8248   ins_encode(form_f2i_helper(src,dst));
  8249   ins_pipe(fcvtF2I);
  8250 %}
  8252 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8253   match(Set dst (ConvF2I src));
  8254   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8255   expand %{
  8256     regF tmp;
  8257     convF2I_helper(tmp, src);
  8258     regF_to_stkI(dst, tmp);
  8259   %}
  8260 %}
  8263 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8264   effect(DEF dst, USE src, KILL fcc0);
  8265   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8266             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8267             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8268             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8269             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8270       "skip:" %}
  8271   ins_encode(form_f2l_helper(src,dst));
  8272   ins_pipe(fcvtF2L);
  8273 %}
  8275 // Float to Long conversion
  8276 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8277   match(Set dst (ConvF2L src));
  8278   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8279   expand %{
  8280     regD tmp;
  8281     convF2L_helper(tmp, src);
  8282     regD_to_stkL(dst, tmp);
  8283   %}
  8284 %}
  8287 instruct convI2D_helper(regD dst, regF tmp) %{
  8288   effect(USE tmp, DEF dst);
  8289   format %{ "FITOD  $tmp,$dst" %}
  8290   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8291   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8292   ins_pipe(fcvtI2D);
  8293 %}
  8295 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8296   match(Set dst (ConvI2D src));
  8297   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8298   expand %{
  8299     regF tmp;
  8300     stkI_to_regF( tmp, src);
  8301     convI2D_helper( dst, tmp);
  8302   %}
  8303 %}
  8305 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8306   match(Set dst (ConvI2D (LoadI mem)));
  8307   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8308   size(8);
  8309   format %{ "LDF    $mem,$dst\n\t"
  8310             "FITOD  $dst,$dst" %}
  8311   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8312   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8313   ins_pipe(floadF_mem);
  8314 %}
  8317 instruct convI2F_helper(regF dst, regF tmp) %{
  8318   effect(DEF dst, USE tmp);
  8319   format %{ "FITOS  $tmp,$dst" %}
  8320   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8321   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8322   ins_pipe(fcvtI2F);
  8323 %}
  8325 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8326   match(Set dst (ConvI2F src));
  8327   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8328   expand %{
  8329     regF tmp;
  8330     stkI_to_regF(tmp,src);
  8331     convI2F_helper(dst, tmp);
  8332   %}
  8333 %}
  8335 instruct convI2F_mem( regF dst, memory mem ) %{
  8336   match(Set dst (ConvI2F (LoadI mem)));
  8337   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8338   size(8);
  8339   format %{ "LDF    $mem,$dst\n\t"
  8340             "FITOS  $dst,$dst" %}
  8341   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8342   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8343   ins_pipe(floadF_mem);
  8344 %}
  8347 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8348   match(Set dst (ConvI2L src));
  8349   size(4);
  8350   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8351   opcode(Assembler::sra_op3, Assembler::arith_op);
  8352   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8353   ins_pipe(ialu_reg_reg);
  8354 %}
  8356 // Zero-extend convert int to long
  8357 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8358   match(Set dst (AndL (ConvI2L src) mask) );
  8359   size(4);
  8360   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8361   opcode(Assembler::srl_op3, Assembler::arith_op);
  8362   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8363   ins_pipe(ialu_reg_reg);
  8364 %}
  8366 // Zero-extend long
  8367 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8368   match(Set dst (AndL src mask) );
  8369   size(4);
  8370   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8371   opcode(Assembler::srl_op3, Assembler::arith_op);
  8372   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8373   ins_pipe(ialu_reg_reg);
  8374 %}
  8376 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8377   match(Set dst (MoveF2I src));
  8378   effect(DEF dst, USE src);
  8379   ins_cost(MEMORY_REF_COST);
  8381   size(4);
  8382   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8383   opcode(Assembler::lduw_op3);
  8384   ins_encode(simple_form3_mem_reg( src, dst ) );
  8385   ins_pipe(iload_mem);
  8386 %}
  8388 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8389   match(Set dst (MoveI2F src));
  8390   effect(DEF dst, USE src);
  8391   ins_cost(MEMORY_REF_COST);
  8393   size(4);
  8394   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8395   opcode(Assembler::ldf_op3);
  8396   ins_encode(simple_form3_mem_reg(src, dst));
  8397   ins_pipe(floadF_stk);
  8398 %}
  8400 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8401   match(Set dst (MoveD2L src));
  8402   effect(DEF dst, USE src);
  8403   ins_cost(MEMORY_REF_COST);
  8405   size(4);
  8406   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8407   opcode(Assembler::ldx_op3);
  8408   ins_encode(simple_form3_mem_reg( src, dst ) );
  8409   ins_pipe(iload_mem);
  8410 %}
  8412 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8413   match(Set dst (MoveL2D src));
  8414   effect(DEF dst, USE src);
  8415   ins_cost(MEMORY_REF_COST);
  8417   size(4);
  8418   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8419   opcode(Assembler::lddf_op3);
  8420   ins_encode(simple_form3_mem_reg(src, dst));
  8421   ins_pipe(floadD_stk);
  8422 %}
  8424 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8425   match(Set dst (MoveF2I src));
  8426   effect(DEF dst, USE src);
  8427   ins_cost(MEMORY_REF_COST);
  8429   size(4);
  8430   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8431   opcode(Assembler::stf_op3);
  8432   ins_encode(simple_form3_mem_reg(dst, src));
  8433   ins_pipe(fstoreF_stk_reg);
  8434 %}
  8436 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8437   match(Set dst (MoveI2F src));
  8438   effect(DEF dst, USE src);
  8439   ins_cost(MEMORY_REF_COST);
  8441   size(4);
  8442   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8443   opcode(Assembler::stw_op3);
  8444   ins_encode(simple_form3_mem_reg( dst, src ) );
  8445   ins_pipe(istore_mem_reg);
  8446 %}
  8448 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8449   match(Set dst (MoveD2L src));
  8450   effect(DEF dst, USE src);
  8451   ins_cost(MEMORY_REF_COST);
  8453   size(4);
  8454   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8455   opcode(Assembler::stdf_op3);
  8456   ins_encode(simple_form3_mem_reg(dst, src));
  8457   ins_pipe(fstoreD_stk_reg);
  8458 %}
  8460 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8461   match(Set dst (MoveL2D src));
  8462   effect(DEF dst, USE src);
  8463   ins_cost(MEMORY_REF_COST);
  8465   size(4);
  8466   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8467   opcode(Assembler::stx_op3);
  8468   ins_encode(simple_form3_mem_reg( dst, src ) );
  8469   ins_pipe(istore_mem_reg);
  8470 %}
  8473 //-----------
  8474 // Long to Double conversion using V8 opcodes.
  8475 // Still useful because cheetah traps and becomes
  8476 // amazingly slow for some common numbers.
  8478 // Magic constant, 0x43300000
  8479 instruct loadConI_x43300000(iRegI dst) %{
  8480   effect(DEF dst);
  8481   size(4);
  8482   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8483   ins_encode(SetHi22(0x43300000, dst));
  8484   ins_pipe(ialu_none);
  8485 %}
  8487 // Magic constant, 0x41f00000
  8488 instruct loadConI_x41f00000(iRegI dst) %{
  8489   effect(DEF dst);
  8490   size(4);
  8491   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8492   ins_encode(SetHi22(0x41f00000, dst));
  8493   ins_pipe(ialu_none);
  8494 %}
  8496 // Construct a double from two float halves
  8497 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8498   effect(DEF dst, USE src1, USE src2);
  8499   size(8);
  8500   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8501             "FMOVS  $src2.lo,$dst.lo" %}
  8502   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8503   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8504   ins_pipe(faddD_reg_reg);
  8505 %}
  8507 // Convert integer in high half of a double register (in the lower half of
  8508 // the double register file) to double
  8509 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8510   effect(DEF dst, USE src);
  8511   size(4);
  8512   format %{ "FITOD  $src,$dst" %}
  8513   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8514   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8515   ins_pipe(fcvtLHi2D);
  8516 %}
  8518 // Add float double precision
  8519 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8520   effect(DEF dst, USE src1, USE src2);
  8521   size(4);
  8522   format %{ "FADDD  $src1,$src2,$dst" %}
  8523   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8524   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8525   ins_pipe(faddD_reg_reg);
  8526 %}
  8528 // Sub float double precision
  8529 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8530   effect(DEF dst, USE src1, USE src2);
  8531   size(4);
  8532   format %{ "FSUBD  $src1,$src2,$dst" %}
  8533   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8534   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8535   ins_pipe(faddD_reg_reg);
  8536 %}
  8538 // Mul float double precision
  8539 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8540   effect(DEF dst, USE src1, USE src2);
  8541   size(4);
  8542   format %{ "FMULD  $src1,$src2,$dst" %}
  8543   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8544   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8545   ins_pipe(fmulD_reg_reg);
  8546 %}
  8548 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8549   match(Set dst (ConvL2D src));
  8550   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8552   expand %{
  8553     regD_low   tmpsrc;
  8554     iRegI      ix43300000;
  8555     iRegI      ix41f00000;
  8556     stackSlotL lx43300000;
  8557     stackSlotL lx41f00000;
  8558     regD_low   dx43300000;
  8559     regD       dx41f00000;
  8560     regD       tmp1;
  8561     regD_low   tmp2;
  8562     regD       tmp3;
  8563     regD       tmp4;
  8565     stkL_to_regD(tmpsrc, src);
  8567     loadConI_x43300000(ix43300000);
  8568     loadConI_x41f00000(ix41f00000);
  8569     regI_to_stkLHi(lx43300000, ix43300000);
  8570     regI_to_stkLHi(lx41f00000, ix41f00000);
  8571     stkL_to_regD(dx43300000, lx43300000);
  8572     stkL_to_regD(dx41f00000, lx41f00000);
  8574     convI2D_regDHi_regD(tmp1, tmpsrc);
  8575     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8576     subD_regD_regD(tmp3, tmp2, dx43300000);
  8577     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8578     addD_regD_regD(dst, tmp3, tmp4);
  8579   %}
  8580 %}
  8582 // Long to Double conversion using fast fxtof
  8583 instruct convL2D_helper(regD dst, regD tmp) %{
  8584   effect(DEF dst, USE tmp);
  8585   size(4);
  8586   format %{ "FXTOD  $tmp,$dst" %}
  8587   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8588   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8589   ins_pipe(fcvtL2D);
  8590 %}
  8592 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8593   predicate(VM_Version::has_fast_fxtof());
  8594   match(Set dst (ConvL2D src));
  8595   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8596   expand %{
  8597     regD tmp;
  8598     stkL_to_regD(tmp, src);
  8599     convL2D_helper(dst, tmp);
  8600   %}
  8601 %}
  8603 //-----------
  8604 // Long to Float conversion using V8 opcodes.
  8605 // Still useful because cheetah traps and becomes
  8606 // amazingly slow for some common numbers.
  8608 // Long to Float conversion using fast fxtof
  8609 instruct convL2F_helper(regF dst, regD tmp) %{
  8610   effect(DEF dst, USE tmp);
  8611   size(4);
  8612   format %{ "FXTOS  $tmp,$dst" %}
  8613   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8614   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8615   ins_pipe(fcvtL2F);
  8616 %}
  8618 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8619   match(Set dst (ConvL2F src));
  8620   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8621   expand %{
  8622     regD tmp;
  8623     stkL_to_regD(tmp, src);
  8624     convL2F_helper(dst, tmp);
  8625   %}
  8626 %}
  8627 //-----------
  8629 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8630   match(Set dst (ConvL2I src));
  8631 #ifndef _LP64
  8632   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8633   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8634   ins_pipe(ialu_move_reg_I_to_L);
  8635 #else
  8636   size(4);
  8637   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8638   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8639   ins_pipe(ialu_reg);
  8640 #endif
  8641 %}
  8643 // Register Shift Right Immediate
  8644 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8645   match(Set dst (ConvL2I (RShiftL src cnt)));
  8647   size(4);
  8648   format %{ "SRAX   $src,$cnt,$dst" %}
  8649   opcode(Assembler::srax_op3, Assembler::arith_op);
  8650   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8651   ins_pipe(ialu_reg_imm);
  8652 %}
  8654 // Replicate scalar to packed byte values in Double register
  8655 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8656   effect(DEF dst, USE src);
  8657   format %{ "SLLX  $src,56,$dst\n\t"
  8658             "SRLX  $dst, 8,O7\n\t"
  8659             "OR    $dst,O7,$dst\n\t"
  8660             "SRLX  $dst,16,O7\n\t"
  8661             "OR    $dst,O7,$dst\n\t"
  8662             "SRLX  $dst,32,O7\n\t"
  8663             "OR    $dst,O7,$dst\t! replicate8B" %}
  8664   ins_encode( enc_repl8b(src, dst));
  8665   ins_pipe(ialu_reg);
  8666 %}
  8668 // Replicate scalar to packed byte values in Double register
  8669 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8670   match(Set dst (Replicate8B src));
  8671   expand %{
  8672     iRegL tmp;
  8673     Repl8B_reg_helper(tmp, src);
  8674     regL_to_stkD(dst, tmp);
  8675   %}
  8676 %}
  8678 // Replicate scalar constant to packed byte values in Double register
  8679 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8680   match(Set dst (Replicate8B con));
  8681   effect(KILL tmp);
  8682   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8683   ins_encode %{
  8684     // XXX This is a quick fix for 6833573.
  8685     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8686     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8687     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8688   %}
  8689   ins_pipe(loadConFD);
  8690 %}
  8692 // Replicate scalar to packed char values into stack slot
  8693 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8694   effect(DEF dst, USE src);
  8695   format %{ "SLLX  $src,48,$dst\n\t"
  8696             "SRLX  $dst,16,O7\n\t"
  8697             "OR    $dst,O7,$dst\n\t"
  8698             "SRLX  $dst,32,O7\n\t"
  8699             "OR    $dst,O7,$dst\t! replicate4C" %}
  8700   ins_encode( enc_repl4s(src, dst) );
  8701   ins_pipe(ialu_reg);
  8702 %}
  8704 // Replicate scalar to packed char values into stack slot
  8705 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8706   match(Set dst (Replicate4C src));
  8707   expand %{
  8708     iRegL tmp;
  8709     Repl4C_reg_helper(tmp, src);
  8710     regL_to_stkD(dst, tmp);
  8711   %}
  8712 %}
  8714 // Replicate scalar constant to packed char values in Double register
  8715 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8716   match(Set dst (Replicate4C con));
  8717   effect(KILL tmp);
  8718   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8719   ins_encode %{
  8720     // XXX This is a quick fix for 6833573.
  8721     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8722     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8723     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8724   %}
  8725   ins_pipe(loadConFD);
  8726 %}
  8728 // Replicate scalar to packed short values into stack slot
  8729 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8730   effect(DEF dst, USE src);
  8731   format %{ "SLLX  $src,48,$dst\n\t"
  8732             "SRLX  $dst,16,O7\n\t"
  8733             "OR    $dst,O7,$dst\n\t"
  8734             "SRLX  $dst,32,O7\n\t"
  8735             "OR    $dst,O7,$dst\t! replicate4S" %}
  8736   ins_encode( enc_repl4s(src, dst) );
  8737   ins_pipe(ialu_reg);
  8738 %}
  8740 // Replicate scalar to packed short values into stack slot
  8741 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8742   match(Set dst (Replicate4S src));
  8743   expand %{
  8744     iRegL tmp;
  8745     Repl4S_reg_helper(tmp, src);
  8746     regL_to_stkD(dst, tmp);
  8747   %}
  8748 %}
  8750 // Replicate scalar constant to packed short values in Double register
  8751 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8752   match(Set dst (Replicate4S con));
  8753   effect(KILL tmp);
  8754   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8755   ins_encode %{
  8756     // XXX This is a quick fix for 6833573.
  8757     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8758     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8759     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8760   %}
  8761   ins_pipe(loadConFD);
  8762 %}
  8764 // Replicate scalar to packed int values in Double register
  8765 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8766   effect(DEF dst, USE src);
  8767   format %{ "SLLX  $src,32,$dst\n\t"
  8768             "SRLX  $dst,32,O7\n\t"
  8769             "OR    $dst,O7,$dst\t! replicate2I" %}
  8770   ins_encode( enc_repl2i(src, dst));
  8771   ins_pipe(ialu_reg);
  8772 %}
  8774 // Replicate scalar to packed int values in Double register
  8775 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8776   match(Set dst (Replicate2I src));
  8777   expand %{
  8778     iRegL tmp;
  8779     Repl2I_reg_helper(tmp, src);
  8780     regL_to_stkD(dst, tmp);
  8781   %}
  8782 %}
  8784 // Replicate scalar zero constant to packed int values in Double register
  8785 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8786   match(Set dst (Replicate2I con));
  8787   effect(KILL tmp);
  8788   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8789   ins_encode %{
  8790     // XXX This is a quick fix for 6833573.
  8791     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8792     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8793     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8794   %}
  8795   ins_pipe(loadConFD);
  8796 %}
  8798 //----------Control Flow Instructions------------------------------------------
  8799 // Compare Instructions
  8800 // Compare Integers
  8801 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8802   match(Set icc (CmpI op1 op2));
  8803   effect( DEF icc, USE op1, USE op2 );
  8805   size(4);
  8806   format %{ "CMP    $op1,$op2" %}
  8807   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8808   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8809   ins_pipe(ialu_cconly_reg_reg);
  8810 %}
  8812 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8813   match(Set icc (CmpU op1 op2));
  8815   size(4);
  8816   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8817   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8818   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8819   ins_pipe(ialu_cconly_reg_reg);
  8820 %}
  8822 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8823   match(Set icc (CmpI op1 op2));
  8824   effect( DEF icc, USE op1 );
  8826   size(4);
  8827   format %{ "CMP    $op1,$op2" %}
  8828   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8829   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8830   ins_pipe(ialu_cconly_reg_imm);
  8831 %}
  8833 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8834   match(Set icc (CmpI (AndI op1 op2) zero));
  8836   size(4);
  8837   format %{ "BTST   $op2,$op1" %}
  8838   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8839   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8840   ins_pipe(ialu_cconly_reg_reg_zero);
  8841 %}
  8843 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8844   match(Set icc (CmpI (AndI op1 op2) zero));
  8846   size(4);
  8847   format %{ "BTST   $op2,$op1" %}
  8848   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8849   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8850   ins_pipe(ialu_cconly_reg_imm_zero);
  8851 %}
  8853 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8854   match(Set xcc (CmpL op1 op2));
  8855   effect( DEF xcc, USE op1, USE op2 );
  8857   size(4);
  8858   format %{ "CMP    $op1,$op2\t\t! long" %}
  8859   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8860   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8861   ins_pipe(ialu_cconly_reg_reg);
  8862 %}
  8864 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8865   match(Set xcc (CmpL op1 con));
  8866   effect( DEF xcc, USE op1, USE con );
  8868   size(4);
  8869   format %{ "CMP    $op1,$con\t\t! long" %}
  8870   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8871   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8872   ins_pipe(ialu_cconly_reg_reg);
  8873 %}
  8875 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8876   match(Set xcc (CmpL (AndL op1 op2) zero));
  8877   effect( DEF xcc, USE op1, USE op2 );
  8879   size(4);
  8880   format %{ "BTST   $op1,$op2\t\t! long" %}
  8881   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8882   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8883   ins_pipe(ialu_cconly_reg_reg);
  8884 %}
  8886 // useful for checking the alignment of a pointer:
  8887 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8888   match(Set xcc (CmpL (AndL op1 con) zero));
  8889   effect( DEF xcc, USE op1, USE con );
  8891   size(4);
  8892   format %{ "BTST   $op1,$con\t\t! long" %}
  8893   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8894   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8895   ins_pipe(ialu_cconly_reg_reg);
  8896 %}
  8898 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8899   match(Set icc (CmpU op1 op2));
  8901   size(4);
  8902   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8903   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8904   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8905   ins_pipe(ialu_cconly_reg_imm);
  8906 %}
  8908 // Compare Pointers
  8909 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8910   match(Set pcc (CmpP op1 op2));
  8912   size(4);
  8913   format %{ "CMP    $op1,$op2\t! ptr" %}
  8914   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8915   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8916   ins_pipe(ialu_cconly_reg_reg);
  8917 %}
  8919 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8920   match(Set pcc (CmpP op1 op2));
  8922   size(4);
  8923   format %{ "CMP    $op1,$op2\t! ptr" %}
  8924   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8925   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8926   ins_pipe(ialu_cconly_reg_imm);
  8927 %}
  8929 // Compare Narrow oops
  8930 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8931   match(Set icc (CmpN op1 op2));
  8933   size(4);
  8934   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8935   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8936   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8937   ins_pipe(ialu_cconly_reg_reg);
  8938 %}
  8940 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8941   match(Set icc (CmpN op1 op2));
  8943   size(4);
  8944   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8945   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8946   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8947   ins_pipe(ialu_cconly_reg_imm);
  8948 %}
  8950 //----------Max and Min--------------------------------------------------------
  8951 // Min Instructions
  8952 // Conditional move for min
  8953 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8954   effect( USE_DEF op2, USE op1, USE icc );
  8956   size(4);
  8957   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8958   opcode(Assembler::less);
  8959   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8960   ins_pipe(ialu_reg_flags);
  8961 %}
  8963 // Min Register with Register.
  8964 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8965   match(Set op2 (MinI op1 op2));
  8966   ins_cost(DEFAULT_COST*2);
  8967   expand %{
  8968     flagsReg icc;
  8969     compI_iReg(icc,op1,op2);
  8970     cmovI_reg_lt(op2,op1,icc);
  8971   %}
  8972 %}
  8974 // Max Instructions
  8975 // Conditional move for max
  8976 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8977   effect( USE_DEF op2, USE op1, USE icc );
  8978   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8979   opcode(Assembler::greater);
  8980   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8981   ins_pipe(ialu_reg_flags);
  8982 %}
  8984 // Max Register with Register
  8985 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8986   match(Set op2 (MaxI op1 op2));
  8987   ins_cost(DEFAULT_COST*2);
  8988   expand %{
  8989     flagsReg icc;
  8990     compI_iReg(icc,op1,op2);
  8991     cmovI_reg_gt(op2,op1,icc);
  8992   %}
  8993 %}
  8996 //----------Float Compares----------------------------------------------------
  8997 // Compare floating, generate condition code
  8998 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8999   match(Set fcc (CmpF src1 src2));
  9001   size(4);
  9002   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9003   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9004   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9005   ins_pipe(faddF_fcc_reg_reg_zero);
  9006 %}
  9008 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9009   match(Set fcc (CmpD src1 src2));
  9011   size(4);
  9012   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9013   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9014   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9015   ins_pipe(faddD_fcc_reg_reg_zero);
  9016 %}
  9019 // Compare floating, generate -1,0,1
  9020 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9021   match(Set dst (CmpF3 src1 src2));
  9022   effect(KILL fcc0);
  9023   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9024   format %{ "fcmpl  $dst,$src1,$src2" %}
  9025   // Primary = float
  9026   opcode( true );
  9027   ins_encode( floating_cmp( dst, src1, src2 ) );
  9028   ins_pipe( floating_cmp );
  9029 %}
  9031 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9032   match(Set dst (CmpD3 src1 src2));
  9033   effect(KILL fcc0);
  9034   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9035   format %{ "dcmpl  $dst,$src1,$src2" %}
  9036   // Primary = double (not float)
  9037   opcode( false );
  9038   ins_encode( floating_cmp( dst, src1, src2 ) );
  9039   ins_pipe( floating_cmp );
  9040 %}
  9042 //----------Branches---------------------------------------------------------
  9043 // Jump
  9044 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9045 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9046   match(Jump switch_val);
  9048   ins_cost(350);
  9050   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9051              "LD     [O7 + $switch_val], O7\n\t"
  9052              "JUMP   O7"
  9053          %}
  9054   ins_encode %{
  9055     // Calculate table address into a register.
  9056     Register table_reg;
  9057     Register label_reg = O7;
  9058     if (constant_offset() == 0) {
  9059       table_reg = $constanttablebase;
  9060     } else {
  9061       table_reg = O7;
  9062       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9063       __ add($constanttablebase, con_offset, table_reg);
  9066     // Jump to base address + switch value
  9067     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9068     __ jmp(label_reg, G0);
  9069     __ delayed()->nop();
  9070   %}
  9071   ins_pc_relative(1);
  9072   ins_pipe(ialu_reg_reg);
  9073 %}
  9075 // Direct Branch.  Use V8 version with longer range.
  9076 instruct branch(label labl) %{
  9077   match(Goto);
  9078   effect(USE labl);
  9080   size(8);
  9081   ins_cost(BRANCH_COST);
  9082   format %{ "BA     $labl" %}
  9083   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  9084   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  9085   ins_encode( enc_ba( labl ) );
  9086   ins_pc_relative(1);
  9087   ins_pipe(br);
  9088 %}
  9090 // Conditional Direct Branch
  9091 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9092   match(If cmp icc);
  9093   effect(USE labl);
  9095   size(8);
  9096   ins_cost(BRANCH_COST);
  9097   format %{ "BP$cmp   $icc,$labl" %}
  9098   // Prim = bits 24-22, Secnd = bits 31-30
  9099   ins_encode( enc_bp( labl, cmp, icc ) );
  9100   ins_pc_relative(1);
  9101   ins_pipe(br_cc);
  9102 %}
  9104 // Branch-on-register tests all 64 bits.  We assume that values
  9105 // in 64-bit registers always remains zero or sign extended
  9106 // unless our code munges the high bits.  Interrupts can chop
  9107 // the high order bits to zero or sign at any time.
  9108 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9109   match(If cmp (CmpI op1 zero));
  9110   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9111   effect(USE labl);
  9113   size(8);
  9114   ins_cost(BRANCH_COST);
  9115   format %{ "BR$cmp   $op1,$labl" %}
  9116   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9117   ins_pc_relative(1);
  9118   ins_pipe(br_reg);
  9119 %}
  9121 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9122   match(If cmp (CmpP op1 null));
  9123   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9124   effect(USE labl);
  9126   size(8);
  9127   ins_cost(BRANCH_COST);
  9128   format %{ "BR$cmp   $op1,$labl" %}
  9129   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9130   ins_pc_relative(1);
  9131   ins_pipe(br_reg);
  9132 %}
  9134 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9135   match(If cmp (CmpL op1 zero));
  9136   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9137   effect(USE labl);
  9139   size(8);
  9140   ins_cost(BRANCH_COST);
  9141   format %{ "BR$cmp   $op1,$labl" %}
  9142   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9143   ins_pc_relative(1);
  9144   ins_pipe(br_reg);
  9145 %}
  9147 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9148   match(If cmp icc);
  9149   effect(USE labl);
  9151   format %{ "BP$cmp  $icc,$labl" %}
  9152   // Prim = bits 24-22, Secnd = bits 31-30
  9153   ins_encode( enc_bp( labl, cmp, icc ) );
  9154   ins_pc_relative(1);
  9155   ins_pipe(br_cc);
  9156 %}
  9158 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9159   match(If cmp pcc);
  9160   effect(USE labl);
  9162   size(8);
  9163   ins_cost(BRANCH_COST);
  9164   format %{ "BP$cmp  $pcc,$labl" %}
  9165   // Prim = bits 24-22, Secnd = bits 31-30
  9166   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9167   ins_pc_relative(1);
  9168   ins_pipe(br_cc);
  9169 %}
  9171 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9172   match(If cmp fcc);
  9173   effect(USE labl);
  9175   size(8);
  9176   ins_cost(BRANCH_COST);
  9177   format %{ "FBP$cmp $fcc,$labl" %}
  9178   // Prim = bits 24-22, Secnd = bits 31-30
  9179   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9180   ins_pc_relative(1);
  9181   ins_pipe(br_fcc);
  9182 %}
  9184 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9185   match(CountedLoopEnd cmp icc);
  9186   effect(USE labl);
  9188   size(8);
  9189   ins_cost(BRANCH_COST);
  9190   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9191   // Prim = bits 24-22, Secnd = bits 31-30
  9192   ins_encode( enc_bp( labl, cmp, icc ) );
  9193   ins_pc_relative(1);
  9194   ins_pipe(br_cc);
  9195 %}
  9197 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9198   match(CountedLoopEnd cmp icc);
  9199   effect(USE labl);
  9201   size(8);
  9202   ins_cost(BRANCH_COST);
  9203   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9204   // Prim = bits 24-22, Secnd = bits 31-30
  9205   ins_encode( enc_bp( labl, cmp, icc ) );
  9206   ins_pc_relative(1);
  9207   ins_pipe(br_cc);
  9208 %}
  9210 // ============================================================================
  9211 // Long Compare
  9212 //
  9213 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9214 // is tricky.  The flavor of compare used depends on whether we are testing
  9215 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9216 // The GE test is the negated LT test.  The LE test can be had by commuting
  9217 // the operands (yielding a GE test) and then negating; negate again for the
  9218 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9219 // NE test is negated from that.
  9221 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9222 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9223 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9224 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9225 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9226 // foo match ends up with the wrong leaf.  One fix is to not match both
  9227 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9228 // both forms beat the trinary form of long-compare and both are very useful
  9229 // on Intel which has so few registers.
  9231 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9232   match(If cmp xcc);
  9233   effect(USE labl);
  9235   size(8);
  9236   ins_cost(BRANCH_COST);
  9237   format %{ "BP$cmp   $xcc,$labl" %}
  9238   // Prim = bits 24-22, Secnd = bits 31-30
  9239   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9240   ins_pc_relative(1);
  9241   ins_pipe(br_cc);
  9242 %}
  9244 // Manifest a CmpL3 result in an integer register.  Very painful.
  9245 // This is the test to avoid.
  9246 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9247   match(Set dst (CmpL3 src1 src2) );
  9248   effect( KILL ccr );
  9249   ins_cost(6*DEFAULT_COST);
  9250   size(24);
  9251   format %{ "CMP    $src1,$src2\t\t! long\n"
  9252           "\tBLT,a,pn done\n"
  9253           "\tMOV    -1,$dst\t! delay slot\n"
  9254           "\tBGT,a,pn done\n"
  9255           "\tMOV    1,$dst\t! delay slot\n"
  9256           "\tCLR    $dst\n"
  9257     "done:"     %}
  9258   ins_encode( cmpl_flag(src1,src2,dst) );
  9259   ins_pipe(cmpL_reg);
  9260 %}
  9262 // Conditional move
  9263 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9264   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9265   ins_cost(150);
  9266   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9267   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9268   ins_pipe(ialu_reg);
  9269 %}
  9271 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9272   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9273   ins_cost(140);
  9274   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9275   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9276   ins_pipe(ialu_imm);
  9277 %}
  9279 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9280   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9281   ins_cost(150);
  9282   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9283   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9284   ins_pipe(ialu_reg);
  9285 %}
  9287 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9288   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9289   ins_cost(140);
  9290   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9291   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9292   ins_pipe(ialu_imm);
  9293 %}
  9295 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9296   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9297   ins_cost(150);
  9298   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9299   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9300   ins_pipe(ialu_reg);
  9301 %}
  9303 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9304   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9305   ins_cost(150);
  9306   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9307   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9308   ins_pipe(ialu_reg);
  9309 %}
  9311 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9312   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9313   ins_cost(140);
  9314   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9315   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9316   ins_pipe(ialu_imm);
  9317 %}
  9319 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9320   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9321   ins_cost(150);
  9322   opcode(0x101);
  9323   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9324   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9325   ins_pipe(int_conditional_float_move);
  9326 %}
  9328 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9329   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9330   ins_cost(150);
  9331   opcode(0x102);
  9332   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9333   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9334   ins_pipe(int_conditional_float_move);
  9335 %}
  9337 // ============================================================================
  9338 // Safepoint Instruction
  9339 instruct safePoint_poll(iRegP poll) %{
  9340   match(SafePoint poll);
  9341   effect(USE poll);
  9343   size(4);
  9344 #ifdef _LP64
  9345   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9346 #else
  9347   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9348 #endif
  9349   ins_encode %{
  9350     __ relocate(relocInfo::poll_type);
  9351     __ ld_ptr($poll$$Register, 0, G0);
  9352   %}
  9353   ins_pipe(loadPollP);
  9354 %}
  9356 // ============================================================================
  9357 // Call Instructions
  9358 // Call Java Static Instruction
  9359 instruct CallStaticJavaDirect( method meth ) %{
  9360   match(CallStaticJava);
  9361   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9362   effect(USE meth);
  9364   size(8);
  9365   ins_cost(CALL_COST);
  9366   format %{ "CALL,static  ; NOP ==> " %}
  9367   ins_encode( Java_Static_Call( meth ), call_epilog );
  9368   ins_pc_relative(1);
  9369   ins_pipe(simple_call);
  9370 %}
  9372 // Call Java Static Instruction (method handle version)
  9373 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9374   match(CallStaticJava);
  9375   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9376   effect(USE meth, KILL l7_mh_SP_save);
  9378   size(8);
  9379   ins_cost(CALL_COST);
  9380   format %{ "CALL,static/MethodHandle" %}
  9381   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9382   ins_pc_relative(1);
  9383   ins_pipe(simple_call);
  9384 %}
  9386 // Call Java Dynamic Instruction
  9387 instruct CallDynamicJavaDirect( method meth ) %{
  9388   match(CallDynamicJava);
  9389   effect(USE meth);
  9391   ins_cost(CALL_COST);
  9392   format %{ "SET    (empty),R_G5\n\t"
  9393             "CALL,dynamic  ; NOP ==> " %}
  9394   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9395   ins_pc_relative(1);
  9396   ins_pipe(call);
  9397 %}
  9399 // Call Runtime Instruction
  9400 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9401   match(CallRuntime);
  9402   effect(USE meth, KILL l7);
  9403   ins_cost(CALL_COST);
  9404   format %{ "CALL,runtime" %}
  9405   ins_encode( Java_To_Runtime( meth ),
  9406               call_epilog, adjust_long_from_native_call );
  9407   ins_pc_relative(1);
  9408   ins_pipe(simple_call);
  9409 %}
  9411 // Call runtime without safepoint - same as CallRuntime
  9412 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9413   match(CallLeaf);
  9414   effect(USE meth, KILL l7);
  9415   ins_cost(CALL_COST);
  9416   format %{ "CALL,runtime leaf" %}
  9417   ins_encode( Java_To_Runtime( meth ),
  9418               call_epilog,
  9419               adjust_long_from_native_call );
  9420   ins_pc_relative(1);
  9421   ins_pipe(simple_call);
  9422 %}
  9424 // Call runtime without safepoint - same as CallLeaf
  9425 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9426   match(CallLeafNoFP);
  9427   effect(USE meth, KILL l7);
  9428   ins_cost(CALL_COST);
  9429   format %{ "CALL,runtime leaf nofp" %}
  9430   ins_encode( Java_To_Runtime( meth ),
  9431               call_epilog,
  9432               adjust_long_from_native_call );
  9433   ins_pc_relative(1);
  9434   ins_pipe(simple_call);
  9435 %}
  9437 // Tail Call; Jump from runtime stub to Java code.
  9438 // Also known as an 'interprocedural jump'.
  9439 // Target of jump will eventually return to caller.
  9440 // TailJump below removes the return address.
  9441 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9442   match(TailCall jump_target method_oop );
  9444   ins_cost(CALL_COST);
  9445   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9446   ins_encode(form_jmpl(jump_target));
  9447   ins_pipe(tail_call);
  9448 %}
  9451 // Return Instruction
  9452 instruct Ret() %{
  9453   match(Return);
  9455   // The epilogue node did the ret already.
  9456   size(0);
  9457   format %{ "! return" %}
  9458   ins_encode();
  9459   ins_pipe(empty);
  9460 %}
  9463 // Tail Jump; remove the return address; jump to target.
  9464 // TailCall above leaves the return address around.
  9465 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9466 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9467 // "restore" before this instruction (in Epilogue), we need to materialize it
  9468 // in %i0.
  9469 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9470   match( TailJump jump_target ex_oop );
  9471   ins_cost(CALL_COST);
  9472   format %{ "! discard R_O7\n\t"
  9473             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9474   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9475   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9476   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9477   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9478   ins_pipe(tail_call);
  9479 %}
  9481 // Create exception oop: created by stack-crawling runtime code.
  9482 // Created exception is now available to this handler, and is setup
  9483 // just prior to jumping to this handler.  No code emitted.
  9484 instruct CreateException( o0RegP ex_oop )
  9485 %{
  9486   match(Set ex_oop (CreateEx));
  9487   ins_cost(0);
  9489   size(0);
  9490   // use the following format syntax
  9491   format %{ "! exception oop is in R_O0; no code emitted" %}
  9492   ins_encode();
  9493   ins_pipe(empty);
  9494 %}
  9497 // Rethrow exception:
  9498 // The exception oop will come in the first argument position.
  9499 // Then JUMP (not call) to the rethrow stub code.
  9500 instruct RethrowException()
  9501 %{
  9502   match(Rethrow);
  9503   ins_cost(CALL_COST);
  9505   // use the following format syntax
  9506   format %{ "Jmp    rethrow_stub" %}
  9507   ins_encode(enc_rethrow);
  9508   ins_pipe(tail_call);
  9509 %}
  9512 // Die now
  9513 instruct ShouldNotReachHere( )
  9514 %{
  9515   match(Halt);
  9516   ins_cost(CALL_COST);
  9518   size(4);
  9519   // Use the following format syntax
  9520   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9521   ins_encode( form2_illtrap() );
  9522   ins_pipe(tail_call);
  9523 %}
  9525 // ============================================================================
  9526 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9527 // array for an instance of the superklass.  Set a hidden internal cache on a
  9528 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9529 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9530 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9531   match(Set index (PartialSubtypeCheck sub super));
  9532   effect( KILL pcc, KILL o7 );
  9533   ins_cost(DEFAULT_COST*10);
  9534   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9535   ins_encode( enc_PartialSubtypeCheck() );
  9536   ins_pipe(partial_subtype_check_pipe);
  9537 %}
  9539 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9540   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9541   effect( KILL idx, KILL o7 );
  9542   ins_cost(DEFAULT_COST*10);
  9543   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9544   ins_encode( enc_PartialSubtypeCheck() );
  9545   ins_pipe(partial_subtype_check_pipe);
  9546 %}
  9549 // ============================================================================
  9550 // inlined locking and unlocking
  9552 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9553   match(Set pcc (FastLock object box));
  9555   effect(KILL scratch, TEMP scratch2);
  9556   ins_cost(100);
  9558   size(4*112);       // conservative overestimation ...
  9559   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9560   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9561   ins_pipe(long_memory_op);
  9562 %}
  9565 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9566   match(Set pcc (FastUnlock object box));
  9567   effect(KILL scratch, TEMP scratch2);
  9568   ins_cost(100);
  9570   size(4*120);       // conservative overestimation ...
  9571   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9572   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9573   ins_pipe(long_memory_op);
  9574 %}
  9576 // Count and Base registers are fixed because the allocator cannot
  9577 // kill unknown registers.  The encodings are generic.
  9578 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9579   match(Set dummy (ClearArray cnt base));
  9580   effect(TEMP temp, KILL ccr);
  9581   ins_cost(300);
  9582   format %{ "MOV    $cnt,$temp\n"
  9583     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9584     "        BRge   loop\t\t! Clearing loop\n"
  9585     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9586   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9587   ins_pipe(long_memory_op);
  9588 %}
  9590 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9591                         o7RegI tmp, flagsReg ccr) %{
  9592   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9593   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9594   ins_cost(300);
  9595   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9596   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9597   ins_pipe(long_memory_op);
  9598 %}
  9600 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9601                        o7RegI tmp, flagsReg ccr) %{
  9602   match(Set result (StrEquals (Binary str1 str2) cnt));
  9603   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9604   ins_cost(300);
  9605   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9606   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9607   ins_pipe(long_memory_op);
  9608 %}
  9610 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9611                       o7RegI tmp2, flagsReg ccr) %{
  9612   match(Set result (AryEq ary1 ary2));
  9613   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9614   ins_cost(300);
  9615   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9616   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9617   ins_pipe(long_memory_op);
  9618 %}
  9621 //---------- Zeros Count Instructions ------------------------------------------
  9623 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9624   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9625   match(Set dst (CountLeadingZerosI src));
  9626   effect(TEMP dst, TEMP tmp, KILL cr);
  9628   // x |= (x >> 1);
  9629   // x |= (x >> 2);
  9630   // x |= (x >> 4);
  9631   // x |= (x >> 8);
  9632   // x |= (x >> 16);
  9633   // return (WORDBITS - popc(x));
  9634   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9635             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9636             "OR      $dst,$tmp,$dst\n\t"
  9637             "SRL     $dst,2,$tmp\n\t"
  9638             "OR      $dst,$tmp,$dst\n\t"
  9639             "SRL     $dst,4,$tmp\n\t"
  9640             "OR      $dst,$tmp,$dst\n\t"
  9641             "SRL     $dst,8,$tmp\n\t"
  9642             "OR      $dst,$tmp,$dst\n\t"
  9643             "SRL     $dst,16,$tmp\n\t"
  9644             "OR      $dst,$tmp,$dst\n\t"
  9645             "POPC    $dst,$dst\n\t"
  9646             "MOV     32,$tmp\n\t"
  9647             "SUB     $tmp,$dst,$dst" %}
  9648   ins_encode %{
  9649     Register Rdst = $dst$$Register;
  9650     Register Rsrc = $src$$Register;
  9651     Register Rtmp = $tmp$$Register;
  9652     __ srl(Rsrc, 1,    Rtmp);
  9653     __ srl(Rsrc, 0,    Rdst);
  9654     __ or3(Rdst, Rtmp, Rdst);
  9655     __ srl(Rdst, 2,    Rtmp);
  9656     __ or3(Rdst, Rtmp, Rdst);
  9657     __ srl(Rdst, 4,    Rtmp);
  9658     __ or3(Rdst, Rtmp, Rdst);
  9659     __ srl(Rdst, 8,    Rtmp);
  9660     __ or3(Rdst, Rtmp, Rdst);
  9661     __ srl(Rdst, 16,   Rtmp);
  9662     __ or3(Rdst, Rtmp, Rdst);
  9663     __ popc(Rdst, Rdst);
  9664     __ mov(BitsPerInt, Rtmp);
  9665     __ sub(Rtmp, Rdst, Rdst);
  9666   %}
  9667   ins_pipe(ialu_reg);
  9668 %}
  9670 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9671   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9672   match(Set dst (CountLeadingZerosL src));
  9673   effect(TEMP dst, TEMP tmp, KILL cr);
  9675   // x |= (x >> 1);
  9676   // x |= (x >> 2);
  9677   // x |= (x >> 4);
  9678   // x |= (x >> 8);
  9679   // x |= (x >> 16);
  9680   // x |= (x >> 32);
  9681   // return (WORDBITS - popc(x));
  9682   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9683             "OR      $src,$tmp,$dst\n\t"
  9684             "SRLX    $dst,2,$tmp\n\t"
  9685             "OR      $dst,$tmp,$dst\n\t"
  9686             "SRLX    $dst,4,$tmp\n\t"
  9687             "OR      $dst,$tmp,$dst\n\t"
  9688             "SRLX    $dst,8,$tmp\n\t"
  9689             "OR      $dst,$tmp,$dst\n\t"
  9690             "SRLX    $dst,16,$tmp\n\t"
  9691             "OR      $dst,$tmp,$dst\n\t"
  9692             "SRLX    $dst,32,$tmp\n\t"
  9693             "OR      $dst,$tmp,$dst\n\t"
  9694             "POPC    $dst,$dst\n\t"
  9695             "MOV     64,$tmp\n\t"
  9696             "SUB     $tmp,$dst,$dst" %}
  9697   ins_encode %{
  9698     Register Rdst = $dst$$Register;
  9699     Register Rsrc = $src$$Register;
  9700     Register Rtmp = $tmp$$Register;
  9701     __ srlx(Rsrc, 1,    Rtmp);
  9702     __ or3( Rsrc, Rtmp, Rdst);
  9703     __ srlx(Rdst, 2,    Rtmp);
  9704     __ or3( Rdst, Rtmp, Rdst);
  9705     __ srlx(Rdst, 4,    Rtmp);
  9706     __ or3( Rdst, Rtmp, Rdst);
  9707     __ srlx(Rdst, 8,    Rtmp);
  9708     __ or3( Rdst, Rtmp, Rdst);
  9709     __ srlx(Rdst, 16,   Rtmp);
  9710     __ or3( Rdst, Rtmp, Rdst);
  9711     __ srlx(Rdst, 32,   Rtmp);
  9712     __ or3( Rdst, Rtmp, Rdst);
  9713     __ popc(Rdst, Rdst);
  9714     __ mov(BitsPerLong, Rtmp);
  9715     __ sub(Rtmp, Rdst, Rdst);
  9716   %}
  9717   ins_pipe(ialu_reg);
  9718 %}
  9720 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9721   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9722   match(Set dst (CountTrailingZerosI src));
  9723   effect(TEMP dst, KILL cr);
  9725   // return popc(~x & (x - 1));
  9726   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9727             "ANDN    $dst,$src,$dst\n\t"
  9728             "SRL     $dst,R_G0,$dst\n\t"
  9729             "POPC    $dst,$dst" %}
  9730   ins_encode %{
  9731     Register Rdst = $dst$$Register;
  9732     Register Rsrc = $src$$Register;
  9733     __ sub(Rsrc, 1, Rdst);
  9734     __ andn(Rdst, Rsrc, Rdst);
  9735     __ srl(Rdst, G0, Rdst);
  9736     __ popc(Rdst, Rdst);
  9737   %}
  9738   ins_pipe(ialu_reg);
  9739 %}
  9741 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9742   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9743   match(Set dst (CountTrailingZerosL src));
  9744   effect(TEMP dst, KILL cr);
  9746   // return popc(~x & (x - 1));
  9747   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9748             "ANDN    $dst,$src,$dst\n\t"
  9749             "POPC    $dst,$dst" %}
  9750   ins_encode %{
  9751     Register Rdst = $dst$$Register;
  9752     Register Rsrc = $src$$Register;
  9753     __ sub(Rsrc, 1, Rdst);
  9754     __ andn(Rdst, Rsrc, Rdst);
  9755     __ popc(Rdst, Rdst);
  9756   %}
  9757   ins_pipe(ialu_reg);
  9758 %}
  9761 //---------- Population Count Instructions -------------------------------------
  9763 instruct popCountI(iRegI dst, iRegI src) %{
  9764   predicate(UsePopCountInstruction);
  9765   match(Set dst (PopCountI src));
  9767   format %{ "POPC   $src, $dst" %}
  9768   ins_encode %{
  9769     __ popc($src$$Register, $dst$$Register);
  9770   %}
  9771   ins_pipe(ialu_reg);
  9772 %}
  9774 // Note: Long.bitCount(long) returns an int.
  9775 instruct popCountL(iRegI dst, iRegL src) %{
  9776   predicate(UsePopCountInstruction);
  9777   match(Set dst (PopCountL src));
  9779   format %{ "POPC   $src, $dst" %}
  9780   ins_encode %{
  9781     __ popc($src$$Register, $dst$$Register);
  9782   %}
  9783   ins_pipe(ialu_reg);
  9784 %}
  9787 // ============================================================================
  9788 //------------Bytes reverse--------------------------------------------------
  9790 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9791   match(Set dst (ReverseBytesI src));
  9793   // Op cost is artificially doubled to make sure that load or store
  9794   // instructions are preferred over this one which requires a spill
  9795   // onto a stack slot.
  9796   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9797   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9799   ins_encode %{
  9800     __ set($src$$disp + STACK_BIAS, O7);
  9801     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9802   %}
  9803   ins_pipe( iload_mem );
  9804 %}
  9806 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9807   match(Set dst (ReverseBytesL src));
  9809   // Op cost is artificially doubled to make sure that load or store
  9810   // instructions are preferred over this one which requires a spill
  9811   // onto a stack slot.
  9812   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9813   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9815   ins_encode %{
  9816     __ set($src$$disp + STACK_BIAS, O7);
  9817     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9818   %}
  9819   ins_pipe( iload_mem );
  9820 %}
  9822 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9823   match(Set dst (ReverseBytesUS src));
  9825   // Op cost is artificially doubled to make sure that load or store
  9826   // instructions are preferred over this one which requires a spill
  9827   // onto a stack slot.
  9828   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9829   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9831   ins_encode %{
  9832     // the value was spilled as an int so bias the load
  9833     __ set($src$$disp + STACK_BIAS + 2, O7);
  9834     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9835   %}
  9836   ins_pipe( iload_mem );
  9837 %}
  9839 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9840   match(Set dst (ReverseBytesS src));
  9842   // Op cost is artificially doubled to make sure that load or store
  9843   // instructions are preferred over this one which requires a spill
  9844   // onto a stack slot.
  9845   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9846   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9848   ins_encode %{
  9849     // the value was spilled as an int so bias the load
  9850     __ set($src$$disp + STACK_BIAS + 2, O7);
  9851     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9852   %}
  9853   ins_pipe( iload_mem );
  9854 %}
  9856 // Load Integer reversed byte order
  9857 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9858   match(Set dst (ReverseBytesI (LoadI src)));
  9860   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9861   size(4);
  9862   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9864   ins_encode %{
  9865     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9866   %}
  9867   ins_pipe(iload_mem);
  9868 %}
  9870 // Load Long - aligned and reversed
  9871 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9872   match(Set dst (ReverseBytesL (LoadL src)));
  9874   ins_cost(MEMORY_REF_COST);
  9875   size(4);
  9876   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9878   ins_encode %{
  9879     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9880   %}
  9881   ins_pipe(iload_mem);
  9882 %}
  9884 // Load unsigned short / char reversed byte order
  9885 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9886   match(Set dst (ReverseBytesUS (LoadUS src)));
  9888   ins_cost(MEMORY_REF_COST);
  9889   size(4);
  9890   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9892   ins_encode %{
  9893     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9894   %}
  9895   ins_pipe(iload_mem);
  9896 %}
  9898 // Load short reversed byte order
  9899 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9900   match(Set dst (ReverseBytesS (LoadS src)));
  9902   ins_cost(MEMORY_REF_COST);
  9903   size(4);
  9904   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9906   ins_encode %{
  9907     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9908   %}
  9909   ins_pipe(iload_mem);
  9910 %}
  9912 // Store Integer reversed byte order
  9913 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9914   match(Set dst (StoreI dst (ReverseBytesI src)));
  9916   ins_cost(MEMORY_REF_COST);
  9917   size(4);
  9918   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9920   ins_encode %{
  9921     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9922   %}
  9923   ins_pipe(istore_mem_reg);
  9924 %}
  9926 // Store Long reversed byte order
  9927 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9928   match(Set dst (StoreL dst (ReverseBytesL src)));
  9930   ins_cost(MEMORY_REF_COST);
  9931   size(4);
  9932   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9934   ins_encode %{
  9935     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9936   %}
  9937   ins_pipe(istore_mem_reg);
  9938 %}
  9940 // Store unsighed short/char reversed byte order
  9941 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9942   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9944   ins_cost(MEMORY_REF_COST);
  9945   size(4);
  9946   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9948   ins_encode %{
  9949     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9950   %}
  9951   ins_pipe(istore_mem_reg);
  9952 %}
  9954 // Store short reversed byte order
  9955 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9956   match(Set dst (StoreC dst (ReverseBytesS src)));
  9958   ins_cost(MEMORY_REF_COST);
  9959   size(4);
  9960   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9962   ins_encode %{
  9963     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9964   %}
  9965   ins_pipe(istore_mem_reg);
  9966 %}
  9968 //----------PEEPHOLE RULES-----------------------------------------------------
  9969 // These must follow all instruction definitions as they use the names
  9970 // defined in the instructions definitions.
  9971 //
  9972 // peepmatch ( root_instr_name [preceding_instruction]* );
  9973 //
  9974 // peepconstraint %{
  9975 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9976 //  [, ...] );
  9977 // // instruction numbers are zero-based using left to right order in peepmatch
  9978 //
  9979 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9980 // // provide an instruction_number.operand_name for each operand that appears
  9981 // // in the replacement instruction's match rule
  9982 //
  9983 // ---------VM FLAGS---------------------------------------------------------
  9984 //
  9985 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9986 //
  9987 // Each peephole rule is given an identifying number starting with zero and
  9988 // increasing by one in the order seen by the parser.  An individual peephole
  9989 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9990 // on the command-line.
  9991 //
  9992 // ---------CURRENT LIMITATIONS----------------------------------------------
  9993 //
  9994 // Only match adjacent instructions in same basic block
  9995 // Only equality constraints
  9996 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9997 // Only one replacement instruction
  9998 //
  9999 // ---------EXAMPLE----------------------------------------------------------
 10000 //
 10001 // // pertinent parts of existing instructions in architecture description
 10002 // instruct movI(eRegI dst, eRegI src) %{
 10003 //   match(Set dst (CopyI src));
 10004 // %}
 10005 //
 10006 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10007 //   match(Set dst (AddI dst src));
 10008 //   effect(KILL cr);
 10009 // %}
 10010 //
 10011 // // Change (inc mov) to lea
 10012 // peephole %{
 10013 //   // increment preceeded by register-register move
 10014 //   peepmatch ( incI_eReg movI );
 10015 //   // require that the destination register of the increment
 10016 //   // match the destination register of the move
 10017 //   peepconstraint ( 0.dst == 1.dst );
 10018 //   // construct a replacement instruction that sets
 10019 //   // the destination to ( move's source register + one )
 10020 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10021 // %}
 10022 //
 10024 // // Change load of spilled value to only a spill
 10025 // instruct storeI(memory mem, eRegI src) %{
 10026 //   match(Set mem (StoreI mem src));
 10027 // %}
 10028 //
 10029 // instruct loadI(eRegI dst, memory mem) %{
 10030 //   match(Set dst (LoadI mem));
 10031 // %}
 10032 //
 10033 // peephole %{
 10034 //   peepmatch ( loadI storeI );
 10035 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10036 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10037 // %}
 10039 //----------SMARTSPILL RULES---------------------------------------------------
 10040 // These must follow all instruction definitions as they use the names
 10041 // defined in the instructions definitions.
 10042 //
 10043 // SPARC will probably not have any of these rules due to RISC instruction set.
 10045 //----------PIPELINE-----------------------------------------------------------
 10046 // Rules which define the behavior of the target architectures pipeline.

mercurial