src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Thu, 20 Sep 2012 16:49:17 +0200

author
roland
date
Thu, 20 Sep 2012 16:49:17 +0200
changeset 4106
7eca5de9e0b6
parent 4051
8a02ca5e5576
child 4142
d8ce2825b193
child 4159
8e47bac5643a
permissions
-rw-r--r--

7023898: Intrinsify AtomicLongFieldUpdater.getAndIncrement()
Summary: use shorter instruction sequences for atomic add and atomic exchange when possible.
Reviewed-by: kvn, jrose

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_LIRAssembler.hpp"
    29 #include "c1/c1_MacroAssembler.hpp"
    30 #include "c1/c1_Runtime1.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "gc_interface/collectedHeap.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/cardTableModRefBS.hpp"
    37 #include "nativeInst_x86.hpp"
    38 #include "oops/objArrayKlass.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    44 // fast versions of NegF/NegD and AbsF/AbsD.
    46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    49   // of 128-bits operands for SSE instructions.
    50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    51   // Store the value to a 128-bits operand.
    52   operand[0] = lo;
    53   operand[1] = hi;
    54   return operand;
    55 }
    57 // Buffer for 128-bits masks used by SSE instructions.
    58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    60 // Static initialization during VM startup.
    61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    68 NEEDS_CLEANUP // remove this definitions ?
    69 const Register IC_Klass    = rax;   // where the IC klass is cached
    70 const Register SYNC_header = rax;   // synchronization header
    71 const Register SHIFT_count = rcx;   // where count for shift operations must be
    73 #define __ _masm->
    76 static void select_different_registers(Register preserve,
    77                                        Register extra,
    78                                        Register &tmp1,
    79                                        Register &tmp2) {
    80   if (tmp1 == preserve) {
    81     assert_different_registers(tmp1, tmp2, extra);
    82     tmp1 = extra;
    83   } else if (tmp2 == preserve) {
    84     assert_different_registers(tmp1, tmp2, extra);
    85     tmp2 = extra;
    86   }
    87   assert_different_registers(preserve, tmp1, tmp2);
    88 }
    92 static void select_different_registers(Register preserve,
    93                                        Register extra,
    94                                        Register &tmp1,
    95                                        Register &tmp2,
    96                                        Register &tmp3) {
    97   if (tmp1 == preserve) {
    98     assert_different_registers(tmp1, tmp2, tmp3, extra);
    99     tmp1 = extra;
   100   } else if (tmp2 == preserve) {
   101     assert_different_registers(tmp1, tmp2, tmp3, extra);
   102     tmp2 = extra;
   103   } else if (tmp3 == preserve) {
   104     assert_different_registers(tmp1, tmp2, tmp3, extra);
   105     tmp3 = extra;
   106   }
   107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   108 }
   112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   113   if (opr->is_constant()) {
   114     LIR_Const* constant = opr->as_constant_ptr();
   115     switch (constant->type()) {
   116       case T_INT: {
   117         return true;
   118       }
   120       default:
   121         return false;
   122     }
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIR_Assembler::receiverOpr() {
   129   return FrameMap::receiver_opr;
   130 }
   132 LIR_Opr LIR_Assembler::osrBufferPointer() {
   133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   134 }
   136 //--------------fpu register translations-----------------------
   139 address LIR_Assembler::float_constant(float f) {
   140   address const_addr = __ float_constant(f);
   141   if (const_addr == NULL) {
   142     bailout("const section overflow");
   143     return __ code()->consts()->start();
   144   } else {
   145     return const_addr;
   146   }
   147 }
   150 address LIR_Assembler::double_constant(double d) {
   151   address const_addr = __ double_constant(d);
   152   if (const_addr == NULL) {
   153     bailout("const section overflow");
   154     return __ code()->consts()->start();
   155   } else {
   156     return const_addr;
   157   }
   158 }
   161 void LIR_Assembler::set_24bit_FPU() {
   162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   163 }
   165 void LIR_Assembler::reset_FPU() {
   166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 }
   169 void LIR_Assembler::fpop() {
   170   __ fpop();
   171 }
   173 void LIR_Assembler::fxch(int i) {
   174   __ fxch(i);
   175 }
   177 void LIR_Assembler::fld(int i) {
   178   __ fld_s(i);
   179 }
   181 void LIR_Assembler::ffree(int i) {
   182   __ ffree(i);
   183 }
   185 void LIR_Assembler::breakpoint() {
   186   __ int3();
   187 }
   189 void LIR_Assembler::push(LIR_Opr opr) {
   190   if (opr->is_single_cpu()) {
   191     __ push_reg(opr->as_register());
   192   } else if (opr->is_double_cpu()) {
   193     NOT_LP64(__ push_reg(opr->as_register_hi()));
   194     __ push_reg(opr->as_register_lo());
   195   } else if (opr->is_stack()) {
   196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   197   } else if (opr->is_constant()) {
   198     LIR_Const* const_opr = opr->as_constant_ptr();
   199     if (const_opr->type() == T_OBJECT) {
   200       __ push_oop(const_opr->as_jobject());
   201     } else if (const_opr->type() == T_INT) {
   202       __ push_jint(const_opr->as_jint());
   203     } else {
   204       ShouldNotReachHere();
   205     }
   207   } else {
   208     ShouldNotReachHere();
   209   }
   210 }
   212 void LIR_Assembler::pop(LIR_Opr opr) {
   213   if (opr->is_single_cpu()) {
   214     __ pop_reg(opr->as_register());
   215   } else {
   216     ShouldNotReachHere();
   217   }
   218 }
   220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   221   return addr->base()->is_illegal() && addr->index()->is_illegal();
   222 }
   224 //-------------------------------------------
   226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   227   return as_Address(addr, rscratch1);
   228 }
   230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   231   if (addr->base()->is_illegal()) {
   232     assert(addr->index()->is_illegal(), "must be illegal too");
   233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   234     if (! __ reachable(laddr)) {
   235       __ movptr(tmp, laddr.addr());
   236       Address res(tmp, 0);
   237       return res;
   238     } else {
   239       return __ as_Address(laddr);
   240     }
   241   }
   243   Register base = addr->base()->as_pointer_register();
   245   if (addr->index()->is_illegal()) {
   246     return Address( base, addr->disp());
   247   } else if (addr->index()->is_cpu_register()) {
   248     Register index = addr->index()->as_pointer_register();
   249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   250   } else if (addr->index()->is_constant()) {
   251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   252     assert(Assembler::is_simm32(addr_offset), "must be");
   254     return Address(base, addr_offset);
   255   } else {
   256     Unimplemented();
   257     return Address();
   258   }
   259 }
   262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   263   Address base = as_Address(addr);
   264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   265 }
   268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   269   return as_Address(addr);
   270 }
   273 void LIR_Assembler::osr_entry() {
   274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   276   ValueStack* entry_state = osr_entry->state();
   277   int number_of_locks = entry_state->locks_size();
   279   // we jump here if osr happens with the interpreter
   280   // state set up to continue at the beginning of the
   281   // loop that triggered osr - in particular, we have
   282   // the following registers setup:
   283   //
   284   // rcx: osr buffer
   285   //
   287   // build frame
   288   ciMethod* m = compilation()->method();
   289   __ build_frame(initial_frame_size_in_bytes());
   291   // OSR buffer is
   292   //
   293   // locals[nlocals-1..0]
   294   // monitors[0..number_of_locks]
   295   //
   296   // locals is a direct copy of the interpreter frame so in the osr buffer
   297   // so first slot in the local array is the last local from the interpreter
   298   // and last slot is local[0] (receiver) from the interpreter
   299   //
   300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   302   // in the interpreter frame (the method lock if a sync method)
   304   // Initialize monitors in the compiled activation.
   305   //   rcx: pointer to osr buffer
   306   //
   307   // All other registers are dead at this point and the locals will be
   308   // copied into place by code emitted in the IR.
   310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   312     int monitor_offset = BytesPerWord * method()->max_locals() +
   313       (2 * BytesPerWord) * (number_of_locks - 1);
   314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   315     // the OSR buffer using 2 word entries: first the lock and then
   316     // the oop.
   317     for (int i = 0; i < number_of_locks; i++) {
   318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   319 #ifdef ASSERT
   320       // verify the interpreter's monitor has a non-null object
   321       {
   322         Label L;
   323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   324         __ jcc(Assembler::notZero, L);
   325         __ stop("locked object is NULL");
   326         __ bind(L);
   327       }
   328 #endif
   329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   333     }
   334   }
   335 }
   338 // inline cache check; done before the frame is built.
   339 int LIR_Assembler::check_icache() {
   340   Register receiver = FrameMap::receiver_opr->as_register();
   341   Register ic_klass = IC_Klass;
   342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   343   const bool do_post_padding = VerifyOops || UseCompressedOops;
   344   if (!do_post_padding) {
   345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   347       __ nop();
   348     }
   349   }
   350   int offset = __ offset();
   351   __ inline_cache_check(receiver, IC_Klass);
   352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   353   if (do_post_padding) {
   354     // force alignment after the cache check.
   355     // It's been verified to be aligned if !VerifyOops
   356     __ align(CodeEntryAlignment);
   357   }
   358   return offset;
   359 }
   362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   363   jobject o = NULL;
   364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id);
   365   __ movoop(reg, o);
   366   patching_epilog(patch, lir_patch_normal, reg, info);
   367 }
   369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   370   Metadata* o = NULL;
   371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   372   __ mov_metadata(reg, o);
   373   patching_epilog(patch, lir_patch_normal, reg, info);
   374 }
   376 // This specifies the rsp decrement needed to build the frame
   377 int LIR_Assembler::initial_frame_size_in_bytes() {
   378   // if rounding, must let FrameMap know!
   380   // The frame_map records size in slots (32bit word)
   382   // subtract two words to account for return address and link
   383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   384 }
   387 int LIR_Assembler::emit_exception_handler() {
   388   // if the last instruction is a call (typically to do a throw which
   389   // is coming at the end after block reordering) the return address
   390   // must still point into the code area in order to avoid assertion
   391   // failures when searching for the corresponding bci => add a nop
   392   // (was bug 5/14/1999 - gri)
   393   __ nop();
   395   // generate code for exception handler
   396   address handler_base = __ start_a_stub(exception_handler_size);
   397   if (handler_base == NULL) {
   398     // not enough space left for the handler
   399     bailout("exception handler overflow");
   400     return -1;
   401   }
   403   int offset = code_offset();
   405   // the exception oop and pc are in rax, and rdx
   406   // no other registers need to be preserved, so invalidate them
   407   __ invalidate_registers(false, true, true, false, true, true);
   409   // check that there is really an exception
   410   __ verify_not_null_oop(rax);
   412   // search an exception handler (rax: exception oop, rdx: throwing pc)
   413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ get_thread(rsi);
   435   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   436   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   437   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   439   __ bind(_unwind_handler_entry);
   440   __ verify_not_null_oop(rax);
   441   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   442     __ mov(rsi, rax);  // Preserve the exception
   443   }
   445   // Preform needed unlocking
   446   MonitorExitStub* stub = NULL;
   447   if (method()->is_synchronized()) {
   448     monitor_address(0, FrameMap::rax_opr);
   449     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   450     __ unlock_object(rdi, rbx, rax, *stub->entry());
   451     __ bind(*stub->continuation());
   452   }
   454   if (compilation()->env()->dtrace_method_probes()) {
   455     __ get_thread(rax);
   456     __ movptr(Address(rsp, 0), rax);
   457     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   458     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   459   }
   461   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   462     __ mov(rax, rsi);  // Restore the exception
   463   }
   465   // remove the activation and dispatch to the unwind handler
   466   __ remove_frame(initial_frame_size_in_bytes());
   467   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   469   // Emit the slow path assembly
   470   if (stub != NULL) {
   471     stub->emit_code(this);
   472   }
   474   return offset;
   475 }
   478 int LIR_Assembler::emit_deopt_handler() {
   479   // if the last instruction is a call (typically to do a throw which
   480   // is coming at the end after block reordering) the return address
   481   // must still point into the code area in order to avoid assertion
   482   // failures when searching for the corresponding bci => add a nop
   483   // (was bug 5/14/1999 - gri)
   484   __ nop();
   486   // generate code for exception handler
   487   address handler_base = __ start_a_stub(deopt_handler_size);
   488   if (handler_base == NULL) {
   489     // not enough space left for the handler
   490     bailout("deopt handler overflow");
   491     return -1;
   492   }
   494   int offset = code_offset();
   495   InternalAddress here(__ pc());
   497   __ pushptr(here.addr());
   498   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   499   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   500   __ end_a_stub();
   502   return offset;
   503 }
   506 // This is the fast version of java.lang.String.compare; it has not
   507 // OSR-entry and therefore, we generate a slow version for OSR's
   508 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   509   __ movptr (rbx, rcx); // receiver is in rcx
   510   __ movptr (rax, arg1->as_register());
   512   // Get addresses of first characters from both Strings
   513   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   514   if (java_lang_String::has_offset_field()) {
   515     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   516     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   517     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   518   } else {
   519     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   520     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   521   }
   523   // rbx, may be NULL
   524   add_debug_info_for_null_check_here(info);
   525   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   526   if (java_lang_String::has_offset_field()) {
   527     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   528     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   529     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   530   } else {
   531     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   532     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   533   }
   535   // compute minimum length (in rax) and difference of lengths (on top of stack)
   536   __ mov   (rcx, rbx);
   537   __ subptr(rbx, rax); // subtract lengths
   538   __ push  (rbx);      // result
   539   __ cmov  (Assembler::lessEqual, rax, rcx);
   541   // is minimum length 0?
   542   Label noLoop, haveResult;
   543   __ testptr (rax, rax);
   544   __ jcc (Assembler::zero, noLoop);
   546   // compare first characters
   547   __ load_unsigned_short(rcx, Address(rdi, 0));
   548   __ load_unsigned_short(rbx, Address(rsi, 0));
   549   __ subl(rcx, rbx);
   550   __ jcc(Assembler::notZero, haveResult);
   551   // starting loop
   552   __ decrement(rax); // we already tested index: skip one
   553   __ jcc(Assembler::zero, noLoop);
   555   // set rsi.edi to the end of the arrays (arrays have same length)
   556   // negate the index
   558   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   559   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   560   __ negptr(rax);
   562   // compare the strings in a loop
   564   Label loop;
   565   __ align(wordSize);
   566   __ bind(loop);
   567   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   568   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   569   __ subl(rcx, rbx);
   570   __ jcc(Assembler::notZero, haveResult);
   571   __ increment(rax);
   572   __ jcc(Assembler::notZero, loop);
   574   // strings are equal up to min length
   576   __ bind(noLoop);
   577   __ pop(rax);
   578   return_op(LIR_OprFact::illegalOpr);
   580   __ bind(haveResult);
   581   // leave instruction is going to discard the TOS value
   582   __ mov (rax, rcx); // result of call is in rax,
   583 }
   586 void LIR_Assembler::return_op(LIR_Opr result) {
   587   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   588   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   589     assert(result->fpu() == 0, "result must already be on TOS");
   590   }
   592   // Pop the stack before the safepoint code
   593   __ remove_frame(initial_frame_size_in_bytes());
   595   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   597   // Note: we do not need to round double result; float result has the right precision
   598   // the poll sets the condition code, but no data registers
   599   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   600                               relocInfo::poll_return_type);
   602   if (Assembler::is_polling_page_far()) {
   603     __ lea(rscratch1, polling_page);
   604     __ relocate(relocInfo::poll_return_type);
   605     __ testl(rax, Address(rscratch1, 0));
   606   } else {
   607     __ testl(rax, polling_page);
   608   }
   609   __ ret(0);
   610 }
   613 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   614   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   615                               relocInfo::poll_type);
   616   guarantee(info != NULL, "Shouldn't be NULL");
   617   int offset = __ offset();
   618   if (Assembler::is_polling_page_far()) {
   619     __ lea(rscratch1, polling_page);
   620     offset = __ offset();
   621     add_debug_info_for_branch(info);
   622     __ testl(rax, Address(rscratch1, 0));
   623   } else {
   624     add_debug_info_for_branch(info);
   625     __ testl(rax, polling_page);
   626   }
   627   return offset;
   628 }
   631 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   632   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   633 }
   635 void LIR_Assembler::swap_reg(Register a, Register b) {
   636   __ xchgptr(a, b);
   637 }
   640 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   641   assert(src->is_constant(), "should not call otherwise");
   642   assert(dest->is_register(), "should not call otherwise");
   643   LIR_Const* c = src->as_constant_ptr();
   645   switch (c->type()) {
   646     case T_INT: {
   647       assert(patch_code == lir_patch_none, "no patching handled here");
   648       __ movl(dest->as_register(), c->as_jint());
   649       break;
   650     }
   652     case T_ADDRESS: {
   653       assert(patch_code == lir_patch_none, "no patching handled here");
   654       __ movptr(dest->as_register(), c->as_jint());
   655       break;
   656     }
   658     case T_LONG: {
   659       assert(patch_code == lir_patch_none, "no patching handled here");
   660 #ifdef _LP64
   661       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   662 #else
   663       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   664       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   665 #endif // _LP64
   666       break;
   667     }
   669     case T_OBJECT: {
   670       if (patch_code != lir_patch_none) {
   671         jobject2reg_with_patching(dest->as_register(), info);
   672       } else {
   673         __ movoop(dest->as_register(), c->as_jobject());
   674       }
   675       break;
   676     }
   678     case T_METADATA: {
   679       if (patch_code != lir_patch_none) {
   680         klass2reg_with_patching(dest->as_register(), info);
   681       } else {
   682         __ mov_metadata(dest->as_register(), c->as_metadata());
   683       }
   684       break;
   685     }
   687     case T_FLOAT: {
   688       if (dest->is_single_xmm()) {
   689         if (c->is_zero_float()) {
   690           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   691         } else {
   692           __ movflt(dest->as_xmm_float_reg(),
   693                    InternalAddress(float_constant(c->as_jfloat())));
   694         }
   695       } else {
   696         assert(dest->is_single_fpu(), "must be");
   697         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   698         if (c->is_zero_float()) {
   699           __ fldz();
   700         } else if (c->is_one_float()) {
   701           __ fld1();
   702         } else {
   703           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   704         }
   705       }
   706       break;
   707     }
   709     case T_DOUBLE: {
   710       if (dest->is_double_xmm()) {
   711         if (c->is_zero_double()) {
   712           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   713         } else {
   714           __ movdbl(dest->as_xmm_double_reg(),
   715                     InternalAddress(double_constant(c->as_jdouble())));
   716         }
   717       } else {
   718         assert(dest->is_double_fpu(), "must be");
   719         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   720         if (c->is_zero_double()) {
   721           __ fldz();
   722         } else if (c->is_one_double()) {
   723           __ fld1();
   724         } else {
   725           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   726         }
   727       }
   728       break;
   729     }
   731     default:
   732       ShouldNotReachHere();
   733   }
   734 }
   736 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   737   assert(src->is_constant(), "should not call otherwise");
   738   assert(dest->is_stack(), "should not call otherwise");
   739   LIR_Const* c = src->as_constant_ptr();
   741   switch (c->type()) {
   742     case T_INT:  // fall through
   743     case T_FLOAT:
   744       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   745       break;
   747     case T_ADDRESS:
   748       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   749       break;
   751     case T_OBJECT:
   752       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   753       break;
   755     case T_LONG:  // fall through
   756     case T_DOUBLE:
   757 #ifdef _LP64
   758       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   759                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   760 #else
   761       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   762                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   763       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   764                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   765 #endif // _LP64
   766       break;
   768     default:
   769       ShouldNotReachHere();
   770   }
   771 }
   773 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   774   assert(src->is_constant(), "should not call otherwise");
   775   assert(dest->is_address(), "should not call otherwise");
   776   LIR_Const* c = src->as_constant_ptr();
   777   LIR_Address* addr = dest->as_address_ptr();
   779   int null_check_here = code_offset();
   780   switch (type) {
   781     case T_INT:    // fall through
   782     case T_FLOAT:
   783       __ movl(as_Address(addr), c->as_jint_bits());
   784       break;
   786     case T_ADDRESS:
   787       __ movptr(as_Address(addr), c->as_jint_bits());
   788       break;
   790     case T_OBJECT:  // fall through
   791     case T_ARRAY:
   792       if (c->as_jobject() == NULL) {
   793         if (UseCompressedOops && !wide) {
   794           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   795         } else {
   796           __ movptr(as_Address(addr), NULL_WORD);
   797         }
   798       } else {
   799         if (is_literal_address(addr)) {
   800           ShouldNotReachHere();
   801           __ movoop(as_Address(addr, noreg), c->as_jobject());
   802         } else {
   803 #ifdef _LP64
   804           __ movoop(rscratch1, c->as_jobject());
   805           if (UseCompressedOops && !wide) {
   806             __ encode_heap_oop(rscratch1);
   807             null_check_here = code_offset();
   808             __ movl(as_Address_lo(addr), rscratch1);
   809           } else {
   810             null_check_here = code_offset();
   811             __ movptr(as_Address_lo(addr), rscratch1);
   812           }
   813 #else
   814           __ movoop(as_Address(addr), c->as_jobject());
   815 #endif
   816         }
   817       }
   818       break;
   820     case T_LONG:    // fall through
   821     case T_DOUBLE:
   822 #ifdef _LP64
   823       if (is_literal_address(addr)) {
   824         ShouldNotReachHere();
   825         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   826       } else {
   827         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   828         null_check_here = code_offset();
   829         __ movptr(as_Address_lo(addr), r10);
   830       }
   831 #else
   832       // Always reachable in 32bit so this doesn't produce useless move literal
   833       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   834       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   835 #endif // _LP64
   836       break;
   838     case T_BOOLEAN: // fall through
   839     case T_BYTE:
   840       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   841       break;
   843     case T_CHAR:    // fall through
   844     case T_SHORT:
   845       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   846       break;
   848     default:
   849       ShouldNotReachHere();
   850   };
   852   if (info != NULL) {
   853     add_debug_info_for_null_check(null_check_here, info);
   854   }
   855 }
   858 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   859   assert(src->is_register(), "should not call otherwise");
   860   assert(dest->is_register(), "should not call otherwise");
   862   // move between cpu-registers
   863   if (dest->is_single_cpu()) {
   864 #ifdef _LP64
   865     if (src->type() == T_LONG) {
   866       // Can do LONG -> OBJECT
   867       move_regs(src->as_register_lo(), dest->as_register());
   868       return;
   869     }
   870 #endif
   871     assert(src->is_single_cpu(), "must match");
   872     if (src->type() == T_OBJECT) {
   873       __ verify_oop(src->as_register());
   874     }
   875     move_regs(src->as_register(), dest->as_register());
   877   } else if (dest->is_double_cpu()) {
   878 #ifdef _LP64
   879     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   880       // Surprising to me but we can see move of a long to t_object
   881       __ verify_oop(src->as_register());
   882       move_regs(src->as_register(), dest->as_register_lo());
   883       return;
   884     }
   885 #endif
   886     assert(src->is_double_cpu(), "must match");
   887     Register f_lo = src->as_register_lo();
   888     Register f_hi = src->as_register_hi();
   889     Register t_lo = dest->as_register_lo();
   890     Register t_hi = dest->as_register_hi();
   891 #ifdef _LP64
   892     assert(f_hi == f_lo, "must be same");
   893     assert(t_hi == t_lo, "must be same");
   894     move_regs(f_lo, t_lo);
   895 #else
   896     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   899     if (f_lo == t_hi && f_hi == t_lo) {
   900       swap_reg(f_lo, f_hi);
   901     } else if (f_hi == t_lo) {
   902       assert(f_lo != t_hi, "overwriting register");
   903       move_regs(f_hi, t_hi);
   904       move_regs(f_lo, t_lo);
   905     } else {
   906       assert(f_hi != t_lo, "overwriting register");
   907       move_regs(f_lo, t_lo);
   908       move_regs(f_hi, t_hi);
   909     }
   910 #endif // LP64
   912     // special moves from fpu-register to xmm-register
   913     // necessary for method results
   914   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   915     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   916     __ fld_s(Address(rsp, 0));
   917   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   918     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   919     __ fld_d(Address(rsp, 0));
   920   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   921     __ fstp_s(Address(rsp, 0));
   922     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   923   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   924     __ fstp_d(Address(rsp, 0));
   925     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   927     // move between xmm-registers
   928   } else if (dest->is_single_xmm()) {
   929     assert(src->is_single_xmm(), "must match");
   930     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   931   } else if (dest->is_double_xmm()) {
   932     assert(src->is_double_xmm(), "must match");
   933     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   935     // move between fpu-registers (no instruction necessary because of fpu-stack)
   936   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   937     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   938     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   939   } else {
   940     ShouldNotReachHere();
   941   }
   942 }
   944 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   945   assert(src->is_register(), "should not call otherwise");
   946   assert(dest->is_stack(), "should not call otherwise");
   948   if (src->is_single_cpu()) {
   949     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   950     if (type == T_OBJECT || type == T_ARRAY) {
   951       __ verify_oop(src->as_register());
   952       __ movptr (dst, src->as_register());
   953     } else if (type == T_METADATA) {
   954       __ movptr (dst, src->as_register());
   955     } else {
   956       __ movl (dst, src->as_register());
   957     }
   959   } else if (src->is_double_cpu()) {
   960     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   961     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   962     __ movptr (dstLO, src->as_register_lo());
   963     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   965   } else if (src->is_single_xmm()) {
   966     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   967     __ movflt(dst_addr, src->as_xmm_float_reg());
   969   } else if (src->is_double_xmm()) {
   970     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   971     __ movdbl(dst_addr, src->as_xmm_double_reg());
   973   } else if (src->is_single_fpu()) {
   974     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   975     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   976     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   977     else                   __ fst_s  (dst_addr);
   979   } else if (src->is_double_fpu()) {
   980     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   981     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   982     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   983     else                   __ fst_d  (dst_addr);
   985   } else {
   986     ShouldNotReachHere();
   987   }
   988 }
   991 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   992   LIR_Address* to_addr = dest->as_address_ptr();
   993   PatchingStub* patch = NULL;
   994   Register compressed_src = rscratch1;
   996   if (type == T_ARRAY || type == T_OBJECT) {
   997     __ verify_oop(src->as_register());
   998 #ifdef _LP64
   999     if (UseCompressedOops && !wide) {
  1000       __ movptr(compressed_src, src->as_register());
  1001       __ encode_heap_oop(compressed_src);
  1003 #endif
  1006   if (patch_code != lir_patch_none) {
  1007     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1008     Address toa = as_Address(to_addr);
  1009     assert(toa.disp() != 0, "must have");
  1012   int null_check_here = code_offset();
  1013   switch (type) {
  1014     case T_FLOAT: {
  1015       if (src->is_single_xmm()) {
  1016         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1017       } else {
  1018         assert(src->is_single_fpu(), "must be");
  1019         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1020         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1021         else                    __ fst_s (as_Address(to_addr));
  1023       break;
  1026     case T_DOUBLE: {
  1027       if (src->is_double_xmm()) {
  1028         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1029       } else {
  1030         assert(src->is_double_fpu(), "must be");
  1031         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1032         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1033         else                    __ fst_d (as_Address(to_addr));
  1035       break;
  1038     case T_ARRAY:   // fall through
  1039     case T_OBJECT:  // fall through
  1040       if (UseCompressedOops && !wide) {
  1041         __ movl(as_Address(to_addr), compressed_src);
  1042       } else {
  1043         __ movptr(as_Address(to_addr), src->as_register());
  1045       break;
  1046     case T_METADATA:
  1047       // We get here to store a method pointer to the stack to pass to
  1048       // a dtrace runtime call. This can't work on 64 bit with
  1049       // compressed klass ptrs: T_METADATA can be a compressed klass
  1050       // ptr or a 64 bit method pointer.
  1051       LP64_ONLY(ShouldNotReachHere());
  1052       __ movptr(as_Address(to_addr), src->as_register());
  1053       break;
  1054     case T_ADDRESS:
  1055       __ movptr(as_Address(to_addr), src->as_register());
  1056       break;
  1057     case T_INT:
  1058       __ movl(as_Address(to_addr), src->as_register());
  1059       break;
  1061     case T_LONG: {
  1062       Register from_lo = src->as_register_lo();
  1063       Register from_hi = src->as_register_hi();
  1064 #ifdef _LP64
  1065       __ movptr(as_Address_lo(to_addr), from_lo);
  1066 #else
  1067       Register base = to_addr->base()->as_register();
  1068       Register index = noreg;
  1069       if (to_addr->index()->is_register()) {
  1070         index = to_addr->index()->as_register();
  1072       if (base == from_lo || index == from_lo) {
  1073         assert(base != from_hi, "can't be");
  1074         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1075         __ movl(as_Address_hi(to_addr), from_hi);
  1076         if (patch != NULL) {
  1077           patching_epilog(patch, lir_patch_high, base, info);
  1078           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1079           patch_code = lir_patch_low;
  1081         __ movl(as_Address_lo(to_addr), from_lo);
  1082       } else {
  1083         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1084         __ movl(as_Address_lo(to_addr), from_lo);
  1085         if (patch != NULL) {
  1086           patching_epilog(patch, lir_patch_low, base, info);
  1087           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1088           patch_code = lir_patch_high;
  1090         __ movl(as_Address_hi(to_addr), from_hi);
  1092 #endif // _LP64
  1093       break;
  1096     case T_BYTE:    // fall through
  1097     case T_BOOLEAN: {
  1098       Register src_reg = src->as_register();
  1099       Address dst_addr = as_Address(to_addr);
  1100       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1101       __ movb(dst_addr, src_reg);
  1102       break;
  1105     case T_CHAR:    // fall through
  1106     case T_SHORT:
  1107       __ movw(as_Address(to_addr), src->as_register());
  1108       break;
  1110     default:
  1111       ShouldNotReachHere();
  1113   if (info != NULL) {
  1114     add_debug_info_for_null_check(null_check_here, info);
  1117   if (patch_code != lir_patch_none) {
  1118     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1123 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1124   assert(src->is_stack(), "should not call otherwise");
  1125   assert(dest->is_register(), "should not call otherwise");
  1127   if (dest->is_single_cpu()) {
  1128     if (type == T_ARRAY || type == T_OBJECT) {
  1129       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1130       __ verify_oop(dest->as_register());
  1131     } else if (type == T_METADATA) {
  1132       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1133     } else {
  1134       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1137   } else if (dest->is_double_cpu()) {
  1138     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1139     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1140     __ movptr(dest->as_register_lo(), src_addr_LO);
  1141     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1143   } else if (dest->is_single_xmm()) {
  1144     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1145     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1147   } else if (dest->is_double_xmm()) {
  1148     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1149     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1151   } else if (dest->is_single_fpu()) {
  1152     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1153     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1154     __ fld_s(src_addr);
  1156   } else if (dest->is_double_fpu()) {
  1157     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1158     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1159     __ fld_d(src_addr);
  1161   } else {
  1162     ShouldNotReachHere();
  1167 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1168   if (src->is_single_stack()) {
  1169     if (type == T_OBJECT || type == T_ARRAY) {
  1170       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1171       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1172     } else {
  1173 #ifndef _LP64
  1174       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1175       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1176 #else
  1177       //no pushl on 64bits
  1178       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1179       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1180 #endif
  1183   } else if (src->is_double_stack()) {
  1184 #ifdef _LP64
  1185     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1186     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1187 #else
  1188     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1189     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1190     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1191     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1192     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1193 #endif // _LP64
  1195   } else {
  1196     ShouldNotReachHere();
  1201 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1202   assert(src->is_address(), "should not call otherwise");
  1203   assert(dest->is_register(), "should not call otherwise");
  1205   LIR_Address* addr = src->as_address_ptr();
  1206   Address from_addr = as_Address(addr);
  1208   switch (type) {
  1209     case T_BOOLEAN: // fall through
  1210     case T_BYTE:    // fall through
  1211     case T_CHAR:    // fall through
  1212     case T_SHORT:
  1213       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1214         // on pre P6 processors we may get partial register stalls
  1215         // so blow away the value of to_rinfo before loading a
  1216         // partial word into it.  Do it here so that it precedes
  1217         // the potential patch point below.
  1218         __ xorptr(dest->as_register(), dest->as_register());
  1220       break;
  1223   PatchingStub* patch = NULL;
  1224   if (patch_code != lir_patch_none) {
  1225     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1226     assert(from_addr.disp() != 0, "must have");
  1228   if (info != NULL) {
  1229     add_debug_info_for_null_check_here(info);
  1232   switch (type) {
  1233     case T_FLOAT: {
  1234       if (dest->is_single_xmm()) {
  1235         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1236       } else {
  1237         assert(dest->is_single_fpu(), "must be");
  1238         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1239         __ fld_s(from_addr);
  1241       break;
  1244     case T_DOUBLE: {
  1245       if (dest->is_double_xmm()) {
  1246         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1247       } else {
  1248         assert(dest->is_double_fpu(), "must be");
  1249         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1250         __ fld_d(from_addr);
  1252       break;
  1255     case T_OBJECT:  // fall through
  1256     case T_ARRAY:   // fall through
  1257       if (UseCompressedOops && !wide) {
  1258         __ movl(dest->as_register(), from_addr);
  1259       } else {
  1260         __ movptr(dest->as_register(), from_addr);
  1262       break;
  1264     case T_ADDRESS:
  1265       __ movptr(dest->as_register(), from_addr);
  1266       break;
  1267     case T_INT:
  1268       __ movl(dest->as_register(), from_addr);
  1269       break;
  1271     case T_LONG: {
  1272       Register to_lo = dest->as_register_lo();
  1273       Register to_hi = dest->as_register_hi();
  1274 #ifdef _LP64
  1275       __ movptr(to_lo, as_Address_lo(addr));
  1276 #else
  1277       Register base = addr->base()->as_register();
  1278       Register index = noreg;
  1279       if (addr->index()->is_register()) {
  1280         index = addr->index()->as_register();
  1282       if ((base == to_lo && index == to_hi) ||
  1283           (base == to_hi && index == to_lo)) {
  1284         // addresses with 2 registers are only formed as a result of
  1285         // array access so this code will never have to deal with
  1286         // patches or null checks.
  1287         assert(info == NULL && patch == NULL, "must be");
  1288         __ lea(to_hi, as_Address(addr));
  1289         __ movl(to_lo, Address(to_hi, 0));
  1290         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1291       } else if (base == to_lo || index == to_lo) {
  1292         assert(base != to_hi, "can't be");
  1293         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1294         __ movl(to_hi, as_Address_hi(addr));
  1295         if (patch != NULL) {
  1296           patching_epilog(patch, lir_patch_high, base, info);
  1297           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1298           patch_code = lir_patch_low;
  1300         __ movl(to_lo, as_Address_lo(addr));
  1301       } else {
  1302         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1303         __ movl(to_lo, as_Address_lo(addr));
  1304         if (patch != NULL) {
  1305           patching_epilog(patch, lir_patch_low, base, info);
  1306           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1307           patch_code = lir_patch_high;
  1309         __ movl(to_hi, as_Address_hi(addr));
  1311 #endif // _LP64
  1312       break;
  1315     case T_BOOLEAN: // fall through
  1316     case T_BYTE: {
  1317       Register dest_reg = dest->as_register();
  1318       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1319       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1320         __ movsbl(dest_reg, from_addr);
  1321       } else {
  1322         __ movb(dest_reg, from_addr);
  1323         __ shll(dest_reg, 24);
  1324         __ sarl(dest_reg, 24);
  1326       break;
  1329     case T_CHAR: {
  1330       Register dest_reg = dest->as_register();
  1331       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1332       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1333         __ movzwl(dest_reg, from_addr);
  1334       } else {
  1335         __ movw(dest_reg, from_addr);
  1337       break;
  1340     case T_SHORT: {
  1341       Register dest_reg = dest->as_register();
  1342       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1343         __ movswl(dest_reg, from_addr);
  1344       } else {
  1345         __ movw(dest_reg, from_addr);
  1346         __ shll(dest_reg, 16);
  1347         __ sarl(dest_reg, 16);
  1349       break;
  1352     default:
  1353       ShouldNotReachHere();
  1356   if (patch != NULL) {
  1357     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1360   if (type == T_ARRAY || type == T_OBJECT) {
  1361 #ifdef _LP64
  1362     if (UseCompressedOops && !wide) {
  1363       __ decode_heap_oop(dest->as_register());
  1365 #endif
  1366     __ verify_oop(dest->as_register());
  1371 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1372   LIR_Address* addr = src->as_address_ptr();
  1373   Address from_addr = as_Address(addr);
  1375   if (VM_Version::supports_sse()) {
  1376     switch (ReadPrefetchInstr) {
  1377       case 0:
  1378         __ prefetchnta(from_addr); break;
  1379       case 1:
  1380         __ prefetcht0(from_addr); break;
  1381       case 2:
  1382         __ prefetcht2(from_addr); break;
  1383       default:
  1384         ShouldNotReachHere(); break;
  1386   } else if (VM_Version::supports_3dnow_prefetch()) {
  1387     __ prefetchr(from_addr);
  1392 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1393   LIR_Address* addr = src->as_address_ptr();
  1394   Address from_addr = as_Address(addr);
  1396   if (VM_Version::supports_sse()) {
  1397     switch (AllocatePrefetchInstr) {
  1398       case 0:
  1399         __ prefetchnta(from_addr); break;
  1400       case 1:
  1401         __ prefetcht0(from_addr); break;
  1402       case 2:
  1403         __ prefetcht2(from_addr); break;
  1404       case 3:
  1405         __ prefetchw(from_addr); break;
  1406       default:
  1407         ShouldNotReachHere(); break;
  1409   } else if (VM_Version::supports_3dnow_prefetch()) {
  1410     __ prefetchw(from_addr);
  1415 NEEDS_CLEANUP; // This could be static?
  1416 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1417   int elem_size = type2aelembytes(type);
  1418   switch (elem_size) {
  1419     case 1: return Address::times_1;
  1420     case 2: return Address::times_2;
  1421     case 4: return Address::times_4;
  1422     case 8: return Address::times_8;
  1424   ShouldNotReachHere();
  1425   return Address::no_scale;
  1429 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1430   switch (op->code()) {
  1431     case lir_idiv:
  1432     case lir_irem:
  1433       arithmetic_idiv(op->code(),
  1434                       op->in_opr1(),
  1435                       op->in_opr2(),
  1436                       op->in_opr3(),
  1437                       op->result_opr(),
  1438                       op->info());
  1439       break;
  1440     default:      ShouldNotReachHere(); break;
  1444 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1445 #ifdef ASSERT
  1446   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1447   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1448   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1449 #endif
  1451   if (op->cond() == lir_cond_always) {
  1452     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1453     __ jmp (*(op->label()));
  1454   } else {
  1455     Assembler::Condition acond = Assembler::zero;
  1456     if (op->code() == lir_cond_float_branch) {
  1457       assert(op->ublock() != NULL, "must have unordered successor");
  1458       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1459       switch(op->cond()) {
  1460         case lir_cond_equal:        acond = Assembler::equal;      break;
  1461         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1462         case lir_cond_less:         acond = Assembler::below;      break;
  1463         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1464         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1465         case lir_cond_greater:      acond = Assembler::above;      break;
  1466         default:                         ShouldNotReachHere();
  1468     } else {
  1469       switch (op->cond()) {
  1470         case lir_cond_equal:        acond = Assembler::equal;       break;
  1471         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1472         case lir_cond_less:         acond = Assembler::less;        break;
  1473         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1474         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1475         case lir_cond_greater:      acond = Assembler::greater;     break;
  1476         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1477         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1478         default:                         ShouldNotReachHere();
  1481     __ jcc(acond,*(op->label()));
  1485 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1486   LIR_Opr src  = op->in_opr();
  1487   LIR_Opr dest = op->result_opr();
  1489   switch (op->bytecode()) {
  1490     case Bytecodes::_i2l:
  1491 #ifdef _LP64
  1492       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1493 #else
  1494       move_regs(src->as_register(), dest->as_register_lo());
  1495       move_regs(src->as_register(), dest->as_register_hi());
  1496       __ sarl(dest->as_register_hi(), 31);
  1497 #endif // LP64
  1498       break;
  1500     case Bytecodes::_l2i:
  1501 #ifdef _LP64
  1502       __ movl(dest->as_register(), src->as_register_lo());
  1503 #else
  1504       move_regs(src->as_register_lo(), dest->as_register());
  1505 #endif
  1506       break;
  1508     case Bytecodes::_i2b:
  1509       move_regs(src->as_register(), dest->as_register());
  1510       __ sign_extend_byte(dest->as_register());
  1511       break;
  1513     case Bytecodes::_i2c:
  1514       move_regs(src->as_register(), dest->as_register());
  1515       __ andl(dest->as_register(), 0xFFFF);
  1516       break;
  1518     case Bytecodes::_i2s:
  1519       move_regs(src->as_register(), dest->as_register());
  1520       __ sign_extend_short(dest->as_register());
  1521       break;
  1524     case Bytecodes::_f2d:
  1525     case Bytecodes::_d2f:
  1526       if (dest->is_single_xmm()) {
  1527         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1528       } else if (dest->is_double_xmm()) {
  1529         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1530       } else {
  1531         assert(src->fpu() == dest->fpu(), "register must be equal");
  1532         // do nothing (float result is rounded later through spilling)
  1534       break;
  1536     case Bytecodes::_i2f:
  1537     case Bytecodes::_i2d:
  1538       if (dest->is_single_xmm()) {
  1539         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1540       } else if (dest->is_double_xmm()) {
  1541         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1542       } else {
  1543         assert(dest->fpu() == 0, "result must be on TOS");
  1544         __ movl(Address(rsp, 0), src->as_register());
  1545         __ fild_s(Address(rsp, 0));
  1547       break;
  1549     case Bytecodes::_f2i:
  1550     case Bytecodes::_d2i:
  1551       if (src->is_single_xmm()) {
  1552         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1553       } else if (src->is_double_xmm()) {
  1554         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1555       } else {
  1556         assert(src->fpu() == 0, "input must be on TOS");
  1557         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1558         __ fist_s(Address(rsp, 0));
  1559         __ movl(dest->as_register(), Address(rsp, 0));
  1560         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1563       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1564       assert(op->stub() != NULL, "stub required");
  1565       __ cmpl(dest->as_register(), 0x80000000);
  1566       __ jcc(Assembler::equal, *op->stub()->entry());
  1567       __ bind(*op->stub()->continuation());
  1568       break;
  1570     case Bytecodes::_l2f:
  1571     case Bytecodes::_l2d:
  1572       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1573       assert(dest->fpu() == 0, "result must be on TOS");
  1575       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1576       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1577       __ fild_d(Address(rsp, 0));
  1578       // float result is rounded later through spilling
  1579       break;
  1581     case Bytecodes::_f2l:
  1582     case Bytecodes::_d2l:
  1583       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1584       assert(src->fpu() == 0, "input must be on TOS");
  1585       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1587       // instruction sequence too long to inline it here
  1589         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1591       break;
  1593     default: ShouldNotReachHere();
  1597 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1598   if (op->init_check()) {
  1599     __ cmpb(Address(op->klass()->as_register(),
  1600                     InstanceKlass::init_state_offset()),
  1601                     InstanceKlass::fully_initialized);
  1602     add_debug_info_for_null_check_here(op->stub()->info());
  1603     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1605   __ allocate_object(op->obj()->as_register(),
  1606                      op->tmp1()->as_register(),
  1607                      op->tmp2()->as_register(),
  1608                      op->header_size(),
  1609                      op->object_size(),
  1610                      op->klass()->as_register(),
  1611                      *op->stub()->entry());
  1612   __ bind(*op->stub()->continuation());
  1615 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1616   Register len =  op->len()->as_register();
  1617   LP64_ONLY( __ movslq(len, len); )
  1619   if (UseSlowPath ||
  1620       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1621       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1622     __ jmp(*op->stub()->entry());
  1623   } else {
  1624     Register tmp1 = op->tmp1()->as_register();
  1625     Register tmp2 = op->tmp2()->as_register();
  1626     Register tmp3 = op->tmp3()->as_register();
  1627     if (len == tmp1) {
  1628       tmp1 = tmp3;
  1629     } else if (len == tmp2) {
  1630       tmp2 = tmp3;
  1631     } else if (len == tmp3) {
  1632       // everything is ok
  1633     } else {
  1634       __ mov(tmp3, len);
  1636     __ allocate_array(op->obj()->as_register(),
  1637                       len,
  1638                       tmp1,
  1639                       tmp2,
  1640                       arrayOopDesc::header_size(op->type()),
  1641                       array_element_size(op->type()),
  1642                       op->klass()->as_register(),
  1643                       *op->stub()->entry());
  1645   __ bind(*op->stub()->continuation());
  1648 void LIR_Assembler::type_profile_helper(Register mdo,
  1649                                         ciMethodData *md, ciProfileData *data,
  1650                                         Register recv, Label* update_done) {
  1651   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1652     Label next_test;
  1653     // See if the receiver is receiver[n].
  1654     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1655     __ jccb(Assembler::notEqual, next_test);
  1656     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1657     __ addptr(data_addr, DataLayout::counter_increment);
  1658     __ jmp(*update_done);
  1659     __ bind(next_test);
  1662   // Didn't find receiver; find next empty slot and fill it in
  1663   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1664     Label next_test;
  1665     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1666     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1667     __ jccb(Assembler::notEqual, next_test);
  1668     __ movptr(recv_addr, recv);
  1669     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1670     __ jmp(*update_done);
  1671     __ bind(next_test);
  1675 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1676   // we always need a stub for the failure case.
  1677   CodeStub* stub = op->stub();
  1678   Register obj = op->object()->as_register();
  1679   Register k_RInfo = op->tmp1()->as_register();
  1680   Register klass_RInfo = op->tmp2()->as_register();
  1681   Register dst = op->result_opr()->as_register();
  1682   ciKlass* k = op->klass();
  1683   Register Rtmp1 = noreg;
  1685   // check if it needs to be profiled
  1686   ciMethodData* md;
  1687   ciProfileData* data;
  1689   if (op->should_profile()) {
  1690     ciMethod* method = op->profiled_method();
  1691     assert(method != NULL, "Should have method");
  1692     int bci = op->profiled_bci();
  1693     md = method->method_data_or_null();
  1694     assert(md != NULL, "Sanity");
  1695     data = md->bci_to_data(bci);
  1696     assert(data != NULL,                "need data for type check");
  1697     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1699   Label profile_cast_success, profile_cast_failure;
  1700   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1701   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1703   if (obj == k_RInfo) {
  1704     k_RInfo = dst;
  1705   } else if (obj == klass_RInfo) {
  1706     klass_RInfo = dst;
  1708   if (k->is_loaded() && !UseCompressedOops) {
  1709     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1710   } else {
  1711     Rtmp1 = op->tmp3()->as_register();
  1712     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1715   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1716   if (!k->is_loaded()) {
  1717     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1718   } else {
  1719 #ifdef _LP64
  1720     __ mov_metadata(k_RInfo, k->constant_encoding());
  1721 #endif // _LP64
  1723   assert(obj != k_RInfo, "must be different");
  1725   __ cmpptr(obj, (int32_t)NULL_WORD);
  1726   if (op->should_profile()) {
  1727     Label not_null;
  1728     __ jccb(Assembler::notEqual, not_null);
  1729     // Object is null; update MDO and exit
  1730     Register mdo  = klass_RInfo;
  1731     __ mov_metadata(mdo, md->constant_encoding());
  1732     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1733     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1734     __ orl(data_addr, header_bits);
  1735     __ jmp(*obj_is_null);
  1736     __ bind(not_null);
  1737   } else {
  1738     __ jcc(Assembler::equal, *obj_is_null);
  1740   __ verify_oop(obj);
  1742   if (op->fast_check()) {
  1743     // get object class
  1744     // not a safepoint as obj null check happens earlier
  1745 #ifdef _LP64
  1746     if (UseCompressedKlassPointers) {
  1747       __ load_klass(Rtmp1, obj);
  1748       __ cmpptr(k_RInfo, Rtmp1);
  1749     } else {
  1750       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1752 #else
  1753     if (k->is_loaded()) {
  1754       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1755     } else {
  1756       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1758 #endif
  1759     __ jcc(Assembler::notEqual, *failure_target);
  1760     // successful cast, fall through to profile or jump
  1761   } else {
  1762     // get object class
  1763     // not a safepoint as obj null check happens earlier
  1764     __ load_klass(klass_RInfo, obj);
  1765     if (k->is_loaded()) {
  1766       // See if we get an immediate positive hit
  1767 #ifdef _LP64
  1768       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1769 #else
  1770       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1771 #endif // _LP64
  1772       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1773         __ jcc(Assembler::notEqual, *failure_target);
  1774         // successful cast, fall through to profile or jump
  1775       } else {
  1776         // See if we get an immediate positive hit
  1777         __ jcc(Assembler::equal, *success_target);
  1778         // check for self
  1779 #ifdef _LP64
  1780         __ cmpptr(klass_RInfo, k_RInfo);
  1781 #else
  1782         __ cmpklass(klass_RInfo, k->constant_encoding());
  1783 #endif // _LP64
  1784         __ jcc(Assembler::equal, *success_target);
  1786         __ push(klass_RInfo);
  1787 #ifdef _LP64
  1788         __ push(k_RInfo);
  1789 #else
  1790         __ pushklass(k->constant_encoding());
  1791 #endif // _LP64
  1792         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1793         __ pop(klass_RInfo);
  1794         __ pop(klass_RInfo);
  1795         // result is a boolean
  1796         __ cmpl(klass_RInfo, 0);
  1797         __ jcc(Assembler::equal, *failure_target);
  1798         // successful cast, fall through to profile or jump
  1800     } else {
  1801       // perform the fast part of the checking logic
  1802       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1803       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1804       __ push(klass_RInfo);
  1805       __ push(k_RInfo);
  1806       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1807       __ pop(klass_RInfo);
  1808       __ pop(k_RInfo);
  1809       // result is a boolean
  1810       __ cmpl(k_RInfo, 0);
  1811       __ jcc(Assembler::equal, *failure_target);
  1812       // successful cast, fall through to profile or jump
  1815   if (op->should_profile()) {
  1816     Register mdo  = klass_RInfo, recv = k_RInfo;
  1817     __ bind(profile_cast_success);
  1818     __ mov_metadata(mdo, md->constant_encoding());
  1819     __ load_klass(recv, obj);
  1820     Label update_done;
  1821     type_profile_helper(mdo, md, data, recv, success);
  1822     __ jmp(*success);
  1824     __ bind(profile_cast_failure);
  1825     __ mov_metadata(mdo, md->constant_encoding());
  1826     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1827     __ subptr(counter_addr, DataLayout::counter_increment);
  1828     __ jmp(*failure);
  1830   __ jmp(*success);
  1834 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1835   LIR_Code code = op->code();
  1836   if (code == lir_store_check) {
  1837     Register value = op->object()->as_register();
  1838     Register array = op->array()->as_register();
  1839     Register k_RInfo = op->tmp1()->as_register();
  1840     Register klass_RInfo = op->tmp2()->as_register();
  1841     Register Rtmp1 = op->tmp3()->as_register();
  1843     CodeStub* stub = op->stub();
  1845     // check if it needs to be profiled
  1846     ciMethodData* md;
  1847     ciProfileData* data;
  1849     if (op->should_profile()) {
  1850       ciMethod* method = op->profiled_method();
  1851       assert(method != NULL, "Should have method");
  1852       int bci = op->profiled_bci();
  1853       md = method->method_data_or_null();
  1854       assert(md != NULL, "Sanity");
  1855       data = md->bci_to_data(bci);
  1856       assert(data != NULL,                "need data for type check");
  1857       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1859     Label profile_cast_success, profile_cast_failure, done;
  1860     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1861     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1863     __ cmpptr(value, (int32_t)NULL_WORD);
  1864     if (op->should_profile()) {
  1865       Label not_null;
  1866       __ jccb(Assembler::notEqual, not_null);
  1867       // Object is null; update MDO and exit
  1868       Register mdo  = klass_RInfo;
  1869       __ mov_metadata(mdo, md->constant_encoding());
  1870       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1871       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1872       __ orl(data_addr, header_bits);
  1873       __ jmp(done);
  1874       __ bind(not_null);
  1875     } else {
  1876       __ jcc(Assembler::equal, done);
  1879     add_debug_info_for_null_check_here(op->info_for_exception());
  1880     __ load_klass(k_RInfo, array);
  1881     __ load_klass(klass_RInfo, value);
  1883     // get instance klass (it's already uncompressed)
  1884     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
  1885     // perform the fast part of the checking logic
  1886     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1887     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1888     __ push(klass_RInfo);
  1889     __ push(k_RInfo);
  1890     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1891     __ pop(klass_RInfo);
  1892     __ pop(k_RInfo);
  1893     // result is a boolean
  1894     __ cmpl(k_RInfo, 0);
  1895     __ jcc(Assembler::equal, *failure_target);
  1896     // fall through to the success case
  1898     if (op->should_profile()) {
  1899       Register mdo  = klass_RInfo, recv = k_RInfo;
  1900       __ bind(profile_cast_success);
  1901       __ mov_metadata(mdo, md->constant_encoding());
  1902       __ load_klass(recv, value);
  1903       Label update_done;
  1904       type_profile_helper(mdo, md, data, recv, &done);
  1905       __ jmpb(done);
  1907       __ bind(profile_cast_failure);
  1908       __ mov_metadata(mdo, md->constant_encoding());
  1909       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1910       __ subptr(counter_addr, DataLayout::counter_increment);
  1911       __ jmp(*stub->entry());
  1914     __ bind(done);
  1915   } else
  1916     if (code == lir_checkcast) {
  1917       Register obj = op->object()->as_register();
  1918       Register dst = op->result_opr()->as_register();
  1919       Label success;
  1920       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1921       __ bind(success);
  1922       if (dst != obj) {
  1923         __ mov(dst, obj);
  1925     } else
  1926       if (code == lir_instanceof) {
  1927         Register obj = op->object()->as_register();
  1928         Register dst = op->result_opr()->as_register();
  1929         Label success, failure, done;
  1930         emit_typecheck_helper(op, &success, &failure, &failure);
  1931         __ bind(failure);
  1932         __ xorptr(dst, dst);
  1933         __ jmpb(done);
  1934         __ bind(success);
  1935         __ movptr(dst, 1);
  1936         __ bind(done);
  1937       } else {
  1938         ShouldNotReachHere();
  1944 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1945   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1946     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1947     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1948     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1949     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1950     Register addr = op->addr()->as_register();
  1951     if (os::is_MP()) {
  1952       __ lock();
  1954     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1956   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1957     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1958     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1959     Register newval = op->new_value()->as_register();
  1960     Register cmpval = op->cmp_value()->as_register();
  1961     assert(cmpval == rax, "wrong register");
  1962     assert(newval != NULL, "new val must be register");
  1963     assert(cmpval != newval, "cmp and new values must be in different registers");
  1964     assert(cmpval != addr, "cmp and addr must be in different registers");
  1965     assert(newval != addr, "new value and addr must be in different registers");
  1967     if ( op->code() == lir_cas_obj) {
  1968 #ifdef _LP64
  1969       if (UseCompressedOops) {
  1970         __ encode_heap_oop(cmpval);
  1971         __ mov(rscratch1, newval);
  1972         __ encode_heap_oop(rscratch1);
  1973         if (os::is_MP()) {
  1974           __ lock();
  1976         // cmpval (rax) is implicitly used by this instruction
  1977         __ cmpxchgl(rscratch1, Address(addr, 0));
  1978       } else
  1979 #endif
  1981         if (os::is_MP()) {
  1982           __ lock();
  1984         __ cmpxchgptr(newval, Address(addr, 0));
  1986     } else {
  1987       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  1988       if (os::is_MP()) {
  1989         __ lock();
  1991       __ cmpxchgl(newval, Address(addr, 0));
  1993 #ifdef _LP64
  1994   } else if (op->code() == lir_cas_long) {
  1995     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1996     Register newval = op->new_value()->as_register_lo();
  1997     Register cmpval = op->cmp_value()->as_register_lo();
  1998     assert(cmpval == rax, "wrong register");
  1999     assert(newval != NULL, "new val must be register");
  2000     assert(cmpval != newval, "cmp and new values must be in different registers");
  2001     assert(cmpval != addr, "cmp and addr must be in different registers");
  2002     assert(newval != addr, "new value and addr must be in different registers");
  2003     if (os::is_MP()) {
  2004       __ lock();
  2006     __ cmpxchgq(newval, Address(addr, 0));
  2007 #endif // _LP64
  2008   } else {
  2009     Unimplemented();
  2013 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2014   Assembler::Condition acond, ncond;
  2015   switch (condition) {
  2016     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2017     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2018     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2019     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2020     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2021     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2022     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2023     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2024     default:                    ShouldNotReachHere();
  2027   if (opr1->is_cpu_register()) {
  2028     reg2reg(opr1, result);
  2029   } else if (opr1->is_stack()) {
  2030     stack2reg(opr1, result, result->type());
  2031   } else if (opr1->is_constant()) {
  2032     const2reg(opr1, result, lir_patch_none, NULL);
  2033   } else {
  2034     ShouldNotReachHere();
  2037   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2038     // optimized version that does not require a branch
  2039     if (opr2->is_single_cpu()) {
  2040       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2041       __ cmov(ncond, result->as_register(), opr2->as_register());
  2042     } else if (opr2->is_double_cpu()) {
  2043       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2044       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2045       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2046       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2047     } else if (opr2->is_single_stack()) {
  2048       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2049     } else if (opr2->is_double_stack()) {
  2050       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2051       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2052     } else {
  2053       ShouldNotReachHere();
  2056   } else {
  2057     Label skip;
  2058     __ jcc (acond, skip);
  2059     if (opr2->is_cpu_register()) {
  2060       reg2reg(opr2, result);
  2061     } else if (opr2->is_stack()) {
  2062       stack2reg(opr2, result, result->type());
  2063     } else if (opr2->is_constant()) {
  2064       const2reg(opr2, result, lir_patch_none, NULL);
  2065     } else {
  2066       ShouldNotReachHere();
  2068     __ bind(skip);
  2073 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2074   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2076   if (left->is_single_cpu()) {
  2077     assert(left == dest, "left and dest must be equal");
  2078     Register lreg = left->as_register();
  2080     if (right->is_single_cpu()) {
  2081       // cpu register - cpu register
  2082       Register rreg = right->as_register();
  2083       switch (code) {
  2084         case lir_add: __ addl (lreg, rreg); break;
  2085         case lir_sub: __ subl (lreg, rreg); break;
  2086         case lir_mul: __ imull(lreg, rreg); break;
  2087         default:      ShouldNotReachHere();
  2090     } else if (right->is_stack()) {
  2091       // cpu register - stack
  2092       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2093       switch (code) {
  2094         case lir_add: __ addl(lreg, raddr); break;
  2095         case lir_sub: __ subl(lreg, raddr); break;
  2096         default:      ShouldNotReachHere();
  2099     } else if (right->is_constant()) {
  2100       // cpu register - constant
  2101       jint c = right->as_constant_ptr()->as_jint();
  2102       switch (code) {
  2103         case lir_add: {
  2104           __ incrementl(lreg, c);
  2105           break;
  2107         case lir_sub: {
  2108           __ decrementl(lreg, c);
  2109           break;
  2111         default: ShouldNotReachHere();
  2114     } else {
  2115       ShouldNotReachHere();
  2118   } else if (left->is_double_cpu()) {
  2119     assert(left == dest, "left and dest must be equal");
  2120     Register lreg_lo = left->as_register_lo();
  2121     Register lreg_hi = left->as_register_hi();
  2123     if (right->is_double_cpu()) {
  2124       // cpu register - cpu register
  2125       Register rreg_lo = right->as_register_lo();
  2126       Register rreg_hi = right->as_register_hi();
  2127       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2128       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2129       switch (code) {
  2130         case lir_add:
  2131           __ addptr(lreg_lo, rreg_lo);
  2132           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2133           break;
  2134         case lir_sub:
  2135           __ subptr(lreg_lo, rreg_lo);
  2136           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2137           break;
  2138         case lir_mul:
  2139 #ifdef _LP64
  2140           __ imulq(lreg_lo, rreg_lo);
  2141 #else
  2142           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2143           __ imull(lreg_hi, rreg_lo);
  2144           __ imull(rreg_hi, lreg_lo);
  2145           __ addl (rreg_hi, lreg_hi);
  2146           __ mull (rreg_lo);
  2147           __ addl (lreg_hi, rreg_hi);
  2148 #endif // _LP64
  2149           break;
  2150         default:
  2151           ShouldNotReachHere();
  2154     } else if (right->is_constant()) {
  2155       // cpu register - constant
  2156 #ifdef _LP64
  2157       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2158       __ movptr(r10, (intptr_t) c);
  2159       switch (code) {
  2160         case lir_add:
  2161           __ addptr(lreg_lo, r10);
  2162           break;
  2163         case lir_sub:
  2164           __ subptr(lreg_lo, r10);
  2165           break;
  2166         default:
  2167           ShouldNotReachHere();
  2169 #else
  2170       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2171       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2172       switch (code) {
  2173         case lir_add:
  2174           __ addptr(lreg_lo, c_lo);
  2175           __ adcl(lreg_hi, c_hi);
  2176           break;
  2177         case lir_sub:
  2178           __ subptr(lreg_lo, c_lo);
  2179           __ sbbl(lreg_hi, c_hi);
  2180           break;
  2181         default:
  2182           ShouldNotReachHere();
  2184 #endif // _LP64
  2186     } else {
  2187       ShouldNotReachHere();
  2190   } else if (left->is_single_xmm()) {
  2191     assert(left == dest, "left and dest must be equal");
  2192     XMMRegister lreg = left->as_xmm_float_reg();
  2194     if (right->is_single_xmm()) {
  2195       XMMRegister rreg = right->as_xmm_float_reg();
  2196       switch (code) {
  2197         case lir_add: __ addss(lreg, rreg);  break;
  2198         case lir_sub: __ subss(lreg, rreg);  break;
  2199         case lir_mul_strictfp: // fall through
  2200         case lir_mul: __ mulss(lreg, rreg);  break;
  2201         case lir_div_strictfp: // fall through
  2202         case lir_div: __ divss(lreg, rreg);  break;
  2203         default: ShouldNotReachHere();
  2205     } else {
  2206       Address raddr;
  2207       if (right->is_single_stack()) {
  2208         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2209       } else if (right->is_constant()) {
  2210         // hack for now
  2211         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2212       } else {
  2213         ShouldNotReachHere();
  2215       switch (code) {
  2216         case lir_add: __ addss(lreg, raddr);  break;
  2217         case lir_sub: __ subss(lreg, raddr);  break;
  2218         case lir_mul_strictfp: // fall through
  2219         case lir_mul: __ mulss(lreg, raddr);  break;
  2220         case lir_div_strictfp: // fall through
  2221         case lir_div: __ divss(lreg, raddr);  break;
  2222         default: ShouldNotReachHere();
  2226   } else if (left->is_double_xmm()) {
  2227     assert(left == dest, "left and dest must be equal");
  2229     XMMRegister lreg = left->as_xmm_double_reg();
  2230     if (right->is_double_xmm()) {
  2231       XMMRegister rreg = right->as_xmm_double_reg();
  2232       switch (code) {
  2233         case lir_add: __ addsd(lreg, rreg);  break;
  2234         case lir_sub: __ subsd(lreg, rreg);  break;
  2235         case lir_mul_strictfp: // fall through
  2236         case lir_mul: __ mulsd(lreg, rreg);  break;
  2237         case lir_div_strictfp: // fall through
  2238         case lir_div: __ divsd(lreg, rreg);  break;
  2239         default: ShouldNotReachHere();
  2241     } else {
  2242       Address raddr;
  2243       if (right->is_double_stack()) {
  2244         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2245       } else if (right->is_constant()) {
  2246         // hack for now
  2247         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2248       } else {
  2249         ShouldNotReachHere();
  2251       switch (code) {
  2252         case lir_add: __ addsd(lreg, raddr);  break;
  2253         case lir_sub: __ subsd(lreg, raddr);  break;
  2254         case lir_mul_strictfp: // fall through
  2255         case lir_mul: __ mulsd(lreg, raddr);  break;
  2256         case lir_div_strictfp: // fall through
  2257         case lir_div: __ divsd(lreg, raddr);  break;
  2258         default: ShouldNotReachHere();
  2262   } else if (left->is_single_fpu()) {
  2263     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2265     if (right->is_single_fpu()) {
  2266       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2268     } else {
  2269       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2270       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2272       Address raddr;
  2273       if (right->is_single_stack()) {
  2274         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2275       } else if (right->is_constant()) {
  2276         address const_addr = float_constant(right->as_jfloat());
  2277         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2278         // hack for now
  2279         raddr = __ as_Address(InternalAddress(const_addr));
  2280       } else {
  2281         ShouldNotReachHere();
  2284       switch (code) {
  2285         case lir_add: __ fadd_s(raddr); break;
  2286         case lir_sub: __ fsub_s(raddr); break;
  2287         case lir_mul_strictfp: // fall through
  2288         case lir_mul: __ fmul_s(raddr); break;
  2289         case lir_div_strictfp: // fall through
  2290         case lir_div: __ fdiv_s(raddr); break;
  2291         default:      ShouldNotReachHere();
  2295   } else if (left->is_double_fpu()) {
  2296     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2298     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2299       // Double values require special handling for strictfp mul/div on x86
  2300       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2301       __ fmulp(left->fpu_regnrLo() + 1);
  2304     if (right->is_double_fpu()) {
  2305       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2307     } else {
  2308       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2309       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2311       Address raddr;
  2312       if (right->is_double_stack()) {
  2313         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2314       } else if (right->is_constant()) {
  2315         // hack for now
  2316         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2317       } else {
  2318         ShouldNotReachHere();
  2321       switch (code) {
  2322         case lir_add: __ fadd_d(raddr); break;
  2323         case lir_sub: __ fsub_d(raddr); break;
  2324         case lir_mul_strictfp: // fall through
  2325         case lir_mul: __ fmul_d(raddr); break;
  2326         case lir_div_strictfp: // fall through
  2327         case lir_div: __ fdiv_d(raddr); break;
  2328         default: ShouldNotReachHere();
  2332     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2333       // Double values require special handling for strictfp mul/div on x86
  2334       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2335       __ fmulp(dest->fpu_regnrLo() + 1);
  2338   } else if (left->is_single_stack() || left->is_address()) {
  2339     assert(left == dest, "left and dest must be equal");
  2341     Address laddr;
  2342     if (left->is_single_stack()) {
  2343       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2344     } else if (left->is_address()) {
  2345       laddr = as_Address(left->as_address_ptr());
  2346     } else {
  2347       ShouldNotReachHere();
  2350     if (right->is_single_cpu()) {
  2351       Register rreg = right->as_register();
  2352       switch (code) {
  2353         case lir_add: __ addl(laddr, rreg); break;
  2354         case lir_sub: __ subl(laddr, rreg); break;
  2355         default:      ShouldNotReachHere();
  2357     } else if (right->is_constant()) {
  2358       jint c = right->as_constant_ptr()->as_jint();
  2359       switch (code) {
  2360         case lir_add: {
  2361           __ incrementl(laddr, c);
  2362           break;
  2364         case lir_sub: {
  2365           __ decrementl(laddr, c);
  2366           break;
  2368         default: ShouldNotReachHere();
  2370     } else {
  2371       ShouldNotReachHere();
  2374   } else {
  2375     ShouldNotReachHere();
  2379 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2380   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2381   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2382   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2384   bool left_is_tos = (left_index == 0);
  2385   bool dest_is_tos = (dest_index == 0);
  2386   int non_tos_index = (left_is_tos ? right_index : left_index);
  2388   switch (code) {
  2389     case lir_add:
  2390       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2391       else if (dest_is_tos)    __ fadd (non_tos_index);
  2392       else                     __ fadda(non_tos_index);
  2393       break;
  2395     case lir_sub:
  2396       if (left_is_tos) {
  2397         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2398         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2399         else                   __ fsubra(non_tos_index);
  2400       } else {
  2401         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2402         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2403         else                   __ fsuba (non_tos_index);
  2405       break;
  2407     case lir_mul_strictfp: // fall through
  2408     case lir_mul:
  2409       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2410       else if (dest_is_tos)    __ fmul (non_tos_index);
  2411       else                     __ fmula(non_tos_index);
  2412       break;
  2414     case lir_div_strictfp: // fall through
  2415     case lir_div:
  2416       if (left_is_tos) {
  2417         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2418         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2419         else                   __ fdivra(non_tos_index);
  2420       } else {
  2421         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2422         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2423         else                   __ fdiva (non_tos_index);
  2425       break;
  2427     case lir_rem:
  2428       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2429       __ fremr(noreg);
  2430       break;
  2432     default:
  2433       ShouldNotReachHere();
  2438 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2439   if (value->is_double_xmm()) {
  2440     switch(code) {
  2441       case lir_abs :
  2443           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2444             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2446           __ andpd(dest->as_xmm_double_reg(),
  2447                     ExternalAddress((address)double_signmask_pool));
  2449         break;
  2451       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2452       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2453       default      : ShouldNotReachHere();
  2456   } else if (value->is_double_fpu()) {
  2457     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2458     switch(code) {
  2459       case lir_log   : __ flog() ; break;
  2460       case lir_log10 : __ flog10() ; break;
  2461       case lir_abs   : __ fabs() ; break;
  2462       case lir_sqrt  : __ fsqrt(); break;
  2463       case lir_sin   :
  2464         // Should consider not saving rbx, if not necessary
  2465         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2466         break;
  2467       case lir_cos :
  2468         // Should consider not saving rbx, if not necessary
  2469         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2470         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2471         break;
  2472       case lir_tan :
  2473         // Should consider not saving rbx, if not necessary
  2474         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2475         break;
  2476       case lir_exp :
  2477         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2478         break;
  2479       case lir_pow :
  2480         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2481         break;
  2482       default      : ShouldNotReachHere();
  2484   } else {
  2485     Unimplemented();
  2489 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2490   // assert(left->destroys_register(), "check");
  2491   if (left->is_single_cpu()) {
  2492     Register reg = left->as_register();
  2493     if (right->is_constant()) {
  2494       int val = right->as_constant_ptr()->as_jint();
  2495       switch (code) {
  2496         case lir_logic_and: __ andl (reg, val); break;
  2497         case lir_logic_or:  __ orl  (reg, val); break;
  2498         case lir_logic_xor: __ xorl (reg, val); break;
  2499         default: ShouldNotReachHere();
  2501     } else if (right->is_stack()) {
  2502       // added support for stack operands
  2503       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2504       switch (code) {
  2505         case lir_logic_and: __ andl (reg, raddr); break;
  2506         case lir_logic_or:  __ orl  (reg, raddr); break;
  2507         case lir_logic_xor: __ xorl (reg, raddr); break;
  2508         default: ShouldNotReachHere();
  2510     } else {
  2511       Register rright = right->as_register();
  2512       switch (code) {
  2513         case lir_logic_and: __ andptr (reg, rright); break;
  2514         case lir_logic_or : __ orptr  (reg, rright); break;
  2515         case lir_logic_xor: __ xorptr (reg, rright); break;
  2516         default: ShouldNotReachHere();
  2519     move_regs(reg, dst->as_register());
  2520   } else {
  2521     Register l_lo = left->as_register_lo();
  2522     Register l_hi = left->as_register_hi();
  2523     if (right->is_constant()) {
  2524 #ifdef _LP64
  2525       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2526       switch (code) {
  2527         case lir_logic_and:
  2528           __ andq(l_lo, rscratch1);
  2529           break;
  2530         case lir_logic_or:
  2531           __ orq(l_lo, rscratch1);
  2532           break;
  2533         case lir_logic_xor:
  2534           __ xorq(l_lo, rscratch1);
  2535           break;
  2536         default: ShouldNotReachHere();
  2538 #else
  2539       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2540       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2541       switch (code) {
  2542         case lir_logic_and:
  2543           __ andl(l_lo, r_lo);
  2544           __ andl(l_hi, r_hi);
  2545           break;
  2546         case lir_logic_or:
  2547           __ orl(l_lo, r_lo);
  2548           __ orl(l_hi, r_hi);
  2549           break;
  2550         case lir_logic_xor:
  2551           __ xorl(l_lo, r_lo);
  2552           __ xorl(l_hi, r_hi);
  2553           break;
  2554         default: ShouldNotReachHere();
  2556 #endif // _LP64
  2557     } else {
  2558 #ifdef _LP64
  2559       Register r_lo;
  2560       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2561         r_lo = right->as_register();
  2562       } else {
  2563         r_lo = right->as_register_lo();
  2565 #else
  2566       Register r_lo = right->as_register_lo();
  2567       Register r_hi = right->as_register_hi();
  2568       assert(l_lo != r_hi, "overwriting registers");
  2569 #endif
  2570       switch (code) {
  2571         case lir_logic_and:
  2572           __ andptr(l_lo, r_lo);
  2573           NOT_LP64(__ andptr(l_hi, r_hi);)
  2574           break;
  2575         case lir_logic_or:
  2576           __ orptr(l_lo, r_lo);
  2577           NOT_LP64(__ orptr(l_hi, r_hi);)
  2578           break;
  2579         case lir_logic_xor:
  2580           __ xorptr(l_lo, r_lo);
  2581           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2582           break;
  2583         default: ShouldNotReachHere();
  2587     Register dst_lo = dst->as_register_lo();
  2588     Register dst_hi = dst->as_register_hi();
  2590 #ifdef _LP64
  2591     move_regs(l_lo, dst_lo);
  2592 #else
  2593     if (dst_lo == l_hi) {
  2594       assert(dst_hi != l_lo, "overwriting registers");
  2595       move_regs(l_hi, dst_hi);
  2596       move_regs(l_lo, dst_lo);
  2597     } else {
  2598       assert(dst_lo != l_hi, "overwriting registers");
  2599       move_regs(l_lo, dst_lo);
  2600       move_regs(l_hi, dst_hi);
  2602 #endif // _LP64
  2607 // we assume that rax, and rdx can be overwritten
  2608 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2610   assert(left->is_single_cpu(),   "left must be register");
  2611   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2612   assert(result->is_single_cpu(), "result must be register");
  2614   //  assert(left->destroys_register(), "check");
  2615   //  assert(right->destroys_register(), "check");
  2617   Register lreg = left->as_register();
  2618   Register dreg = result->as_register();
  2620   if (right->is_constant()) {
  2621     int divisor = right->as_constant_ptr()->as_jint();
  2622     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2623     if (code == lir_idiv) {
  2624       assert(lreg == rax, "must be rax,");
  2625       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2626       __ cdql(); // sign extend into rdx:rax
  2627       if (divisor == 2) {
  2628         __ subl(lreg, rdx);
  2629       } else {
  2630         __ andl(rdx, divisor - 1);
  2631         __ addl(lreg, rdx);
  2633       __ sarl(lreg, log2_intptr(divisor));
  2634       move_regs(lreg, dreg);
  2635     } else if (code == lir_irem) {
  2636       Label done;
  2637       __ mov(dreg, lreg);
  2638       __ andl(dreg, 0x80000000 | (divisor - 1));
  2639       __ jcc(Assembler::positive, done);
  2640       __ decrement(dreg);
  2641       __ orl(dreg, ~(divisor - 1));
  2642       __ increment(dreg);
  2643       __ bind(done);
  2644     } else {
  2645       ShouldNotReachHere();
  2647   } else {
  2648     Register rreg = right->as_register();
  2649     assert(lreg == rax, "left register must be rax,");
  2650     assert(rreg != rdx, "right register must not be rdx");
  2651     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2653     move_regs(lreg, rax);
  2655     int idivl_offset = __ corrected_idivl(rreg);
  2656     add_debug_info_for_div0(idivl_offset, info);
  2657     if (code == lir_irem) {
  2658       move_regs(rdx, dreg); // result is in rdx
  2659     } else {
  2660       move_regs(rax, dreg);
  2666 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2667   if (opr1->is_single_cpu()) {
  2668     Register reg1 = opr1->as_register();
  2669     if (opr2->is_single_cpu()) {
  2670       // cpu register - cpu register
  2671       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2672         __ cmpptr(reg1, opr2->as_register());
  2673       } else {
  2674         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2675         __ cmpl(reg1, opr2->as_register());
  2677     } else if (opr2->is_stack()) {
  2678       // cpu register - stack
  2679       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2680         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2681       } else {
  2682         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2684     } else if (opr2->is_constant()) {
  2685       // cpu register - constant
  2686       LIR_Const* c = opr2->as_constant_ptr();
  2687       if (c->type() == T_INT) {
  2688         __ cmpl(reg1, c->as_jint());
  2689       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2690         // In 64bit oops are single register
  2691         jobject o = c->as_jobject();
  2692         if (o == NULL) {
  2693           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2694         } else {
  2695 #ifdef _LP64
  2696           __ movoop(rscratch1, o);
  2697           __ cmpptr(reg1, rscratch1);
  2698 #else
  2699           __ cmpoop(reg1, c->as_jobject());
  2700 #endif // _LP64
  2702       } else {
  2703         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2705       // cpu register - address
  2706     } else if (opr2->is_address()) {
  2707       if (op->info() != NULL) {
  2708         add_debug_info_for_null_check_here(op->info());
  2710       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2711     } else {
  2712       ShouldNotReachHere();
  2715   } else if(opr1->is_double_cpu()) {
  2716     Register xlo = opr1->as_register_lo();
  2717     Register xhi = opr1->as_register_hi();
  2718     if (opr2->is_double_cpu()) {
  2719 #ifdef _LP64
  2720       __ cmpptr(xlo, opr2->as_register_lo());
  2721 #else
  2722       // cpu register - cpu register
  2723       Register ylo = opr2->as_register_lo();
  2724       Register yhi = opr2->as_register_hi();
  2725       __ subl(xlo, ylo);
  2726       __ sbbl(xhi, yhi);
  2727       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2728         __ orl(xhi, xlo);
  2730 #endif // _LP64
  2731     } else if (opr2->is_constant()) {
  2732       // cpu register - constant 0
  2733       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2734 #ifdef _LP64
  2735       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2736 #else
  2737       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2738       __ orl(xhi, xlo);
  2739 #endif // _LP64
  2740     } else {
  2741       ShouldNotReachHere();
  2744   } else if (opr1->is_single_xmm()) {
  2745     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2746     if (opr2->is_single_xmm()) {
  2747       // xmm register - xmm register
  2748       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2749     } else if (opr2->is_stack()) {
  2750       // xmm register - stack
  2751       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2752     } else if (opr2->is_constant()) {
  2753       // xmm register - constant
  2754       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2755     } else if (opr2->is_address()) {
  2756       // xmm register - address
  2757       if (op->info() != NULL) {
  2758         add_debug_info_for_null_check_here(op->info());
  2760       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2761     } else {
  2762       ShouldNotReachHere();
  2765   } else if (opr1->is_double_xmm()) {
  2766     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2767     if (opr2->is_double_xmm()) {
  2768       // xmm register - xmm register
  2769       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2770     } else if (opr2->is_stack()) {
  2771       // xmm register - stack
  2772       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2773     } else if (opr2->is_constant()) {
  2774       // xmm register - constant
  2775       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2776     } else if (opr2->is_address()) {
  2777       // xmm register - address
  2778       if (op->info() != NULL) {
  2779         add_debug_info_for_null_check_here(op->info());
  2781       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2782     } else {
  2783       ShouldNotReachHere();
  2786   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2787     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2788     assert(opr2->is_fpu_register(), "both must be registers");
  2789     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2791   } else if (opr1->is_address() && opr2->is_constant()) {
  2792     LIR_Const* c = opr2->as_constant_ptr();
  2793 #ifdef _LP64
  2794     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2795       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2796       __ movoop(rscratch1, c->as_jobject());
  2798 #endif // LP64
  2799     if (op->info() != NULL) {
  2800       add_debug_info_for_null_check_here(op->info());
  2802     // special case: address - constant
  2803     LIR_Address* addr = opr1->as_address_ptr();
  2804     if (c->type() == T_INT) {
  2805       __ cmpl(as_Address(addr), c->as_jint());
  2806     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2807 #ifdef _LP64
  2808       // %%% Make this explode if addr isn't reachable until we figure out a
  2809       // better strategy by giving noreg as the temp for as_Address
  2810       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2811 #else
  2812       __ cmpoop(as_Address(addr), c->as_jobject());
  2813 #endif // _LP64
  2814     } else {
  2815       ShouldNotReachHere();
  2818   } else {
  2819     ShouldNotReachHere();
  2823 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2824   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2825     if (left->is_single_xmm()) {
  2826       assert(right->is_single_xmm(), "must match");
  2827       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2828     } else if (left->is_double_xmm()) {
  2829       assert(right->is_double_xmm(), "must match");
  2830       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2832     } else {
  2833       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2834       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2836       assert(left->fpu() == 0, "left must be on TOS");
  2837       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2838                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2840   } else {
  2841     assert(code == lir_cmp_l2i, "check");
  2842 #ifdef _LP64
  2843     Label done;
  2844     Register dest = dst->as_register();
  2845     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2846     __ movl(dest, -1);
  2847     __ jccb(Assembler::less, done);
  2848     __ set_byte_if_not_zero(dest);
  2849     __ movzbl(dest, dest);
  2850     __ bind(done);
  2851 #else
  2852     __ lcmp2int(left->as_register_hi(),
  2853                 left->as_register_lo(),
  2854                 right->as_register_hi(),
  2855                 right->as_register_lo());
  2856     move_regs(left->as_register_hi(), dst->as_register());
  2857 #endif // _LP64
  2862 void LIR_Assembler::align_call(LIR_Code code) {
  2863   if (os::is_MP()) {
  2864     // make sure that the displacement word of the call ends up word aligned
  2865     int offset = __ offset();
  2866     switch (code) {
  2867       case lir_static_call:
  2868       case lir_optvirtual_call:
  2869       case lir_dynamic_call:
  2870         offset += NativeCall::displacement_offset;
  2871         break;
  2872       case lir_icvirtual_call:
  2873         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2874       break;
  2875       case lir_virtual_call:  // currently, sparc-specific for niagara
  2876       default: ShouldNotReachHere();
  2878     while (offset++ % BytesPerWord != 0) {
  2879       __ nop();
  2885 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2886   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2887          "must be aligned");
  2888   __ call(AddressLiteral(op->addr(), rtype));
  2889   add_call_info(code_offset(), op->info());
  2893 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2894   __ ic_call(op->addr());
  2895   add_call_info(code_offset(), op->info());
  2896   assert(!os::is_MP() ||
  2897          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2898          "must be aligned");
  2902 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2903 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2904   ShouldNotReachHere();
  2908 void LIR_Assembler::emit_static_call_stub() {
  2909   address call_pc = __ pc();
  2910   address stub = __ start_a_stub(call_stub_size);
  2911   if (stub == NULL) {
  2912     bailout("static call stub overflow");
  2913     return;
  2916   int start = __ offset();
  2917   if (os::is_MP()) {
  2918     // make sure that the displacement word of the call ends up word aligned
  2919     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2920     while (offset++ % BytesPerWord != 0) {
  2921       __ nop();
  2924   __ relocate(static_stub_Relocation::spec(call_pc));
  2925   __ mov_metadata(rbx, (Metadata*)NULL);
  2926   // must be set to -1 at code generation time
  2927   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2928   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2929   __ jump(RuntimeAddress(__ pc()));
  2931   assert(__ offset() - start <= call_stub_size, "stub too big");
  2932   __ end_a_stub();
  2936 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2937   assert(exceptionOop->as_register() == rax, "must match");
  2938   assert(exceptionPC->as_register() == rdx, "must match");
  2940   // exception object is not added to oop map by LinearScan
  2941   // (LinearScan assumes that no oops are in fixed registers)
  2942   info->add_register_oop(exceptionOop);
  2943   Runtime1::StubID unwind_id;
  2945   // get current pc information
  2946   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2947   int pc_for_athrow_offset = __ offset();
  2948   InternalAddress pc_for_athrow(__ pc());
  2949   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2950   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2952   __ verify_not_null_oop(rax);
  2953   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2954   if (compilation()->has_fpu_code()) {
  2955     unwind_id = Runtime1::handle_exception_id;
  2956   } else {
  2957     unwind_id = Runtime1::handle_exception_nofpu_id;
  2959   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2961   // enough room for two byte trap
  2962   __ nop();
  2966 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2967   assert(exceptionOop->as_register() == rax, "must match");
  2969   __ jmp(_unwind_handler_entry);
  2973 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2975   // optimized version for linear scan:
  2976   // * count must be already in ECX (guaranteed by LinearScan)
  2977   // * left and dest must be equal
  2978   // * tmp must be unused
  2979   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2980   assert(left == dest, "left and dest must be equal");
  2981   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2983   if (left->is_single_cpu()) {
  2984     Register value = left->as_register();
  2985     assert(value != SHIFT_count, "left cannot be ECX");
  2987     switch (code) {
  2988       case lir_shl:  __ shll(value); break;
  2989       case lir_shr:  __ sarl(value); break;
  2990       case lir_ushr: __ shrl(value); break;
  2991       default: ShouldNotReachHere();
  2993   } else if (left->is_double_cpu()) {
  2994     Register lo = left->as_register_lo();
  2995     Register hi = left->as_register_hi();
  2996     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2997 #ifdef _LP64
  2998     switch (code) {
  2999       case lir_shl:  __ shlptr(lo);        break;
  3000       case lir_shr:  __ sarptr(lo);        break;
  3001       case lir_ushr: __ shrptr(lo);        break;
  3002       default: ShouldNotReachHere();
  3004 #else
  3006     switch (code) {
  3007       case lir_shl:  __ lshl(hi, lo);        break;
  3008       case lir_shr:  __ lshr(hi, lo, true);  break;
  3009       case lir_ushr: __ lshr(hi, lo, false); break;
  3010       default: ShouldNotReachHere();
  3012 #endif // LP64
  3013   } else {
  3014     ShouldNotReachHere();
  3019 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3020   if (dest->is_single_cpu()) {
  3021     // first move left into dest so that left is not destroyed by the shift
  3022     Register value = dest->as_register();
  3023     count = count & 0x1F; // Java spec
  3025     move_regs(left->as_register(), value);
  3026     switch (code) {
  3027       case lir_shl:  __ shll(value, count); break;
  3028       case lir_shr:  __ sarl(value, count); break;
  3029       case lir_ushr: __ shrl(value, count); break;
  3030       default: ShouldNotReachHere();
  3032   } else if (dest->is_double_cpu()) {
  3033 #ifndef _LP64
  3034     Unimplemented();
  3035 #else
  3036     // first move left into dest so that left is not destroyed by the shift
  3037     Register value = dest->as_register_lo();
  3038     count = count & 0x1F; // Java spec
  3040     move_regs(left->as_register_lo(), value);
  3041     switch (code) {
  3042       case lir_shl:  __ shlptr(value, count); break;
  3043       case lir_shr:  __ sarptr(value, count); break;
  3044       case lir_ushr: __ shrptr(value, count); break;
  3045       default: ShouldNotReachHere();
  3047 #endif // _LP64
  3048   } else {
  3049     ShouldNotReachHere();
  3054 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3055   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3056   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3057   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3058   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3062 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3063   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3064   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3065   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3066   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3070 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3071   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3072   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3073   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3074   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3078 // This code replaces a call to arraycopy; no exception may
  3079 // be thrown in this code, they must be thrown in the System.arraycopy
  3080 // activation frame; we could save some checks if this would not be the case
  3081 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3082   ciArrayKlass* default_type = op->expected_type();
  3083   Register src = op->src()->as_register();
  3084   Register dst = op->dst()->as_register();
  3085   Register src_pos = op->src_pos()->as_register();
  3086   Register dst_pos = op->dst_pos()->as_register();
  3087   Register length  = op->length()->as_register();
  3088   Register tmp = op->tmp()->as_register();
  3090   CodeStub* stub = op->stub();
  3091   int flags = op->flags();
  3092   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3093   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3095   // if we don't know anything, just go through the generic arraycopy
  3096   if (default_type == NULL) {
  3097     Label done;
  3098     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3099     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3100     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3101     // For the moment until C1 gets the new register allocator I just force all the
  3102     // args to the right place (except the register args) and then on the back side
  3103     // reload the register args properly if we go slow path. Yuck
  3105     // These are proper for the calling convention
  3106     store_parameter(length, 2);
  3107     store_parameter(dst_pos, 1);
  3108     store_parameter(dst, 0);
  3110     // these are just temporary placements until we need to reload
  3111     store_parameter(src_pos, 3);
  3112     store_parameter(src, 4);
  3113     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3115     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3117     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3119     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3120 #ifdef _LP64
  3121     // The arguments are in java calling convention so we can trivially shift them to C
  3122     // convention
  3123     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3124     __ mov(c_rarg0, j_rarg0);
  3125     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3126     __ mov(c_rarg1, j_rarg1);
  3127     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3128     __ mov(c_rarg2, j_rarg2);
  3129     assert_different_registers(c_rarg3, j_rarg4);
  3130     __ mov(c_rarg3, j_rarg3);
  3131 #ifdef _WIN64
  3132     // Allocate abi space for args but be sure to keep stack aligned
  3133     __ subptr(rsp, 6*wordSize);
  3134     store_parameter(j_rarg4, 4);
  3135     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3136       __ call(RuntimeAddress(C_entry));
  3137     } else {
  3138 #ifndef PRODUCT
  3139       if (PrintC1Statistics) {
  3140         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3142 #endif
  3143       __ call(RuntimeAddress(copyfunc_addr));
  3145     __ addptr(rsp, 6*wordSize);
  3146 #else
  3147     __ mov(c_rarg4, j_rarg4);
  3148     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3149       __ call(RuntimeAddress(C_entry));
  3150     } else {
  3151 #ifndef PRODUCT
  3152       if (PrintC1Statistics) {
  3153         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3155 #endif
  3156       __ call(RuntimeAddress(copyfunc_addr));
  3158 #endif // _WIN64
  3159 #else
  3160     __ push(length);
  3161     __ push(dst_pos);
  3162     __ push(dst);
  3163     __ push(src_pos);
  3164     __ push(src);
  3166     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3167       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3168     } else {
  3169 #ifndef PRODUCT
  3170       if (PrintC1Statistics) {
  3171         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3173 #endif
  3174       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3177 #endif // _LP64
  3179     __ cmpl(rax, 0);
  3180     __ jcc(Assembler::equal, *stub->continuation());
  3182     if (copyfunc_addr != NULL) {
  3183       __ mov(tmp, rax);
  3184       __ xorl(tmp, -1);
  3187     // Reload values from the stack so they are where the stub
  3188     // expects them.
  3189     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3190     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3191     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3192     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3193     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3195     if (copyfunc_addr != NULL) {
  3196       __ subl(length, tmp);
  3197       __ addl(src_pos, tmp);
  3198       __ addl(dst_pos, tmp);
  3200     __ jmp(*stub->entry());
  3202     __ bind(*stub->continuation());
  3203     return;
  3206   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3208   int elem_size = type2aelembytes(basic_type);
  3209   int shift_amount;
  3210   Address::ScaleFactor scale;
  3212   switch (elem_size) {
  3213     case 1 :
  3214       shift_amount = 0;
  3215       scale = Address::times_1;
  3216       break;
  3217     case 2 :
  3218       shift_amount = 1;
  3219       scale = Address::times_2;
  3220       break;
  3221     case 4 :
  3222       shift_amount = 2;
  3223       scale = Address::times_4;
  3224       break;
  3225     case 8 :
  3226       shift_amount = 3;
  3227       scale = Address::times_8;
  3228       break;
  3229     default:
  3230       ShouldNotReachHere();
  3233   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3234   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3235   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3236   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3238   // length and pos's are all sign extended at this point on 64bit
  3240   // test for NULL
  3241   if (flags & LIR_OpArrayCopy::src_null_check) {
  3242     __ testptr(src, src);
  3243     __ jcc(Assembler::zero, *stub->entry());
  3245   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3246     __ testptr(dst, dst);
  3247     __ jcc(Assembler::zero, *stub->entry());
  3250   // check if negative
  3251   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3252     __ testl(src_pos, src_pos);
  3253     __ jcc(Assembler::less, *stub->entry());
  3255   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3256     __ testl(dst_pos, dst_pos);
  3257     __ jcc(Assembler::less, *stub->entry());
  3260   if (flags & LIR_OpArrayCopy::src_range_check) {
  3261     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3262     __ cmpl(tmp, src_length_addr);
  3263     __ jcc(Assembler::above, *stub->entry());
  3265   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3266     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3267     __ cmpl(tmp, dst_length_addr);
  3268     __ jcc(Assembler::above, *stub->entry());
  3271   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3272     __ testl(length, length);
  3273     __ jcc(Assembler::less, *stub->entry());
  3274     __ jcc(Assembler::zero, *stub->continuation());
  3277 #ifdef _LP64
  3278   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3279   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3280 #endif
  3282   if (flags & LIR_OpArrayCopy::type_check) {
  3283     // We don't know the array types are compatible
  3284     if (basic_type != T_OBJECT) {
  3285       // Simple test for basic type arrays
  3286       if (UseCompressedKlassPointers) {
  3287         __ movl(tmp, src_klass_addr);
  3288         __ cmpl(tmp, dst_klass_addr);
  3289       } else {
  3290         __ movptr(tmp, src_klass_addr);
  3291         __ cmpptr(tmp, dst_klass_addr);
  3293       __ jcc(Assembler::notEqual, *stub->entry());
  3294     } else {
  3295       // For object arrays, if src is a sub class of dst then we can
  3296       // safely do the copy.
  3297       Label cont, slow;
  3299       __ push(src);
  3300       __ push(dst);
  3302       __ load_klass(src, src);
  3303       __ load_klass(dst, dst);
  3305       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3307       __ push(src);
  3308       __ push(dst);
  3309       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3310       __ pop(dst);
  3311       __ pop(src);
  3313       __ cmpl(src, 0);
  3314       __ jcc(Assembler::notEqual, cont);
  3316       __ bind(slow);
  3317       __ pop(dst);
  3318       __ pop(src);
  3320       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3321       if (copyfunc_addr != NULL) { // use stub if available
  3322         // src is not a sub class of dst so we have to do a
  3323         // per-element check.
  3325         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3326         if ((flags & mask) != mask) {
  3327           // Check that at least both of them object arrays.
  3328           assert(flags & mask, "one of the two should be known to be an object array");
  3330           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3331             __ load_klass(tmp, src);
  3332           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3333             __ load_klass(tmp, dst);
  3335           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3336           Address klass_lh_addr(tmp, lh_offset);
  3337           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3338           __ cmpl(klass_lh_addr, objArray_lh);
  3339           __ jcc(Assembler::notEqual, *stub->entry());
  3342        // Spill because stubs can use any register they like and it's
  3343        // easier to restore just those that we care about.
  3344        store_parameter(dst, 0);
  3345        store_parameter(dst_pos, 1);
  3346        store_parameter(length, 2);
  3347        store_parameter(src_pos, 3);
  3348        store_parameter(src, 4);
  3350 #ifndef _LP64
  3351         __ movptr(tmp, dst_klass_addr);
  3352         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
  3353         __ push(tmp);
  3354         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3355         __ push(tmp);
  3356         __ push(length);
  3357         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3358         __ push(tmp);
  3359         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3360         __ push(tmp);
  3362         __ call_VM_leaf(copyfunc_addr, 5);
  3363 #else
  3364         __ movl2ptr(length, length); //higher 32bits must be null
  3366         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3367         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3368         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3369         assert_different_registers(c_rarg1, dst, length);
  3371         __ mov(c_rarg2, length);
  3372         assert_different_registers(c_rarg2, dst);
  3374 #ifdef _WIN64
  3375         // Allocate abi space for args but be sure to keep stack aligned
  3376         __ subptr(rsp, 6*wordSize);
  3377         __ load_klass(c_rarg3, dst);
  3378         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
  3379         store_parameter(c_rarg3, 4);
  3380         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3381         __ call(RuntimeAddress(copyfunc_addr));
  3382         __ addptr(rsp, 6*wordSize);
  3383 #else
  3384         __ load_klass(c_rarg4, dst);
  3385         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
  3386         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3387         __ call(RuntimeAddress(copyfunc_addr));
  3388 #endif
  3390 #endif
  3392 #ifndef PRODUCT
  3393         if (PrintC1Statistics) {
  3394           Label failed;
  3395           __ testl(rax, rax);
  3396           __ jcc(Assembler::notZero, failed);
  3397           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3398           __ bind(failed);
  3400 #endif
  3402         __ testl(rax, rax);
  3403         __ jcc(Assembler::zero, *stub->continuation());
  3405 #ifndef PRODUCT
  3406         if (PrintC1Statistics) {
  3407           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3409 #endif
  3411         __ mov(tmp, rax);
  3413         __ xorl(tmp, -1);
  3415         // Restore previously spilled arguments
  3416         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3417         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3418         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3419         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3420         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3423         __ subl(length, tmp);
  3424         __ addl(src_pos, tmp);
  3425         __ addl(dst_pos, tmp);
  3428       __ jmp(*stub->entry());
  3430       __ bind(cont);
  3431       __ pop(dst);
  3432       __ pop(src);
  3436 #ifdef ASSERT
  3437   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3438     // Sanity check the known type with the incoming class.  For the
  3439     // primitive case the types must match exactly with src.klass and
  3440     // dst.klass each exactly matching the default type.  For the
  3441     // object array case, if no type check is needed then either the
  3442     // dst type is exactly the expected type and the src type is a
  3443     // subtype which we can't check or src is the same array as dst
  3444     // but not necessarily exactly of type default_type.
  3445     Label known_ok, halt;
  3446     __ mov_metadata(tmp, default_type->constant_encoding());
  3447 #ifdef _LP64
  3448     if (UseCompressedKlassPointers) {
  3449       __ encode_heap_oop(tmp);
  3451 #endif
  3453     if (basic_type != T_OBJECT) {
  3455       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
  3456       else                   __ cmpptr(tmp, dst_klass_addr);
  3457       __ jcc(Assembler::notEqual, halt);
  3458       if (UseCompressedKlassPointers)          __ cmpl(tmp, src_klass_addr);
  3459       else                   __ cmpptr(tmp, src_klass_addr);
  3460       __ jcc(Assembler::equal, known_ok);
  3461     } else {
  3462       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
  3463       else                   __ cmpptr(tmp, dst_klass_addr);
  3464       __ jcc(Assembler::equal, known_ok);
  3465       __ cmpptr(src, dst);
  3466       __ jcc(Assembler::equal, known_ok);
  3468     __ bind(halt);
  3469     __ stop("incorrect type information in arraycopy");
  3470     __ bind(known_ok);
  3472 #endif
  3474 #ifndef PRODUCT
  3475   if (PrintC1Statistics) {
  3476     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3478 #endif
  3480 #ifdef _LP64
  3481   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3482   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3483   assert_different_registers(c_rarg1, length);
  3484   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3485   __ mov(c_rarg2, length);
  3487 #else
  3488   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3489   store_parameter(tmp, 0);
  3490   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3491   store_parameter(tmp, 1);
  3492   store_parameter(length, 2);
  3493 #endif // _LP64
  3495   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3496   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3497   const char *name;
  3498   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3499   __ call_VM_leaf(entry, 0);
  3501   __ bind(*stub->continuation());
  3505 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3506   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3507   Register hdr = op->hdr_opr()->as_register();
  3508   Register lock = op->lock_opr()->as_register();
  3509   if (!UseFastLocking) {
  3510     __ jmp(*op->stub()->entry());
  3511   } else if (op->code() == lir_lock) {
  3512     Register scratch = noreg;
  3513     if (UseBiasedLocking) {
  3514       scratch = op->scratch_opr()->as_register();
  3516     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3517     // add debug info for NullPointerException only if one is possible
  3518     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3519     if (op->info() != NULL) {
  3520       add_debug_info_for_null_check(null_check_offset, op->info());
  3522     // done
  3523   } else if (op->code() == lir_unlock) {
  3524     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3525     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3526   } else {
  3527     Unimplemented();
  3529   __ bind(*op->stub()->continuation());
  3533 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3534   ciMethod* method = op->profiled_method();
  3535   int bci          = op->profiled_bci();
  3536   ciMethod* callee = op->profiled_callee();
  3538   // Update counter for all call types
  3539   ciMethodData* md = method->method_data_or_null();
  3540   assert(md != NULL, "Sanity");
  3541   ciProfileData* data = md->bci_to_data(bci);
  3542   assert(data->is_CounterData(), "need CounterData for calls");
  3543   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3544   Register mdo  = op->mdo()->as_register();
  3545   __ mov_metadata(mdo, md->constant_encoding());
  3546   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3547   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3548   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3549   // Perform additional virtual call profiling for invokevirtual and
  3550   // invokeinterface bytecodes
  3551   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3552       !callee_is_static &&  // required for optimized MH invokes
  3553       C1ProfileVirtualCalls) {
  3554     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3555     Register recv = op->recv()->as_register();
  3556     assert_different_registers(mdo, recv);
  3557     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3558     ciKlass* known_klass = op->known_holder();
  3559     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3560       // We know the type that will be seen at this call site; we can
  3561       // statically update the MethodData* rather than needing to do
  3562       // dynamic tests on the receiver type
  3564       // NOTE: we should probably put a lock around this search to
  3565       // avoid collisions by concurrent compilations
  3566       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3567       uint i;
  3568       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3569         ciKlass* receiver = vc_data->receiver(i);
  3570         if (known_klass->equals(receiver)) {
  3571           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3572           __ addptr(data_addr, DataLayout::counter_increment);
  3573           return;
  3577       // Receiver type not found in profile data; select an empty slot
  3579       // Note that this is less efficient than it should be because it
  3580       // always does a write to the receiver part of the
  3581       // VirtualCallData rather than just the first time
  3582       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3583         ciKlass* receiver = vc_data->receiver(i);
  3584         if (receiver == NULL) {
  3585           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3586           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3587           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3588           __ addptr(data_addr, DataLayout::counter_increment);
  3589           return;
  3592     } else {
  3593       __ load_klass(recv, recv);
  3594       Label update_done;
  3595       type_profile_helper(mdo, md, data, recv, &update_done);
  3596       // Receiver did not match any saved receiver and there is no empty row for it.
  3597       // Increment total counter to indicate polymorphic case.
  3598       __ addptr(counter_addr, DataLayout::counter_increment);
  3600       __ bind(update_done);
  3602   } else {
  3603     // Static call
  3604     __ addptr(counter_addr, DataLayout::counter_increment);
  3608 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3609   Unimplemented();
  3613 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3614   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3618 void LIR_Assembler::align_backward_branch_target() {
  3619   __ align(BytesPerWord);
  3623 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3624   if (left->is_single_cpu()) {
  3625     __ negl(left->as_register());
  3626     move_regs(left->as_register(), dest->as_register());
  3628   } else if (left->is_double_cpu()) {
  3629     Register lo = left->as_register_lo();
  3630 #ifdef _LP64
  3631     Register dst = dest->as_register_lo();
  3632     __ movptr(dst, lo);
  3633     __ negptr(dst);
  3634 #else
  3635     Register hi = left->as_register_hi();
  3636     __ lneg(hi, lo);
  3637     if (dest->as_register_lo() == hi) {
  3638       assert(dest->as_register_hi() != lo, "destroying register");
  3639       move_regs(hi, dest->as_register_hi());
  3640       move_regs(lo, dest->as_register_lo());
  3641     } else {
  3642       move_regs(lo, dest->as_register_lo());
  3643       move_regs(hi, dest->as_register_hi());
  3645 #endif // _LP64
  3647   } else if (dest->is_single_xmm()) {
  3648     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3649       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3651     __ xorps(dest->as_xmm_float_reg(),
  3652              ExternalAddress((address)float_signflip_pool));
  3654   } else if (dest->is_double_xmm()) {
  3655     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3656       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3658     __ xorpd(dest->as_xmm_double_reg(),
  3659              ExternalAddress((address)double_signflip_pool));
  3661   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3662     assert(left->fpu() == 0, "arg must be on TOS");
  3663     assert(dest->fpu() == 0, "dest must be TOS");
  3664     __ fchs();
  3666   } else {
  3667     ShouldNotReachHere();
  3672 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3673   assert(addr->is_address() && dest->is_register(), "check");
  3674   Register reg;
  3675   reg = dest->as_pointer_register();
  3676   __ lea(reg, as_Address(addr->as_address_ptr()));
  3681 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3682   assert(!tmp->is_valid(), "don't need temporary");
  3683   __ call(RuntimeAddress(dest));
  3684   if (info != NULL) {
  3685     add_call_info_here(info);
  3690 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3691   assert(type == T_LONG, "only for volatile long fields");
  3693   if (info != NULL) {
  3694     add_debug_info_for_null_check_here(info);
  3697   if (src->is_double_xmm()) {
  3698     if (dest->is_double_cpu()) {
  3699 #ifdef _LP64
  3700       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3701 #else
  3702       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3703       __ psrlq(src->as_xmm_double_reg(), 32);
  3704       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3705 #endif // _LP64
  3706     } else if (dest->is_double_stack()) {
  3707       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3708     } else if (dest->is_address()) {
  3709       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3710     } else {
  3711       ShouldNotReachHere();
  3714   } else if (dest->is_double_xmm()) {
  3715     if (src->is_double_stack()) {
  3716       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3717     } else if (src->is_address()) {
  3718       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3719     } else {
  3720       ShouldNotReachHere();
  3723   } else if (src->is_double_fpu()) {
  3724     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3725     if (dest->is_double_stack()) {
  3726       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3727     } else if (dest->is_address()) {
  3728       __ fistp_d(as_Address(dest->as_address_ptr()));
  3729     } else {
  3730       ShouldNotReachHere();
  3733   } else if (dest->is_double_fpu()) {
  3734     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3735     if (src->is_double_stack()) {
  3736       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3737     } else if (src->is_address()) {
  3738       __ fild_d(as_Address(src->as_address_ptr()));
  3739     } else {
  3740       ShouldNotReachHere();
  3742   } else {
  3743     ShouldNotReachHere();
  3748 void LIR_Assembler::membar() {
  3749   // QQQ sparc TSO uses this,
  3750   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3753 void LIR_Assembler::membar_acquire() {
  3754   // No x86 machines currently require load fences
  3755   // __ load_fence();
  3758 void LIR_Assembler::membar_release() {
  3759   // No x86 machines currently require store fences
  3760   // __ store_fence();
  3763 void LIR_Assembler::membar_loadload() {
  3764   // no-op
  3765   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3768 void LIR_Assembler::membar_storestore() {
  3769   // no-op
  3770   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3773 void LIR_Assembler::membar_loadstore() {
  3774   // no-op
  3775   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3778 void LIR_Assembler::membar_storeload() {
  3779   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3782 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3783   assert(result_reg->is_register(), "check");
  3784 #ifdef _LP64
  3785   // __ get_thread(result_reg->as_register_lo());
  3786   __ mov(result_reg->as_register(), r15_thread);
  3787 #else
  3788   __ get_thread(result_reg->as_register());
  3789 #endif // _LP64
  3793 void LIR_Assembler::peephole(LIR_List*) {
  3794   // do nothing for now
  3797 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3798   assert(data == dest, "xchg/xadd uses only 2 operands");
  3800   if (data->type() == T_INT) {
  3801     if (code == lir_xadd) {
  3802       if (os::is_MP()) {
  3803         __ lock();
  3805       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
  3806     } else {
  3807       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
  3809   } else if (data->is_oop()) {
  3810     assert (code == lir_xchg, "xadd for oops");
  3811     Register obj = data->as_register();
  3812 #ifdef _LP64
  3813     if (UseCompressedOops) {
  3814       __ encode_heap_oop(obj);
  3815       __ xchgl(obj, as_Address(src->as_address_ptr()));
  3816       __ decode_heap_oop(obj);
  3817     } else {
  3818       __ xchgptr(obj, as_Address(src->as_address_ptr()));
  3820 #else
  3821     __ xchgl(obj, as_Address(src->as_address_ptr()));
  3822 #endif
  3823   } else if (data->type() == T_LONG) {
  3824 #ifdef _LP64
  3825     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
  3826     if (code == lir_xadd) {
  3827       if (os::is_MP()) {
  3828         __ lock();
  3830       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
  3831     } else {
  3832       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
  3834 #else
  3835     ShouldNotReachHere();
  3836 #endif
  3837   } else {
  3838     ShouldNotReachHere();
  3842 #undef __

mercurial