src/share/vm/memory/barrierSet.hpp

Wed, 13 Jan 2010 15:26:39 -0800

author
ysr
date
Wed, 13 Jan 2010 15:26:39 -0800
changeset 1601
7b0e9cba0307
parent 1526
6aa7255741f3
child 1680
6484c4ee11cb
permissions
-rw-r--r--

6896647: card marks can be deferred too long
Summary: Deferred card marks are now flushed during the gc prologue. Parallel[Scavege,OldGC] and SerialGC no longer defer card marks generated by COMPILER2 as a result of ReduceInitialCardMarks. For these cases, introduced a diagnostic option to defer the card marks, only for the purposes of testing and diagnostics. CMS and G1 continue to defer card marks. Potential performance concern related to single-threaded flushing of deferred card marks in the gc prologue will be addressed in the future.
Reviewed-by: never, johnc

     1 /*
     2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // This class provides the interface between a barrier implementation and
    26 // the rest of the system.
    28 class BarrierSet: public CHeapObj {
    29   friend class VMStructs;
    30 public:
    31   enum Name {
    32     ModRef,
    33     CardTableModRef,
    34     CardTableExtension,
    35     G1SATBCT,
    36     G1SATBCTLogging,
    37     Other,
    38     Uninit
    39   };
    41 protected:
    42   int _max_covered_regions;
    43   Name _kind;
    45 public:
    47   BarrierSet() { _kind = Uninit; }
    48   // To get around prohibition on RTTI.
    49   BarrierSet::Name kind() { return _kind; }
    50   virtual bool is_a(BarrierSet::Name bsn) = 0;
    52   // These operations indicate what kind of barriers the BarrierSet has.
    53   virtual bool has_read_ref_barrier() = 0;
    54   virtual bool has_read_prim_barrier() = 0;
    55   virtual bool has_write_ref_barrier() = 0;
    56   virtual bool has_write_ref_pre_barrier() = 0;
    57   virtual bool has_write_prim_barrier() = 0;
    59   // These functions indicate whether a particular access of the given
    60   // kinds requires a barrier.
    61   virtual bool read_ref_needs_barrier(void* field) = 0;
    62   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
    63   virtual bool write_ref_needs_barrier(void* field, oop new_val) = 0;
    64   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
    65                                         juint val1, juint val2) = 0;
    67   // The first four operations provide a direct implementation of the
    68   // barrier set.  An interpreter loop, for example, could call these
    69   // directly, as appropriate.
    71   // Invoke the barrier, if any, necessary when reading the given ref field.
    72   virtual void read_ref_field(void* field) = 0;
    74   // Invoke the barrier, if any, necessary when reading the given primitive
    75   // "field" of "bytes" bytes in "obj".
    76   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
    78   // Invoke the barrier, if any, necessary when writing "new_val" into the
    79   // ref field at "offset" in "obj".
    80   // (For efficiency reasons, this operation is specialized for certain
    81   // barrier types.  Semantically, it should be thought of as a call to the
    82   // virtual "_work" function below, which must implement the barrier.)
    83   // First the pre-write versions...
    84   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
    85 private:
    86   // Keep this private so as to catch violations at build time.
    87   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
    88 protected:
    89   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {};
    90   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
    91 public:
    93   // ...then the post-write version.
    94   inline void write_ref_field(void* field, oop new_val);
    95 protected:
    96   virtual void write_ref_field_work(void* field, oop new_val) = 0;
    97 public:
    99   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
   100   // value(s) "val1" (and "val2") into the primitive "field".
   101   virtual void write_prim_field(HeapWord* field, size_t bytes,
   102                                 juint val1, juint val2) = 0;
   104   // Operations on arrays, or general regions (e.g., for "clone") may be
   105   // optimized by some barriers.
   107   // The first six operations tell whether such an optimization exists for
   108   // the particular barrier.
   109   virtual bool has_read_ref_array_opt() = 0;
   110   virtual bool has_read_prim_array_opt() = 0;
   111   virtual bool has_write_ref_array_pre_opt() { return true; }
   112   virtual bool has_write_ref_array_opt() = 0;
   113   virtual bool has_write_prim_array_opt() = 0;
   115   virtual bool has_read_region_opt() = 0;
   116   virtual bool has_write_region_opt() = 0;
   118   // These operations should assert false unless the correponding operation
   119   // above returns true.  Otherwise, they should perform an appropriate
   120   // barrier for an array whose elements are all in the given memory region.
   121   virtual void read_ref_array(MemRegion mr) = 0;
   122   virtual void read_prim_array(MemRegion mr) = 0;
   124   // Below length is the # array elements being written
   125   virtual void write_ref_array_pre(      oop* dst, int length) {}
   126   virtual void write_ref_array_pre(narrowOop* dst, int length) {}
   127   // Below MemRegion mr is expected to be HeapWord-aligned
   128   inline void write_ref_array(MemRegion mr);
   129   // Below count is the # array elements being written, starting
   130   // at the address "start", which may not necessarily be HeapWord-aligned
   131   inline void write_ref_array(HeapWord* start, size_t count);
   133   // Static versions, suitable for calling from generated code;
   134   // count is # array elements being written, starting with "start",
   135   // which may not necessarily be HeapWord-aligned.
   136   static void static_write_ref_array_pre(HeapWord* start, size_t count);
   137   static void static_write_ref_array_post(HeapWord* start, size_t count);
   139 protected:
   140   virtual void write_ref_array_work(MemRegion mr) = 0;
   141 public:
   142   virtual void write_prim_array(MemRegion mr) = 0;
   144   virtual void read_region(MemRegion mr) = 0;
   146   // (For efficiency reasons, this operation is specialized for certain
   147   // barrier types.  Semantically, it should be thought of as a call to the
   148   // virtual "_work" function below, which must implement the barrier.)
   149   inline void write_region(MemRegion mr);
   150 protected:
   151   virtual void write_region_work(MemRegion mr) = 0;
   152 public:
   154   // Some barrier sets create tables whose elements correspond to parts of
   155   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
   156   // normally reserve space for such tables, and commit parts of the table
   157   // "covering" parts of the heap that are committed.  The constructor is
   158   // passed the maximum number of independently committable subregions to
   159   // be covered, and the "resize_covoered_region" function allows the
   160   // sub-parts of the heap to inform the barrier set of changes of their
   161   // sizes.
   162   BarrierSet(int max_covered_regions) :
   163     _max_covered_regions(max_covered_regions) {}
   165   // Inform the BarrierSet that the the covered heap region that starts
   166   // with "base" has been changed to have the given size (possibly from 0,
   167   // for initialization.)
   168   virtual void resize_covered_region(MemRegion new_region) = 0;
   170   // If the barrier set imposes any alignment restrictions on boundaries
   171   // within the heap, this function tells whether they are met.
   172   virtual bool is_aligned(HeapWord* addr) = 0;
   174 };

mercurial