src/share/vm/memory/barrierSet.hpp

Wed, 13 Jan 2010 15:26:39 -0800

author
ysr
date
Wed, 13 Jan 2010 15:26:39 -0800
changeset 1601
7b0e9cba0307
parent 1526
6aa7255741f3
child 1680
6484c4ee11cb
permissions
-rw-r--r--

6896647: card marks can be deferred too long
Summary: Deferred card marks are now flushed during the gc prologue. Parallel[Scavege,OldGC] and SerialGC no longer defer card marks generated by COMPILER2 as a result of ReduceInitialCardMarks. For these cases, introduced a diagnostic option to defer the card marks, only for the purposes of testing and diagnostics. CMS and G1 continue to defer card marks. Potential performance concern related to single-threaded flushing of deferred card marks in the gc prologue will be addressed in the future.
Reviewed-by: never, johnc

duke@435 1 /*
xdono@631 2 * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // This class provides the interface between a barrier implementation and
duke@435 26 // the rest of the system.
duke@435 27
duke@435 28 class BarrierSet: public CHeapObj {
duke@435 29 friend class VMStructs;
duke@435 30 public:
duke@435 31 enum Name {
duke@435 32 ModRef,
duke@435 33 CardTableModRef,
duke@435 34 CardTableExtension,
ysr@777 35 G1SATBCT,
ysr@777 36 G1SATBCTLogging,
duke@435 37 Other,
duke@435 38 Uninit
duke@435 39 };
duke@435 40
duke@435 41 protected:
duke@435 42 int _max_covered_regions;
duke@435 43 Name _kind;
duke@435 44
duke@435 45 public:
duke@435 46
ysr@777 47 BarrierSet() { _kind = Uninit; }
duke@435 48 // To get around prohibition on RTTI.
ysr@777 49 BarrierSet::Name kind() { return _kind; }
duke@435 50 virtual bool is_a(BarrierSet::Name bsn) = 0;
duke@435 51
duke@435 52 // These operations indicate what kind of barriers the BarrierSet has.
duke@435 53 virtual bool has_read_ref_barrier() = 0;
duke@435 54 virtual bool has_read_prim_barrier() = 0;
duke@435 55 virtual bool has_write_ref_barrier() = 0;
ysr@777 56 virtual bool has_write_ref_pre_barrier() = 0;
duke@435 57 virtual bool has_write_prim_barrier() = 0;
duke@435 58
duke@435 59 // These functions indicate whether a particular access of the given
duke@435 60 // kinds requires a barrier.
coleenp@548 61 virtual bool read_ref_needs_barrier(void* field) = 0;
duke@435 62 virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
coleenp@548 63 virtual bool write_ref_needs_barrier(void* field, oop new_val) = 0;
ysr@777 64 virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
ysr@777 65 juint val1, juint val2) = 0;
duke@435 66
duke@435 67 // The first four operations provide a direct implementation of the
duke@435 68 // barrier set. An interpreter loop, for example, could call these
duke@435 69 // directly, as appropriate.
duke@435 70
duke@435 71 // Invoke the barrier, if any, necessary when reading the given ref field.
coleenp@548 72 virtual void read_ref_field(void* field) = 0;
duke@435 73
duke@435 74 // Invoke the barrier, if any, necessary when reading the given primitive
duke@435 75 // "field" of "bytes" bytes in "obj".
duke@435 76 virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
duke@435 77
duke@435 78 // Invoke the barrier, if any, necessary when writing "new_val" into the
duke@435 79 // ref field at "offset" in "obj".
duke@435 80 // (For efficiency reasons, this operation is specialized for certain
duke@435 81 // barrier types. Semantically, it should be thought of as a call to the
duke@435 82 // virtual "_work" function below, which must implement the barrier.)
ysr@777 83 // First the pre-write versions...
ysr@1280 84 template <class T> inline void write_ref_field_pre(T* field, oop new_val);
ysr@1280 85 private:
ysr@1280 86 // Keep this private so as to catch violations at build time.
ysr@1280 87 virtual void write_ref_field_pre_work( void* field, oop new_val) { guarantee(false, "Not needed"); };
ysr@777 88 protected:
ysr@1280 89 virtual void write_ref_field_pre_work( oop* field, oop new_val) {};
ysr@1280 90 virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
ysr@777 91 public:
ysr@777 92
ysr@777 93 // ...then the post-write version.
coleenp@548 94 inline void write_ref_field(void* field, oop new_val);
duke@435 95 protected:
coleenp@548 96 virtual void write_ref_field_work(void* field, oop new_val) = 0;
duke@435 97 public:
duke@435 98
duke@435 99 // Invoke the barrier, if any, necessary when writing the "bytes"-byte
duke@435 100 // value(s) "val1" (and "val2") into the primitive "field".
duke@435 101 virtual void write_prim_field(HeapWord* field, size_t bytes,
duke@435 102 juint val1, juint val2) = 0;
duke@435 103
duke@435 104 // Operations on arrays, or general regions (e.g., for "clone") may be
duke@435 105 // optimized by some barriers.
duke@435 106
duke@435 107 // The first six operations tell whether such an optimization exists for
duke@435 108 // the particular barrier.
duke@435 109 virtual bool has_read_ref_array_opt() = 0;
duke@435 110 virtual bool has_read_prim_array_opt() = 0;
ysr@777 111 virtual bool has_write_ref_array_pre_opt() { return true; }
duke@435 112 virtual bool has_write_ref_array_opt() = 0;
duke@435 113 virtual bool has_write_prim_array_opt() = 0;
duke@435 114
duke@435 115 virtual bool has_read_region_opt() = 0;
duke@435 116 virtual bool has_write_region_opt() = 0;
duke@435 117
duke@435 118 // These operations should assert false unless the correponding operation
duke@435 119 // above returns true. Otherwise, they should perform an appropriate
duke@435 120 // barrier for an array whose elements are all in the given memory region.
duke@435 121 virtual void read_ref_array(MemRegion mr) = 0;
duke@435 122 virtual void read_prim_array(MemRegion mr) = 0;
duke@435 123
ysr@1526 124 // Below length is the # array elements being written
ysr@1280 125 virtual void write_ref_array_pre( oop* dst, int length) {}
ysr@1280 126 virtual void write_ref_array_pre(narrowOop* dst, int length) {}
ysr@1526 127 // Below MemRegion mr is expected to be HeapWord-aligned
duke@435 128 inline void write_ref_array(MemRegion mr);
ysr@1526 129 // Below count is the # array elements being written, starting
ysr@1526 130 // at the address "start", which may not necessarily be HeapWord-aligned
ysr@1526 131 inline void write_ref_array(HeapWord* start, size_t count);
ysr@777 132
ysr@1526 133 // Static versions, suitable for calling from generated code;
ysr@1526 134 // count is # array elements being written, starting with "start",
ysr@1526 135 // which may not necessarily be HeapWord-aligned.
ysr@777 136 static void static_write_ref_array_pre(HeapWord* start, size_t count);
ysr@777 137 static void static_write_ref_array_post(HeapWord* start, size_t count);
ysr@777 138
duke@435 139 protected:
duke@435 140 virtual void write_ref_array_work(MemRegion mr) = 0;
duke@435 141 public:
duke@435 142 virtual void write_prim_array(MemRegion mr) = 0;
duke@435 143
duke@435 144 virtual void read_region(MemRegion mr) = 0;
duke@435 145
duke@435 146 // (For efficiency reasons, this operation is specialized for certain
duke@435 147 // barrier types. Semantically, it should be thought of as a call to the
duke@435 148 // virtual "_work" function below, which must implement the barrier.)
duke@435 149 inline void write_region(MemRegion mr);
duke@435 150 protected:
duke@435 151 virtual void write_region_work(MemRegion mr) = 0;
duke@435 152 public:
duke@435 153
duke@435 154 // Some barrier sets create tables whose elements correspond to parts of
duke@435 155 // the heap; the CardTableModRefBS is an example. Such barrier sets will
duke@435 156 // normally reserve space for such tables, and commit parts of the table
duke@435 157 // "covering" parts of the heap that are committed. The constructor is
duke@435 158 // passed the maximum number of independently committable subregions to
duke@435 159 // be covered, and the "resize_covoered_region" function allows the
duke@435 160 // sub-parts of the heap to inform the barrier set of changes of their
duke@435 161 // sizes.
duke@435 162 BarrierSet(int max_covered_regions) :
duke@435 163 _max_covered_regions(max_covered_regions) {}
duke@435 164
duke@435 165 // Inform the BarrierSet that the the covered heap region that starts
duke@435 166 // with "base" has been changed to have the given size (possibly from 0,
duke@435 167 // for initialization.)
duke@435 168 virtual void resize_covered_region(MemRegion new_region) = 0;
duke@435 169
duke@435 170 // If the barrier set imposes any alignment restrictions on boundaries
duke@435 171 // within the heap, this function tells whether they are met.
duke@435 172 virtual bool is_aligned(HeapWord* addr) = 0;
duke@435 173
duke@435 174 };

mercurial