src/share/vm/memory/defNewGeneration.cpp

Tue, 23 Jul 2013 09:49:11 -0700

author
jmasa
date
Tue, 23 Jul 2013 09:49:11 -0700
changeset 5459
7b06ae405d7b
parent 5369
71180a6e5080
child 5516
330dfb0476f4
permissions
-rw-r--r--

6990419: CMS Remaining work for 6572569: consistently skewed work distribution in (long) re-mark pauses
Reviewed-by: rasbold, tschatzl, jmasa
Contributed-by: yamauchi@google.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/gcHeapSummary.hpp"
    29 #include "gc_implementation/shared/gcTimer.hpp"
    30 #include "gc_implementation/shared/gcTraceTime.hpp"
    31 #include "gc_implementation/shared/gcTrace.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/defNewGeneration.inline.hpp"
    34 #include "memory/gcLocker.inline.hpp"
    35 #include "memory/genCollectedHeap.hpp"
    36 #include "memory/genOopClosures.inline.hpp"
    37 #include "memory/genRemSet.hpp"
    38 #include "memory/generationSpec.hpp"
    39 #include "memory/iterator.hpp"
    40 #include "memory/referencePolicy.hpp"
    41 #include "memory/space.inline.hpp"
    42 #include "oops/instanceRefKlass.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/thread.inline.hpp"
    46 #include "utilities/copy.hpp"
    47 #include "utilities/stack.inline.hpp"
    49 //
    50 // DefNewGeneration functions.
    52 // Methods of protected closure types.
    54 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    55   assert(g->level() == 0, "Optimized for youngest gen.");
    56 }
    57 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    58   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    59 }
    61 DefNewGeneration::KeepAliveClosure::
    62 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    63   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    64   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    65   _rs = (CardTableRS*)rs;
    66 }
    68 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    69 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    72 DefNewGeneration::FastKeepAliveClosure::
    73 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    74   DefNewGeneration::KeepAliveClosure(cl) {
    75   _boundary = g->reserved().end();
    76 }
    78 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    79 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    81 DefNewGeneration::EvacuateFollowersClosure::
    82 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    83                          ScanClosure* cur, ScanClosure* older) :
    84   _gch(gch), _level(level),
    85   _scan_cur_or_nonheap(cur), _scan_older(older)
    86 {}
    88 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    89   do {
    90     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    91                                        _scan_older);
    92   } while (!_gch->no_allocs_since_save_marks(_level));
    93 }
    95 DefNewGeneration::FastEvacuateFollowersClosure::
    96 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    97                              DefNewGeneration* gen,
    98                              FastScanClosure* cur, FastScanClosure* older) :
    99   _gch(gch), _level(level), _gen(gen),
   100   _scan_cur_or_nonheap(cur), _scan_older(older)
   101 {}
   103 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   104   do {
   105     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   106                                        _scan_older);
   107   } while (!_gch->no_allocs_since_save_marks(_level));
   108   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   109 }
   111 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   112     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   113 {
   114   assert(_g->level() == 0, "Optimized for youngest generation");
   115   _boundary = _g->reserved().end();
   116 }
   118 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   119 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   121 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   122     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   123 {
   124   assert(_g->level() == 0, "Optimized for youngest generation");
   125   _boundary = _g->reserved().end();
   126 }
   128 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   129 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   131 void KlassScanClosure::do_klass(Klass* klass) {
   132 #ifndef PRODUCT
   133   if (TraceScavenge) {
   134     ResourceMark rm;
   135     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   136                            klass,
   137                            klass->external_name(),
   138                            klass->has_modified_oops() ? "true" : "false");
   139   }
   140 #endif
   142   // If the klass has not been dirtied we know that there's
   143   // no references into  the young gen and we can skip it.
   144   if (klass->has_modified_oops()) {
   145     if (_accumulate_modified_oops) {
   146       klass->accumulate_modified_oops();
   147     }
   149     // Clear this state since we're going to scavenge all the metadata.
   150     klass->clear_modified_oops();
   152     // Tell the closure which Klass is being scanned so that it can be dirtied
   153     // if oops are left pointing into the young gen.
   154     _scavenge_closure->set_scanned_klass(klass);
   156     klass->oops_do(_scavenge_closure);
   158     _scavenge_closure->set_scanned_klass(NULL);
   159   }
   160 }
   162 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   163   _g(g)
   164 {
   165   assert(_g->level() == 0, "Optimized for youngest generation");
   166   _boundary = _g->reserved().end();
   167 }
   169 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   170 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   172 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   173 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   175 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   176                                    KlassRemSet* klass_rem_set)
   177     : _scavenge_closure(scavenge_closure),
   178       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   181 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   182                                    size_t initial_size,
   183                                    int level,
   184                                    const char* policy)
   185   : Generation(rs, initial_size, level),
   186     _promo_failure_drain_in_progress(false),
   187     _should_allocate_from_space(false)
   188 {
   189   MemRegion cmr((HeapWord*)_virtual_space.low(),
   190                 (HeapWord*)_virtual_space.high());
   191   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   193   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   194     _eden_space = new ConcEdenSpace(this);
   195   } else {
   196     _eden_space = new EdenSpace(this);
   197   }
   198   _from_space = new ContiguousSpace();
   199   _to_space   = new ContiguousSpace();
   201   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   202     vm_exit_during_initialization("Could not allocate a new gen space");
   204   // Compute the maximum eden and survivor space sizes. These sizes
   205   // are computed assuming the entire reserved space is committed.
   206   // These values are exported as performance counters.
   207   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   208   uintx size = _virtual_space.reserved_size();
   209   _max_survivor_size = compute_survivor_size(size, alignment);
   210   _max_eden_size = size - (2*_max_survivor_size);
   212   // allocate the performance counters
   214   // Generation counters -- generation 0, 3 subspaces
   215   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   216   _gc_counters = new CollectorCounters(policy, 0);
   218   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   219                                       _gen_counters);
   220   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   221                                       _gen_counters);
   222   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   223                                     _gen_counters);
   225   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   226   update_counters();
   227   _next_gen = NULL;
   228   _tenuring_threshold = MaxTenuringThreshold;
   229   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   231   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
   232 }
   234 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   235                                                 bool clear_space,
   236                                                 bool mangle_space) {
   237   uintx alignment =
   238     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   240   // If the spaces are being cleared (only done at heap initialization
   241   // currently), the survivor spaces need not be empty.
   242   // Otherwise, no care is taken for used areas in the survivor spaces
   243   // so check.
   244   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   245     "Initialization of the survivor spaces assumes these are empty");
   247   // Compute sizes
   248   uintx size = _virtual_space.committed_size();
   249   uintx survivor_size = compute_survivor_size(size, alignment);
   250   uintx eden_size = size - (2*survivor_size);
   251   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   253   if (eden_size < minimum_eden_size) {
   254     // May happen due to 64Kb rounding, if so adjust eden size back up
   255     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   256     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   257     uintx unaligned_survivor_size =
   258       align_size_down(maximum_survivor_size, alignment);
   259     survivor_size = MAX2(unaligned_survivor_size, alignment);
   260     eden_size = size - (2*survivor_size);
   261     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   262     assert(eden_size >= minimum_eden_size, "just checking");
   263   }
   265   char *eden_start = _virtual_space.low();
   266   char *from_start = eden_start + eden_size;
   267   char *to_start   = from_start + survivor_size;
   268   char *to_end     = to_start   + survivor_size;
   270   assert(to_end == _virtual_space.high(), "just checking");
   271   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   272   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   273   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   275   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   276   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   277   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   279   // A minimum eden size implies that there is a part of eden that
   280   // is being used and that affects the initialization of any
   281   // newly formed eden.
   282   bool live_in_eden = minimum_eden_size > 0;
   284   // If not clearing the spaces, do some checking to verify that
   285   // the space are already mangled.
   286   if (!clear_space) {
   287     // Must check mangling before the spaces are reshaped.  Otherwise,
   288     // the bottom or end of one space may have moved into another
   289     // a failure of the check may not correctly indicate which space
   290     // is not properly mangled.
   291     if (ZapUnusedHeapArea) {
   292       HeapWord* limit = (HeapWord*) _virtual_space.high();
   293       eden()->check_mangled_unused_area(limit);
   294       from()->check_mangled_unused_area(limit);
   295         to()->check_mangled_unused_area(limit);
   296     }
   297   }
   299   // Reset the spaces for their new regions.
   300   eden()->initialize(edenMR,
   301                      clear_space && !live_in_eden,
   302                      SpaceDecorator::Mangle);
   303   // If clear_space and live_in_eden, we will not have cleared any
   304   // portion of eden above its top. This can cause newly
   305   // expanded space not to be mangled if using ZapUnusedHeapArea.
   306   // We explicitly do such mangling here.
   307   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   308     eden()->mangle_unused_area();
   309   }
   310   from()->initialize(fromMR, clear_space, mangle_space);
   311   to()->initialize(toMR, clear_space, mangle_space);
   313   // Set next compaction spaces.
   314   eden()->set_next_compaction_space(from());
   315   // The to-space is normally empty before a compaction so need
   316   // not be considered.  The exception is during promotion
   317   // failure handling when to-space can contain live objects.
   318   from()->set_next_compaction_space(NULL);
   319 }
   321 void DefNewGeneration::swap_spaces() {
   322   ContiguousSpace* s = from();
   323   _from_space        = to();
   324   _to_space          = s;
   325   eden()->set_next_compaction_space(from());
   326   // The to-space is normally empty before a compaction so need
   327   // not be considered.  The exception is during promotion
   328   // failure handling when to-space can contain live objects.
   329   from()->set_next_compaction_space(NULL);
   331   if (UsePerfData) {
   332     CSpaceCounters* c = _from_counters;
   333     _from_counters = _to_counters;
   334     _to_counters = c;
   335   }
   336 }
   338 bool DefNewGeneration::expand(size_t bytes) {
   339   MutexLocker x(ExpandHeap_lock);
   340   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   341   bool success = _virtual_space.expand_by(bytes);
   342   if (success && ZapUnusedHeapArea) {
   343     // Mangle newly committed space immediately because it
   344     // can be done here more simply that after the new
   345     // spaces have been computed.
   346     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   347     MemRegion mangle_region(prev_high, new_high);
   348     SpaceMangler::mangle_region(mangle_region);
   349   }
   351   // Do not attempt an expand-to-the reserve size.  The
   352   // request should properly observe the maximum size of
   353   // the generation so an expand-to-reserve should be
   354   // unnecessary.  Also a second call to expand-to-reserve
   355   // value potentially can cause an undue expansion.
   356   // For example if the first expand fail for unknown reasons,
   357   // but the second succeeds and expands the heap to its maximum
   358   // value.
   359   if (GC_locker::is_active()) {
   360     if (PrintGC && Verbose) {
   361       gclog_or_tty->print_cr("Garbage collection disabled, "
   362         "expanded heap instead");
   363     }
   364   }
   366   return success;
   367 }
   370 void DefNewGeneration::compute_new_size() {
   371   // This is called after a gc that includes the following generation
   372   // (which is required to exist.)  So from-space will normally be empty.
   373   // Note that we check both spaces, since if scavenge failed they revert roles.
   374   // If not we bail out (otherwise we would have to relocate the objects)
   375   if (!from()->is_empty() || !to()->is_empty()) {
   376     return;
   377   }
   379   int next_level = level() + 1;
   380   GenCollectedHeap* gch = GenCollectedHeap::heap();
   381   assert(next_level < gch->_n_gens,
   382          "DefNewGeneration cannot be an oldest gen");
   384   Generation* next_gen = gch->_gens[next_level];
   385   size_t old_size = next_gen->capacity();
   386   size_t new_size_before = _virtual_space.committed_size();
   387   size_t min_new_size = spec()->init_size();
   388   size_t max_new_size = reserved().byte_size();
   389   assert(min_new_size <= new_size_before &&
   390          new_size_before <= max_new_size,
   391          "just checking");
   392   // All space sizes must be multiples of Generation::GenGrain.
   393   size_t alignment = Generation::GenGrain;
   395   // Compute desired new generation size based on NewRatio and
   396   // NewSizeThreadIncrease
   397   size_t desired_new_size = old_size/NewRatio;
   398   int threads_count = Threads::number_of_non_daemon_threads();
   399   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   400   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   402   // Adjust new generation size
   403   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   404   assert(desired_new_size <= max_new_size, "just checking");
   406   bool changed = false;
   407   if (desired_new_size > new_size_before) {
   408     size_t change = desired_new_size - new_size_before;
   409     assert(change % alignment == 0, "just checking");
   410     if (expand(change)) {
   411        changed = true;
   412     }
   413     // If the heap failed to expand to the desired size,
   414     // "changed" will be false.  If the expansion failed
   415     // (and at this point it was expected to succeed),
   416     // ignore the failure (leaving "changed" as false).
   417   }
   418   if (desired_new_size < new_size_before && eden()->is_empty()) {
   419     // bail out of shrinking if objects in eden
   420     size_t change = new_size_before - desired_new_size;
   421     assert(change % alignment == 0, "just checking");
   422     _virtual_space.shrink_by(change);
   423     changed = true;
   424   }
   425   if (changed) {
   426     // The spaces have already been mangled at this point but
   427     // may not have been cleared (set top = bottom) and should be.
   428     // Mangling was done when the heap was being expanded.
   429     compute_space_boundaries(eden()->used(),
   430                              SpaceDecorator::Clear,
   431                              SpaceDecorator::DontMangle);
   432     MemRegion cmr((HeapWord*)_virtual_space.low(),
   433                   (HeapWord*)_virtual_space.high());
   434     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   435     if (Verbose && PrintGC) {
   436       size_t new_size_after  = _virtual_space.committed_size();
   437       size_t eden_size_after = eden()->capacity();
   438       size_t survivor_size_after = from()->capacity();
   439       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   440         SIZE_FORMAT "K [eden="
   441         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   442         new_size_before/K, new_size_after/K,
   443         eden_size_after/K, survivor_size_after/K);
   444       if (WizardMode) {
   445         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   446           thread_increase_size/K, threads_count);
   447       }
   448       gclog_or_tty->cr();
   449     }
   450   }
   451 }
   453 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   454   assert(false, "NYI -- are you sure you want to call this?");
   455 }
   458 size_t DefNewGeneration::capacity() const {
   459   return eden()->capacity()
   460        + from()->capacity();  // to() is only used during scavenge
   461 }
   464 size_t DefNewGeneration::used() const {
   465   return eden()->used()
   466        + from()->used();      // to() is only used during scavenge
   467 }
   470 size_t DefNewGeneration::free() const {
   471   return eden()->free()
   472        + from()->free();      // to() is only used during scavenge
   473 }
   475 size_t DefNewGeneration::max_capacity() const {
   476   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   477   const size_t reserved_bytes = reserved().byte_size();
   478   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   479 }
   481 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   482   return eden()->free();
   483 }
   485 size_t DefNewGeneration::capacity_before_gc() const {
   486   return eden()->capacity();
   487 }
   489 size_t DefNewGeneration::contiguous_available() const {
   490   return eden()->free();
   491 }
   494 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   495 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   497 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   498   eden()->object_iterate(blk);
   499   from()->object_iterate(blk);
   500 }
   503 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   504                                      bool usedOnly) {
   505   blk->do_space(eden());
   506   blk->do_space(from());
   507   blk->do_space(to());
   508 }
   510 // The last collection bailed out, we are running out of heap space,
   511 // so we try to allocate the from-space, too.
   512 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   513   HeapWord* result = NULL;
   514   if (Verbose && PrintGCDetails) {
   515     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   516                         "  will_fail: %s"
   517                         "  heap_lock: %s"
   518                         "  free: " SIZE_FORMAT,
   519                         size,
   520                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   521                           "true" : "false",
   522                         Heap_lock->is_locked() ? "locked" : "unlocked",
   523                         from()->free());
   524   }
   525   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   526     if (Heap_lock->owned_by_self() ||
   527         (SafepointSynchronize::is_at_safepoint() &&
   528          Thread::current()->is_VM_thread())) {
   529       // If the Heap_lock is not locked by this thread, this will be called
   530       // again later with the Heap_lock held.
   531       result = from()->allocate(size);
   532     } else if (PrintGC && Verbose) {
   533       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   534     }
   535   } else if (PrintGC && Verbose) {
   536     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   537   }
   538   if (PrintGC && Verbose) {
   539     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   540   }
   541   return result;
   542 }
   544 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   545                                                 bool   is_tlab,
   546                                                 bool   parallel) {
   547   // We don't attempt to expand the young generation (but perhaps we should.)
   548   return allocate(size, is_tlab);
   549 }
   551 void DefNewGeneration::adjust_desired_tenuring_threshold() {
   552   // Set the desired survivor size to half the real survivor space
   553   _tenuring_threshold =
   554     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   555 }
   557 void DefNewGeneration::collect(bool   full,
   558                                bool   clear_all_soft_refs,
   559                                size_t size,
   560                                bool   is_tlab) {
   561   assert(full || size > 0, "otherwise we don't want to collect");
   563   GenCollectedHeap* gch = GenCollectedHeap::heap();
   565   _gc_timer->register_gc_start(os::elapsed_counter());
   566   DefNewTracer gc_tracer;
   567   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
   569   _next_gen = gch->next_gen(this);
   570   assert(_next_gen != NULL,
   571     "This must be the youngest gen, and not the only gen");
   573   // If the next generation is too full to accommodate promotion
   574   // from this generation, pass on collection; let the next generation
   575   // do it.
   576   if (!collection_attempt_is_safe()) {
   577     if (Verbose && PrintGCDetails) {
   578       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   579     }
   580     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   581     return;
   582   }
   583   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   585   init_assuming_no_promotion_failure();
   587   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
   588   // Capture heap used before collection (for printing).
   589   size_t gch_prev_used = gch->used();
   591   gch->trace_heap_before_gc(&gc_tracer);
   593   SpecializationStats::clear();
   595   // These can be shared for all code paths
   596   IsAliveClosure is_alive(this);
   597   ScanWeakRefClosure scan_weak_ref(this);
   599   age_table()->clear();
   600   to()->clear(SpaceDecorator::Mangle);
   602   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   604   assert(gch->no_allocs_since_save_marks(0),
   605          "save marks have not been newly set.");
   607   // Not very pretty.
   608   CollectorPolicy* cp = gch->collector_policy();
   610   FastScanClosure fsc_with_no_gc_barrier(this, false);
   611   FastScanClosure fsc_with_gc_barrier(this, true);
   613   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   614                                       gch->rem_set()->klass_rem_set());
   616   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   617   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   618                                                   &fsc_with_no_gc_barrier,
   619                                                   &fsc_with_gc_barrier);
   621   assert(gch->no_allocs_since_save_marks(0),
   622          "save marks have not been newly set.");
   624   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
   626   gch->gen_process_strong_roots(_level,
   627                                 true,  // Process younger gens, if any,
   628                                        // as strong roots.
   629                                 true,  // activate StrongRootsScope
   630                                 true,  // is scavenging
   631                                 SharedHeap::ScanningOption(so),
   632                                 &fsc_with_no_gc_barrier,
   633                                 true,   // walk *all* scavengable nmethods
   634                                 &fsc_with_gc_barrier,
   635                                 &klass_scan_closure);
   637   // "evacuate followers".
   638   evacuate_followers.do_void();
   640   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   641   ReferenceProcessor* rp = ref_processor();
   642   rp->setup_policy(clear_all_soft_refs);
   643   const ReferenceProcessorStats& stats =
   644   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   645                                     NULL, _gc_timer);
   646   gc_tracer.report_gc_reference_stats(stats);
   648   if (!_promotion_failed) {
   649     // Swap the survivor spaces.
   650     eden()->clear(SpaceDecorator::Mangle);
   651     from()->clear(SpaceDecorator::Mangle);
   652     if (ZapUnusedHeapArea) {
   653       // This is now done here because of the piece-meal mangling which
   654       // can check for valid mangling at intermediate points in the
   655       // collection(s).  When a minor collection fails to collect
   656       // sufficient space resizing of the young generation can occur
   657       // an redistribute the spaces in the young generation.  Mangle
   658       // here so that unzapped regions don't get distributed to
   659       // other spaces.
   660       to()->mangle_unused_area();
   661     }
   662     swap_spaces();
   664     assert(to()->is_empty(), "to space should be empty now");
   666     adjust_desired_tenuring_threshold();
   668     // A successful scavenge should restart the GC time limit count which is
   669     // for full GC's.
   670     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   671     size_policy->reset_gc_overhead_limit_count();
   672     if (PrintGC && !PrintGCDetails) {
   673       gch->print_heap_change(gch_prev_used);
   674     }
   675     assert(!gch->incremental_collection_failed(), "Should be clear");
   676   } else {
   677     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   678     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   680     remove_forwarding_pointers();
   681     if (PrintGCDetails) {
   682       gclog_or_tty->print(" (promotion failed) ");
   683     }
   684     // Add to-space to the list of space to compact
   685     // when a promotion failure has occurred.  In that
   686     // case there can be live objects in to-space
   687     // as a result of a partial evacuation of eden
   688     // and from-space.
   689     swap_spaces();   // For uniformity wrt ParNewGeneration.
   690     from()->set_next_compaction_space(to());
   691     gch->set_incremental_collection_failed();
   693     // Inform the next generation that a promotion failure occurred.
   694     _next_gen->promotion_failure_occurred();
   695     gc_tracer.report_promotion_failed(_promotion_failed_info);
   697     // Reset the PromotionFailureALot counters.
   698     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   699   }
   700   // set new iteration safe limit for the survivor spaces
   701   from()->set_concurrent_iteration_safe_limit(from()->top());
   702   to()->set_concurrent_iteration_safe_limit(to()->top());
   703   SpecializationStats::print();
   705   // We need to use a monotonically non-decreasing time in ms
   706   // or we will see time-warp warnings and os::javaTimeMillis()
   707   // does not guarantee monotonicity.
   708   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   709   update_time_of_last_gc(now);
   711   gch->trace_heap_after_gc(&gc_tracer);
   712   gc_tracer.report_tenuring_threshold(tenuring_threshold());
   714   _gc_timer->register_gc_end(os::elapsed_counter());
   716   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
   717 }
   719 class RemoveForwardPointerClosure: public ObjectClosure {
   720 public:
   721   void do_object(oop obj) {
   722     obj->init_mark();
   723   }
   724 };
   726 void DefNewGeneration::init_assuming_no_promotion_failure() {
   727   _promotion_failed = false;
   728   _promotion_failed_info.reset();
   729   from()->set_next_compaction_space(NULL);
   730 }
   732 void DefNewGeneration::remove_forwarding_pointers() {
   733   RemoveForwardPointerClosure rspc;
   734   eden()->object_iterate(&rspc);
   735   from()->object_iterate(&rspc);
   737   // Now restore saved marks, if any.
   738   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   739          "should be the same");
   740   while (!_objs_with_preserved_marks.is_empty()) {
   741     oop obj   = _objs_with_preserved_marks.pop();
   742     markOop m = _preserved_marks_of_objs.pop();
   743     obj->set_mark(m);
   744   }
   745   _objs_with_preserved_marks.clear(true);
   746   _preserved_marks_of_objs.clear(true);
   747 }
   749 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   750   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
   751          "Oversaving!");
   752   _objs_with_preserved_marks.push(obj);
   753   _preserved_marks_of_objs.push(m);
   754 }
   756 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   757   if (m->must_be_preserved_for_promotion_failure(obj)) {
   758     preserve_mark(obj, m);
   759   }
   760 }
   762 void DefNewGeneration::handle_promotion_failure(oop old) {
   763   if (PrintPromotionFailure && !_promotion_failed) {
   764     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   765                         old->size());
   766   }
   767   _promotion_failed = true;
   768   _promotion_failed_info.register_copy_failure(old->size());
   769   preserve_mark_if_necessary(old, old->mark());
   770   // forward to self
   771   old->forward_to(old);
   773   _promo_failure_scan_stack.push(old);
   775   if (!_promo_failure_drain_in_progress) {
   776     // prevent recursion in copy_to_survivor_space()
   777     _promo_failure_drain_in_progress = true;
   778     drain_promo_failure_scan_stack();
   779     _promo_failure_drain_in_progress = false;
   780   }
   781 }
   783 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   784   assert(is_in_reserved(old) && !old->is_forwarded(),
   785          "shouldn't be scavenging this oop");
   786   size_t s = old->size();
   787   oop obj = NULL;
   789   // Try allocating obj in to-space (unless too old)
   790   if (old->age() < tenuring_threshold()) {
   791     obj = (oop) to()->allocate(s);
   792   }
   794   // Otherwise try allocating obj tenured
   795   if (obj == NULL) {
   796     obj = _next_gen->promote(old, s);
   797     if (obj == NULL) {
   798       handle_promotion_failure(old);
   799       return old;
   800     }
   801   } else {
   802     // Prefetch beyond obj
   803     const intx interval = PrefetchCopyIntervalInBytes;
   804     Prefetch::write(obj, interval);
   806     // Copy obj
   807     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   809     // Increment age if obj still in new generation
   810     obj->incr_age();
   811     age_table()->add(obj, s);
   812   }
   814   // Done, insert forward pointer to obj in this header
   815   old->forward_to(obj);
   817   return obj;
   818 }
   820 void DefNewGeneration::drain_promo_failure_scan_stack() {
   821   while (!_promo_failure_scan_stack.is_empty()) {
   822      oop obj = _promo_failure_scan_stack.pop();
   823      obj->oop_iterate(_promo_failure_scan_stack_closure);
   824   }
   825 }
   827 void DefNewGeneration::save_marks() {
   828   eden()->set_saved_mark();
   829   to()->set_saved_mark();
   830   from()->set_saved_mark();
   831 }
   834 void DefNewGeneration::reset_saved_marks() {
   835   eden()->reset_saved_mark();
   836   to()->reset_saved_mark();
   837   from()->reset_saved_mark();
   838 }
   841 bool DefNewGeneration::no_allocs_since_save_marks() {
   842   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   843   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   844   return to()->saved_mark_at_top();
   845 }
   847 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   848                                                                 \
   849 void DefNewGeneration::                                         \
   850 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   851   cl->set_generation(this);                                     \
   852   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   853   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   854   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   855   cl->reset_generation();                                       \
   856   save_marks();                                                 \
   857 }
   859 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   861 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   863 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   864                                          size_t max_alloc_words) {
   865   if (requestor == this || _promotion_failed) return;
   866   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   868   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   869   if (to_space->top() > to_space->bottom()) {
   870     trace("to_space not empty when contribute_scratch called");
   871   }
   872   */
   874   ContiguousSpace* to_space = to();
   875   assert(to_space->end() >= to_space->top(), "pointers out of order");
   876   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   877   if (free_words >= MinFreeScratchWords) {
   878     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   879     sb->num_words = free_words;
   880     sb->next = list;
   881     list = sb;
   882   }
   883 }
   885 void DefNewGeneration::reset_scratch() {
   886   // If contributing scratch in to_space, mangle all of
   887   // to_space if ZapUnusedHeapArea.  This is needed because
   888   // top is not maintained while using to-space as scratch.
   889   if (ZapUnusedHeapArea) {
   890     to()->mangle_unused_area_complete();
   891   }
   892 }
   894 bool DefNewGeneration::collection_attempt_is_safe() {
   895   if (!to()->is_empty()) {
   896     if (Verbose && PrintGCDetails) {
   897       gclog_or_tty->print(" :: to is not empty :: ");
   898     }
   899     return false;
   900   }
   901   if (_next_gen == NULL) {
   902     GenCollectedHeap* gch = GenCollectedHeap::heap();
   903     _next_gen = gch->next_gen(this);
   904     assert(_next_gen != NULL,
   905            "This must be the youngest gen, and not the only gen");
   906   }
   907   return _next_gen->promotion_attempt_is_safe(used());
   908 }
   910 void DefNewGeneration::gc_epilogue(bool full) {
   911   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   913   assert(!GC_locker::is_active(), "We should not be executing here");
   914   // Check if the heap is approaching full after a collection has
   915   // been done.  Generally the young generation is empty at
   916   // a minimum at the end of a collection.  If it is not, then
   917   // the heap is approaching full.
   918   GenCollectedHeap* gch = GenCollectedHeap::heap();
   919   if (full) {
   920     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   921     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   922       if (Verbose && PrintGCDetails) {
   923         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   924                             GCCause::to_string(gch->gc_cause()));
   925       }
   926       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   927       set_should_allocate_from_space(); // we seem to be running out of space
   928     } else {
   929       if (Verbose && PrintGCDetails) {
   930         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   931                             GCCause::to_string(gch->gc_cause()));
   932       }
   933       gch->clear_incremental_collection_failed(); // We just did a full collection
   934       clear_should_allocate_from_space(); // if set
   935     }
   936   } else {
   937 #ifdef ASSERT
   938     // It is possible that incremental_collection_failed() == true
   939     // here, because an attempted scavenge did not succeed. The policy
   940     // is normally expected to cause a full collection which should
   941     // clear that condition, so we should not be here twice in a row
   942     // with incremental_collection_failed() == true without having done
   943     // a full collection in between.
   944     if (!seen_incremental_collection_failed &&
   945         gch->incremental_collection_failed()) {
   946       if (Verbose && PrintGCDetails) {
   947         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   948                             GCCause::to_string(gch->gc_cause()));
   949       }
   950       seen_incremental_collection_failed = true;
   951     } else if (seen_incremental_collection_failed) {
   952       if (Verbose && PrintGCDetails) {
   953         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   954                             GCCause::to_string(gch->gc_cause()));
   955       }
   956       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   957              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   958              !gch->incremental_collection_failed(),
   959              "Twice in a row");
   960       seen_incremental_collection_failed = false;
   961     }
   962 #endif // ASSERT
   963   }
   965   if (ZapUnusedHeapArea) {
   966     eden()->check_mangled_unused_area_complete();
   967     from()->check_mangled_unused_area_complete();
   968     to()->check_mangled_unused_area_complete();
   969   }
   971   if (!CleanChunkPoolAsync) {
   972     Chunk::clean_chunk_pool();
   973   }
   975   // update the generation and space performance counters
   976   update_counters();
   977   gch->collector_policy()->counters()->update_counters();
   978 }
   980 void DefNewGeneration::record_spaces_top() {
   981   assert(ZapUnusedHeapArea, "Not mangling unused space");
   982   eden()->set_top_for_allocations();
   983   to()->set_top_for_allocations();
   984   from()->set_top_for_allocations();
   985 }
   987 void DefNewGeneration::ref_processor_init() {
   988   Generation::ref_processor_init();
   989 }
   992 void DefNewGeneration::update_counters() {
   993   if (UsePerfData) {
   994     _eden_counters->update_all();
   995     _from_counters->update_all();
   996     _to_counters->update_all();
   997     _gen_counters->update_all();
   998   }
   999 }
  1001 void DefNewGeneration::verify() {
  1002   eden()->verify();
  1003   from()->verify();
  1004     to()->verify();
  1007 void DefNewGeneration::print_on(outputStream* st) const {
  1008   Generation::print_on(st);
  1009   st->print("  eden");
  1010   eden()->print_on(st);
  1011   st->print("  from");
  1012   from()->print_on(st);
  1013   st->print("  to  ");
  1014   to()->print_on(st);
  1018 const char* DefNewGeneration::name() const {
  1019   return "def new generation";
  1022 // Moved from inline file as they are not called inline
  1023 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
  1024   return eden();
  1027 HeapWord* DefNewGeneration::allocate(size_t word_size,
  1028                                      bool is_tlab) {
  1029   // This is the slow-path allocation for the DefNewGeneration.
  1030   // Most allocations are fast-path in compiled code.
  1031   // We try to allocate from the eden.  If that works, we are happy.
  1032   // Note that since DefNewGeneration supports lock-free allocation, we
  1033   // have to use it here, as well.
  1034   HeapWord* result = eden()->par_allocate(word_size);
  1035   if (result != NULL) {
  1036     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1037       _next_gen->sample_eden_chunk();
  1039     return result;
  1041   do {
  1042     HeapWord* old_limit = eden()->soft_end();
  1043     if (old_limit < eden()->end()) {
  1044       // Tell the next generation we reached a limit.
  1045       HeapWord* new_limit =
  1046         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1047       if (new_limit != NULL) {
  1048         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1049       } else {
  1050         assert(eden()->soft_end() == eden()->end(),
  1051                "invalid state after allocation_limit_reached returned null");
  1053     } else {
  1054       // The allocation failed and the soft limit is equal to the hard limit,
  1055       // there are no reasons to do an attempt to allocate
  1056       assert(old_limit == eden()->end(), "sanity check");
  1057       break;
  1059     // Try to allocate until succeeded or the soft limit can't be adjusted
  1060     result = eden()->par_allocate(word_size);
  1061   } while (result == NULL);
  1063   // If the eden is full and the last collection bailed out, we are running
  1064   // out of heap space, and we try to allocate the from-space, too.
  1065   // allocate_from_space can't be inlined because that would introduce a
  1066   // circular dependency at compile time.
  1067   if (result == NULL) {
  1068     result = allocate_from_space(word_size);
  1069   } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1070     _next_gen->sample_eden_chunk();
  1072   return result;
  1075 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1076                                          bool is_tlab) {
  1077   HeapWord* res = eden()->par_allocate(word_size);
  1078   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1079     _next_gen->sample_eden_chunk();
  1081   return res;
  1084 void DefNewGeneration::gc_prologue(bool full) {
  1085   // Ensure that _end and _soft_end are the same in eden space.
  1086   eden()->set_soft_end(eden()->end());
  1089 size_t DefNewGeneration::tlab_capacity() const {
  1090   return eden()->capacity();
  1093 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1094   return unsafe_max_alloc_nogc();

mercurial