src/share/vm/memory/defNewGeneration.cpp

Wed, 14 Aug 2013 09:02:32 +0200

author
brutisso
date
Wed, 14 Aug 2013 09:02:32 +0200
changeset 5516
330dfb0476f4
parent 5459
7b06ae405d7b
child 6085
8f07aa079343
permissions
-rw-r--r--

8022800: Use specific generations rather than generation iteration
Reviewed-by: jmasa, ehelin

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/gcHeapSummary.hpp"
    29 #include "gc_implementation/shared/gcTimer.hpp"
    30 #include "gc_implementation/shared/gcTraceTime.hpp"
    31 #include "gc_implementation/shared/gcTrace.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/defNewGeneration.inline.hpp"
    34 #include "memory/gcLocker.inline.hpp"
    35 #include "memory/genCollectedHeap.hpp"
    36 #include "memory/genOopClosures.inline.hpp"
    37 #include "memory/genRemSet.hpp"
    38 #include "memory/generationSpec.hpp"
    39 #include "memory/iterator.hpp"
    40 #include "memory/referencePolicy.hpp"
    41 #include "memory/space.inline.hpp"
    42 #include "oops/instanceRefKlass.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/thread.inline.hpp"
    46 #include "utilities/copy.hpp"
    47 #include "utilities/stack.inline.hpp"
    49 //
    50 // DefNewGeneration functions.
    52 // Methods of protected closure types.
    54 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    55   assert(g->level() == 0, "Optimized for youngest gen.");
    56 }
    57 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    58   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    59 }
    61 DefNewGeneration::KeepAliveClosure::
    62 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    63   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    64   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    65   _rs = (CardTableRS*)rs;
    66 }
    68 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    69 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    72 DefNewGeneration::FastKeepAliveClosure::
    73 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    74   DefNewGeneration::KeepAliveClosure(cl) {
    75   _boundary = g->reserved().end();
    76 }
    78 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    79 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    81 DefNewGeneration::EvacuateFollowersClosure::
    82 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    83                          ScanClosure* cur, ScanClosure* older) :
    84   _gch(gch), _level(level),
    85   _scan_cur_or_nonheap(cur), _scan_older(older)
    86 {}
    88 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    89   do {
    90     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    91                                        _scan_older);
    92   } while (!_gch->no_allocs_since_save_marks(_level));
    93 }
    95 DefNewGeneration::FastEvacuateFollowersClosure::
    96 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    97                              DefNewGeneration* gen,
    98                              FastScanClosure* cur, FastScanClosure* older) :
    99   _gch(gch), _level(level), _gen(gen),
   100   _scan_cur_or_nonheap(cur), _scan_older(older)
   101 {}
   103 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   104   do {
   105     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   106                                        _scan_older);
   107   } while (!_gch->no_allocs_since_save_marks(_level));
   108   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   109 }
   111 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   112     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   113 {
   114   assert(_g->level() == 0, "Optimized for youngest generation");
   115   _boundary = _g->reserved().end();
   116 }
   118 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   119 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   121 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   122     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   123 {
   124   assert(_g->level() == 0, "Optimized for youngest generation");
   125   _boundary = _g->reserved().end();
   126 }
   128 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   129 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   131 void KlassScanClosure::do_klass(Klass* klass) {
   132 #ifndef PRODUCT
   133   if (TraceScavenge) {
   134     ResourceMark rm;
   135     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   136                            klass,
   137                            klass->external_name(),
   138                            klass->has_modified_oops() ? "true" : "false");
   139   }
   140 #endif
   142   // If the klass has not been dirtied we know that there's
   143   // no references into  the young gen and we can skip it.
   144   if (klass->has_modified_oops()) {
   145     if (_accumulate_modified_oops) {
   146       klass->accumulate_modified_oops();
   147     }
   149     // Clear this state since we're going to scavenge all the metadata.
   150     klass->clear_modified_oops();
   152     // Tell the closure which Klass is being scanned so that it can be dirtied
   153     // if oops are left pointing into the young gen.
   154     _scavenge_closure->set_scanned_klass(klass);
   156     klass->oops_do(_scavenge_closure);
   158     _scavenge_closure->set_scanned_klass(NULL);
   159   }
   160 }
   162 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   163   _g(g)
   164 {
   165   assert(_g->level() == 0, "Optimized for youngest generation");
   166   _boundary = _g->reserved().end();
   167 }
   169 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   170 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   172 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   173 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   175 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   176                                    KlassRemSet* klass_rem_set)
   177     : _scavenge_closure(scavenge_closure),
   178       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   181 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   182                                    size_t initial_size,
   183                                    int level,
   184                                    const char* policy)
   185   : Generation(rs, initial_size, level),
   186     _promo_failure_drain_in_progress(false),
   187     _should_allocate_from_space(false)
   188 {
   189   MemRegion cmr((HeapWord*)_virtual_space.low(),
   190                 (HeapWord*)_virtual_space.high());
   191   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   193   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   194     _eden_space = new ConcEdenSpace(this);
   195   } else {
   196     _eden_space = new EdenSpace(this);
   197   }
   198   _from_space = new ContiguousSpace();
   199   _to_space   = new ContiguousSpace();
   201   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   202     vm_exit_during_initialization("Could not allocate a new gen space");
   204   // Compute the maximum eden and survivor space sizes. These sizes
   205   // are computed assuming the entire reserved space is committed.
   206   // These values are exported as performance counters.
   207   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   208   uintx size = _virtual_space.reserved_size();
   209   _max_survivor_size = compute_survivor_size(size, alignment);
   210   _max_eden_size = size - (2*_max_survivor_size);
   212   // allocate the performance counters
   214   // Generation counters -- generation 0, 3 subspaces
   215   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   216   _gc_counters = new CollectorCounters(policy, 0);
   218   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   219                                       _gen_counters);
   220   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   221                                       _gen_counters);
   222   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   223                                     _gen_counters);
   225   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   226   update_counters();
   227   _next_gen = NULL;
   228   _tenuring_threshold = MaxTenuringThreshold;
   229   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   231   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
   232 }
   234 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   235                                                 bool clear_space,
   236                                                 bool mangle_space) {
   237   uintx alignment =
   238     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   240   // If the spaces are being cleared (only done at heap initialization
   241   // currently), the survivor spaces need not be empty.
   242   // Otherwise, no care is taken for used areas in the survivor spaces
   243   // so check.
   244   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   245     "Initialization of the survivor spaces assumes these are empty");
   247   // Compute sizes
   248   uintx size = _virtual_space.committed_size();
   249   uintx survivor_size = compute_survivor_size(size, alignment);
   250   uintx eden_size = size - (2*survivor_size);
   251   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   253   if (eden_size < minimum_eden_size) {
   254     // May happen due to 64Kb rounding, if so adjust eden size back up
   255     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   256     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   257     uintx unaligned_survivor_size =
   258       align_size_down(maximum_survivor_size, alignment);
   259     survivor_size = MAX2(unaligned_survivor_size, alignment);
   260     eden_size = size - (2*survivor_size);
   261     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   262     assert(eden_size >= minimum_eden_size, "just checking");
   263   }
   265   char *eden_start = _virtual_space.low();
   266   char *from_start = eden_start + eden_size;
   267   char *to_start   = from_start + survivor_size;
   268   char *to_end     = to_start   + survivor_size;
   270   assert(to_end == _virtual_space.high(), "just checking");
   271   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   272   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   273   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   275   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   276   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   277   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   279   // A minimum eden size implies that there is a part of eden that
   280   // is being used and that affects the initialization of any
   281   // newly formed eden.
   282   bool live_in_eden = minimum_eden_size > 0;
   284   // If not clearing the spaces, do some checking to verify that
   285   // the space are already mangled.
   286   if (!clear_space) {
   287     // Must check mangling before the spaces are reshaped.  Otherwise,
   288     // the bottom or end of one space may have moved into another
   289     // a failure of the check may not correctly indicate which space
   290     // is not properly mangled.
   291     if (ZapUnusedHeapArea) {
   292       HeapWord* limit = (HeapWord*) _virtual_space.high();
   293       eden()->check_mangled_unused_area(limit);
   294       from()->check_mangled_unused_area(limit);
   295         to()->check_mangled_unused_area(limit);
   296     }
   297   }
   299   // Reset the spaces for their new regions.
   300   eden()->initialize(edenMR,
   301                      clear_space && !live_in_eden,
   302                      SpaceDecorator::Mangle);
   303   // If clear_space and live_in_eden, we will not have cleared any
   304   // portion of eden above its top. This can cause newly
   305   // expanded space not to be mangled if using ZapUnusedHeapArea.
   306   // We explicitly do such mangling here.
   307   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   308     eden()->mangle_unused_area();
   309   }
   310   from()->initialize(fromMR, clear_space, mangle_space);
   311   to()->initialize(toMR, clear_space, mangle_space);
   313   // Set next compaction spaces.
   314   eden()->set_next_compaction_space(from());
   315   // The to-space is normally empty before a compaction so need
   316   // not be considered.  The exception is during promotion
   317   // failure handling when to-space can contain live objects.
   318   from()->set_next_compaction_space(NULL);
   319 }
   321 void DefNewGeneration::swap_spaces() {
   322   ContiguousSpace* s = from();
   323   _from_space        = to();
   324   _to_space          = s;
   325   eden()->set_next_compaction_space(from());
   326   // The to-space is normally empty before a compaction so need
   327   // not be considered.  The exception is during promotion
   328   // failure handling when to-space can contain live objects.
   329   from()->set_next_compaction_space(NULL);
   331   if (UsePerfData) {
   332     CSpaceCounters* c = _from_counters;
   333     _from_counters = _to_counters;
   334     _to_counters = c;
   335   }
   336 }
   338 bool DefNewGeneration::expand(size_t bytes) {
   339   MutexLocker x(ExpandHeap_lock);
   340   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   341   bool success = _virtual_space.expand_by(bytes);
   342   if (success && ZapUnusedHeapArea) {
   343     // Mangle newly committed space immediately because it
   344     // can be done here more simply that after the new
   345     // spaces have been computed.
   346     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   347     MemRegion mangle_region(prev_high, new_high);
   348     SpaceMangler::mangle_region(mangle_region);
   349   }
   351   // Do not attempt an expand-to-the reserve size.  The
   352   // request should properly observe the maximum size of
   353   // the generation so an expand-to-reserve should be
   354   // unnecessary.  Also a second call to expand-to-reserve
   355   // value potentially can cause an undue expansion.
   356   // For example if the first expand fail for unknown reasons,
   357   // but the second succeeds and expands the heap to its maximum
   358   // value.
   359   if (GC_locker::is_active()) {
   360     if (PrintGC && Verbose) {
   361       gclog_or_tty->print_cr("Garbage collection disabled, "
   362         "expanded heap instead");
   363     }
   364   }
   366   return success;
   367 }
   370 void DefNewGeneration::compute_new_size() {
   371   // This is called after a gc that includes the following generation
   372   // (which is required to exist.)  So from-space will normally be empty.
   373   // Note that we check both spaces, since if scavenge failed they revert roles.
   374   // If not we bail out (otherwise we would have to relocate the objects)
   375   if (!from()->is_empty() || !to()->is_empty()) {
   376     return;
   377   }
   379   int next_level = level() + 1;
   380   GenCollectedHeap* gch = GenCollectedHeap::heap();
   381   assert(next_level < gch->_n_gens,
   382          "DefNewGeneration cannot be an oldest gen");
   384   Generation* next_gen = gch->_gens[next_level];
   385   size_t old_size = next_gen->capacity();
   386   size_t new_size_before = _virtual_space.committed_size();
   387   size_t min_new_size = spec()->init_size();
   388   size_t max_new_size = reserved().byte_size();
   389   assert(min_new_size <= new_size_before &&
   390          new_size_before <= max_new_size,
   391          "just checking");
   392   // All space sizes must be multiples of Generation::GenGrain.
   393   size_t alignment = Generation::GenGrain;
   395   // Compute desired new generation size based on NewRatio and
   396   // NewSizeThreadIncrease
   397   size_t desired_new_size = old_size/NewRatio;
   398   int threads_count = Threads::number_of_non_daemon_threads();
   399   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   400   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   402   // Adjust new generation size
   403   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   404   assert(desired_new_size <= max_new_size, "just checking");
   406   bool changed = false;
   407   if (desired_new_size > new_size_before) {
   408     size_t change = desired_new_size - new_size_before;
   409     assert(change % alignment == 0, "just checking");
   410     if (expand(change)) {
   411        changed = true;
   412     }
   413     // If the heap failed to expand to the desired size,
   414     // "changed" will be false.  If the expansion failed
   415     // (and at this point it was expected to succeed),
   416     // ignore the failure (leaving "changed" as false).
   417   }
   418   if (desired_new_size < new_size_before && eden()->is_empty()) {
   419     // bail out of shrinking if objects in eden
   420     size_t change = new_size_before - desired_new_size;
   421     assert(change % alignment == 0, "just checking");
   422     _virtual_space.shrink_by(change);
   423     changed = true;
   424   }
   425   if (changed) {
   426     // The spaces have already been mangled at this point but
   427     // may not have been cleared (set top = bottom) and should be.
   428     // Mangling was done when the heap was being expanded.
   429     compute_space_boundaries(eden()->used(),
   430                              SpaceDecorator::Clear,
   431                              SpaceDecorator::DontMangle);
   432     MemRegion cmr((HeapWord*)_virtual_space.low(),
   433                   (HeapWord*)_virtual_space.high());
   434     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   435     if (Verbose && PrintGC) {
   436       size_t new_size_after  = _virtual_space.committed_size();
   437       size_t eden_size_after = eden()->capacity();
   438       size_t survivor_size_after = from()->capacity();
   439       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   440         SIZE_FORMAT "K [eden="
   441         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   442         new_size_before/K, new_size_after/K,
   443         eden_size_after/K, survivor_size_after/K);
   444       if (WizardMode) {
   445         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   446           thread_increase_size/K, threads_count);
   447       }
   448       gclog_or_tty->cr();
   449     }
   450   }
   451 }
   453 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   454   assert(false, "NYI -- are you sure you want to call this?");
   455 }
   458 size_t DefNewGeneration::capacity() const {
   459   return eden()->capacity()
   460        + from()->capacity();  // to() is only used during scavenge
   461 }
   464 size_t DefNewGeneration::used() const {
   465   return eden()->used()
   466        + from()->used();      // to() is only used during scavenge
   467 }
   470 size_t DefNewGeneration::free() const {
   471   return eden()->free()
   472        + from()->free();      // to() is only used during scavenge
   473 }
   475 size_t DefNewGeneration::max_capacity() const {
   476   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   477   const size_t reserved_bytes = reserved().byte_size();
   478   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   479 }
   481 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   482   return eden()->free();
   483 }
   485 size_t DefNewGeneration::capacity_before_gc() const {
   486   return eden()->capacity();
   487 }
   489 size_t DefNewGeneration::contiguous_available() const {
   490   return eden()->free();
   491 }
   494 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   495 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   497 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   498   eden()->object_iterate(blk);
   499   from()->object_iterate(blk);
   500 }
   503 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   504                                      bool usedOnly) {
   505   blk->do_space(eden());
   506   blk->do_space(from());
   507   blk->do_space(to());
   508 }
   510 // The last collection bailed out, we are running out of heap space,
   511 // so we try to allocate the from-space, too.
   512 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   513   HeapWord* result = NULL;
   514   if (Verbose && PrintGCDetails) {
   515     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   516                         "  will_fail: %s"
   517                         "  heap_lock: %s"
   518                         "  free: " SIZE_FORMAT,
   519                         size,
   520                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   521                           "true" : "false",
   522                         Heap_lock->is_locked() ? "locked" : "unlocked",
   523                         from()->free());
   524   }
   525   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   526     if (Heap_lock->owned_by_self() ||
   527         (SafepointSynchronize::is_at_safepoint() &&
   528          Thread::current()->is_VM_thread())) {
   529       // If the Heap_lock is not locked by this thread, this will be called
   530       // again later with the Heap_lock held.
   531       result = from()->allocate(size);
   532     } else if (PrintGC && Verbose) {
   533       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   534     }
   535   } else if (PrintGC && Verbose) {
   536     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   537   }
   538   if (PrintGC && Verbose) {
   539     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   540   }
   541   return result;
   542 }
   544 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   545                                                 bool   is_tlab,
   546                                                 bool   parallel) {
   547   // We don't attempt to expand the young generation (but perhaps we should.)
   548   return allocate(size, is_tlab);
   549 }
   551 void DefNewGeneration::adjust_desired_tenuring_threshold() {
   552   // Set the desired survivor size to half the real survivor space
   553   _tenuring_threshold =
   554     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   555 }
   557 void DefNewGeneration::collect(bool   full,
   558                                bool   clear_all_soft_refs,
   559                                size_t size,
   560                                bool   is_tlab) {
   561   assert(full || size > 0, "otherwise we don't want to collect");
   563   GenCollectedHeap* gch = GenCollectedHeap::heap();
   565   _gc_timer->register_gc_start(os::elapsed_counter());
   566   DefNewTracer gc_tracer;
   567   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
   569   _next_gen = gch->next_gen(this);
   571   // If the next generation is too full to accommodate promotion
   572   // from this generation, pass on collection; let the next generation
   573   // do it.
   574   if (!collection_attempt_is_safe()) {
   575     if (Verbose && PrintGCDetails) {
   576       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   577     }
   578     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   579     return;
   580   }
   581   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   583   init_assuming_no_promotion_failure();
   585   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
   586   // Capture heap used before collection (for printing).
   587   size_t gch_prev_used = gch->used();
   589   gch->trace_heap_before_gc(&gc_tracer);
   591   SpecializationStats::clear();
   593   // These can be shared for all code paths
   594   IsAliveClosure is_alive(this);
   595   ScanWeakRefClosure scan_weak_ref(this);
   597   age_table()->clear();
   598   to()->clear(SpaceDecorator::Mangle);
   600   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   602   assert(gch->no_allocs_since_save_marks(0),
   603          "save marks have not been newly set.");
   605   // Not very pretty.
   606   CollectorPolicy* cp = gch->collector_policy();
   608   FastScanClosure fsc_with_no_gc_barrier(this, false);
   609   FastScanClosure fsc_with_gc_barrier(this, true);
   611   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   612                                       gch->rem_set()->klass_rem_set());
   614   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   615   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   616                                                   &fsc_with_no_gc_barrier,
   617                                                   &fsc_with_gc_barrier);
   619   assert(gch->no_allocs_since_save_marks(0),
   620          "save marks have not been newly set.");
   622   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
   624   gch->gen_process_strong_roots(_level,
   625                                 true,  // Process younger gens, if any,
   626                                        // as strong roots.
   627                                 true,  // activate StrongRootsScope
   628                                 true,  // is scavenging
   629                                 SharedHeap::ScanningOption(so),
   630                                 &fsc_with_no_gc_barrier,
   631                                 true,   // walk *all* scavengable nmethods
   632                                 &fsc_with_gc_barrier,
   633                                 &klass_scan_closure);
   635   // "evacuate followers".
   636   evacuate_followers.do_void();
   638   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   639   ReferenceProcessor* rp = ref_processor();
   640   rp->setup_policy(clear_all_soft_refs);
   641   const ReferenceProcessorStats& stats =
   642   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   643                                     NULL, _gc_timer);
   644   gc_tracer.report_gc_reference_stats(stats);
   646   if (!_promotion_failed) {
   647     // Swap the survivor spaces.
   648     eden()->clear(SpaceDecorator::Mangle);
   649     from()->clear(SpaceDecorator::Mangle);
   650     if (ZapUnusedHeapArea) {
   651       // This is now done here because of the piece-meal mangling which
   652       // can check for valid mangling at intermediate points in the
   653       // collection(s).  When a minor collection fails to collect
   654       // sufficient space resizing of the young generation can occur
   655       // an redistribute the spaces in the young generation.  Mangle
   656       // here so that unzapped regions don't get distributed to
   657       // other spaces.
   658       to()->mangle_unused_area();
   659     }
   660     swap_spaces();
   662     assert(to()->is_empty(), "to space should be empty now");
   664     adjust_desired_tenuring_threshold();
   666     // A successful scavenge should restart the GC time limit count which is
   667     // for full GC's.
   668     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   669     size_policy->reset_gc_overhead_limit_count();
   670     if (PrintGC && !PrintGCDetails) {
   671       gch->print_heap_change(gch_prev_used);
   672     }
   673     assert(!gch->incremental_collection_failed(), "Should be clear");
   674   } else {
   675     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   676     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   678     remove_forwarding_pointers();
   679     if (PrintGCDetails) {
   680       gclog_or_tty->print(" (promotion failed) ");
   681     }
   682     // Add to-space to the list of space to compact
   683     // when a promotion failure has occurred.  In that
   684     // case there can be live objects in to-space
   685     // as a result of a partial evacuation of eden
   686     // and from-space.
   687     swap_spaces();   // For uniformity wrt ParNewGeneration.
   688     from()->set_next_compaction_space(to());
   689     gch->set_incremental_collection_failed();
   691     // Inform the next generation that a promotion failure occurred.
   692     _next_gen->promotion_failure_occurred();
   693     gc_tracer.report_promotion_failed(_promotion_failed_info);
   695     // Reset the PromotionFailureALot counters.
   696     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   697   }
   698   // set new iteration safe limit for the survivor spaces
   699   from()->set_concurrent_iteration_safe_limit(from()->top());
   700   to()->set_concurrent_iteration_safe_limit(to()->top());
   701   SpecializationStats::print();
   703   // We need to use a monotonically non-decreasing time in ms
   704   // or we will see time-warp warnings and os::javaTimeMillis()
   705   // does not guarantee monotonicity.
   706   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   707   update_time_of_last_gc(now);
   709   gch->trace_heap_after_gc(&gc_tracer);
   710   gc_tracer.report_tenuring_threshold(tenuring_threshold());
   712   _gc_timer->register_gc_end(os::elapsed_counter());
   714   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
   715 }
   717 class RemoveForwardPointerClosure: public ObjectClosure {
   718 public:
   719   void do_object(oop obj) {
   720     obj->init_mark();
   721   }
   722 };
   724 void DefNewGeneration::init_assuming_no_promotion_failure() {
   725   _promotion_failed = false;
   726   _promotion_failed_info.reset();
   727   from()->set_next_compaction_space(NULL);
   728 }
   730 void DefNewGeneration::remove_forwarding_pointers() {
   731   RemoveForwardPointerClosure rspc;
   732   eden()->object_iterate(&rspc);
   733   from()->object_iterate(&rspc);
   735   // Now restore saved marks, if any.
   736   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   737          "should be the same");
   738   while (!_objs_with_preserved_marks.is_empty()) {
   739     oop obj   = _objs_with_preserved_marks.pop();
   740     markOop m = _preserved_marks_of_objs.pop();
   741     obj->set_mark(m);
   742   }
   743   _objs_with_preserved_marks.clear(true);
   744   _preserved_marks_of_objs.clear(true);
   745 }
   747 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   748   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
   749          "Oversaving!");
   750   _objs_with_preserved_marks.push(obj);
   751   _preserved_marks_of_objs.push(m);
   752 }
   754 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   755   if (m->must_be_preserved_for_promotion_failure(obj)) {
   756     preserve_mark(obj, m);
   757   }
   758 }
   760 void DefNewGeneration::handle_promotion_failure(oop old) {
   761   if (PrintPromotionFailure && !_promotion_failed) {
   762     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   763                         old->size());
   764   }
   765   _promotion_failed = true;
   766   _promotion_failed_info.register_copy_failure(old->size());
   767   preserve_mark_if_necessary(old, old->mark());
   768   // forward to self
   769   old->forward_to(old);
   771   _promo_failure_scan_stack.push(old);
   773   if (!_promo_failure_drain_in_progress) {
   774     // prevent recursion in copy_to_survivor_space()
   775     _promo_failure_drain_in_progress = true;
   776     drain_promo_failure_scan_stack();
   777     _promo_failure_drain_in_progress = false;
   778   }
   779 }
   781 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   782   assert(is_in_reserved(old) && !old->is_forwarded(),
   783          "shouldn't be scavenging this oop");
   784   size_t s = old->size();
   785   oop obj = NULL;
   787   // Try allocating obj in to-space (unless too old)
   788   if (old->age() < tenuring_threshold()) {
   789     obj = (oop) to()->allocate(s);
   790   }
   792   // Otherwise try allocating obj tenured
   793   if (obj == NULL) {
   794     obj = _next_gen->promote(old, s);
   795     if (obj == NULL) {
   796       handle_promotion_failure(old);
   797       return old;
   798     }
   799   } else {
   800     // Prefetch beyond obj
   801     const intx interval = PrefetchCopyIntervalInBytes;
   802     Prefetch::write(obj, interval);
   804     // Copy obj
   805     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   807     // Increment age if obj still in new generation
   808     obj->incr_age();
   809     age_table()->add(obj, s);
   810   }
   812   // Done, insert forward pointer to obj in this header
   813   old->forward_to(obj);
   815   return obj;
   816 }
   818 void DefNewGeneration::drain_promo_failure_scan_stack() {
   819   while (!_promo_failure_scan_stack.is_empty()) {
   820      oop obj = _promo_failure_scan_stack.pop();
   821      obj->oop_iterate(_promo_failure_scan_stack_closure);
   822   }
   823 }
   825 void DefNewGeneration::save_marks() {
   826   eden()->set_saved_mark();
   827   to()->set_saved_mark();
   828   from()->set_saved_mark();
   829 }
   832 void DefNewGeneration::reset_saved_marks() {
   833   eden()->reset_saved_mark();
   834   to()->reset_saved_mark();
   835   from()->reset_saved_mark();
   836 }
   839 bool DefNewGeneration::no_allocs_since_save_marks() {
   840   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   841   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   842   return to()->saved_mark_at_top();
   843 }
   845 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   846                                                                 \
   847 void DefNewGeneration::                                         \
   848 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   849   cl->set_generation(this);                                     \
   850   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   851   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   852   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   853   cl->reset_generation();                                       \
   854   save_marks();                                                 \
   855 }
   857 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   859 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   861 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   862                                          size_t max_alloc_words) {
   863   if (requestor == this || _promotion_failed) return;
   864   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   866   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   867   if (to_space->top() > to_space->bottom()) {
   868     trace("to_space not empty when contribute_scratch called");
   869   }
   870   */
   872   ContiguousSpace* to_space = to();
   873   assert(to_space->end() >= to_space->top(), "pointers out of order");
   874   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   875   if (free_words >= MinFreeScratchWords) {
   876     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   877     sb->num_words = free_words;
   878     sb->next = list;
   879     list = sb;
   880   }
   881 }
   883 void DefNewGeneration::reset_scratch() {
   884   // If contributing scratch in to_space, mangle all of
   885   // to_space if ZapUnusedHeapArea.  This is needed because
   886   // top is not maintained while using to-space as scratch.
   887   if (ZapUnusedHeapArea) {
   888     to()->mangle_unused_area_complete();
   889   }
   890 }
   892 bool DefNewGeneration::collection_attempt_is_safe() {
   893   if (!to()->is_empty()) {
   894     if (Verbose && PrintGCDetails) {
   895       gclog_or_tty->print(" :: to is not empty :: ");
   896     }
   897     return false;
   898   }
   899   if (_next_gen == NULL) {
   900     GenCollectedHeap* gch = GenCollectedHeap::heap();
   901     _next_gen = gch->next_gen(this);
   902   }
   903   return _next_gen->promotion_attempt_is_safe(used());
   904 }
   906 void DefNewGeneration::gc_epilogue(bool full) {
   907   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   909   assert(!GC_locker::is_active(), "We should not be executing here");
   910   // Check if the heap is approaching full after a collection has
   911   // been done.  Generally the young generation is empty at
   912   // a minimum at the end of a collection.  If it is not, then
   913   // the heap is approaching full.
   914   GenCollectedHeap* gch = GenCollectedHeap::heap();
   915   if (full) {
   916     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   917     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   918       if (Verbose && PrintGCDetails) {
   919         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   920                             GCCause::to_string(gch->gc_cause()));
   921       }
   922       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   923       set_should_allocate_from_space(); // we seem to be running out of space
   924     } else {
   925       if (Verbose && PrintGCDetails) {
   926         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   927                             GCCause::to_string(gch->gc_cause()));
   928       }
   929       gch->clear_incremental_collection_failed(); // We just did a full collection
   930       clear_should_allocate_from_space(); // if set
   931     }
   932   } else {
   933 #ifdef ASSERT
   934     // It is possible that incremental_collection_failed() == true
   935     // here, because an attempted scavenge did not succeed. The policy
   936     // is normally expected to cause a full collection which should
   937     // clear that condition, so we should not be here twice in a row
   938     // with incremental_collection_failed() == true without having done
   939     // a full collection in between.
   940     if (!seen_incremental_collection_failed &&
   941         gch->incremental_collection_failed()) {
   942       if (Verbose && PrintGCDetails) {
   943         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   944                             GCCause::to_string(gch->gc_cause()));
   945       }
   946       seen_incremental_collection_failed = true;
   947     } else if (seen_incremental_collection_failed) {
   948       if (Verbose && PrintGCDetails) {
   949         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   950                             GCCause::to_string(gch->gc_cause()));
   951       }
   952       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   953              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   954              !gch->incremental_collection_failed(),
   955              "Twice in a row");
   956       seen_incremental_collection_failed = false;
   957     }
   958 #endif // ASSERT
   959   }
   961   if (ZapUnusedHeapArea) {
   962     eden()->check_mangled_unused_area_complete();
   963     from()->check_mangled_unused_area_complete();
   964     to()->check_mangled_unused_area_complete();
   965   }
   967   if (!CleanChunkPoolAsync) {
   968     Chunk::clean_chunk_pool();
   969   }
   971   // update the generation and space performance counters
   972   update_counters();
   973   gch->collector_policy()->counters()->update_counters();
   974 }
   976 void DefNewGeneration::record_spaces_top() {
   977   assert(ZapUnusedHeapArea, "Not mangling unused space");
   978   eden()->set_top_for_allocations();
   979   to()->set_top_for_allocations();
   980   from()->set_top_for_allocations();
   981 }
   983 void DefNewGeneration::ref_processor_init() {
   984   Generation::ref_processor_init();
   985 }
   988 void DefNewGeneration::update_counters() {
   989   if (UsePerfData) {
   990     _eden_counters->update_all();
   991     _from_counters->update_all();
   992     _to_counters->update_all();
   993     _gen_counters->update_all();
   994   }
   995 }
   997 void DefNewGeneration::verify() {
   998   eden()->verify();
   999   from()->verify();
  1000     to()->verify();
  1003 void DefNewGeneration::print_on(outputStream* st) const {
  1004   Generation::print_on(st);
  1005   st->print("  eden");
  1006   eden()->print_on(st);
  1007   st->print("  from");
  1008   from()->print_on(st);
  1009   st->print("  to  ");
  1010   to()->print_on(st);
  1014 const char* DefNewGeneration::name() const {
  1015   return "def new generation";
  1018 // Moved from inline file as they are not called inline
  1019 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
  1020   return eden();
  1023 HeapWord* DefNewGeneration::allocate(size_t word_size,
  1024                                      bool is_tlab) {
  1025   // This is the slow-path allocation for the DefNewGeneration.
  1026   // Most allocations are fast-path in compiled code.
  1027   // We try to allocate from the eden.  If that works, we are happy.
  1028   // Note that since DefNewGeneration supports lock-free allocation, we
  1029   // have to use it here, as well.
  1030   HeapWord* result = eden()->par_allocate(word_size);
  1031   if (result != NULL) {
  1032     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1033       _next_gen->sample_eden_chunk();
  1035     return result;
  1037   do {
  1038     HeapWord* old_limit = eden()->soft_end();
  1039     if (old_limit < eden()->end()) {
  1040       // Tell the next generation we reached a limit.
  1041       HeapWord* new_limit =
  1042         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1043       if (new_limit != NULL) {
  1044         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1045       } else {
  1046         assert(eden()->soft_end() == eden()->end(),
  1047                "invalid state after allocation_limit_reached returned null");
  1049     } else {
  1050       // The allocation failed and the soft limit is equal to the hard limit,
  1051       // there are no reasons to do an attempt to allocate
  1052       assert(old_limit == eden()->end(), "sanity check");
  1053       break;
  1055     // Try to allocate until succeeded or the soft limit can't be adjusted
  1056     result = eden()->par_allocate(word_size);
  1057   } while (result == NULL);
  1059   // If the eden is full and the last collection bailed out, we are running
  1060   // out of heap space, and we try to allocate the from-space, too.
  1061   // allocate_from_space can't be inlined because that would introduce a
  1062   // circular dependency at compile time.
  1063   if (result == NULL) {
  1064     result = allocate_from_space(word_size);
  1065   } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1066     _next_gen->sample_eden_chunk();
  1068   return result;
  1071 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1072                                          bool is_tlab) {
  1073   HeapWord* res = eden()->par_allocate(word_size);
  1074   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
  1075     _next_gen->sample_eden_chunk();
  1077   return res;
  1080 void DefNewGeneration::gc_prologue(bool full) {
  1081   // Ensure that _end and _soft_end are the same in eden space.
  1082   eden()->set_soft_end(eden()->end());
  1085 size_t DefNewGeneration::tlab_capacity() const {
  1086   return eden()->capacity();
  1089 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1090   return unsafe_max_alloc_nogc();

mercurial