src/cpu/x86/vm/vm_version_x86.cpp

Tue, 04 Feb 2020 18:13:14 +0800

author
aoqi
date
Tue, 04 Feb 2020 18:13:14 +0800
changeset 9806
758c07667682
parent 9041
95a08233f46c
parent 9795
9ef81b9152f1
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/java.hpp"
    30 #include "runtime/stubCodeGenerator.hpp"
    31 #include "vm_version_x86.hpp"
    32 #ifdef TARGET_OS_FAMILY_linux
    33 # include "os_linux.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_FAMILY_solaris
    36 # include "os_solaris.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_FAMILY_windows
    39 # include "os_windows.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_bsd
    42 # include "os_bsd.inline.hpp"
    43 #endif
    46 int VM_Version::_cpu;
    47 int VM_Version::_model;
    48 int VM_Version::_stepping;
    49 int VM_Version::_cpuFeatures;
    50 const char*           VM_Version::_features_str = "";
    51 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    53 // Address of instruction which causes SEGV
    54 address VM_Version::_cpuinfo_segv_addr = 0;
    55 // Address of instruction after the one which causes SEGV
    56 address VM_Version::_cpuinfo_cont_addr = 0;
    58 static BufferBlob* stub_blob;
    59 static const int stub_size = 600;
    61 extern "C" {
    62   typedef void (*get_cpu_info_stub_t)(void*);
    63 }
    64 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
    67 class VM_Version_StubGenerator: public StubCodeGenerator {
    68  public:
    70   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    72   address generate_get_cpu_info() {
    73     // Flags to test CPU type.
    74     const uint32_t HS_EFL_AC           = 0x40000;
    75     const uint32_t HS_EFL_ID           = 0x200000;
    76     // Values for when we don't have a CPUID instruction.
    77     const int      CPU_FAMILY_SHIFT = 8;
    78     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    79     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    81     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    82     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    84     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
    85 #   define __ _masm->
    87     address start = __ pc();
    89     //
    90     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
    91     //
    92     // LP64: rcx and rdx are first and second argument registers on windows
    94     __ push(rbp);
    95 #ifdef _LP64
    96     __ mov(rbp, c_rarg0); // cpuid_info address
    97 #else
    98     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    99 #endif
   100     __ push(rbx);
   101     __ push(rsi);
   102     __ pushf();          // preserve rbx, and flags
   103     __ pop(rax);
   104     __ push(rax);
   105     __ mov(rcx, rax);
   106     //
   107     // if we are unable to change the AC flag, we have a 386
   108     //
   109     __ xorl(rax, HS_EFL_AC);
   110     __ push(rax);
   111     __ popf();
   112     __ pushf();
   113     __ pop(rax);
   114     __ cmpptr(rax, rcx);
   115     __ jccb(Assembler::notEqual, detect_486);
   117     __ movl(rax, CPU_FAMILY_386);
   118     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   119     __ jmp(done);
   121     //
   122     // If we are unable to change the ID flag, we have a 486 which does
   123     // not support the "cpuid" instruction.
   124     //
   125     __ bind(detect_486);
   126     __ mov(rax, rcx);
   127     __ xorl(rax, HS_EFL_ID);
   128     __ push(rax);
   129     __ popf();
   130     __ pushf();
   131     __ pop(rax);
   132     __ cmpptr(rcx, rax);
   133     __ jccb(Assembler::notEqual, detect_586);
   135     __ bind(cpu486);
   136     __ movl(rax, CPU_FAMILY_486);
   137     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   138     __ jmp(done);
   140     //
   141     // At this point, we have a chip which supports the "cpuid" instruction
   142     //
   143     __ bind(detect_586);
   144     __ xorl(rax, rax);
   145     __ cpuid();
   146     __ orl(rax, rax);
   147     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   148                                         // value of at least 1, we give up and
   149                                         // assume a 486
   150     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   151     __ movl(Address(rsi, 0), rax);
   152     __ movl(Address(rsi, 4), rbx);
   153     __ movl(Address(rsi, 8), rcx);
   154     __ movl(Address(rsi,12), rdx);
   156     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   157     __ jccb(Assembler::belowEqual, std_cpuid4);
   159     //
   160     // cpuid(0xB) Processor Topology
   161     //
   162     __ movl(rax, 0xb);
   163     __ xorl(rcx, rcx);   // Threads level
   164     __ cpuid();
   166     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   167     __ movl(Address(rsi, 0), rax);
   168     __ movl(Address(rsi, 4), rbx);
   169     __ movl(Address(rsi, 8), rcx);
   170     __ movl(Address(rsi,12), rdx);
   172     __ movl(rax, 0xb);
   173     __ movl(rcx, 1);     // Cores level
   174     __ cpuid();
   175     __ push(rax);
   176     __ andl(rax, 0x1f);  // Determine if valid topology level
   177     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   178     __ andl(rax, 0xffff);
   179     __ pop(rax);
   180     __ jccb(Assembler::equal, std_cpuid4);
   182     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   183     __ movl(Address(rsi, 0), rax);
   184     __ movl(Address(rsi, 4), rbx);
   185     __ movl(Address(rsi, 8), rcx);
   186     __ movl(Address(rsi,12), rdx);
   188     __ movl(rax, 0xb);
   189     __ movl(rcx, 2);     // Packages level
   190     __ cpuid();
   191     __ push(rax);
   192     __ andl(rax, 0x1f);  // Determine if valid topology level
   193     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   194     __ andl(rax, 0xffff);
   195     __ pop(rax);
   196     __ jccb(Assembler::equal, std_cpuid4);
   198     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   199     __ movl(Address(rsi, 0), rax);
   200     __ movl(Address(rsi, 4), rbx);
   201     __ movl(Address(rsi, 8), rcx);
   202     __ movl(Address(rsi,12), rdx);
   204     //
   205     // cpuid(0x4) Deterministic cache params
   206     //
   207     __ bind(std_cpuid4);
   208     __ movl(rax, 4);
   209     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   210     __ jccb(Assembler::greater, std_cpuid1);
   212     __ xorl(rcx, rcx);   // L1 cache
   213     __ cpuid();
   214     __ push(rax);
   215     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   216     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   217     __ pop(rax);
   218     __ jccb(Assembler::equal, std_cpuid1);
   220     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   221     __ movl(Address(rsi, 0), rax);
   222     __ movl(Address(rsi, 4), rbx);
   223     __ movl(Address(rsi, 8), rcx);
   224     __ movl(Address(rsi,12), rdx);
   226     //
   227     // Standard cpuid(0x1)
   228     //
   229     __ bind(std_cpuid1);
   230     __ movl(rax, 1);
   231     __ cpuid();
   232     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   233     __ movl(Address(rsi, 0), rax);
   234     __ movl(Address(rsi, 4), rbx);
   235     __ movl(Address(rsi, 8), rcx);
   236     __ movl(Address(rsi,12), rdx);
   238     //
   239     // Check if OS has enabled XGETBV instruction to access XCR0
   240     // (OSXSAVE feature flag) and CPU supports AVX
   241     //
   242     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
   243     __ cmpl(rcx, 0x18000000);
   244     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
   246     //
   247     // XCR0, XFEATURE_ENABLED_MASK register
   248     //
   249     __ xorl(rcx, rcx);   // zero for XCR0 register
   250     __ xgetbv();
   251     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   252     __ movl(Address(rsi, 0), rax);
   253     __ movl(Address(rsi, 4), rdx);
   255     __ andl(rax, 0x6); // xcr0 bits sse | ymm
   256     __ cmpl(rax, 0x6);
   257     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
   259     //
   260     // Some OSs have a bug when upper 128bits of YMM
   261     // registers are not restored after a signal processing.
   262     // Generate SEGV here (reference through NULL)
   263     // and check upper YMM bits after it.
   264     //
   265     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
   266     intx saved_useavx = UseAVX;
   267     intx saved_usesse = UseSSE;
   268     UseAVX = 1;
   269     UseSSE = 2;
   271     // load value into all 32 bytes of ymm7 register
   272     __ movl(rcx, VM_Version::ymm_test_value());
   274     __ movdl(xmm0, rcx);
   275     __ pshufd(xmm0, xmm0, 0x00);
   276     __ vinsertf128h(xmm0, xmm0, xmm0);
   277     __ vmovdqu(xmm7, xmm0);
   278 #ifdef _LP64
   279     __ vmovdqu(xmm8,  xmm0);
   280     __ vmovdqu(xmm15, xmm0);
   281 #endif
   283     __ xorl(rsi, rsi);
   284     VM_Version::set_cpuinfo_segv_addr( __ pc() );
   285     // Generate SEGV
   286     __ movl(rax, Address(rsi, 0));
   288     VM_Version::set_cpuinfo_cont_addr( __ pc() );
   289     // Returns here after signal. Save xmm0 to check it later.
   290     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
   291     __ vmovdqu(Address(rsi,  0), xmm0);
   292     __ vmovdqu(Address(rsi, 32), xmm7);
   293 #ifdef _LP64
   294     __ vmovdqu(Address(rsi, 64), xmm8);
   295     __ vmovdqu(Address(rsi, 96), xmm15);
   296 #endif
   298     VM_Version::clean_cpuFeatures();
   299     UseAVX = saved_useavx;
   300     UseSSE = saved_usesse;
   302     //
   303     // cpuid(0x7) Structured Extended Features
   304     //
   305     __ bind(sef_cpuid);
   306     __ movl(rax, 7);
   307     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   308     __ jccb(Assembler::greater, ext_cpuid);
   310     __ xorl(rcx, rcx);
   311     __ cpuid();
   312     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   313     __ movl(Address(rsi, 0), rax);
   314     __ movl(Address(rsi, 4), rbx);
   316     //
   317     // Extended cpuid(0x80000000)
   318     //
   319     __ bind(ext_cpuid);
   320     __ movl(rax, 0x80000000);
   321     __ cpuid();
   322     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   323     __ jcc(Assembler::belowEqual, done);
   324     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   325     __ jccb(Assembler::belowEqual, ext_cpuid1);
   326     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   327     __ jccb(Assembler::belowEqual, ext_cpuid5);
   328     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   329     __ jccb(Assembler::belowEqual, ext_cpuid7);
   330     //
   331     // Extended cpuid(0x80000008)
   332     //
   333     __ movl(rax, 0x80000008);
   334     __ cpuid();
   335     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   336     __ movl(Address(rsi, 0), rax);
   337     __ movl(Address(rsi, 4), rbx);
   338     __ movl(Address(rsi, 8), rcx);
   339     __ movl(Address(rsi,12), rdx);
   341     //
   342     // Extended cpuid(0x80000007)
   343     //
   344     __ bind(ext_cpuid7);
   345     __ movl(rax, 0x80000007);
   346     __ cpuid();
   347     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   348     __ movl(Address(rsi, 0), rax);
   349     __ movl(Address(rsi, 4), rbx);
   350     __ movl(Address(rsi, 8), rcx);
   351     __ movl(Address(rsi,12), rdx);
   353     //
   354     // Extended cpuid(0x80000005)
   355     //
   356     __ bind(ext_cpuid5);
   357     __ movl(rax, 0x80000005);
   358     __ cpuid();
   359     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   360     __ movl(Address(rsi, 0), rax);
   361     __ movl(Address(rsi, 4), rbx);
   362     __ movl(Address(rsi, 8), rcx);
   363     __ movl(Address(rsi,12), rdx);
   365     //
   366     // Extended cpuid(0x80000001)
   367     //
   368     __ bind(ext_cpuid1);
   369     __ movl(rax, 0x80000001);
   370     __ cpuid();
   371     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   372     __ movl(Address(rsi, 0), rax);
   373     __ movl(Address(rsi, 4), rbx);
   374     __ movl(Address(rsi, 8), rcx);
   375     __ movl(Address(rsi,12), rdx);
   377     //
   378     // return
   379     //
   380     __ bind(done);
   381     __ popf();
   382     __ pop(rsi);
   383     __ pop(rbx);
   384     __ pop(rbp);
   385     __ ret(0);
   387 #   undef __
   389     return start;
   390   };
   391 };
   394 void VM_Version::get_cpu_info_wrapper() {
   395   get_cpu_info_stub(&_cpuid_info);
   396 }
   398 #ifndef CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED
   399   #define CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(f) f()
   400 #endif
   402 void VM_Version::get_processor_features() {
   404   _cpu = 4; // 486 by default
   405   _model = 0;
   406   _stepping = 0;
   407   _cpuFeatures = 0;
   408   _logical_processors_per_package = 1;
   409   // i486 internal cache is both I&D and has a 16-byte line size
   410   _L1_data_cache_line_size = 16;
   412   if (!Use486InstrsOnly) {
   413     // Get raw processor info
   415     // Some platforms (like Win*) need a wrapper around here
   416     // in order to properly handle SEGV for YMM registers test.
   417     CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(get_cpu_info_wrapper);
   419     assert_is_initialized();
   420     _cpu = extended_cpu_family();
   421     _model = extended_cpu_model();
   422     _stepping = cpu_stepping();
   424     if (cpu_family() > 4) { // it supports CPUID
   425       _cpuFeatures = feature_flags();
   426       // Logical processors are only available on P4s and above,
   427       // and only if hyperthreading is available.
   428       _logical_processors_per_package = logical_processor_count();
   429       _L1_data_cache_line_size = L1_line_size();
   430     }
   431   }
   433   _supports_cx8 = supports_cmpxchg8();
   434   // xchg and xadd instructions
   435   _supports_atomic_getset4 = true;
   436   _supports_atomic_getadd4 = true;
   437   LP64_ONLY(_supports_atomic_getset8 = true);
   438   LP64_ONLY(_supports_atomic_getadd8 = true);
   440 #ifdef _LP64
   441   // OS should support SSE for x64 and hardware should support at least SSE2.
   442   if (!VM_Version::supports_sse2()) {
   443     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   444   }
   445   // in 64 bit the use of SSE2 is the minimum
   446   if (UseSSE < 2) UseSSE = 2;
   447 #endif
   449 #ifdef AMD64
   450   // flush_icache_stub have to be generated first.
   451   // That is why Icache line size is hard coded in ICache class,
   452   // see icache_x86.hpp. It is also the reason why we can't use
   453   // clflush instruction in 32-bit VM since it could be running
   454   // on CPU which does not support it.
   455   //
   456   // The only thing we can do is to verify that flushed
   457   // ICache::line_size has correct value.
   458   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   459   // clflush_size is size in quadwords (8 bytes).
   460   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   461 #endif
   463   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   464   if (!os::supports_sse())
   465     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   467   if (UseSSE < 4) {
   468     _cpuFeatures &= ~CPU_SSE4_1;
   469     _cpuFeatures &= ~CPU_SSE4_2;
   470   }
   472   if (UseSSE < 3) {
   473     _cpuFeatures &= ~CPU_SSE3;
   474     _cpuFeatures &= ~CPU_SSSE3;
   475     _cpuFeatures &= ~CPU_SSE4A;
   476   }
   478   if (UseSSE < 2)
   479     _cpuFeatures &= ~CPU_SSE2;
   481   if (UseSSE < 1)
   482     _cpuFeatures &= ~CPU_SSE;
   484   if (UseAVX < 2)
   485     _cpuFeatures &= ~CPU_AVX2;
   487   if (UseAVX < 1)
   488     _cpuFeatures &= ~CPU_AVX;
   490   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
   491     _cpuFeatures &= ~CPU_AES;
   493   if (logical_processors_per_package() == 1) {
   494     // HT processor could be installed on a system which doesn't support HT.
   495     _cpuFeatures &= ~CPU_HT;
   496   }
   498   char buf[256];
   499   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   500                cores_per_cpu(), threads_per_core(),
   501                cpu_family(), _model, _stepping,
   502                (supports_cmov() ? ", cmov" : ""),
   503                (supports_cmpxchg8() ? ", cx8" : ""),
   504                (supports_fxsr() ? ", fxsr" : ""),
   505                (supports_mmx()  ? ", mmx"  : ""),
   506                (supports_sse()  ? ", sse"  : ""),
   507                (supports_sse2() ? ", sse2" : ""),
   508                (supports_sse3() ? ", sse3" : ""),
   509                (supports_ssse3()? ", ssse3": ""),
   510                (supports_sse4_1() ? ", sse4.1" : ""),
   511                (supports_sse4_2() ? ", sse4.2" : ""),
   512                (supports_popcnt() ? ", popcnt" : ""),
   513                (supports_avx()    ? ", avx" : ""),
   514                (supports_avx2()   ? ", avx2" : ""),
   515                (supports_aes()    ? ", aes" : ""),
   516                (supports_clmul()  ? ", clmul" : ""),
   517                (supports_erms()   ? ", erms" : ""),
   518                (supports_rtm()    ? ", rtm" : ""),
   519                (supports_mmx_ext() ? ", mmxext" : ""),
   520                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   521                (supports_lzcnt()   ? ", lzcnt": ""),
   522                (supports_sse4a()   ? ", sse4a": ""),
   523                (supports_ht() ? ", ht": ""),
   524                (supports_tsc() ? ", tsc": ""),
   525                (supports_tscinv_bit() ? ", tscinvbit": ""),
   526                (supports_tscinv() ? ", tscinv": ""),
   527                (supports_bmi1() ? ", bmi1" : ""),
   528                (supports_bmi2() ? ", bmi2" : ""),
   529                (supports_adx() ? ", adx" : ""));
   530   _features_str = strdup(buf);
   532   // UseSSE is set to the smaller of what hardware supports and what
   533   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   534   // older Pentiums which do not support it.
   535   if (UseSSE > 4) UseSSE=4;
   536   if (UseSSE < 0) UseSSE=0;
   537   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   538     UseSSE = MIN2((intx)3,UseSSE);
   539   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   540     UseSSE = MIN2((intx)2,UseSSE);
   541   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   542     UseSSE = MIN2((intx)1,UseSSE);
   543   if (!supports_sse ()) // Drop to 0 if no SSE  support
   544     UseSSE = 0;
   546   if (UseAVX > 2) UseAVX=2;
   547   if (UseAVX < 0) UseAVX=0;
   548   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   549     UseAVX = MIN2((intx)1,UseAVX);
   550   if (!supports_avx ()) // Drop to 0 if no AVX  support
   551     UseAVX = 0;
   553   // Use AES instructions if available.
   554   if (supports_aes()) {
   555     if (FLAG_IS_DEFAULT(UseAES)) {
   556       FLAG_SET_DEFAULT(UseAES, true);
   557     }
   558     if (!UseAES) {
   559       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   560         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
   561       }
   562       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   563     } else {
   564       if (UseSSE > 2) {
   565         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   566           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
   567         }
   568       } else {
   569         // The AES intrinsic stubs require AES instruction support (of course)
   570         // but also require sse3 mode or higher for instructions it use.
   571         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   572           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
   573         }
   574         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   575       }
   576     }
   577   } else if (UseAES || UseAESIntrinsics) {
   578     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
   579       warning("AES instructions are not available on this CPU");
   580       FLAG_SET_DEFAULT(UseAES, false);
   581     }
   582     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   583       warning("AES intrinsics are not available on this CPU");
   584       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   585     }
   586   }
   588   // Use CLMUL instructions if available.
   589   if (supports_clmul()) {
   590     if (FLAG_IS_DEFAULT(UseCLMUL)) {
   591       UseCLMUL = true;
   592     }
   593   } else if (UseCLMUL) {
   594     if (!FLAG_IS_DEFAULT(UseCLMUL))
   595       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
   596     FLAG_SET_DEFAULT(UseCLMUL, false);
   597   }
   599   if (UseCLMUL && (UseSSE > 2)) {
   600     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
   601       UseCRC32Intrinsics = true;
   602     }
   603   } else if (UseCRC32Intrinsics) {
   604     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
   605       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
   606     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
   607   }
   609   // GHASH/GCM intrinsics
   610   if (UseCLMUL && (UseSSE > 2)) {
   611     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
   612       UseGHASHIntrinsics = true;
   613     }
   614   } else if (UseGHASHIntrinsics) {
   615     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
   616       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
   617     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
   618   }
   620   if (UseSHA) {
   621     warning("SHA instructions are not available on this CPU");
   622     FLAG_SET_DEFAULT(UseSHA, false);
   623   }
   624   if (UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics) {
   625     warning("SHA intrinsics are not available on this CPU");
   626     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
   627     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
   628     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
   629   }
   631   // Adjust RTM (Restricted Transactional Memory) flags
   632   if (!supports_rtm() && UseRTMLocking) {
   633     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
   634     // setting during arguments processing. See use_biased_locking().
   635     // VM_Version_init() is executed after UseBiasedLocking is used
   636     // in Thread::allocate().
   637     vm_exit_during_initialization("RTM instructions are not available on this CPU");
   638   }
   640 #if INCLUDE_RTM_OPT
   641   if (UseRTMLocking) {
   642     if (is_intel_family_core()) {
   643       if ((_model == CPU_MODEL_HASWELL_E3) ||
   644           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
   645           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
   646         if (!UnlockExperimentalVMOptions) {
   647           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
   648         } else {
   649           warning("UseRTMLocking is only available as experimental option on this platform.");
   650         }
   651       }
   652     }
   653     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
   654       // RTM locking should be used only for applications with
   655       // high lock contention. For now we do not use it by default.
   656       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
   657     }
   658     if (!is_power_of_2(RTMTotalCountIncrRate)) {
   659       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
   660       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
   661     }
   662     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
   663       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
   664       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
   665     }
   666   } else { // !UseRTMLocking
   667     if (UseRTMForStackLocks) {
   668       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
   669         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
   670       }
   671       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
   672     }
   673     if (UseRTMDeopt) {
   674       FLAG_SET_DEFAULT(UseRTMDeopt, false);
   675     }
   676     if (PrintPreciseRTMLockingStatistics) {
   677       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
   678     }
   679   }
   680 #else
   681   if (UseRTMLocking) {
   682     // Only C2 does RTM locking optimization.
   683     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
   684     // setting during arguments processing. See use_biased_locking().
   685     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
   686   }
   687 #endif
   689 #ifdef COMPILER2
   690   if (UseFPUForSpilling) {
   691     if (UseSSE < 2) {
   692       // Only supported with SSE2+
   693       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   694     }
   695   }
   696   if (MaxVectorSize > 0) {
   697     if (!is_power_of_2(MaxVectorSize)) {
   698       warning("MaxVectorSize must be a power of 2");
   699       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   700     }
   701     if (MaxVectorSize > 32) {
   702       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   703     }
   704     if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
   705       // 32 bytes vectors (in YMM) are only supported with AVX+
   706       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   707     }
   708     if (UseSSE < 2) {
   709       // Vectors (in XMM) are only supported with SSE2+
   710       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   711     }
   712 #ifdef ASSERT
   713     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
   714       tty->print_cr("State of YMM registers after signal handle:");
   715       int nreg = 2 LP64_ONLY(+2);
   716       const char* ymm_name[4] = {"0", "7", "8", "15"};
   717       for (int i = 0; i < nreg; i++) {
   718         tty->print("YMM%s:", ymm_name[i]);
   719         for (int j = 7; j >=0; j--) {
   720           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
   721         }
   722         tty->cr();
   723       }
   724     }
   725 #endif
   726   }
   728 #ifdef _LP64
   729   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
   730     UseMultiplyToLenIntrinsic = true;
   731   }
   732   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
   733     UseSquareToLenIntrinsic = true;
   734   }
   735   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
   736     UseMulAddIntrinsic = true;
   737   }
   738   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
   739     UseMontgomeryMultiplyIntrinsic = true;
   740   }
   741   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
   742     UseMontgomerySquareIntrinsic = true;
   743   }
   744 #else
   745   if (UseMultiplyToLenIntrinsic) {
   746     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
   747       warning("multiplyToLen intrinsic is not available in 32-bit VM");
   748     }
   749     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
   750   }
   751   if (UseSquareToLenIntrinsic) {
   752     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
   753       warning("squareToLen intrinsic is not available in 32-bit VM");
   754     }
   755     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
   756   }
   757   if (UseMulAddIntrinsic) {
   758     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
   759       warning("mulAdd intrinsic is not available in 32-bit VM");
   760     }
   761     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
   762   }
   763   if (UseMontgomeryMultiplyIntrinsic) {
   764     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
   765       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
   766     }
   767     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
   768   }
   769   if (UseMontgomerySquareIntrinsic) {
   770     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
   771       warning("montgomerySquare intrinsic is not available in 32-bit VM");
   772     }
   773     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
   774   }
   775 #endif
   776 #endif // COMPILER2
   778   // On new cpus instructions which update whole XMM register should be used
   779   // to prevent partial register stall due to dependencies on high half.
   780   //
   781   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   782   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   783   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   784   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   786   if( is_amd() ) { // AMD cpus specific settings
   787     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   788       // Use it on new AMD cpus starting from Opteron.
   789       UseAddressNop = true;
   790     }
   791     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   792       // Use it on new AMD cpus starting from Opteron.
   793       UseNewLongLShift = true;
   794     }
   795     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   796       if( supports_sse4a() ) {
   797         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   798       } else {
   799         UseXmmLoadAndClearUpper = false;
   800       }
   801     }
   802     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   803       if( supports_sse4a() ) {
   804         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   805       } else {
   806         UseXmmRegToRegMoveAll = false;
   807       }
   808     }
   809     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   810       if( supports_sse4a() ) {
   811         UseXmmI2F = true;
   812       } else {
   813         UseXmmI2F = false;
   814       }
   815     }
   816     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   817       if( supports_sse4a() ) {
   818         UseXmmI2D = true;
   819       } else {
   820         UseXmmI2D = false;
   821       }
   822     }
   823     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   824       if( supports_sse4_2() && UseSSE >= 4 ) {
   825         UseSSE42Intrinsics = true;
   826       }
   827     }
   829     // some defaults for AMD family 15h
   830     if ( cpu_family() == 0x15 ) {
   831       // On family 15h processors default is no sw prefetch
   832       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   833         AllocatePrefetchStyle = 0;
   834       }
   835       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   836       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   837         AllocatePrefetchInstr = 3;
   838       }
   839       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   840       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   841         UseXMMForArrayCopy = true;
   842       }
   843       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   844         UseUnalignedLoadStores = true;
   845       }
   846     }
   848 #ifdef COMPILER2
   849     if (MaxVectorSize > 16) {
   850       // Limit vectors size to 16 bytes on current AMD cpus.
   851       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   852     }
   853 #endif // COMPILER2
   854   }
   856   if( is_intel() ) { // Intel cpus specific settings
   857     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   858       UseStoreImmI16 = false; // don't use it on Intel cpus
   859     }
   860     if( cpu_family() == 6 || cpu_family() == 15 ) {
   861       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   862         // Use it on all Intel cpus starting from PentiumPro
   863         UseAddressNop = true;
   864       }
   865     }
   866     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   867       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   868     }
   869     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   870       if( supports_sse3() ) {
   871         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   872       } else {
   873         UseXmmRegToRegMoveAll = false;
   874       }
   875     }
   876     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   877 #ifdef COMPILER2
   878       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   879         // For new Intel cpus do the next optimization:
   880         // don't align the beginning of a loop if there are enough instructions
   881         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   882         // in current fetch line (OptoLoopAlignment) or the padding
   883         // is big (> MaxLoopPad).
   884         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   885         // generated NOP instructions. 11 is the largest size of one
   886         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   887         MaxLoopPad = 11;
   888       }
   889 #endif // COMPILER2
   890       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   891         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   892       }
   893       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
   894         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   895           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   896         }
   897       }
   898       if (supports_sse4_2() && UseSSE >= 4) {
   899         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   900           UseSSE42Intrinsics = true;
   901         }
   902       }
   903     }
   904     if ((cpu_family() == 0x06) &&
   905         ((extended_cpu_model() == 0x36) || // Centerton
   906          (extended_cpu_model() == 0x37) || // Silvermont
   907          (extended_cpu_model() == 0x4D))) {
   908 #ifdef COMPILER2
   909       if (FLAG_IS_DEFAULT(OptoScheduling)) {
   910         OptoScheduling = true;
   911       }
   912 #endif
   913       if (supports_sse4_2()) { // Silvermont
   914         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   915           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   916         }
   917       }
   918     }
   919     if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
   920       AllocatePrefetchInstr = 3;
   921     }
   922   }
   924   // Use count leading zeros count instruction if available.
   925   if (supports_lzcnt()) {
   926     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   927       UseCountLeadingZerosInstruction = true;
   928     }
   929    } else if (UseCountLeadingZerosInstruction) {
   930     warning("lzcnt instruction is not available on this CPU");
   931     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
   932   }
   934   // Use count trailing zeros instruction if available
   935   if (supports_bmi1()) {
   936     // tzcnt does not require VEX prefix
   937     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
   938       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
   939         // Don't use tzcnt if BMI1 is switched off on command line.
   940         UseCountTrailingZerosInstruction = false;
   941       } else {
   942         UseCountTrailingZerosInstruction = true;
   943       }
   944     }
   945   } else if (UseCountTrailingZerosInstruction) {
   946     warning("tzcnt instruction is not available on this CPU");
   947     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
   948   }
   950   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
   951   // VEX prefix is generated only when AVX > 0.
   952   if (supports_bmi1() && supports_avx()) {
   953     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
   954       UseBMI1Instructions = true;
   955     }
   956   } else if (UseBMI1Instructions) {
   957     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
   958     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
   959   }
   961   if (supports_bmi2() && supports_avx()) {
   962     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
   963       UseBMI2Instructions = true;
   964     }
   965   } else if (UseBMI2Instructions) {
   966     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
   967     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
   968   }
   970   // Use population count instruction if available.
   971   if (supports_popcnt()) {
   972     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   973       UsePopCountInstruction = true;
   974     }
   975   } else if (UsePopCountInstruction) {
   976     warning("POPCNT instruction is not available on this CPU");
   977     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   978   }
   980   // Use fast-string operations if available.
   981   if (supports_erms()) {
   982     if (FLAG_IS_DEFAULT(UseFastStosb)) {
   983       UseFastStosb = true;
   984     }
   985   } else if (UseFastStosb) {
   986     warning("fast-string operations are not available on this CPU");
   987     FLAG_SET_DEFAULT(UseFastStosb, false);
   988   }
   990 #ifdef COMPILER2
   991   if (FLAG_IS_DEFAULT(AlignVector)) {
   992     // Modern processors allow misaligned memory operations for vectors.
   993     AlignVector = !UseUnalignedLoadStores;
   994   }
   995 #endif // COMPILER2
   997   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   998   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
  1000   // set valid Prefetch instruction
  1001   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
  1002   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
  1003   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
  1004   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
  1006   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
  1007   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
  1008   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
  1009   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
  1011   // Allocation prefetch settings
  1012   intx cache_line_size = prefetch_data_size();
  1013   if( cache_line_size > AllocatePrefetchStepSize )
  1014     AllocatePrefetchStepSize = cache_line_size;
  1016   assert(AllocatePrefetchLines > 0, "invalid value");
  1017   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
  1018     AllocatePrefetchLines = 3;
  1019   assert(AllocateInstancePrefetchLines > 0, "invalid value");
  1020   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
  1021     AllocateInstancePrefetchLines = 1;
  1023   AllocatePrefetchDistance = allocate_prefetch_distance();
  1024   AllocatePrefetchStyle    = allocate_prefetch_style();
  1026   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
  1027     if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
  1028 #ifdef _LP64
  1029       AllocatePrefetchDistance = 384;
  1030 #else
  1031       AllocatePrefetchDistance = 320;
  1032 #endif
  1034     if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
  1035       AllocatePrefetchDistance = 192;
  1036       AllocatePrefetchLines = 4;
  1038 #ifdef COMPILER2
  1039     if (supports_sse4_2()) {
  1040       if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
  1041         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
  1044 #endif
  1046   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
  1048 #ifdef _LP64
  1049   // Prefetch settings
  1050   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
  1051   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
  1052   PrefetchFieldsAhead         = prefetch_fields_ahead();
  1053 #endif
  1055   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
  1056      (cache_line_size > ContendedPaddingWidth))
  1057      ContendedPaddingWidth = cache_line_size;
  1059 #ifndef PRODUCT
  1060   if (PrintMiscellaneous && Verbose) {
  1061     tty->print_cr("Logical CPUs per core: %u",
  1062                   logical_processors_per_package());
  1063     tty->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
  1064     tty->print("UseSSE=%d", (int) UseSSE);
  1065     if (UseAVX > 0) {
  1066       tty->print("  UseAVX=%d", (int) UseAVX);
  1068     if (UseAES) {
  1069       tty->print("  UseAES=1");
  1071 #ifdef COMPILER2
  1072     if (MaxVectorSize > 0) {
  1073       tty->print("  MaxVectorSize=%d", (int) MaxVectorSize);
  1075 #endif
  1076     tty->cr();
  1077     tty->print("Allocation");
  1078     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
  1079       tty->print_cr(": no prefetching");
  1080     } else {
  1081       tty->print(" prefetching: ");
  1082       if (UseSSE == 0 && supports_3dnow_prefetch()) {
  1083         tty->print("PREFETCHW");
  1084       } else if (UseSSE >= 1) {
  1085         if (AllocatePrefetchInstr == 0) {
  1086           tty->print("PREFETCHNTA");
  1087         } else if (AllocatePrefetchInstr == 1) {
  1088           tty->print("PREFETCHT0");
  1089         } else if (AllocatePrefetchInstr == 2) {
  1090           tty->print("PREFETCHT2");
  1091         } else if (AllocatePrefetchInstr == 3) {
  1092           tty->print("PREFETCHW");
  1095       if (AllocatePrefetchLines > 1) {
  1096         tty->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
  1097       } else {
  1098         tty->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
  1102     if (PrefetchCopyIntervalInBytes > 0) {
  1103       tty->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
  1105     if (PrefetchScanIntervalInBytes > 0) {
  1106       tty->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
  1108     if (PrefetchFieldsAhead > 0) {
  1109       tty->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
  1111     if (ContendedPaddingWidth > 0) {
  1112       tty->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
  1115 #endif // !PRODUCT
  1118 bool VM_Version::use_biased_locking() {
  1119 #if INCLUDE_RTM_OPT
  1120   // RTM locking is most useful when there is high lock contention and
  1121   // low data contention.  With high lock contention the lock is usually
  1122   // inflated and biased locking is not suitable for that case.
  1123   // RTM locking code requires that biased locking is off.
  1124   // Note: we can't switch off UseBiasedLocking in get_processor_features()
  1125   // because it is used by Thread::allocate() which is called before
  1126   // VM_Version::initialize().
  1127   if (UseRTMLocking && UseBiasedLocking) {
  1128     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
  1129       FLAG_SET_DEFAULT(UseBiasedLocking, false);
  1130     } else {
  1131       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
  1132       UseBiasedLocking = false;
  1135 #endif
  1136   return UseBiasedLocking;
  1139 void VM_Version::initialize() {
  1140   ResourceMark rm;
  1141   // Making this stub must be FIRST use of assembler
  1143   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
  1144   if (stub_blob == NULL) {
  1145     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
  1147   CodeBuffer c(stub_blob);
  1148   VM_Version_StubGenerator g(&c);
  1149   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
  1150                                      g.generate_get_cpu_info());
  1152   get_processor_features();

mercurial