src/share/vm/runtime/thread.cpp

Thu, 10 May 2012 15:44:19 +0200

author
nloodin
date
Thu, 10 May 2012 15:44:19 +0200
changeset 3783
7432b9db36ff
parent 3705
df4cd4aac5c1
child 3884
f8de958e5b2c
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7165755: OS Information much longer on linux than other platforms
Reviewed-by: sla, dholmes

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/oopFactory.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/instanceKlass.hpp"
    40 #include "oops/objArrayOop.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "oops/symbol.hpp"
    43 #include "prims/jvm_misc.hpp"
    44 #include "prims/jvmtiExport.hpp"
    45 #include "prims/jvmtiThreadState.hpp"
    46 #include "prims/privilegedStack.hpp"
    47 #include "runtime/aprofiler.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/osThread.hpp"
    62 #include "runtime/safepoint.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/statSampler.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/task.hpp"
    67 #include "runtime/threadCritical.hpp"
    68 #include "runtime/threadLocalStorage.hpp"
    69 #include "runtime/vframe.hpp"
    70 #include "runtime/vframeArray.hpp"
    71 #include "runtime/vframe_hp.hpp"
    72 #include "runtime/vmThread.hpp"
    73 #include "runtime/vm_operations.hpp"
    74 #include "services/attachListener.hpp"
    75 #include "services/management.hpp"
    76 #include "services/threadService.hpp"
    77 #include "trace/traceEventTypes.hpp"
    78 #include "utilities/defaultStream.hpp"
    79 #include "utilities/dtrace.hpp"
    80 #include "utilities/events.hpp"
    81 #include "utilities/preserveException.hpp"
    82 #ifdef TARGET_OS_FAMILY_linux
    83 # include "os_linux.inline.hpp"
    84 # include "thread_linux.inline.hpp"
    85 #endif
    86 #ifdef TARGET_OS_FAMILY_solaris
    87 # include "os_solaris.inline.hpp"
    88 # include "thread_solaris.inline.hpp"
    89 #endif
    90 #ifdef TARGET_OS_FAMILY_windows
    91 # include "os_windows.inline.hpp"
    92 # include "thread_windows.inline.hpp"
    93 #endif
    94 #ifdef TARGET_OS_FAMILY_bsd
    95 # include "os_bsd.inline.hpp"
    96 # include "thread_bsd.inline.hpp"
    97 #endif
    98 #ifndef SERIALGC
    99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   102 #endif
   103 #ifdef COMPILER1
   104 #include "c1/c1_Compiler.hpp"
   105 #endif
   106 #ifdef COMPILER2
   107 #include "opto/c2compiler.hpp"
   108 #include "opto/idealGraphPrinter.hpp"
   109 #endif
   111 #ifdef DTRACE_ENABLED
   113 // Only bother with this argument setup if dtrace is available
   115 #ifndef USDT2
   116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   119   intptr_t, intptr_t, bool);
   120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   121   intptr_t, intptr_t, bool);
   123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   124   {                                                                        \
   125     ResourceMark rm(this);                                                 \
   126     int len = 0;                                                           \
   127     const char* name = (javathread)->get_thread_name();                    \
   128     len = strlen(name);                                                    \
   129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   130       name, len,                                                           \
   131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   132       (javathread)->osthread()->thread_id(),                               \
   133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   134   }
   136 #else /* USDT2 */
   138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   142   {                                                                        \
   143     ResourceMark rm(this);                                                 \
   144     int len = 0;                                                           \
   145     const char* name = (javathread)->get_thread_name();                    \
   146     len = strlen(name);                                                    \
   147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   148       (char *) name, len,                                                           \
   149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   152   }
   154 #endif /* USDT2 */
   156 #else //  ndef DTRACE_ENABLED
   158 #define DTRACE_THREAD_PROBE(probe, javathread)
   160 #endif // ndef DTRACE_ENABLED
   162 // Class hierarchy
   163 // - Thread
   164 //   - VMThread
   165 //   - WatcherThread
   166 //   - ConcurrentMarkSweepThread
   167 //   - JavaThread
   168 //     - CompilerThread
   170 // ======= Thread ========
   172 // Support for forcing alignment of thread objects for biased locking
   173 void* Thread::operator new(size_t size) {
   174   if (UseBiasedLocking) {
   175     const int alignment = markOopDesc::biased_lock_alignment;
   176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   177     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   178     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   181            "JavaThread alignment code overflowed allocated storage");
   182     if (TraceBiasedLocking) {
   183       if (aligned_addr != real_malloc_addr)
   184         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   185                       real_malloc_addr, aligned_addr);
   186     }
   187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   188     return aligned_addr;
   189   } else {
   190     return CHeapObj::operator new(size);
   191   }
   192 }
   194 void Thread::operator delete(void* p) {
   195   if (UseBiasedLocking) {
   196     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   197     CHeapObj::operator delete(real_malloc_addr);
   198   } else {
   199     CHeapObj::operator delete(p);
   200   }
   201 }
   204 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   205 // JavaThread
   208 Thread::Thread() {
   209   // stack and get_thread
   210   set_stack_base(NULL);
   211   set_stack_size(0);
   212   set_self_raw_id(0);
   213   set_lgrp_id(-1);
   215   // allocated data structures
   216   set_osthread(NULL);
   217   set_resource_area(new ResourceArea());
   218   set_handle_area(new HandleArea(NULL));
   219   set_active_handles(NULL);
   220   set_free_handle_block(NULL);
   221   set_last_handle_mark(NULL);
   223   // This initial value ==> never claimed.
   224   _oops_do_parity = 0;
   226   // the handle mark links itself to last_handle_mark
   227   new HandleMark(this);
   229   // plain initialization
   230   debug_only(_owned_locks = NULL;)
   231   debug_only(_allow_allocation_count = 0;)
   232   NOT_PRODUCT(_allow_safepoint_count = 0;)
   233   NOT_PRODUCT(_skip_gcalot = false;)
   234   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   235   _jvmti_env_iteration_count = 0;
   236   set_allocated_bytes(0);
   237   set_trace_buffer(NULL);
   238   _vm_operation_started_count = 0;
   239   _vm_operation_completed_count = 0;
   240   _current_pending_monitor = NULL;
   241   _current_pending_monitor_is_from_java = true;
   242   _current_waiting_monitor = NULL;
   243   _num_nested_signal = 0;
   244   omFreeList = NULL ;
   245   omFreeCount = 0 ;
   246   omFreeProvision = 32 ;
   247   omInUseList = NULL ;
   248   omInUseCount = 0 ;
   250 #ifdef ASSERT
   251   _visited_for_critical_count = false;
   252 #endif
   254   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   255   _suspend_flags = 0;
   257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   258   _hashStateX = os::random() ;
   259   _hashStateY = 842502087 ;
   260   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   261   _hashStateW = 273326509 ;
   263   _OnTrap   = 0 ;
   264   _schedctl = NULL ;
   265   _Stalled  = 0 ;
   266   _TypeTag  = 0x2BAD ;
   268   // Many of the following fields are effectively final - immutable
   269   // Note that nascent threads can't use the Native Monitor-Mutex
   270   // construct until the _MutexEvent is initialized ...
   271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   272   // we might instead use a stack of ParkEvents that we could provision on-demand.
   273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   274   // and ::Release()
   275   _ParkEvent   = ParkEvent::Allocate (this) ;
   276   _SleepEvent  = ParkEvent::Allocate (this) ;
   277   _MutexEvent  = ParkEvent::Allocate (this) ;
   278   _MuxEvent    = ParkEvent::Allocate (this) ;
   280 #ifdef CHECK_UNHANDLED_OOPS
   281   if (CheckUnhandledOops) {
   282     _unhandled_oops = new UnhandledOops(this);
   283   }
   284 #endif // CHECK_UNHANDLED_OOPS
   285 #ifdef ASSERT
   286   if (UseBiasedLocking) {
   287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   288     assert(this == _real_malloc_address ||
   289            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   290            "bug in forced alignment of thread objects");
   291   }
   292 #endif /* ASSERT */
   293 }
   295 void Thread::initialize_thread_local_storage() {
   296   // Note: Make sure this method only calls
   297   // non-blocking operations. Otherwise, it might not work
   298   // with the thread-startup/safepoint interaction.
   300   // During Java thread startup, safepoint code should allow this
   301   // method to complete because it may need to allocate memory to
   302   // store information for the new thread.
   304   // initialize structure dependent on thread local storage
   305   ThreadLocalStorage::set_thread(this);
   307   // set up any platform-specific state.
   308   os::initialize_thread();
   310 }
   312 void Thread::record_stack_base_and_size() {
   313   set_stack_base(os::current_stack_base());
   314   set_stack_size(os::current_stack_size());
   315 }
   318 Thread::~Thread() {
   319   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   320   ObjectSynchronizer::omFlush (this) ;
   322   // deallocate data structures
   323   delete resource_area();
   324   // since the handle marks are using the handle area, we have to deallocated the root
   325   // handle mark before deallocating the thread's handle area,
   326   assert(last_handle_mark() != NULL, "check we have an element");
   327   delete last_handle_mark();
   328   assert(last_handle_mark() == NULL, "check we have reached the end");
   330   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   331   // We NULL out the fields for good hygiene.
   332   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   333   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   334   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   335   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   337   delete handle_area();
   339   // osthread() can be NULL, if creation of thread failed.
   340   if (osthread() != NULL) os::free_thread(osthread());
   342   delete _SR_lock;
   344   // clear thread local storage if the Thread is deleting itself
   345   if (this == Thread::current()) {
   346     ThreadLocalStorage::set_thread(NULL);
   347   } else {
   348     // In the case where we're not the current thread, invalidate all the
   349     // caches in case some code tries to get the current thread or the
   350     // thread that was destroyed, and gets stale information.
   351     ThreadLocalStorage::invalidate_all();
   352   }
   353   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   354 }
   356 // NOTE: dummy function for assertion purpose.
   357 void Thread::run() {
   358   ShouldNotReachHere();
   359 }
   361 #ifdef ASSERT
   362 // Private method to check for dangling thread pointer
   363 void check_for_dangling_thread_pointer(Thread *thread) {
   364  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   365          "possibility of dangling Thread pointer");
   366 }
   367 #endif
   370 #ifndef PRODUCT
   371 // Tracing method for basic thread operations
   372 void Thread::trace(const char* msg, const Thread* const thread) {
   373   if (!TraceThreadEvents) return;
   374   ResourceMark rm;
   375   ThreadCritical tc;
   376   const char *name = "non-Java thread";
   377   int prio = -1;
   378   if (thread->is_Java_thread()
   379       && !thread->is_Compiler_thread()) {
   380     // The Threads_lock must be held to get information about
   381     // this thread but may not be in some situations when
   382     // tracing  thread events.
   383     bool release_Threads_lock = false;
   384     if (!Threads_lock->owned_by_self()) {
   385       Threads_lock->lock();
   386       release_Threads_lock = true;
   387     }
   388     JavaThread* jt = (JavaThread *)thread;
   389     name = (char *)jt->get_thread_name();
   390     oop thread_oop = jt->threadObj();
   391     if (thread_oop != NULL) {
   392       prio = java_lang_Thread::priority(thread_oop);
   393     }
   394     if (release_Threads_lock) {
   395       Threads_lock->unlock();
   396     }
   397   }
   398   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   399 }
   400 #endif
   403 ThreadPriority Thread::get_priority(const Thread* const thread) {
   404   trace("get priority", thread);
   405   ThreadPriority priority;
   406   // Can return an error!
   407   (void)os::get_priority(thread, priority);
   408   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   409   return priority;
   410 }
   412 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   413   trace("set priority", thread);
   414   debug_only(check_for_dangling_thread_pointer(thread);)
   415   // Can return an error!
   416   (void)os::set_priority(thread, priority);
   417 }
   420 void Thread::start(Thread* thread) {
   421   trace("start", thread);
   422   // Start is different from resume in that its safety is guaranteed by context or
   423   // being called from a Java method synchronized on the Thread object.
   424   if (!DisableStartThread) {
   425     if (thread->is_Java_thread()) {
   426       // Initialize the thread state to RUNNABLE before starting this thread.
   427       // Can not set it after the thread started because we do not know the
   428       // exact thread state at that time. It could be in MONITOR_WAIT or
   429       // in SLEEPING or some other state.
   430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   431                                           java_lang_Thread::RUNNABLE);
   432     }
   433     os::start_thread(thread);
   434   }
   435 }
   437 // Enqueue a VM_Operation to do the job for us - sometime later
   438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   440   VMThread::execute(vm_stop);
   441 }
   444 //
   445 // Check if an external suspend request has completed (or has been
   446 // cancelled). Returns true if the thread is externally suspended and
   447 // false otherwise.
   448 //
   449 // The bits parameter returns information about the code path through
   450 // the routine. Useful for debugging:
   451 //
   452 // set in is_ext_suspend_completed():
   453 // 0x00000001 - routine was entered
   454 // 0x00000010 - routine return false at end
   455 // 0x00000100 - thread exited (return false)
   456 // 0x00000200 - suspend request cancelled (return false)
   457 // 0x00000400 - thread suspended (return true)
   458 // 0x00001000 - thread is in a suspend equivalent state (return true)
   459 // 0x00002000 - thread is native and walkable (return true)
   460 // 0x00004000 - thread is native_trans and walkable (needed retry)
   461 //
   462 // set in wait_for_ext_suspend_completion():
   463 // 0x00010000 - routine was entered
   464 // 0x00020000 - suspend request cancelled before loop (return false)
   465 // 0x00040000 - thread suspended before loop (return true)
   466 // 0x00080000 - suspend request cancelled in loop (return false)
   467 // 0x00100000 - thread suspended in loop (return true)
   468 // 0x00200000 - suspend not completed during retry loop (return false)
   469 //
   471 // Helper class for tracing suspend wait debug bits.
   472 //
   473 // 0x00000100 indicates that the target thread exited before it could
   474 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   475 // 0x00080000 each indicate a cancelled suspend request so they don't
   476 // count as wait failures either.
   477 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   479 class TraceSuspendDebugBits : public StackObj {
   480  private:
   481   JavaThread * jt;
   482   bool         is_wait;
   483   bool         called_by_wait;  // meaningful when !is_wait
   484   uint32_t *   bits;
   486  public:
   487   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   488                         uint32_t *_bits) {
   489     jt             = _jt;
   490     is_wait        = _is_wait;
   491     called_by_wait = _called_by_wait;
   492     bits           = _bits;
   493   }
   495   ~TraceSuspendDebugBits() {
   496     if (!is_wait) {
   497 #if 1
   498       // By default, don't trace bits for is_ext_suspend_completed() calls.
   499       // That trace is very chatty.
   500       return;
   501 #else
   502       if (!called_by_wait) {
   503         // If tracing for is_ext_suspend_completed() is enabled, then only
   504         // trace calls to it from wait_for_ext_suspend_completion()
   505         return;
   506       }
   507 #endif
   508     }
   510     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   511       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   512         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   513         ResourceMark rm;
   515         tty->print_cr(
   516             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   517             jt->get_thread_name(), *bits);
   519         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   520       }
   521     }
   522   }
   523 };
   524 #undef DEBUG_FALSE_BITS
   527 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   531   bool do_trans_retry;           // flag to force the retry
   533   *bits |= 0x00000001;
   535   do {
   536     do_trans_retry = false;
   538     if (is_exiting()) {
   539       // Thread is in the process of exiting. This is always checked
   540       // first to reduce the risk of dereferencing a freed JavaThread.
   541       *bits |= 0x00000100;
   542       return false;
   543     }
   545     if (!is_external_suspend()) {
   546       // Suspend request is cancelled. This is always checked before
   547       // is_ext_suspended() to reduce the risk of a rogue resume
   548       // confusing the thread that made the suspend request.
   549       *bits |= 0x00000200;
   550       return false;
   551     }
   553     if (is_ext_suspended()) {
   554       // thread is suspended
   555       *bits |= 0x00000400;
   556       return true;
   557     }
   559     // Now that we no longer do hard suspends of threads running
   560     // native code, the target thread can be changing thread state
   561     // while we are in this routine:
   562     //
   563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   564     //
   565     // We save a copy of the thread state as observed at this moment
   566     // and make our decision about suspend completeness based on the
   567     // copy. This closes the race where the thread state is seen as
   568     // _thread_in_native_trans in the if-thread_blocked check, but is
   569     // seen as _thread_blocked in if-thread_in_native_trans check.
   570     JavaThreadState save_state = thread_state();
   572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   573       // If the thread's state is _thread_blocked and this blocking
   574       // condition is known to be equivalent to a suspend, then we can
   575       // consider the thread to be externally suspended. This means that
   576       // the code that sets _thread_blocked has been modified to do
   577       // self-suspension if the blocking condition releases. We also
   578       // used to check for CONDVAR_WAIT here, but that is now covered by
   579       // the _thread_blocked with self-suspension check.
   580       //
   581       // Return true since we wouldn't be here unless there was still an
   582       // external suspend request.
   583       *bits |= 0x00001000;
   584       return true;
   585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   586       // Threads running native code will self-suspend on native==>VM/Java
   587       // transitions. If its stack is walkable (should always be the case
   588       // unless this function is called before the actual java_suspend()
   589       // call), then the wait is done.
   590       *bits |= 0x00002000;
   591       return true;
   592     } else if (!called_by_wait && !did_trans_retry &&
   593                save_state == _thread_in_native_trans &&
   594                frame_anchor()->walkable()) {
   595       // The thread is transitioning from thread_in_native to another
   596       // thread state. check_safepoint_and_suspend_for_native_trans()
   597       // will force the thread to self-suspend. If it hasn't gotten
   598       // there yet we may have caught the thread in-between the native
   599       // code check above and the self-suspend. Lucky us. If we were
   600       // called by wait_for_ext_suspend_completion(), then it
   601       // will be doing the retries so we don't have to.
   602       //
   603       // Since we use the saved thread state in the if-statement above,
   604       // there is a chance that the thread has already transitioned to
   605       // _thread_blocked by the time we get here. In that case, we will
   606       // make a single unnecessary pass through the logic below. This
   607       // doesn't hurt anything since we still do the trans retry.
   609       *bits |= 0x00004000;
   611       // Once the thread leaves thread_in_native_trans for another
   612       // thread state, we break out of this retry loop. We shouldn't
   613       // need this flag to prevent us from getting back here, but
   614       // sometimes paranoia is good.
   615       did_trans_retry = true;
   617       // We wait for the thread to transition to a more usable state.
   618       for (int i = 1; i <= SuspendRetryCount; i++) {
   619         // We used to do an "os::yield_all(i)" call here with the intention
   620         // that yielding would increase on each retry. However, the parameter
   621         // is ignored on Linux which means the yield didn't scale up. Waiting
   622         // on the SR_lock below provides a much more predictable scale up for
   623         // the delay. It also provides a simple/direct point to check for any
   624         // safepoint requests from the VMThread
   626         // temporarily drops SR_lock while doing wait with safepoint check
   627         // (if we're a JavaThread - the WatcherThread can also call this)
   628         // and increase delay with each retry
   629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   631         // check the actual thread state instead of what we saved above
   632         if (thread_state() != _thread_in_native_trans) {
   633           // the thread has transitioned to another thread state so
   634           // try all the checks (except this one) one more time.
   635           do_trans_retry = true;
   636           break;
   637         }
   638       } // end retry loop
   641     }
   642   } while (do_trans_retry);
   644   *bits |= 0x00000010;
   645   return false;
   646 }
   648 //
   649 // Wait for an external suspend request to complete (or be cancelled).
   650 // Returns true if the thread is externally suspended and false otherwise.
   651 //
   652 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   653        uint32_t *bits) {
   654   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   655                              false /* !called_by_wait */, bits);
   657   // local flag copies to minimize SR_lock hold time
   658   bool is_suspended;
   659   bool pending;
   660   uint32_t reset_bits;
   662   // set a marker so is_ext_suspend_completed() knows we are the caller
   663   *bits |= 0x00010000;
   665   // We use reset_bits to reinitialize the bits value at the top of
   666   // each retry loop. This allows the caller to make use of any
   667   // unused bits for their own marking purposes.
   668   reset_bits = *bits;
   670   {
   671     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   672     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   673                                             delay, bits);
   674     pending = is_external_suspend();
   675   }
   676   // must release SR_lock to allow suspension to complete
   678   if (!pending) {
   679     // A cancelled suspend request is the only false return from
   680     // is_ext_suspend_completed() that keeps us from entering the
   681     // retry loop.
   682     *bits |= 0x00020000;
   683     return false;
   684   }
   686   if (is_suspended) {
   687     *bits |= 0x00040000;
   688     return true;
   689   }
   691   for (int i = 1; i <= retries; i++) {
   692     *bits = reset_bits;  // reinit to only track last retry
   694     // We used to do an "os::yield_all(i)" call here with the intention
   695     // that yielding would increase on each retry. However, the parameter
   696     // is ignored on Linux which means the yield didn't scale up. Waiting
   697     // on the SR_lock below provides a much more predictable scale up for
   698     // the delay. It also provides a simple/direct point to check for any
   699     // safepoint requests from the VMThread
   701     {
   702       MutexLocker ml(SR_lock());
   703       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   704       // can also call this)  and increase delay with each retry
   705       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   707       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   708                                               delay, bits);
   710       // It is possible for the external suspend request to be cancelled
   711       // (by a resume) before the actual suspend operation is completed.
   712       // Refresh our local copy to see if we still need to wait.
   713       pending = is_external_suspend();
   714     }
   716     if (!pending) {
   717       // A cancelled suspend request is the only false return from
   718       // is_ext_suspend_completed() that keeps us from staying in the
   719       // retry loop.
   720       *bits |= 0x00080000;
   721       return false;
   722     }
   724     if (is_suspended) {
   725       *bits |= 0x00100000;
   726       return true;
   727     }
   728   } // end retry loop
   730   // thread did not suspend after all our retries
   731   *bits |= 0x00200000;
   732   return false;
   733 }
   735 #ifndef PRODUCT
   736 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   738   // This should not need to be atomic as the only way for simultaneous
   739   // updates is via interrupts. Even then this should be rare or non-existant
   740   // and we don't care that much anyway.
   742   int index = _jmp_ring_index;
   743   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   744   _jmp_ring[index]._target = (intptr_t) target;
   745   _jmp_ring[index]._instruction = (intptr_t) instr;
   746   _jmp_ring[index]._file = file;
   747   _jmp_ring[index]._line = line;
   748 }
   749 #endif /* PRODUCT */
   751 // Called by flat profiler
   752 // Callers have already called wait_for_ext_suspend_completion
   753 // The assertion for that is currently too complex to put here:
   754 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   755   bool gotframe = false;
   756   // self suspension saves needed state.
   757   if (has_last_Java_frame() && _anchor.walkable()) {
   758      *_fr = pd_last_frame();
   759      gotframe = true;
   760   }
   761   return gotframe;
   762 }
   764 void Thread::interrupt(Thread* thread) {
   765   trace("interrupt", thread);
   766   debug_only(check_for_dangling_thread_pointer(thread);)
   767   os::interrupt(thread);
   768 }
   770 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   771   trace("is_interrupted", thread);
   772   debug_only(check_for_dangling_thread_pointer(thread);)
   773   // Note:  If clear_interrupted==false, this simply fetches and
   774   // returns the value of the field osthread()->interrupted().
   775   return os::is_interrupted(thread, clear_interrupted);
   776 }
   779 // GC Support
   780 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   781   jint thread_parity = _oops_do_parity;
   782   if (thread_parity != strong_roots_parity) {
   783     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   784     if (res == thread_parity) {
   785       return true;
   786     } else {
   787       guarantee(res == strong_roots_parity, "Or else what?");
   788       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   789          "Should only fail when parallel.");
   790       return false;
   791     }
   792   }
   793   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   794          "Should only fail when parallel.");
   795   return false;
   796 }
   798 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   799   active_handles()->oops_do(f);
   800   // Do oop for ThreadShadow
   801   f->do_oop((oop*)&_pending_exception);
   802   handle_area()->oops_do(f);
   803 }
   805 void Thread::nmethods_do(CodeBlobClosure* cf) {
   806   // no nmethods in a generic thread...
   807 }
   809 void Thread::print_on(outputStream* st) const {
   810   // get_priority assumes osthread initialized
   811   if (osthread() != NULL) {
   812     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   813     osthread()->print_on(st);
   814   }
   815   debug_only(if (WizardMode) print_owned_locks_on(st);)
   816 }
   818 // Thread::print_on_error() is called by fatal error handler. Don't use
   819 // any lock or allocate memory.
   820 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   821   if      (is_VM_thread())                  st->print("VMThread");
   822   else if (is_Compiler_thread())            st->print("CompilerThread");
   823   else if (is_Java_thread())                st->print("JavaThread");
   824   else if (is_GC_task_thread())             st->print("GCTaskThread");
   825   else if (is_Watcher_thread())             st->print("WatcherThread");
   826   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   827   else st->print("Thread");
   829   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   830             _stack_base - _stack_size, _stack_base);
   832   if (osthread()) {
   833     st->print(" [id=%d]", osthread()->thread_id());
   834   }
   835 }
   837 #ifdef ASSERT
   838 void Thread::print_owned_locks_on(outputStream* st) const {
   839   Monitor *cur = _owned_locks;
   840   if (cur == NULL) {
   841     st->print(" (no locks) ");
   842   } else {
   843     st->print_cr(" Locks owned:");
   844     while(cur) {
   845       cur->print_on(st);
   846       cur = cur->next();
   847     }
   848   }
   849 }
   851 static int ref_use_count  = 0;
   853 bool Thread::owns_locks_but_compiled_lock() const {
   854   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   855     if (cur != Compile_lock) return true;
   856   }
   857   return false;
   858 }
   861 #endif
   863 #ifndef PRODUCT
   865 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   866 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   867 // no threads which allow_vm_block's are held
   868 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   869     // Check if current thread is allowed to block at a safepoint
   870     if (!(_allow_safepoint_count == 0))
   871       fatal("Possible safepoint reached by thread that does not allow it");
   872     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   873       fatal("LEAF method calling lock?");
   874     }
   876 #ifdef ASSERT
   877     if (potential_vm_operation && is_Java_thread()
   878         && !Universe::is_bootstrapping()) {
   879       // Make sure we do not hold any locks that the VM thread also uses.
   880       // This could potentially lead to deadlocks
   881       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   882         // Threads_lock is special, since the safepoint synchronization will not start before this is
   883         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   884         // since it is used to transfer control between JavaThreads and the VMThread
   885         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   886         if ( (cur->allow_vm_block() &&
   887               cur != Threads_lock &&
   888               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   889               cur != VMOperationRequest_lock &&
   890               cur != VMOperationQueue_lock) ||
   891               cur->rank() == Mutex::special) {
   892           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   893         }
   894       }
   895     }
   897     if (GCALotAtAllSafepoints) {
   898       // We could enter a safepoint here and thus have a gc
   899       InterfaceSupport::check_gc_alot();
   900     }
   901 #endif
   902 }
   903 #endif
   905 bool Thread::is_in_stack(address adr) const {
   906   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   907   address end = os::current_stack_pointer();
   908   if (stack_base() >= adr && adr >= end) return true;
   910   return false;
   911 }
   914 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   915 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   916 // used for compilation in the future. If that change is made, the need for these methods
   917 // should be revisited, and they should be removed if possible.
   919 bool Thread::is_lock_owned(address adr) const {
   920   return on_local_stack(adr);
   921 }
   923 bool Thread::set_as_starting_thread() {
   924  // NOTE: this must be called inside the main thread.
   925   return os::create_main_thread((JavaThread*)this);
   926 }
   928 static void initialize_class(Symbol* class_name, TRAPS) {
   929   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   930   instanceKlass::cast(klass)->initialize(CHECK);
   931 }
   934 // Creates the initial ThreadGroup
   935 static Handle create_initial_thread_group(TRAPS) {
   936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   937   instanceKlassHandle klass (THREAD, k);
   939   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   940   {
   941     JavaValue result(T_VOID);
   942     JavaCalls::call_special(&result,
   943                             system_instance,
   944                             klass,
   945                             vmSymbols::object_initializer_name(),
   946                             vmSymbols::void_method_signature(),
   947                             CHECK_NH);
   948   }
   949   Universe::set_system_thread_group(system_instance());
   951   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   952   {
   953     JavaValue result(T_VOID);
   954     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   955     JavaCalls::call_special(&result,
   956                             main_instance,
   957                             klass,
   958                             vmSymbols::object_initializer_name(),
   959                             vmSymbols::threadgroup_string_void_signature(),
   960                             system_instance,
   961                             string,
   962                             CHECK_NH);
   963   }
   964   return main_instance;
   965 }
   967 // Creates the initial Thread
   968 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   969   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   970   instanceKlassHandle klass (THREAD, k);
   971   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   973   java_lang_Thread::set_thread(thread_oop(), thread);
   974   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   975   thread->set_threadObj(thread_oop());
   977   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   979   JavaValue result(T_VOID);
   980   JavaCalls::call_special(&result, thread_oop,
   981                                    klass,
   982                                    vmSymbols::object_initializer_name(),
   983                                    vmSymbols::threadgroup_string_void_signature(),
   984                                    thread_group,
   985                                    string,
   986                                    CHECK_NULL);
   987   return thread_oop();
   988 }
   990 static void call_initializeSystemClass(TRAPS) {
   991   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   992   instanceKlassHandle klass (THREAD, k);
   994   JavaValue result(T_VOID);
   995   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   996                                          vmSymbols::void_method_signature(), CHECK);
   997 }
   999 // General purpose hook into Java code, run once when the VM is initialized.
  1000 // The Java library method itself may be changed independently from the VM.
  1001 static void call_postVMInitHook(TRAPS) {
  1002   klassOop k = SystemDictionary::PostVMInitHook_klass();
  1003   instanceKlassHandle klass (THREAD, k);
  1004   if (klass.not_null()) {
  1005     JavaValue result(T_VOID);
  1006     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1007                                            vmSymbols::void_method_signature(),
  1008                                            CHECK);
  1012 static void reset_vm_info_property(TRAPS) {
  1013   // the vm info string
  1014   ResourceMark rm(THREAD);
  1015   const char *vm_info = VM_Version::vm_info_string();
  1017   // java.lang.System class
  1018   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1019   instanceKlassHandle klass (THREAD, k);
  1021   // setProperty arguments
  1022   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1023   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1025   // return value
  1026   JavaValue r(T_OBJECT);
  1028   // public static String setProperty(String key, String value);
  1029   JavaCalls::call_static(&r,
  1030                          klass,
  1031                          vmSymbols::setProperty_name(),
  1032                          vmSymbols::string_string_string_signature(),
  1033                          key_str,
  1034                          value_str,
  1035                          CHECK);
  1039 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1040   assert(thread_group.not_null(), "thread group should be specified");
  1041   assert(threadObj() == NULL, "should only create Java thread object once");
  1043   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1044   instanceKlassHandle klass (THREAD, k);
  1045   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1047   java_lang_Thread::set_thread(thread_oop(), this);
  1048   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1049   set_threadObj(thread_oop());
  1051   JavaValue result(T_VOID);
  1052   if (thread_name != NULL) {
  1053     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1054     // Thread gets assigned specified name and null target
  1055     JavaCalls::call_special(&result,
  1056                             thread_oop,
  1057                             klass,
  1058                             vmSymbols::object_initializer_name(),
  1059                             vmSymbols::threadgroup_string_void_signature(),
  1060                             thread_group, // Argument 1
  1061                             name,         // Argument 2
  1062                             THREAD);
  1063   } else {
  1064     // Thread gets assigned name "Thread-nnn" and null target
  1065     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1066     JavaCalls::call_special(&result,
  1067                             thread_oop,
  1068                             klass,
  1069                             vmSymbols::object_initializer_name(),
  1070                             vmSymbols::threadgroup_runnable_void_signature(),
  1071                             thread_group, // Argument 1
  1072                             Handle(),     // Argument 2
  1073                             THREAD);
  1077   if (daemon) {
  1078       java_lang_Thread::set_daemon(thread_oop());
  1081   if (HAS_PENDING_EXCEPTION) {
  1082     return;
  1085   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1086   Handle threadObj(this, this->threadObj());
  1088   JavaCalls::call_special(&result,
  1089                          thread_group,
  1090                          group,
  1091                          vmSymbols::add_method_name(),
  1092                          vmSymbols::thread_void_signature(),
  1093                          threadObj,          // Arg 1
  1094                          THREAD);
  1099 // NamedThread --  non-JavaThread subclasses with multiple
  1100 // uniquely named instances should derive from this.
  1101 NamedThread::NamedThread() : Thread() {
  1102   _name = NULL;
  1103   _processed_thread = NULL;
  1106 NamedThread::~NamedThread() {
  1107   if (_name != NULL) {
  1108     FREE_C_HEAP_ARRAY(char, _name);
  1109     _name = NULL;
  1113 void NamedThread::set_name(const char* format, ...) {
  1114   guarantee(_name == NULL, "Only get to set name once.");
  1115   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1116   guarantee(_name != NULL, "alloc failure");
  1117   va_list ap;
  1118   va_start(ap, format);
  1119   jio_vsnprintf(_name, max_name_len, format, ap);
  1120   va_end(ap);
  1123 // ======= WatcherThread ========
  1125 // The watcher thread exists to simulate timer interrupts.  It should
  1126 // be replaced by an abstraction over whatever native support for
  1127 // timer interrupts exists on the platform.
  1129 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1130 volatile bool  WatcherThread::_should_terminate = false;
  1132 WatcherThread::WatcherThread() : Thread() {
  1133   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1134   if (os::create_thread(this, os::watcher_thread)) {
  1135     _watcher_thread = this;
  1137     // Set the watcher thread to the highest OS priority which should not be
  1138     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1139     // is created. The only normal thread using this priority is the reference
  1140     // handler thread, which runs for very short intervals only.
  1141     // If the VMThread's priority is not lower than the WatcherThread profiling
  1142     // will be inaccurate.
  1143     os::set_priority(this, MaxPriority);
  1144     if (!DisableStartThread) {
  1145       os::start_thread(this);
  1150 void WatcherThread::run() {
  1151   assert(this == watcher_thread(), "just checking");
  1153   this->record_stack_base_and_size();
  1154   this->initialize_thread_local_storage();
  1155   this->set_active_handles(JNIHandleBlock::allocate_block());
  1156   while(!_should_terminate) {
  1157     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1158     assert(watcher_thread() == this,  "thread consistency check");
  1160     // Calculate how long it'll be until the next PeriodicTask work
  1161     // should be done, and sleep that amount of time.
  1162     size_t time_to_wait = PeriodicTask::time_to_wait();
  1164     // we expect this to timeout - we only ever get unparked when
  1165     // we should terminate
  1167       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1169       jlong prev_time = os::javaTimeNanos();
  1170       for (;;) {
  1171         int res= _SleepEvent->park(time_to_wait);
  1172         if (res == OS_TIMEOUT || _should_terminate)
  1173           break;
  1174         // spurious wakeup of some kind
  1175         jlong now = os::javaTimeNanos();
  1176         time_to_wait -= (now - prev_time) / 1000000;
  1177         if (time_to_wait <= 0)
  1178           break;
  1179         prev_time = now;
  1183     if (is_error_reported()) {
  1184       // A fatal error has happened, the error handler(VMError::report_and_die)
  1185       // should abort JVM after creating an error log file. However in some
  1186       // rare cases, the error handler itself might deadlock. Here we try to
  1187       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1188       //
  1189       // This code is in WatcherThread because WatcherThread wakes up
  1190       // periodically so the fatal error handler doesn't need to do anything;
  1191       // also because the WatcherThread is less likely to crash than other
  1192       // threads.
  1194       for (;;) {
  1195         if (!ShowMessageBoxOnError
  1196          && (OnError == NULL || OnError[0] == '\0')
  1197          && Arguments::abort_hook() == NULL) {
  1198              os::sleep(this, 2 * 60 * 1000, false);
  1199              fdStream err(defaultStream::output_fd());
  1200              err.print_raw_cr("# [ timer expired, abort... ]");
  1201              // skip atexit/vm_exit/vm_abort hooks
  1202              os::die();
  1205         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1206         // ShowMessageBoxOnError when it is ready to abort.
  1207         os::sleep(this, 5 * 1000, false);
  1211     PeriodicTask::real_time_tick(time_to_wait);
  1213     // If we have no more tasks left due to dynamic disenrollment,
  1214     // shut down the thread since we don't currently support dynamic enrollment
  1215     if (PeriodicTask::num_tasks() == 0) {
  1216       _should_terminate = true;
  1220   // Signal that it is terminated
  1222     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1223     _watcher_thread = NULL;
  1224     Terminator_lock->notify();
  1227   // Thread destructor usually does this..
  1228   ThreadLocalStorage::set_thread(NULL);
  1231 void WatcherThread::start() {
  1232   if (watcher_thread() == NULL) {
  1233     _should_terminate = false;
  1234     // Create the single instance of WatcherThread
  1235     new WatcherThread();
  1239 void WatcherThread::stop() {
  1240   // it is ok to take late safepoints here, if needed
  1241   MutexLocker mu(Terminator_lock);
  1242   _should_terminate = true;
  1243   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1245   Thread* watcher = watcher_thread();
  1246   if (watcher != NULL)
  1247     watcher->_SleepEvent->unpark();
  1249   while(watcher_thread() != NULL) {
  1250     // This wait should make safepoint checks, wait without a timeout,
  1251     // and wait as a suspend-equivalent condition.
  1252     //
  1253     // Note: If the FlatProfiler is running, then this thread is waiting
  1254     // for the WatcherThread to terminate and the WatcherThread, via the
  1255     // FlatProfiler task, is waiting for the external suspend request on
  1256     // this thread to complete. wait_for_ext_suspend_completion() will
  1257     // eventually timeout, but that takes time. Making this wait a
  1258     // suspend-equivalent condition solves that timeout problem.
  1259     //
  1260     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1261                           Mutex::_as_suspend_equivalent_flag);
  1265 void WatcherThread::print_on(outputStream* st) const {
  1266   st->print("\"%s\" ", name());
  1267   Thread::print_on(st);
  1268   st->cr();
  1271 // ======= JavaThread ========
  1273 // A JavaThread is a normal Java thread
  1275 void JavaThread::initialize() {
  1276   // Initialize fields
  1278   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1279   set_claimed_par_id(-1);
  1281   set_saved_exception_pc(NULL);
  1282   set_threadObj(NULL);
  1283   _anchor.clear();
  1284   set_entry_point(NULL);
  1285   set_jni_functions(jni_functions());
  1286   set_callee_target(NULL);
  1287   set_vm_result(NULL);
  1288   set_vm_result_2(NULL);
  1289   set_vframe_array_head(NULL);
  1290   set_vframe_array_last(NULL);
  1291   set_deferred_locals(NULL);
  1292   set_deopt_mark(NULL);
  1293   set_deopt_nmethod(NULL);
  1294   clear_must_deopt_id();
  1295   set_monitor_chunks(NULL);
  1296   set_next(NULL);
  1297   set_thread_state(_thread_new);
  1298   _terminated = _not_terminated;
  1299   _privileged_stack_top = NULL;
  1300   _array_for_gc = NULL;
  1301   _suspend_equivalent = false;
  1302   _in_deopt_handler = 0;
  1303   _doing_unsafe_access = false;
  1304   _stack_guard_state = stack_guard_unused;
  1305   _exception_oop = NULL;
  1306   _exception_pc  = 0;
  1307   _exception_handler_pc = 0;
  1308   _is_method_handle_return = 0;
  1309   _jvmti_thread_state= NULL;
  1310   _should_post_on_exceptions_flag = JNI_FALSE;
  1311   _jvmti_get_loaded_classes_closure = NULL;
  1312   _interp_only_mode    = 0;
  1313   _special_runtime_exit_condition = _no_async_condition;
  1314   _pending_async_exception = NULL;
  1315   _is_compiling = false;
  1316   _thread_stat = NULL;
  1317   _thread_stat = new ThreadStatistics();
  1318   _blocked_on_compilation = false;
  1319   _jni_active_critical = 0;
  1320   _do_not_unlock_if_synchronized = false;
  1321   _cached_monitor_info = NULL;
  1322   _parker = Parker::Allocate(this) ;
  1324 #ifndef PRODUCT
  1325   _jmp_ring_index = 0;
  1326   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1327     record_jump(NULL, NULL, NULL, 0);
  1329 #endif /* PRODUCT */
  1331   set_thread_profiler(NULL);
  1332   if (FlatProfiler::is_active()) {
  1333     // This is where we would decide to either give each thread it's own profiler
  1334     // or use one global one from FlatProfiler,
  1335     // or up to some count of the number of profiled threads, etc.
  1336     ThreadProfiler* pp = new ThreadProfiler();
  1337     pp->engage();
  1338     set_thread_profiler(pp);
  1341   // Setup safepoint state info for this thread
  1342   ThreadSafepointState::create(this);
  1344   debug_only(_java_call_counter = 0);
  1346   // JVMTI PopFrame support
  1347   _popframe_condition = popframe_inactive;
  1348   _popframe_preserved_args = NULL;
  1349   _popframe_preserved_args_size = 0;
  1351   pd_initialize();
  1354 #ifndef SERIALGC
  1355 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1356 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1357 #endif // !SERIALGC
  1359 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1360   Thread()
  1361 #ifndef SERIALGC
  1362   , _satb_mark_queue(&_satb_mark_queue_set),
  1363   _dirty_card_queue(&_dirty_card_queue_set)
  1364 #endif // !SERIALGC
  1366   initialize();
  1367   if (is_attaching_via_jni) {
  1368     _jni_attach_state = _attaching_via_jni;
  1369   } else {
  1370     _jni_attach_state = _not_attaching_via_jni;
  1372   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1375 bool JavaThread::reguard_stack(address cur_sp) {
  1376   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1377     return true; // Stack already guarded or guard pages not needed.
  1380   if (register_stack_overflow()) {
  1381     // For those architectures which have separate register and
  1382     // memory stacks, we must check the register stack to see if
  1383     // it has overflowed.
  1384     return false;
  1387   // Java code never executes within the yellow zone: the latter is only
  1388   // there to provoke an exception during stack banging.  If java code
  1389   // is executing there, either StackShadowPages should be larger, or
  1390   // some exception code in c1, c2 or the interpreter isn't unwinding
  1391   // when it should.
  1392   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1394   enable_stack_yellow_zone();
  1395   return true;
  1398 bool JavaThread::reguard_stack(void) {
  1399   return reguard_stack(os::current_stack_pointer());
  1403 void JavaThread::block_if_vm_exited() {
  1404   if (_terminated == _vm_exited) {
  1405     // _vm_exited is set at safepoint, and Threads_lock is never released
  1406     // we will block here forever
  1407     Threads_lock->lock_without_safepoint_check();
  1408     ShouldNotReachHere();
  1413 // Remove this ifdef when C1 is ported to the compiler interface.
  1414 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1416 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1417   Thread()
  1418 #ifndef SERIALGC
  1419   , _satb_mark_queue(&_satb_mark_queue_set),
  1420   _dirty_card_queue(&_dirty_card_queue_set)
  1421 #endif // !SERIALGC
  1423   if (TraceThreadEvents) {
  1424     tty->print_cr("creating thread %p", this);
  1426   initialize();
  1427   _jni_attach_state = _not_attaching_via_jni;
  1428   set_entry_point(entry_point);
  1429   // Create the native thread itself.
  1430   // %note runtime_23
  1431   os::ThreadType thr_type = os::java_thread;
  1432   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1433                                                      os::java_thread;
  1434   os::create_thread(this, thr_type, stack_sz);
  1436   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1437   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1438   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1439   // the exception consists of creating the exception object & initializing it, initialization
  1440   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1441   //
  1442   // The thread is still suspended when we reach here. Thread must be explicit started
  1443   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1444   // by calling Threads:add. The reason why this is not done here, is because the thread
  1445   // object must be fully initialized (take a look at JVM_Start)
  1448 JavaThread::~JavaThread() {
  1449   if (TraceThreadEvents) {
  1450       tty->print_cr("terminate thread %p", this);
  1453   // JSR166 -- return the parker to the free list
  1454   Parker::Release(_parker);
  1455   _parker = NULL ;
  1457   // Free any remaining  previous UnrollBlock
  1458   vframeArray* old_array = vframe_array_last();
  1460   if (old_array != NULL) {
  1461     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1462     old_array->set_unroll_block(NULL);
  1463     delete old_info;
  1464     delete old_array;
  1467   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1468   if (deferred != NULL) {
  1469     // This can only happen if thread is destroyed before deoptimization occurs.
  1470     assert(deferred->length() != 0, "empty array!");
  1471     do {
  1472       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1473       deferred->remove_at(0);
  1474       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1475       delete dlv;
  1476     } while (deferred->length() != 0);
  1477     delete deferred;
  1480   // All Java related clean up happens in exit
  1481   ThreadSafepointState::destroy(this);
  1482   if (_thread_profiler != NULL) delete _thread_profiler;
  1483   if (_thread_stat != NULL) delete _thread_stat;
  1487 // The first routine called by a new Java thread
  1488 void JavaThread::run() {
  1489   // initialize thread-local alloc buffer related fields
  1490   this->initialize_tlab();
  1492   // used to test validitity of stack trace backs
  1493   this->record_base_of_stack_pointer();
  1495   // Record real stack base and size.
  1496   this->record_stack_base_and_size();
  1498   // Initialize thread local storage; set before calling MutexLocker
  1499   this->initialize_thread_local_storage();
  1501   this->create_stack_guard_pages();
  1503   this->cache_global_variables();
  1505   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1506   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1507   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1509   assert(JavaThread::current() == this, "sanity check");
  1510   assert(!Thread::current()->owns_locks(), "sanity check");
  1512   DTRACE_THREAD_PROBE(start, this);
  1514   // This operation might block. We call that after all safepoint checks for a new thread has
  1515   // been completed.
  1516   this->set_active_handles(JNIHandleBlock::allocate_block());
  1518   if (JvmtiExport::should_post_thread_life()) {
  1519     JvmtiExport::post_thread_start(this);
  1522   EVENT_BEGIN(TraceEventThreadStart, event);
  1523   EVENT_COMMIT(event,
  1524      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1526   // We call another function to do the rest so we are sure that the stack addresses used
  1527   // from there will be lower than the stack base just computed
  1528   thread_main_inner();
  1530   // Note, thread is no longer valid at this point!
  1534 void JavaThread::thread_main_inner() {
  1535   assert(JavaThread::current() == this, "sanity check");
  1536   assert(this->threadObj() != NULL, "just checking");
  1538   // Execute thread entry point unless this thread has a pending exception
  1539   // or has been stopped before starting.
  1540   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1541   if (!this->has_pending_exception() &&
  1542       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1544       ResourceMark rm(this);
  1545       this->set_native_thread_name(this->get_thread_name());
  1547     HandleMark hm(this);
  1548     this->entry_point()(this, this);
  1551   DTRACE_THREAD_PROBE(stop, this);
  1553   this->exit(false);
  1554   delete this;
  1558 static void ensure_join(JavaThread* thread) {
  1559   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1560   Handle threadObj(thread, thread->threadObj());
  1561   assert(threadObj.not_null(), "java thread object must exist");
  1562   ObjectLocker lock(threadObj, thread);
  1563   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1564   thread->clear_pending_exception();
  1565   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1566   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1567   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1568   // to complete once we've done the notify_all below
  1569   java_lang_Thread::set_thread(threadObj(), NULL);
  1570   lock.notify_all(thread);
  1571   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1572   thread->clear_pending_exception();
  1576 // For any new cleanup additions, please check to see if they need to be applied to
  1577 // cleanup_failed_attach_current_thread as well.
  1578 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1579   assert(this == JavaThread::current(),  "thread consistency check");
  1580   if (!InitializeJavaLangSystem) return;
  1582   HandleMark hm(this);
  1583   Handle uncaught_exception(this, this->pending_exception());
  1584   this->clear_pending_exception();
  1585   Handle threadObj(this, this->threadObj());
  1586   assert(threadObj.not_null(), "Java thread object should be created");
  1588   if (get_thread_profiler() != NULL) {
  1589     get_thread_profiler()->disengage();
  1590     ResourceMark rm;
  1591     get_thread_profiler()->print(get_thread_name());
  1595   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1597     EXCEPTION_MARK;
  1599     CLEAR_PENDING_EXCEPTION;
  1601   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1602   // has to be fixed by a runtime query method
  1603   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1604     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1605     // java.lang.Thread.dispatchUncaughtException
  1606     if (uncaught_exception.not_null()) {
  1607       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1609         EXCEPTION_MARK;
  1610         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1611         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1612         // so call ThreadGroup.uncaughtException()
  1613         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1614         CallInfo callinfo;
  1615         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1616         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1617                                            vmSymbols::dispatchUncaughtException_name(),
  1618                                            vmSymbols::throwable_void_signature(),
  1619                                            KlassHandle(), false, false, THREAD);
  1620         CLEAR_PENDING_EXCEPTION;
  1621         methodHandle method = callinfo.selected_method();
  1622         if (method.not_null()) {
  1623           JavaValue result(T_VOID);
  1624           JavaCalls::call_virtual(&result,
  1625                                   threadObj, thread_klass,
  1626                                   vmSymbols::dispatchUncaughtException_name(),
  1627                                   vmSymbols::throwable_void_signature(),
  1628                                   uncaught_exception,
  1629                                   THREAD);
  1630         } else {
  1631           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1632           JavaValue result(T_VOID);
  1633           JavaCalls::call_virtual(&result,
  1634                                   group, thread_group,
  1635                                   vmSymbols::uncaughtException_name(),
  1636                                   vmSymbols::thread_throwable_void_signature(),
  1637                                   threadObj,           // Arg 1
  1638                                   uncaught_exception,  // Arg 2
  1639                                   THREAD);
  1641         if (HAS_PENDING_EXCEPTION) {
  1642           ResourceMark rm(this);
  1643           jio_fprintf(defaultStream::error_stream(),
  1644                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1645                 " in thread \"%s\"\n",
  1646                 Klass::cast(pending_exception()->klass())->external_name(),
  1647                 get_thread_name());
  1648           CLEAR_PENDING_EXCEPTION;
  1653     // Called before the java thread exit since we want to read info
  1654     // from java_lang_Thread object
  1655     EVENT_BEGIN(TraceEventThreadEnd, event);
  1656     EVENT_COMMIT(event,
  1657         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1659     // Call after last event on thread
  1660     EVENT_THREAD_EXIT(this);
  1662     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1663     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1664     // is deprecated anyhow.
  1665     { int count = 3;
  1666       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1667         EXCEPTION_MARK;
  1668         JavaValue result(T_VOID);
  1669         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1670         JavaCalls::call_virtual(&result,
  1671                               threadObj, thread_klass,
  1672                               vmSymbols::exit_method_name(),
  1673                               vmSymbols::void_method_signature(),
  1674                               THREAD);
  1675         CLEAR_PENDING_EXCEPTION;
  1679     // notify JVMTI
  1680     if (JvmtiExport::should_post_thread_life()) {
  1681       JvmtiExport::post_thread_end(this);
  1684     // We have notified the agents that we are exiting, before we go on,
  1685     // we must check for a pending external suspend request and honor it
  1686     // in order to not surprise the thread that made the suspend request.
  1687     while (true) {
  1689         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1690         if (!is_external_suspend()) {
  1691           set_terminated(_thread_exiting);
  1692           ThreadService::current_thread_exiting(this);
  1693           break;
  1695         // Implied else:
  1696         // Things get a little tricky here. We have a pending external
  1697         // suspend request, but we are holding the SR_lock so we
  1698         // can't just self-suspend. So we temporarily drop the lock
  1699         // and then self-suspend.
  1702       ThreadBlockInVM tbivm(this);
  1703       java_suspend_self();
  1705       // We're done with this suspend request, but we have to loop around
  1706       // and check again. Eventually we will get SR_lock without a pending
  1707       // external suspend request and will be able to mark ourselves as
  1708       // exiting.
  1710     // no more external suspends are allowed at this point
  1711   } else {
  1712     // before_exit() has already posted JVMTI THREAD_END events
  1715   // Notify waiters on thread object. This has to be done after exit() is called
  1716   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1717   // group should have the destroyed bit set before waiters are notified).
  1718   ensure_join(this);
  1719   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1721   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1722   // held by this thread must be released.  A detach operation must only
  1723   // get here if there are no Java frames on the stack.  Therefore, any
  1724   // owned monitors at this point MUST be JNI-acquired monitors which are
  1725   // pre-inflated and in the monitor cache.
  1726   //
  1727   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1728   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1729     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1730     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1731     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1734   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1735   // is in a consistent state, in case GC happens
  1736   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1738   if (active_handles() != NULL) {
  1739     JNIHandleBlock* block = active_handles();
  1740     set_active_handles(NULL);
  1741     JNIHandleBlock::release_block(block);
  1744   if (free_handle_block() != NULL) {
  1745     JNIHandleBlock* block = free_handle_block();
  1746     set_free_handle_block(NULL);
  1747     JNIHandleBlock::release_block(block);
  1750   // These have to be removed while this is still a valid thread.
  1751   remove_stack_guard_pages();
  1753   if (UseTLAB) {
  1754     tlab().make_parsable(true);  // retire TLAB
  1757   if (JvmtiEnv::environments_might_exist()) {
  1758     JvmtiExport::cleanup_thread(this);
  1761 #ifndef SERIALGC
  1762   // We must flush G1-related buffers before removing a thread from
  1763   // the list of active threads.
  1764   if (UseG1GC) {
  1765     flush_barrier_queues();
  1767 #endif
  1769   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1770   Threads::remove(this);
  1773 #ifndef SERIALGC
  1774 // Flush G1-related queues.
  1775 void JavaThread::flush_barrier_queues() {
  1776   satb_mark_queue().flush();
  1777   dirty_card_queue().flush();
  1780 void JavaThread::initialize_queues() {
  1781   assert(!SafepointSynchronize::is_at_safepoint(),
  1782          "we should not be at a safepoint");
  1784   ObjPtrQueue& satb_queue = satb_mark_queue();
  1785   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1786   // The SATB queue should have been constructed with its active
  1787   // field set to false.
  1788   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1789   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1790   // If we are creating the thread during a marking cycle, we should
  1791   // set the active field of the SATB queue to true.
  1792   if (satb_queue_set.is_active()) {
  1793     satb_queue.set_active(true);
  1796   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1797   // The dirty card queue should have been constructed with its
  1798   // active field set to true.
  1799   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1801 #endif // !SERIALGC
  1803 void JavaThread::cleanup_failed_attach_current_thread() {
  1804   if (get_thread_profiler() != NULL) {
  1805     get_thread_profiler()->disengage();
  1806     ResourceMark rm;
  1807     get_thread_profiler()->print(get_thread_name());
  1810   if (active_handles() != NULL) {
  1811     JNIHandleBlock* block = active_handles();
  1812     set_active_handles(NULL);
  1813     JNIHandleBlock::release_block(block);
  1816   if (free_handle_block() != NULL) {
  1817     JNIHandleBlock* block = free_handle_block();
  1818     set_free_handle_block(NULL);
  1819     JNIHandleBlock::release_block(block);
  1822   // These have to be removed while this is still a valid thread.
  1823   remove_stack_guard_pages();
  1825   if (UseTLAB) {
  1826     tlab().make_parsable(true);  // retire TLAB, if any
  1829 #ifndef SERIALGC
  1830   if (UseG1GC) {
  1831     flush_barrier_queues();
  1833 #endif
  1835   Threads::remove(this);
  1836   delete this;
  1842 JavaThread* JavaThread::active() {
  1843   Thread* thread = ThreadLocalStorage::thread();
  1844   assert(thread != NULL, "just checking");
  1845   if (thread->is_Java_thread()) {
  1846     return (JavaThread*) thread;
  1847   } else {
  1848     assert(thread->is_VM_thread(), "this must be a vm thread");
  1849     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1850     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1851     assert(ret->is_Java_thread(), "must be a Java thread");
  1852     return ret;
  1856 bool JavaThread::is_lock_owned(address adr) const {
  1857   if (Thread::is_lock_owned(adr)) return true;
  1859   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1860     if (chunk->contains(adr)) return true;
  1863   return false;
  1867 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1868   chunk->set_next(monitor_chunks());
  1869   set_monitor_chunks(chunk);
  1872 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1873   guarantee(monitor_chunks() != NULL, "must be non empty");
  1874   if (monitor_chunks() == chunk) {
  1875     set_monitor_chunks(chunk->next());
  1876   } else {
  1877     MonitorChunk* prev = monitor_chunks();
  1878     while (prev->next() != chunk) prev = prev->next();
  1879     prev->set_next(chunk->next());
  1883 // JVM support.
  1885 // Note: this function shouldn't block if it's called in
  1886 // _thread_in_native_trans state (such as from
  1887 // check_special_condition_for_native_trans()).
  1888 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1890   if (has_last_Java_frame() && has_async_condition()) {
  1891     // If we are at a polling page safepoint (not a poll return)
  1892     // then we must defer async exception because live registers
  1893     // will be clobbered by the exception path. Poll return is
  1894     // ok because the call we a returning from already collides
  1895     // with exception handling registers and so there is no issue.
  1896     // (The exception handling path kills call result registers but
  1897     //  this is ok since the exception kills the result anyway).
  1899     if (is_at_poll_safepoint()) {
  1900       // if the code we are returning to has deoptimized we must defer
  1901       // the exception otherwise live registers get clobbered on the
  1902       // exception path before deoptimization is able to retrieve them.
  1903       //
  1904       RegisterMap map(this, false);
  1905       frame caller_fr = last_frame().sender(&map);
  1906       assert(caller_fr.is_compiled_frame(), "what?");
  1907       if (caller_fr.is_deoptimized_frame()) {
  1908         if (TraceExceptions) {
  1909           ResourceMark rm;
  1910           tty->print_cr("deferred async exception at compiled safepoint");
  1912         return;
  1917   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1918   if (condition == _no_async_condition) {
  1919     // Conditions have changed since has_special_runtime_exit_condition()
  1920     // was called:
  1921     // - if we were here only because of an external suspend request,
  1922     //   then that was taken care of above (or cancelled) so we are done
  1923     // - if we were here because of another async request, then it has
  1924     //   been cleared between the has_special_runtime_exit_condition()
  1925     //   and now so again we are done
  1926     return;
  1929   // Check for pending async. exception
  1930   if (_pending_async_exception != NULL) {
  1931     // Only overwrite an already pending exception, if it is not a threadDeath.
  1932     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1934       // We cannot call Exceptions::_throw(...) here because we cannot block
  1935       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1937       if (TraceExceptions) {
  1938         ResourceMark rm;
  1939         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1940         if (has_last_Java_frame() ) {
  1941           frame f = last_frame();
  1942           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1944         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1946       _pending_async_exception = NULL;
  1947       clear_has_async_exception();
  1951   if (check_unsafe_error &&
  1952       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1953     condition = _no_async_condition;  // done
  1954     switch (thread_state()) {
  1955     case _thread_in_vm:
  1957         JavaThread* THREAD = this;
  1958         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1960     case _thread_in_native:
  1962         ThreadInVMfromNative tiv(this);
  1963         JavaThread* THREAD = this;
  1964         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1966     case _thread_in_Java:
  1968         ThreadInVMfromJava tiv(this);
  1969         JavaThread* THREAD = this;
  1970         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1972     default:
  1973       ShouldNotReachHere();
  1977   assert(condition == _no_async_condition || has_pending_exception() ||
  1978          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1979          "must have handled the async condition, if no exception");
  1982 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1983   //
  1984   // Check for pending external suspend. Internal suspend requests do
  1985   // not use handle_special_runtime_exit_condition().
  1986   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1987   // thread is not the current thread. In older versions of jdbx, jdbx
  1988   // threads could call into the VM with another thread's JNIEnv so we
  1989   // can be here operating on behalf of a suspended thread (4432884).
  1990   bool do_self_suspend = is_external_suspend_with_lock();
  1991   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1992     //
  1993     // Because thread is external suspended the safepoint code will count
  1994     // thread as at a safepoint. This can be odd because we can be here
  1995     // as _thread_in_Java which would normally transition to _thread_blocked
  1996     // at a safepoint. We would like to mark the thread as _thread_blocked
  1997     // before calling java_suspend_self like all other callers of it but
  1998     // we must then observe proper safepoint protocol. (We can't leave
  1999     // _thread_blocked with a safepoint in progress). However we can be
  2000     // here as _thread_in_native_trans so we can't use a normal transition
  2001     // constructor/destructor pair because they assert on that type of
  2002     // transition. We could do something like:
  2003     //
  2004     // JavaThreadState state = thread_state();
  2005     // set_thread_state(_thread_in_vm);
  2006     // {
  2007     //   ThreadBlockInVM tbivm(this);
  2008     //   java_suspend_self()
  2009     // }
  2010     // set_thread_state(_thread_in_vm_trans);
  2011     // if (safepoint) block;
  2012     // set_thread_state(state);
  2013     //
  2014     // but that is pretty messy. Instead we just go with the way the
  2015     // code has worked before and note that this is the only path to
  2016     // java_suspend_self that doesn't put the thread in _thread_blocked
  2017     // mode.
  2019     frame_anchor()->make_walkable(this);
  2020     java_suspend_self();
  2022     // We might be here for reasons in addition to the self-suspend request
  2023     // so check for other async requests.
  2026   if (check_asyncs) {
  2027     check_and_handle_async_exceptions();
  2031 void JavaThread::send_thread_stop(oop java_throwable)  {
  2032   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2033   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2034   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2036   // Do not throw asynchronous exceptions against the compiler thread
  2037   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2038   if (is_Compiler_thread()) return;
  2041     // Actually throw the Throwable against the target Thread - however
  2042     // only if there is no thread death exception installed already.
  2043     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2044       // If the topmost frame is a runtime stub, then we are calling into
  2045       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2046       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2047       // may not be valid
  2048       if (has_last_Java_frame()) {
  2049         frame f = last_frame();
  2050         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2051           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2052           RegisterMap reg_map(this, UseBiasedLocking);
  2053           frame compiled_frame = f.sender(&reg_map);
  2054           if (compiled_frame.can_be_deoptimized()) {
  2055             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2060       // Set async. pending exception in thread.
  2061       set_pending_async_exception(java_throwable);
  2063       if (TraceExceptions) {
  2064        ResourceMark rm;
  2065        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2067       // for AbortVMOnException flag
  2068       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2073   // Interrupt thread so it will wake up from a potential wait()
  2074   Thread::interrupt(this);
  2077 // External suspension mechanism.
  2078 //
  2079 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2080 // to any VM_locks and it is at a transition
  2081 // Self-suspension will happen on the transition out of the vm.
  2082 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2083 //
  2084 // Guarantees on return:
  2085 //   + Target thread will not execute any new bytecode (that's why we need to
  2086 //     force a safepoint)
  2087 //   + Target thread will not enter any new monitors
  2088 //
  2089 void JavaThread::java_suspend() {
  2090   { MutexLocker mu(Threads_lock);
  2091     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2092        return;
  2096   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2097     if (!is_external_suspend()) {
  2098       // a racing resume has cancelled us; bail out now
  2099       return;
  2102     // suspend is done
  2103     uint32_t debug_bits = 0;
  2104     // Warning: is_ext_suspend_completed() may temporarily drop the
  2105     // SR_lock to allow the thread to reach a stable thread state if
  2106     // it is currently in a transient thread state.
  2107     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2108                                  SuspendRetryDelay, &debug_bits) ) {
  2109       return;
  2113   VM_ForceSafepoint vm_suspend;
  2114   VMThread::execute(&vm_suspend);
  2117 // Part II of external suspension.
  2118 // A JavaThread self suspends when it detects a pending external suspend
  2119 // request. This is usually on transitions. It is also done in places
  2120 // where continuing to the next transition would surprise the caller,
  2121 // e.g., monitor entry.
  2122 //
  2123 // Returns the number of times that the thread self-suspended.
  2124 //
  2125 // Note: DO NOT call java_suspend_self() when you just want to block current
  2126 //       thread. java_suspend_self() is the second stage of cooperative
  2127 //       suspension for external suspend requests and should only be used
  2128 //       to complete an external suspend request.
  2129 //
  2130 int JavaThread::java_suspend_self() {
  2131   int ret = 0;
  2133   // we are in the process of exiting so don't suspend
  2134   if (is_exiting()) {
  2135      clear_external_suspend();
  2136      return ret;
  2139   assert(_anchor.walkable() ||
  2140     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2141     "must have walkable stack");
  2143   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2145   assert(!this->is_ext_suspended(),
  2146     "a thread trying to self-suspend should not already be suspended");
  2148   if (this->is_suspend_equivalent()) {
  2149     // If we are self-suspending as a result of the lifting of a
  2150     // suspend equivalent condition, then the suspend_equivalent
  2151     // flag is not cleared until we set the ext_suspended flag so
  2152     // that wait_for_ext_suspend_completion() returns consistent
  2153     // results.
  2154     this->clear_suspend_equivalent();
  2157   // A racing resume may have cancelled us before we grabbed SR_lock
  2158   // above. Or another external suspend request could be waiting for us
  2159   // by the time we return from SR_lock()->wait(). The thread
  2160   // that requested the suspension may already be trying to walk our
  2161   // stack and if we return now, we can change the stack out from under
  2162   // it. This would be a "bad thing (TM)" and cause the stack walker
  2163   // to crash. We stay self-suspended until there are no more pending
  2164   // external suspend requests.
  2165   while (is_external_suspend()) {
  2166     ret++;
  2167     this->set_ext_suspended();
  2169     // _ext_suspended flag is cleared by java_resume()
  2170     while (is_ext_suspended()) {
  2171       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2175   return ret;
  2178 #ifdef ASSERT
  2179 // verify the JavaThread has not yet been published in the Threads::list, and
  2180 // hence doesn't need protection from concurrent access at this stage
  2181 void JavaThread::verify_not_published() {
  2182   if (!Threads_lock->owned_by_self()) {
  2183    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2184    assert( !Threads::includes(this),
  2185            "java thread shouldn't have been published yet!");
  2187   else {
  2188    assert( !Threads::includes(this),
  2189            "java thread shouldn't have been published yet!");
  2192 #endif
  2194 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2195 // progress or when _suspend_flags is non-zero.
  2196 // Current thread needs to self-suspend if there is a suspend request and/or
  2197 // block if a safepoint is in progress.
  2198 // Async exception ISN'T checked.
  2199 // Note only the ThreadInVMfromNative transition can call this function
  2200 // directly and when thread state is _thread_in_native_trans
  2201 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2202   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2204   JavaThread *curJT = JavaThread::current();
  2205   bool do_self_suspend = thread->is_external_suspend();
  2207   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2209   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2210   // thread is not the current thread. In older versions of jdbx, jdbx
  2211   // threads could call into the VM with another thread's JNIEnv so we
  2212   // can be here operating on behalf of a suspended thread (4432884).
  2213   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2214     JavaThreadState state = thread->thread_state();
  2216     // We mark this thread_blocked state as a suspend-equivalent so
  2217     // that a caller to is_ext_suspend_completed() won't be confused.
  2218     // The suspend-equivalent state is cleared by java_suspend_self().
  2219     thread->set_suspend_equivalent();
  2221     // If the safepoint code sees the _thread_in_native_trans state, it will
  2222     // wait until the thread changes to other thread state. There is no
  2223     // guarantee on how soon we can obtain the SR_lock and complete the
  2224     // self-suspend request. It would be a bad idea to let safepoint wait for
  2225     // too long. Temporarily change the state to _thread_blocked to
  2226     // let the VM thread know that this thread is ready for GC. The problem
  2227     // of changing thread state is that safepoint could happen just after
  2228     // java_suspend_self() returns after being resumed, and VM thread will
  2229     // see the _thread_blocked state. We must check for safepoint
  2230     // after restoring the state and make sure we won't leave while a safepoint
  2231     // is in progress.
  2232     thread->set_thread_state(_thread_blocked);
  2233     thread->java_suspend_self();
  2234     thread->set_thread_state(state);
  2235     // Make sure new state is seen by VM thread
  2236     if (os::is_MP()) {
  2237       if (UseMembar) {
  2238         // Force a fence between the write above and read below
  2239         OrderAccess::fence();
  2240       } else {
  2241         // Must use this rather than serialization page in particular on Windows
  2242         InterfaceSupport::serialize_memory(thread);
  2247   if (SafepointSynchronize::do_call_back()) {
  2248     // If we are safepointing, then block the caller which may not be
  2249     // the same as the target thread (see above).
  2250     SafepointSynchronize::block(curJT);
  2253   if (thread->is_deopt_suspend()) {
  2254     thread->clear_deopt_suspend();
  2255     RegisterMap map(thread, false);
  2256     frame f = thread->last_frame();
  2257     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2258       f = f.sender(&map);
  2260     if (f.id() == thread->must_deopt_id()) {
  2261       thread->clear_must_deopt_id();
  2262       f.deoptimize(thread);
  2263     } else {
  2264       fatal("missed deoptimization!");
  2269 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2270 // progress or when _suspend_flags is non-zero.
  2271 // Current thread needs to self-suspend if there is a suspend request and/or
  2272 // block if a safepoint is in progress.
  2273 // Also check for pending async exception (not including unsafe access error).
  2274 // Note only the native==>VM/Java barriers can call this function and when
  2275 // thread state is _thread_in_native_trans.
  2276 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2277   check_safepoint_and_suspend_for_native_trans(thread);
  2279   if (thread->has_async_exception()) {
  2280     // We are in _thread_in_native_trans state, don't handle unsafe
  2281     // access error since that may block.
  2282     thread->check_and_handle_async_exceptions(false);
  2286 // This is a variant of the normal
  2287 // check_special_condition_for_native_trans with slightly different
  2288 // semantics for use by critical native wrappers.  It does all the
  2289 // normal checks but also performs the transition back into
  2290 // thread_in_Java state.  This is required so that critical natives
  2291 // can potentially block and perform a GC if they are the last thread
  2292 // exiting the GC_locker.
  2293 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2294   check_special_condition_for_native_trans(thread);
  2296   // Finish the transition
  2297   thread->set_thread_state(_thread_in_Java);
  2299   if (thread->do_critical_native_unlock()) {
  2300     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2301     GC_locker::unlock_critical(thread);
  2302     thread->clear_critical_native_unlock();
  2306 // We need to guarantee the Threads_lock here, since resumes are not
  2307 // allowed during safepoint synchronization
  2308 // Can only resume from an external suspension
  2309 void JavaThread::java_resume() {
  2310   assert_locked_or_safepoint(Threads_lock);
  2312   // Sanity check: thread is gone, has started exiting or the thread
  2313   // was not externally suspended.
  2314   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2315     return;
  2318   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2320   clear_external_suspend();
  2322   if (is_ext_suspended()) {
  2323     clear_ext_suspended();
  2324     SR_lock()->notify_all();
  2328 void JavaThread::create_stack_guard_pages() {
  2329   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2330   address low_addr = stack_base() - stack_size();
  2331   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2333   int allocate = os::allocate_stack_guard_pages();
  2334   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2336   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2337     warning("Attempt to allocate stack guard pages failed.");
  2338     return;
  2341   if (os::guard_memory((char *) low_addr, len)) {
  2342     _stack_guard_state = stack_guard_enabled;
  2343   } else {
  2344     warning("Attempt to protect stack guard pages failed.");
  2345     if (os::uncommit_memory((char *) low_addr, len)) {
  2346       warning("Attempt to deallocate stack guard pages failed.");
  2351 void JavaThread::remove_stack_guard_pages() {
  2352   if (_stack_guard_state == stack_guard_unused) return;
  2353   address low_addr = stack_base() - stack_size();
  2354   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2356   if (os::allocate_stack_guard_pages()) {
  2357     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2358       _stack_guard_state = stack_guard_unused;
  2359     } else {
  2360       warning("Attempt to deallocate stack guard pages failed.");
  2362   } else {
  2363     if (_stack_guard_state == stack_guard_unused) return;
  2364     if (os::unguard_memory((char *) low_addr, len)) {
  2365       _stack_guard_state = stack_guard_unused;
  2366     } else {
  2367         warning("Attempt to unprotect stack guard pages failed.");
  2372 void JavaThread::enable_stack_yellow_zone() {
  2373   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2374   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2376   // The base notation is from the stacks point of view, growing downward.
  2377   // We need to adjust it to work correctly with guard_memory()
  2378   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2380   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2381   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2383   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2384     _stack_guard_state = stack_guard_enabled;
  2385   } else {
  2386     warning("Attempt to guard stack yellow zone failed.");
  2388   enable_register_stack_guard();
  2391 void JavaThread::disable_stack_yellow_zone() {
  2392   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2393   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2395   // Simply return if called for a thread that does not use guard pages.
  2396   if (_stack_guard_state == stack_guard_unused) return;
  2398   // The base notation is from the stacks point of view, growing downward.
  2399   // We need to adjust it to work correctly with guard_memory()
  2400   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2402   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2403     _stack_guard_state = stack_guard_yellow_disabled;
  2404   } else {
  2405     warning("Attempt to unguard stack yellow zone failed.");
  2407   disable_register_stack_guard();
  2410 void JavaThread::enable_stack_red_zone() {
  2411   // The base notation is from the stacks point of view, growing downward.
  2412   // We need to adjust it to work correctly with guard_memory()
  2413   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2414   address base = stack_red_zone_base() - stack_red_zone_size();
  2416   guarantee(base < stack_base(),"Error calculating stack red zone");
  2417   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2419   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2420     warning("Attempt to guard stack red zone failed.");
  2424 void JavaThread::disable_stack_red_zone() {
  2425   // The base notation is from the stacks point of view, growing downward.
  2426   // We need to adjust it to work correctly with guard_memory()
  2427   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2428   address base = stack_red_zone_base() - stack_red_zone_size();
  2429   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2430     warning("Attempt to unguard stack red zone failed.");
  2434 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2435   // ignore is there is no stack
  2436   if (!has_last_Java_frame()) return;
  2437   // traverse the stack frames. Starts from top frame.
  2438   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2439     frame* fr = fst.current();
  2440     f(fr, fst.register_map());
  2445 #ifndef PRODUCT
  2446 // Deoptimization
  2447 // Function for testing deoptimization
  2448 void JavaThread::deoptimize() {
  2449   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2450   StackFrameStream fst(this, UseBiasedLocking);
  2451   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2452   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2453   // Iterate over all frames in the thread and deoptimize
  2454   for(; !fst.is_done(); fst.next()) {
  2455     if(fst.current()->can_be_deoptimized()) {
  2457       if (only_at) {
  2458         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2459         // consists of comma or carriage return separated numbers so
  2460         // search for the current bci in that string.
  2461         address pc = fst.current()->pc();
  2462         nmethod* nm =  (nmethod*) fst.current()->cb();
  2463         ScopeDesc* sd = nm->scope_desc_at( pc);
  2464         char buffer[8];
  2465         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2466         size_t len = strlen(buffer);
  2467         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2468         while (found != NULL) {
  2469           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2470               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2471             // Check that the bci found is bracketed by terminators.
  2472             break;
  2474           found = strstr(found + 1, buffer);
  2476         if (!found) {
  2477           continue;
  2481       if (DebugDeoptimization && !deopt) {
  2482         deopt = true; // One-time only print before deopt
  2483         tty->print_cr("[BEFORE Deoptimization]");
  2484         trace_frames();
  2485         trace_stack();
  2487       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2491   if (DebugDeoptimization && deopt) {
  2492     tty->print_cr("[AFTER Deoptimization]");
  2493     trace_frames();
  2498 // Make zombies
  2499 void JavaThread::make_zombies() {
  2500   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2501     if (fst.current()->can_be_deoptimized()) {
  2502       // it is a Java nmethod
  2503       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2504       nm->make_not_entrant();
  2508 #endif // PRODUCT
  2511 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2512   if (!has_last_Java_frame()) return;
  2513   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2514   StackFrameStream fst(this, UseBiasedLocking);
  2515   for(; !fst.is_done(); fst.next()) {
  2516     if (fst.current()->should_be_deoptimized()) {
  2517       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2523 // GC support
  2524 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2526 void JavaThread::gc_epilogue() {
  2527   frames_do(frame_gc_epilogue);
  2531 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2533 void JavaThread::gc_prologue() {
  2534   frames_do(frame_gc_prologue);
  2537 // If the caller is a NamedThread, then remember, in the current scope,
  2538 // the given JavaThread in its _processed_thread field.
  2539 class RememberProcessedThread: public StackObj {
  2540   NamedThread* _cur_thr;
  2541 public:
  2542   RememberProcessedThread(JavaThread* jthr) {
  2543     Thread* thread = Thread::current();
  2544     if (thread->is_Named_thread()) {
  2545       _cur_thr = (NamedThread *)thread;
  2546       _cur_thr->set_processed_thread(jthr);
  2547     } else {
  2548       _cur_thr = NULL;
  2552   ~RememberProcessedThread() {
  2553     if (_cur_thr) {
  2554       _cur_thr->set_processed_thread(NULL);
  2557 };
  2559 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2560   // Verify that the deferred card marks have been flushed.
  2561   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2563   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2564   // since there may be more than one thread using each ThreadProfiler.
  2566   // Traverse the GCHandles
  2567   Thread::oops_do(f, cf);
  2569   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2570           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2572   if (has_last_Java_frame()) {
  2573     // Record JavaThread to GC thread
  2574     RememberProcessedThread rpt(this);
  2576     // Traverse the privileged stack
  2577     if (_privileged_stack_top != NULL) {
  2578       _privileged_stack_top->oops_do(f);
  2581     // traverse the registered growable array
  2582     if (_array_for_gc != NULL) {
  2583       for (int index = 0; index < _array_for_gc->length(); index++) {
  2584         f->do_oop(_array_for_gc->adr_at(index));
  2588     // Traverse the monitor chunks
  2589     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2590       chunk->oops_do(f);
  2593     // Traverse the execution stack
  2594     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2595       fst.current()->oops_do(f, cf, fst.register_map());
  2599   // callee_target is never live across a gc point so NULL it here should
  2600   // it still contain a methdOop.
  2602   set_callee_target(NULL);
  2604   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2605   // If we have deferred set_locals there might be oops waiting to be
  2606   // written
  2607   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2608   if (list != NULL) {
  2609     for (int i = 0; i < list->length(); i++) {
  2610       list->at(i)->oops_do(f);
  2614   // Traverse instance variables at the end since the GC may be moving things
  2615   // around using this function
  2616   f->do_oop((oop*) &_threadObj);
  2617   f->do_oop((oop*) &_vm_result);
  2618   f->do_oop((oop*) &_vm_result_2);
  2619   f->do_oop((oop*) &_exception_oop);
  2620   f->do_oop((oop*) &_pending_async_exception);
  2622   if (jvmti_thread_state() != NULL) {
  2623     jvmti_thread_state()->oops_do(f);
  2627 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2628   Thread::nmethods_do(cf);  // (super method is a no-op)
  2630   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2631           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2633   if (has_last_Java_frame()) {
  2634     // Traverse the execution stack
  2635     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2636       fst.current()->nmethods_do(cf);
  2641 // Printing
  2642 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2643   switch (_thread_state) {
  2644   case _thread_uninitialized:     return "_thread_uninitialized";
  2645   case _thread_new:               return "_thread_new";
  2646   case _thread_new_trans:         return "_thread_new_trans";
  2647   case _thread_in_native:         return "_thread_in_native";
  2648   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2649   case _thread_in_vm:             return "_thread_in_vm";
  2650   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2651   case _thread_in_Java:           return "_thread_in_Java";
  2652   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2653   case _thread_blocked:           return "_thread_blocked";
  2654   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2655   default:                        return "unknown thread state";
  2659 #ifndef PRODUCT
  2660 void JavaThread::print_thread_state_on(outputStream *st) const {
  2661   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2662 };
  2663 void JavaThread::print_thread_state() const {
  2664   print_thread_state_on(tty);
  2665 };
  2666 #endif // PRODUCT
  2668 // Called by Threads::print() for VM_PrintThreads operation
  2669 void JavaThread::print_on(outputStream *st) const {
  2670   st->print("\"%s\" ", get_thread_name());
  2671   oop thread_oop = threadObj();
  2672   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2673   Thread::print_on(st);
  2674   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2675   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2676   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2677     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2679 #ifndef PRODUCT
  2680   print_thread_state_on(st);
  2681   _safepoint_state->print_on(st);
  2682 #endif // PRODUCT
  2685 // Called by fatal error handler. The difference between this and
  2686 // JavaThread::print() is that we can't grab lock or allocate memory.
  2687 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2688   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2689   oop thread_obj = threadObj();
  2690   if (thread_obj != NULL) {
  2691      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2693   st->print(" [");
  2694   st->print("%s", _get_thread_state_name(_thread_state));
  2695   if (osthread()) {
  2696     st->print(", id=%d", osthread()->thread_id());
  2698   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2699             _stack_base - _stack_size, _stack_base);
  2700   st->print("]");
  2701   return;
  2704 // Verification
  2706 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2708 void JavaThread::verify() {
  2709   // Verify oops in the thread.
  2710   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2712   // Verify the stack frames.
  2713   frames_do(frame_verify);
  2716 // CR 6300358 (sub-CR 2137150)
  2717 // Most callers of this method assume that it can't return NULL but a
  2718 // thread may not have a name whilst it is in the process of attaching to
  2719 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2720 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2721 // if vm exit occurs during initialization). These cases can all be accounted
  2722 // for such that this method never returns NULL.
  2723 const char* JavaThread::get_thread_name() const {
  2724 #ifdef ASSERT
  2725   // early safepoints can hit while current thread does not yet have TLS
  2726   if (!SafepointSynchronize::is_at_safepoint()) {
  2727     Thread *cur = Thread::current();
  2728     if (!(cur->is_Java_thread() && cur == this)) {
  2729       // Current JavaThreads are allowed to get their own name without
  2730       // the Threads_lock.
  2731       assert_locked_or_safepoint(Threads_lock);
  2734 #endif // ASSERT
  2735     return get_thread_name_string();
  2738 // Returns a non-NULL representation of this thread's name, or a suitable
  2739 // descriptive string if there is no set name
  2740 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2741   const char* name_str;
  2742   oop thread_obj = threadObj();
  2743   if (thread_obj != NULL) {
  2744     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2745     if (name != NULL) {
  2746       if (buf == NULL) {
  2747         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2749       else {
  2750         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2753     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2754       name_str = "<no-name - thread is attaching>";
  2756     else {
  2757       name_str = Thread::name();
  2760   else {
  2761     name_str = Thread::name();
  2763   assert(name_str != NULL, "unexpected NULL thread name");
  2764   return name_str;
  2768 const char* JavaThread::get_threadgroup_name() const {
  2769   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2770   oop thread_obj = threadObj();
  2771   if (thread_obj != NULL) {
  2772     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2773     if (thread_group != NULL) {
  2774       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2775       // ThreadGroup.name can be null
  2776       if (name != NULL) {
  2777         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2778         return str;
  2782   return NULL;
  2785 const char* JavaThread::get_parent_name() const {
  2786   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2787   oop thread_obj = threadObj();
  2788   if (thread_obj != NULL) {
  2789     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2790     if (thread_group != NULL) {
  2791       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2792       if (parent != NULL) {
  2793         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2794         // ThreadGroup.name can be null
  2795         if (name != NULL) {
  2796           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2797           return str;
  2802   return NULL;
  2805 ThreadPriority JavaThread::java_priority() const {
  2806   oop thr_oop = threadObj();
  2807   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2808   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2809   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2810   return priority;
  2813 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2815   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2816   // Link Java Thread object <-> C++ Thread
  2818   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2819   // and put it into a new Handle.  The Handle "thread_oop" can then
  2820   // be used to pass the C++ thread object to other methods.
  2822   // Set the Java level thread object (jthread) field of the
  2823   // new thread (a JavaThread *) to C++ thread object using the
  2824   // "thread_oop" handle.
  2826   // Set the thread field (a JavaThread *) of the
  2827   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2829   Handle thread_oop(Thread::current(),
  2830                     JNIHandles::resolve_non_null(jni_thread));
  2831   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2832     "must be initialized");
  2833   set_threadObj(thread_oop());
  2834   java_lang_Thread::set_thread(thread_oop(), this);
  2836   if (prio == NoPriority) {
  2837     prio = java_lang_Thread::priority(thread_oop());
  2838     assert(prio != NoPriority, "A valid priority should be present");
  2841   // Push the Java priority down to the native thread; needs Threads_lock
  2842   Thread::set_priority(this, prio);
  2844   // Add the new thread to the Threads list and set it in motion.
  2845   // We must have threads lock in order to call Threads::add.
  2846   // It is crucial that we do not block before the thread is
  2847   // added to the Threads list for if a GC happens, then the java_thread oop
  2848   // will not be visited by GC.
  2849   Threads::add(this);
  2852 oop JavaThread::current_park_blocker() {
  2853   // Support for JSR-166 locks
  2854   oop thread_oop = threadObj();
  2855   if (thread_oop != NULL &&
  2856       JDK_Version::current().supports_thread_park_blocker()) {
  2857     return java_lang_Thread::park_blocker(thread_oop);
  2859   return NULL;
  2863 void JavaThread::print_stack_on(outputStream* st) {
  2864   if (!has_last_Java_frame()) return;
  2865   ResourceMark rm;
  2866   HandleMark   hm;
  2868   RegisterMap reg_map(this);
  2869   vframe* start_vf = last_java_vframe(&reg_map);
  2870   int count = 0;
  2871   for (vframe* f = start_vf; f; f = f->sender() ) {
  2872     if (f->is_java_frame()) {
  2873       javaVFrame* jvf = javaVFrame::cast(f);
  2874       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2876       // Print out lock information
  2877       if (JavaMonitorsInStackTrace) {
  2878         jvf->print_lock_info_on(st, count);
  2880     } else {
  2881       // Ignore non-Java frames
  2884     // Bail-out case for too deep stacks
  2885     count++;
  2886     if (MaxJavaStackTraceDepth == count) return;
  2891 // JVMTI PopFrame support
  2892 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2893   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2894   if (in_bytes(size_in_bytes) != 0) {
  2895     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2896     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2897     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2901 void* JavaThread::popframe_preserved_args() {
  2902   return _popframe_preserved_args;
  2905 ByteSize JavaThread::popframe_preserved_args_size() {
  2906   return in_ByteSize(_popframe_preserved_args_size);
  2909 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2910   int sz = in_bytes(popframe_preserved_args_size());
  2911   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2912   return in_WordSize(sz / wordSize);
  2915 void JavaThread::popframe_free_preserved_args() {
  2916   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2917   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2918   _popframe_preserved_args = NULL;
  2919   _popframe_preserved_args_size = 0;
  2922 #ifndef PRODUCT
  2924 void JavaThread::trace_frames() {
  2925   tty->print_cr("[Describe stack]");
  2926   int frame_no = 1;
  2927   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2928     tty->print("  %d. ", frame_no++);
  2929     fst.current()->print_value_on(tty,this);
  2930     tty->cr();
  2934 class PrintAndVerifyOopClosure: public OopClosure {
  2935  protected:
  2936   template <class T> inline void do_oop_work(T* p) {
  2937     oop obj = oopDesc::load_decode_heap_oop(p);
  2938     if (obj == NULL) return;
  2939     tty->print(INTPTR_FORMAT ": ", p);
  2940     if (obj->is_oop_or_null()) {
  2941       if (obj->is_objArray()) {
  2942         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  2943       } else {
  2944         obj->print();
  2946     } else {
  2947       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  2949     tty->cr();
  2951  public:
  2952   virtual void do_oop(oop* p) { do_oop_work(p); }
  2953   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  2954 };
  2957 static void oops_print(frame* f, const RegisterMap *map) {
  2958   PrintAndVerifyOopClosure print;
  2959   f->print_value();
  2960   f->oops_do(&print, NULL, (RegisterMap*)map);
  2963 // Print our all the locations that contain oops and whether they are
  2964 // valid or not.  This useful when trying to find the oldest frame
  2965 // where an oop has gone bad since the frame walk is from youngest to
  2966 // oldest.
  2967 void JavaThread::trace_oops() {
  2968   tty->print_cr("[Trace oops]");
  2969   frames_do(oops_print);
  2973 #ifdef ASSERT
  2974 // Print or validate the layout of stack frames
  2975 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  2976   ResourceMark rm;
  2977   PRESERVE_EXCEPTION_MARK;
  2978   FrameValues values;
  2979   int frame_no = 0;
  2980   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  2981     fst.current()->describe(values, ++frame_no);
  2982     if (depth == frame_no) break;
  2984   if (validate_only) {
  2985     values.validate();
  2986   } else {
  2987     tty->print_cr("[Describe stack layout]");
  2988     values.print(this);
  2991 #endif
  2993 void JavaThread::trace_stack_from(vframe* start_vf) {
  2994   ResourceMark rm;
  2995   int vframe_no = 1;
  2996   for (vframe* f = start_vf; f; f = f->sender() ) {
  2997     if (f->is_java_frame()) {
  2998       javaVFrame::cast(f)->print_activation(vframe_no++);
  2999     } else {
  3000       f->print();
  3002     if (vframe_no > StackPrintLimit) {
  3003       tty->print_cr("...<more frames>...");
  3004       return;
  3010 void JavaThread::trace_stack() {
  3011   if (!has_last_Java_frame()) return;
  3012   ResourceMark rm;
  3013   HandleMark   hm;
  3014   RegisterMap reg_map(this);
  3015   trace_stack_from(last_java_vframe(&reg_map));
  3019 #endif // PRODUCT
  3022 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3023   assert(reg_map != NULL, "a map must be given");
  3024   frame f = last_frame();
  3025   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3026     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3028   return NULL;
  3032 klassOop JavaThread::security_get_caller_class(int depth) {
  3033   vframeStream vfst(this);
  3034   vfst.security_get_caller_frame(depth);
  3035   if (!vfst.at_end()) {
  3036     return vfst.method()->method_holder();
  3038   return NULL;
  3041 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3042   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3043   CompileBroker::compiler_thread_loop();
  3046 // Create a CompilerThread
  3047 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3048 : JavaThread(&compiler_thread_entry) {
  3049   _env   = NULL;
  3050   _log   = NULL;
  3051   _task  = NULL;
  3052   _queue = queue;
  3053   _counters = counters;
  3054   _buffer_blob = NULL;
  3055   _scanned_nmethod = NULL;
  3057 #ifndef PRODUCT
  3058   _ideal_graph_printer = NULL;
  3059 #endif
  3062 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3063   JavaThread::oops_do(f, cf);
  3064   if (_scanned_nmethod != NULL && cf != NULL) {
  3065     // Safepoints can occur when the sweeper is scanning an nmethod so
  3066     // process it here to make sure it isn't unloaded in the middle of
  3067     // a scan.
  3068     cf->do_code_blob(_scanned_nmethod);
  3072 // ======= Threads ========
  3074 // The Threads class links together all active threads, and provides
  3075 // operations over all threads.  It is protected by its own Mutex
  3076 // lock, which is also used in other contexts to protect thread
  3077 // operations from having the thread being operated on from exiting
  3078 // and going away unexpectedly (e.g., safepoint synchronization)
  3080 JavaThread* Threads::_thread_list = NULL;
  3081 int         Threads::_number_of_threads = 0;
  3082 int         Threads::_number_of_non_daemon_threads = 0;
  3083 int         Threads::_return_code = 0;
  3084 size_t      JavaThread::_stack_size_at_create = 0;
  3086 // All JavaThreads
  3087 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3089 void os_stream();
  3091 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3092 void Threads::threads_do(ThreadClosure* tc) {
  3093   assert_locked_or_safepoint(Threads_lock);
  3094   // ALL_JAVA_THREADS iterates through all JavaThreads
  3095   ALL_JAVA_THREADS(p) {
  3096     tc->do_thread(p);
  3098   // Someday we could have a table or list of all non-JavaThreads.
  3099   // For now, just manually iterate through them.
  3100   tc->do_thread(VMThread::vm_thread());
  3101   Universe::heap()->gc_threads_do(tc);
  3102   WatcherThread *wt = WatcherThread::watcher_thread();
  3103   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3104   // the data for WatcherThread is still valid upon being examined. However,
  3105   // considering that WatchThread terminates when the VM is on the way to
  3106   // exit at safepoint, the chance of the above is extremely small. The right
  3107   // way to prevent termination of WatcherThread would be to acquire
  3108   // Terminator_lock, but we can't do that without violating the lock rank
  3109   // checking in some cases.
  3110   if (wt != NULL)
  3111     tc->do_thread(wt);
  3113   // If CompilerThreads ever become non-JavaThreads, add them here
  3116 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3118   extern void JDK_Version_init();
  3120   // Check version
  3121   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3123   // Initialize the output stream module
  3124   ostream_init();
  3126   // Process java launcher properties.
  3127   Arguments::process_sun_java_launcher_properties(args);
  3129   // Initialize the os module before using TLS
  3130   os::init();
  3132   // Initialize system properties.
  3133   Arguments::init_system_properties();
  3135   // So that JDK version can be used as a discrimintor when parsing arguments
  3136   JDK_Version_init();
  3138   // Update/Initialize System properties after JDK version number is known
  3139   Arguments::init_version_specific_system_properties();
  3141   // Parse arguments
  3142   jint parse_result = Arguments::parse(args);
  3143   if (parse_result != JNI_OK) return parse_result;
  3145   if (PauseAtStartup) {
  3146     os::pause();
  3149 #ifndef USDT2
  3150   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3151 #else /* USDT2 */
  3152   HOTSPOT_VM_INIT_BEGIN();
  3153 #endif /* USDT2 */
  3155   // Record VM creation timing statistics
  3156   TraceVmCreationTime create_vm_timer;
  3157   create_vm_timer.start();
  3159   // Timing (must come after argument parsing)
  3160   TraceTime timer("Create VM", TraceStartupTime);
  3162   // Initialize the os module after parsing the args
  3163   jint os_init_2_result = os::init_2();
  3164   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3166   // Initialize output stream logging
  3167   ostream_init_log();
  3169   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3170   // Must be before create_vm_init_agents()
  3171   if (Arguments::init_libraries_at_startup()) {
  3172     convert_vm_init_libraries_to_agents();
  3175   // Launch -agentlib/-agentpath and converted -Xrun agents
  3176   if (Arguments::init_agents_at_startup()) {
  3177     create_vm_init_agents();
  3180   // Initialize Threads state
  3181   _thread_list = NULL;
  3182   _number_of_threads = 0;
  3183   _number_of_non_daemon_threads = 0;
  3185   // Initialize TLS
  3186   ThreadLocalStorage::init();
  3188   // Initialize global data structures and create system classes in heap
  3189   vm_init_globals();
  3191   // Attach the main thread to this os thread
  3192   JavaThread* main_thread = new JavaThread();
  3193   main_thread->set_thread_state(_thread_in_vm);
  3194   // must do this before set_active_handles and initialize_thread_local_storage
  3195   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3196   // change the stack size recorded here to one based on the java thread
  3197   // stacksize. This adjusted size is what is used to figure the placement
  3198   // of the guard pages.
  3199   main_thread->record_stack_base_and_size();
  3200   main_thread->initialize_thread_local_storage();
  3202   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3204   if (!main_thread->set_as_starting_thread()) {
  3205     vm_shutdown_during_initialization(
  3206       "Failed necessary internal allocation. Out of swap space");
  3207     delete main_thread;
  3208     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3209     return JNI_ENOMEM;
  3212   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3213   // crash Linux VM, see notes in os_linux.cpp.
  3214   main_thread->create_stack_guard_pages();
  3216   // Initialize Java-Level synchronization subsystem
  3217   ObjectMonitor::Initialize() ;
  3219   // Initialize global modules
  3220   jint status = init_globals();
  3221   if (status != JNI_OK) {
  3222     delete main_thread;
  3223     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3224     return status;
  3227   // Should be done after the heap is fully created
  3228   main_thread->cache_global_variables();
  3230   HandleMark hm;
  3232   { MutexLocker mu(Threads_lock);
  3233     Threads::add(main_thread);
  3236   // Any JVMTI raw monitors entered in onload will transition into
  3237   // real raw monitor. VM is setup enough here for raw monitor enter.
  3238   JvmtiExport::transition_pending_onload_raw_monitors();
  3240   if (VerifyBeforeGC &&
  3241       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3242     Universe::heap()->prepare_for_verify();
  3243     Universe::verify();   // make sure we're starting with a clean slate
  3246   // Create the VMThread
  3247   { TraceTime timer("Start VMThread", TraceStartupTime);
  3248     VMThread::create();
  3249     Thread* vmthread = VMThread::vm_thread();
  3251     if (!os::create_thread(vmthread, os::vm_thread))
  3252       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3254     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3255     // Monitors can have spurious returns, must always check another state flag
  3257       MutexLocker ml(Notify_lock);
  3258       os::start_thread(vmthread);
  3259       while (vmthread->active_handles() == NULL) {
  3260         Notify_lock->wait();
  3265   assert (Universe::is_fully_initialized(), "not initialized");
  3266   EXCEPTION_MARK;
  3268   // At this point, the Universe is initialized, but we have not executed
  3269   // any byte code.  Now is a good time (the only time) to dump out the
  3270   // internal state of the JVM for sharing.
  3272   if (DumpSharedSpaces) {
  3273     Universe::heap()->preload_and_dump(CHECK_0);
  3274     ShouldNotReachHere();
  3277   // Always call even when there are not JVMTI environments yet, since environments
  3278   // may be attached late and JVMTI must track phases of VM execution
  3279   JvmtiExport::enter_start_phase();
  3281   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3282   JvmtiExport::post_vm_start();
  3285     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3287     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3288       create_vm_init_libraries();
  3291     if (InitializeJavaLangString) {
  3292       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3293     } else {
  3294       warning("java.lang.String not initialized");
  3297     if (AggressiveOpts) {
  3299         // Forcibly initialize java/util/HashMap and mutate the private
  3300         // static final "frontCacheEnabled" field before we start creating instances
  3301 #ifdef ASSERT
  3302         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3303         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3304 #endif
  3305         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3306         KlassHandle k = KlassHandle(THREAD, k_o);
  3307         guarantee(k.not_null(), "Must find java/util/HashMap");
  3308         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3309         ik->initialize(CHECK_0);
  3310         fieldDescriptor fd;
  3311         // Possible we might not find this field; if so, don't break
  3312         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3313           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3317       if (UseStringCache) {
  3318         // Forcibly initialize java/lang/StringValue and mutate the private
  3319         // static final "stringCacheEnabled" field before we start creating instances
  3320         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3321         // Possible that StringValue isn't present: if so, silently don't break
  3322         if (k_o != NULL) {
  3323           KlassHandle k = KlassHandle(THREAD, k_o);
  3324           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3325           ik->initialize(CHECK_0);
  3326           fieldDescriptor fd;
  3327           // Possible we might not find this field: if so, silently don't break
  3328           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3329             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3335     // Initialize java_lang.System (needed before creating the thread)
  3336     if (InitializeJavaLangSystem) {
  3337       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3338       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3339       Handle thread_group = create_initial_thread_group(CHECK_0);
  3340       Universe::set_main_thread_group(thread_group());
  3341       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3342       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3343       main_thread->set_threadObj(thread_object);
  3344       // Set thread status to running since main thread has
  3345       // been started and running.
  3346       java_lang_Thread::set_thread_status(thread_object,
  3347                                           java_lang_Thread::RUNNABLE);
  3349       // The VM preresolve methods to these classes. Make sure that get initialized
  3350       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3351       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3352       // The VM creates & returns objects of this class. Make sure it's initialized.
  3353       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3354       call_initializeSystemClass(CHECK_0);
  3355     } else {
  3356       warning("java.lang.System not initialized");
  3359     // an instance of OutOfMemory exception has been allocated earlier
  3360     if (InitializeJavaLangExceptionsErrors) {
  3361       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3362       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3363       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3364       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3365       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3366       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3367       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3368       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3369     } else {
  3370       warning("java.lang.OutOfMemoryError has not been initialized");
  3371       warning("java.lang.NullPointerException has not been initialized");
  3372       warning("java.lang.ClassCastException has not been initialized");
  3373       warning("java.lang.ArrayStoreException has not been initialized");
  3374       warning("java.lang.ArithmeticException has not been initialized");
  3375       warning("java.lang.StackOverflowError has not been initialized");
  3376       warning("java.lang.IllegalArgumentException has not been initialized");
  3380   // See        : bugid 4211085.
  3381   // Background : the static initializer of java.lang.Compiler tries to read
  3382   //              property"java.compiler" and read & write property "java.vm.info".
  3383   //              When a security manager is installed through the command line
  3384   //              option "-Djava.security.manager", the above properties are not
  3385   //              readable and the static initializer for java.lang.Compiler fails
  3386   //              resulting in a NoClassDefFoundError.  This can happen in any
  3387   //              user code which calls methods in java.lang.Compiler.
  3388   // Hack :       the hack is to pre-load and initialize this class, so that only
  3389   //              system domains are on the stack when the properties are read.
  3390   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3391   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3392   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3393   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3394   //              Once that is done, we should remove this hack.
  3395   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3397   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3398   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3399   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3400   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3401   // This should also be taken out as soon as 4211383 gets fixed.
  3402   reset_vm_info_property(CHECK_0);
  3404   quicken_jni_functions();
  3406   // Must be run after init_ft which initializes ft_enabled
  3407   if (TRACE_INITIALIZE() != JNI_OK) {
  3408     vm_exit_during_initialization("Failed to initialize tracing backend");
  3411   // Set flag that basic initialization has completed. Used by exceptions and various
  3412   // debug stuff, that does not work until all basic classes have been initialized.
  3413   set_init_completed();
  3415 #ifndef USDT2
  3416   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3417 #else /* USDT2 */
  3418   HOTSPOT_VM_INIT_END();
  3419 #endif /* USDT2 */
  3421   // record VM initialization completion time
  3422   Management::record_vm_init_completed();
  3424   // Compute system loader. Note that this has to occur after set_init_completed, since
  3425   // valid exceptions may be thrown in the process.
  3426   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3427   // set_init_completed has just been called, causing exceptions not to be shortcut
  3428   // anymore. We call vm_exit_during_initialization directly instead.
  3429   SystemDictionary::compute_java_system_loader(THREAD);
  3430   if (HAS_PENDING_EXCEPTION) {
  3431     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3434 #ifndef SERIALGC
  3435   // Support for ConcurrentMarkSweep. This should be cleaned up
  3436   // and better encapsulated. The ugly nested if test would go away
  3437   // once things are properly refactored. XXX YSR
  3438   if (UseConcMarkSweepGC || UseG1GC) {
  3439     if (UseConcMarkSweepGC) {
  3440       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3441     } else {
  3442       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3444     if (HAS_PENDING_EXCEPTION) {
  3445       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3448 #endif // SERIALGC
  3450   // Always call even when there are not JVMTI environments yet, since environments
  3451   // may be attached late and JVMTI must track phases of VM execution
  3452   JvmtiExport::enter_live_phase();
  3454   // Signal Dispatcher needs to be started before VMInit event is posted
  3455   os::signal_init();
  3457   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3458   if (!DisableAttachMechanism) {
  3459     if (StartAttachListener || AttachListener::init_at_startup()) {
  3460       AttachListener::init();
  3464   // Launch -Xrun agents
  3465   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3466   // back-end can launch with -Xdebug -Xrunjdwp.
  3467   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3468     create_vm_init_libraries();
  3471   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3472   JvmtiExport::post_vm_initialized();
  3474   if (!TRACE_START()) {
  3475     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3478   if (CleanChunkPoolAsync) {
  3479     Chunk::start_chunk_pool_cleaner_task();
  3482   // initialize compiler(s)
  3483   CompileBroker::compilation_init();
  3485   Management::initialize(THREAD);
  3486   if (HAS_PENDING_EXCEPTION) {
  3487     // management agent fails to start possibly due to
  3488     // configuration problem and is responsible for printing
  3489     // stack trace if appropriate. Simply exit VM.
  3490     vm_exit(1);
  3493   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3494   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3495   if (MemProfiling)                   MemProfiler::engage();
  3496   StatSampler::engage();
  3497   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3499   BiasedLocking::init();
  3501   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3502     call_postVMInitHook(THREAD);
  3503     // The Java side of PostVMInitHook.run must deal with all
  3504     // exceptions and provide means of diagnosis.
  3505     if (HAS_PENDING_EXCEPTION) {
  3506       CLEAR_PENDING_EXCEPTION;
  3510   // Start up the WatcherThread if there are any periodic tasks
  3511   // NOTE:  All PeriodicTasks should be registered by now. If they
  3512   //   aren't, late joiners might appear to start slowly (we might
  3513   //   take a while to process their first tick).
  3514   if (PeriodicTask::num_tasks() > 0) {
  3515     WatcherThread::start();
  3518   // Give os specific code one last chance to start
  3519   os::init_3();
  3521   create_vm_timer.end();
  3522   return JNI_OK;
  3525 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3526 extern "C" {
  3527   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3529 // Find a command line agent library and return its entry point for
  3530 //         -agentlib:  -agentpath:   -Xrun
  3531 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3532 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3533   OnLoadEntry_t on_load_entry = NULL;
  3534   void *library = agent->os_lib();  // check if we have looked it up before
  3536   if (library == NULL) {
  3537     char buffer[JVM_MAXPATHLEN];
  3538     char ebuf[1024];
  3539     const char *name = agent->name();
  3540     const char *msg = "Could not find agent library ";
  3542     if (agent->is_absolute_path()) {
  3543       library = os::dll_load(name, ebuf, sizeof ebuf);
  3544       if (library == NULL) {
  3545         const char *sub_msg = " in absolute path, with error: ";
  3546         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3547         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3548         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3549         // If we can't find the agent, exit.
  3550         vm_exit_during_initialization(buf, NULL);
  3551         FREE_C_HEAP_ARRAY(char, buf);
  3553     } else {
  3554       // Try to load the agent from the standard dll directory
  3555       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3556       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3557 #ifdef KERNEL
  3558       // Download instrument dll
  3559       if (library == NULL && strcmp(name, "instrument") == 0) {
  3560         char *props = Arguments::get_kernel_properties();
  3561         char *home  = Arguments::get_java_home();
  3562         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3563                       " sun.jkernel.DownloadManager -download client_jvm";
  3564         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3565         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3566         jio_snprintf(cmd, length, fmt, home, props);
  3567         int status = os::fork_and_exec(cmd);
  3568         FreeHeap(props);
  3569         if (status == -1) {
  3570           warning(cmd);
  3571           vm_exit_during_initialization("fork_and_exec failed: %s",
  3572                                          strerror(errno));
  3574         FREE_C_HEAP_ARRAY(char, cmd);
  3575         // when this comes back the instrument.dll should be where it belongs.
  3576         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3578 #endif // KERNEL
  3579       if (library == NULL) { // Try the local directory
  3580         char ns[1] = {0};
  3581         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3582         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3583         if (library == NULL) {
  3584           const char *sub_msg = " on the library path, with error: ";
  3585           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3586           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3587           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3588           // If we can't find the agent, exit.
  3589           vm_exit_during_initialization(buf, NULL);
  3590           FREE_C_HEAP_ARRAY(char, buf);
  3594     agent->set_os_lib(library);
  3597   // Find the OnLoad function.
  3598   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3599     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3600     if (on_load_entry != NULL) break;
  3602   return on_load_entry;
  3605 // Find the JVM_OnLoad entry point
  3606 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3607   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3608   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3611 // Find the Agent_OnLoad entry point
  3612 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3613   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3614   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3617 // For backwards compatibility with -Xrun
  3618 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3619 // treated like -agentpath:
  3620 // Must be called before agent libraries are created
  3621 void Threads::convert_vm_init_libraries_to_agents() {
  3622   AgentLibrary* agent;
  3623   AgentLibrary* next;
  3625   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3626     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3627     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3629     // If there is an JVM_OnLoad function it will get called later,
  3630     // otherwise see if there is an Agent_OnLoad
  3631     if (on_load_entry == NULL) {
  3632       on_load_entry = lookup_agent_on_load(agent);
  3633       if (on_load_entry != NULL) {
  3634         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3635         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3636         Arguments::convert_library_to_agent(agent);
  3637       } else {
  3638         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3644 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3645 // Invokes Agent_OnLoad
  3646 // Called very early -- before JavaThreads exist
  3647 void Threads::create_vm_init_agents() {
  3648   extern struct JavaVM_ main_vm;
  3649   AgentLibrary* agent;
  3651   JvmtiExport::enter_onload_phase();
  3652   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3653     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3655     if (on_load_entry != NULL) {
  3656       // Invoke the Agent_OnLoad function
  3657       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3658       if (err != JNI_OK) {
  3659         vm_exit_during_initialization("agent library failed to init", agent->name());
  3661     } else {
  3662       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3665   JvmtiExport::enter_primordial_phase();
  3668 extern "C" {
  3669   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3672 void Threads::shutdown_vm_agents() {
  3673   // Send any Agent_OnUnload notifications
  3674   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3675   extern struct JavaVM_ main_vm;
  3676   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3678     // Find the Agent_OnUnload function.
  3679     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3680       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3681                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3683       // Invoke the Agent_OnUnload function
  3684       if (unload_entry != NULL) {
  3685         JavaThread* thread = JavaThread::current();
  3686         ThreadToNativeFromVM ttn(thread);
  3687         HandleMark hm(thread);
  3688         (*unload_entry)(&main_vm);
  3689         break;
  3695 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3696 // Invokes JVM_OnLoad
  3697 void Threads::create_vm_init_libraries() {
  3698   extern struct JavaVM_ main_vm;
  3699   AgentLibrary* agent;
  3701   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3702     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3704     if (on_load_entry != NULL) {
  3705       // Invoke the JVM_OnLoad function
  3706       JavaThread* thread = JavaThread::current();
  3707       ThreadToNativeFromVM ttn(thread);
  3708       HandleMark hm(thread);
  3709       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3710       if (err != JNI_OK) {
  3711         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3713     } else {
  3714       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3719 // Last thread running calls java.lang.Shutdown.shutdown()
  3720 void JavaThread::invoke_shutdown_hooks() {
  3721   HandleMark hm(this);
  3723   // We could get here with a pending exception, if so clear it now.
  3724   if (this->has_pending_exception()) {
  3725     this->clear_pending_exception();
  3728   EXCEPTION_MARK;
  3729   klassOop k =
  3730     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3731                                       THREAD);
  3732   if (k != NULL) {
  3733     // SystemDictionary::resolve_or_null will return null if there was
  3734     // an exception.  If we cannot load the Shutdown class, just don't
  3735     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3736     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3737     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3738     // was called, the Shutdown class would have already been loaded
  3739     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3740     instanceKlassHandle shutdown_klass (THREAD, k);
  3741     JavaValue result(T_VOID);
  3742     JavaCalls::call_static(&result,
  3743                            shutdown_klass,
  3744                            vmSymbols::shutdown_method_name(),
  3745                            vmSymbols::void_method_signature(),
  3746                            THREAD);
  3748   CLEAR_PENDING_EXCEPTION;
  3751 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3752 // the program falls off the end of main(). Another VM exit path is through
  3753 // vm_exit() when the program calls System.exit() to return a value or when
  3754 // there is a serious error in VM. The two shutdown paths are not exactly
  3755 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3756 // and VM_Exit op at VM level.
  3757 //
  3758 // Shutdown sequence:
  3759 //   + Wait until we are the last non-daemon thread to execute
  3760 //     <-- every thing is still working at this moment -->
  3761 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3762 //        shutdown hooks, run finalizers if finalization-on-exit
  3763 //   + Call before_exit(), prepare for VM exit
  3764 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3765 //        currently the only user of this mechanism is File.deleteOnExit())
  3766 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3767 //        post thread end and vm death events to JVMTI,
  3768 //        stop signal thread
  3769 //   + Call JavaThread::exit(), it will:
  3770 //      > release JNI handle blocks, remove stack guard pages
  3771 //      > remove this thread from Threads list
  3772 //     <-- no more Java code from this thread after this point -->
  3773 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3774 //     the compiler threads at safepoint
  3775 //     <-- do not use anything that could get blocked by Safepoint -->
  3776 //   + Disable tracing at JNI/JVM barriers
  3777 //   + Set _vm_exited flag for threads that are still running native code
  3778 //   + Delete this thread
  3779 //   + Call exit_globals()
  3780 //      > deletes tty
  3781 //      > deletes PerfMemory resources
  3782 //   + Return to caller
  3784 bool Threads::destroy_vm() {
  3785   JavaThread* thread = JavaThread::current();
  3787   // Wait until we are the last non-daemon thread to execute
  3788   { MutexLocker nu(Threads_lock);
  3789     while (Threads::number_of_non_daemon_threads() > 1 )
  3790       // This wait should make safepoint checks, wait without a timeout,
  3791       // and wait as a suspend-equivalent condition.
  3792       //
  3793       // Note: If the FlatProfiler is running and this thread is waiting
  3794       // for another non-daemon thread to finish, then the FlatProfiler
  3795       // is waiting for the external suspend request on this thread to
  3796       // complete. wait_for_ext_suspend_completion() will eventually
  3797       // timeout, but that takes time. Making this wait a suspend-
  3798       // equivalent condition solves that timeout problem.
  3799       //
  3800       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3801                          Mutex::_as_suspend_equivalent_flag);
  3804   // Hang forever on exit if we are reporting an error.
  3805   if (ShowMessageBoxOnError && is_error_reported()) {
  3806     os::infinite_sleep();
  3808   os::wait_for_keypress_at_exit();
  3810   if (JDK_Version::is_jdk12x_version()) {
  3811     // We are the last thread running, so check if finalizers should be run.
  3812     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3813     HandleMark rm(thread);
  3814     Universe::run_finalizers_on_exit();
  3815   } else {
  3816     // run Java level shutdown hooks
  3817     thread->invoke_shutdown_hooks();
  3820   before_exit(thread);
  3822   thread->exit(true);
  3824   // Stop VM thread.
  3826     // 4945125 The vm thread comes to a safepoint during exit.
  3827     // GC vm_operations can get caught at the safepoint, and the
  3828     // heap is unparseable if they are caught. Grab the Heap_lock
  3829     // to prevent this. The GC vm_operations will not be able to
  3830     // queue until after the vm thread is dead.
  3831     // After this point, we'll never emerge out of the safepoint before
  3832     // the VM exits, so concurrent GC threads do not need to be explicitly
  3833     // stopped; they remain inactive until the process exits.
  3834     // Note: some concurrent G1 threads may be running during a safepoint,
  3835     // but these will not be accessing the heap, just some G1-specific side
  3836     // data structures that are not accessed by any other threads but them
  3837     // after this point in a terminal safepoint.
  3839     MutexLocker ml(Heap_lock);
  3841     VMThread::wait_for_vm_thread_exit();
  3842     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3843     VMThread::destroy();
  3846   // clean up ideal graph printers
  3847 #if defined(COMPILER2) && !defined(PRODUCT)
  3848   IdealGraphPrinter::clean_up();
  3849 #endif
  3851   // Now, all Java threads are gone except daemon threads. Daemon threads
  3852   // running Java code or in VM are stopped by the Safepoint. However,
  3853   // daemon threads executing native code are still running.  But they
  3854   // will be stopped at native=>Java/VM barriers. Note that we can't
  3855   // simply kill or suspend them, as it is inherently deadlock-prone.
  3857 #ifndef PRODUCT
  3858   // disable function tracing at JNI/JVM barriers
  3859   TraceJNICalls = false;
  3860   TraceJVMCalls = false;
  3861   TraceRuntimeCalls = false;
  3862 #endif
  3864   VM_Exit::set_vm_exited();
  3866   notify_vm_shutdown();
  3868   delete thread;
  3870   // exit_globals() will delete tty
  3871   exit_globals();
  3873   return true;
  3877 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3878   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3879   return is_supported_jni_version(version);
  3883 jboolean Threads::is_supported_jni_version(jint version) {
  3884   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3885   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3886   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3887   return JNI_FALSE;
  3891 void Threads::add(JavaThread* p, bool force_daemon) {
  3892   // The threads lock must be owned at this point
  3893   assert_locked_or_safepoint(Threads_lock);
  3895   // See the comment for this method in thread.hpp for its purpose and
  3896   // why it is called here.
  3897   p->initialize_queues();
  3898   p->set_next(_thread_list);
  3899   _thread_list = p;
  3900   _number_of_threads++;
  3901   oop threadObj = p->threadObj();
  3902   bool daemon = true;
  3903   // Bootstrapping problem: threadObj can be null for initial
  3904   // JavaThread (or for threads attached via JNI)
  3905   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3906     _number_of_non_daemon_threads++;
  3907     daemon = false;
  3910   ThreadService::add_thread(p, daemon);
  3912   // Possible GC point.
  3913   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  3916 void Threads::remove(JavaThread* p) {
  3917   // Extra scope needed for Thread_lock, so we can check
  3918   // that we do not remove thread without safepoint code notice
  3919   { MutexLocker ml(Threads_lock);
  3921     assert(includes(p), "p must be present");
  3923     JavaThread* current = _thread_list;
  3924     JavaThread* prev    = NULL;
  3926     while (current != p) {
  3927       prev    = current;
  3928       current = current->next();
  3931     if (prev) {
  3932       prev->set_next(current->next());
  3933     } else {
  3934       _thread_list = p->next();
  3936     _number_of_threads--;
  3937     oop threadObj = p->threadObj();
  3938     bool daemon = true;
  3939     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3940       _number_of_non_daemon_threads--;
  3941       daemon = false;
  3943       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3944       // on destroy_vm will wake up.
  3945       if (number_of_non_daemon_threads() == 1)
  3946         Threads_lock->notify_all();
  3948     ThreadService::remove_thread(p, daemon);
  3950     // Make sure that safepoint code disregard this thread. This is needed since
  3951     // the thread might mess around with locks after this point. This can cause it
  3952     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3953     // of this thread since it is removed from the queue.
  3954     p->set_terminated_value();
  3955   } // unlock Threads_lock
  3957   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3958   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  3961 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3962 bool Threads::includes(JavaThread* p) {
  3963   assert(Threads_lock->is_locked(), "sanity check");
  3964   ALL_JAVA_THREADS(q) {
  3965     if (q == p ) {
  3966       return true;
  3969   return false;
  3972 // Operations on the Threads list for GC.  These are not explicitly locked,
  3973 // but the garbage collector must provide a safe context for them to run.
  3974 // In particular, these things should never be called when the Threads_lock
  3975 // is held by some other thread. (Note: the Safepoint abstraction also
  3976 // uses the Threads_lock to gurantee this property. It also makes sure that
  3977 // all threads gets blocked when exiting or starting).
  3979 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3980   ALL_JAVA_THREADS(p) {
  3981     p->oops_do(f, cf);
  3983   VMThread::vm_thread()->oops_do(f, cf);
  3986 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3987   // Introduce a mechanism allowing parallel threads to claim threads as
  3988   // root groups.  Overhead should be small enough to use all the time,
  3989   // even in sequential code.
  3990   SharedHeap* sh = SharedHeap::heap();
  3991   // Cannot yet substitute active_workers for n_par_threads
  3992   // because of G1CollectedHeap::verify() use of
  3993   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  3994   // turn off parallelism in process_strong_roots while active_workers
  3995   // is being used for parallelism elsewhere.
  3996   bool is_par = sh->n_par_threads() > 0;
  3997   assert(!is_par ||
  3998          (SharedHeap::heap()->n_par_threads() ==
  3999           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4000   int cp = SharedHeap::heap()->strong_roots_parity();
  4001   ALL_JAVA_THREADS(p) {
  4002     if (p->claim_oops_do(is_par, cp)) {
  4003       p->oops_do(f, cf);
  4006   VMThread* vmt = VMThread::vm_thread();
  4007   if (vmt->claim_oops_do(is_par, cp)) {
  4008     vmt->oops_do(f, cf);
  4012 #ifndef SERIALGC
  4013 // Used by ParallelScavenge
  4014 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4015   ALL_JAVA_THREADS(p) {
  4016     q->enqueue(new ThreadRootsTask(p));
  4018   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4021 // Used by Parallel Old
  4022 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4023   ALL_JAVA_THREADS(p) {
  4024     q->enqueue(new ThreadRootsMarkingTask(p));
  4026   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4028 #endif // SERIALGC
  4030 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4031   ALL_JAVA_THREADS(p) {
  4032     p->nmethods_do(cf);
  4034   VMThread::vm_thread()->nmethods_do(cf);
  4037 void Threads::gc_epilogue() {
  4038   ALL_JAVA_THREADS(p) {
  4039     p->gc_epilogue();
  4043 void Threads::gc_prologue() {
  4044   ALL_JAVA_THREADS(p) {
  4045     p->gc_prologue();
  4049 void Threads::deoptimized_wrt_marked_nmethods() {
  4050   ALL_JAVA_THREADS(p) {
  4051     p->deoptimized_wrt_marked_nmethods();
  4056 // Get count Java threads that are waiting to enter the specified monitor.
  4057 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4058   address monitor, bool doLock) {
  4059   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4060     "must grab Threads_lock or be at safepoint");
  4061   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4063   int i = 0;
  4065     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4066     ALL_JAVA_THREADS(p) {
  4067       if (p->is_Compiler_thread()) continue;
  4069       address pending = (address)p->current_pending_monitor();
  4070       if (pending == monitor) {             // found a match
  4071         if (i < count) result->append(p);   // save the first count matches
  4072         i++;
  4076   return result;
  4080 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4081   assert(doLock ||
  4082          Threads_lock->owned_by_self() ||
  4083          SafepointSynchronize::is_at_safepoint(),
  4084          "must grab Threads_lock or be at safepoint");
  4086   // NULL owner means not locked so we can skip the search
  4087   if (owner == NULL) return NULL;
  4090     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4091     ALL_JAVA_THREADS(p) {
  4092       // first, see if owner is the address of a Java thread
  4093       if (owner == (address)p) return p;
  4096   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4097   if (UseHeavyMonitors) return NULL;
  4099   //
  4100   // If we didn't find a matching Java thread and we didn't force use of
  4101   // heavyweight monitors, then the owner is the stack address of the
  4102   // Lock Word in the owning Java thread's stack.
  4103   //
  4104   JavaThread* the_owner = NULL;
  4106     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4107     ALL_JAVA_THREADS(q) {
  4108       if (q->is_lock_owned(owner)) {
  4109         the_owner = q;
  4110         break;
  4114   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4115   return the_owner;
  4118 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4119 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4120   char buf[32];
  4121   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4123   st->print_cr("Full thread dump %s (%s %s):",
  4124                 Abstract_VM_Version::vm_name(),
  4125                 Abstract_VM_Version::vm_release(),
  4126                 Abstract_VM_Version::vm_info_string()
  4127                );
  4128   st->cr();
  4130 #ifndef SERIALGC
  4131   // Dump concurrent locks
  4132   ConcurrentLocksDump concurrent_locks;
  4133   if (print_concurrent_locks) {
  4134     concurrent_locks.dump_at_safepoint();
  4136 #endif // SERIALGC
  4138   ALL_JAVA_THREADS(p) {
  4139     ResourceMark rm;
  4140     p->print_on(st);
  4141     if (print_stacks) {
  4142       if (internal_format) {
  4143         p->trace_stack();
  4144       } else {
  4145         p->print_stack_on(st);
  4148     st->cr();
  4149 #ifndef SERIALGC
  4150     if (print_concurrent_locks) {
  4151       concurrent_locks.print_locks_on(p, st);
  4153 #endif // SERIALGC
  4156   VMThread::vm_thread()->print_on(st);
  4157   st->cr();
  4158   Universe::heap()->print_gc_threads_on(st);
  4159   WatcherThread* wt = WatcherThread::watcher_thread();
  4160   if (wt != NULL) wt->print_on(st);
  4161   st->cr();
  4162   CompileBroker::print_compiler_threads_on(st);
  4163   st->flush();
  4166 // Threads::print_on_error() is called by fatal error handler. It's possible
  4167 // that VM is not at safepoint and/or current thread is inside signal handler.
  4168 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4169 // memory (even in resource area), it might deadlock the error handler.
  4170 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4171   bool found_current = false;
  4172   st->print_cr("Java Threads: ( => current thread )");
  4173   ALL_JAVA_THREADS(thread) {
  4174     bool is_current = (current == thread);
  4175     found_current = found_current || is_current;
  4177     st->print("%s", is_current ? "=>" : "  ");
  4179     st->print(PTR_FORMAT, thread);
  4180     st->print(" ");
  4181     thread->print_on_error(st, buf, buflen);
  4182     st->cr();
  4184   st->cr();
  4186   st->print_cr("Other Threads:");
  4187   if (VMThread::vm_thread()) {
  4188     bool is_current = (current == VMThread::vm_thread());
  4189     found_current = found_current || is_current;
  4190     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4192     st->print(PTR_FORMAT, VMThread::vm_thread());
  4193     st->print(" ");
  4194     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4195     st->cr();
  4197   WatcherThread* wt = WatcherThread::watcher_thread();
  4198   if (wt != NULL) {
  4199     bool is_current = (current == wt);
  4200     found_current = found_current || is_current;
  4201     st->print("%s", is_current ? "=>" : "  ");
  4203     st->print(PTR_FORMAT, wt);
  4204     st->print(" ");
  4205     wt->print_on_error(st, buf, buflen);
  4206     st->cr();
  4208   if (!found_current) {
  4209     st->cr();
  4210     st->print("=>" PTR_FORMAT " (exited) ", current);
  4211     current->print_on_error(st, buf, buflen);
  4212     st->cr();
  4216 // Internal SpinLock and Mutex
  4217 // Based on ParkEvent
  4219 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4220 //
  4221 // We employ SpinLocks _only for low-contention, fixed-length
  4222 // short-duration critical sections where we're concerned
  4223 // about native mutex_t or HotSpot Mutex:: latency.
  4224 // The mux construct provides a spin-then-block mutual exclusion
  4225 // mechanism.
  4226 //
  4227 // Testing has shown that contention on the ListLock guarding gFreeList
  4228 // is common.  If we implement ListLock as a simple SpinLock it's common
  4229 // for the JVM to devolve to yielding with little progress.  This is true
  4230 // despite the fact that the critical sections protected by ListLock are
  4231 // extremely short.
  4232 //
  4233 // TODO-FIXME: ListLock should be of type SpinLock.
  4234 // We should make this a 1st-class type, integrated into the lock
  4235 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4236 // should have sufficient padding to avoid false-sharing and excessive
  4237 // cache-coherency traffic.
  4240 typedef volatile int SpinLockT ;
  4242 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4243   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4244      return ;   // normal fast-path return
  4247   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4248   TEVENT (SpinAcquire - ctx) ;
  4249   int ctr = 0 ;
  4250   int Yields = 0 ;
  4251   for (;;) {
  4252      while (*adr != 0) {
  4253         ++ctr ;
  4254         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4255            if (Yields > 5) {
  4256              // Consider using a simple NakedSleep() instead.
  4257              // Then SpinAcquire could be called by non-JVM threads
  4258              Thread::current()->_ParkEvent->park(1) ;
  4259            } else {
  4260              os::NakedYield() ;
  4261              ++Yields ;
  4263         } else {
  4264            SpinPause() ;
  4267      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4271 void Thread::SpinRelease (volatile int * adr) {
  4272   assert (*adr != 0, "invariant") ;
  4273   OrderAccess::fence() ;      // guarantee at least release consistency.
  4274   // Roach-motel semantics.
  4275   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4276   // but prior LDs and STs within the critical section can't be allowed
  4277   // to reorder or float past the ST that releases the lock.
  4278   *adr = 0 ;
  4281 // muxAcquire and muxRelease:
  4282 //
  4283 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4284 //    The LSB of the word is set IFF the lock is held.
  4285 //    The remainder of the word points to the head of a singly-linked list
  4286 //    of threads blocked on the lock.
  4287 //
  4288 // *  The current implementation of muxAcquire-muxRelease uses its own
  4289 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4290 //    minimizing the peak number of extant ParkEvent instances then
  4291 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4292 //    as certain invariants were satisfied.  Specifically, care would need
  4293 //    to be taken with regards to consuming unpark() "permits".
  4294 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4295 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4296 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4297 //    consume an unpark() permit intended for monitorenter, for instance.
  4298 //    One way around this would be to widen the restricted-range semaphore
  4299 //    implemented in park().  Another alternative would be to provide
  4300 //    multiple instances of the PlatformEvent() for each thread.  One
  4301 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4302 //
  4303 // *  Usage:
  4304 //    -- Only as leaf locks
  4305 //    -- for short-term locking only as muxAcquire does not perform
  4306 //       thread state transitions.
  4307 //
  4308 // Alternatives:
  4309 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4310 //    but with parking or spin-then-park instead of pure spinning.
  4311 // *  Use Taura-Oyama-Yonenzawa locks.
  4312 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4313 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4314 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4315 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4316 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4317 //    boundaries by using placement-new.
  4318 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4319 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4320 //    The validity of the backlinks must be ratified before we trust the value.
  4321 //    If the backlinks are invalid the exiting thread must back-track through the
  4322 //    the forward links, which are always trustworthy.
  4323 // *  Add a successor indication.  The LockWord is currently encoded as
  4324 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4325 //    to provide the usual futile-wakeup optimization.
  4326 //    See RTStt for details.
  4327 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4328 //
  4331 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4332 enum MuxBits { LOCKBIT = 1 } ;
  4334 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4335   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4336   if (w == 0) return ;
  4337   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4338      return ;
  4341   TEVENT (muxAcquire - Contention) ;
  4342   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4343   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4344   for (;;) {
  4345      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4347      // Optional spin phase: spin-then-park strategy
  4348      while (--its >= 0) {
  4349        w = *Lock ;
  4350        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4351           return ;
  4355      Self->reset() ;
  4356      Self->OnList = intptr_t(Lock) ;
  4357      // The following fence() isn't _strictly necessary as the subsequent
  4358      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4359      OrderAccess::fence();
  4360      for (;;) {
  4361         w = *Lock ;
  4362         if ((w & LOCKBIT) == 0) {
  4363             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4364                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4365                 return ;
  4367             continue ;      // Interference -- *Lock changed -- Just retry
  4369         assert (w & LOCKBIT, "invariant") ;
  4370         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4371         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4374      while (Self->OnList != 0) {
  4375         Self->park() ;
  4380 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4381   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4382   if (w == 0) return ;
  4383   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4384     return ;
  4387   TEVENT (muxAcquire - Contention) ;
  4388   ParkEvent * ReleaseAfter = NULL ;
  4389   if (ev == NULL) {
  4390     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4392   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4393   for (;;) {
  4394     guarantee (ev->OnList == 0, "invariant") ;
  4395     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4397     // Optional spin phase: spin-then-park strategy
  4398     while (--its >= 0) {
  4399       w = *Lock ;
  4400       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4401         if (ReleaseAfter != NULL) {
  4402           ParkEvent::Release (ReleaseAfter) ;
  4404         return ;
  4408     ev->reset() ;
  4409     ev->OnList = intptr_t(Lock) ;
  4410     // The following fence() isn't _strictly necessary as the subsequent
  4411     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4412     OrderAccess::fence();
  4413     for (;;) {
  4414       w = *Lock ;
  4415       if ((w & LOCKBIT) == 0) {
  4416         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4417           ev->OnList = 0 ;
  4418           // We call ::Release while holding the outer lock, thus
  4419           // artificially lengthening the critical section.
  4420           // Consider deferring the ::Release() until the subsequent unlock(),
  4421           // after we've dropped the outer lock.
  4422           if (ReleaseAfter != NULL) {
  4423             ParkEvent::Release (ReleaseAfter) ;
  4425           return ;
  4427         continue ;      // Interference -- *Lock changed -- Just retry
  4429       assert (w & LOCKBIT, "invariant") ;
  4430       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4431       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4434     while (ev->OnList != 0) {
  4435       ev->park() ;
  4440 // Release() must extract a successor from the list and then wake that thread.
  4441 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4442 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4443 // Release() would :
  4444 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4445 // (B) Extract a successor from the private list "in-hand"
  4446 // (C) attempt to CAS() the residual back into *Lock over null.
  4447 //     If there were any newly arrived threads and the CAS() would fail.
  4448 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4449 //     with the RATs and repeat as needed.  Alternately, Release() might
  4450 //     detach and extract a successor, but then pass the residual list to the wakee.
  4451 //     The wakee would be responsible for reattaching and remerging before it
  4452 //     competed for the lock.
  4453 //
  4454 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4455 // multiple concurrent pushers, but only one popper or detacher.
  4456 // This implementation pops from the head of the list.  This is unfair,
  4457 // but tends to provide excellent throughput as hot threads remain hot.
  4458 // (We wake recently run threads first).
  4460 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4461   for (;;) {
  4462     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4463     assert (w & LOCKBIT, "invariant") ;
  4464     if (w == LOCKBIT) return ;
  4465     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4466     assert (List != NULL, "invariant") ;
  4467     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4468     ParkEvent * nxt = List->ListNext ;
  4470     // The following CAS() releases the lock and pops the head element.
  4471     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4472       continue ;
  4474     List->OnList = 0 ;
  4475     OrderAccess::fence() ;
  4476     List->unpark () ;
  4477     return ;
  4482 void Threads::verify() {
  4483   ALL_JAVA_THREADS(p) {
  4484     p->verify();
  4486   VMThread* thread = VMThread::vm_thread();
  4487   if (thread != NULL) thread->verify();

mercurial