src/share/vm/runtime/thread.cpp

Mon, 18 Jun 2012 12:29:21 -0700

author
twisti
date
Mon, 18 Jun 2012 12:29:21 -0700
changeset 3884
f8de958e5b2c
parent 3705
df4cd4aac5c1
child 3901
24b9c7f4cae6
permissions
-rw-r--r--

7176856: add the JRE name to the error log
Reviewed-by: coleenp, jrose, kvn, twisti
Contributed-by: Krystal Mok <sajia@taobao.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/oopFactory.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/instanceKlass.hpp"
    40 #include "oops/objArrayOop.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "oops/symbol.hpp"
    43 #include "prims/jvm_misc.hpp"
    44 #include "prims/jvmtiExport.hpp"
    45 #include "prims/jvmtiThreadState.hpp"
    46 #include "prims/privilegedStack.hpp"
    47 #include "runtime/aprofiler.hpp"
    48 #include "runtime/arguments.hpp"
    49 #include "runtime/biasedLocking.hpp"
    50 #include "runtime/deoptimization.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/frame.inline.hpp"
    53 #include "runtime/init.hpp"
    54 #include "runtime/interfaceSupport.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/javaCalls.hpp"
    57 #include "runtime/jniPeriodicChecker.hpp"
    58 #include "runtime/memprofiler.hpp"
    59 #include "runtime/mutexLocker.hpp"
    60 #include "runtime/objectMonitor.hpp"
    61 #include "runtime/osThread.hpp"
    62 #include "runtime/safepoint.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/statSampler.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/task.hpp"
    67 #include "runtime/threadCritical.hpp"
    68 #include "runtime/threadLocalStorage.hpp"
    69 #include "runtime/vframe.hpp"
    70 #include "runtime/vframeArray.hpp"
    71 #include "runtime/vframe_hp.hpp"
    72 #include "runtime/vmThread.hpp"
    73 #include "runtime/vm_operations.hpp"
    74 #include "services/attachListener.hpp"
    75 #include "services/management.hpp"
    76 #include "services/threadService.hpp"
    77 #include "trace/traceEventTypes.hpp"
    78 #include "utilities/defaultStream.hpp"
    79 #include "utilities/dtrace.hpp"
    80 #include "utilities/events.hpp"
    81 #include "utilities/preserveException.hpp"
    82 #ifdef TARGET_OS_FAMILY_linux
    83 # include "os_linux.inline.hpp"
    84 # include "thread_linux.inline.hpp"
    85 #endif
    86 #ifdef TARGET_OS_FAMILY_solaris
    87 # include "os_solaris.inline.hpp"
    88 # include "thread_solaris.inline.hpp"
    89 #endif
    90 #ifdef TARGET_OS_FAMILY_windows
    91 # include "os_windows.inline.hpp"
    92 # include "thread_windows.inline.hpp"
    93 #endif
    94 #ifdef TARGET_OS_FAMILY_bsd
    95 # include "os_bsd.inline.hpp"
    96 # include "thread_bsd.inline.hpp"
    97 #endif
    98 #ifndef SERIALGC
    99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   102 #endif
   103 #ifdef COMPILER1
   104 #include "c1/c1_Compiler.hpp"
   105 #endif
   106 #ifdef COMPILER2
   107 #include "opto/c2compiler.hpp"
   108 #include "opto/idealGraphPrinter.hpp"
   109 #endif
   111 #ifdef DTRACE_ENABLED
   113 // Only bother with this argument setup if dtrace is available
   115 #ifndef USDT2
   116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   119   intptr_t, intptr_t, bool);
   120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   121   intptr_t, intptr_t, bool);
   123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   124   {                                                                        \
   125     ResourceMark rm(this);                                                 \
   126     int len = 0;                                                           \
   127     const char* name = (javathread)->get_thread_name();                    \
   128     len = strlen(name);                                                    \
   129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   130       name, len,                                                           \
   131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   132       (javathread)->osthread()->thread_id(),                               \
   133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   134   }
   136 #else /* USDT2 */
   138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   142   {                                                                        \
   143     ResourceMark rm(this);                                                 \
   144     int len = 0;                                                           \
   145     const char* name = (javathread)->get_thread_name();                    \
   146     len = strlen(name);                                                    \
   147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   148       (char *) name, len,                                                           \
   149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   152   }
   154 #endif /* USDT2 */
   156 #else //  ndef DTRACE_ENABLED
   158 #define DTRACE_THREAD_PROBE(probe, javathread)
   160 #endif // ndef DTRACE_ENABLED
   162 // Class hierarchy
   163 // - Thread
   164 //   - VMThread
   165 //   - WatcherThread
   166 //   - ConcurrentMarkSweepThread
   167 //   - JavaThread
   168 //     - CompilerThread
   170 // ======= Thread ========
   172 // Support for forcing alignment of thread objects for biased locking
   173 void* Thread::operator new(size_t size) {
   174   if (UseBiasedLocking) {
   175     const int alignment = markOopDesc::biased_lock_alignment;
   176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   177     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   178     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   181            "JavaThread alignment code overflowed allocated storage");
   182     if (TraceBiasedLocking) {
   183       if (aligned_addr != real_malloc_addr)
   184         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   185                       real_malloc_addr, aligned_addr);
   186     }
   187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   188     return aligned_addr;
   189   } else {
   190     return CHeapObj::operator new(size);
   191   }
   192 }
   194 void Thread::operator delete(void* p) {
   195   if (UseBiasedLocking) {
   196     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   197     CHeapObj::operator delete(real_malloc_addr);
   198   } else {
   199     CHeapObj::operator delete(p);
   200   }
   201 }
   204 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   205 // JavaThread
   208 Thread::Thread() {
   209   // stack and get_thread
   210   set_stack_base(NULL);
   211   set_stack_size(0);
   212   set_self_raw_id(0);
   213   set_lgrp_id(-1);
   215   // allocated data structures
   216   set_osthread(NULL);
   217   set_resource_area(new ResourceArea());
   218   set_handle_area(new HandleArea(NULL));
   219   set_active_handles(NULL);
   220   set_free_handle_block(NULL);
   221   set_last_handle_mark(NULL);
   223   // This initial value ==> never claimed.
   224   _oops_do_parity = 0;
   226   // the handle mark links itself to last_handle_mark
   227   new HandleMark(this);
   229   // plain initialization
   230   debug_only(_owned_locks = NULL;)
   231   debug_only(_allow_allocation_count = 0;)
   232   NOT_PRODUCT(_allow_safepoint_count = 0;)
   233   NOT_PRODUCT(_skip_gcalot = false;)
   234   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   235   _jvmti_env_iteration_count = 0;
   236   set_allocated_bytes(0);
   237   set_trace_buffer(NULL);
   238   _vm_operation_started_count = 0;
   239   _vm_operation_completed_count = 0;
   240   _current_pending_monitor = NULL;
   241   _current_pending_monitor_is_from_java = true;
   242   _current_waiting_monitor = NULL;
   243   _num_nested_signal = 0;
   244   omFreeList = NULL ;
   245   omFreeCount = 0 ;
   246   omFreeProvision = 32 ;
   247   omInUseList = NULL ;
   248   omInUseCount = 0 ;
   250 #ifdef ASSERT
   251   _visited_for_critical_count = false;
   252 #endif
   254   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   255   _suspend_flags = 0;
   257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   258   _hashStateX = os::random() ;
   259   _hashStateY = 842502087 ;
   260   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   261   _hashStateW = 273326509 ;
   263   _OnTrap   = 0 ;
   264   _schedctl = NULL ;
   265   _Stalled  = 0 ;
   266   _TypeTag  = 0x2BAD ;
   268   // Many of the following fields are effectively final - immutable
   269   // Note that nascent threads can't use the Native Monitor-Mutex
   270   // construct until the _MutexEvent is initialized ...
   271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   272   // we might instead use a stack of ParkEvents that we could provision on-demand.
   273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   274   // and ::Release()
   275   _ParkEvent   = ParkEvent::Allocate (this) ;
   276   _SleepEvent  = ParkEvent::Allocate (this) ;
   277   _MutexEvent  = ParkEvent::Allocate (this) ;
   278   _MuxEvent    = ParkEvent::Allocate (this) ;
   280 #ifdef CHECK_UNHANDLED_OOPS
   281   if (CheckUnhandledOops) {
   282     _unhandled_oops = new UnhandledOops(this);
   283   }
   284 #endif // CHECK_UNHANDLED_OOPS
   285 #ifdef ASSERT
   286   if (UseBiasedLocking) {
   287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   288     assert(this == _real_malloc_address ||
   289            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   290            "bug in forced alignment of thread objects");
   291   }
   292 #endif /* ASSERT */
   293 }
   295 void Thread::initialize_thread_local_storage() {
   296   // Note: Make sure this method only calls
   297   // non-blocking operations. Otherwise, it might not work
   298   // with the thread-startup/safepoint interaction.
   300   // During Java thread startup, safepoint code should allow this
   301   // method to complete because it may need to allocate memory to
   302   // store information for the new thread.
   304   // initialize structure dependent on thread local storage
   305   ThreadLocalStorage::set_thread(this);
   307   // set up any platform-specific state.
   308   os::initialize_thread();
   310 }
   312 void Thread::record_stack_base_and_size() {
   313   set_stack_base(os::current_stack_base());
   314   set_stack_size(os::current_stack_size());
   315 }
   318 Thread::~Thread() {
   319   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   320   ObjectSynchronizer::omFlush (this) ;
   322   // deallocate data structures
   323   delete resource_area();
   324   // since the handle marks are using the handle area, we have to deallocated the root
   325   // handle mark before deallocating the thread's handle area,
   326   assert(last_handle_mark() != NULL, "check we have an element");
   327   delete last_handle_mark();
   328   assert(last_handle_mark() == NULL, "check we have reached the end");
   330   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   331   // We NULL out the fields for good hygiene.
   332   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   333   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   334   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   335   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   337   delete handle_area();
   339   // osthread() can be NULL, if creation of thread failed.
   340   if (osthread() != NULL) os::free_thread(osthread());
   342   delete _SR_lock;
   344   // clear thread local storage if the Thread is deleting itself
   345   if (this == Thread::current()) {
   346     ThreadLocalStorage::set_thread(NULL);
   347   } else {
   348     // In the case where we're not the current thread, invalidate all the
   349     // caches in case some code tries to get the current thread or the
   350     // thread that was destroyed, and gets stale information.
   351     ThreadLocalStorage::invalidate_all();
   352   }
   353   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   354 }
   356 // NOTE: dummy function for assertion purpose.
   357 void Thread::run() {
   358   ShouldNotReachHere();
   359 }
   361 #ifdef ASSERT
   362 // Private method to check for dangling thread pointer
   363 void check_for_dangling_thread_pointer(Thread *thread) {
   364  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   365          "possibility of dangling Thread pointer");
   366 }
   367 #endif
   370 #ifndef PRODUCT
   371 // Tracing method for basic thread operations
   372 void Thread::trace(const char* msg, const Thread* const thread) {
   373   if (!TraceThreadEvents) return;
   374   ResourceMark rm;
   375   ThreadCritical tc;
   376   const char *name = "non-Java thread";
   377   int prio = -1;
   378   if (thread->is_Java_thread()
   379       && !thread->is_Compiler_thread()) {
   380     // The Threads_lock must be held to get information about
   381     // this thread but may not be in some situations when
   382     // tracing  thread events.
   383     bool release_Threads_lock = false;
   384     if (!Threads_lock->owned_by_self()) {
   385       Threads_lock->lock();
   386       release_Threads_lock = true;
   387     }
   388     JavaThread* jt = (JavaThread *)thread;
   389     name = (char *)jt->get_thread_name();
   390     oop thread_oop = jt->threadObj();
   391     if (thread_oop != NULL) {
   392       prio = java_lang_Thread::priority(thread_oop);
   393     }
   394     if (release_Threads_lock) {
   395       Threads_lock->unlock();
   396     }
   397   }
   398   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   399 }
   400 #endif
   403 ThreadPriority Thread::get_priority(const Thread* const thread) {
   404   trace("get priority", thread);
   405   ThreadPriority priority;
   406   // Can return an error!
   407   (void)os::get_priority(thread, priority);
   408   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   409   return priority;
   410 }
   412 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   413   trace("set priority", thread);
   414   debug_only(check_for_dangling_thread_pointer(thread);)
   415   // Can return an error!
   416   (void)os::set_priority(thread, priority);
   417 }
   420 void Thread::start(Thread* thread) {
   421   trace("start", thread);
   422   // Start is different from resume in that its safety is guaranteed by context or
   423   // being called from a Java method synchronized on the Thread object.
   424   if (!DisableStartThread) {
   425     if (thread->is_Java_thread()) {
   426       // Initialize the thread state to RUNNABLE before starting this thread.
   427       // Can not set it after the thread started because we do not know the
   428       // exact thread state at that time. It could be in MONITOR_WAIT or
   429       // in SLEEPING or some other state.
   430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   431                                           java_lang_Thread::RUNNABLE);
   432     }
   433     os::start_thread(thread);
   434   }
   435 }
   437 // Enqueue a VM_Operation to do the job for us - sometime later
   438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   440   VMThread::execute(vm_stop);
   441 }
   444 //
   445 // Check if an external suspend request has completed (or has been
   446 // cancelled). Returns true if the thread is externally suspended and
   447 // false otherwise.
   448 //
   449 // The bits parameter returns information about the code path through
   450 // the routine. Useful for debugging:
   451 //
   452 // set in is_ext_suspend_completed():
   453 // 0x00000001 - routine was entered
   454 // 0x00000010 - routine return false at end
   455 // 0x00000100 - thread exited (return false)
   456 // 0x00000200 - suspend request cancelled (return false)
   457 // 0x00000400 - thread suspended (return true)
   458 // 0x00001000 - thread is in a suspend equivalent state (return true)
   459 // 0x00002000 - thread is native and walkable (return true)
   460 // 0x00004000 - thread is native_trans and walkable (needed retry)
   461 //
   462 // set in wait_for_ext_suspend_completion():
   463 // 0x00010000 - routine was entered
   464 // 0x00020000 - suspend request cancelled before loop (return false)
   465 // 0x00040000 - thread suspended before loop (return true)
   466 // 0x00080000 - suspend request cancelled in loop (return false)
   467 // 0x00100000 - thread suspended in loop (return true)
   468 // 0x00200000 - suspend not completed during retry loop (return false)
   469 //
   471 // Helper class for tracing suspend wait debug bits.
   472 //
   473 // 0x00000100 indicates that the target thread exited before it could
   474 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   475 // 0x00080000 each indicate a cancelled suspend request so they don't
   476 // count as wait failures either.
   477 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   479 class TraceSuspendDebugBits : public StackObj {
   480  private:
   481   JavaThread * jt;
   482   bool         is_wait;
   483   bool         called_by_wait;  // meaningful when !is_wait
   484   uint32_t *   bits;
   486  public:
   487   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   488                         uint32_t *_bits) {
   489     jt             = _jt;
   490     is_wait        = _is_wait;
   491     called_by_wait = _called_by_wait;
   492     bits           = _bits;
   493   }
   495   ~TraceSuspendDebugBits() {
   496     if (!is_wait) {
   497 #if 1
   498       // By default, don't trace bits for is_ext_suspend_completed() calls.
   499       // That trace is very chatty.
   500       return;
   501 #else
   502       if (!called_by_wait) {
   503         // If tracing for is_ext_suspend_completed() is enabled, then only
   504         // trace calls to it from wait_for_ext_suspend_completion()
   505         return;
   506       }
   507 #endif
   508     }
   510     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   511       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   512         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   513         ResourceMark rm;
   515         tty->print_cr(
   516             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   517             jt->get_thread_name(), *bits);
   519         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   520       }
   521     }
   522   }
   523 };
   524 #undef DEBUG_FALSE_BITS
   527 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   531   bool do_trans_retry;           // flag to force the retry
   533   *bits |= 0x00000001;
   535   do {
   536     do_trans_retry = false;
   538     if (is_exiting()) {
   539       // Thread is in the process of exiting. This is always checked
   540       // first to reduce the risk of dereferencing a freed JavaThread.
   541       *bits |= 0x00000100;
   542       return false;
   543     }
   545     if (!is_external_suspend()) {
   546       // Suspend request is cancelled. This is always checked before
   547       // is_ext_suspended() to reduce the risk of a rogue resume
   548       // confusing the thread that made the suspend request.
   549       *bits |= 0x00000200;
   550       return false;
   551     }
   553     if (is_ext_suspended()) {
   554       // thread is suspended
   555       *bits |= 0x00000400;
   556       return true;
   557     }
   559     // Now that we no longer do hard suspends of threads running
   560     // native code, the target thread can be changing thread state
   561     // while we are in this routine:
   562     //
   563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   564     //
   565     // We save a copy of the thread state as observed at this moment
   566     // and make our decision about suspend completeness based on the
   567     // copy. This closes the race where the thread state is seen as
   568     // _thread_in_native_trans in the if-thread_blocked check, but is
   569     // seen as _thread_blocked in if-thread_in_native_trans check.
   570     JavaThreadState save_state = thread_state();
   572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   573       // If the thread's state is _thread_blocked and this blocking
   574       // condition is known to be equivalent to a suspend, then we can
   575       // consider the thread to be externally suspended. This means that
   576       // the code that sets _thread_blocked has been modified to do
   577       // self-suspension if the blocking condition releases. We also
   578       // used to check for CONDVAR_WAIT here, but that is now covered by
   579       // the _thread_blocked with self-suspension check.
   580       //
   581       // Return true since we wouldn't be here unless there was still an
   582       // external suspend request.
   583       *bits |= 0x00001000;
   584       return true;
   585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   586       // Threads running native code will self-suspend on native==>VM/Java
   587       // transitions. If its stack is walkable (should always be the case
   588       // unless this function is called before the actual java_suspend()
   589       // call), then the wait is done.
   590       *bits |= 0x00002000;
   591       return true;
   592     } else if (!called_by_wait && !did_trans_retry &&
   593                save_state == _thread_in_native_trans &&
   594                frame_anchor()->walkable()) {
   595       // The thread is transitioning from thread_in_native to another
   596       // thread state. check_safepoint_and_suspend_for_native_trans()
   597       // will force the thread to self-suspend. If it hasn't gotten
   598       // there yet we may have caught the thread in-between the native
   599       // code check above and the self-suspend. Lucky us. If we were
   600       // called by wait_for_ext_suspend_completion(), then it
   601       // will be doing the retries so we don't have to.
   602       //
   603       // Since we use the saved thread state in the if-statement above,
   604       // there is a chance that the thread has already transitioned to
   605       // _thread_blocked by the time we get here. In that case, we will
   606       // make a single unnecessary pass through the logic below. This
   607       // doesn't hurt anything since we still do the trans retry.
   609       *bits |= 0x00004000;
   611       // Once the thread leaves thread_in_native_trans for another
   612       // thread state, we break out of this retry loop. We shouldn't
   613       // need this flag to prevent us from getting back here, but
   614       // sometimes paranoia is good.
   615       did_trans_retry = true;
   617       // We wait for the thread to transition to a more usable state.
   618       for (int i = 1; i <= SuspendRetryCount; i++) {
   619         // We used to do an "os::yield_all(i)" call here with the intention
   620         // that yielding would increase on each retry. However, the parameter
   621         // is ignored on Linux which means the yield didn't scale up. Waiting
   622         // on the SR_lock below provides a much more predictable scale up for
   623         // the delay. It also provides a simple/direct point to check for any
   624         // safepoint requests from the VMThread
   626         // temporarily drops SR_lock while doing wait with safepoint check
   627         // (if we're a JavaThread - the WatcherThread can also call this)
   628         // and increase delay with each retry
   629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   631         // check the actual thread state instead of what we saved above
   632         if (thread_state() != _thread_in_native_trans) {
   633           // the thread has transitioned to another thread state so
   634           // try all the checks (except this one) one more time.
   635           do_trans_retry = true;
   636           break;
   637         }
   638       } // end retry loop
   641     }
   642   } while (do_trans_retry);
   644   *bits |= 0x00000010;
   645   return false;
   646 }
   648 //
   649 // Wait for an external suspend request to complete (or be cancelled).
   650 // Returns true if the thread is externally suspended and false otherwise.
   651 //
   652 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   653        uint32_t *bits) {
   654   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   655                              false /* !called_by_wait */, bits);
   657   // local flag copies to minimize SR_lock hold time
   658   bool is_suspended;
   659   bool pending;
   660   uint32_t reset_bits;
   662   // set a marker so is_ext_suspend_completed() knows we are the caller
   663   *bits |= 0x00010000;
   665   // We use reset_bits to reinitialize the bits value at the top of
   666   // each retry loop. This allows the caller to make use of any
   667   // unused bits for their own marking purposes.
   668   reset_bits = *bits;
   670   {
   671     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   672     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   673                                             delay, bits);
   674     pending = is_external_suspend();
   675   }
   676   // must release SR_lock to allow suspension to complete
   678   if (!pending) {
   679     // A cancelled suspend request is the only false return from
   680     // is_ext_suspend_completed() that keeps us from entering the
   681     // retry loop.
   682     *bits |= 0x00020000;
   683     return false;
   684   }
   686   if (is_suspended) {
   687     *bits |= 0x00040000;
   688     return true;
   689   }
   691   for (int i = 1; i <= retries; i++) {
   692     *bits = reset_bits;  // reinit to only track last retry
   694     // We used to do an "os::yield_all(i)" call here with the intention
   695     // that yielding would increase on each retry. However, the parameter
   696     // is ignored on Linux which means the yield didn't scale up. Waiting
   697     // on the SR_lock below provides a much more predictable scale up for
   698     // the delay. It also provides a simple/direct point to check for any
   699     // safepoint requests from the VMThread
   701     {
   702       MutexLocker ml(SR_lock());
   703       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   704       // can also call this)  and increase delay with each retry
   705       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   707       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   708                                               delay, bits);
   710       // It is possible for the external suspend request to be cancelled
   711       // (by a resume) before the actual suspend operation is completed.
   712       // Refresh our local copy to see if we still need to wait.
   713       pending = is_external_suspend();
   714     }
   716     if (!pending) {
   717       // A cancelled suspend request is the only false return from
   718       // is_ext_suspend_completed() that keeps us from staying in the
   719       // retry loop.
   720       *bits |= 0x00080000;
   721       return false;
   722     }
   724     if (is_suspended) {
   725       *bits |= 0x00100000;
   726       return true;
   727     }
   728   } // end retry loop
   730   // thread did not suspend after all our retries
   731   *bits |= 0x00200000;
   732   return false;
   733 }
   735 #ifndef PRODUCT
   736 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   738   // This should not need to be atomic as the only way for simultaneous
   739   // updates is via interrupts. Even then this should be rare or non-existant
   740   // and we don't care that much anyway.
   742   int index = _jmp_ring_index;
   743   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   744   _jmp_ring[index]._target = (intptr_t) target;
   745   _jmp_ring[index]._instruction = (intptr_t) instr;
   746   _jmp_ring[index]._file = file;
   747   _jmp_ring[index]._line = line;
   748 }
   749 #endif /* PRODUCT */
   751 // Called by flat profiler
   752 // Callers have already called wait_for_ext_suspend_completion
   753 // The assertion for that is currently too complex to put here:
   754 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   755   bool gotframe = false;
   756   // self suspension saves needed state.
   757   if (has_last_Java_frame() && _anchor.walkable()) {
   758      *_fr = pd_last_frame();
   759      gotframe = true;
   760   }
   761   return gotframe;
   762 }
   764 void Thread::interrupt(Thread* thread) {
   765   trace("interrupt", thread);
   766   debug_only(check_for_dangling_thread_pointer(thread);)
   767   os::interrupt(thread);
   768 }
   770 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   771   trace("is_interrupted", thread);
   772   debug_only(check_for_dangling_thread_pointer(thread);)
   773   // Note:  If clear_interrupted==false, this simply fetches and
   774   // returns the value of the field osthread()->interrupted().
   775   return os::is_interrupted(thread, clear_interrupted);
   776 }
   779 // GC Support
   780 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   781   jint thread_parity = _oops_do_parity;
   782   if (thread_parity != strong_roots_parity) {
   783     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   784     if (res == thread_parity) {
   785       return true;
   786     } else {
   787       guarantee(res == strong_roots_parity, "Or else what?");
   788       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   789          "Should only fail when parallel.");
   790       return false;
   791     }
   792   }
   793   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   794          "Should only fail when parallel.");
   795   return false;
   796 }
   798 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   799   active_handles()->oops_do(f);
   800   // Do oop for ThreadShadow
   801   f->do_oop((oop*)&_pending_exception);
   802   handle_area()->oops_do(f);
   803 }
   805 void Thread::nmethods_do(CodeBlobClosure* cf) {
   806   // no nmethods in a generic thread...
   807 }
   809 void Thread::print_on(outputStream* st) const {
   810   // get_priority assumes osthread initialized
   811   if (osthread() != NULL) {
   812     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   813     osthread()->print_on(st);
   814   }
   815   debug_only(if (WizardMode) print_owned_locks_on(st);)
   816 }
   818 // Thread::print_on_error() is called by fatal error handler. Don't use
   819 // any lock or allocate memory.
   820 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   821   if      (is_VM_thread())                  st->print("VMThread");
   822   else if (is_Compiler_thread())            st->print("CompilerThread");
   823   else if (is_Java_thread())                st->print("JavaThread");
   824   else if (is_GC_task_thread())             st->print("GCTaskThread");
   825   else if (is_Watcher_thread())             st->print("WatcherThread");
   826   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   827   else st->print("Thread");
   829   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   830             _stack_base - _stack_size, _stack_base);
   832   if (osthread()) {
   833     st->print(" [id=%d]", osthread()->thread_id());
   834   }
   835 }
   837 #ifdef ASSERT
   838 void Thread::print_owned_locks_on(outputStream* st) const {
   839   Monitor *cur = _owned_locks;
   840   if (cur == NULL) {
   841     st->print(" (no locks) ");
   842   } else {
   843     st->print_cr(" Locks owned:");
   844     while(cur) {
   845       cur->print_on(st);
   846       cur = cur->next();
   847     }
   848   }
   849 }
   851 static int ref_use_count  = 0;
   853 bool Thread::owns_locks_but_compiled_lock() const {
   854   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   855     if (cur != Compile_lock) return true;
   856   }
   857   return false;
   858 }
   861 #endif
   863 #ifndef PRODUCT
   865 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   866 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   867 // no threads which allow_vm_block's are held
   868 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   869     // Check if current thread is allowed to block at a safepoint
   870     if (!(_allow_safepoint_count == 0))
   871       fatal("Possible safepoint reached by thread that does not allow it");
   872     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   873       fatal("LEAF method calling lock?");
   874     }
   876 #ifdef ASSERT
   877     if (potential_vm_operation && is_Java_thread()
   878         && !Universe::is_bootstrapping()) {
   879       // Make sure we do not hold any locks that the VM thread also uses.
   880       // This could potentially lead to deadlocks
   881       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   882         // Threads_lock is special, since the safepoint synchronization will not start before this is
   883         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   884         // since it is used to transfer control between JavaThreads and the VMThread
   885         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   886         if ( (cur->allow_vm_block() &&
   887               cur != Threads_lock &&
   888               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   889               cur != VMOperationRequest_lock &&
   890               cur != VMOperationQueue_lock) ||
   891               cur->rank() == Mutex::special) {
   892           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   893         }
   894       }
   895     }
   897     if (GCALotAtAllSafepoints) {
   898       // We could enter a safepoint here and thus have a gc
   899       InterfaceSupport::check_gc_alot();
   900     }
   901 #endif
   902 }
   903 #endif
   905 bool Thread::is_in_stack(address adr) const {
   906   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   907   address end = os::current_stack_pointer();
   908   if (stack_base() >= adr && adr >= end) return true;
   910   return false;
   911 }
   914 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   915 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   916 // used for compilation in the future. If that change is made, the need for these methods
   917 // should be revisited, and they should be removed if possible.
   919 bool Thread::is_lock_owned(address adr) const {
   920   return on_local_stack(adr);
   921 }
   923 bool Thread::set_as_starting_thread() {
   924  // NOTE: this must be called inside the main thread.
   925   return os::create_main_thread((JavaThread*)this);
   926 }
   928 static void initialize_class(Symbol* class_name, TRAPS) {
   929   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   930   instanceKlass::cast(klass)->initialize(CHECK);
   931 }
   934 // Creates the initial ThreadGroup
   935 static Handle create_initial_thread_group(TRAPS) {
   936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   937   instanceKlassHandle klass (THREAD, k);
   939   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   940   {
   941     JavaValue result(T_VOID);
   942     JavaCalls::call_special(&result,
   943                             system_instance,
   944                             klass,
   945                             vmSymbols::object_initializer_name(),
   946                             vmSymbols::void_method_signature(),
   947                             CHECK_NH);
   948   }
   949   Universe::set_system_thread_group(system_instance());
   951   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   952   {
   953     JavaValue result(T_VOID);
   954     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   955     JavaCalls::call_special(&result,
   956                             main_instance,
   957                             klass,
   958                             vmSymbols::object_initializer_name(),
   959                             vmSymbols::threadgroup_string_void_signature(),
   960                             system_instance,
   961                             string,
   962                             CHECK_NH);
   963   }
   964   return main_instance;
   965 }
   967 // Creates the initial Thread
   968 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   969   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
   970   instanceKlassHandle klass (THREAD, k);
   971   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   973   java_lang_Thread::set_thread(thread_oop(), thread);
   974   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   975   thread->set_threadObj(thread_oop());
   977   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   979   JavaValue result(T_VOID);
   980   JavaCalls::call_special(&result, thread_oop,
   981                                    klass,
   982                                    vmSymbols::object_initializer_name(),
   983                                    vmSymbols::threadgroup_string_void_signature(),
   984                                    thread_group,
   985                                    string,
   986                                    CHECK_NULL);
   987   return thread_oop();
   988 }
   990 static void call_initializeSystemClass(TRAPS) {
   991   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
   992   instanceKlassHandle klass (THREAD, k);
   994   JavaValue result(T_VOID);
   995   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
   996                                          vmSymbols::void_method_signature(), CHECK);
   997 }
   999 char java_runtime_name[128] = "";
  1001 // extract the JRE name from sun.misc.Version.java_runtime_name
  1002 static const char* get_java_runtime_name(TRAPS) {
  1003   klassOop k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1004                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1005   fieldDescriptor fd;
  1006   bool found = k != NULL &&
  1007                instanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1008                                                         vmSymbols::string_signature(), &fd);
  1009   if (found) {
  1010     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1011     if (name_oop == NULL)
  1012       return NULL;
  1013     const char* name = java_lang_String::as_utf8_string(name_oop,
  1014                                                         java_runtime_name,
  1015                                                         sizeof(java_runtime_name));
  1016     return name;
  1017   } else {
  1018     return NULL;
  1022 // General purpose hook into Java code, run once when the VM is initialized.
  1023 // The Java library method itself may be changed independently from the VM.
  1024 static void call_postVMInitHook(TRAPS) {
  1025   klassOop k = SystemDictionary::PostVMInitHook_klass();
  1026   instanceKlassHandle klass (THREAD, k);
  1027   if (klass.not_null()) {
  1028     JavaValue result(T_VOID);
  1029     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1030                                            vmSymbols::void_method_signature(),
  1031                                            CHECK);
  1035 static void reset_vm_info_property(TRAPS) {
  1036   // the vm info string
  1037   ResourceMark rm(THREAD);
  1038   const char *vm_info = VM_Version::vm_info_string();
  1040   // java.lang.System class
  1041   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1042   instanceKlassHandle klass (THREAD, k);
  1044   // setProperty arguments
  1045   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1046   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1048   // return value
  1049   JavaValue r(T_OBJECT);
  1051   // public static String setProperty(String key, String value);
  1052   JavaCalls::call_static(&r,
  1053                          klass,
  1054                          vmSymbols::setProperty_name(),
  1055                          vmSymbols::string_string_string_signature(),
  1056                          key_str,
  1057                          value_str,
  1058                          CHECK);
  1062 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1063   assert(thread_group.not_null(), "thread group should be specified");
  1064   assert(threadObj() == NULL, "should only create Java thread object once");
  1066   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1067   instanceKlassHandle klass (THREAD, k);
  1068   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1070   java_lang_Thread::set_thread(thread_oop(), this);
  1071   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1072   set_threadObj(thread_oop());
  1074   JavaValue result(T_VOID);
  1075   if (thread_name != NULL) {
  1076     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1077     // Thread gets assigned specified name and null target
  1078     JavaCalls::call_special(&result,
  1079                             thread_oop,
  1080                             klass,
  1081                             vmSymbols::object_initializer_name(),
  1082                             vmSymbols::threadgroup_string_void_signature(),
  1083                             thread_group, // Argument 1
  1084                             name,         // Argument 2
  1085                             THREAD);
  1086   } else {
  1087     // Thread gets assigned name "Thread-nnn" and null target
  1088     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1089     JavaCalls::call_special(&result,
  1090                             thread_oop,
  1091                             klass,
  1092                             vmSymbols::object_initializer_name(),
  1093                             vmSymbols::threadgroup_runnable_void_signature(),
  1094                             thread_group, // Argument 1
  1095                             Handle(),     // Argument 2
  1096                             THREAD);
  1100   if (daemon) {
  1101       java_lang_Thread::set_daemon(thread_oop());
  1104   if (HAS_PENDING_EXCEPTION) {
  1105     return;
  1108   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1109   Handle threadObj(this, this->threadObj());
  1111   JavaCalls::call_special(&result,
  1112                          thread_group,
  1113                          group,
  1114                          vmSymbols::add_method_name(),
  1115                          vmSymbols::thread_void_signature(),
  1116                          threadObj,          // Arg 1
  1117                          THREAD);
  1122 // NamedThread --  non-JavaThread subclasses with multiple
  1123 // uniquely named instances should derive from this.
  1124 NamedThread::NamedThread() : Thread() {
  1125   _name = NULL;
  1126   _processed_thread = NULL;
  1129 NamedThread::~NamedThread() {
  1130   if (_name != NULL) {
  1131     FREE_C_HEAP_ARRAY(char, _name);
  1132     _name = NULL;
  1136 void NamedThread::set_name(const char* format, ...) {
  1137   guarantee(_name == NULL, "Only get to set name once.");
  1138   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1139   guarantee(_name != NULL, "alloc failure");
  1140   va_list ap;
  1141   va_start(ap, format);
  1142   jio_vsnprintf(_name, max_name_len, format, ap);
  1143   va_end(ap);
  1146 // ======= WatcherThread ========
  1148 // The watcher thread exists to simulate timer interrupts.  It should
  1149 // be replaced by an abstraction over whatever native support for
  1150 // timer interrupts exists on the platform.
  1152 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1153 volatile bool  WatcherThread::_should_terminate = false;
  1155 WatcherThread::WatcherThread() : Thread() {
  1156   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1157   if (os::create_thread(this, os::watcher_thread)) {
  1158     _watcher_thread = this;
  1160     // Set the watcher thread to the highest OS priority which should not be
  1161     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1162     // is created. The only normal thread using this priority is the reference
  1163     // handler thread, which runs for very short intervals only.
  1164     // If the VMThread's priority is not lower than the WatcherThread profiling
  1165     // will be inaccurate.
  1166     os::set_priority(this, MaxPriority);
  1167     if (!DisableStartThread) {
  1168       os::start_thread(this);
  1173 void WatcherThread::run() {
  1174   assert(this == watcher_thread(), "just checking");
  1176   this->record_stack_base_and_size();
  1177   this->initialize_thread_local_storage();
  1178   this->set_active_handles(JNIHandleBlock::allocate_block());
  1179   while(!_should_terminate) {
  1180     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1181     assert(watcher_thread() == this,  "thread consistency check");
  1183     // Calculate how long it'll be until the next PeriodicTask work
  1184     // should be done, and sleep that amount of time.
  1185     size_t time_to_wait = PeriodicTask::time_to_wait();
  1187     // we expect this to timeout - we only ever get unparked when
  1188     // we should terminate
  1190       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1192       jlong prev_time = os::javaTimeNanos();
  1193       for (;;) {
  1194         int res= _SleepEvent->park(time_to_wait);
  1195         if (res == OS_TIMEOUT || _should_terminate)
  1196           break;
  1197         // spurious wakeup of some kind
  1198         jlong now = os::javaTimeNanos();
  1199         time_to_wait -= (now - prev_time) / 1000000;
  1200         if (time_to_wait <= 0)
  1201           break;
  1202         prev_time = now;
  1206     if (is_error_reported()) {
  1207       // A fatal error has happened, the error handler(VMError::report_and_die)
  1208       // should abort JVM after creating an error log file. However in some
  1209       // rare cases, the error handler itself might deadlock. Here we try to
  1210       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1211       //
  1212       // This code is in WatcherThread because WatcherThread wakes up
  1213       // periodically so the fatal error handler doesn't need to do anything;
  1214       // also because the WatcherThread is less likely to crash than other
  1215       // threads.
  1217       for (;;) {
  1218         if (!ShowMessageBoxOnError
  1219          && (OnError == NULL || OnError[0] == '\0')
  1220          && Arguments::abort_hook() == NULL) {
  1221              os::sleep(this, 2 * 60 * 1000, false);
  1222              fdStream err(defaultStream::output_fd());
  1223              err.print_raw_cr("# [ timer expired, abort... ]");
  1224              // skip atexit/vm_exit/vm_abort hooks
  1225              os::die();
  1228         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1229         // ShowMessageBoxOnError when it is ready to abort.
  1230         os::sleep(this, 5 * 1000, false);
  1234     PeriodicTask::real_time_tick(time_to_wait);
  1236     // If we have no more tasks left due to dynamic disenrollment,
  1237     // shut down the thread since we don't currently support dynamic enrollment
  1238     if (PeriodicTask::num_tasks() == 0) {
  1239       _should_terminate = true;
  1243   // Signal that it is terminated
  1245     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1246     _watcher_thread = NULL;
  1247     Terminator_lock->notify();
  1250   // Thread destructor usually does this..
  1251   ThreadLocalStorage::set_thread(NULL);
  1254 void WatcherThread::start() {
  1255   if (watcher_thread() == NULL) {
  1256     _should_terminate = false;
  1257     // Create the single instance of WatcherThread
  1258     new WatcherThread();
  1262 void WatcherThread::stop() {
  1263   // it is ok to take late safepoints here, if needed
  1264   MutexLocker mu(Terminator_lock);
  1265   _should_terminate = true;
  1266   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1268   Thread* watcher = watcher_thread();
  1269   if (watcher != NULL)
  1270     watcher->_SleepEvent->unpark();
  1272   while(watcher_thread() != NULL) {
  1273     // This wait should make safepoint checks, wait without a timeout,
  1274     // and wait as a suspend-equivalent condition.
  1275     //
  1276     // Note: If the FlatProfiler is running, then this thread is waiting
  1277     // for the WatcherThread to terminate and the WatcherThread, via the
  1278     // FlatProfiler task, is waiting for the external suspend request on
  1279     // this thread to complete. wait_for_ext_suspend_completion() will
  1280     // eventually timeout, but that takes time. Making this wait a
  1281     // suspend-equivalent condition solves that timeout problem.
  1282     //
  1283     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1284                           Mutex::_as_suspend_equivalent_flag);
  1288 void WatcherThread::print_on(outputStream* st) const {
  1289   st->print("\"%s\" ", name());
  1290   Thread::print_on(st);
  1291   st->cr();
  1294 // ======= JavaThread ========
  1296 // A JavaThread is a normal Java thread
  1298 void JavaThread::initialize() {
  1299   // Initialize fields
  1301   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1302   set_claimed_par_id(-1);
  1304   set_saved_exception_pc(NULL);
  1305   set_threadObj(NULL);
  1306   _anchor.clear();
  1307   set_entry_point(NULL);
  1308   set_jni_functions(jni_functions());
  1309   set_callee_target(NULL);
  1310   set_vm_result(NULL);
  1311   set_vm_result_2(NULL);
  1312   set_vframe_array_head(NULL);
  1313   set_vframe_array_last(NULL);
  1314   set_deferred_locals(NULL);
  1315   set_deopt_mark(NULL);
  1316   set_deopt_nmethod(NULL);
  1317   clear_must_deopt_id();
  1318   set_monitor_chunks(NULL);
  1319   set_next(NULL);
  1320   set_thread_state(_thread_new);
  1321   _terminated = _not_terminated;
  1322   _privileged_stack_top = NULL;
  1323   _array_for_gc = NULL;
  1324   _suspend_equivalent = false;
  1325   _in_deopt_handler = 0;
  1326   _doing_unsafe_access = false;
  1327   _stack_guard_state = stack_guard_unused;
  1328   _exception_oop = NULL;
  1329   _exception_pc  = 0;
  1330   _exception_handler_pc = 0;
  1331   _is_method_handle_return = 0;
  1332   _jvmti_thread_state= NULL;
  1333   _should_post_on_exceptions_flag = JNI_FALSE;
  1334   _jvmti_get_loaded_classes_closure = NULL;
  1335   _interp_only_mode    = 0;
  1336   _special_runtime_exit_condition = _no_async_condition;
  1337   _pending_async_exception = NULL;
  1338   _is_compiling = false;
  1339   _thread_stat = NULL;
  1340   _thread_stat = new ThreadStatistics();
  1341   _blocked_on_compilation = false;
  1342   _jni_active_critical = 0;
  1343   _do_not_unlock_if_synchronized = false;
  1344   _cached_monitor_info = NULL;
  1345   _parker = Parker::Allocate(this) ;
  1347 #ifndef PRODUCT
  1348   _jmp_ring_index = 0;
  1349   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1350     record_jump(NULL, NULL, NULL, 0);
  1352 #endif /* PRODUCT */
  1354   set_thread_profiler(NULL);
  1355   if (FlatProfiler::is_active()) {
  1356     // This is where we would decide to either give each thread it's own profiler
  1357     // or use one global one from FlatProfiler,
  1358     // or up to some count of the number of profiled threads, etc.
  1359     ThreadProfiler* pp = new ThreadProfiler();
  1360     pp->engage();
  1361     set_thread_profiler(pp);
  1364   // Setup safepoint state info for this thread
  1365   ThreadSafepointState::create(this);
  1367   debug_only(_java_call_counter = 0);
  1369   // JVMTI PopFrame support
  1370   _popframe_condition = popframe_inactive;
  1371   _popframe_preserved_args = NULL;
  1372   _popframe_preserved_args_size = 0;
  1374   pd_initialize();
  1377 #ifndef SERIALGC
  1378 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1379 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1380 #endif // !SERIALGC
  1382 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1383   Thread()
  1384 #ifndef SERIALGC
  1385   , _satb_mark_queue(&_satb_mark_queue_set),
  1386   _dirty_card_queue(&_dirty_card_queue_set)
  1387 #endif // !SERIALGC
  1389   initialize();
  1390   if (is_attaching_via_jni) {
  1391     _jni_attach_state = _attaching_via_jni;
  1392   } else {
  1393     _jni_attach_state = _not_attaching_via_jni;
  1395   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1398 bool JavaThread::reguard_stack(address cur_sp) {
  1399   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1400     return true; // Stack already guarded or guard pages not needed.
  1403   if (register_stack_overflow()) {
  1404     // For those architectures which have separate register and
  1405     // memory stacks, we must check the register stack to see if
  1406     // it has overflowed.
  1407     return false;
  1410   // Java code never executes within the yellow zone: the latter is only
  1411   // there to provoke an exception during stack banging.  If java code
  1412   // is executing there, either StackShadowPages should be larger, or
  1413   // some exception code in c1, c2 or the interpreter isn't unwinding
  1414   // when it should.
  1415   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1417   enable_stack_yellow_zone();
  1418   return true;
  1421 bool JavaThread::reguard_stack(void) {
  1422   return reguard_stack(os::current_stack_pointer());
  1426 void JavaThread::block_if_vm_exited() {
  1427   if (_terminated == _vm_exited) {
  1428     // _vm_exited is set at safepoint, and Threads_lock is never released
  1429     // we will block here forever
  1430     Threads_lock->lock_without_safepoint_check();
  1431     ShouldNotReachHere();
  1436 // Remove this ifdef when C1 is ported to the compiler interface.
  1437 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1439 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1440   Thread()
  1441 #ifndef SERIALGC
  1442   , _satb_mark_queue(&_satb_mark_queue_set),
  1443   _dirty_card_queue(&_dirty_card_queue_set)
  1444 #endif // !SERIALGC
  1446   if (TraceThreadEvents) {
  1447     tty->print_cr("creating thread %p", this);
  1449   initialize();
  1450   _jni_attach_state = _not_attaching_via_jni;
  1451   set_entry_point(entry_point);
  1452   // Create the native thread itself.
  1453   // %note runtime_23
  1454   os::ThreadType thr_type = os::java_thread;
  1455   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1456                                                      os::java_thread;
  1457   os::create_thread(this, thr_type, stack_sz);
  1459   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1460   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1461   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1462   // the exception consists of creating the exception object & initializing it, initialization
  1463   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1464   //
  1465   // The thread is still suspended when we reach here. Thread must be explicit started
  1466   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1467   // by calling Threads:add. The reason why this is not done here, is because the thread
  1468   // object must be fully initialized (take a look at JVM_Start)
  1471 JavaThread::~JavaThread() {
  1472   if (TraceThreadEvents) {
  1473       tty->print_cr("terminate thread %p", this);
  1476   // JSR166 -- return the parker to the free list
  1477   Parker::Release(_parker);
  1478   _parker = NULL ;
  1480   // Free any remaining  previous UnrollBlock
  1481   vframeArray* old_array = vframe_array_last();
  1483   if (old_array != NULL) {
  1484     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1485     old_array->set_unroll_block(NULL);
  1486     delete old_info;
  1487     delete old_array;
  1490   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1491   if (deferred != NULL) {
  1492     // This can only happen if thread is destroyed before deoptimization occurs.
  1493     assert(deferred->length() != 0, "empty array!");
  1494     do {
  1495       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1496       deferred->remove_at(0);
  1497       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1498       delete dlv;
  1499     } while (deferred->length() != 0);
  1500     delete deferred;
  1503   // All Java related clean up happens in exit
  1504   ThreadSafepointState::destroy(this);
  1505   if (_thread_profiler != NULL) delete _thread_profiler;
  1506   if (_thread_stat != NULL) delete _thread_stat;
  1510 // The first routine called by a new Java thread
  1511 void JavaThread::run() {
  1512   // initialize thread-local alloc buffer related fields
  1513   this->initialize_tlab();
  1515   // used to test validitity of stack trace backs
  1516   this->record_base_of_stack_pointer();
  1518   // Record real stack base and size.
  1519   this->record_stack_base_and_size();
  1521   // Initialize thread local storage; set before calling MutexLocker
  1522   this->initialize_thread_local_storage();
  1524   this->create_stack_guard_pages();
  1526   this->cache_global_variables();
  1528   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1529   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1530   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1532   assert(JavaThread::current() == this, "sanity check");
  1533   assert(!Thread::current()->owns_locks(), "sanity check");
  1535   DTRACE_THREAD_PROBE(start, this);
  1537   // This operation might block. We call that after all safepoint checks for a new thread has
  1538   // been completed.
  1539   this->set_active_handles(JNIHandleBlock::allocate_block());
  1541   if (JvmtiExport::should_post_thread_life()) {
  1542     JvmtiExport::post_thread_start(this);
  1545   EVENT_BEGIN(TraceEventThreadStart, event);
  1546   EVENT_COMMIT(event,
  1547      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1549   // We call another function to do the rest so we are sure that the stack addresses used
  1550   // from there will be lower than the stack base just computed
  1551   thread_main_inner();
  1553   // Note, thread is no longer valid at this point!
  1557 void JavaThread::thread_main_inner() {
  1558   assert(JavaThread::current() == this, "sanity check");
  1559   assert(this->threadObj() != NULL, "just checking");
  1561   // Execute thread entry point unless this thread has a pending exception
  1562   // or has been stopped before starting.
  1563   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1564   if (!this->has_pending_exception() &&
  1565       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1567       ResourceMark rm(this);
  1568       this->set_native_thread_name(this->get_thread_name());
  1570     HandleMark hm(this);
  1571     this->entry_point()(this, this);
  1574   DTRACE_THREAD_PROBE(stop, this);
  1576   this->exit(false);
  1577   delete this;
  1581 static void ensure_join(JavaThread* thread) {
  1582   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1583   Handle threadObj(thread, thread->threadObj());
  1584   assert(threadObj.not_null(), "java thread object must exist");
  1585   ObjectLocker lock(threadObj, thread);
  1586   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1587   thread->clear_pending_exception();
  1588   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1589   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1590   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1591   // to complete once we've done the notify_all below
  1592   java_lang_Thread::set_thread(threadObj(), NULL);
  1593   lock.notify_all(thread);
  1594   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1595   thread->clear_pending_exception();
  1599 // For any new cleanup additions, please check to see if they need to be applied to
  1600 // cleanup_failed_attach_current_thread as well.
  1601 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1602   assert(this == JavaThread::current(),  "thread consistency check");
  1603   if (!InitializeJavaLangSystem) return;
  1605   HandleMark hm(this);
  1606   Handle uncaught_exception(this, this->pending_exception());
  1607   this->clear_pending_exception();
  1608   Handle threadObj(this, this->threadObj());
  1609   assert(threadObj.not_null(), "Java thread object should be created");
  1611   if (get_thread_profiler() != NULL) {
  1612     get_thread_profiler()->disengage();
  1613     ResourceMark rm;
  1614     get_thread_profiler()->print(get_thread_name());
  1618   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1620     EXCEPTION_MARK;
  1622     CLEAR_PENDING_EXCEPTION;
  1624   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1625   // has to be fixed by a runtime query method
  1626   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1627     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1628     // java.lang.Thread.dispatchUncaughtException
  1629     if (uncaught_exception.not_null()) {
  1630       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1632         EXCEPTION_MARK;
  1633         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1634         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1635         // so call ThreadGroup.uncaughtException()
  1636         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1637         CallInfo callinfo;
  1638         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1639         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1640                                            vmSymbols::dispatchUncaughtException_name(),
  1641                                            vmSymbols::throwable_void_signature(),
  1642                                            KlassHandle(), false, false, THREAD);
  1643         CLEAR_PENDING_EXCEPTION;
  1644         methodHandle method = callinfo.selected_method();
  1645         if (method.not_null()) {
  1646           JavaValue result(T_VOID);
  1647           JavaCalls::call_virtual(&result,
  1648                                   threadObj, thread_klass,
  1649                                   vmSymbols::dispatchUncaughtException_name(),
  1650                                   vmSymbols::throwable_void_signature(),
  1651                                   uncaught_exception,
  1652                                   THREAD);
  1653         } else {
  1654           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1655           JavaValue result(T_VOID);
  1656           JavaCalls::call_virtual(&result,
  1657                                   group, thread_group,
  1658                                   vmSymbols::uncaughtException_name(),
  1659                                   vmSymbols::thread_throwable_void_signature(),
  1660                                   threadObj,           // Arg 1
  1661                                   uncaught_exception,  // Arg 2
  1662                                   THREAD);
  1664         if (HAS_PENDING_EXCEPTION) {
  1665           ResourceMark rm(this);
  1666           jio_fprintf(defaultStream::error_stream(),
  1667                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1668                 " in thread \"%s\"\n",
  1669                 Klass::cast(pending_exception()->klass())->external_name(),
  1670                 get_thread_name());
  1671           CLEAR_PENDING_EXCEPTION;
  1676     // Called before the java thread exit since we want to read info
  1677     // from java_lang_Thread object
  1678     EVENT_BEGIN(TraceEventThreadEnd, event);
  1679     EVENT_COMMIT(event,
  1680         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1682     // Call after last event on thread
  1683     EVENT_THREAD_EXIT(this);
  1685     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1686     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1687     // is deprecated anyhow.
  1688     { int count = 3;
  1689       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1690         EXCEPTION_MARK;
  1691         JavaValue result(T_VOID);
  1692         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1693         JavaCalls::call_virtual(&result,
  1694                               threadObj, thread_klass,
  1695                               vmSymbols::exit_method_name(),
  1696                               vmSymbols::void_method_signature(),
  1697                               THREAD);
  1698         CLEAR_PENDING_EXCEPTION;
  1702     // notify JVMTI
  1703     if (JvmtiExport::should_post_thread_life()) {
  1704       JvmtiExport::post_thread_end(this);
  1707     // We have notified the agents that we are exiting, before we go on,
  1708     // we must check for a pending external suspend request and honor it
  1709     // in order to not surprise the thread that made the suspend request.
  1710     while (true) {
  1712         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1713         if (!is_external_suspend()) {
  1714           set_terminated(_thread_exiting);
  1715           ThreadService::current_thread_exiting(this);
  1716           break;
  1718         // Implied else:
  1719         // Things get a little tricky here. We have a pending external
  1720         // suspend request, but we are holding the SR_lock so we
  1721         // can't just self-suspend. So we temporarily drop the lock
  1722         // and then self-suspend.
  1725       ThreadBlockInVM tbivm(this);
  1726       java_suspend_self();
  1728       // We're done with this suspend request, but we have to loop around
  1729       // and check again. Eventually we will get SR_lock without a pending
  1730       // external suspend request and will be able to mark ourselves as
  1731       // exiting.
  1733     // no more external suspends are allowed at this point
  1734   } else {
  1735     // before_exit() has already posted JVMTI THREAD_END events
  1738   // Notify waiters on thread object. This has to be done after exit() is called
  1739   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1740   // group should have the destroyed bit set before waiters are notified).
  1741   ensure_join(this);
  1742   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1744   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1745   // held by this thread must be released.  A detach operation must only
  1746   // get here if there are no Java frames on the stack.  Therefore, any
  1747   // owned monitors at this point MUST be JNI-acquired monitors which are
  1748   // pre-inflated and in the monitor cache.
  1749   //
  1750   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1751   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1752     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1753     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1754     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1757   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1758   // is in a consistent state, in case GC happens
  1759   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1761   if (active_handles() != NULL) {
  1762     JNIHandleBlock* block = active_handles();
  1763     set_active_handles(NULL);
  1764     JNIHandleBlock::release_block(block);
  1767   if (free_handle_block() != NULL) {
  1768     JNIHandleBlock* block = free_handle_block();
  1769     set_free_handle_block(NULL);
  1770     JNIHandleBlock::release_block(block);
  1773   // These have to be removed while this is still a valid thread.
  1774   remove_stack_guard_pages();
  1776   if (UseTLAB) {
  1777     tlab().make_parsable(true);  // retire TLAB
  1780   if (JvmtiEnv::environments_might_exist()) {
  1781     JvmtiExport::cleanup_thread(this);
  1784 #ifndef SERIALGC
  1785   // We must flush G1-related buffers before removing a thread from
  1786   // the list of active threads.
  1787   if (UseG1GC) {
  1788     flush_barrier_queues();
  1790 #endif
  1792   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1793   Threads::remove(this);
  1796 #ifndef SERIALGC
  1797 // Flush G1-related queues.
  1798 void JavaThread::flush_barrier_queues() {
  1799   satb_mark_queue().flush();
  1800   dirty_card_queue().flush();
  1803 void JavaThread::initialize_queues() {
  1804   assert(!SafepointSynchronize::is_at_safepoint(),
  1805          "we should not be at a safepoint");
  1807   ObjPtrQueue& satb_queue = satb_mark_queue();
  1808   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1809   // The SATB queue should have been constructed with its active
  1810   // field set to false.
  1811   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1812   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1813   // If we are creating the thread during a marking cycle, we should
  1814   // set the active field of the SATB queue to true.
  1815   if (satb_queue_set.is_active()) {
  1816     satb_queue.set_active(true);
  1819   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1820   // The dirty card queue should have been constructed with its
  1821   // active field set to true.
  1822   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1824 #endif // !SERIALGC
  1826 void JavaThread::cleanup_failed_attach_current_thread() {
  1827   if (get_thread_profiler() != NULL) {
  1828     get_thread_profiler()->disengage();
  1829     ResourceMark rm;
  1830     get_thread_profiler()->print(get_thread_name());
  1833   if (active_handles() != NULL) {
  1834     JNIHandleBlock* block = active_handles();
  1835     set_active_handles(NULL);
  1836     JNIHandleBlock::release_block(block);
  1839   if (free_handle_block() != NULL) {
  1840     JNIHandleBlock* block = free_handle_block();
  1841     set_free_handle_block(NULL);
  1842     JNIHandleBlock::release_block(block);
  1845   // These have to be removed while this is still a valid thread.
  1846   remove_stack_guard_pages();
  1848   if (UseTLAB) {
  1849     tlab().make_parsable(true);  // retire TLAB, if any
  1852 #ifndef SERIALGC
  1853   if (UseG1GC) {
  1854     flush_barrier_queues();
  1856 #endif
  1858   Threads::remove(this);
  1859   delete this;
  1865 JavaThread* JavaThread::active() {
  1866   Thread* thread = ThreadLocalStorage::thread();
  1867   assert(thread != NULL, "just checking");
  1868   if (thread->is_Java_thread()) {
  1869     return (JavaThread*) thread;
  1870   } else {
  1871     assert(thread->is_VM_thread(), "this must be a vm thread");
  1872     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1873     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1874     assert(ret->is_Java_thread(), "must be a Java thread");
  1875     return ret;
  1879 bool JavaThread::is_lock_owned(address adr) const {
  1880   if (Thread::is_lock_owned(adr)) return true;
  1882   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1883     if (chunk->contains(adr)) return true;
  1886   return false;
  1890 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1891   chunk->set_next(monitor_chunks());
  1892   set_monitor_chunks(chunk);
  1895 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1896   guarantee(monitor_chunks() != NULL, "must be non empty");
  1897   if (monitor_chunks() == chunk) {
  1898     set_monitor_chunks(chunk->next());
  1899   } else {
  1900     MonitorChunk* prev = monitor_chunks();
  1901     while (prev->next() != chunk) prev = prev->next();
  1902     prev->set_next(chunk->next());
  1906 // JVM support.
  1908 // Note: this function shouldn't block if it's called in
  1909 // _thread_in_native_trans state (such as from
  1910 // check_special_condition_for_native_trans()).
  1911 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1913   if (has_last_Java_frame() && has_async_condition()) {
  1914     // If we are at a polling page safepoint (not a poll return)
  1915     // then we must defer async exception because live registers
  1916     // will be clobbered by the exception path. Poll return is
  1917     // ok because the call we a returning from already collides
  1918     // with exception handling registers and so there is no issue.
  1919     // (The exception handling path kills call result registers but
  1920     //  this is ok since the exception kills the result anyway).
  1922     if (is_at_poll_safepoint()) {
  1923       // if the code we are returning to has deoptimized we must defer
  1924       // the exception otherwise live registers get clobbered on the
  1925       // exception path before deoptimization is able to retrieve them.
  1926       //
  1927       RegisterMap map(this, false);
  1928       frame caller_fr = last_frame().sender(&map);
  1929       assert(caller_fr.is_compiled_frame(), "what?");
  1930       if (caller_fr.is_deoptimized_frame()) {
  1931         if (TraceExceptions) {
  1932           ResourceMark rm;
  1933           tty->print_cr("deferred async exception at compiled safepoint");
  1935         return;
  1940   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1941   if (condition == _no_async_condition) {
  1942     // Conditions have changed since has_special_runtime_exit_condition()
  1943     // was called:
  1944     // - if we were here only because of an external suspend request,
  1945     //   then that was taken care of above (or cancelled) so we are done
  1946     // - if we were here because of another async request, then it has
  1947     //   been cleared between the has_special_runtime_exit_condition()
  1948     //   and now so again we are done
  1949     return;
  1952   // Check for pending async. exception
  1953   if (_pending_async_exception != NULL) {
  1954     // Only overwrite an already pending exception, if it is not a threadDeath.
  1955     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1957       // We cannot call Exceptions::_throw(...) here because we cannot block
  1958       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1960       if (TraceExceptions) {
  1961         ResourceMark rm;
  1962         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1963         if (has_last_Java_frame() ) {
  1964           frame f = last_frame();
  1965           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1967         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1969       _pending_async_exception = NULL;
  1970       clear_has_async_exception();
  1974   if (check_unsafe_error &&
  1975       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1976     condition = _no_async_condition;  // done
  1977     switch (thread_state()) {
  1978     case _thread_in_vm:
  1980         JavaThread* THREAD = this;
  1981         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1983     case _thread_in_native:
  1985         ThreadInVMfromNative tiv(this);
  1986         JavaThread* THREAD = this;
  1987         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1989     case _thread_in_Java:
  1991         ThreadInVMfromJava tiv(this);
  1992         JavaThread* THREAD = this;
  1993         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1995     default:
  1996       ShouldNotReachHere();
  2000   assert(condition == _no_async_condition || has_pending_exception() ||
  2001          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2002          "must have handled the async condition, if no exception");
  2005 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2006   //
  2007   // Check for pending external suspend. Internal suspend requests do
  2008   // not use handle_special_runtime_exit_condition().
  2009   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2010   // thread is not the current thread. In older versions of jdbx, jdbx
  2011   // threads could call into the VM with another thread's JNIEnv so we
  2012   // can be here operating on behalf of a suspended thread (4432884).
  2013   bool do_self_suspend = is_external_suspend_with_lock();
  2014   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2015     //
  2016     // Because thread is external suspended the safepoint code will count
  2017     // thread as at a safepoint. This can be odd because we can be here
  2018     // as _thread_in_Java which would normally transition to _thread_blocked
  2019     // at a safepoint. We would like to mark the thread as _thread_blocked
  2020     // before calling java_suspend_self like all other callers of it but
  2021     // we must then observe proper safepoint protocol. (We can't leave
  2022     // _thread_blocked with a safepoint in progress). However we can be
  2023     // here as _thread_in_native_trans so we can't use a normal transition
  2024     // constructor/destructor pair because they assert on that type of
  2025     // transition. We could do something like:
  2026     //
  2027     // JavaThreadState state = thread_state();
  2028     // set_thread_state(_thread_in_vm);
  2029     // {
  2030     //   ThreadBlockInVM tbivm(this);
  2031     //   java_suspend_self()
  2032     // }
  2033     // set_thread_state(_thread_in_vm_trans);
  2034     // if (safepoint) block;
  2035     // set_thread_state(state);
  2036     //
  2037     // but that is pretty messy. Instead we just go with the way the
  2038     // code has worked before and note that this is the only path to
  2039     // java_suspend_self that doesn't put the thread in _thread_blocked
  2040     // mode.
  2042     frame_anchor()->make_walkable(this);
  2043     java_suspend_self();
  2045     // We might be here for reasons in addition to the self-suspend request
  2046     // so check for other async requests.
  2049   if (check_asyncs) {
  2050     check_and_handle_async_exceptions();
  2054 void JavaThread::send_thread_stop(oop java_throwable)  {
  2055   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2056   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2057   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2059   // Do not throw asynchronous exceptions against the compiler thread
  2060   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2061   if (is_Compiler_thread()) return;
  2064     // Actually throw the Throwable against the target Thread - however
  2065     // only if there is no thread death exception installed already.
  2066     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2067       // If the topmost frame is a runtime stub, then we are calling into
  2068       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2069       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2070       // may not be valid
  2071       if (has_last_Java_frame()) {
  2072         frame f = last_frame();
  2073         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2074           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2075           RegisterMap reg_map(this, UseBiasedLocking);
  2076           frame compiled_frame = f.sender(&reg_map);
  2077           if (compiled_frame.can_be_deoptimized()) {
  2078             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2083       // Set async. pending exception in thread.
  2084       set_pending_async_exception(java_throwable);
  2086       if (TraceExceptions) {
  2087        ResourceMark rm;
  2088        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2090       // for AbortVMOnException flag
  2091       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2096   // Interrupt thread so it will wake up from a potential wait()
  2097   Thread::interrupt(this);
  2100 // External suspension mechanism.
  2101 //
  2102 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2103 // to any VM_locks and it is at a transition
  2104 // Self-suspension will happen on the transition out of the vm.
  2105 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2106 //
  2107 // Guarantees on return:
  2108 //   + Target thread will not execute any new bytecode (that's why we need to
  2109 //     force a safepoint)
  2110 //   + Target thread will not enter any new monitors
  2111 //
  2112 void JavaThread::java_suspend() {
  2113   { MutexLocker mu(Threads_lock);
  2114     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2115        return;
  2119   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2120     if (!is_external_suspend()) {
  2121       // a racing resume has cancelled us; bail out now
  2122       return;
  2125     // suspend is done
  2126     uint32_t debug_bits = 0;
  2127     // Warning: is_ext_suspend_completed() may temporarily drop the
  2128     // SR_lock to allow the thread to reach a stable thread state if
  2129     // it is currently in a transient thread state.
  2130     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2131                                  SuspendRetryDelay, &debug_bits) ) {
  2132       return;
  2136   VM_ForceSafepoint vm_suspend;
  2137   VMThread::execute(&vm_suspend);
  2140 // Part II of external suspension.
  2141 // A JavaThread self suspends when it detects a pending external suspend
  2142 // request. This is usually on transitions. It is also done in places
  2143 // where continuing to the next transition would surprise the caller,
  2144 // e.g., monitor entry.
  2145 //
  2146 // Returns the number of times that the thread self-suspended.
  2147 //
  2148 // Note: DO NOT call java_suspend_self() when you just want to block current
  2149 //       thread. java_suspend_self() is the second stage of cooperative
  2150 //       suspension for external suspend requests and should only be used
  2151 //       to complete an external suspend request.
  2152 //
  2153 int JavaThread::java_suspend_self() {
  2154   int ret = 0;
  2156   // we are in the process of exiting so don't suspend
  2157   if (is_exiting()) {
  2158      clear_external_suspend();
  2159      return ret;
  2162   assert(_anchor.walkable() ||
  2163     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2164     "must have walkable stack");
  2166   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2168   assert(!this->is_ext_suspended(),
  2169     "a thread trying to self-suspend should not already be suspended");
  2171   if (this->is_suspend_equivalent()) {
  2172     // If we are self-suspending as a result of the lifting of a
  2173     // suspend equivalent condition, then the suspend_equivalent
  2174     // flag is not cleared until we set the ext_suspended flag so
  2175     // that wait_for_ext_suspend_completion() returns consistent
  2176     // results.
  2177     this->clear_suspend_equivalent();
  2180   // A racing resume may have cancelled us before we grabbed SR_lock
  2181   // above. Or another external suspend request could be waiting for us
  2182   // by the time we return from SR_lock()->wait(). The thread
  2183   // that requested the suspension may already be trying to walk our
  2184   // stack and if we return now, we can change the stack out from under
  2185   // it. This would be a "bad thing (TM)" and cause the stack walker
  2186   // to crash. We stay self-suspended until there are no more pending
  2187   // external suspend requests.
  2188   while (is_external_suspend()) {
  2189     ret++;
  2190     this->set_ext_suspended();
  2192     // _ext_suspended flag is cleared by java_resume()
  2193     while (is_ext_suspended()) {
  2194       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2198   return ret;
  2201 #ifdef ASSERT
  2202 // verify the JavaThread has not yet been published in the Threads::list, and
  2203 // hence doesn't need protection from concurrent access at this stage
  2204 void JavaThread::verify_not_published() {
  2205   if (!Threads_lock->owned_by_self()) {
  2206    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2207    assert( !Threads::includes(this),
  2208            "java thread shouldn't have been published yet!");
  2210   else {
  2211    assert( !Threads::includes(this),
  2212            "java thread shouldn't have been published yet!");
  2215 #endif
  2217 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2218 // progress or when _suspend_flags is non-zero.
  2219 // Current thread needs to self-suspend if there is a suspend request and/or
  2220 // block if a safepoint is in progress.
  2221 // Async exception ISN'T checked.
  2222 // Note only the ThreadInVMfromNative transition can call this function
  2223 // directly and when thread state is _thread_in_native_trans
  2224 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2225   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2227   JavaThread *curJT = JavaThread::current();
  2228   bool do_self_suspend = thread->is_external_suspend();
  2230   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2232   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2233   // thread is not the current thread. In older versions of jdbx, jdbx
  2234   // threads could call into the VM with another thread's JNIEnv so we
  2235   // can be here operating on behalf of a suspended thread (4432884).
  2236   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2237     JavaThreadState state = thread->thread_state();
  2239     // We mark this thread_blocked state as a suspend-equivalent so
  2240     // that a caller to is_ext_suspend_completed() won't be confused.
  2241     // The suspend-equivalent state is cleared by java_suspend_self().
  2242     thread->set_suspend_equivalent();
  2244     // If the safepoint code sees the _thread_in_native_trans state, it will
  2245     // wait until the thread changes to other thread state. There is no
  2246     // guarantee on how soon we can obtain the SR_lock and complete the
  2247     // self-suspend request. It would be a bad idea to let safepoint wait for
  2248     // too long. Temporarily change the state to _thread_blocked to
  2249     // let the VM thread know that this thread is ready for GC. The problem
  2250     // of changing thread state is that safepoint could happen just after
  2251     // java_suspend_self() returns after being resumed, and VM thread will
  2252     // see the _thread_blocked state. We must check for safepoint
  2253     // after restoring the state and make sure we won't leave while a safepoint
  2254     // is in progress.
  2255     thread->set_thread_state(_thread_blocked);
  2256     thread->java_suspend_self();
  2257     thread->set_thread_state(state);
  2258     // Make sure new state is seen by VM thread
  2259     if (os::is_MP()) {
  2260       if (UseMembar) {
  2261         // Force a fence between the write above and read below
  2262         OrderAccess::fence();
  2263       } else {
  2264         // Must use this rather than serialization page in particular on Windows
  2265         InterfaceSupport::serialize_memory(thread);
  2270   if (SafepointSynchronize::do_call_back()) {
  2271     // If we are safepointing, then block the caller which may not be
  2272     // the same as the target thread (see above).
  2273     SafepointSynchronize::block(curJT);
  2276   if (thread->is_deopt_suspend()) {
  2277     thread->clear_deopt_suspend();
  2278     RegisterMap map(thread, false);
  2279     frame f = thread->last_frame();
  2280     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2281       f = f.sender(&map);
  2283     if (f.id() == thread->must_deopt_id()) {
  2284       thread->clear_must_deopt_id();
  2285       f.deoptimize(thread);
  2286     } else {
  2287       fatal("missed deoptimization!");
  2292 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2293 // progress or when _suspend_flags is non-zero.
  2294 // Current thread needs to self-suspend if there is a suspend request and/or
  2295 // block if a safepoint is in progress.
  2296 // Also check for pending async exception (not including unsafe access error).
  2297 // Note only the native==>VM/Java barriers can call this function and when
  2298 // thread state is _thread_in_native_trans.
  2299 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2300   check_safepoint_and_suspend_for_native_trans(thread);
  2302   if (thread->has_async_exception()) {
  2303     // We are in _thread_in_native_trans state, don't handle unsafe
  2304     // access error since that may block.
  2305     thread->check_and_handle_async_exceptions(false);
  2309 // This is a variant of the normal
  2310 // check_special_condition_for_native_trans with slightly different
  2311 // semantics for use by critical native wrappers.  It does all the
  2312 // normal checks but also performs the transition back into
  2313 // thread_in_Java state.  This is required so that critical natives
  2314 // can potentially block and perform a GC if they are the last thread
  2315 // exiting the GC_locker.
  2316 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2317   check_special_condition_for_native_trans(thread);
  2319   // Finish the transition
  2320   thread->set_thread_state(_thread_in_Java);
  2322   if (thread->do_critical_native_unlock()) {
  2323     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2324     GC_locker::unlock_critical(thread);
  2325     thread->clear_critical_native_unlock();
  2329 // We need to guarantee the Threads_lock here, since resumes are not
  2330 // allowed during safepoint synchronization
  2331 // Can only resume from an external suspension
  2332 void JavaThread::java_resume() {
  2333   assert_locked_or_safepoint(Threads_lock);
  2335   // Sanity check: thread is gone, has started exiting or the thread
  2336   // was not externally suspended.
  2337   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2338     return;
  2341   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2343   clear_external_suspend();
  2345   if (is_ext_suspended()) {
  2346     clear_ext_suspended();
  2347     SR_lock()->notify_all();
  2351 void JavaThread::create_stack_guard_pages() {
  2352   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2353   address low_addr = stack_base() - stack_size();
  2354   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2356   int allocate = os::allocate_stack_guard_pages();
  2357   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2359   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2360     warning("Attempt to allocate stack guard pages failed.");
  2361     return;
  2364   if (os::guard_memory((char *) low_addr, len)) {
  2365     _stack_guard_state = stack_guard_enabled;
  2366   } else {
  2367     warning("Attempt to protect stack guard pages failed.");
  2368     if (os::uncommit_memory((char *) low_addr, len)) {
  2369       warning("Attempt to deallocate stack guard pages failed.");
  2374 void JavaThread::remove_stack_guard_pages() {
  2375   if (_stack_guard_state == stack_guard_unused) return;
  2376   address low_addr = stack_base() - stack_size();
  2377   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2379   if (os::allocate_stack_guard_pages()) {
  2380     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2381       _stack_guard_state = stack_guard_unused;
  2382     } else {
  2383       warning("Attempt to deallocate stack guard pages failed.");
  2385   } else {
  2386     if (_stack_guard_state == stack_guard_unused) return;
  2387     if (os::unguard_memory((char *) low_addr, len)) {
  2388       _stack_guard_state = stack_guard_unused;
  2389     } else {
  2390         warning("Attempt to unprotect stack guard pages failed.");
  2395 void JavaThread::enable_stack_yellow_zone() {
  2396   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2397   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2399   // The base notation is from the stacks point of view, growing downward.
  2400   // We need to adjust it to work correctly with guard_memory()
  2401   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2403   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2404   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2406   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2407     _stack_guard_state = stack_guard_enabled;
  2408   } else {
  2409     warning("Attempt to guard stack yellow zone failed.");
  2411   enable_register_stack_guard();
  2414 void JavaThread::disable_stack_yellow_zone() {
  2415   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2416   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2418   // Simply return if called for a thread that does not use guard pages.
  2419   if (_stack_guard_state == stack_guard_unused) return;
  2421   // The base notation is from the stacks point of view, growing downward.
  2422   // We need to adjust it to work correctly with guard_memory()
  2423   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2425   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2426     _stack_guard_state = stack_guard_yellow_disabled;
  2427   } else {
  2428     warning("Attempt to unguard stack yellow zone failed.");
  2430   disable_register_stack_guard();
  2433 void JavaThread::enable_stack_red_zone() {
  2434   // The base notation is from the stacks point of view, growing downward.
  2435   // We need to adjust it to work correctly with guard_memory()
  2436   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2437   address base = stack_red_zone_base() - stack_red_zone_size();
  2439   guarantee(base < stack_base(),"Error calculating stack red zone");
  2440   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2442   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2443     warning("Attempt to guard stack red zone failed.");
  2447 void JavaThread::disable_stack_red_zone() {
  2448   // The base notation is from the stacks point of view, growing downward.
  2449   // We need to adjust it to work correctly with guard_memory()
  2450   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2451   address base = stack_red_zone_base() - stack_red_zone_size();
  2452   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2453     warning("Attempt to unguard stack red zone failed.");
  2457 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2458   // ignore is there is no stack
  2459   if (!has_last_Java_frame()) return;
  2460   // traverse the stack frames. Starts from top frame.
  2461   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2462     frame* fr = fst.current();
  2463     f(fr, fst.register_map());
  2468 #ifndef PRODUCT
  2469 // Deoptimization
  2470 // Function for testing deoptimization
  2471 void JavaThread::deoptimize() {
  2472   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2473   StackFrameStream fst(this, UseBiasedLocking);
  2474   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2475   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2476   // Iterate over all frames in the thread and deoptimize
  2477   for(; !fst.is_done(); fst.next()) {
  2478     if(fst.current()->can_be_deoptimized()) {
  2480       if (only_at) {
  2481         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2482         // consists of comma or carriage return separated numbers so
  2483         // search for the current bci in that string.
  2484         address pc = fst.current()->pc();
  2485         nmethod* nm =  (nmethod*) fst.current()->cb();
  2486         ScopeDesc* sd = nm->scope_desc_at( pc);
  2487         char buffer[8];
  2488         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2489         size_t len = strlen(buffer);
  2490         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2491         while (found != NULL) {
  2492           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2493               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2494             // Check that the bci found is bracketed by terminators.
  2495             break;
  2497           found = strstr(found + 1, buffer);
  2499         if (!found) {
  2500           continue;
  2504       if (DebugDeoptimization && !deopt) {
  2505         deopt = true; // One-time only print before deopt
  2506         tty->print_cr("[BEFORE Deoptimization]");
  2507         trace_frames();
  2508         trace_stack();
  2510       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2514   if (DebugDeoptimization && deopt) {
  2515     tty->print_cr("[AFTER Deoptimization]");
  2516     trace_frames();
  2521 // Make zombies
  2522 void JavaThread::make_zombies() {
  2523   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2524     if (fst.current()->can_be_deoptimized()) {
  2525       // it is a Java nmethod
  2526       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2527       nm->make_not_entrant();
  2531 #endif // PRODUCT
  2534 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2535   if (!has_last_Java_frame()) return;
  2536   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2537   StackFrameStream fst(this, UseBiasedLocking);
  2538   for(; !fst.is_done(); fst.next()) {
  2539     if (fst.current()->should_be_deoptimized()) {
  2540       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2546 // GC support
  2547 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2549 void JavaThread::gc_epilogue() {
  2550   frames_do(frame_gc_epilogue);
  2554 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2556 void JavaThread::gc_prologue() {
  2557   frames_do(frame_gc_prologue);
  2560 // If the caller is a NamedThread, then remember, in the current scope,
  2561 // the given JavaThread in its _processed_thread field.
  2562 class RememberProcessedThread: public StackObj {
  2563   NamedThread* _cur_thr;
  2564 public:
  2565   RememberProcessedThread(JavaThread* jthr) {
  2566     Thread* thread = Thread::current();
  2567     if (thread->is_Named_thread()) {
  2568       _cur_thr = (NamedThread *)thread;
  2569       _cur_thr->set_processed_thread(jthr);
  2570     } else {
  2571       _cur_thr = NULL;
  2575   ~RememberProcessedThread() {
  2576     if (_cur_thr) {
  2577       _cur_thr->set_processed_thread(NULL);
  2580 };
  2582 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2583   // Verify that the deferred card marks have been flushed.
  2584   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2586   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2587   // since there may be more than one thread using each ThreadProfiler.
  2589   // Traverse the GCHandles
  2590   Thread::oops_do(f, cf);
  2592   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2593           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2595   if (has_last_Java_frame()) {
  2596     // Record JavaThread to GC thread
  2597     RememberProcessedThread rpt(this);
  2599     // Traverse the privileged stack
  2600     if (_privileged_stack_top != NULL) {
  2601       _privileged_stack_top->oops_do(f);
  2604     // traverse the registered growable array
  2605     if (_array_for_gc != NULL) {
  2606       for (int index = 0; index < _array_for_gc->length(); index++) {
  2607         f->do_oop(_array_for_gc->adr_at(index));
  2611     // Traverse the monitor chunks
  2612     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2613       chunk->oops_do(f);
  2616     // Traverse the execution stack
  2617     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2618       fst.current()->oops_do(f, cf, fst.register_map());
  2622   // callee_target is never live across a gc point so NULL it here should
  2623   // it still contain a methdOop.
  2625   set_callee_target(NULL);
  2627   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2628   // If we have deferred set_locals there might be oops waiting to be
  2629   // written
  2630   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2631   if (list != NULL) {
  2632     for (int i = 0; i < list->length(); i++) {
  2633       list->at(i)->oops_do(f);
  2637   // Traverse instance variables at the end since the GC may be moving things
  2638   // around using this function
  2639   f->do_oop((oop*) &_threadObj);
  2640   f->do_oop((oop*) &_vm_result);
  2641   f->do_oop((oop*) &_vm_result_2);
  2642   f->do_oop((oop*) &_exception_oop);
  2643   f->do_oop((oop*) &_pending_async_exception);
  2645   if (jvmti_thread_state() != NULL) {
  2646     jvmti_thread_state()->oops_do(f);
  2650 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2651   Thread::nmethods_do(cf);  // (super method is a no-op)
  2653   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2654           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2656   if (has_last_Java_frame()) {
  2657     // Traverse the execution stack
  2658     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2659       fst.current()->nmethods_do(cf);
  2664 // Printing
  2665 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2666   switch (_thread_state) {
  2667   case _thread_uninitialized:     return "_thread_uninitialized";
  2668   case _thread_new:               return "_thread_new";
  2669   case _thread_new_trans:         return "_thread_new_trans";
  2670   case _thread_in_native:         return "_thread_in_native";
  2671   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2672   case _thread_in_vm:             return "_thread_in_vm";
  2673   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2674   case _thread_in_Java:           return "_thread_in_Java";
  2675   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2676   case _thread_blocked:           return "_thread_blocked";
  2677   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2678   default:                        return "unknown thread state";
  2682 #ifndef PRODUCT
  2683 void JavaThread::print_thread_state_on(outputStream *st) const {
  2684   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2685 };
  2686 void JavaThread::print_thread_state() const {
  2687   print_thread_state_on(tty);
  2688 };
  2689 #endif // PRODUCT
  2691 // Called by Threads::print() for VM_PrintThreads operation
  2692 void JavaThread::print_on(outputStream *st) const {
  2693   st->print("\"%s\" ", get_thread_name());
  2694   oop thread_oop = threadObj();
  2695   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2696   Thread::print_on(st);
  2697   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2698   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2699   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2700     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2702 #ifndef PRODUCT
  2703   print_thread_state_on(st);
  2704   _safepoint_state->print_on(st);
  2705 #endif // PRODUCT
  2708 // Called by fatal error handler. The difference between this and
  2709 // JavaThread::print() is that we can't grab lock or allocate memory.
  2710 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2711   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2712   oop thread_obj = threadObj();
  2713   if (thread_obj != NULL) {
  2714      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2716   st->print(" [");
  2717   st->print("%s", _get_thread_state_name(_thread_state));
  2718   if (osthread()) {
  2719     st->print(", id=%d", osthread()->thread_id());
  2721   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2722             _stack_base - _stack_size, _stack_base);
  2723   st->print("]");
  2724   return;
  2727 // Verification
  2729 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2731 void JavaThread::verify() {
  2732   // Verify oops in the thread.
  2733   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2735   // Verify the stack frames.
  2736   frames_do(frame_verify);
  2739 // CR 6300358 (sub-CR 2137150)
  2740 // Most callers of this method assume that it can't return NULL but a
  2741 // thread may not have a name whilst it is in the process of attaching to
  2742 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2743 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2744 // if vm exit occurs during initialization). These cases can all be accounted
  2745 // for such that this method never returns NULL.
  2746 const char* JavaThread::get_thread_name() const {
  2747 #ifdef ASSERT
  2748   // early safepoints can hit while current thread does not yet have TLS
  2749   if (!SafepointSynchronize::is_at_safepoint()) {
  2750     Thread *cur = Thread::current();
  2751     if (!(cur->is_Java_thread() && cur == this)) {
  2752       // Current JavaThreads are allowed to get their own name without
  2753       // the Threads_lock.
  2754       assert_locked_or_safepoint(Threads_lock);
  2757 #endif // ASSERT
  2758     return get_thread_name_string();
  2761 // Returns a non-NULL representation of this thread's name, or a suitable
  2762 // descriptive string if there is no set name
  2763 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2764   const char* name_str;
  2765   oop thread_obj = threadObj();
  2766   if (thread_obj != NULL) {
  2767     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2768     if (name != NULL) {
  2769       if (buf == NULL) {
  2770         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2772       else {
  2773         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2776     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2777       name_str = "<no-name - thread is attaching>";
  2779     else {
  2780       name_str = Thread::name();
  2783   else {
  2784     name_str = Thread::name();
  2786   assert(name_str != NULL, "unexpected NULL thread name");
  2787   return name_str;
  2791 const char* JavaThread::get_threadgroup_name() const {
  2792   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2793   oop thread_obj = threadObj();
  2794   if (thread_obj != NULL) {
  2795     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2796     if (thread_group != NULL) {
  2797       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2798       // ThreadGroup.name can be null
  2799       if (name != NULL) {
  2800         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2801         return str;
  2805   return NULL;
  2808 const char* JavaThread::get_parent_name() const {
  2809   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2810   oop thread_obj = threadObj();
  2811   if (thread_obj != NULL) {
  2812     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2813     if (thread_group != NULL) {
  2814       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2815       if (parent != NULL) {
  2816         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2817         // ThreadGroup.name can be null
  2818         if (name != NULL) {
  2819           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2820           return str;
  2825   return NULL;
  2828 ThreadPriority JavaThread::java_priority() const {
  2829   oop thr_oop = threadObj();
  2830   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2831   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2832   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2833   return priority;
  2836 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2838   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2839   // Link Java Thread object <-> C++ Thread
  2841   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2842   // and put it into a new Handle.  The Handle "thread_oop" can then
  2843   // be used to pass the C++ thread object to other methods.
  2845   // Set the Java level thread object (jthread) field of the
  2846   // new thread (a JavaThread *) to C++ thread object using the
  2847   // "thread_oop" handle.
  2849   // Set the thread field (a JavaThread *) of the
  2850   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2852   Handle thread_oop(Thread::current(),
  2853                     JNIHandles::resolve_non_null(jni_thread));
  2854   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2855     "must be initialized");
  2856   set_threadObj(thread_oop());
  2857   java_lang_Thread::set_thread(thread_oop(), this);
  2859   if (prio == NoPriority) {
  2860     prio = java_lang_Thread::priority(thread_oop());
  2861     assert(prio != NoPriority, "A valid priority should be present");
  2864   // Push the Java priority down to the native thread; needs Threads_lock
  2865   Thread::set_priority(this, prio);
  2867   // Add the new thread to the Threads list and set it in motion.
  2868   // We must have threads lock in order to call Threads::add.
  2869   // It is crucial that we do not block before the thread is
  2870   // added to the Threads list for if a GC happens, then the java_thread oop
  2871   // will not be visited by GC.
  2872   Threads::add(this);
  2875 oop JavaThread::current_park_blocker() {
  2876   // Support for JSR-166 locks
  2877   oop thread_oop = threadObj();
  2878   if (thread_oop != NULL &&
  2879       JDK_Version::current().supports_thread_park_blocker()) {
  2880     return java_lang_Thread::park_blocker(thread_oop);
  2882   return NULL;
  2886 void JavaThread::print_stack_on(outputStream* st) {
  2887   if (!has_last_Java_frame()) return;
  2888   ResourceMark rm;
  2889   HandleMark   hm;
  2891   RegisterMap reg_map(this);
  2892   vframe* start_vf = last_java_vframe(&reg_map);
  2893   int count = 0;
  2894   for (vframe* f = start_vf; f; f = f->sender() ) {
  2895     if (f->is_java_frame()) {
  2896       javaVFrame* jvf = javaVFrame::cast(f);
  2897       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2899       // Print out lock information
  2900       if (JavaMonitorsInStackTrace) {
  2901         jvf->print_lock_info_on(st, count);
  2903     } else {
  2904       // Ignore non-Java frames
  2907     // Bail-out case for too deep stacks
  2908     count++;
  2909     if (MaxJavaStackTraceDepth == count) return;
  2914 // JVMTI PopFrame support
  2915 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2916   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2917   if (in_bytes(size_in_bytes) != 0) {
  2918     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2919     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2920     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2924 void* JavaThread::popframe_preserved_args() {
  2925   return _popframe_preserved_args;
  2928 ByteSize JavaThread::popframe_preserved_args_size() {
  2929   return in_ByteSize(_popframe_preserved_args_size);
  2932 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2933   int sz = in_bytes(popframe_preserved_args_size());
  2934   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2935   return in_WordSize(sz / wordSize);
  2938 void JavaThread::popframe_free_preserved_args() {
  2939   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2940   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2941   _popframe_preserved_args = NULL;
  2942   _popframe_preserved_args_size = 0;
  2945 #ifndef PRODUCT
  2947 void JavaThread::trace_frames() {
  2948   tty->print_cr("[Describe stack]");
  2949   int frame_no = 1;
  2950   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2951     tty->print("  %d. ", frame_no++);
  2952     fst.current()->print_value_on(tty,this);
  2953     tty->cr();
  2957 class PrintAndVerifyOopClosure: public OopClosure {
  2958  protected:
  2959   template <class T> inline void do_oop_work(T* p) {
  2960     oop obj = oopDesc::load_decode_heap_oop(p);
  2961     if (obj == NULL) return;
  2962     tty->print(INTPTR_FORMAT ": ", p);
  2963     if (obj->is_oop_or_null()) {
  2964       if (obj->is_objArray()) {
  2965         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  2966       } else {
  2967         obj->print();
  2969     } else {
  2970       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  2972     tty->cr();
  2974  public:
  2975   virtual void do_oop(oop* p) { do_oop_work(p); }
  2976   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  2977 };
  2980 static void oops_print(frame* f, const RegisterMap *map) {
  2981   PrintAndVerifyOopClosure print;
  2982   f->print_value();
  2983   f->oops_do(&print, NULL, (RegisterMap*)map);
  2986 // Print our all the locations that contain oops and whether they are
  2987 // valid or not.  This useful when trying to find the oldest frame
  2988 // where an oop has gone bad since the frame walk is from youngest to
  2989 // oldest.
  2990 void JavaThread::trace_oops() {
  2991   tty->print_cr("[Trace oops]");
  2992   frames_do(oops_print);
  2996 #ifdef ASSERT
  2997 // Print or validate the layout of stack frames
  2998 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  2999   ResourceMark rm;
  3000   PRESERVE_EXCEPTION_MARK;
  3001   FrameValues values;
  3002   int frame_no = 0;
  3003   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3004     fst.current()->describe(values, ++frame_no);
  3005     if (depth == frame_no) break;
  3007   if (validate_only) {
  3008     values.validate();
  3009   } else {
  3010     tty->print_cr("[Describe stack layout]");
  3011     values.print(this);
  3014 #endif
  3016 void JavaThread::trace_stack_from(vframe* start_vf) {
  3017   ResourceMark rm;
  3018   int vframe_no = 1;
  3019   for (vframe* f = start_vf; f; f = f->sender() ) {
  3020     if (f->is_java_frame()) {
  3021       javaVFrame::cast(f)->print_activation(vframe_no++);
  3022     } else {
  3023       f->print();
  3025     if (vframe_no > StackPrintLimit) {
  3026       tty->print_cr("...<more frames>...");
  3027       return;
  3033 void JavaThread::trace_stack() {
  3034   if (!has_last_Java_frame()) return;
  3035   ResourceMark rm;
  3036   HandleMark   hm;
  3037   RegisterMap reg_map(this);
  3038   trace_stack_from(last_java_vframe(&reg_map));
  3042 #endif // PRODUCT
  3045 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3046   assert(reg_map != NULL, "a map must be given");
  3047   frame f = last_frame();
  3048   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3049     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3051   return NULL;
  3055 klassOop JavaThread::security_get_caller_class(int depth) {
  3056   vframeStream vfst(this);
  3057   vfst.security_get_caller_frame(depth);
  3058   if (!vfst.at_end()) {
  3059     return vfst.method()->method_holder();
  3061   return NULL;
  3064 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3065   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3066   CompileBroker::compiler_thread_loop();
  3069 // Create a CompilerThread
  3070 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3071 : JavaThread(&compiler_thread_entry) {
  3072   _env   = NULL;
  3073   _log   = NULL;
  3074   _task  = NULL;
  3075   _queue = queue;
  3076   _counters = counters;
  3077   _buffer_blob = NULL;
  3078   _scanned_nmethod = NULL;
  3080 #ifndef PRODUCT
  3081   _ideal_graph_printer = NULL;
  3082 #endif
  3085 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3086   JavaThread::oops_do(f, cf);
  3087   if (_scanned_nmethod != NULL && cf != NULL) {
  3088     // Safepoints can occur when the sweeper is scanning an nmethod so
  3089     // process it here to make sure it isn't unloaded in the middle of
  3090     // a scan.
  3091     cf->do_code_blob(_scanned_nmethod);
  3095 // ======= Threads ========
  3097 // The Threads class links together all active threads, and provides
  3098 // operations over all threads.  It is protected by its own Mutex
  3099 // lock, which is also used in other contexts to protect thread
  3100 // operations from having the thread being operated on from exiting
  3101 // and going away unexpectedly (e.g., safepoint synchronization)
  3103 JavaThread* Threads::_thread_list = NULL;
  3104 int         Threads::_number_of_threads = 0;
  3105 int         Threads::_number_of_non_daemon_threads = 0;
  3106 int         Threads::_return_code = 0;
  3107 size_t      JavaThread::_stack_size_at_create = 0;
  3109 // All JavaThreads
  3110 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3112 void os_stream();
  3114 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3115 void Threads::threads_do(ThreadClosure* tc) {
  3116   assert_locked_or_safepoint(Threads_lock);
  3117   // ALL_JAVA_THREADS iterates through all JavaThreads
  3118   ALL_JAVA_THREADS(p) {
  3119     tc->do_thread(p);
  3121   // Someday we could have a table or list of all non-JavaThreads.
  3122   // For now, just manually iterate through them.
  3123   tc->do_thread(VMThread::vm_thread());
  3124   Universe::heap()->gc_threads_do(tc);
  3125   WatcherThread *wt = WatcherThread::watcher_thread();
  3126   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3127   // the data for WatcherThread is still valid upon being examined. However,
  3128   // considering that WatchThread terminates when the VM is on the way to
  3129   // exit at safepoint, the chance of the above is extremely small. The right
  3130   // way to prevent termination of WatcherThread would be to acquire
  3131   // Terminator_lock, but we can't do that without violating the lock rank
  3132   // checking in some cases.
  3133   if (wt != NULL)
  3134     tc->do_thread(wt);
  3136   // If CompilerThreads ever become non-JavaThreads, add them here
  3139 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3141   extern void JDK_Version_init();
  3143   // Check version
  3144   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3146   // Initialize the output stream module
  3147   ostream_init();
  3149   // Process java launcher properties.
  3150   Arguments::process_sun_java_launcher_properties(args);
  3152   // Initialize the os module before using TLS
  3153   os::init();
  3155   // Initialize system properties.
  3156   Arguments::init_system_properties();
  3158   // So that JDK version can be used as a discrimintor when parsing arguments
  3159   JDK_Version_init();
  3161   // Update/Initialize System properties after JDK version number is known
  3162   Arguments::init_version_specific_system_properties();
  3164   // Parse arguments
  3165   jint parse_result = Arguments::parse(args);
  3166   if (parse_result != JNI_OK) return parse_result;
  3168   if (PauseAtStartup) {
  3169     os::pause();
  3172 #ifndef USDT2
  3173   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3174 #else /* USDT2 */
  3175   HOTSPOT_VM_INIT_BEGIN();
  3176 #endif /* USDT2 */
  3178   // Record VM creation timing statistics
  3179   TraceVmCreationTime create_vm_timer;
  3180   create_vm_timer.start();
  3182   // Timing (must come after argument parsing)
  3183   TraceTime timer("Create VM", TraceStartupTime);
  3185   // Initialize the os module after parsing the args
  3186   jint os_init_2_result = os::init_2();
  3187   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3189   // Initialize output stream logging
  3190   ostream_init_log();
  3192   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3193   // Must be before create_vm_init_agents()
  3194   if (Arguments::init_libraries_at_startup()) {
  3195     convert_vm_init_libraries_to_agents();
  3198   // Launch -agentlib/-agentpath and converted -Xrun agents
  3199   if (Arguments::init_agents_at_startup()) {
  3200     create_vm_init_agents();
  3203   // Initialize Threads state
  3204   _thread_list = NULL;
  3205   _number_of_threads = 0;
  3206   _number_of_non_daemon_threads = 0;
  3208   // Initialize TLS
  3209   ThreadLocalStorage::init();
  3211   // Initialize global data structures and create system classes in heap
  3212   vm_init_globals();
  3214   // Attach the main thread to this os thread
  3215   JavaThread* main_thread = new JavaThread();
  3216   main_thread->set_thread_state(_thread_in_vm);
  3217   // must do this before set_active_handles and initialize_thread_local_storage
  3218   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3219   // change the stack size recorded here to one based on the java thread
  3220   // stacksize. This adjusted size is what is used to figure the placement
  3221   // of the guard pages.
  3222   main_thread->record_stack_base_and_size();
  3223   main_thread->initialize_thread_local_storage();
  3225   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3227   if (!main_thread->set_as_starting_thread()) {
  3228     vm_shutdown_during_initialization(
  3229       "Failed necessary internal allocation. Out of swap space");
  3230     delete main_thread;
  3231     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3232     return JNI_ENOMEM;
  3235   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3236   // crash Linux VM, see notes in os_linux.cpp.
  3237   main_thread->create_stack_guard_pages();
  3239   // Initialize Java-Level synchronization subsystem
  3240   ObjectMonitor::Initialize() ;
  3242   // Initialize global modules
  3243   jint status = init_globals();
  3244   if (status != JNI_OK) {
  3245     delete main_thread;
  3246     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3247     return status;
  3250   // Should be done after the heap is fully created
  3251   main_thread->cache_global_variables();
  3253   HandleMark hm;
  3255   { MutexLocker mu(Threads_lock);
  3256     Threads::add(main_thread);
  3259   // Any JVMTI raw monitors entered in onload will transition into
  3260   // real raw monitor. VM is setup enough here for raw monitor enter.
  3261   JvmtiExport::transition_pending_onload_raw_monitors();
  3263   if (VerifyBeforeGC &&
  3264       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3265     Universe::heap()->prepare_for_verify();
  3266     Universe::verify();   // make sure we're starting with a clean slate
  3269   // Create the VMThread
  3270   { TraceTime timer("Start VMThread", TraceStartupTime);
  3271     VMThread::create();
  3272     Thread* vmthread = VMThread::vm_thread();
  3274     if (!os::create_thread(vmthread, os::vm_thread))
  3275       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3277     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3278     // Monitors can have spurious returns, must always check another state flag
  3280       MutexLocker ml(Notify_lock);
  3281       os::start_thread(vmthread);
  3282       while (vmthread->active_handles() == NULL) {
  3283         Notify_lock->wait();
  3288   assert (Universe::is_fully_initialized(), "not initialized");
  3289   EXCEPTION_MARK;
  3291   // At this point, the Universe is initialized, but we have not executed
  3292   // any byte code.  Now is a good time (the only time) to dump out the
  3293   // internal state of the JVM for sharing.
  3295   if (DumpSharedSpaces) {
  3296     Universe::heap()->preload_and_dump(CHECK_0);
  3297     ShouldNotReachHere();
  3300   // Always call even when there are not JVMTI environments yet, since environments
  3301   // may be attached late and JVMTI must track phases of VM execution
  3302   JvmtiExport::enter_start_phase();
  3304   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3305   JvmtiExport::post_vm_start();
  3308     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3310     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3311       create_vm_init_libraries();
  3314     if (InitializeJavaLangString) {
  3315       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3316     } else {
  3317       warning("java.lang.String not initialized");
  3320     if (AggressiveOpts) {
  3322         // Forcibly initialize java/util/HashMap and mutate the private
  3323         // static final "frontCacheEnabled" field before we start creating instances
  3324 #ifdef ASSERT
  3325         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3326         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3327 #endif
  3328         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3329         KlassHandle k = KlassHandle(THREAD, k_o);
  3330         guarantee(k.not_null(), "Must find java/util/HashMap");
  3331         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3332         ik->initialize(CHECK_0);
  3333         fieldDescriptor fd;
  3334         // Possible we might not find this field; if so, don't break
  3335         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3336           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3340       if (UseStringCache) {
  3341         // Forcibly initialize java/lang/StringValue and mutate the private
  3342         // static final "stringCacheEnabled" field before we start creating instances
  3343         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3344         // Possible that StringValue isn't present: if so, silently don't break
  3345         if (k_o != NULL) {
  3346           KlassHandle k = KlassHandle(THREAD, k_o);
  3347           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3348           ik->initialize(CHECK_0);
  3349           fieldDescriptor fd;
  3350           // Possible we might not find this field: if so, silently don't break
  3351           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3352             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3358     // Initialize java_lang.System (needed before creating the thread)
  3359     if (InitializeJavaLangSystem) {
  3360       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3361       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3362       Handle thread_group = create_initial_thread_group(CHECK_0);
  3363       Universe::set_main_thread_group(thread_group());
  3364       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3365       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3366       main_thread->set_threadObj(thread_object);
  3367       // Set thread status to running since main thread has
  3368       // been started and running.
  3369       java_lang_Thread::set_thread_status(thread_object,
  3370                                           java_lang_Thread::RUNNABLE);
  3372       // The VM preresolve methods to these classes. Make sure that get initialized
  3373       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3374       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3375       // The VM creates & returns objects of this class. Make sure it's initialized.
  3376       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3377       call_initializeSystemClass(CHECK_0);
  3379       // get the Java runtime name after java.lang.System is initialized
  3380       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3381     } else {
  3382       warning("java.lang.System not initialized");
  3385     // an instance of OutOfMemory exception has been allocated earlier
  3386     if (InitializeJavaLangExceptionsErrors) {
  3387       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3388       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3389       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3390       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3391       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3392       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3393       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3394       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3395     } else {
  3396       warning("java.lang.OutOfMemoryError has not been initialized");
  3397       warning("java.lang.NullPointerException has not been initialized");
  3398       warning("java.lang.ClassCastException has not been initialized");
  3399       warning("java.lang.ArrayStoreException has not been initialized");
  3400       warning("java.lang.ArithmeticException has not been initialized");
  3401       warning("java.lang.StackOverflowError has not been initialized");
  3402       warning("java.lang.IllegalArgumentException has not been initialized");
  3406   // See        : bugid 4211085.
  3407   // Background : the static initializer of java.lang.Compiler tries to read
  3408   //              property"java.compiler" and read & write property "java.vm.info".
  3409   //              When a security manager is installed through the command line
  3410   //              option "-Djava.security.manager", the above properties are not
  3411   //              readable and the static initializer for java.lang.Compiler fails
  3412   //              resulting in a NoClassDefFoundError.  This can happen in any
  3413   //              user code which calls methods in java.lang.Compiler.
  3414   // Hack :       the hack is to pre-load and initialize this class, so that only
  3415   //              system domains are on the stack when the properties are read.
  3416   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3417   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3418   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3419   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3420   //              Once that is done, we should remove this hack.
  3421   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3423   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3424   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3425   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3426   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3427   // This should also be taken out as soon as 4211383 gets fixed.
  3428   reset_vm_info_property(CHECK_0);
  3430   quicken_jni_functions();
  3432   // Must be run after init_ft which initializes ft_enabled
  3433   if (TRACE_INITIALIZE() != JNI_OK) {
  3434     vm_exit_during_initialization("Failed to initialize tracing backend");
  3437   // Set flag that basic initialization has completed. Used by exceptions and various
  3438   // debug stuff, that does not work until all basic classes have been initialized.
  3439   set_init_completed();
  3441 #ifndef USDT2
  3442   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3443 #else /* USDT2 */
  3444   HOTSPOT_VM_INIT_END();
  3445 #endif /* USDT2 */
  3447   // record VM initialization completion time
  3448   Management::record_vm_init_completed();
  3450   // Compute system loader. Note that this has to occur after set_init_completed, since
  3451   // valid exceptions may be thrown in the process.
  3452   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3453   // set_init_completed has just been called, causing exceptions not to be shortcut
  3454   // anymore. We call vm_exit_during_initialization directly instead.
  3455   SystemDictionary::compute_java_system_loader(THREAD);
  3456   if (HAS_PENDING_EXCEPTION) {
  3457     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3460 #ifndef SERIALGC
  3461   // Support for ConcurrentMarkSweep. This should be cleaned up
  3462   // and better encapsulated. The ugly nested if test would go away
  3463   // once things are properly refactored. XXX YSR
  3464   if (UseConcMarkSweepGC || UseG1GC) {
  3465     if (UseConcMarkSweepGC) {
  3466       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3467     } else {
  3468       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3470     if (HAS_PENDING_EXCEPTION) {
  3471       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3474 #endif // SERIALGC
  3476   // Always call even when there are not JVMTI environments yet, since environments
  3477   // may be attached late and JVMTI must track phases of VM execution
  3478   JvmtiExport::enter_live_phase();
  3480   // Signal Dispatcher needs to be started before VMInit event is posted
  3481   os::signal_init();
  3483   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3484   if (!DisableAttachMechanism) {
  3485     if (StartAttachListener || AttachListener::init_at_startup()) {
  3486       AttachListener::init();
  3490   // Launch -Xrun agents
  3491   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3492   // back-end can launch with -Xdebug -Xrunjdwp.
  3493   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3494     create_vm_init_libraries();
  3497   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3498   JvmtiExport::post_vm_initialized();
  3500   if (!TRACE_START()) {
  3501     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3504   if (CleanChunkPoolAsync) {
  3505     Chunk::start_chunk_pool_cleaner_task();
  3508   // initialize compiler(s)
  3509   CompileBroker::compilation_init();
  3511   Management::initialize(THREAD);
  3512   if (HAS_PENDING_EXCEPTION) {
  3513     // management agent fails to start possibly due to
  3514     // configuration problem and is responsible for printing
  3515     // stack trace if appropriate. Simply exit VM.
  3516     vm_exit(1);
  3519   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3520   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3521   if (MemProfiling)                   MemProfiler::engage();
  3522   StatSampler::engage();
  3523   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3525   BiasedLocking::init();
  3527   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3528     call_postVMInitHook(THREAD);
  3529     // The Java side of PostVMInitHook.run must deal with all
  3530     // exceptions and provide means of diagnosis.
  3531     if (HAS_PENDING_EXCEPTION) {
  3532       CLEAR_PENDING_EXCEPTION;
  3536   // Start up the WatcherThread if there are any periodic tasks
  3537   // NOTE:  All PeriodicTasks should be registered by now. If they
  3538   //   aren't, late joiners might appear to start slowly (we might
  3539   //   take a while to process their first tick).
  3540   if (PeriodicTask::num_tasks() > 0) {
  3541     WatcherThread::start();
  3544   // Give os specific code one last chance to start
  3545   os::init_3();
  3547   create_vm_timer.end();
  3548   return JNI_OK;
  3551 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3552 extern "C" {
  3553   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3555 // Find a command line agent library and return its entry point for
  3556 //         -agentlib:  -agentpath:   -Xrun
  3557 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3558 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3559   OnLoadEntry_t on_load_entry = NULL;
  3560   void *library = agent->os_lib();  // check if we have looked it up before
  3562   if (library == NULL) {
  3563     char buffer[JVM_MAXPATHLEN];
  3564     char ebuf[1024];
  3565     const char *name = agent->name();
  3566     const char *msg = "Could not find agent library ";
  3568     if (agent->is_absolute_path()) {
  3569       library = os::dll_load(name, ebuf, sizeof ebuf);
  3570       if (library == NULL) {
  3571         const char *sub_msg = " in absolute path, with error: ";
  3572         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3573         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3574         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3575         // If we can't find the agent, exit.
  3576         vm_exit_during_initialization(buf, NULL);
  3577         FREE_C_HEAP_ARRAY(char, buf);
  3579     } else {
  3580       // Try to load the agent from the standard dll directory
  3581       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3582       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3583 #ifdef KERNEL
  3584       // Download instrument dll
  3585       if (library == NULL && strcmp(name, "instrument") == 0) {
  3586         char *props = Arguments::get_kernel_properties();
  3587         char *home  = Arguments::get_java_home();
  3588         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3589                       " sun.jkernel.DownloadManager -download client_jvm";
  3590         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3591         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3592         jio_snprintf(cmd, length, fmt, home, props);
  3593         int status = os::fork_and_exec(cmd);
  3594         FreeHeap(props);
  3595         if (status == -1) {
  3596           warning(cmd);
  3597           vm_exit_during_initialization("fork_and_exec failed: %s",
  3598                                          strerror(errno));
  3600         FREE_C_HEAP_ARRAY(char, cmd);
  3601         // when this comes back the instrument.dll should be where it belongs.
  3602         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3604 #endif // KERNEL
  3605       if (library == NULL) { // Try the local directory
  3606         char ns[1] = {0};
  3607         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3608         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3609         if (library == NULL) {
  3610           const char *sub_msg = " on the library path, with error: ";
  3611           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3612           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3613           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3614           // If we can't find the agent, exit.
  3615           vm_exit_during_initialization(buf, NULL);
  3616           FREE_C_HEAP_ARRAY(char, buf);
  3620     agent->set_os_lib(library);
  3623   // Find the OnLoad function.
  3624   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3625     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3626     if (on_load_entry != NULL) break;
  3628   return on_load_entry;
  3631 // Find the JVM_OnLoad entry point
  3632 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3633   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3634   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3637 // Find the Agent_OnLoad entry point
  3638 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3639   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3640   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3643 // For backwards compatibility with -Xrun
  3644 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3645 // treated like -agentpath:
  3646 // Must be called before agent libraries are created
  3647 void Threads::convert_vm_init_libraries_to_agents() {
  3648   AgentLibrary* agent;
  3649   AgentLibrary* next;
  3651   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3652     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3653     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3655     // If there is an JVM_OnLoad function it will get called later,
  3656     // otherwise see if there is an Agent_OnLoad
  3657     if (on_load_entry == NULL) {
  3658       on_load_entry = lookup_agent_on_load(agent);
  3659       if (on_load_entry != NULL) {
  3660         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3661         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3662         Arguments::convert_library_to_agent(agent);
  3663       } else {
  3664         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3670 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3671 // Invokes Agent_OnLoad
  3672 // Called very early -- before JavaThreads exist
  3673 void Threads::create_vm_init_agents() {
  3674   extern struct JavaVM_ main_vm;
  3675   AgentLibrary* agent;
  3677   JvmtiExport::enter_onload_phase();
  3678   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3679     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3681     if (on_load_entry != NULL) {
  3682       // Invoke the Agent_OnLoad function
  3683       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3684       if (err != JNI_OK) {
  3685         vm_exit_during_initialization("agent library failed to init", agent->name());
  3687     } else {
  3688       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3691   JvmtiExport::enter_primordial_phase();
  3694 extern "C" {
  3695   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3698 void Threads::shutdown_vm_agents() {
  3699   // Send any Agent_OnUnload notifications
  3700   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3701   extern struct JavaVM_ main_vm;
  3702   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3704     // Find the Agent_OnUnload function.
  3705     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3706       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3707                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3709       // Invoke the Agent_OnUnload function
  3710       if (unload_entry != NULL) {
  3711         JavaThread* thread = JavaThread::current();
  3712         ThreadToNativeFromVM ttn(thread);
  3713         HandleMark hm(thread);
  3714         (*unload_entry)(&main_vm);
  3715         break;
  3721 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3722 // Invokes JVM_OnLoad
  3723 void Threads::create_vm_init_libraries() {
  3724   extern struct JavaVM_ main_vm;
  3725   AgentLibrary* agent;
  3727   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3728     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3730     if (on_load_entry != NULL) {
  3731       // Invoke the JVM_OnLoad function
  3732       JavaThread* thread = JavaThread::current();
  3733       ThreadToNativeFromVM ttn(thread);
  3734       HandleMark hm(thread);
  3735       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3736       if (err != JNI_OK) {
  3737         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3739     } else {
  3740       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3745 // Last thread running calls java.lang.Shutdown.shutdown()
  3746 void JavaThread::invoke_shutdown_hooks() {
  3747   HandleMark hm(this);
  3749   // We could get here with a pending exception, if so clear it now.
  3750   if (this->has_pending_exception()) {
  3751     this->clear_pending_exception();
  3754   EXCEPTION_MARK;
  3755   klassOop k =
  3756     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3757                                       THREAD);
  3758   if (k != NULL) {
  3759     // SystemDictionary::resolve_or_null will return null if there was
  3760     // an exception.  If we cannot load the Shutdown class, just don't
  3761     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3762     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3763     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3764     // was called, the Shutdown class would have already been loaded
  3765     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3766     instanceKlassHandle shutdown_klass (THREAD, k);
  3767     JavaValue result(T_VOID);
  3768     JavaCalls::call_static(&result,
  3769                            shutdown_klass,
  3770                            vmSymbols::shutdown_method_name(),
  3771                            vmSymbols::void_method_signature(),
  3772                            THREAD);
  3774   CLEAR_PENDING_EXCEPTION;
  3777 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3778 // the program falls off the end of main(). Another VM exit path is through
  3779 // vm_exit() when the program calls System.exit() to return a value or when
  3780 // there is a serious error in VM. The two shutdown paths are not exactly
  3781 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3782 // and VM_Exit op at VM level.
  3783 //
  3784 // Shutdown sequence:
  3785 //   + Wait until we are the last non-daemon thread to execute
  3786 //     <-- every thing is still working at this moment -->
  3787 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3788 //        shutdown hooks, run finalizers if finalization-on-exit
  3789 //   + Call before_exit(), prepare for VM exit
  3790 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3791 //        currently the only user of this mechanism is File.deleteOnExit())
  3792 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3793 //        post thread end and vm death events to JVMTI,
  3794 //        stop signal thread
  3795 //   + Call JavaThread::exit(), it will:
  3796 //      > release JNI handle blocks, remove stack guard pages
  3797 //      > remove this thread from Threads list
  3798 //     <-- no more Java code from this thread after this point -->
  3799 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3800 //     the compiler threads at safepoint
  3801 //     <-- do not use anything that could get blocked by Safepoint -->
  3802 //   + Disable tracing at JNI/JVM barriers
  3803 //   + Set _vm_exited flag for threads that are still running native code
  3804 //   + Delete this thread
  3805 //   + Call exit_globals()
  3806 //      > deletes tty
  3807 //      > deletes PerfMemory resources
  3808 //   + Return to caller
  3810 bool Threads::destroy_vm() {
  3811   JavaThread* thread = JavaThread::current();
  3813   // Wait until we are the last non-daemon thread to execute
  3814   { MutexLocker nu(Threads_lock);
  3815     while (Threads::number_of_non_daemon_threads() > 1 )
  3816       // This wait should make safepoint checks, wait without a timeout,
  3817       // and wait as a suspend-equivalent condition.
  3818       //
  3819       // Note: If the FlatProfiler is running and this thread is waiting
  3820       // for another non-daemon thread to finish, then the FlatProfiler
  3821       // is waiting for the external suspend request on this thread to
  3822       // complete. wait_for_ext_suspend_completion() will eventually
  3823       // timeout, but that takes time. Making this wait a suspend-
  3824       // equivalent condition solves that timeout problem.
  3825       //
  3826       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3827                          Mutex::_as_suspend_equivalent_flag);
  3830   // Hang forever on exit if we are reporting an error.
  3831   if (ShowMessageBoxOnError && is_error_reported()) {
  3832     os::infinite_sleep();
  3834   os::wait_for_keypress_at_exit();
  3836   if (JDK_Version::is_jdk12x_version()) {
  3837     // We are the last thread running, so check if finalizers should be run.
  3838     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3839     HandleMark rm(thread);
  3840     Universe::run_finalizers_on_exit();
  3841   } else {
  3842     // run Java level shutdown hooks
  3843     thread->invoke_shutdown_hooks();
  3846   before_exit(thread);
  3848   thread->exit(true);
  3850   // Stop VM thread.
  3852     // 4945125 The vm thread comes to a safepoint during exit.
  3853     // GC vm_operations can get caught at the safepoint, and the
  3854     // heap is unparseable if they are caught. Grab the Heap_lock
  3855     // to prevent this. The GC vm_operations will not be able to
  3856     // queue until after the vm thread is dead.
  3857     // After this point, we'll never emerge out of the safepoint before
  3858     // the VM exits, so concurrent GC threads do not need to be explicitly
  3859     // stopped; they remain inactive until the process exits.
  3860     // Note: some concurrent G1 threads may be running during a safepoint,
  3861     // but these will not be accessing the heap, just some G1-specific side
  3862     // data structures that are not accessed by any other threads but them
  3863     // after this point in a terminal safepoint.
  3865     MutexLocker ml(Heap_lock);
  3867     VMThread::wait_for_vm_thread_exit();
  3868     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3869     VMThread::destroy();
  3872   // clean up ideal graph printers
  3873 #if defined(COMPILER2) && !defined(PRODUCT)
  3874   IdealGraphPrinter::clean_up();
  3875 #endif
  3877   // Now, all Java threads are gone except daemon threads. Daemon threads
  3878   // running Java code or in VM are stopped by the Safepoint. However,
  3879   // daemon threads executing native code are still running.  But they
  3880   // will be stopped at native=>Java/VM barriers. Note that we can't
  3881   // simply kill or suspend them, as it is inherently deadlock-prone.
  3883 #ifndef PRODUCT
  3884   // disable function tracing at JNI/JVM barriers
  3885   TraceJNICalls = false;
  3886   TraceJVMCalls = false;
  3887   TraceRuntimeCalls = false;
  3888 #endif
  3890   VM_Exit::set_vm_exited();
  3892   notify_vm_shutdown();
  3894   delete thread;
  3896   // exit_globals() will delete tty
  3897   exit_globals();
  3899   return true;
  3903 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3904   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3905   return is_supported_jni_version(version);
  3909 jboolean Threads::is_supported_jni_version(jint version) {
  3910   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3911   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3912   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3913   return JNI_FALSE;
  3917 void Threads::add(JavaThread* p, bool force_daemon) {
  3918   // The threads lock must be owned at this point
  3919   assert_locked_or_safepoint(Threads_lock);
  3921   // See the comment for this method in thread.hpp for its purpose and
  3922   // why it is called here.
  3923   p->initialize_queues();
  3924   p->set_next(_thread_list);
  3925   _thread_list = p;
  3926   _number_of_threads++;
  3927   oop threadObj = p->threadObj();
  3928   bool daemon = true;
  3929   // Bootstrapping problem: threadObj can be null for initial
  3930   // JavaThread (or for threads attached via JNI)
  3931   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3932     _number_of_non_daemon_threads++;
  3933     daemon = false;
  3936   ThreadService::add_thread(p, daemon);
  3938   // Possible GC point.
  3939   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  3942 void Threads::remove(JavaThread* p) {
  3943   // Extra scope needed for Thread_lock, so we can check
  3944   // that we do not remove thread without safepoint code notice
  3945   { MutexLocker ml(Threads_lock);
  3947     assert(includes(p), "p must be present");
  3949     JavaThread* current = _thread_list;
  3950     JavaThread* prev    = NULL;
  3952     while (current != p) {
  3953       prev    = current;
  3954       current = current->next();
  3957     if (prev) {
  3958       prev->set_next(current->next());
  3959     } else {
  3960       _thread_list = p->next();
  3962     _number_of_threads--;
  3963     oop threadObj = p->threadObj();
  3964     bool daemon = true;
  3965     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3966       _number_of_non_daemon_threads--;
  3967       daemon = false;
  3969       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3970       // on destroy_vm will wake up.
  3971       if (number_of_non_daemon_threads() == 1)
  3972         Threads_lock->notify_all();
  3974     ThreadService::remove_thread(p, daemon);
  3976     // Make sure that safepoint code disregard this thread. This is needed since
  3977     // the thread might mess around with locks after this point. This can cause it
  3978     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3979     // of this thread since it is removed from the queue.
  3980     p->set_terminated_value();
  3981   } // unlock Threads_lock
  3983   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3984   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  3987 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3988 bool Threads::includes(JavaThread* p) {
  3989   assert(Threads_lock->is_locked(), "sanity check");
  3990   ALL_JAVA_THREADS(q) {
  3991     if (q == p ) {
  3992       return true;
  3995   return false;
  3998 // Operations on the Threads list for GC.  These are not explicitly locked,
  3999 // but the garbage collector must provide a safe context for them to run.
  4000 // In particular, these things should never be called when the Threads_lock
  4001 // is held by some other thread. (Note: the Safepoint abstraction also
  4002 // uses the Threads_lock to gurantee this property. It also makes sure that
  4003 // all threads gets blocked when exiting or starting).
  4005 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  4006   ALL_JAVA_THREADS(p) {
  4007     p->oops_do(f, cf);
  4009   VMThread::vm_thread()->oops_do(f, cf);
  4012 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  4013   // Introduce a mechanism allowing parallel threads to claim threads as
  4014   // root groups.  Overhead should be small enough to use all the time,
  4015   // even in sequential code.
  4016   SharedHeap* sh = SharedHeap::heap();
  4017   // Cannot yet substitute active_workers for n_par_threads
  4018   // because of G1CollectedHeap::verify() use of
  4019   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  4020   // turn off parallelism in process_strong_roots while active_workers
  4021   // is being used for parallelism elsewhere.
  4022   bool is_par = sh->n_par_threads() > 0;
  4023   assert(!is_par ||
  4024          (SharedHeap::heap()->n_par_threads() ==
  4025           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4026   int cp = SharedHeap::heap()->strong_roots_parity();
  4027   ALL_JAVA_THREADS(p) {
  4028     if (p->claim_oops_do(is_par, cp)) {
  4029       p->oops_do(f, cf);
  4032   VMThread* vmt = VMThread::vm_thread();
  4033   if (vmt->claim_oops_do(is_par, cp)) {
  4034     vmt->oops_do(f, cf);
  4038 #ifndef SERIALGC
  4039 // Used by ParallelScavenge
  4040 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4041   ALL_JAVA_THREADS(p) {
  4042     q->enqueue(new ThreadRootsTask(p));
  4044   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4047 // Used by Parallel Old
  4048 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4049   ALL_JAVA_THREADS(p) {
  4050     q->enqueue(new ThreadRootsMarkingTask(p));
  4052   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4054 #endif // SERIALGC
  4056 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4057   ALL_JAVA_THREADS(p) {
  4058     p->nmethods_do(cf);
  4060   VMThread::vm_thread()->nmethods_do(cf);
  4063 void Threads::gc_epilogue() {
  4064   ALL_JAVA_THREADS(p) {
  4065     p->gc_epilogue();
  4069 void Threads::gc_prologue() {
  4070   ALL_JAVA_THREADS(p) {
  4071     p->gc_prologue();
  4075 void Threads::deoptimized_wrt_marked_nmethods() {
  4076   ALL_JAVA_THREADS(p) {
  4077     p->deoptimized_wrt_marked_nmethods();
  4082 // Get count Java threads that are waiting to enter the specified monitor.
  4083 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4084   address monitor, bool doLock) {
  4085   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4086     "must grab Threads_lock or be at safepoint");
  4087   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4089   int i = 0;
  4091     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4092     ALL_JAVA_THREADS(p) {
  4093       if (p->is_Compiler_thread()) continue;
  4095       address pending = (address)p->current_pending_monitor();
  4096       if (pending == monitor) {             // found a match
  4097         if (i < count) result->append(p);   // save the first count matches
  4098         i++;
  4102   return result;
  4106 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4107   assert(doLock ||
  4108          Threads_lock->owned_by_self() ||
  4109          SafepointSynchronize::is_at_safepoint(),
  4110          "must grab Threads_lock or be at safepoint");
  4112   // NULL owner means not locked so we can skip the search
  4113   if (owner == NULL) return NULL;
  4116     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4117     ALL_JAVA_THREADS(p) {
  4118       // first, see if owner is the address of a Java thread
  4119       if (owner == (address)p) return p;
  4122   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  4123   if (UseHeavyMonitors) return NULL;
  4125   //
  4126   // If we didn't find a matching Java thread and we didn't force use of
  4127   // heavyweight monitors, then the owner is the stack address of the
  4128   // Lock Word in the owning Java thread's stack.
  4129   //
  4130   JavaThread* the_owner = NULL;
  4132     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4133     ALL_JAVA_THREADS(q) {
  4134       if (q->is_lock_owned(owner)) {
  4135         the_owner = q;
  4136         break;
  4140   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  4141   return the_owner;
  4144 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4145 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4146   char buf[32];
  4147   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4149   st->print_cr("Full thread dump %s (%s %s):",
  4150                 Abstract_VM_Version::vm_name(),
  4151                 Abstract_VM_Version::vm_release(),
  4152                 Abstract_VM_Version::vm_info_string()
  4153                );
  4154   st->cr();
  4156 #ifndef SERIALGC
  4157   // Dump concurrent locks
  4158   ConcurrentLocksDump concurrent_locks;
  4159   if (print_concurrent_locks) {
  4160     concurrent_locks.dump_at_safepoint();
  4162 #endif // SERIALGC
  4164   ALL_JAVA_THREADS(p) {
  4165     ResourceMark rm;
  4166     p->print_on(st);
  4167     if (print_stacks) {
  4168       if (internal_format) {
  4169         p->trace_stack();
  4170       } else {
  4171         p->print_stack_on(st);
  4174     st->cr();
  4175 #ifndef SERIALGC
  4176     if (print_concurrent_locks) {
  4177       concurrent_locks.print_locks_on(p, st);
  4179 #endif // SERIALGC
  4182   VMThread::vm_thread()->print_on(st);
  4183   st->cr();
  4184   Universe::heap()->print_gc_threads_on(st);
  4185   WatcherThread* wt = WatcherThread::watcher_thread();
  4186   if (wt != NULL) wt->print_on(st);
  4187   st->cr();
  4188   CompileBroker::print_compiler_threads_on(st);
  4189   st->flush();
  4192 // Threads::print_on_error() is called by fatal error handler. It's possible
  4193 // that VM is not at safepoint and/or current thread is inside signal handler.
  4194 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4195 // memory (even in resource area), it might deadlock the error handler.
  4196 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4197   bool found_current = false;
  4198   st->print_cr("Java Threads: ( => current thread )");
  4199   ALL_JAVA_THREADS(thread) {
  4200     bool is_current = (current == thread);
  4201     found_current = found_current || is_current;
  4203     st->print("%s", is_current ? "=>" : "  ");
  4205     st->print(PTR_FORMAT, thread);
  4206     st->print(" ");
  4207     thread->print_on_error(st, buf, buflen);
  4208     st->cr();
  4210   st->cr();
  4212   st->print_cr("Other Threads:");
  4213   if (VMThread::vm_thread()) {
  4214     bool is_current = (current == VMThread::vm_thread());
  4215     found_current = found_current || is_current;
  4216     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4218     st->print(PTR_FORMAT, VMThread::vm_thread());
  4219     st->print(" ");
  4220     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4221     st->cr();
  4223   WatcherThread* wt = WatcherThread::watcher_thread();
  4224   if (wt != NULL) {
  4225     bool is_current = (current == wt);
  4226     found_current = found_current || is_current;
  4227     st->print("%s", is_current ? "=>" : "  ");
  4229     st->print(PTR_FORMAT, wt);
  4230     st->print(" ");
  4231     wt->print_on_error(st, buf, buflen);
  4232     st->cr();
  4234   if (!found_current) {
  4235     st->cr();
  4236     st->print("=>" PTR_FORMAT " (exited) ", current);
  4237     current->print_on_error(st, buf, buflen);
  4238     st->cr();
  4242 // Internal SpinLock and Mutex
  4243 // Based on ParkEvent
  4245 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4246 //
  4247 // We employ SpinLocks _only for low-contention, fixed-length
  4248 // short-duration critical sections where we're concerned
  4249 // about native mutex_t or HotSpot Mutex:: latency.
  4250 // The mux construct provides a spin-then-block mutual exclusion
  4251 // mechanism.
  4252 //
  4253 // Testing has shown that contention on the ListLock guarding gFreeList
  4254 // is common.  If we implement ListLock as a simple SpinLock it's common
  4255 // for the JVM to devolve to yielding with little progress.  This is true
  4256 // despite the fact that the critical sections protected by ListLock are
  4257 // extremely short.
  4258 //
  4259 // TODO-FIXME: ListLock should be of type SpinLock.
  4260 // We should make this a 1st-class type, integrated into the lock
  4261 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4262 // should have sufficient padding to avoid false-sharing and excessive
  4263 // cache-coherency traffic.
  4266 typedef volatile int SpinLockT ;
  4268 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4269   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4270      return ;   // normal fast-path return
  4273   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4274   TEVENT (SpinAcquire - ctx) ;
  4275   int ctr = 0 ;
  4276   int Yields = 0 ;
  4277   for (;;) {
  4278      while (*adr != 0) {
  4279         ++ctr ;
  4280         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4281            if (Yields > 5) {
  4282              // Consider using a simple NakedSleep() instead.
  4283              // Then SpinAcquire could be called by non-JVM threads
  4284              Thread::current()->_ParkEvent->park(1) ;
  4285            } else {
  4286              os::NakedYield() ;
  4287              ++Yields ;
  4289         } else {
  4290            SpinPause() ;
  4293      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4297 void Thread::SpinRelease (volatile int * adr) {
  4298   assert (*adr != 0, "invariant") ;
  4299   OrderAccess::fence() ;      // guarantee at least release consistency.
  4300   // Roach-motel semantics.
  4301   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4302   // but prior LDs and STs within the critical section can't be allowed
  4303   // to reorder or float past the ST that releases the lock.
  4304   *adr = 0 ;
  4307 // muxAcquire and muxRelease:
  4308 //
  4309 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4310 //    The LSB of the word is set IFF the lock is held.
  4311 //    The remainder of the word points to the head of a singly-linked list
  4312 //    of threads blocked on the lock.
  4313 //
  4314 // *  The current implementation of muxAcquire-muxRelease uses its own
  4315 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4316 //    minimizing the peak number of extant ParkEvent instances then
  4317 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4318 //    as certain invariants were satisfied.  Specifically, care would need
  4319 //    to be taken with regards to consuming unpark() "permits".
  4320 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4321 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4322 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4323 //    consume an unpark() permit intended for monitorenter, for instance.
  4324 //    One way around this would be to widen the restricted-range semaphore
  4325 //    implemented in park().  Another alternative would be to provide
  4326 //    multiple instances of the PlatformEvent() for each thread.  One
  4327 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4328 //
  4329 // *  Usage:
  4330 //    -- Only as leaf locks
  4331 //    -- for short-term locking only as muxAcquire does not perform
  4332 //       thread state transitions.
  4333 //
  4334 // Alternatives:
  4335 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4336 //    but with parking or spin-then-park instead of pure spinning.
  4337 // *  Use Taura-Oyama-Yonenzawa locks.
  4338 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4339 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4340 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4341 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4342 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4343 //    boundaries by using placement-new.
  4344 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4345 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4346 //    The validity of the backlinks must be ratified before we trust the value.
  4347 //    If the backlinks are invalid the exiting thread must back-track through the
  4348 //    the forward links, which are always trustworthy.
  4349 // *  Add a successor indication.  The LockWord is currently encoded as
  4350 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4351 //    to provide the usual futile-wakeup optimization.
  4352 //    See RTStt for details.
  4353 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4354 //
  4357 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4358 enum MuxBits { LOCKBIT = 1 } ;
  4360 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4361   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4362   if (w == 0) return ;
  4363   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4364      return ;
  4367   TEVENT (muxAcquire - Contention) ;
  4368   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4369   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4370   for (;;) {
  4371      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4373      // Optional spin phase: spin-then-park strategy
  4374      while (--its >= 0) {
  4375        w = *Lock ;
  4376        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4377           return ;
  4381      Self->reset() ;
  4382      Self->OnList = intptr_t(Lock) ;
  4383      // The following fence() isn't _strictly necessary as the subsequent
  4384      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4385      OrderAccess::fence();
  4386      for (;;) {
  4387         w = *Lock ;
  4388         if ((w & LOCKBIT) == 0) {
  4389             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4390                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4391                 return ;
  4393             continue ;      // Interference -- *Lock changed -- Just retry
  4395         assert (w & LOCKBIT, "invariant") ;
  4396         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4397         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4400      while (Self->OnList != 0) {
  4401         Self->park() ;
  4406 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4407   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4408   if (w == 0) return ;
  4409   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4410     return ;
  4413   TEVENT (muxAcquire - Contention) ;
  4414   ParkEvent * ReleaseAfter = NULL ;
  4415   if (ev == NULL) {
  4416     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4418   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4419   for (;;) {
  4420     guarantee (ev->OnList == 0, "invariant") ;
  4421     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4423     // Optional spin phase: spin-then-park strategy
  4424     while (--its >= 0) {
  4425       w = *Lock ;
  4426       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4427         if (ReleaseAfter != NULL) {
  4428           ParkEvent::Release (ReleaseAfter) ;
  4430         return ;
  4434     ev->reset() ;
  4435     ev->OnList = intptr_t(Lock) ;
  4436     // The following fence() isn't _strictly necessary as the subsequent
  4437     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4438     OrderAccess::fence();
  4439     for (;;) {
  4440       w = *Lock ;
  4441       if ((w & LOCKBIT) == 0) {
  4442         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4443           ev->OnList = 0 ;
  4444           // We call ::Release while holding the outer lock, thus
  4445           // artificially lengthening the critical section.
  4446           // Consider deferring the ::Release() until the subsequent unlock(),
  4447           // after we've dropped the outer lock.
  4448           if (ReleaseAfter != NULL) {
  4449             ParkEvent::Release (ReleaseAfter) ;
  4451           return ;
  4453         continue ;      // Interference -- *Lock changed -- Just retry
  4455       assert (w & LOCKBIT, "invariant") ;
  4456       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4457       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4460     while (ev->OnList != 0) {
  4461       ev->park() ;
  4466 // Release() must extract a successor from the list and then wake that thread.
  4467 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4468 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4469 // Release() would :
  4470 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4471 // (B) Extract a successor from the private list "in-hand"
  4472 // (C) attempt to CAS() the residual back into *Lock over null.
  4473 //     If there were any newly arrived threads and the CAS() would fail.
  4474 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4475 //     with the RATs and repeat as needed.  Alternately, Release() might
  4476 //     detach and extract a successor, but then pass the residual list to the wakee.
  4477 //     The wakee would be responsible for reattaching and remerging before it
  4478 //     competed for the lock.
  4479 //
  4480 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4481 // multiple concurrent pushers, but only one popper or detacher.
  4482 // This implementation pops from the head of the list.  This is unfair,
  4483 // but tends to provide excellent throughput as hot threads remain hot.
  4484 // (We wake recently run threads first).
  4486 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4487   for (;;) {
  4488     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4489     assert (w & LOCKBIT, "invariant") ;
  4490     if (w == LOCKBIT) return ;
  4491     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4492     assert (List != NULL, "invariant") ;
  4493     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4494     ParkEvent * nxt = List->ListNext ;
  4496     // The following CAS() releases the lock and pops the head element.
  4497     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4498       continue ;
  4500     List->OnList = 0 ;
  4501     OrderAccess::fence() ;
  4502     List->unpark () ;
  4503     return ;
  4508 void Threads::verify() {
  4509   ALL_JAVA_THREADS(p) {
  4510     p->verify();
  4512   VMThread* thread = VMThread::vm_thread();
  4513   if (thread != NULL) thread->verify();

mercurial